xref: /illumos-gate/usr/src/uts/i86pc/io/pcplusmp/apic.c (revision 55c4b5faaa3d3ff8bea0d08505e7ea0850b949e8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
31  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
32  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
33  * PSMI 1.5 extensions are supported in Solaris Nevada.
34  */
35 #define	PSMI_1_5
36 
37 #include <sys/processor.h>
38 #include <sys/time.h>
39 #include <sys/psm.h>
40 #include <sys/smp_impldefs.h>
41 #include <sys/cram.h>
42 #include <sys/acpi/acpi.h>
43 #include <sys/acpica.h>
44 #include <sys/psm_common.h>
45 #include <sys/apic.h>
46 #include <sys/pit.h>
47 #include <sys/ddi.h>
48 #include <sys/sunddi.h>
49 #include <sys/ddi_impldefs.h>
50 #include <sys/pci.h>
51 #include <sys/promif.h>
52 #include <sys/x86_archext.h>
53 #include <sys/cpc_impl.h>
54 #include <sys/uadmin.h>
55 #include <sys/panic.h>
56 #include <sys/debug.h>
57 #include <sys/archsystm.h>
58 #include <sys/trap.h>
59 #include <sys/machsystm.h>
60 #include <sys/sysmacros.h>
61 #include <sys/cpuvar.h>
62 #include <sys/rm_platter.h>
63 #include <sys/privregs.h>
64 #include <sys/cyclic.h>
65 #include <sys/note.h>
66 #include <sys/pci_intr_lib.h>
67 #include <sys/spl.h>
68 #include <sys/clock.h>
69 
70 /*
71  *	Local Function Prototypes
72  */
73 static void apic_init_intr();
74 static void apic_ret();
75 static int get_apic_cmd1();
76 static int get_apic_pri();
77 static void apic_nmi_intr(caddr_t arg, struct regs *rp);
78 
79 /*
80  *	standard MP entries
81  */
82 static int	apic_probe();
83 static int	apic_clkinit();
84 static int	apic_getclkirq(int ipl);
85 static uint_t	apic_calibrate(volatile uint32_t *addr,
86     uint16_t *pit_ticks_adj);
87 static hrtime_t apic_gettime();
88 static hrtime_t apic_gethrtime();
89 static void	apic_init();
90 static void	apic_picinit(void);
91 static int	apic_cpu_start(processorid_t, caddr_t);
92 static int	apic_post_cpu_start(void);
93 static void	apic_send_ipi(int cpun, int ipl);
94 static void	apic_set_idlecpu(processorid_t cpun);
95 static void	apic_unset_idlecpu(processorid_t cpun);
96 static int	apic_intr_enter(int ipl, int *vect);
97 static void	apic_setspl(int ipl);
98 static int	apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
99 static int	apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
100 static void	apic_shutdown(int cmd, int fcn);
101 static void	apic_preshutdown(int cmd, int fcn);
102 static int	apic_disable_intr(processorid_t cpun);
103 static void	apic_enable_intr(processorid_t cpun);
104 static processorid_t	apic_get_next_processorid(processorid_t cpun);
105 static int		apic_get_ipivect(int ipl, int type);
106 static void	apic_timer_reprogram(hrtime_t time);
107 static void	apic_timer_enable(void);
108 static void	apic_timer_disable(void);
109 static void	apic_post_cyclic_setup(void *arg);
110 
111 static int	apic_oneshot = 0;
112 int	apic_oneshot_enable = 1; /* to allow disabling one-shot capability */
113 
114 /* Now the ones for Dynamic Interrupt distribution */
115 int	apic_enable_dynamic_migration = 0;
116 
117 
118 /*
119  * These variables are frequently accessed in apic_intr_enter(),
120  * apic_intr_exit and apic_setspl, so group them together
121  */
122 volatile uint32_t *apicadr =  NULL;	/* virtual addr of local APIC	*/
123 int apic_setspl_delay = 1;		/* apic_setspl - delay enable	*/
124 int apic_clkvect;
125 
126 /* vector at which error interrupts come in */
127 int apic_errvect;
128 int apic_enable_error_intr = 1;
129 int apic_error_display_delay = 100;
130 
131 /* vector at which performance counter overflow interrupts come in */
132 int apic_cpcovf_vect;
133 int apic_enable_cpcovf_intr = 1;
134 
135 /*
136  * The following vector assignments influence the value of ipltopri and
137  * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
138  * idle to 0 and IPL 0 to 0xf to differentiate idle in case
139  * we care to do so in future. Note some IPLs which are rarely used
140  * will share the vector ranges and heavily used IPLs (5 and 6) have
141  * a wide range.
142  *
143  * This array is used to initialize apic_ipls[] (in apic_init()).
144  *
145  *	IPL		Vector range.		as passed to intr_enter
146  *	0		none.
147  *	1,2,3		0x20-0x2f		0x0-0xf
148  *	4		0x30-0x3f		0x10-0x1f
149  *	5		0x40-0x5f		0x20-0x3f
150  *	6		0x60-0x7f		0x40-0x5f
151  *	7,8,9		0x80-0x8f		0x60-0x6f
152  *	10		0x90-0x9f		0x70-0x7f
153  *	11		0xa0-0xaf		0x80-0x8f
154  *	...		...
155  *	15		0xe0-0xef		0xc0-0xcf
156  *	15		0xf0-0xff		0xd0-0xdf
157  */
158 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
159 	3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
160 };
161 	/*
162 	 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
163 	 * NOTE that this is vector as passed into intr_enter which is
164 	 * programmed vector - 0x20 (APIC_BASE_VECT)
165 	 */
166 
167 uchar_t	apic_ipltopri[MAXIPL + 1];	/* unix ipl to apic pri	*/
168 	/* The taskpri to be programmed into apic to mask given ipl */
169 
170 #if defined(__amd64)
171 uchar_t	apic_cr8pri[MAXIPL + 1];	/* unix ipl to cr8 pri	*/
172 #endif
173 
174 /*
175  * Correlation of the hardware vector to the IPL in use, initialized
176  * from apic_vectortoipl[] in apic_init().  The final IPLs may not correlate
177  * to the IPLs in apic_vectortoipl on some systems that share interrupt lines
178  * connected to errata-stricken IOAPICs
179  */
180 uchar_t apic_ipls[APIC_AVAIL_VECTOR];
181 
182 /*
183  * Patchable global variables.
184  */
185 int	apic_forceload = 0;
186 
187 int	apic_coarse_hrtime = 1;		/* 0 - use accurate slow gethrtime() */
188 					/* 1 - use gettime() for performance */
189 int	apic_flat_model = 0;		/* 0 - clustered. 1 - flat */
190 int	apic_enable_hwsoftint = 0;	/* 0 - disable, 1 - enable	*/
191 int	apic_enable_bind_log = 1;	/* 1 - display interrupt binding log */
192 int	apic_panic_on_nmi = 0;
193 int	apic_panic_on_apic_error = 0;
194 
195 int	apic_verbose = 0;
196 
197 /* minimum number of timer ticks to program to */
198 int apic_min_timer_ticks = 1;
199 /*
200  *	Local static data
201  */
202 static struct	psm_ops apic_ops = {
203 	apic_probe,
204 
205 	apic_init,
206 	apic_picinit,
207 	apic_intr_enter,
208 	apic_intr_exit,
209 	apic_setspl,
210 	apic_addspl,
211 	apic_delspl,
212 	apic_disable_intr,
213 	apic_enable_intr,
214 	(int (*)(int))NULL,		/* psm_softlvl_to_irq */
215 	(void (*)(int))NULL,		/* psm_set_softintr */
216 
217 	apic_set_idlecpu,
218 	apic_unset_idlecpu,
219 
220 	apic_clkinit,
221 	apic_getclkirq,
222 	(void (*)(void))NULL,		/* psm_hrtimeinit */
223 	apic_gethrtime,
224 
225 	apic_get_next_processorid,
226 	apic_cpu_start,
227 	apic_post_cpu_start,
228 	apic_shutdown,
229 	apic_get_ipivect,
230 	apic_send_ipi,
231 
232 	(int (*)(dev_info_t *, int))NULL,	/* psm_translate_irq */
233 	(void (*)(int, char *))NULL,	/* psm_notify_error */
234 	(void (*)(int))NULL,		/* psm_notify_func */
235 	apic_timer_reprogram,
236 	apic_timer_enable,
237 	apic_timer_disable,
238 	apic_post_cyclic_setup,
239 	apic_preshutdown,
240 	apic_intr_ops			/* Advanced DDI Interrupt framework */
241 };
242 
243 
244 static struct	psm_info apic_psm_info = {
245 	PSM_INFO_VER01_5,			/* version */
246 	PSM_OWN_EXCLUSIVE,			/* ownership */
247 	(struct psm_ops *)&apic_ops,		/* operation */
248 	APIC_PCPLUSMP_NAME,			/* machine name */
249 	"pcplusmp v1.4 compatible %I%",
250 };
251 
252 static void *apic_hdlp;
253 
254 #ifdef DEBUG
255 int	apic_debug = 0;
256 int	apic_restrict_vector = 0;
257 
258 int	apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE];
259 int	apic_debug_msgbufindex = 0;
260 
261 #endif /* DEBUG */
262 
263 apic_cpus_info_t	*apic_cpus;
264 
265 cpuset_t	apic_cpumask;
266 uint_t	apic_picinit_called;
267 
268 /* Flag to indicate that we need to shut down all processors */
269 static uint_t	apic_shutdown_processors;
270 
271 uint_t apic_nsec_per_intr = 0;
272 
273 /*
274  * apic_let_idle_redistribute can have the following values:
275  * 0 - If clock decremented it from 1 to 0, clock has to call redistribute.
