1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 31 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 32 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 33 * PSMI 1.5 extensions are supported in Solaris Nevada. 34 */ 35 #define PSMI_1_5 36 37 #include <sys/processor.h> 38 #include <sys/time.h> 39 #include <sys/psm.h> 40 #include <sys/smp_impldefs.h> 41 #include <sys/cram.h> 42 #include <sys/acpi/acpi.h> 43 #include <sys/acpica.h> 44 #include <sys/psm_common.h> 45 #include <sys/apic.h> 46 #include <sys/pit.h> 47 #include <sys/ddi.h> 48 #include <sys/sunddi.h> 49 #include <sys/ddi_impldefs.h> 50 #include <sys/pci.h> 51 #include <sys/promif.h> 52 #include <sys/x86_archext.h> 53 #include <sys/cpc_impl.h> 54 #include <sys/uadmin.h> 55 #include <sys/panic.h> 56 #include <sys/debug.h> 57 #include <sys/archsystm.h> 58 #include <sys/trap.h> 59 #include <sys/machsystm.h> 60 #include <sys/sysmacros.h> 61 #include <sys/cpuvar.h> 62 #include <sys/rm_platter.h> 63 #include <sys/privregs.h> 64 #include <sys/cyclic.h> 65 #include <sys/note.h> 66 #include <sys/pci_intr_lib.h> 67 #include <sys/spl.h> 68 69 /* 70 * Local Function Prototypes 71 */ 72 static void apic_init_intr(); 73 static void apic_ret(); 74 static int get_apic_cmd1(); 75 static int get_apic_pri(); 76 static void apic_nmi_intr(caddr_t arg); 77 78 /* 79 * standard MP entries 80 */ 81 static int apic_probe(); 82 static int apic_clkinit(); 83 static int apic_getclkirq(int ipl); 84 static uint_t apic_calibrate(volatile uint32_t *addr, 85 uint16_t *pit_ticks_adj); 86 static hrtime_t apic_gettime(); 87 static hrtime_t apic_gethrtime(); 88 static void apic_init(); 89 static void apic_picinit(void); 90 static int apic_cpu_start(processorid_t, caddr_t); 91 static int apic_post_cpu_start(void); 92 static void apic_send_ipi(int cpun, int ipl); 93 static void apic_set_idlecpu(processorid_t cpun); 94 static void apic_unset_idlecpu(processorid_t cpun); 95 static int apic_intr_enter(int ipl, int *vect); 96 static void apic_setspl(int ipl); 97 static int apic_addspl(int ipl, int vector, int min_ipl, int max_ipl); 98 static int apic_delspl(int ipl, int vector, int min_ipl, int max_ipl); 99 static void apic_shutdown(int cmd, int fcn); 100 static void apic_preshutdown(int cmd, int fcn); 101 static int apic_disable_intr(processorid_t cpun); 102 static void apic_enable_intr(processorid_t cpun); 103 static processorid_t apic_get_next_processorid(processorid_t cpun); 104 static int apic_get_ipivect(int ipl, int type); 105 static void apic_timer_reprogram(hrtime_t time); 106 static void apic_timer_enable(void); 107 static void apic_timer_disable(void); 108 static void apic_post_cyclic_setup(void *arg); 109 110 static int apic_oneshot = 0; 111 int apic_oneshot_enable = 1; /* to allow disabling one-shot capability */ 112 113 /* Now the ones for Dynamic Interrupt distribution */ 114 int apic_enable_dynamic_migration = 0; 115 116 117 /* 118 * These variables are frequently accessed in apic_intr_enter(), 119 * apic_intr_exit and apic_setspl, so group them together 120 */ 121 volatile uint32_t *apicadr = NULL; /* virtual addr of local APIC */ 122 int apic_setspl_delay = 1; /* apic_setspl - delay enable */ 123 int apic_clkvect; 124 125 /* vector at which error interrupts come in */ 126 int apic_errvect; 127 int apic_enable_error_intr = 1; 128 int apic_error_display_delay = 100; 129 130 /* vector at which performance counter overflow interrupts come in */ 131 int apic_cpcovf_vect; 132 int apic_enable_cpcovf_intr = 1; 133 134 /* 135 * The following vector assignments influence the value of ipltopri and 136 * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program 137 * idle to 0 and IPL 0 to 0xf to differentiate idle in case 138 * we care to do so in future. Note some IPLs which are rarely used 139 * will share the vector ranges and heavily used IPLs (5 and 6) have 140 * a wide range. 