1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 29 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 30 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 31 * PSMI 1.5 extensions are supported in Solaris Nevada. 32 * PSMI 1.6 extensions are supported in Solaris Nevada. 33 */ 34 #define PSMI_1_6 35 36 #include <sys/processor.h> 37 #include <sys/time.h> 38 #include <sys/psm.h> 39 #include <sys/smp_impldefs.h> 40 #include <sys/cram.h> 41 #include <sys/acpi/acpi.h> 42 #include <sys/acpica.h> 43 #include <sys/psm_common.h> 44 #include <sys/apic.h> 45 #include <sys/pit.h> 46 #include <sys/ddi.h> 47 #include <sys/sunddi.h> 48 #include <sys/ddi_impldefs.h> 49 #include <sys/pci.h> 50 #include <sys/promif.h> 51 #include <sys/x86_archext.h> 52 #include <sys/cpc_impl.h> 53 #include <sys/uadmin.h> 54 #include <sys/panic.h> 55 #include <sys/debug.h> 56 #include <sys/archsystm.h> 57 #include <sys/trap.h> 58 #include <sys/machsystm.h> 59 #include <sys/sysmacros.h> 60 #include <sys/cpuvar.h> 61 #include <sys/rm_platter.h> 62 #include <sys/privregs.h> 63 #include <sys/note.h> 64 #include <sys/pci_intr_lib.h> 65 #include <sys/spl.h> 66 #include <sys/clock.h> 67 #include <sys/dditypes.h> 68 #include <sys/sunddi.h> 69 #include <sys/x_call.h> 70 #include <sys/reboot.h> 71 #include <sys/hpet.h> 72 73 /* 74 * Local Function Prototypes 75 */ 76 static void apic_init_intr(); 77 static void apic_nmi_intr(caddr_t arg, struct regs *rp); 78 79 /* 80 * standard MP entries 81 */ 82 static int apic_probe(); 83 static int apic_clkinit(); 84 static int apic_getclkirq(int ipl); 85 static uint_t apic_calibrate(volatile uint32_t *addr, 86 uint16_t *pit_ticks_adj); 87 static hrtime_t apic_gettime(); 88 static hrtime_t apic_gethrtime(); 89 static void apic_init(); 90 static void apic_picinit(void); 91 static int apic_cpu_start(processorid_t, caddr_t); 92 static int apic_post_cpu_start(void); 93 static void apic_send_ipi(int cpun, int ipl); 94 static void apic_set_idlecpu(processorid_t cpun); 95 static void apic_unset_idlecpu(processorid_t cpun); 96 static int apic_intr_enter(int ipl, int *vect); 97 static void apic_setspl(int ipl); 98 static void x2apic_setspl(int ipl); 99 static int apic_addspl(int ipl, int vector, int min_ipl, int max_ipl); 100 static int apic_delspl(int ipl, int vector, int min_ipl, int max_ipl); 101 static void apic_shutdown(int cmd, int fcn); 102 static void apic_preshutdown(int cmd, int fcn); 103 static int apic_disable_intr(processorid_t cpun); 104 static void apic_enable_intr(processorid_t cpun); 105 static processorid_t apic_get_next_processorid(processorid_t cpun); 106 static int apic_get_ipivect(int ipl, int type); 107 static void apic_timer_reprogram(hrtime_t time); 108 static void apic_timer_enable(void); 109 static void apic_timer_disable(void); 110 static void apic_post_cyclic_setup(void *arg); 111 static void apic_intrmap_init(int apic_mode); 112 static void apic_record_ioapic_rdt(apic_irq_t *irq_ptr, ioapic_rdt_t *irdt); 113 static void apic_record_msi(apic_irq_t *irq_ptr, msi_regs_t *mregs); 114 115 static int apic_oneshot = 0; 116 int apic_oneshot_enable = 1; /* to allow disabling one-shot capability */ 117 118 /* Now the ones for Dynamic Interrupt distribution */ 119 int apic_enable_dynamic_migration = 0; 120 121 extern int apic_have_32bit_cr8; 122 123 /* 124 * These variables are frequently accessed in apic_intr_enter(), 125 * apic_intr_exit and apic_setspl, so group them together 126 */ 127 volatile uint32_t *apicadr = NULL; /* virtual addr of local APIC */ 128 int apic_setspl_delay = 1; /* apic_setspl - delay enable */ 129 int apic_clkvect; 130 131 /* vector at which error interrupts come in */ 132 int apic_errvect; 133 int apic_enable_error_intr = 1; 134 int apic_error_display_delay = 100; 135 136 /* vector at which performance counter overflow interrupts come in */ 137 int apic_cpcovf_vect; 138 int apic_enable_cpcovf_intr = 1; 139 140 /* vector at which CMCI interrupts come in */ 141 int apic_cmci_vect; 142 extern int cmi_enable_cmci; 143 extern void cmi_cmci_trap(void); 144 145 static kmutex_t cmci_cpu_setup_lock; /* protects cmci_cpu_setup_registered */ 146 static int cmci_cpu_setup_registered; 147 148 /* 149 * The following vector assignments influence the value of ipltopri and 150 * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program 151 * idle to 0 and IPL 0 to 0xf to differentiate idle in case 152 * we care to do so in future. Note some IPLs which are rarely used 153 * will share the vector ranges and heavily used IPLs (5 and 6) have 154 * a wide range. 155 * 156 * This array is used to initialize apic_ipls[] (in apic_init()). 157 * 158 * IPL Vector range. as passed to intr_enter 159 * 0 none. 160 * 1,2,3 0x20-0x2f 0x0-0xf 161 * 4 0x30-0x3f 0x10-0x1f 162 * 5 0x40-0x5f 0x20-0x3f 163 * 6 0x60-0x7f 0x40-0x5f 164 * 7,8,9 0x80-0x8f 0x60-0x6f 165 * 10 0x90-0x9f 0x70-0x7f 166 * 11 0xa0-0xaf 0x80-0x8f 167 * ... ... 168 * 15 0xe0-0xef 0xc0-0xcf 169 * 15 0xf0-0xff 0xd0-0xdf 170 */ 171 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = { 172 3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15 173 }; 174 /* 175 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4] 176 * NOTE that this is vector as passed into intr_enter which is 177 * programmed vector - 0x20 (APIC_BASE_VECT) 178 */ 179 180 uchar_t apic_ipltopri[MAXIPL + 1]; /* unix ipl to apic pri */ 181 /* The taskpri to be programmed into apic to mask given ipl */ 182 183 #if defined(__amd64) 184 uchar_t apic_cr8pri[MAXIPL + 1]; /* unix ipl to cr8 pri */ 185 #endif 186 187 /* 188 * Correlation of the hardware vector to the IPL in use, initialized 189 * from apic_vectortoipl[] in apic_init(). The final IPLs may not correlate 190 * to the IPLs in apic_vectortoipl on some systems that share interrupt lines 191 * connected to errata-stricken IOAPICs 192 */ 193 uchar_t apic_ipls[APIC_AVAIL_VECTOR]; 194 195 /* 196 * Patchable global variables. 197 */ 198 int apic_forceload = 0; 199 200 int apic_coarse_hrtime = 1; /* 0 - use accurate slow gethrtime() */ 201 /* 1 - use gettime() for performance */ 202 int apic_flat_model = 0; /* 0 - clustered. 1 - flat */ 203 int apic_enable_hwsoftint = 0; /* 0 - disable, 1 - enable */ 204 int apic_enable_bind_log = 1; /* 1 - display interrupt binding log */ 205 int apic_panic_on_nmi = 0; 206 int apic_panic_on_apic_error = 0; 207 208 int apic_verbose = 0; 209 210 /* minimum number of timer ticks to program to */ 211 int apic_min_timer_ticks = 1; 212 /* 213 * Local static data 214 */ 215 static struct psm_ops apic_ops = { 216 apic_probe, 217 218 apic_init, 219 apic_picinit, 220 apic_intr_enter, 221 apic_intr_exit, 222 apic_setspl, 223 apic_addspl, 224 apic_delspl, 225 apic_disable_intr, 226 apic_enable_intr, 227 (int (*)(int))NULL, /* psm_softlvl_to_irq */ 228 (void (*)(int))NULL, /* psm_set_softintr */ 229 230 apic_set_idlecpu, 231 apic_unset_idlecpu, 232 233 apic_clkinit, 234 apic_getclkirq, 235 (void (*)(void))NULL, /* psm_hrtimeinit */ 236 apic_gethrtime, 237 238 apic_get_next_processorid, 239 apic_cpu_start, 240 apic_post_cpu_start, 241 apic_shutdown, 242 apic_get_ipivect, 243 apic_send_ipi, 244 245 (int (*)(dev_info_t *, int))NULL, /* psm_translate_irq */ 246 (void (*)(int, char *))NULL, /* psm_notify_error */ 247 (void (*)(int))NULL, /* psm_notify_func */ 248 apic_timer_reprogram, 249 apic_timer_enable, 250 apic_timer_disable, 251 apic_post_cyclic_setup, 252 apic_preshutdown, 253 apic_intr_ops, /* Advanced DDI Interrupt framework */ 254 apic_state, /* save, restore apic state for S3 */ 255 }; 256 257 258 static struct psm_info apic_psm_info = { 259 PSM_INFO_VER01_6, /* version */ 260 PSM_OWN_EXCLUSIVE, /* ownership */ 261 (struct psm_ops *)&apic_ops, /* operation */ 262 APIC_PCPLUSMP_NAME, /* machine name */ 263 "pcplusmp v1.4 compatible", 264 }; 265 266 static void *apic_hdlp; 267 268 #ifdef DEBUG 269 int apic_debug = 0; 270 int apic_restrict_vector = 0; 271 272 int apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE]; 273 int apic_debug_msgbufindex = 0; 274 275 #endif /* DEBUG */ 276 277 apic_cpus_info_t *apic_cpus; 278 279 cpuset_t apic_cpumask; 280 uint_t apic_picinit_called; 281 282 /* Flag to indicate that we need to shut down all processors */ 283 static uint_t apic_shutdown_processors; 284 285 uint_t apic_nsec_per_intr = 0; 286 287 /* 288 * apic_let_idle_redistribute can have the following values: 289 * 0 - If clock decremented it from 1 to 0, clock has to call redistribute. 