276  * apic_redistribute_lock prevents multiple idle cpus from redistributing
277  */
278 int	apic_num_idle_redistributions = 0;
279 static	int apic_let_idle_redistribute = 0;
280 static	uint_t apic_nticks = 0;
281 static	uint_t apic_skipped_redistribute = 0;
282 
283 /* to gather intr data and redistribute */
284 static void apic_redistribute_compute(void);
285 
286 static	uint_t last_count_read = 0;
287 static	lock_t	apic_gethrtime_lock;
288 volatile int	apic_hrtime_stamp = 0;
289 volatile hrtime_t apic_nsec_since_boot = 0;
290 static uint_t apic_hertz_count;
291 
292 uint64_t apic_ticks_per_SFnsecs;	/* # of ticks in SF nsecs */
293 
294 static hrtime_t apic_nsec_max;
295 
296 static	hrtime_t	apic_last_hrtime = 0;
297 int		apic_hrtime_error = 0;
298 int		apic_remote_hrterr = 0;
299 int		apic_num_nmis = 0;
300 int		apic_apic_error = 0;
301 int		apic_num_apic_errors = 0;
302 int		apic_num_cksum_errors = 0;
303 
304 int	apic_error = 0;
305 static	int	apic_cmos_ssb_set = 0;
306 
307 /* use to make sure only one cpu handles the nmi */
308 static	lock_t	apic_nmi_lock;
309 /* use to make sure only one cpu handles the error interrupt */
310 static	lock_t	apic_error_lock;
311 
312 static	struct {
313 	uchar_t	cntl;
314 	uchar_t	data;
315 } aspen_bmc[] = {
316 	{ CC_SMS_WR_START,	0x18 },		/* NetFn/LUN */
317 	{ CC_SMS_WR_NEXT,	0x24 },		/* Cmd SET_WATCHDOG_TIMER */
318 	{ CC_SMS_WR_NEXT,	0x84 },		/* DataByte 1: SMS/OS no log */
319 	{ CC_SMS_WR_NEXT,	0x2 },		/* DataByte 2: Power Down */
320 	{ CC_SMS_WR_NEXT,	0x0 },		/* DataByte 3: no pre-timeout */
321 	{ CC_SMS_WR_NEXT,	0x0 },		/* DataByte 4: timer expir. */
322 	{ CC_SMS_WR_NEXT,	0xa },		/* DataByte 5: init countdown */
323 	{ CC_SMS_WR_END,	0x0 },		/* DataByte 6: init countdown */
324 
325 	{ CC_SMS_WR_START,	0x18 },		/* NetFn/LUN */
326 	{ CC_SMS_WR_END,	0x22 }		/* Cmd RESET_WATCHDOG_TIMER */
327 };
328 
329 static	struct {
330 	int	port;
331 	uchar_t	data;
332 } sitka_bmc[] = {
333 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_START },
334 	{ SMS_DATA_REGISTER,	0x18 },		/* NetFn/LUN */
335 	{ SMS_DATA_REGISTER,	0x24 },		/* Cmd SET_WATCHDOG_TIMER */
336 	{ SMS_DATA_REGISTER,	0x84 },		/* DataByte 1: SMS/OS no log */
337 	{ SMS_DATA_REGISTER,	0x2 },		/* DataByte 2: Power Down */
338 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 3: no pre-timeout */
339 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 4: timer expir. */
340 	{ SMS_DATA_REGISTER,	0xa },		/* DataByte 5: init countdown */
341 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_END },
342 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 6: init countdown */
343 
344 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_START },
345 	{ SMS_DATA_REGISTER,	0x18 },		/* NetFn/LUN */
346 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_END },
347 	{ SMS_DATA_REGISTER,	0x22 }		/* Cmd RESET_WATCHDOG_TIMER */
348 };
349 
350 /* Patchable global variables. */
351 int		apic_kmdb_on_nmi = 0;		/* 0 - no, 1 - yes enter kmdb */
352 uint32_t	apic_divide_reg_init = 0;	/* 0 - divide by 2 */
353 
354 /*
355  *	This is the loadable module wrapper
356  */
357 
358 int
359 _init(void)
360 {
361 	if (apic_coarse_hrtime)
362 		apic_ops.psm_gethrtime = &apic_gettime;
363 	return (psm_mod_init(&apic_hdlp, &apic_psm_info));
364 }
365 
366 int
367 _fini(void)
368 {
369 	return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
370 }
371 
372 int
373 _info(struct modinfo *modinfop)
374 {
375 	return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
376 }
377 
378 
379 static int
380 apic_probe()
381 {
382 	return (apic_probe_common(apic_psm_info.p_mach_idstring));
383 }
384 
385 void
386 apic_init()
387 {
388 	int i;
389 	int	j = 1;
390 
391 	apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
392 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
393 		if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
394 		    (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
395 			/* get to highest vector at the same ipl */
396 			continue;
397 		for (; j <= apic_vectortoipl[i]; j++) {
398 			apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
399 			    APIC_BASE_VECT;
400 		}
401 	}
402 	for (; j < MAXIPL + 1; j++)
403 		/* fill up any empty ipltopri slots */
404 		apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
405 	apic_init_common();
406 #if defined(__amd64)
407 	/*
408 	 * Make cpu-specific interrupt info point to cr8pri vector
409 	 */
410 	for (i = 0; i <= MAXIPL; i++)
411 		apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT;
412 	CPU->cpu_pri_data = apic_cr8pri;
413 #endif	/* __amd64 */
414 }
415 
416 /*
417  * handler for APIC Error interrupt. Just print a warning and continue
418  */
419 static int
420 apic_error_intr()
421 {
422 	uint_t	error0, error1, error;
423 	uint_t	i;
424 
425 	/*
426 	 * We need to write before read as per 7.4.17 of system prog manual.
427 	 * We do both and or the results to be safe
428 	 */
429 	error0 = apicadr[APIC_ERROR_STATUS];
430 	apicadr[APIC_ERROR_STATUS] = 0;
431 	error1 = apicadr[APIC_ERROR_STATUS];
432 	error = error0 | error1;
433 
434 	/*
435 	 * Clear the APIC error status (do this on all cpus that enter here)
436 	 * (two writes are required due to the semantics of accessing the
437 	 * error status register.)
438 	 */
439 	apicadr[APIC_ERROR_STATUS] = 0;
440 	apicadr[APIC_ERROR_STATUS] = 0;
441 
442 	/*
443 	 * Prevent more than 1 CPU from handling error interrupt causing
444 	 * double printing (interleave of characters from multiple
445 	 * CPU's when using prom_printf)
446 	 */
447 	if (lock_try(&apic_error_lock) == 0)
448 		return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
449 	if (error) {
450 #if	DEBUG
451 		if (apic_debug)
452 			debug_enter("pcplusmp: APIC Error interrupt received");
453 #endif /* DEBUG */
454 		if (apic_panic_on_apic_error)
455 			cmn_err(CE_PANIC,
456 			    "APIC Error interrupt on CPU %d. Status = %x\n",
457 			    psm_get_cpu_id(), error);
458 		else {
459 			if ((error & ~APIC_CS_ERRORS) == 0) {
460 				/* cksum error only */
461 				apic_error |= APIC_ERR_APIC_ERROR;
462 				apic_apic_error |= error;
463 				apic_num_apic_errors++;
464 				apic_num_cksum_errors++;
465 			} else {
466 				/*
467 				 * prom_printf is the best shot we have of
468 				 * something which is problem free from
469 				 * high level/NMI type of interrupts
470 				 */
471 				prom_printf("APIC Error interrupt on CPU %d. "
472 				    "Status 0 = %x, Status 1 = %x\n",
473 				    psm_get_cpu_id(), error0, error1);
474 				apic_error |= APIC_ERR_APIC_ERROR;
475 				apic_apic_error |= error;
476 				apic_num_apic_errors++;
477 				for (i = 0; i < apic_error_display_delay; i++) {
478 					tenmicrosec();
479 				}
480 				/*
481 				 * provide more delay next time limited to
482 				 * roughly 1 clock tick time
483 				 */
484 				if (apic_error_display_delay < 500)
485 					apic_error_display_delay *= 2;
486 			}
487 		}
488 		lock_clear(&apic_error_lock);
489 		return (DDI_INTR_CLAIMED);
490 	} else {
491 		lock_clear(&apic_error_lock);
492 		return (DDI_INTR_UNCLAIMED);
493 	}
494 	/* NOTREACHED */
495 }
496 
497 /*
498  * Turn off the mask bit in the performance counter Local Vector Table entry.
499  */
500 static void
501 apic_cpcovf_mask_clear(void)
502 {
503 	apicadr[APIC_PCINT_VECT] &= ~APIC_LVT_MASK;
504 }
505 
506 static void
507 apic_init_intr()
508 {
509 	processorid_t	cpun = psm_get_cpu_id();
510 
511 #if defined(__amd64)
512 	setcr8((ulong_t)(APIC_MASK_ALL >> APIC_IPL_SHIFT));
513 #else
514 	apicadr[APIC_TASK_REG] = APIC_MASK_ALL;
515 #endif
516 
517 	if (apic_flat_model)
518 		apicadr[APIC_FORMAT_REG] = APIC_FLAT_MODEL;
519 	else
520 		apicadr[APIC_FORMAT_REG] = APIC_CLUSTER_MODEL;
521 	apicadr[APIC_DEST_REG] = AV_HIGH_ORDER >> cpun;
522 
523 	/* need to enable APIC before unmasking NMI */
524 	apicadr[APIC_SPUR_INT_REG] = AV_UNIT_ENABLE | APIC_SPUR_INTR;
525 
526 	apicadr[APIC_LOCAL_TIMER] = AV_MASK;
527 	apicadr[APIC_INT_VECT0]	= AV_MASK;	/* local intr reg 0 */
528 	apicadr[APIC_INT_VECT1] = AV_NMI;	/* enable NMI */
529 
530 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS)
531 		return;
532 
533 	/* Enable performance counter overflow interrupt */
534 
535 	if ((x86_feature & X86_MSR) != X86_MSR)
536 		apic_enable_cpcovf_intr = 0;
537 	if (apic_enable_cpcovf_intr) {
538 		if (apic_cpcovf_vect == 0) {
539 			int ipl = APIC_PCINT_IPL;
540 			int irq = apic_get_ipivect(ipl, -1);
541 
542 			ASSERT(irq != -1);
543 			apic_cpcovf_vect = apic_irq_table[irq]->airq_vector;
544 			ASSERT(apic_cpcovf_vect);
545 			(void) add_avintr(NULL, ipl,
546 			    (avfunc)kcpc_hw_overflow_intr,
547 			    "apic pcint", irq, NULL, NULL, NULL, NULL);
548 			kcpc_hw_overflow_intr_installed = 1;
549 			kcpc_hw_enable_cpc_intr = apic_cpcovf_mask_clear;
550 		}
551 		apicadr[APIC_PCINT_VECT] = apic_cpcovf_vect;
552 	}
553 
554 	/* Enable error interrupt */
555 
556 	if (apic_enable_error_intr) {
557 		if (apic_errvect == 0) {
558 			int ipl = 0xf;	/* get highest priority intr */
559 			int irq = apic_get_ipivect(ipl, -1);
560 
561 			ASSERT(irq != -1);
562 			apic_errvect = apic_irq_table[irq]->airq_vector;
563 			ASSERT(apic_errvect);
564 			/*
565 			 * Not PSMI compliant, but we are going to merge
566 			 * with ON anyway
567 			 */
568 			(void) add_avintr((void *)NULL, ipl,
569 			    (avfunc)apic_error_intr, "apic error intr",
570 			    irq, NULL, NULL, NULL, NULL);
571 		}
572 		apicadr[APIC_ERR_VECT] = apic_errvect;
573 		apicadr[APIC_ERROR_STATUS] = 0;
574 		apicadr[APIC_ERROR_STATUS] = 0;
575 	}
576 }
577 
578 static void
579 apic_disable_local_apic()
580 {
581 	apicadr[APIC_TASK_REG] = APIC_MASK_ALL;
582 	apicadr[APIC_LOCAL_TIMER] = AV_MASK;
583 	apicadr[APIC_INT_VECT0] = AV_MASK;	/* local intr reg 0 */
584 	apicadr[APIC_INT_VECT1] = AV_MASK;	/* disable NMI */
585 	apicadr[APIC_ERR_VECT] = AV_MASK;	/* and error interrupt */
586 	apicadr[APIC_PCINT_VECT] = AV_MASK;	/* and perf counter intr */
587 	apicadr[APIC_SPUR_INT_REG] = APIC_SPUR_INTR;
588 }
589 
590 static void
591 apic_picinit(void)
592 {
593 	int i, j;
594 	uint_t isr;
595 
596 	/*
597 	 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
598 	 * bit on without clearing it with EOI.  Since softint
599 	 * uses vector 0x20 to interrupt itself, so softint will
600 	 * not work on this machine.  In order to fix this problem
601 	 * a check is made to verify all the isr bits are clear.
602 	 * If not, EOIs are issued to clear the bits.
603 	 */
604 	for (i = 7; i >= 1; i--) {
605 		if ((isr = apicadr[APIC_ISR_REG + (i * 4)]) != 0)
606 			for (j = 0; ((j < 32) && (isr != 0)); j++)
607 				if (isr & (1 << j)) {
608 					apicadr[APIC_EOI_REG] = 0;
609 					isr &= ~(1 << j);
610 					apic_error |= APIC_ERR_BOOT_EOI;
611 				}
612 	}
613 
614 	/* set a flag so we know we have run apic_picinit() */
615 	apic_picinit_called = 1;
616 	LOCK_INIT_CLEAR(&apic_gethrtime_lock);
617 	LOCK_INIT_CLEAR(&apic_ioapic_lock);
618 	LOCK_INIT_CLEAR(&apic_error_lock);
619 
620 	picsetup();	 /* initialise the 8259 */
621 
622 	/* add nmi handler - least priority nmi handler */
623 	LOCK_INIT_CLEAR(&apic_nmi_lock);
624 
625 	if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
626 	    "pcplusmp NMI handler", (caddr_t)NULL))
627 		cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
628 
629 	apic_init_intr();
630 
631 	/* enable apic mode if imcr present */
632 	if (apic_imcrp) {
633 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
634 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
635 	}
636 
637 	ioapic_init_intr(IOAPIC_MASK);
638 }
639 
640 
641 /*ARGSUSED1*/
642 static int
643 apic_cpu_start(processorid_t cpun, caddr_t arg)
644 {
645 	int		loop_count;
646 	uint32_t	vector;
647 	uint_t		cpu_id;
648 	ulong_t		iflag;
649 
650 	cpu_id = apic_cpus[cpun].aci_local_id;
651 
652 	apic_cmos_ssb_set = 1;
653 
654 	/*
655 	 * Interrupts on BSP cpu will be disabled during these startup
656 	 * steps in order to avoid unwanted side effects from
657 	 * executing interrupt handlers on a problematic BIOS.
658 	 */
659 
660 	iflag = intr_clear();
661 	outb(CMOS_ADDR, SSB);
662 	outb(CMOS_DATA, BIOS_SHUTDOWN);
663 
664 	while (get_apic_cmd1() & AV_PENDING)
665 		apic_ret();
666 
667 	/* for integrated - make sure there is one INIT IPI in buffer */
668 	/* for external - it will wake up the cpu */
669 	apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET;
670 	apicadr[APIC_INT_CMD1] = AV_ASSERT | AV_RESET;
671 
672 	/* If only 1 CPU is installed, PENDING bit will not go low */
673 	for (loop_count = 0x1000; loop_count; loop_count--)
674 		if (get_apic_cmd1() & AV_PENDING)
675 			apic_ret();
676 		else
677 			break;
678 
679 	apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET;
680 	apicadr[APIC_INT_CMD1] = AV_DEASSERT | AV_RESET;
681 
682 	drv_usecwait(20000);		/* 20 milli sec */
683 
684 	if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) {
685 		/* integrated apic */
686 
687 		vector = (rm_platter_pa >> MMU_PAGESHIFT) &
688 		    (APIC_VECTOR_MASK | APIC_IPL_MASK);
689 
690 		/* to offset the INIT IPI queue up in the buffer */
691 		apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET;
692 		apicadr[APIC_INT_CMD1] = vector | AV_STARTUP;
693 
694 		drv_usecwait(200);		/* 20 micro sec */
695 
696 		apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET;
697 		apicadr[APIC_INT_CMD1] = vector | AV_STARTUP;
698 
699 		drv_usecwait(200);		/* 20 micro sec */
700 	}
701 	intr_restore(iflag);
702 	return (0);
703 }
704 
705 
706 #ifdef	DEBUG
707 int	apic_break_on_cpu = 9;
708 int	apic_stretch_interrupts = 0;
709 int	apic_stretch_ISR = 1 << 3;	/* IPL of 3 matches nothing now */
710 
711 void
712 apic_break()
713 {
714 }
715 #endif /* DEBUG */
716 
717 /*
718  * platform_intr_enter
719  *
720  *	Called at the beginning of the interrupt service routine to
721  *	mask all level equal to and below the interrupt priority
722  *	of the interrupting vector.  An EOI should be given to
723  *	the interrupt controller to enable other HW interrupts.
724  *
725  *	Return -1 for spurious interrupts
726  *
727  */
728 /*ARGSUSED*/
729 static int
730 apic_intr_enter(int ipl, int *vectorp)
731 {
732 	uchar_t vector;
733 	int nipl;
734 	int irq;
735 	ulong_t iflag;
736 	apic_cpus_info_t *cpu_infop;
737 
738 	/*
739 	 * The real vector delivered is (*vectorp + 0x20), but our caller
740 	 * subtracts 0x20 from the vector before passing it to us.
741 	 * (That's why APIC_BASE_VECT is 0x20.)
742 	 */
743 	vector = (uchar_t)*vectorp;
744 
745 	/* if interrupted by the clock, increment apic_nsec_since_boot */
746 	if (vector == apic_clkvect) {
747 		if (!apic_oneshot) {
748 			/* NOTE: this is not MT aware */
749 			apic_hrtime_stamp++;
750 			apic_nsec_since_boot += apic_nsec_per_intr;
751 			apic_hrtime_stamp++;
752 			last_count_read = apic_hertz_count;
753 			apic_redistribute_compute();
754 		}
755 
756 		/* We will avoid all the book keeping overhead for clock */
757 		nipl = apic_ipls[vector];
758 
759 #if defined(__amd64)
760 		setcr8((ulong_t)apic_cr8pri[nipl]);
761 #else
762 		apicadr[APIC_TASK_REG] = apic_ipltopri[nipl];
763 #endif
764 		*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
765 		apicadr[APIC_EOI_REG] = 0;
766 		return (nipl);
767 	}
768 
769 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
770 
771 	if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
772 		cpu_infop->aci_spur_cnt++;
773 		return (APIC_INT_SPURIOUS);
774 	}
775 
776 	/* Check if the vector we got is really what we need */
777 	if (apic_revector_pending) {
778 		/*
779 		 * Disable interrupts for the duration of
780 		 * the vector translation to prevent a self-race for
781 		 * the apic_revector_lock.  This cannot be done
782 		 * in apic_xlate_vector because it is recursive and
783 		 * we want the vector translation to be atomic with
784 		 * respect to other (higher-priority) interrupts.