290 * apic_redistribute_lock prevents multiple idle cpus from redistributing 291 */ 292 int apic_num_idle_redistributions = 0; 293 static int apic_let_idle_redistribute = 0; 294 static uint_t apic_nticks = 0; 295 static uint_t apic_skipped_redistribute = 0; 296 297 /* to gather intr data and redistribute */ 298 static void apic_redistribute_compute(void); 299 300 static uint_t last_count_read = 0; 301 static lock_t apic_gethrtime_lock; 302 volatile int apic_hrtime_stamp = 0; 303 volatile hrtime_t apic_nsec_since_boot = 0; 304 static uint_t apic_hertz_count; 305 306 uint64_t apic_ticks_per_SFnsecs; /* # of ticks in SF nsecs */ 307 308 static hrtime_t apic_nsec_max; 309 310 static hrtime_t apic_last_hrtime = 0; 311 int apic_hrtime_error = 0; 312 int apic_remote_hrterr = 0; 313 int apic_num_nmis = 0; 314 int apic_apic_error = 0; 315 int apic_num_apic_errors = 0; 316 int apic_num_cksum_errors = 0; 317 318 int apic_error = 0; 319 static int apic_cmos_ssb_set = 0; 320 321 /* use to make sure only one cpu handles the nmi */ 322 static lock_t apic_nmi_lock; 323 /* use to make sure only one cpu handles the error interrupt */ 324 static lock_t apic_error_lock; 325 326 static struct { 327 uchar_t cntl; 328 uchar_t data; 329 } aspen_bmc[] = { 330 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ 331 { CC_SMS_WR_NEXT, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ 332 { CC_SMS_WR_NEXT, 0x84 }, /* DataByte 1: SMS/OS no log */ 333 { CC_SMS_WR_NEXT, 0x2 }, /* DataByte 2: Power Down */ 334 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 3: no pre-timeout */ 335 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 4: timer expir. */ 336 { CC_SMS_WR_NEXT, 0xa }, /* DataByte 5: init countdown */ 337 { CC_SMS_WR_END, 0x0 }, /* DataByte 6: init countdown */ 338 339 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ 340 { CC_SMS_WR_END, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ 341 }; 342 343 static struct { 344 int port; 345 uchar_t data; 346 } sitka_bmc[] = { 347 { SMS_COMMAND_REGISTER, SMS_WRITE_START }, 348 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ 349 { SMS_DATA_REGISTER, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ 350 { SMS_DATA_REGISTER, 0x84 }, /* DataByte 1: SMS/OS no log */ 351 { SMS_DATA_REGISTER, 0x2 }, /* DataByte 2: Power Down */ 352 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 3: no pre-timeout */ 353 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 4: timer expir. */ 354 { SMS_DATA_REGISTER, 0xa }, /* DataByte 5: init countdown */ 355 { SMS_COMMAND_REGISTER, SMS_WRITE_END }, 356 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 6: init countdown */ 357 358 { SMS_COMMAND_REGISTER, SMS_WRITE_START }, 359 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ 360 { SMS_COMMAND_REGISTER, SMS_WRITE_END }, 361 { SMS_DATA_REGISTER, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ 362 }; 363 364 /* Patchable global variables. */ 365 int apic_kmdb_on_nmi = 0; /* 0 - no, 1 - yes enter kmdb */ 366 uint32_t apic_divide_reg_init = 0; /* 0 - divide by 2 */ 367 368 /* default apic ops without interrupt remapping */ 369 static apic_intrmap_ops_t apic_nointrmap_ops = { 370 (int (*)(int))return_instr, 371 (void (*)(int))return_instr, 372 (void (*)(apic_irq_t *))return_instr, 373 (void (*)(apic_irq_t *, void *))return_instr, 374 (void (*)(apic_irq_t *))return_instr, 375 apic_record_ioapic_rdt, 376 apic_record_msi, 377 }; 378 379 apic_intrmap_ops_t *apic_vt_ops = &apic_nointrmap_ops; 380 381 /* 382 * This is the loadable module wrapper 383 */ 384 385 int 386 _init(void) 387 { 388 if (apic_coarse_hrtime) 389 apic_ops.psm_gethrtime = &apic_gettime; 390 return (psm_mod_init(&apic_hdlp, &apic_psm_info)); 391 } 392 393 int 394 _fini(void) 395 { 396 return (psm_mod_fini(&apic_hdlp, &apic_psm_info)); 397 } 398 399 int 400 _info(struct modinfo *modinfop) 401 { 402 return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop)); 403 } 404 405 406 static int 407 apic_probe() 408 { 409 return (apic_probe_common(apic_psm_info.p_mach_idstring)); 410 } 411 412 void 413 apic_init() 414 { 415 int i; 416 int j = 1; 417 418 apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */ 419 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { 420 if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) && 421 (apic_vectortoipl[i + 1] == apic_vectortoipl[i])) 422 /* get to highest vector at the same ipl */ 423 continue; 424 for (; j <= apic_vectortoipl[i]; j++) { 425 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + 426 APIC_BASE_VECT; 427 } 428 } 429 for (; j < MAXIPL + 1; j++) 430 /* fill up any empty ipltopri slots */ 431 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT; 432 apic_init_common(); 433 #if defined(__amd64) 434 /* 435 * Make cpu-specific interrupt info point to cr8pri vector 436 */ 437 for (i = 0; i <= MAXIPL; i++) 438 apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT; 439 CPU->cpu_pri_data = apic_cr8pri; 440 #else 441 if (cpuid_have_cr8access(CPU)) 442 apic_have_32bit_cr8 = 1; 443 #endif /* __amd64 */ 444 } 445 446 /* 447 * handler for APIC Error interrupt. Just print a warning and continue 448 */ 449 static int 450 apic_error_intr() 451 { 452 uint_t error0, error1, error; 453 uint_t i; 454 455 /* 456 * We need to write before read as per 7.4.17 of system prog manual. 457 * We do both and or the results to be safe 458 */ 459 error0 = apic_reg_ops->apic_read(APIC_ERROR_STATUS); 460 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 461 error1 = apic_reg_ops->apic_read(APIC_ERROR_STATUS); 462 error = error0 | error1; 463 464 /* 465 * Clear the APIC error status (do this on all cpus that enter here) 466 * (two writes are required due to the semantics of accessing the 467 * error status register.) 468 */ 469 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 470 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 471 472 /* 473 * Prevent more than 1 CPU from handling error interrupt causing 474 * double printing (interleave of characters from multiple 475 * CPU's when using prom_printf) 476 */ 477 if (lock_try(&apic_error_lock) == 0) 478 return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); 479 if (error) { 480 #if DEBUG 481 if (apic_debug) 482 debug_enter("pcplusmp: APIC Error interrupt received"); 483 #endif /* DEBUG */ 484 if (apic_panic_on_apic_error) 485 cmn_err(CE_PANIC, 486 "APIC Error interrupt on CPU %d. Status = %x\n", 487 psm_get_cpu_id(), error); 488 else { 489 if ((error & ~APIC_CS_ERRORS) == 0) { 490 /* cksum error only */ 491 apic_error |= APIC_ERR_APIC_ERROR; 492 apic_apic_error |= error; 493 apic_num_apic_errors++; 494 apic_num_cksum_errors++; 495 } else { 496 /* 497 * prom_printf is the best shot we have of 498 * something which is problem free from 499 * high level/NMI type of interrupts 500 */ 501 prom_printf("APIC Error interrupt on CPU %d. " 502 "Status 0 = %x, Status 1 = %x\n", 503 psm_get_cpu_id(), error0, error1); 504 apic_error |= APIC_ERR_APIC_ERROR; 505 apic_apic_error |= error; 506 apic_num_apic_errors++; 507 for (i = 0; i < apic_error_display_delay; i++) { 508 tenmicrosec(); 509 } 510 /* 511 * provide more delay next time limited to 512 * roughly 1 clock tick time 513 */ 514 if (apic_error_display_delay < 500) 515 apic_error_display_delay *= 2; 516 } 517 } 518 lock_clear(&apic_error_lock); 519 return (DDI_INTR_CLAIMED); 520 } else { 521 lock_clear(&apic_error_lock); 522 return (DDI_INTR_UNCLAIMED); 523 } 524 /* NOTREACHED */ 525 } 526 527 /* 528 * Turn off the mask bit in the performance counter Local Vector Table entry. 529 */ 530 static void 531 apic_cpcovf_mask_clear(void) 532 { 533 apic_reg_ops->apic_write(APIC_PCINT_VECT, 534 (apic_reg_ops->apic_read(APIC_PCINT_VECT) & ~APIC_LVT_MASK)); 535 } 536 537 /*ARGSUSED*/ 538 static int 539 apic_cmci_enable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) 540 { 541 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); 542 return (0); 543 } 544 545 /*ARGSUSED*/ 546 static int 547 apic_cmci_disable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) 548 { 549 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect | AV_MASK); 550 return (0); 551 } 552 553 /*ARGSUSED*/ 554 static int 555 cmci_cpu_setup(cpu_setup_t what, int cpuid, void *arg) 556 { 557 cpuset_t cpu_set; 558 559 CPUSET_ONLY(cpu_set, cpuid); 560 561 switch (what) { 562 case CPU_ON: 563 xc_call(NULL, NULL, NULL, CPUSET2BV(cpu_set), 564 (xc_func_t)apic_cmci_enable); 565 break; 566 567 case CPU_OFF: 568 xc_call(NULL, NULL, NULL, CPUSET2BV(cpu_set), 569 (xc_func_t)apic_cmci_disable); 570 break; 571 572 default: 573 break; 574 } 575 576 return (0); 577 } 578 579 static void 580 apic_init_intr() 581 { 582 processorid_t cpun = psm_get_cpu_id(); 583 uint_t nlvt; 584 uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR; 585 586 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 587 588 if (apic_mode == LOCAL_APIC) { 589 /* 590 * We are running APIC in MMIO mode. 591 */ 592 if (apic_flat_model) { 593 apic_reg_ops->apic_write(APIC_FORMAT_REG, 594 APIC_FLAT_MODEL); 595 } else { 596 apic_reg_ops->apic_write(APIC_FORMAT_REG, 597 APIC_CLUSTER_MODEL); 598 } 599 600 apic_reg_ops->apic_write(APIC_DEST_REG, 601 AV_HIGH_ORDER >> cpun); 602 } 603 604 if (apic_directed_EOI_supported()) { 605 /* 606 * Setting the 12th bit in the Spurious Interrupt Vector 607 * Register suppresses broadcast EOIs generated by the local 608 * APIC. The suppression of broadcast EOIs happens only when 609 * interrupts are level-triggered. 