785 		 */
786 		iflag = intr_clear();
787 		vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
788 		    APIC_BASE_VECT;
789 		intr_restore(iflag);
790 	}
791 
792 	nipl = apic_ipls[vector];
793 	*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
794 
795 #if defined(__amd64)
796 	setcr8((ulong_t)apic_cr8pri[nipl]);
797 #else
798 	apicadr[APIC_TASK_REG] = apic_ipltopri[nipl];
799 #endif
800 
801 	cpu_infop->aci_current[nipl] = (uchar_t)irq;
802 	cpu_infop->aci_curipl = (uchar_t)nipl;
803 	cpu_infop->aci_ISR_in_progress |= 1 << nipl;
804 
805 	/*
806 	 * apic_level_intr could have been assimilated into the irq struct.
807 	 * but, having it as a character array is more efficient in terms of
808 	 * cache usage. So, we leave it as is.
809 	 */
810 	if (!apic_level_intr[irq])
811 		apicadr[APIC_EOI_REG] = 0;
812 
813 #ifdef	DEBUG
814 	APIC_DEBUG_BUF_PUT(vector);
815 	APIC_DEBUG_BUF_PUT(irq);
816 	APIC_DEBUG_BUF_PUT(nipl);
817 	APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
818 	if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
819 		drv_usecwait(apic_stretch_interrupts);
820 
821 	if (apic_break_on_cpu == psm_get_cpu_id())
822 		apic_break();
823 #endif /* DEBUG */
824 	return (nipl);
825 }
826 
827 void
828 apic_intr_exit(int prev_ipl, int irq)
829 {
830 	apic_cpus_info_t *cpu_infop;
831 
832 #if defined(__amd64)
833 	setcr8((ulong_t)apic_cr8pri[prev_ipl]);
834 #else
835 	apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl];
836 #endif
837 
838 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
839 	if (apic_level_intr[irq])
840 		apicadr[APIC_EOI_REG] = 0;
841 
842 	cpu_infop->aci_curipl = (uchar_t)prev_ipl;
843 	/* ISR above current pri could not be in progress */
844 	cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1;
845 }
846 
847 intr_exit_fn_t
848 psm_intr_exit_fn(void)
849 {
850 	return (apic_intr_exit);
851 }
852 
853 /*
854  * Mask all interrupts below or equal to the given IPL
855  */
856 static void
857 apic_setspl(int ipl)
858 {
859 
860 #if defined(__amd64)
861 	setcr8((ulong_t)apic_cr8pri[ipl]);
862 #else
863 	apicadr[APIC_TASK_REG] = apic_ipltopri[ipl];
864 #endif
865 
866 	/* interrupts at ipl above this cannot be in progress */
867 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
868 	/*
869 	 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts
870 	 * have enough time to come in before the priority is raised again
871 	 * during the idle() loop.
872 	 */
873 	if (apic_setspl_delay)
874 		(void) get_apic_pri();
875 }
876 
877 /*
878  * generates an interprocessor interrupt to another CPU
879  */
880 static void
881 apic_send_ipi(int cpun, int ipl)
882 {
883 	int vector;
884 	ulong_t flag;
885 
886 	vector = apic_resv_vector[ipl];
887 
888 	flag = intr_clear();
889 
890 	while (get_apic_cmd1() & AV_PENDING)
891 		apic_ret();
892 
893 	apicadr[APIC_INT_CMD2] =
894 	    apic_cpus[cpun].aci_local_id << APIC_ICR_ID_BIT_OFFSET;
895 	apicadr[APIC_INT_CMD1] = vector;
896 
897 	intr_restore(flag);
898 }
899 
900 
901 /*ARGSUSED*/
902 static void
903 apic_set_idlecpu(processorid_t cpun)
904 {
905 }
906 
907 /*ARGSUSED*/
908 static void
909 apic_unset_idlecpu(processorid_t cpun)
910 {
911 }
912 
913 
914 static void
915 apic_ret()
916 {
917 }
918 
919 static int
920 get_apic_cmd1()
921 {
922 	return (apicadr[APIC_INT_CMD1]);
923 }
924 
925 static int
926 get_apic_pri()
927 {
928 #if defined(__amd64)
929 	return ((int)getcr8());
930 #else
931 	return (apicadr[APIC_TASK_REG]);
932 #endif
933 }
934 
935 /*
936  * If apic_coarse_time == 1, then apic_gettime() is used instead of
937  * apic_gethrtime().  This is used for performance instead of accuracy.
938  */
939 
940 static hrtime_t
941 apic_gettime()
942 {
943 	int old_hrtime_stamp;
944 	hrtime_t temp;
945 
946 	/*
947 	 * In one-shot mode, we do not keep time, so if anyone
948 	 * calls psm_gettime() directly, we vector over to
949 	 * gethrtime().
950 	 * one-shot mode MUST NOT be enabled if this psm is the source of
951 	 * hrtime.
952 	 */
953 
954 	if (apic_oneshot)
955 		return (gethrtime());
956 
957 
958 gettime_again:
959 	while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
960 		apic_ret();
961 
962 	temp = apic_nsec_since_boot;
963 
964 	if (apic_hrtime_stamp != old_hrtime_stamp) {	/* got an interrupt */
965 		goto gettime_again;
966 	}
967 	return (temp);
968 }
969 
970 /*
971  * Here we return the number of nanoseconds since booting.  Note every
972  * clock interrupt increments apic_nsec_since_boot by the appropriate
973  * amount.
974  */
975 static hrtime_t
976 apic_gethrtime()
977 {
978 	int curr_timeval, countval, elapsed_ticks;
979 	int old_hrtime_stamp, status;
980 	hrtime_t temp;
981 	uchar_t	cpun;
982 	ulong_t oflags;
983 
984 	/*
985 	 * In one-shot mode, we do not keep time, so if anyone
986 	 * calls psm_gethrtime() directly, we vector over to
987 	 * gethrtime().
988 	 * one-shot mode MUST NOT be enabled if this psm is the source of
989 	 * hrtime.
990 	 */
991 
992 	if (apic_oneshot)
993 		return (gethrtime());
994 
995 	oflags = intr_clear();	/* prevent migration */
996 
997 	cpun = (uchar_t)((uint_t)apicadr[APIC_LID_REG] >> APIC_ID_BIT_OFFSET);
998 
999 	lock_set(&apic_gethrtime_lock);
1000 
1001 gethrtime_again:
1002 	while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
1003 		apic_ret();
1004 
1005 	/*
1006 	 * Check to see which CPU we are on.  Note the time is kept on
1007 	 * the local APIC of CPU 0.  If on CPU 0, simply read the current
1008 	 * counter.  If on another CPU, issue a remote read command to CPU 0.
1009 	 */
1010 	if (cpun == apic_cpus[0].aci_local_id) {
1011 		countval = apicadr[APIC_CURR_COUNT];
1012 	} else {
1013 		while (get_apic_cmd1() & AV_PENDING)
1014 			apic_ret();
1015 
1016 		apicadr[APIC_INT_CMD2] =
1017 		    apic_cpus[0].aci_local_id << APIC_ICR_ID_BIT_OFFSET;
1018 		apicadr[APIC_INT_CMD1] = APIC_CURR_ADD|AV_REMOTE;
1019 
1020 		while ((status = get_apic_cmd1()) & AV_READ_PENDING)
1021 			apic_ret();
1022 
1023 		if (status & AV_REMOTE_STATUS)	/* 1 = valid */
1024 			countval = apicadr[APIC_REMOTE_READ];
1025 		else {	/* 0 = invalid */
1026 			apic_remote_hrterr++;
1027 			/*
1028 			 * return last hrtime right now, will need more
1029 			 * testing if change to retry
1030 			 */
1031 			temp = apic_last_hrtime;
1032 
1033 			lock_clear(&apic_gethrtime_lock);
1034 
1035 			intr_restore(oflags);
1036 
1037 			return (temp);
1038 		}
1039 	}
1040 	if (countval > last_count_read)
1041 		countval = 0;
1042 	else
1043 		last_count_read = countval;
1044 
1045 	elapsed_ticks = apic_hertz_count - countval;
1046 
1047 	curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks);
1048 	temp = apic_nsec_since_boot + curr_timeval;
1049 
1050 	if (apic_hrtime_stamp != old_hrtime_stamp) {	/* got an interrupt */
1051 		/* we might have clobbered last_count_read. Restore it */
1052 		last_count_read = apic_hertz_count;
1053 		goto gethrtime_again;
1054 	}
1055 
1056 	if (temp < apic_last_hrtime) {
1057 		/* return last hrtime if error occurs */
1058 		apic_hrtime_error++;
1059 		temp = apic_last_hrtime;
1060 	}
1061 	else
1062 		apic_last_hrtime = temp;
1063 
1064 	lock_clear(&apic_gethrtime_lock);
1065 	intr_restore(oflags);
1066 
1067 	return (temp);
1068 }
1069 
1070 /* apic NMI handler */
1071 /*ARGSUSED*/
1072 static void
1073 apic_nmi_intr(caddr_t arg, struct regs *rp)
1074 {
1075 	if (apic_shutdown_processors) {
1076 		apic_disable_local_apic();
1077 		return;
1078 	}
1079 
1080 	apic_error |= APIC_ERR_NMI;
1081 
1082 	if (!lock_try(&apic_nmi_lock))
1083 		return;
1084 	apic_num_nmis++;
1085 
1086 	if (apic_kmdb_on_nmi && psm_debugger()) {
1087 		debug_enter("NMI received: entering kmdb\n");
1088 	} else if (apic_panic_on_nmi) {
1089 		/* Keep panic from entering kmdb. */
1090 		nopanicdebug = 1;
1091 		panic("NMI received\n");
1092 	} else {
1093 		/*
1094 		 * prom_printf is the best shot we have of something which is
1095 		 * problem free from high level/NMI type of interrupts
1096 		 */
1097 		prom_printf("NMI received\n");
1098 	}
1099 
1100 	lock_clear(&apic_nmi_lock);
1101 }
1102 
1103 /*ARGSUSED*/
1104 static int
1105 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
1106 {
1107 	return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
1108 }
1109 
1110 static int
1111 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
1112 {
1113 	return (apic_delspl_common(irqno, ipl, min_ipl,  max_ipl));
1114 }
1115 
1116 static int
1117 apic_post_cpu_start()
1118 {
1119 	int i, cpun;
1120 	ulong_t iflag;
1121 	apic_irq_t *irq_ptr;
1122 
1123 	splx(ipltospl(LOCK_LEVEL));
1124 	apic_init_intr();
1125 
1126 	/*
1127 	 * since some systems don't enable the internal cache on the non-boot
1128 	 * cpus, so we have to enable them here
1129 	 */
1130 	setcr0(getcr0() & ~(CR0_CD | CR0_NW));
1131 
1132 	while (get_apic_cmd1() & AV_PENDING)
1133 		apic_ret();
1134 
1135 	cpun = psm_get_cpu_id();
1136 	apic_cpus[cpun].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
1137 
1138 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
1139 		irq_ptr = apic_irq_table[i];
1140 		if ((irq_ptr == NULL) ||
1141 		    ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) != cpun))
1142 			continue;
1143 
1144 		while (irq_ptr) {
1145 			if (irq_ptr->airq_temp_cpu != IRQ_UNINIT) {
1146 				iflag = intr_clear();
1147 				lock_set(&apic_ioapic_lock);
1148 
1149 				(void) apic_rebind(irq_ptr, cpun, NULL);
1150 
1151 				lock_clear(&apic_ioapic_lock);
1152 				intr_restore(iflag);
1153 			}
1154 			irq_ptr = irq_ptr->airq_next;
1155 		}
1156 	}
1157 
1158 	apicadr[APIC_DIVIDE_REG] = apic_divide_reg_init;
1159 	return (PSM_SUCCESS);
1160 }
1161 
1162 processorid_t
1163 apic_get_next_processorid(processorid_t cpu_id)
1164 {
1165 
1166 	int i;
1167 
1168 	if (cpu_id == -1)
1169 		return ((processorid_t)0);
1170 
1171 	for (i = cpu_id + 1; i < NCPU; i++) {
1172 		if (CPU_IN_SET(apic_cpumask, i))
1173 			return (i);
1174 	}
1175 
1176 	return ((processorid_t)-1);
1177 }
1178 
1179 
1180 /*
1181  * type == -1 indicates it is an internal request. Do not change
1182  * resv_vector for these requests
1183  */
1184 static int
1185 apic_get_ipivect(int ipl, int type)
1186 {
1187 	uchar_t vector;
1188 	int irq;
1189 
1190 	if (irq = apic_allocate_irq(APIC_VECTOR(ipl))) {
1191 		if (vector = apic_allocate_vector(ipl, irq, 1)) {
1192 			apic_irq_table[irq]->airq_mps_intr_index =
1193 			    RESERVE_INDEX;
1194 			apic_irq_table[irq]->airq_vector = vector;
1195 			if (type != -1) {
1196 				apic_resv_vector[ipl] = vector;
1197 			}
1198 			return (irq);
1199 		}
1200 	}
1201 	apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
1202 	return (-1);	/* shouldn't happen */
1203 }
1204 
1205 static int
1206 apic_getclkirq(int ipl)
1207 {
1208 	int	irq;
1209 
1210 	if ((irq = apic_get_ipivect(ipl, -1)) == -1)
1211 		return (-1);
1212 	/*
1213 	 * Note the vector in apic_clkvect for per clock handling.
1214 	 */
1215 	apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
1216 	APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
1217 	    apic_clkvect));
1218 	return (irq);
1219 }
1220 
1221 
1222 /*
1223  * Return the number of APIC clock ticks elapsed for 8245 to decrement
1224  * (APIC_TIME_COUNT + pit_ticks_adj) ticks.
1225  */
1226 static uint_t
1227 apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj)
1228 {
1229 	uint8_t		pit_tick_lo;
1230 	uint16_t	pit_tick, target_pit_tick;
1231 	uint32_t	start_apic_tick, end_apic_tick;
1232 	ulong_t		iflag;
1233 
1234 	addr += APIC_CURR_COUNT;
1235 
1236 	iflag = intr_clear();
1237 
1238 	do {
1239 		pit_tick_lo = inb(PITCTR0_PORT);
1240 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1241 	} while (pit_tick < APIC_TIME_MIN ||
1242 	    pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX);
1243 
1244 	/*
1245 	 * Wait for the 8254 to decrement by 5 ticks to ensure
1246 	 * we didn't start in the middle of a tick.
1247 	 * Compare with 0x10 for the wrap around case.
1248 	 */
1249 	target_pit_tick = pit_tick - 5;
1250 	do {
1251 		pit_tick_lo = inb(PITCTR0_PORT);
1252 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1253 	} while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
1254 
1255 	start_apic_tick = *addr;
1256 
1257 	/*
1258 	 * Wait for the 8254 to decrement by
1259 	 * (APIC_TIME_COUNT + pit_ticks_adj) ticks
1260 	 */
1261 	target_pit_tick = pit_tick - APIC_TIME_COUNT;
1262 	do {
1263 		pit_tick_lo = inb(PITCTR0_PORT);
1264 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1265 	} while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
1266 
1267 	end_apic_tick = *addr;
1268 
1269 	*pit_ticks_adj = target_pit_tick - pit_tick;
1270 
1271 	intr_restore(iflag);
1272 
1273 	return (start_apic_tick - end_apic_tick);
1274 }
1275 
1276 /*
1277  * Initialise the APIC timer on the local APIC of CPU 0 to the desired
1278  * frequency.  Note at this stage in the boot sequence, the boot processor
1279  * is the only active processor.
1280  * hertz value of 0 indicates a one-shot mode request.  In this case
1281  * the function returns the resolution (in nanoseconds) for the hardware
1282  * timer interrupt.  If one-shot mode capability is not available,
1283  * the return value will be 0. apic_enable_oneshot is a global switch
1284  * for disabling the functionality.
1285  * A non-zero positive value for hertz indicates a periodic mode request.
1286  * In this case the hardware will be programmed to generate clock interrupts
1287  * at hertz frequency and returns the resolution of interrupts in
1288  * nanosecond.
1289  */
1290 
1291 static int
1292 apic_clkinit(int hertz)
1293 {
1294 	uint_t		apic_ticks = 0;
1295 	uint_t		pit_ticks;
1296 	int		ret;
1297 	uint16_t	pit_ticks_adj;
1298 	static int	firsttime = 1;
1299 
1300 	if (firsttime) {
1301 		/* first time calibrate on CPU0 only */
1302 
1303 		apicadr[APIC_DIVIDE_REG] = apic_divide_reg_init;
1304 		apicadr[APIC_INIT_COUNT] = APIC_MAXVAL;
1305 		apic_ticks = apic_calibrate(apicadr, &pit_ticks_adj);
1306 
1307 		/* total number of PIT ticks corresponding to apic_ticks */
1308 		pit_ticks = APIC_TIME_COUNT + pit_ticks_adj;
1309 
1310 		/*
1311 		 * Determine the number of nanoseconds per APIC clock tick
1312 		 * and then determine how many APIC ticks to interrupt at the
1313 		 * desired frequency
1314 		 * apic_ticks / (pitticks / PIT_HZ) = apic_ticks_per_s
1315 		 * (apic_ticks * PIT_HZ) / pitticks = apic_ticks_per_s
1316 		 * apic_ticks_per_ns = (apic_ticks * PIT_HZ) / (pitticks * 10^9)
1317 		 * pic_ticks_per_SFns =
1318 		 *   (SF * apic_ticks * PIT_HZ) / (pitticks * 10^9)
1319 		 */
1320 		apic_ticks_per_SFnsecs =
1321 		    ((SF * apic_ticks * PIT_HZ) /
1322 		    ((uint64_t)pit_ticks * NANOSEC));
1323 
1324 		/* the interval timer initial count is 32 bit max */
1325 		apic_nsec_max = APIC_TICKS_TO_NSECS(APIC_MAXVAL);
1326 		firsttime = 0;
1327 	}
1328 
1329 	if (hertz != 0) {
1330 		/* periodic */
1331 		apic_nsec_per_intr = NANOSEC / hertz;
1332 		apic_hertz_count = APIC_NSECS_TO_TICKS(apic_nsec_per_intr);
1333 	}
1334 
1335 	apic_int_busy_mark = (apic_int_busy_mark *
1336 	    apic_sample_factor_redistribution) / 100;
1337 	apic_int_free_mark = (apic_int_free_mark *
1338 	    apic_sample_factor_redistribution) / 100;
1339 	apic_diff_for_redistribution = (apic_diff_for_redistribution *
1340 	    apic_sample_factor_redistribution) / 100;
1341 
1342 	if (hertz == 0) {
1343 		/* requested one_shot */
1344 		if (!tsc_gethrtime_enable || !apic_oneshot_enable)
1345 			return (0);
1346 		apic_oneshot = 1;
1347 		ret = (int)APIC_TICKS_TO_NSECS(1);
1348 	} else {
1349 		/* program the local APIC to interrupt at the given frequency */
1350 		apicadr[APIC_INIT_COUNT] = apic_hertz_count;
1351 		apicadr[APIC_LOCAL_TIMER] =
1352 		    (apic_clkvect + APIC_BASE_VECT) | AV_TIME;
1353 		apic_oneshot = 0;
1354 		ret = NANOSEC / hertz;
1355 	}
1356 
1357 	return (ret);
1358 
1359 }
1360 
1361 /*
1362  * apic_preshutdown:
1363  * Called early in shutdown whilst we can still access filesystems to do
1364  * things like loading modules which will be required to complete shutdown
1365  * after filesystems are all unmounted.