610 */ 611 svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI; 612 } 613 614 /* need to enable APIC before unmasking NMI */ 615 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr); 616 617 /* 618 * Presence of an invalid vector with delivery mode AV_FIXED can 619 * cause an error interrupt, even if the entry is masked...so 620 * write a valid vector to LVT entries along with the mask bit 621 */ 622 623 /* All APICs have timer and LINT0/1 */ 624 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ); 625 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ); 626 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */ 627 628 /* 629 * On integrated APICs, the number of LVT entries is 630 * 'Max LVT entry' + 1; on 82489DX's (non-integrated 631 * APICs), nlvt is "3" (LINT0, LINT1, and timer) 632 */ 633 634 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { 635 nlvt = 3; 636 } else { 637 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) & 638 0xFF) + 1; 639 } 640 641 if (nlvt >= 5) { 642 /* Enable performance counter overflow interrupt */ 643 644 if ((x86_feature & X86_MSR) != X86_MSR) 645 apic_enable_cpcovf_intr = 0; 646 if (apic_enable_cpcovf_intr) { 647 if (apic_cpcovf_vect == 0) { 648 int ipl = APIC_PCINT_IPL; 649 int irq = apic_get_ipivect(ipl, -1); 650 651 ASSERT(irq != -1); 652 apic_cpcovf_vect = 653 apic_irq_table[irq]->airq_vector; 654 ASSERT(apic_cpcovf_vect); 655 (void) add_avintr(NULL, ipl, 656 (avfunc)kcpc_hw_overflow_intr, 657 "apic pcint", irq, NULL, NULL, NULL, NULL); 658 kcpc_hw_overflow_intr_installed = 1; 659 kcpc_hw_enable_cpc_intr = 660 apic_cpcovf_mask_clear; 661 } 662 apic_reg_ops->apic_write(APIC_PCINT_VECT, 663 apic_cpcovf_vect); 664 } 665 } 666 667 if (nlvt >= 6) { 668 /* Only mask TM intr if the BIOS apparently doesn't use it */ 669 670 uint32_t lvtval; 671 672 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT); 673 if (((lvtval & AV_MASK) == AV_MASK) || 674 ((lvtval & AV_DELIV_MODE) != AV_SMI)) { 675 apic_reg_ops->apic_write(APIC_THERM_VECT, 676 AV_MASK|APIC_RESV_IRQ); 677 } 678 } 679 680 /* Enable error interrupt */ 681 682 if (nlvt >= 4 && apic_enable_error_intr) { 683 if (apic_errvect == 0) { 684 int ipl = 0xf; /* get highest priority intr */ 685 int irq = apic_get_ipivect(ipl, -1); 686 687 ASSERT(irq != -1); 688 apic_errvect = apic_irq_table[irq]->airq_vector; 689 ASSERT(apic_errvect); 690 /* 691 * Not PSMI compliant, but we are going to merge 692 * with ON anyway 693 */ 694 (void) add_avintr((void *)NULL, ipl, 695 (avfunc)apic_error_intr, "apic error intr", 696 irq, NULL, NULL, NULL, NULL); 697 } 698 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect); 699 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 700 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 701 } 702 703 /* Enable CMCI interrupt */ 704 if (cmi_enable_cmci) { 705 706 mutex_enter(&cmci_cpu_setup_lock); 707 if (cmci_cpu_setup_registered == 0) { 708 mutex_enter(&cpu_lock); 709 register_cpu_setup_func(cmci_cpu_setup, NULL); 710 mutex_exit(&cpu_lock); 711 cmci_cpu_setup_registered = 1; 712 } 713 mutex_exit(&cmci_cpu_setup_lock); 714 715 if (apic_cmci_vect == 0) { 716 int ipl = 0x2; 717 int irq = apic_get_ipivect(ipl, -1); 718 719 ASSERT(irq != -1); 720 apic_cmci_vect = apic_irq_table[irq]->airq_vector; 721 ASSERT(apic_cmci_vect); 722 723 (void) add_avintr(NULL, ipl, 724 (avfunc)cmi_cmci_trap, 725 "apic cmci intr", irq, NULL, NULL, NULL, NULL); 726 } 727 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); 728 } 729 } 730 731 static void 732 apic_disable_local_apic() 733 { 734 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 735 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK); 736 737 /* local intr reg 0 */ 738 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK); 739 740 /* disable NMI */ 741 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_MASK); 742 743 /* and error interrupt */ 744 apic_reg_ops->apic_write(APIC_ERR_VECT, AV_MASK); 745 746 /* and perf counter intr */ 747 apic_reg_ops->apic_write(APIC_PCINT_VECT, AV_MASK); 748 749 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, APIC_SPUR_INTR); 750 } 751 752 static void 753 apic_picinit(void) 754 { 755 int i, j; 756 uint_t isr; 757 758 /* 759 * Initialize and enable interrupt remapping before apic 760 * hardware initialization 761 */ 762 apic_intrmap_init(apic_mode); 763 764 /* 765 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr 766 * bit on without clearing it with EOI. Since softint 767 * uses vector 0x20 to interrupt itself, so softint will 768 * not work on this machine. In order to fix this problem 769 * a check is made to verify all the isr bits are clear. 770 * If not, EOIs are issued to clear the bits. 771 */ 772 for (i = 7; i >= 1; i--) { 773 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4)); 774 if (isr != 0) 775 for (j = 0; ((j < 32) && (isr != 0)); j++) 776 if (isr & (1 << j)) { 777 apic_reg_ops->apic_write( 778 APIC_EOI_REG, 0); 779 isr &= ~(1 << j); 780 apic_error |= APIC_ERR_BOOT_EOI; 781 } 782 } 783 784 /* set a flag so we know we have run apic_picinit() */ 785 apic_picinit_called = 1; 786 LOCK_INIT_CLEAR(&apic_gethrtime_lock); 787 LOCK_INIT_CLEAR(&apic_ioapic_lock); 788 LOCK_INIT_CLEAR(&apic_error_lock); 789 790 picsetup(); /* initialise the 8259 */ 791 792 /* add nmi handler - least priority nmi handler */ 793 LOCK_INIT_CLEAR(&apic_nmi_lock); 794 795 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr, 796 "pcplusmp NMI handler", (caddr_t)NULL)) 797 cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler"); 798 799 /* 800 * Check for directed-EOI capability in the local APIC. 801 */ 802 if (apic_directed_EOI_supported() == 1) { 803 apic_set_directed_EOI_handler(); 804 } 805 806 apic_init_intr(); 807 808 /* enable apic mode if imcr present */ 809 if (apic_imcrp) { 810 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 811 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); 812 } 813 814 ioapic_init_intr(IOAPIC_MASK); 815 } 816 817 818 /*ARGSUSED1*/ 819 static int 820 apic_cpu_start(processorid_t cpun, caddr_t arg) 821 { 822 int loop_count; 823 uint32_t vector; 824 uint_t cpu_id; 825 ulong_t iflag; 826 827 cpu_id = apic_cpus[cpun].aci_local_id; 828 829 apic_cmos_ssb_set = 1; 830 831 /* 832 * Interrupts on BSP cpu will be disabled during these startup 833 * steps in order to avoid unwanted side effects from 834 * executing interrupt handlers on a problematic BIOS. 835 */ 836 837 iflag = intr_clear(); 838 outb(CMOS_ADDR, SSB); 839 outb(CMOS_DATA, BIOS_SHUTDOWN); 840 841 /* 842 * According to X2APIC specification in section '2.3.5.1' of 843 * Interrupt Command Register Semantics, the semantics of 844 * programming the Interrupt Command Register to dispatch an interrupt 845 * is simplified. A single MSR write to the 64-bit ICR is required 846 * for dispatching an interrupt. Specifically, with the 64-bit MSR 847 * interface to ICR, system software is not required to check the 848 * status of the delivery status bit prior to writing to the ICR 849 * to send an IPI. With the removal of the Delivery Status bit, 850 * system software no longer has a reason to read the ICR. It remains 851 * readable only to aid in debugging. 852 */ 853 #ifdef DEBUG 854 APIC_AV_PENDING_SET(); 855 #else 856 if (apic_mode == LOCAL_APIC) { 857 APIC_AV_PENDING_SET(); 858 } 859 #endif /* DEBUG */ 860 861 /* for integrated - make sure there is one INIT IPI in buffer */ 862 /* for external - it will wake up the cpu */ 863 apic_reg_ops->apic_write_int_cmd(cpu_id, AV_ASSERT | AV_RESET); 864 865 /* If only 1 CPU is installed, PENDING bit will not go low */ 866 for (loop_count = 0x1000; loop_count; loop_count--) { 867 if (apic_mode == LOCAL_APIC && 868 apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING) 869 apic_ret(); 870 else 871 break; 872 } 873 874 apic_reg_ops->apic_write_int_cmd(cpu_id, AV_DEASSERT | AV_RESET); 875 876 drv_usecwait(20000); /* 20 milli sec */ 877 878 if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) { 879 /* integrated apic */ 880 881 vector = (rm_platter_pa >> MMU_PAGESHIFT) & 882 (APIC_VECTOR_MASK | APIC_IPL_MASK); 883 884 /* to offset the INIT IPI queue up in the buffer */ 885 apic_reg_ops->apic_write_int_cmd(cpu_id, vector | AV_STARTUP); 886 887 drv_usecwait(200); /* 20 micro sec */ 888 889 apic_reg_ops->apic_write_int_cmd(cpu_id, vector | AV_STARTUP); 890 891 drv_usecwait(200); /* 20 micro sec */ 892 } 893 intr_restore(iflag); 894 return (0); 895 } 896 897 898 #ifdef DEBUG 899 int apic_break_on_cpu = 9; 900 int apic_stretch_interrupts = 0; 901 int apic_stretch_ISR = 1 << 3; /* IPL of 3 matches nothing now */ 902 903 void 904 apic_break() 905 { 906 } 907 #endif /* DEBUG */ 908 909 /* 910 * platform_intr_enter 911 * 912 * Called at the beginning of the interrupt service routine to 913 * mask all level equal to and below the interrupt priority 914 * of the interrupting vector. An EOI should be given to 915 * the interrupt controller to enable other HW interrupts. 916 * 917 * Return -1 for spurious interrupts 918 * 919 */ 920 /*ARGSUSED*/ 921 static int 922 apic_intr_enter(int ipl, int *vectorp) 923 { 924 uchar_t vector; 925 int nipl; 926 int irq; 927 ulong_t iflag; 928 apic_cpus_info_t *cpu_infop; 929 930 /* 931 * The real vector delivered is (*vectorp + 0x20), but our caller 932 * subtracts 0x20 from the vector before passing it to us. 933 * (That's why APIC_BASE_VECT is 0x20.) 