1366  */
1367 static void
1368 apic_preshutdown(int cmd, int fcn)
1369 {
1370 	APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n",
1371 	    cmd, fcn, apic_poweroff_method, apic_enable_acpi));
1372 
1373 }
1374 
1375 static void
1376 apic_shutdown(int cmd, int fcn)
1377 {
1378 	int restarts, attempts;
1379 	int i;
1380 	uchar_t	byte;
1381 	ulong_t iflag;
1382 
1383 	/* Send NMI to all CPUs except self to do per processor shutdown */
1384 	iflag = intr_clear();
1385 	while (get_apic_cmd1() & AV_PENDING)
1386 		apic_ret();
1387 	apic_shutdown_processors = 1;
1388 	apicadr[APIC_INT_CMD1] = AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF;
1389 
1390 	/* restore cmos shutdown byte before reboot */
1391 	if (apic_cmos_ssb_set) {
1392 		outb(CMOS_ADDR, SSB);
1393 		outb(CMOS_DATA, 0);
1394 	}
1395 
1396 	ioapic_disable_redirection();
1397 
1398 	/*	disable apic mode if imcr present	*/
1399 	if (apic_imcrp) {
1400 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
1401 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC);
1402 	}
1403 
1404 	apic_disable_local_apic();
1405 
1406 	intr_restore(iflag);
1407 
1408 	/* remainder of function is for shutdown cases only */
1409 	if (cmd != A_SHUTDOWN)
1410 		return;
1411 
1412 	/*
1413 	 * Switch system back into Legacy-Mode if using ACPI and
1414 	 * not powering-off.  Some BIOSes need to remain in ACPI-mode
1415 	 * for power-off to succeed (Dell Dimension 4600)
1416 	 */
1417 	if (apic_enable_acpi && (fcn != AD_POWEROFF))
1418 		(void) AcpiDisable();
1419 
1420 	/* remainder of function is for shutdown+poweroff case only */
1421 	if (fcn != AD_POWEROFF)
1422 		return;
1423 
1424 	switch (apic_poweroff_method) {
1425 		case APIC_POWEROFF_VIA_RTC:
1426 
1427 			/* select the extended NVRAM bank in the RTC */
1428 			outb(CMOS_ADDR, RTC_REGA);
1429 			byte = inb(CMOS_DATA);
1430 			outb(CMOS_DATA, (byte | EXT_BANK));
1431 
1432 			outb(CMOS_ADDR, PFR_REG);
1433 
1434 			/* for Predator must toggle the PAB bit */
1435 			byte = inb(CMOS_DATA);
1436 
1437 			/*
1438 			 * clear power active bar, wakeup alarm and
1439 			 * kickstart
1440 			 */
1441 			byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG);
1442 			outb(CMOS_DATA, byte);
1443 
1444 			/* delay before next write */
1445 			drv_usecwait(1000);
1446 
1447 			/* for S40 the following would suffice */
1448 			byte = inb(CMOS_DATA);
1449 
1450 			/* power active bar control bit */
1451 			byte |= PAB_CBIT;
1452 			outb(CMOS_DATA, byte);
1453 
1454 			break;
1455 
1456 		case APIC_POWEROFF_VIA_ASPEN_BMC:
1457 			restarts = 0;
1458 restart_aspen_bmc:
1459 			if (++restarts == 3)
1460 				break;
1461 			attempts = 0;
1462 			do {
1463 				byte = inb(MISMIC_FLAG_REGISTER);
1464 				byte &= MISMIC_BUSY_MASK;
1465 				if (byte != 0) {
1466 					drv_usecwait(1000);
1467 					if (attempts >= 3)
1468 						goto restart_aspen_bmc;
1469 					++attempts;
1470 				}
1471 			} while (byte != 0);
1472 			outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS);
1473 			byte = inb(MISMIC_FLAG_REGISTER);
1474 			byte |= 0x1;
1475 			outb(MISMIC_FLAG_REGISTER, byte);
1476 			i = 0;
1477 			for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0]));
1478 			    i++) {
1479 				attempts = 0;
1480 				do {
1481 					byte = inb(MISMIC_FLAG_REGISTER);
1482 					byte &= MISMIC_BUSY_MASK;
1483 					if (byte != 0) {
1484 						drv_usecwait(1000);
1485 						if (attempts >= 3)
1486 							goto restart_aspen_bmc;
1487 						++attempts;
1488 					}
1489 				} while (byte != 0);
1490 				outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl);
1491 				outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data);
1492 				byte = inb(MISMIC_FLAG_REGISTER);
1493 				byte |= 0x1;
1494 				outb(MISMIC_FLAG_REGISTER, byte);
1495 			}
1496 			break;
1497 
1498 		case APIC_POWEROFF_VIA_SITKA_BMC:
1499 			restarts = 0;
1500 restart_sitka_bmc:
1501 			if (++restarts == 3)
1502 				break;
1503 			attempts = 0;
1504 			do {
1505 				byte = inb(SMS_STATUS_REGISTER);
1506 				byte &= SMS_STATE_MASK;
1507 				if ((byte == SMS_READ_STATE) ||
1508 				    (byte == SMS_WRITE_STATE)) {
1509 					drv_usecwait(1000);
1510 					if (attempts >= 3)
1511 						goto restart_sitka_bmc;
1512 					++attempts;
1513 				}
1514 			} while ((byte == SMS_READ_STATE) ||
1515 			    (byte == SMS_WRITE_STATE));
1516 			outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS);
1517 			i = 0;
1518 			for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0]));
1519 			    i++) {
1520 				attempts = 0;
1521 				do {
1522 					byte = inb(SMS_STATUS_REGISTER);
1523 					byte &= SMS_IBF_MASK;
1524 					if (byte != 0) {
1525 						drv_usecwait(1000);
1526 						if (attempts >= 3)
1527 							goto restart_sitka_bmc;
1528 						++attempts;
1529 					}
1530 				} while (byte != 0);
1531 				outb(sitka_bmc[i].port, sitka_bmc[i].data);
1532 			}
1533 			break;
1534 
1535 		case APIC_POWEROFF_NONE:
1536 
1537 			/* If no APIC direct method, we will try using ACPI */
1538 			if (apic_enable_acpi) {
1539 				if (acpi_poweroff() == 1)
1540 					return;
1541 			} else
1542 				return;
1543 
1544 			break;
1545 	}
1546 	/*
1547 	 * Wait a limited time here for power to go off.
1548 	 * If the power does not go off, then there was a
1549 	 * problem and we should continue to the halt which
1550 	 * prints a message for the user to press a key to
1551 	 * reboot.
1552 	 */
1553 	drv_usecwait(7000000); /* wait seven seconds */
1554 
1555 }
1556 
1557 /*
1558  * Try and disable all interrupts. We just assign interrupts to other
1559  * processors based on policy. If any were bound by user request, we
1560  * let them continue and return failure. We do not bother to check
1561  * for cache affinity while rebinding.
1562  */
1563 
1564 static int
1565 apic_disable_intr(processorid_t cpun)
1566 {
1567 	int bind_cpu = 0, i, hardbound = 0;
1568 	apic_irq_t *irq_ptr;
1569 	ulong_t iflag;
1570 
1571 	iflag = intr_clear();
1572 	lock_set(&apic_ioapic_lock);
1573 
1574 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
1575 		if (apic_reprogram_info[i].done == B_FALSE) {
1576 			if (apic_reprogram_info[i].bindcpu == cpun) {
1577 				/*
1578 				 * CPU is busy -- it's the target of
1579 				 * a pending reprogramming attempt
1580 				 */
1581 				lock_clear(&apic_ioapic_lock);
1582 				intr_restore(iflag);
1583 				return (PSM_FAILURE);
1584 			}
1585 		}
1586 	}
1587 
1588 	apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
1589 
1590 	apic_cpus[cpun].aci_curipl = 0;
1591 
1592 	i = apic_min_device_irq;
1593 	for (; i <= apic_max_device_irq; i++) {
1594 		/*
1595 		 * If there are bound interrupts on this cpu, then
1596 		 * rebind them to other processors.