934 */ 935 vector = (uchar_t)*vectorp; 936 937 /* if interrupted by the clock, increment apic_nsec_since_boot */ 938 if (vector == apic_clkvect) { 939 if (!apic_oneshot) { 940 /* NOTE: this is not MT aware */ 941 apic_hrtime_stamp++; 942 apic_nsec_since_boot += apic_nsec_per_intr; 943 apic_hrtime_stamp++; 944 last_count_read = apic_hertz_count; 945 apic_redistribute_compute(); 946 } 947 948 /* We will avoid all the book keeping overhead for clock */ 949 nipl = apic_ipls[vector]; 950 951 *vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT]; 952 if (apic_mode == LOCAL_APIC) { 953 #if defined(__amd64) 954 setcr8((ulong_t)(apic_ipltopri[nipl] >> 955 APIC_IPL_SHIFT)); 956 #else 957 if (apic_have_32bit_cr8) 958 setcr8((ulong_t)(apic_ipltopri[nipl] >> 959 APIC_IPL_SHIFT)); 960 else 961 LOCAL_APIC_WRITE_REG(APIC_TASK_REG, 962 (uint32_t)apic_ipltopri[nipl]); 963 #endif 964 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); 965 } else { 966 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]); 967 X2APIC_WRITE(APIC_EOI_REG, 0); 968 } 969 970 return (nipl); 971 } 972 973 cpu_infop = &apic_cpus[psm_get_cpu_id()]; 974 975 if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) { 976 cpu_infop->aci_spur_cnt++; 977 return (APIC_INT_SPURIOUS); 978 } 979 980 /* Check if the vector we got is really what we need */ 981 if (apic_revector_pending) { 982 /* 983 * Disable interrupts for the duration of 984 * the vector translation to prevent a self-race for 985 * the apic_revector_lock. This cannot be done 986 * in apic_xlate_vector because it is recursive and 987 * we want the vector translation to be atomic with 988 * respect to other (higher-priority) interrupts. 989 */ 990 iflag = intr_clear(); 991 vector = apic_xlate_vector(vector + APIC_BASE_VECT) - 992 APIC_BASE_VECT; 993 intr_restore(iflag); 994 } 995 996 nipl = apic_ipls[vector]; 997 *vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT]; 998 999 if (apic_mode == LOCAL_APIC) { 1000 #if defined(__amd64) 1001 setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT)); 1002 #else 1003 if (apic_have_32bit_cr8) 1004 setcr8((ulong_t)(apic_ipltopri[nipl] >> 1005 APIC_IPL_SHIFT)); 1006 else 1007 LOCAL_APIC_WRITE_REG(APIC_TASK_REG, 1008 (uint32_t)apic_ipltopri[nipl]); 1009 #endif 1010 } else { 1011 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]); 1012 } 1013 1014 cpu_infop->aci_current[nipl] = (uchar_t)irq; 1015 cpu_infop->aci_curipl = (uchar_t)nipl; 1016 cpu_infop->aci_ISR_in_progress |= 1 << nipl; 1017 1018 /* 1019 * apic_level_intr could have been assimilated into the irq struct. 1020 * but, having it as a character array is more efficient in terms of 1021 * cache usage. So, we leave it as is. 1022 */ 1023 if (!apic_level_intr[irq]) { 1024 if (apic_mode == LOCAL_APIC) { 1025 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); 1026 } else { 1027 X2APIC_WRITE(APIC_EOI_REG, 0); 1028 } 1029 } 1030 1031 #ifdef DEBUG 1032 APIC_DEBUG_BUF_PUT(vector); 1033 APIC_DEBUG_BUF_PUT(irq); 1034 APIC_DEBUG_BUF_PUT(nipl); 1035 APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); 1036 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) 1037 drv_usecwait(apic_stretch_interrupts); 1038 1039 if (apic_break_on_cpu == psm_get_cpu_id()) 1040 apic_break(); 1041 #endif /* DEBUG */ 1042 return (nipl); 1043 } 1044 1045 /* 1046 * This macro is a common code used by MMIO local apic and X2APIC 1047 * local apic. 1048 */ 1049 #define APIC_INTR_EXIT() \ 1050 { \ 1051 cpu_infop = &apic_cpus[psm_get_cpu_id()]; \ 1052 if (apic_level_intr[irq]) \ 1053 apic_reg_ops->apic_send_eoi(irq); \ 1054 cpu_infop->aci_curipl = (uchar_t)prev_ipl; \ 1055 /* ISR above current pri could not be in progress */ \ 1056 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \ 1057 } 1058 1059 /* 1060 * Any changes made to this function must also change X2APIC 1061 * version of intr_exit. 1062 */ 1063 void 1064 apic_intr_exit(int prev_ipl, int irq) 1065 { 1066 apic_cpus_info_t *cpu_infop; 1067 1068 #if defined(__amd64) 1069 setcr8((ulong_t)apic_cr8pri[prev_ipl]); 1070 #else 1071 if (apic_have_32bit_cr8) 1072 setcr8((ulong_t)(apic_ipltopri[prev_ipl] >> APIC_IPL_SHIFT)); 1073 else 1074 apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl]; 1075 #endif 1076 1077 APIC_INTR_EXIT(); 1078 } 1079 1080 /* 1081 * Same as apic_intr_exit() except it uses MSR rather than MMIO 1082 * to access local apic registers. 1083 */ 1084 void 1085 x2apic_intr_exit(int prev_ipl, int irq) 1086 { 1087 apic_cpus_info_t *cpu_infop; 1088 1089 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]); 1090 APIC_INTR_EXIT(); 1091 } 1092 1093 intr_exit_fn_t 1094 psm_intr_exit_fn(void) 1095 { 1096 if (apic_mode == LOCAL_X2APIC) 1097 return (x2apic_intr_exit); 1098 1099 return (apic_intr_exit); 1100 } 1101 1102 /* 1103 * Mask all interrupts below or equal to the given IPL. 1104 * Any changes made to this function must also change X2APIC 1105 * version of setspl. 1106 */ 1107 static void 1108 apic_setspl(int ipl) 1109 { 1110 #if defined(__amd64) 1111 setcr8((ulong_t)apic_cr8pri[ipl]); 1112 #else 1113 if (apic_have_32bit_cr8) 1114 setcr8((ulong_t)(apic_ipltopri[ipl] >> APIC_IPL_SHIFT)); 1115 else 1116 apicadr[APIC_TASK_REG] = apic_ipltopri[ipl]; 1117 #endif 1118 1119 /* interrupts at ipl above this cannot be in progress */ 1120 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 1121 /* 1122 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts 1123 * have enough time to come in before the priority is raised again 1124 * during the idle() loop. 1125 */ 1126 if (apic_setspl_delay) 1127 (void) apic_reg_ops->apic_get_pri(); 1128 } 1129 1130 /* 1131 * X2APIC version of setspl. 1132 * Mask all interrupts below or equal to the given IPL 1133 */ 1134 static void 1135 x2apic_setspl(int ipl) 1136 { 1137 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]); 1138 1139 /* interrupts at ipl above this cannot be in progress */ 1140 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 1141 } 1142 1143 /* 1144 * generates an interprocessor interrupt to another CPU. Any changes made to 1145 * this routine must be accompanied by similar changes to 1146 * apic_common_send_ipi(). 1147 */ 1148 static void 1149 apic_send_ipi(int cpun, int ipl) 1150 { 1151 int vector; 1152 ulong_t flag; 1153 1154 vector = apic_resv_vector[ipl]; 1155 1156 ASSERT((vector >= APIC_BASE_VECT) && (vector <= APIC_SPUR_INTR)); 1157 1158 flag = intr_clear(); 1159 1160 APIC_AV_PENDING_SET(); 1161 1162 apic_reg_ops->apic_write_int_cmd(apic_cpus[cpun].aci_local_id, 1163 vector); 1164 1165 intr_restore(flag); 1166 } 1167 1168 1169 /*ARGSUSED*/ 1170 static void 1171 apic_set_idlecpu(processorid_t cpun) 1172 { 1173 } 1174 1175 /*ARGSUSED*/ 1176 static void 1177 apic_unset_idlecpu(processorid_t cpun) 1178 { 1179 } 1180 1181 1182 void 1183 apic_ret() 1184 { 1185 } 1186 1187 /* 1188 * If apic_coarse_time == 1, then apic_gettime() is used instead of 1189 * apic_gethrtime(). This is used for performance instead of accuracy. 1190 */ 1191 1192 static hrtime_t 1193 apic_gettime() 1194 { 1195 int old_hrtime_stamp; 1196 hrtime_t temp; 1197 1198 /* 1199 * In one-shot mode, we do not keep time, so if anyone 1200 * calls psm_gettime() directly, we vector over to 1201 * gethrtime(). 1202 * one-shot mode MUST NOT be enabled if this psm is the source of 1203 * hrtime. 1204 */ 1205 1206 if (apic_oneshot) 1207 return (gethrtime()); 1208 1209 1210 gettime_again: 1211 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) 1212 apic_ret(); 1213 1214 temp = apic_nsec_since_boot; 1215 1216 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ 1217 goto gettime_again; 1218 } 1219 return (temp); 1220 } 1221 1222 /* 1223 * Here we return the number of nanoseconds since booting. Note every 1224 * clock interrupt increments apic_nsec_since_boot by the appropriate 1225 * amount. 1226 */ 1227 static hrtime_t 1228 apic_gethrtime() 1229 { 1230 int curr_timeval, countval, elapsed_ticks; 1231 int old_hrtime_stamp, status; 1232 hrtime_t temp; 1233 uint32_t cpun; 1234 ulong_t oflags; 1235 1236 /* 1237 * In one-shot mode, we do not keep time, so if anyone 1238 * calls psm_gethrtime() directly, we vector over to 1239 * gethrtime(). 1240 * one-shot mode MUST NOT be enabled if this psm is the source of 1241 * hrtime. 1242 */ 1243 1244 if (apic_oneshot) 1245 return (gethrtime()); 1246 1247 oflags = intr_clear(); /* prevent migration */ 1248 1249 cpun = apic_reg_ops->apic_read(APIC_LID_REG); 1250 if (apic_mode == LOCAL_APIC) 1251 cpun >>= APIC_ID_BIT_OFFSET; 1252 1253 lock_set(&apic_gethrtime_lock); 1254 1255 gethrtime_again: 1256 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) 1257 apic_ret(); 1258 1259 /* 1260 * Check to see which CPU we are on. Note the time is kept on 1261 * the local APIC of CPU 0. If on CPU 0, simply read the current 1262 * counter. If on another CPU, issue a remote read command to CPU 0. 1263 */ 1264 if (cpun == apic_cpus[0].aci_local_id) { 1265 countval = apic_reg_ops->apic_read(APIC_CURR_COUNT); 1266 } else { 1267 #ifdef DEBUG 1268 APIC_AV_PENDING_SET(); 1269 #else 1270 if (apic_mode == LOCAL_APIC) 1271 APIC_AV_PENDING_SET(); 1272 #endif /* DEBUG */ 1273 1274 apic_reg_ops->apic_write_int_cmd( 1275 apic_cpus[0].aci_local_id, APIC_CURR_ADD | AV_REMOTE); 1276 1277 while ((status = apic_reg_ops->apic_read(APIC_INT_CMD1)) 1278 & AV_READ_PENDING) { 1279 apic_ret(); 1280 } 1281 1282 if (status & AV_REMOTE_STATUS) /* 1 = valid */ 1283 countval = apic_reg_ops->apic_read(APIC_REMOTE_READ); 1284 else { /* 0 = invalid */ 1285 apic_remote_hrterr++; 1286 /* 1287 * return last hrtime right now, will need more 1288 * testing if change to retry 1289 */ 1290 temp = apic_last_hrtime; 1291 1292 lock_clear(&apic_gethrtime_lock); 1293 1294 intr_restore(oflags); 1295 1296 return (temp); 1297 } 1298 } 1299 if (countval > last_count_read) 1300 countval = 0; 1301 else 1302 last_count_read = countval; 1303 1304 elapsed_ticks = apic_hertz_count - countval; 1305 1306 curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks); 1307 temp = apic_nsec_since_boot + curr_timeval; 1308 1309 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ 1310 /* we might have clobbered last_count_read. Restore it */ 1311 last_count_read = apic_hertz_count; 1312 goto gethrtime_again; 1313 } 1314 1315 if (temp < apic_last_hrtime) { 1316 /* return last hrtime if error occurs */ 1317 apic_hrtime_error++; 1318 temp = apic_last_hrtime; 1319 } 1320 else 1321 apic_last_hrtime = temp; 1322 1323 lock_clear(&apic_gethrtime_lock); 1324 intr_restore(oflags); 1325 1326 return (temp); 1327 } 1328 1329 /* apic NMI handler */ 1330 /*ARGSUSED*/ 1331 static void 1332 apic_nmi_intr(caddr_t arg, struct regs *rp) 1333 { 1334 if (apic_shutdown_processors) { 1335 apic_disable_local_apic(); 1336 return; 1337 } 1338 1339 apic_error |= APIC_ERR_NMI; 1340 1341 if (!lock_try(&apic_nmi_lock)) 1342 return; 1343 apic_num_nmis++; 1344 1345 if (apic_kmdb_on_nmi && psm_debugger()) { 1346 debug_enter("NMI received: entering kmdb\n"); 1347 } else if (apic_panic_on_nmi) { 1348 /* Keep panic from entering kmdb. */ 1349 nopanicdebug = 1; 1350 panic("NMI received\n"); 1351 } else { 1352 /* 1353 * prom_printf is the best shot we have of something which is 1354 * problem free from high level/NMI type of interrupts 1355 */ 1356 prom_printf("NMI received\n"); 1357 } 1358 1359 lock_clear(&apic_nmi_lock); 1360 } 1361 1362 /*ARGSUSED*/ 1363 static int 1364 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl) 1365 { 1366 return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl)); 1367 } 1368 1369 static int 1370 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl) 1371 { 1372 return (apic_delspl_common(irqno, ipl, min_ipl, max_ipl)); 1373 } 1374 1375 static int 1376 apic_post_cpu_start() 1377 { 1378 int cpun; 1379 static int cpus_started = 1; 1380 struct psm_ops *pops = &apic_ops; 1381 1382 /* We know this CPU + BSP started successfully. */ 1383 cpus_started++; 1384 1385 /* 1386 * On BSP we would have enabled X2APIC, if supported by processor, 1387 * in acpi_probe(), but on AP we do it here. 1388 * 1389 * We enable X2APIC mode only if BSP is running in X2APIC & the 1390 * local APIC mode of the current CPU is MMIO (xAPIC). 1391 */ 1392 if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() && 1393 apic_local_mode() == LOCAL_APIC) { 1394 apic_enable_x2apic(); 1395 } 1396 1397 /* 1398 * We change psm_send_ipi and send_dirintf only if Solaris 1399 * is booted in kmdb & the current CPU is the last CPU being 1400 * brought up. We don't need to do anything if Solaris is running 1401 * in MMIO mode (xAPIC). 1402 */ 1403 if ((boothowto & RB_DEBUG) && 1404 (cpus_started == boot_ncpus || cpus_started == apic_nproc) && 1405 apic_mode == LOCAL_X2APIC) { 1406 /* 1407 * We no longer need help from apic_common_send_ipi() 1408 * since we will not start any more CPUs. 1409 * 1410 * We will need to revisit this if we start supporting 1411 * hot-plugging of CPUs. 1412 */ 1413 pops->psm_send_ipi = x2apic_send_ipi; 1414 send_dirintf = pops->psm_send_ipi; 1415 } 1416 1417 splx(ipltospl(LOCK_LEVEL)); 1418 apic_init_intr(); 1419 1420 /* 1421 * since some systems don't enable the internal cache on the non-boot 1422 * cpus, so we have to enable them here 1423 */ 1424 setcr0(getcr0() & ~(CR0_CD | CR0_NW)); 1425 1426 #ifdef DEBUG 1427 APIC_AV_PENDING_SET(); 1428 #else 1429 if (apic_mode == LOCAL_APIC) 1430 APIC_AV_PENDING_SET(); 1431 #endif /* DEBUG */ 1432 1433 /* 1434 * We may be booting, or resuming from suspend; aci_status will 1435 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the 1436 * APIC_CPU_ONLINE flag here rather than setting aci_status completely. 1437 */ 1438 cpun = psm_get_cpu_id(); 1439 apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE; 1440 1441 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); 1442 return (PSM_SUCCESS); 1443 } 1444 1445 processorid_t 1446 apic_get_next_processorid(processorid_t cpu_id) 1447 { 1448 1449 int i; 1450 1451 if (cpu_id == -1) 1452 return ((processorid_t)0); 1453 1454 for (i = cpu_id + 1; i < NCPU; i++) { 1455 if (CPU_IN_SET(apic_cpumask, i)) 1456 return (i); 1457 } 1458 1459 return ((processorid_t)-1); 1460 } 1461 1462 1463 /* 1464 * type == -1 indicates it is an internal request. Do not change 1465 * resv_vector for these requests 1466 */ 1467 static int 1468 apic_get_ipivect(int ipl, int type) 1469 { 1470 uchar_t vector; 1471 int irq; 1472 1473 if ((irq = apic_allocate_irq(APIC_VECTOR(ipl))) != -1) { 1474 if (vector = apic_allocate_vector(ipl, irq, 1)) { 1475 apic_irq_table[irq]->airq_mps_intr_index = 1476 RESERVE_INDEX; 1477 apic_irq_table[irq]->airq_vector = vector; 1478 if (type != -1) { 1479 apic_resv_vector[ipl] = vector; 1480 } 1481 return (irq); 1482 } 1483 } 1484 apic_error |= APIC_ERR_GET_IPIVECT_FAIL; 1485 return (-1); /* shouldn't happen */ 1486 } 1487 1488 static int 1489 apic_getclkirq(int ipl) 1490 { 1491 int irq; 1492 1493 if ((irq = apic_get_ipivect(ipl, -1)) == -1) 1494 return (-1); 1495 /* 1496 * Note the vector in apic_clkvect for per clock handling. 1497 */ 1498 apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT; 1499 APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n", 1500 apic_clkvect)); 1501 return (irq); 1502 } 1503 1504 1505 /* 1506 * Return the number of APIC clock ticks elapsed for 8245 to decrement 1507 * (APIC_TIME_COUNT + pit_ticks_adj) ticks. 1508 */ 1509 static uint_t 1510 apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj) 1511 { 1512 uint8_t pit_tick_lo; 1513 uint16_t pit_tick, target_pit_tick; 1514 uint32_t start_apic_tick, end_apic_tick; 1515 ulong_t iflag; 1516 uint32_t reg; 1517 1518 reg = addr + APIC_CURR_COUNT - apicadr; 1519 1520 iflag = intr_clear(); 1521 1522 do { 1523 pit_tick_lo = inb(PITCTR0_PORT); 1524 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1525 } while (pit_tick < APIC_TIME_MIN || 1526 pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX); 1527 1528 /* 1529 * Wait for the 8254 to decrement by 5 ticks to ensure 1530 * we didn't start in the middle of a tick. 1531 * Compare with 0x10 for the wrap around case. 1532 */ 1533 target_pit_tick = pit_tick - 5; 1534 do { 1535 pit_tick_lo = inb(PITCTR0_PORT); 1536 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1537 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); 1538 1539 start_apic_tick = apic_reg_ops->apic_read(reg); 1540 1541 /* 1542 * Wait for the 8254 to decrement by 1543 * (APIC_TIME_COUNT + pit_ticks_adj) ticks 1544 */ 1545 target_pit_tick = pit_tick - APIC_TIME_COUNT; 1546 do { 1547 pit_tick_lo = inb(PITCTR0_PORT); 1548 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1549 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); 1550 1551 end_apic_tick = apic_reg_ops->apic_read(reg); 1552 1553 *pit_ticks_adj = target_pit_tick - pit_tick; 1554 1555 intr_restore(iflag); 1556 1557 return (start_apic_tick - end_apic_tick); 1558 } 1559 1560 /* 1561 * Initialise the APIC timer on the local APIC of CPU 0 to the desired 1562 * frequency. Note at this stage in the boot sequence, the boot processor 1563 * is the only active processor. 1564 * hertz value of 0 indicates a one-shot mode request. In this case 1565 * the function returns the resolution (in nanoseconds) for the hardware 1566 * timer interrupt. If one-shot mode capability is not available, 1567 * the return value will be 0. apic_enable_oneshot is a global switch 1568 * for disabling the functionality. 1569 * A non-zero positive value for hertz indicates a periodic mode request. 1570 * In this case the hardware will be programmed to generate clock interrupts 1571 * at hertz frequency and returns the resolution of interrupts in 1572 * nanosecond. 1573 */ 1574 1575 static int 1576 apic_clkinit(int hertz) 1577 { 1578 uint_t apic_ticks = 0; 1579 uint_t pit_ticks; 1580 int ret; 1581 uint16_t pit_ticks_adj; 1582 static int firsttime = 1; 1583 1584 if (firsttime) { 1585 /* first time calibrate on CPU0 only */ 1586 1587 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); 1588 apic_reg_ops->apic_write(APIC_INIT_COUNT, APIC_MAXVAL); 1589 apic_ticks = apic_calibrate(apicadr, &pit_ticks_adj); 1590 1591 /* total number of PIT ticks corresponding to apic_ticks */ 1592 pit_ticks = APIC_TIME_COUNT + pit_ticks_adj; 1593 1594 /* 1595 * Determine the number of nanoseconds per APIC clock tick 1596 * and then determine how many APIC ticks to interrupt at the 1597 * desired frequency 1598 * apic_ticks / (pitticks / PIT_HZ) = apic_ticks_per_s 1599 * (apic_ticks * PIT_HZ) / pitticks = apic_ticks_per_s 1600 * apic_ticks_per_ns = (apic_ticks * PIT_HZ) / (pitticks * 10^9) 1601 * pic_ticks_per_SFns = 1602 * (SF * apic_ticks * PIT_HZ) / (pitticks * 10^9) 1603 */ 1604 apic_ticks_per_SFnsecs = 1605 ((SF * apic_ticks * PIT_HZ) / 1606 ((uint64_t)pit_ticks * NANOSEC)); 1607 1608 /* the interval timer initial count is 32 bit max */ 1609 apic_nsec_max = APIC_TICKS_TO_NSECS(APIC_MAXVAL); 1610 firsttime = 0; 1611 } 1612 1613 if (hertz != 0) { 1614 /* periodic */ 1615 apic_nsec_per_intr = NANOSEC / hertz; 1616 apic_hertz_count = APIC_NSECS_TO_TICKS(apic_nsec_per_intr); 1617 } 1618 1619 apic_int_busy_mark = (apic_int_busy_mark * 1620 apic_sample_factor_redistribution) / 100; 1621 apic_int_free_mark = (apic_int_free_mark * 1622 apic_sample_factor_redistribution) / 100; 1623 apic_diff_for_redistribution = (apic_diff_for_redistribution * 1624 apic_sample_factor_redistribution) / 100; 1625 1626 if (hertz == 0) { 1627 /* requested one_shot */ 1628 if (!tsc_gethrtime_enable || !apic_oneshot_enable) 1629 return (0); 1630 apic_oneshot = 1; 1631 ret = (int)APIC_TICKS_TO_NSECS(1); 1632 } else { 1633 /* program the local APIC to interrupt at the given frequency */ 1634 apic_reg_ops->apic_write(APIC_INIT_COUNT, apic_hertz_count); 1635 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 1636 (apic_clkvect + APIC_BASE_VECT) | AV_TIME); 1637 apic_oneshot = 0; 1638 ret = NANOSEC / hertz; 1639 } 1640 1641 return (ret); 1642 1643 } 1644 1645 /* 1646 * apic_preshutdown: 1647 * Called early in shutdown whilst we can still access filesystems to do 1648 * things like loading modules which will be required to complete shutdown 1649 * after filesystems are all unmounted. 