1597 		 */
1598 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
1599 			ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
1600 			    (irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
1601 			    ((irq_ptr->airq_temp_cpu & ~IRQ_USER_BOUND) <
1602 			    apic_nproc));
1603 
1604 			if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
1605 				hardbound = 1;
1606 				continue;
1607 			}
1608 
1609 			if (irq_ptr->airq_temp_cpu == cpun) {
1610 				do {
1611 					bind_cpu = apic_next_bind_cpu++;
1612 					if (bind_cpu >= apic_nproc) {
1613 						apic_next_bind_cpu = 1;
1614 						bind_cpu = 0;
1615 
1616 					}
1617 				} while (apic_rebind_all(irq_ptr, bind_cpu));
1618 			}
1619 		}
1620 	}
1621 
1622 	lock_clear(&apic_ioapic_lock);
1623 	intr_restore(iflag);
1624 
1625 	if (hardbound) {
1626 		cmn_err(CE_WARN, "Could not disable interrupts on %d"
1627 		    "due to user bound interrupts", cpun);
1628 		return (PSM_FAILURE);
1629 	}
1630 	else
1631 		return (PSM_SUCCESS);
1632 }
1633 
1634 static void
1635 apic_enable_intr(processorid_t cpun)
1636 {
1637 	int	i;
1638 	apic_irq_t *irq_ptr;
1639 	ulong_t iflag;
1640 
1641 	iflag = intr_clear();
1642 	lock_set(&apic_ioapic_lock);
1643 
1644 	apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
1645 
1646 	i = apic_min_device_irq;
1647 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
1648 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
1649 			if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
1650 				(void) apic_rebind_all(irq_ptr,
1651 				    irq_ptr->airq_cpu);
1652 			}
1653 		}
1654 	}
1655 
1656 	lock_clear(&apic_ioapic_lock);
1657 	intr_restore(iflag);
1658 }
1659 
1660 
1661 /*
1662  * This function will reprogram the timer.
1663  *
1664  * When in oneshot mode the argument is the absolute time in future to
1665  * generate the interrupt at.
1666  *
1667  * When in periodic mode, the argument is the interval at which the
1668  * interrupts should be generated. There is no need to support the periodic
1669  * mode timer change at this time.
1670  */
1671 static void
1672 apic_timer_reprogram(hrtime_t time)
1673 {
1674 	hrtime_t now;
1675 	uint_t ticks;
1676 	int64_t delta;
1677 
1678 	/*
1679 	 * We should be called from high PIL context (CBE_HIGH_PIL),
1680 	 * so kpreempt is disabled.
1681 	 */
1682 
1683 	if (!apic_oneshot) {
1684 		/* time is the interval for periodic mode */
1685 		ticks = APIC_NSECS_TO_TICKS(time);
1686 	} else {
1687 		/* one shot mode */
1688 
1689 		now = gethrtime();
1690 		delta = time - now;
1691 
1692 		if (delta <= 0) {
1693 			/*
1694 			 * requested to generate an interrupt in the past
1695 			 * generate an interrupt as soon as possible
1696 			 */
1697 			ticks = apic_min_timer_ticks;
1698 		} else if (delta > apic_nsec_max) {
1699 			/*
1700 			 * requested to generate an interrupt at a time
1701 			 * further than what we are capable of. Set to max
1702 			 * the hardware can handle
1703 			 */
1704 
1705 			ticks = APIC_MAXVAL;
1706 #ifdef DEBUG
1707 			cmn_err(CE_CONT, "apic_timer_reprogram, request at"
1708 			    "  %lld  too far in future, current time"
1709 			    "  %lld \n", time, now);
1710 #endif
1711 		} else
1712 			ticks = APIC_NSECS_TO_TICKS(delta);
1713 	}
1714 
1715 	if (ticks < apic_min_timer_ticks)
1716 		ticks = apic_min_timer_ticks;
1717 
1718 	apicadr[APIC_INIT_COUNT] = ticks;
1719 
1720 }
1721 
1722 /*
1723  * This function will enable timer interrupts.
1724  */
1725 static void
1726 apic_timer_enable(void)
1727 {
1728 	/*
1729 	 * We should be Called from high PIL context (CBE_HIGH_PIL),
1730 	 * so kpreempt is disabled.
1731 	 */
1732 
1733 	if (!apic_oneshot)
1734 		apicadr[APIC_LOCAL_TIMER] =
1735 		    (apic_clkvect + APIC_BASE_VECT) | AV_TIME;
1736 	else {
1737 		/* one shot */
1738 		apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT);
1739 	}
1740 }
1741 
1742 /*
1743  * This function will disable timer interrupts.
1744  */
1745 static void
1746 apic_timer_disable(void)
1747 {
1748 	/*
1749 	 * We should be Called from high PIL context (CBE_HIGH_PIL),
1750 	 * so kpreempt is disabled.
1751 	 */
1752 
1753 	apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT) | AV_MASK;
1754 }
1755 
1756 
1757 cyclic_id_t apic_cyclic_id;
1758 
1759 /*
1760  * If this module needs to be a consumer of cyclic subsystem, they
1761  * can be added here, since at this time kernel cyclic subsystem is initialized
1762  * argument is not currently used, and is reserved for future.
1763  */
1764 static void
1765 apic_post_cyclic_setup(void *arg)
1766 {
1767 _NOTE(ARGUNUSED(arg))
1768 	cyc_handler_t hdlr;
1769 	cyc_time_t when;
1770 
1771 	/* cpu_lock is held */
1772 
1773 	/* set up cyclics for intr redistribution */
1774 
1775 	/*
1776 	 * In peridoc mode intr redistribution processing is done in
1777 	 * apic_intr_enter during clk intr processing
1778 	 */
1779 	if (!apic_oneshot)
1780 		return;
1781 
1782 	hdlr.cyh_level = CY_LOW_LEVEL;
1783 	hdlr.cyh_func = (cyc_func_t)apic_redistribute_compute;
1784 	hdlr.cyh_arg = NULL;
1785 
1786 	when.cyt_when = 0;
1787 	when.cyt_interval = apic_redistribute_sample_interval;
1788 	apic_cyclic_id = cyclic_add(&hdlr, &when);
1789 
1790 
1791 }
1792 
1793 static void
1794 apic_redistribute_compute(void)
1795 {
1796 	int	i, j, max_busy;
1797 
1798 	if (apic_enable_dynamic_migration) {
1799 		if (++apic_nticks == apic_sample_factor_redistribution) {
1800 			/*
1801 			 * Time to call apic_intr_redistribute().
1802 			 * reset apic_nticks. This will cause max_busy
1803 			 * to be calculated below and if it is more than
1804 			 * apic_int_busy, we will do the whole thing
1805 			 */
1806 			apic_nticks = 0;
1807 		}
1808 		max_busy = 0;
1809 		for (i = 0; i < apic_nproc; i++) {
1810 
1811 			/*
1812 			 * Check if curipl is non zero & if ISR is in
1813 			 * progress
1814 			 */
1815 			if (((j = apic_cpus[i].aci_curipl) != 0) &&
1816 			    (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
1817 
1818 				int	irq;
1819 				apic_cpus[i].aci_busy++;
1820 				irq = apic_cpus[i].aci_current[j];
1821 				apic_irq_table[irq]->airq_busy++;
1822 			}
1823 
1824 			if (!apic_nticks &&
1825 			    (apic_cpus[i].aci_busy > max_busy))
1826 				max_busy = apic_cpus[i].aci_busy;
1827 		}
1828 		if (!apic_nticks) {
1829 			if (max_busy > apic_int_busy_mark) {
1830 			/*
1831 			 * We could make the following check be
1832 			 * skipped > 1 in which case, we get a
1833 			 * redistribution at half the busy mark (due to
1834 			 * double interval). Need to be able to collect
1835 			 * more empirical data to decide if that is a
1836 			 * good strategy. Punt for now.
1837 			 */
1838 				if (apic_skipped_redistribute) {
1839 					apic_cleanup_busy();
1840 					apic_skipped_redistribute = 0;
1841 				} else {
1842 					apic_intr_redistribute();
1843 				}
1844 			} else
1845 				apic_skipped_redistribute++;
1846 		}
1847 	}
1848 }
1849 
1850 
1851 /*
1852  * The following functions are in the platform specific file so that they
1853  * can be different functions depending on whether we are running on
1854  * bare metal or a hypervisor.