1650 */ 1651 static void 1652 apic_preshutdown(int cmd, int fcn) 1653 { 1654 APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n", 1655 cmd, fcn, apic_poweroff_method, apic_enable_acpi)); 1656 1657 if ((cmd != A_SHUTDOWN) || (fcn != AD_POWEROFF)) { 1658 return; 1659 } 1660 } 1661 1662 static void 1663 apic_shutdown(int cmd, int fcn) 1664 { 1665 int restarts, attempts; 1666 int i; 1667 uchar_t byte; 1668 ulong_t iflag; 1669 1670 hpet_acpi_fini(); 1671 1672 /* Send NMI to all CPUs except self to do per processor shutdown */ 1673 iflag = intr_clear(); 1674 #ifdef DEBUG 1675 APIC_AV_PENDING_SET(); 1676 #else 1677 if (apic_mode == LOCAL_APIC) 1678 APIC_AV_PENDING_SET(); 1679 #endif /* DEBUG */ 1680 apic_shutdown_processors = 1; 1681 apic_reg_ops->apic_write(APIC_INT_CMD1, 1682 AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF); 1683 1684 /* restore cmos shutdown byte before reboot */ 1685 if (apic_cmos_ssb_set) { 1686 outb(CMOS_ADDR, SSB); 1687 outb(CMOS_DATA, 0); 1688 } 1689 1690 ioapic_disable_redirection(); 1691 1692 /* disable apic mode if imcr present */ 1693 if (apic_imcrp) { 1694 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 1695 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC); 1696 } 1697 1698 apic_disable_local_apic(); 1699 1700 intr_restore(iflag); 1701 1702 /* remainder of function is for shutdown cases only */ 1703 if (cmd != A_SHUTDOWN) 1704 return; 1705 1706 /* 1707 * Switch system back into Legacy-Mode if using ACPI and 1708 * not powering-off. Some BIOSes need to remain in ACPI-mode 1709 * for power-off to succeed (Dell Dimension 4600) 1710 * Do not disable ACPI while doing fastreboot 1711 */ 1712 if (apic_enable_acpi && fcn != AD_POWEROFF && fcn != AD_FASTREBOOT) 1713 (void) AcpiDisable(); 1714 1715 if (fcn == AD_FASTREBOOT) { 1716 apic_reg_ops->apic_write(APIC_INT_CMD1, 1717 AV_ASSERT | AV_RESET | AV_SH_ALL_EXCSELF); 1718 } 1719 1720 /* remainder of function is for shutdown+poweroff case only */ 1721 if (fcn != AD_POWEROFF) 1722 return; 1723 1724 switch (apic_poweroff_method) { 1725 case APIC_POWEROFF_VIA_RTC: 1726 1727 /* select the extended NVRAM bank in the RTC */ 1728 outb(CMOS_ADDR, RTC_REGA); 1729 byte = inb(CMOS_DATA); 1730 outb(CMOS_DATA, (byte | EXT_BANK)); 1731 1732 outb(CMOS_ADDR, PFR_REG); 1733 1734 /* for Predator must toggle the PAB bit */ 1735 byte = inb(CMOS_DATA); 1736 1737 /* 1738 * clear power active bar, wakeup alarm and 1739 * kickstart 1740 */ 1741 byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG); 1742 outb(CMOS_DATA, byte); 1743 1744 /* delay before next write */ 1745 drv_usecwait(1000); 1746 1747 /* for S40 the following would suffice */ 1748 byte = inb(CMOS_DATA); 1749 1750 /* power active bar control bit */ 1751 byte |= PAB_CBIT; 1752 outb(CMOS_DATA, byte); 1753 1754 break; 1755 1756 case APIC_POWEROFF_VIA_ASPEN_BMC: 1757 restarts = 0; 1758 restart_aspen_bmc: 1759 if (++restarts == 3) 1760 break; 1761 attempts = 0; 1762 do { 1763 byte = inb(MISMIC_FLAG_REGISTER); 1764 byte &= MISMIC_BUSY_MASK; 1765 if (byte != 0) { 1766 drv_usecwait(1000); 1767 if (attempts >= 3) 1768 goto restart_aspen_bmc; 1769 ++attempts; 1770 } 1771 } while (byte != 0); 1772 outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS); 1773 byte = inb(MISMIC_FLAG_REGISTER); 1774 byte |= 0x1; 1775 outb(MISMIC_FLAG_REGISTER, byte); 1776 i = 0; 1777 for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0])); 1778 i++) { 1779 attempts = 0; 1780 do { 1781 byte = inb(MISMIC_FLAG_REGISTER); 1782 byte &= MISMIC_BUSY_MASK; 1783 if (byte != 0) { 1784 drv_usecwait(1000); 1785 if (attempts >= 3) 1786 goto restart_aspen_bmc; 1787 ++attempts; 1788 } 1789 } while (byte != 0); 1790 outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl); 1791 outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data); 1792 byte = inb(MISMIC_FLAG_REGISTER); 1793 byte |= 0x1; 1794 outb(MISMIC_FLAG_REGISTER, byte); 1795 } 1796 break; 1797 1798 case APIC_POWEROFF_VIA_SITKA_BMC: 1799 restarts = 0; 1800 restart_sitka_bmc: 1801 if (++restarts == 3) 1802 break; 1803 attempts = 0; 1804 do { 1805 byte = inb(SMS_STATUS_REGISTER); 1806 byte &= SMS_STATE_MASK; 1807 if ((byte == SMS_READ_STATE) || 1808 (byte == SMS_WRITE_STATE)) { 1809 drv_usecwait(1000); 1810 if (attempts >= 3) 1811 goto restart_sitka_bmc; 1812 ++attempts; 1813 } 1814 } while ((byte == SMS_READ_STATE) || 1815 (byte == SMS_WRITE_STATE)); 1816 outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS); 1817 i = 0; 1818 for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0])); 1819 i++) { 1820 attempts = 0; 1821 do { 1822 byte = inb(SMS_STATUS_REGISTER); 1823 byte &= SMS_IBF_MASK; 1824 if (byte != 0) { 1825 drv_usecwait(1000); 1826 if (attempts >= 3) 1827 goto restart_sitka_bmc; 1828 ++attempts; 1829 } 1830 } while (byte != 0); 1831 outb(sitka_bmc[i].port, sitka_bmc[i].data); 1832 } 1833 break; 1834 1835 case APIC_POWEROFF_NONE: 1836 1837 /* If no APIC direct method, we will try using ACPI */ 1838 if (apic_enable_acpi) { 1839 if (acpi_poweroff() == 1) 1840 return; 1841 } else 1842 return; 1843 1844 break; 1845 } 1846 /* 1847 * Wait a limited time here for power to go off. 1848 * If the power does not go off, then there was a 1849 * problem and we should continue to the halt which 1850 * prints a message for the user to press a key to 1851 * reboot. 1852 */ 1853 drv_usecwait(7000000); /* wait seven seconds */ 1854 1855 } 1856 1857 /* 1858 * Try and disable all interrupts. We just assign interrupts to other 1859 * processors based on policy. If any were bound by user request, we 1860 * let them continue and return failure. We do not bother to check 1861 * for cache affinity while rebinding. 1862 */ 1863 1864 static int 1865 apic_disable_intr(processorid_t cpun) 1866 { 1867 int bind_cpu = 0, i, hardbound = 0; 1868 apic_irq_t *irq_ptr; 1869 ulong_t iflag; 1870 1871 iflag = intr_clear(); 1872 lock_set(&apic_ioapic_lock); 1873 1874 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 1875 if (apic_reprogram_info[i].done == B_FALSE) { 1876 if (apic_reprogram_info[i].bindcpu == cpun) { 1877 /* 1878 * CPU is busy -- it's the target of 1879 * a pending reprogramming attempt 1880 */ 1881 lock_clear(&apic_ioapic_lock); 1882 intr_restore(iflag); 1883 return (PSM_FAILURE); 1884 } 1885 } 1886 } 1887 1888 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; 1889 1890 apic_cpus[cpun].aci_curipl = 0; 1891 1892 i = apic_min_device_irq; 1893 for (; i <= apic_max_device_irq; i++) { 1894 /* 1895 * If there are bound interrupts on this cpu, then 1896 * rebind them to other processors. 1897 */ 1898 if ((irq_ptr = apic_irq_table[i]) != NULL) { 1899 ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) || 1900 (irq_ptr->airq_temp_cpu == IRQ_UNINIT) || 1901 ((irq_ptr->airq_temp_cpu & ~IRQ_USER_BOUND) < 1902 apic_nproc)); 1903 1904 if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) { 1905 hardbound = 1; 1906 continue; 1907 } 1908 1909 if (irq_ptr->airq_temp_cpu == cpun) { 1910 do { 1911 bind_cpu = apic_next_bind_cpu++; 1912 if (bind_cpu >= apic_nproc) { 1913 apic_next_bind_cpu = 1; 1914 bind_cpu = 0; 1915 1916 } 1917 } while (apic_rebind_all(irq_ptr, bind_cpu)); 1918 } 1919 } 1920 } 1921 1922 lock_clear(&apic_ioapic_lock); 1923 intr_restore(iflag); 1924 1925 if (hardbound) { 1926 cmn_err(CE_WARN, "Could not disable interrupts on %d" 1927 "due to user bound interrupts", cpun); 1928 return (PSM_FAILURE); 1929 } 1930 else 1931 return (PSM_SUCCESS); 1932 } 1933 1934 /* 1935 * Bind interrupts to the CPU's local APIC. 1936 * Interrupts should not be bound to a CPU's local APIC until the CPU 1937 * is ready to receive interrupts. 1938 */ 1939 static void 1940 apic_enable_intr(processorid_t cpun) 1941 { 1942 int i; 1943 apic_irq_t *irq_ptr; 1944 ulong_t iflag; 1945 1946 iflag = intr_clear(); 1947 lock_set(&apic_ioapic_lock); 1948 1949 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; 1950 1951 i = apic_min_device_irq; 1952 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 1953 if ((irq_ptr = apic_irq_table[i]) != NULL) { 1954 if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) { 1955 (void) apic_rebind_all(irq_ptr, 1956 irq_ptr->airq_cpu); 1957 } 1958 } 1959 } 1960 1961 lock_clear(&apic_ioapic_lock); 1962 intr_restore(iflag); 1963 } 1964 1965 1966 /* 1967 * This function will reprogram the timer. 1968 * 1969 * When in oneshot mode the argument is the absolute time in future to 1970 * generate the interrupt at. 1971 * 1972 * When in periodic mode, the argument is the interval at which the 1973 * interrupts should be generated. There is no need to support the periodic 1974 * mode timer change at this time. 1975 */ 1976 static void 1977 apic_timer_reprogram(hrtime_t time) 1978 { 1979 hrtime_t now; 1980 uint_t ticks; 1981 int64_t delta; 1982 1983 /* 1984 * We should be called from high PIL context (CBE_HIGH_PIL), 1985 * so kpreempt is disabled. 1986 */ 1987 1988 if (!apic_oneshot) { 1989 /* time is the interval for periodic mode */ 1990 ticks = APIC_NSECS_TO_TICKS(time); 1991 } else { 1992 /* one shot mode */ 1993 1994 now = gethrtime(); 1995 delta = time - now; 1996 1997 if (delta <= 0) { 1998 /* 1999 * requested to generate an interrupt in the past 2000 * generate an interrupt as soon as possible 2001 */ 2002 ticks = apic_min_timer_ticks; 2003 } else if (delta > apic_nsec_max) { 2004 /* 2005 * requested to generate an interrupt at a time 2006 * further than what we are capable of. Set to max 2007 * the hardware can handle 2008 */ 2009 2010 ticks = APIC_MAXVAL; 2011 #ifdef DEBUG 2012 cmn_err(CE_CONT, "apic_timer_reprogram, request at" 2013 " %lld too far in future, current time" 2014 " %lld \n", time, now); 2015 #endif 2016 } else 2017 ticks = APIC_NSECS_TO_TICKS(delta); 2018 } 2019 2020 if (ticks < apic_min_timer_ticks) 2021 ticks = apic_min_timer_ticks; 2022 2023 apic_reg_ops->apic_write(APIC_INIT_COUNT, ticks); 2024 } 2025 2026 /* 2027 * This function will enable timer interrupts. 2028 */ 2029 static void 2030 apic_timer_enable(void) 2031 { 2032 /* 2033 * We should be Called from high PIL context (CBE_HIGH_PIL), 2034 * so kpreempt is disabled. 2035 */ 2036 2037 if (!apic_oneshot) { 2038 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 2039 (apic_clkvect + APIC_BASE_VECT) | AV_TIME); 2040 } else { 2041 /* one shot */ 2042 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 2043 (apic_clkvect + APIC_BASE_VECT)); 2044 } 2045 } 2046 2047 /* 2048 * This function will disable timer interrupts. 2049 */ 2050 static void 2051 apic_timer_disable(void) 2052 { 2053 /* 2054 * We should be Called from high PIL context (CBE_HIGH_PIL), 2055 * so kpreempt is disabled. 2056 */ 2057 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 2058 (apic_clkvect + APIC_BASE_VECT) | AV_MASK); 2059 } 2060 2061 /* 2062 * Set timer far into the future and return timer 2063 * current Count in nanoseconds. 2064 */ 2065 hrtime_t 2066 apic_timer_stop_count(void) 2067 { 2068 hrtime_t ns_val; 2069 int enable_val, count_val; 2070 2071 /* 2072 * Should be called with interrupts disabled. 2073 */ 2074 ASSERT(!interrupts_enabled()); 2075 2076 enable_val = apic_reg_ops->apic_read(APIC_LOCAL_TIMER); 2077 if ((enable_val & AV_MASK) == AV_MASK) 2078 return ((hrtime_t)-1); /* timer is disabled */ 2079 2080 count_val = apic_reg_ops->apic_read(APIC_CURR_COUNT); 2081 ns_val = APIC_TICKS_TO_NSECS(count_val); 2082 2083 apic_reg_ops->apic_write(APIC_INIT_COUNT, APIC_MAXVAL); 2084 2085 return (ns_val); 2086 } 2087 2088 /* 2089 * Reprogram timer after Deep C-State. 2090 */ 2091 void 2092 apic_timer_restart(hrtime_t time) 2093 { 2094 apic_timer_reprogram(time); 2095 } 2096 2097 ddi_periodic_t apic_periodic_id; 2098 2099 /* 2100 * If this module needs a periodic handler for the interrupt distribution, it 2101 * can be added here. The argument to the periodic handler is not currently 2102 * used, but is reserved for future. 2103 */ 2104 static void 2105 apic_post_cyclic_setup(void *arg) 2106 { 2107 _NOTE(ARGUNUSED(arg)) 2108 /* cpu_lock is held */ 2109 /* set up a periodic handler for intr redistribution */ 2110 2111 /* 2112 * In peridoc mode intr redistribution processing is done in 2113 * apic_intr_enter during clk intr processing 2114 */ 2115 if (!apic_oneshot) 2116 return; 2117 /* 2118 * Register a periodical handler for the redistribution processing. 2119 * On X86, CY_LOW_LEVEL is mapped to the level 2 interrupt, so 2120 * DDI_IPL_2 should be passed to ddi_periodic_add() here. 2121 */ 2122 apic_periodic_id = ddi_periodic_add( 2123 (void (*)(void *))apic_redistribute_compute, NULL, 2124 apic_redistribute_sample_interval, DDI_IPL_2); 2125 } 2126 2127 static void 2128 apic_redistribute_compute(void) 2129 { 2130 int i, j, max_busy; 2131 2132 if (apic_enable_dynamic_migration) { 2133 if (++apic_nticks == apic_sample_factor_redistribution) { 2134 /* 2135 * Time to call apic_intr_redistribute(). 2136 * reset apic_nticks. This will cause max_busy 2137 * to be calculated below and if it is more than 2138 * apic_int_busy, we will do the whole thing 2139 */ 2140 apic_nticks = 0; 2141 } 2142 max_busy = 0; 2143 for (i = 0; i < apic_nproc; i++) { 2144 2145 /* 2146 * Check if curipl is non zero & if ISR is in 2147 * progress 2148 */ 2149 if (((j = apic_cpus[i].aci_curipl) != 0) && 2150 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { 2151 2152 int irq; 2153 apic_cpus[i].aci_busy++; 2154 irq = apic_cpus[i].aci_current[j]; 2155 apic_irq_table[irq]->airq_busy++; 2156 } 2157 2158 if (!apic_nticks && 2159 (apic_cpus[i].aci_busy > max_busy)) 2160 max_busy = apic_cpus[i].aci_busy; 2161 } 2162 if (!apic_nticks) { 2163 if (max_busy > apic_int_busy_mark) { 2164 /* 2165 * We could make the following check be 2166 * skipped > 1 in which case, we get a 2167 * redistribution at half the busy mark (due to 2168 * double interval). Need to be able to collect 2169 * more empirical data to decide if that is a 2170 * good strategy. Punt for now. 2171 */ 2172 if (apic_skipped_redistribute) { 2173 apic_cleanup_busy(); 2174 apic_skipped_redistribute = 0; 2175 } else { 2176 apic_intr_redistribute(); 2177 } 2178 } else 2179 apic_skipped_redistribute++; 2180 } 2181 } 2182 } 2183 2184 2185 /* 2186 * The following functions are in the platform specific file so that they 2187 * can be different functions depending on whether we are running on 2188 * bare metal or a hypervisor. 2189 */ 2190 2191 /* 2192 * map an apic for memory-mapped access 2193 */ 2194 uint32_t * 2195 mapin_apic(uint32_t addr, size_t len, int flags) 2196 { 2197 /*LINTED: pointer cast may result in improper alignment */ 2198 return ((uint32_t *)psm_map_phys(addr, len, flags)); 2199 } 2200 2201 uint32_t * 2202 mapin_ioapic(uint32_t addr, size_t len, int flags) 2203 { 2204 return (mapin_apic(addr, len, flags)); 2205 } 2206 2207 /* 2208 * unmap an apic 2209 */ 2210 void 2211 mapout_apic(caddr_t addr, size_t len) 2212 { 2213 psm_unmap_phys(addr, len); 2214 } 2215 2216 void 2217 mapout_ioapic(caddr_t addr, size_t len) 2218 { 2219 mapout_apic(addr, len); 2220 } 2221 2222 /* 2223 * Check to make sure there are enough irq slots 2224 */ 2225 int 2226 apic_check_free_irqs(int count) 2227 { 2228 int i, avail; 2229 2230 avail = 0; 2231 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 2232 if ((apic_irq_table[i] == NULL) || 2233 apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) { 2234 if (++avail >= count) 2235 return (PSM_SUCCESS); 2236 } 2237 } 2238 return (PSM_FAILURE); 2239 } 2240 2241 /* 2242 * This function allocates "count" MSI vector(s) for the given "dip/pri/type" 2243 */ 2244 int 2245 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri, 2246 int behavior) 2247 { 2248 int rcount, i; 2249 uchar_t start, irqno; 2250 uint32_t cpu; 2251 major_t major; 2252 apic_irq_t *irqptr; 2253 2254 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p " 2255 "inum=0x%x pri=0x%x count=0x%x behavior=%d\n", 2256 (void *)dip, inum, pri, count, behavior)); 2257 2258 if (count > 1) { 2259 if (behavior == DDI_INTR_ALLOC_STRICT && 2260 apic_multi_msi_enable == 0) 2261 return (0); 2262 if (apic_multi_msi_enable == 0) 2263 count = 1; 2264 } 2265 2266 if ((rcount = apic_navail_vector(dip, pri)) > count) 2267 rcount = count; 2268 else if (rcount == 0 || (rcount < count && 2269 behavior == DDI_INTR_ALLOC_STRICT)) 2270 return (0); 2271 2272 /* if not ISP2, then round it down */ 2273 if (!ISP2(rcount)) 2274 rcount = 1 << (highbit(rcount) - 1); 2275 2276 mutex_enter(&airq_mutex); 2277 2278 for (start = 0; rcount > 0; rcount >>= 1) { 2279 if ((start = apic_find_multi_vectors(pri, rcount)) != 0 || 2280 behavior == DDI_INTR_ALLOC_STRICT) 2281 break; 2282 } 2283 2284 if (start == 0) { 2285 /* no vector available */ 2286 mutex_exit(&airq_mutex); 2287 return (0); 2288 } 2289 2290 if (apic_check_free_irqs(rcount) == PSM_FAILURE) { 2291 /* not enough free irq slots available */ 2292 mutex_exit(&airq_mutex); 2293 return (0); 2294 } 2295 2296 major = (dip != NULL) ? ddi_driver_major(dip) : 0; 2297 for (i = 0; i < rcount; i++) { 2298 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == 2299 (uchar_t)-1) { 2300 /* 2301 * shouldn't happen because of the 2302 * apic_check_free_irqs() check earlier 2303 */ 2304 mutex_exit(&airq_mutex); 2305 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " 2306 "apic_allocate_irq failed\n")); 2307 return (i); 2308 } 2309 apic_max_device_irq = max(irqno, apic_max_device_irq); 2310 apic_min_device_irq = min(irqno, apic_min_device_irq); 2311 irqptr = apic_irq_table[irqno]; 2312 #ifdef DEBUG 2313 if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ) 2314 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " 2315 "apic_vector_to_irq is not APIC_RESV_IRQ\n")); 2316 #endif 2317 apic_vector_to_irq[start + i] = (uchar_t)irqno; 2318 2319 irqptr->airq_vector = (uchar_t)(start + i); 2320 irqptr->airq_ioapicindex = (uchar_t)inum; /* start */ 2321 irqptr->airq_intin_no = (uchar_t)rcount; 2322 irqptr->airq_ipl = pri; 2323 irqptr->airq_vector = start + i; 2324 irqptr->airq_origirq = (uchar_t)(inum + i); 2325 irqptr->airq_share_id = 0; 2326 irqptr->airq_mps_intr_index = MSI_INDEX; 2327 irqptr->airq_dip = dip; 2328 irqptr->airq_major = major; 2329 if (i == 0) /* they all bound to the same cpu */ 2330 cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno, 2331 0xff, 0xff); 2332 else 2333 irqptr->airq_cpu = cpu; 2334 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x " 2335 "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno, 2336 (void *)irqptr->airq_dip, irqptr->airq_vector, 2337 irqptr->airq_origirq, pri)); 2338 } 2339 mutex_exit(&airq_mutex); 2340 return (rcount); 2341 } 2342 2343 /* 2344 * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type" 2345 */ 2346 int 2347 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri, 2348 int behavior) 2349 { 2350 int rcount, i; 2351 major_t major; 2352 2353 mutex_enter(&airq_mutex); 2354 2355 if ((rcount = apic_navail_vector(dip, pri)) > count) 2356 rcount = count; 2357 else if (rcount == 0 || (rcount < count && 2358 behavior == DDI_INTR_ALLOC_STRICT)) { 2359 rcount = 0; 2360 goto out; 2361 } 2362 2363 if (apic_check_free_irqs(rcount) == PSM_FAILURE) { 2364 /* not enough free irq slots available */ 2365 rcount = 0; 2366 goto out; 2367 } 2368 2369 major = (dip != NULL) ? ddi_driver_major(dip) : 0; 2370 for (i = 0; i < rcount; i++) { 2371 uchar_t vector, irqno; 2372 apic_irq_t *irqptr; 2373 2374 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == 2375 (uchar_t)-1) { 2376 /* 2377 * shouldn't happen because of the 2378 * apic_check_free_irqs() check earlier 2379 */ 2380 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " 2381 "apic_allocate_irq failed\n")); 2382 rcount = i; 2383 goto out; 2384 } 2385 if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) { 2386 /* 2387 * shouldn't happen because of the 2388 * apic_navail_vector() call earlier 2389 */ 2390 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " 2391 "apic_allocate_vector failed\n")); 2392 rcount = i; 2393 goto out; 2394 } 2395 apic_max_device_irq = max(irqno, apic_max_device_irq); 2396 apic_min_device_irq = min(irqno, apic_min_device_irq); 2397 irqptr = apic_irq_table[irqno]; 2398 irqptr->airq_vector = (uchar_t)vector; 2399 irqptr->airq_ipl = pri; 2400 irqptr->airq_origirq = (uchar_t)(inum + i); 2401 irqptr->airq_share_id = 0; 2402 irqptr->airq_mps_intr_index = MSIX_INDEX; 2403 irqptr->airq_dip = dip; 2404 irqptr->airq_major = major; 2405 irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff); 2406 } 2407 out: 2408 mutex_exit(&airq_mutex); 2409 return (rcount); 2410 } 2411 2412 /* 2413 * Allocate a free vector for irq at ipl. Takes care of merging of multiple 2414 * IPLs into a single APIC level as well as stretching some IPLs onto multiple 2415 * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority 2416 * requests and allocated only when pri is set. 2417 */ 2418 uchar_t 2419 apic_allocate_vector(int ipl, int irq, int pri) 2420 { 2421 int lowest, highest, i; 2422 2423 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; 2424 lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL; 2425 2426 if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */ 2427 lowest -= APIC_VECTOR_PER_IPL; 2428 2429 #ifdef DEBUG 2430 if (apic_restrict_vector) /* for testing shared interrupt logic */ 2431 highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS; 2432 #endif /* DEBUG */ 2433 if (pri == 0) 2434 highest -= APIC_HI_PRI_VECTS; 2435 2436 for (i = lowest; i <= highest; i++) { 2437 if (APIC_CHECK_RESERVE_VECTORS(i)) 2438 continue; 2439 if (apic_vector_to_irq[i] == APIC_RESV_IRQ) { 2440 apic_vector_to_irq[i] = (uchar_t)irq; 2441 return (i); 2442 } 2443 } 2444 2445 return (0); 2446 } 2447 2448 /* Mark vector as not being used by any irq */ 2449 void 2450 apic_free_vector(uchar_t vector) 2451 { 2452 apic_vector_to_irq[vector] = APIC_RESV_IRQ; 2453 } 2454 2455 uint32_t 2456 ioapic_read(int ioapic_ix, uint32_t reg) 2457 { 2458 volatile uint32_t *ioapic; 2459 2460 ioapic = apicioadr[ioapic_ix]; 2461 ioapic[APIC_IO_REG] = reg; 2462 return (ioapic[APIC_IO_DATA]); 2463 } 2464 2465 void 2466 ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value) 2467 { 2468 volatile uint32_t *ioapic; 2469 2470 ioapic = apicioadr[ioapic_ix]; 2471 ioapic[APIC_IO_REG] = reg; 2472 ioapic[APIC_IO_DATA] = value; 2473 } 2474 2475 void 2476 ioapic_write_eoi(int ioapic_ix, uint32_t value) 2477 { 2478 volatile uint32_t *ioapic; 2479 2480 ioapic = apicioadr[ioapic_ix]; 2481 ioapic[APIC_IO_EOI] = value; 2482 } 2483 2484 static processorid_t 2485 apic_find_cpu(int flag) 2486 { 2487 processorid_t acid = 0; 2488 int i; 2489 2490 /* Find the first CPU with the passed-in flag set */ 2491 for (i = 0; i < apic_nproc; i++) { 2492 if (apic_cpus[i].aci_status & flag) { 2493 acid = i; 2494 break; 2495 } 2496 } 2497 2498 ASSERT((apic_cpus[acid].aci_status & flag) != 0); 2499 return (acid); 2500 } 2501 2502 /* 2503 * Call rebind to do the actual programming. 2504 * Must be called with interrupts disabled and apic_ioapic_lock held 2505 * 'p' is polymorphic -- if this function is called to process a deferred 2506 * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which 2507 * the irq pointer is retrieved. If not doing deferred reprogramming, 2508 * p is of the type 'apic_irq_t *'. 2509 * 2510 * apic_ioapic_lock must be held across this call, as it protects apic_rebind 2511 * and it protects apic_find_cpu() from a race in which a CPU can be taken 2512 * offline after a cpu is selected, but before apic_rebind is called to 2513 * bind interrupts to it. 2514 */ 2515 int 2516 apic_setup_io_intr(void *p, int irq, boolean_t deferred) 2517 { 2518 apic_irq_t *irqptr; 2519 struct ioapic_reprogram_data *drep = NULL; 2520 int rv; 2521 2522 if (deferred) { 2523 drep = (struct ioapic_reprogram_data *)p; 2524 ASSERT(drep != NULL); 2525 irqptr = drep->irqp; 2526 } else 2527 irqptr = (apic_irq_t *)p; 2528 2529 ASSERT(irqptr != NULL); 2530 2531 rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep); 2532 if (rv) { 2533 /* 2534 * CPU is not up or interrupts are disabled. Fall back to 2535 * the first available CPU 2536 */ 2537 rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE), 2538 drep); 2539 } 2540 2541 return (rv); 2542 } 2543 2544 2545 uchar_t 2546 apic_modify_vector(uchar_t vector, int irq) 2547 { 2548 apic_vector_to_irq[vector] = (uchar_t)irq; 2549 return (vector); 2550 } 2551 2552 char * 2553 apic_get_apic_type() 2554 { 2555 return (apic_psm_info.p_mach_idstring); 2556 } 2557 2558 void 2559 x2apic_update_psm() 2560 { 2561 struct psm_ops *pops = &apic_ops; 2562 2563 ASSERT(pops != NULL); 2564 2565 /* 2566 * We don't need to do any magic if one of the following 2567 * conditions is true : 2568 * - Not being run under kernel debugger. 2569 * - MP is not set. 2570 * - Booted with one CPU only. 2571 * - One CPU configured. 2572 * 2573 * We set apic_common_send_ipi() since kernel debuggers 2574 * attempt to send IPIs to other slave CPUs during 2575 * entry (exit) from (to) debugger. 2576 */ 2577 if (!(boothowto & RB_DEBUG) || use_mp == 0 || 2578 apic_nproc == 1 || boot_ncpus == 1) { 2579 pops->psm_send_ipi = x2apic_send_ipi; 2580 } else { 2581 pops->psm_send_ipi = apic_common_send_ipi; 2582 } 2583 2584 pops->psm_intr_exit = x2apic_intr_exit; 2585 pops->psm_setspl = x2apic_setspl; 2586 2587 send_dirintf = pops->psm_send_ipi; 2588 2589 apic_mode = LOCAL_X2APIC; 2590 apic_change_ops(); 2591 } 2592 2593 static void 2594 apic_intrmap_init(int apic_mode) 2595 { 2596 int suppress_brdcst_eoi = 0; 2597 2598 if (psm_vt_ops != NULL) { 2599 /* 2600 * Since X2APIC requires the use of interrupt remapping 2601 * (though this is not documented explicitly in the Intel 2602 * documentation (yet)), initialize interrupt remapping 2603 * support before initializing the X2APIC unit. 2604 */ 2605 if (((apic_intrmap_ops_t *)psm_vt_ops)-> 2606 apic_intrmap_init(apic_mode) == DDI_SUCCESS) { 2607 2608 apic_vt_ops = psm_vt_ops; 2609 2610 /* 2611 * We leverage the interrupt remapping engine to 2612 * suppress broadcast EOI; thus we must send the 2613 * directed EOI with the directed-EOI handler. 2614 */ 2615 if (apic_directed_EOI_supported() == 0) { 2616 suppress_brdcst_eoi = 1; 2617 } 2618 2619 apic_vt_ops->apic_intrmap_enable(suppress_brdcst_eoi); 2620 2621 if (apic_detect_x2apic()) { 2622 apic_enable_x2apic(); 2623 } 2624 2625 if (apic_directed_EOI_supported() == 0) { 2626 apic_set_directed_EOI_handler(); 2627 } 2628 } 2629 } 2630 } 2631 2632 /*ARGSUSED*/ 2633 static void 2634 apic_record_ioapic_rdt(apic_irq_t *irq_ptr, ioapic_rdt_t *irdt) 2635 { 2636 irdt->ir_hi <<= APIC_ID_BIT_OFFSET; 2637 } 2638 2639 /*ARGSUSED*/ 2640 static void 2641 apic_record_msi(apic_irq_t *irq_ptr, msi_regs_t *mregs) 2642 { 2643 mregs->mr_addr = MSI_ADDR_HDR | 2644 (MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) | 2645 (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT) | 2646 (mregs->mr_addr << MSI_ADDR_DEST_SHIFT); 2647 mregs->mr_data = (MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) | 2648 mregs->mr_data; 2649 } 2650