1855  */
1856 
1857 /*
1858  * map an apic for memory-mapped access
1859  */
1860 uint32_t *
1861 mapin_apic(uint32_t addr, size_t len, int flags)
1862 {
1863 	/*LINTED: pointer cast may result in improper alignment */
1864 	return ((uint32_t *)psm_map_phys(addr, len, flags));
1865 }
1866 
1867 uint32_t *
1868 mapin_ioapic(uint32_t addr, size_t len, int flags)
1869 {
1870 	return (mapin_apic(addr, len, flags));
1871 }
1872 
1873 /*
1874  * unmap an apic
1875  */
1876 void
1877 mapout_apic(caddr_t addr, size_t len)
1878 {
1879 	psm_unmap_phys(addr, len);
1880 }
1881 
1882 void
1883 mapout_ioapic(caddr_t addr, size_t len)
1884 {
1885 	mapout_apic(addr, len);
1886 }
1887 
1888 /*
1889  * Check to make sure there are enough irq slots
1890  */
1891 int
1892 apic_check_free_irqs(int count)
1893 {
1894 	int i, avail;
1895 
1896 	avail = 0;
1897 	for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
1898 		if ((apic_irq_table[i] == NULL) ||
1899 		    apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) {
1900 			if (++avail >= count)
1901 				return (PSM_SUCCESS);
1902 		}
1903 	}
1904 	return (PSM_FAILURE);
1905 }
1906 
1907 /*
1908  * This function allocates "count" MSI vector(s) for the given "dip/pri/type"
1909  */
1910 int
1911 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
1912     int behavior)
1913 {
1914 	int	rcount, i;
1915 	uchar_t	start, irqno, cpu;
1916 	major_t	major;
1917 	apic_irq_t	*irqptr;
1918 
1919 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
1920 	    "inum=0x%x  pri=0x%x count=0x%x behavior=%d\n",
1921 	    (void *)dip, inum, pri, count, behavior));
1922 
1923 	if (count > 1) {
1924 		if (behavior == DDI_INTR_ALLOC_STRICT &&
1925 		    (apic_multi_msi_enable == 0 || count > apic_multi_msi_max))
1926 			return (0);
1927 
1928 		if (apic_multi_msi_enable == 0)
1929 			count = 1;
1930 		else if (count > apic_multi_msi_max)
1931 			count = apic_multi_msi_max;
1932 	}
1933 
1934 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1935 		rcount = count;
1936 	else if (rcount == 0 || (rcount < count &&
1937 	    behavior == DDI_INTR_ALLOC_STRICT))
1938 		return (0);
1939 
1940 	/* if not ISP2, then round it down */
1941 	if (!ISP2(rcount))
1942 		rcount = 1 << (highbit(rcount) - 1);
1943 
1944 	mutex_enter(&airq_mutex);
1945 
1946 	for (start = 0; rcount > 0; rcount >>= 1) {
1947 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
1948 		    behavior == DDI_INTR_ALLOC_STRICT)
1949 			break;
1950 	}
1951 
1952 	if (start == 0) {
1953 		/* no vector available */
1954 		mutex_exit(&airq_mutex);
1955 		return (0);
1956 	}
1957 
1958 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1959 		/* not enough free irq slots available */
1960 		mutex_exit(&airq_mutex);
1961 		return (0);
1962 	}
1963 
1964 	major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0;
1965 	for (i = 0; i < rcount; i++) {
1966 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1967 		    (uchar_t)-1) {
1968 			/*
1969 			 * shouldn't happen because of the
1970 			 * apic_check_free_irqs() check earlier
1971 			 */
1972 			mutex_exit(&airq_mutex);
1973 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1974 			    "apic_allocate_irq failed\n"));
1975 			return (i);
1976 		}
1977 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1978 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1979 		irqptr = apic_irq_table[irqno];
1980 #ifdef	DEBUG
1981 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
1982 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1983 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
1984 #endif
1985 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
1986 
1987 		irqptr->airq_vector = (uchar_t)(start + i);
1988 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
1989 		irqptr->airq_intin_no = (uchar_t)rcount;
1990 		irqptr->airq_ipl = pri;
1991 		irqptr->airq_vector = start + i;
1992 		irqptr->airq_origirq = (uchar_t)(inum + i);
1993 		irqptr->airq_share_id = 0;
1994 		irqptr->airq_mps_intr_index = MSI_INDEX;
1995 		irqptr->airq_dip = dip;
1996 		irqptr->airq_major = major;
1997 		if (i == 0) /* they all bound to the same cpu */
1998 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
1999 			    0xff, 0xff);
2000 		else
2001 			irqptr->airq_cpu = cpu;
2002 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
2003 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
2004 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
2005 		    irqptr->airq_origirq, pri));
2006 	}
2007 	mutex_exit(&airq_mutex);
2008 	return (rcount);
2009 }
2010 
2011 /*
2012  * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
2013  */
2014 int
2015 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
2016     int behavior)
2017 {
2018 	int	rcount, i;
2019 	major_t	major;
2020 
2021 	if (count > 1) {
2022 		if (behavior == DDI_INTR_ALLOC_STRICT) {
2023 			if (count > apic_msix_max)
2024 				return (0);
2025 		} else if (count > apic_msix_max)
2026 			count = apic_msix_max;
2027 	}
2028 
2029 	mutex_enter(&airq_mutex);
2030 
2031 	if ((rcount = apic_navail_vector(dip, pri)) > count)
2032 		rcount = count;
2033 	else if (rcount == 0 || (rcount < count &&
2034 	    behavior == DDI_INTR_ALLOC_STRICT)) {
2035 		rcount = 0;
2036 		goto out;
2037 	}
2038 
2039 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
2040 		/* not enough free irq slots available */
2041 		rcount = 0;
2042 		goto out;
2043 	}
2044 
2045 	major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0;
2046 	for (i = 0; i < rcount; i++) {
2047 		uchar_t	vector, irqno;
2048 		apic_irq_t	*irqptr;
2049 
2050 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
2051 		    (uchar_t)-1) {
2052 			/*
2053 			 * shouldn't happen because of the
2054 			 * apic_check_free_irqs() check earlier
2055 			 */
2056 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
2057 			    "apic_allocate_irq failed\n"));
2058 			rcount = i;
2059 			goto out;
2060 		}
2061 		if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) {
2062 			/*
2063 			 * shouldn't happen because of the
2064 			 * apic_navail_vector() call earlier
2065 			 */
2066 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
2067 			    "apic_allocate_vector failed\n"));
2068 			rcount = i;
2069 			goto out;
2070 		}
2071 		apic_max_device_irq = max(irqno, apic_max_device_irq);
2072 		apic_min_device_irq = min(irqno, apic_min_device_irq);
2073 		irqptr = apic_irq_table[irqno];
2074 		irqptr->airq_vector = (uchar_t)vector;
2075 		irqptr->airq_ipl = pri;
2076 		irqptr->airq_origirq = (uchar_t)(inum + i);
2077 		irqptr->airq_share_id = 0;
2078 		irqptr->airq_mps_intr_index = MSIX_INDEX;
2079 		irqptr->airq_dip = dip;
2080 		irqptr->airq_major = major;
2081 		irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff);
2082 	}
2083 out:
2084 	mutex_exit(&airq_mutex);
2085 	return (rcount);
2086 }
2087 
2088 /*
2089  * Allocate a free vector for irq at ipl. Takes care of merging of multiple
2090  * IPLs into a single APIC level as well as stretching some IPLs onto multiple
2091  * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
2092  * requests and allocated only when pri is set.
2093  */
2094 uchar_t
2095 apic_allocate_vector(int ipl, int irq, int pri)
2096 {
2097 	int	lowest, highest, i;
2098 
2099 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
2100 	lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
2101 
2102 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
2103 		lowest -= APIC_VECTOR_PER_IPL;
2104 
2105 #ifdef	DEBUG
2106 	if (apic_restrict_vector)	/* for testing shared interrupt logic */
2107 		highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
2108 #endif /* DEBUG */
2109 	if (pri == 0)
2110 		highest -= APIC_HI_PRI_VECTS;
2111 
2112 	for (i = lowest; i < highest; i++) {
2113 		if (APIC_CHECK_RESERVE_VECTORS(i))
2114 			continue;
2115 		if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
2116 			apic_vector_to_irq[i] = (uchar_t)irq;
2117 			return (i);
2118 		}
2119 	}
2120 
2121 	return (0);
2122 }
2123 
2124 /* Mark vector as not being used by any irq */
2125 void
2126 apic_free_vector(uchar_t vector)
2127 {
2128 	apic_vector_to_irq[vector] = APIC_RESV_IRQ;
2129 }
2130 
2131 uint32_t
2132 ioapic_read(int ioapic_ix, uint32_t reg)
2133 {
2134 	volatile uint32_t *ioapic;
2135 
2136 	ioapic = apicioadr[ioapic_ix];
2137 	ioapic[APIC_IO_REG] = reg;
2138 	return (ioapic[APIC_IO_DATA]);
2139 }
2140 
2141 void
2142 ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value)
2143 {
2144 	volatile uint32_t *ioapic;
2145 
2146 	ioapic = apicioadr[ioapic_ix];
2147 	ioapic[APIC_IO_REG] = reg;
2148 	ioapic[APIC_IO_DATA] = value;
2149 }
2150 
2151 static processorid_t
2152 apic_find_cpu(int flag)
2153 {
2154 	processorid_t acid = 0;
2155 	int i;
2156 
2157 	/* Find the first CPU with the passed-in flag set */
2158 	for (i = 0; i < apic_nproc; i++) {
2159 		if (apic_cpus[i].aci_status & flag) {
2160 			acid = i;
2161 			break;
2162 		}
2163 	}
2164 
2165 	ASSERT((apic_cpus[acid].aci_status & flag) != 0);
2166 	return (acid);
2167 }
2168 
2169 /*
2170  * Call rebind to do the actual programming.
2171  * Must be called with interrupts disabled and apic_ioapic_lock held
2172  * 'p' is polymorphic -- if this function is called to process a deferred
2173  * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
2174  * the irq pointer is retrieved.  If not doing deferred reprogramming,
2175  * p is of the type 'apic_irq_t *'.
2176  *
2177  * apic_ioapic_lock must be held across this call, as it protects apic_rebind
2178  * and it protects apic_find_cpu() from a race in which a CPU can be taken
2179  * offline after a cpu is selected, but before apic_rebind is called to
2180  * bind interrupts to it.
2181  */
2182 int
2183 apic_setup_io_intr(void *p, int irq, boolean_t deferred)
2184 {
2185 	apic_irq_t *irqptr;
2186 	struct ioapic_reprogram_data *drep = NULL;
2187 	int rv;
2188 
2189 	if (deferred) {
2190 		drep = (struct ioapic_reprogram_data *)p;
2191 		ASSERT(drep != NULL);
2192 		irqptr = drep->irqp;
2193 	} else
2194 		irqptr = (apic_irq_t *)p;
2195 
2196 	ASSERT(irqptr != NULL);
2197 
2198 	rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
2199 	if (rv) {
2200 		/*
2201 		 * CPU is not up or interrupts are disabled. Fall back to
2202 		 * the first available CPU
2203 		 */
2204 		rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
2205 		    drep);
2206 	}
2207 
2208 	return (rv);
2209 }
2210 
2211 
2212 uchar_t
2213 apic_modify_vector(uchar_t vector, int irq)
2214 {
2215 	apic_vector_to_irq[vector] = (uchar_t)irq;
2216 	return (vector);
2217 }
2218 
2219 char *
2220 apic_get_apic_type()
2221 {
2222 	return (apic_psm_info.p_mach_idstring);
2223 }
2224