141 * 142 * This array is used to initialize apic_ipls[] (in apic_init()). 143 * 144 * IPL Vector range. as passed to intr_enter 145 * 0 none. 146 * 1,2,3 0x20-0x2f 0x0-0xf 147 * 4 0x30-0x3f 0x10-0x1f 148 * 5 0x40-0x5f 0x20-0x3f 149 * 6 0x60-0x7f 0x40-0x5f 150 * 7,8,9 0x80-0x8f 0x60-0x6f 151 * 10 0x90-0x9f 0x70-0x7f 152 * 11 0xa0-0xaf 0x80-0x8f 153 * ... ... 154 * 15 0xe0-0xef 0xc0-0xcf 155 * 15 0xf0-0xff 0xd0-0xdf 156 */ 157 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = { 158 3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15 159 }; 160 /* 161 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4] 162 * NOTE that this is vector as passed into intr_enter which is 163 * programmed vector - 0x20 (APIC_BASE_VECT) 164 */ 165 166 uchar_t apic_ipltopri[MAXIPL + 1]; /* unix ipl to apic pri */ 167 /* The taskpri to be programmed into apic to mask given ipl */ 168 169 #if defined(__amd64) 170 uchar_t apic_cr8pri[MAXIPL + 1]; /* unix ipl to cr8 pri */ 171 #endif 172 173 /* 174 * Correlation of the hardware vector to the IPL in use, initialized 175 * from apic_vectortoipl[] in apic_init(). The final IPLs may not correlate 176 * to the IPLs in apic_vectortoipl on some systems that share interrupt lines 177 * connected to errata-stricken IOAPICs 178 */ 179 uchar_t apic_ipls[APIC_AVAIL_VECTOR]; 180 181 /* 182 * Patchable global variables. 183 */ 184 int apic_forceload = 0; 185 186 int apic_coarse_hrtime = 1; /* 0 - use accurate slow gethrtime() */ 187 /* 1 - use gettime() for performance */ 188 int apic_flat_model = 0; /* 0 - clustered. 1 - flat */ 189 int apic_enable_hwsoftint = 0; /* 0 - disable, 1 - enable */ 190 int apic_enable_bind_log = 1; /* 1 - display interrupt binding log */ 191 int apic_panic_on_nmi = 0; 192 int apic_panic_on_apic_error = 0; 193 194 int apic_verbose = 0; 195 196 /* minimum number of timer ticks to program to */ 197 int apic_min_timer_ticks = 1; 198 /* 199 * Local static data 200 */ 201 static struct psm_ops apic_ops = { 202 apic_probe, 203 204 apic_init, 205 apic_picinit, 206 apic_intr_enter, 207 apic_intr_exit, 208 apic_setspl, 209 apic_addspl, 210 apic_delspl, 211 apic_disable_intr, 212 apic_enable_intr, 213 (int (*)(int))NULL, /* psm_softlvl_to_irq */ 214 (void (*)(int))NULL, /* psm_set_softintr */ 215 216 apic_set_idlecpu, 217 apic_unset_idlecpu, 218 219 apic_clkinit, 220 apic_getclkirq, 221 (void (*)(void))NULL, /* psm_hrtimeinit */ 222 apic_gethrtime, 223 224 apic_get_next_processorid, 225 apic_cpu_start, 226 apic_post_cpu_start, 227 apic_shutdown, 228 apic_get_ipivect, 229 apic_send_ipi, 230 231 (int (*)(dev_info_t *, int))NULL, /* psm_translate_irq */ 232 (void (*)(int, char *))NULL, /* psm_notify_error */ 233 (void (*)(int))NULL, /* psm_notify_func */ 234 apic_timer_reprogram, 235 apic_timer_enable, 236 apic_timer_disable, 237 apic_post_cyclic_setup, 238 apic_preshutdown, 239 apic_intr_ops /* Advanced DDI Interrupt framework */ 240 }; 241 242 243 static struct psm_info apic_psm_info = { 244 PSM_INFO_VER01_5, /* version */ 245 PSM_OWN_EXCLUSIVE, /* ownership */ 246 (struct psm_ops *)&apic_ops, /* operation */ 247 APIC_PCPLUSMP_NAME, /* machine name */ 248 "pcplusmp v1.4 compatible %I%", 249 }; 250 251 static void *apic_hdlp; 252 253 #ifdef DEBUG 254 int apic_debug = 0; 255 int apic_restrict_vector = 0; 256 257 int apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE]; 258 int apic_debug_msgbufindex = 0; 259 260 #endif /* DEBUG */ 261 262 apic_cpus_info_t *apic_cpus; 263 264 cpuset_t apic_cpumask; 265 uint_t apic_flag; 266 267 /* Flag to indicate that we need to shut down all processors */ 268 static uint_t apic_shutdown_processors; 269 270 uint_t apic_nsec_per_intr = 0; 271 272 /* 273 * apic_let_idle_redistribute can have the following values: 274 * 0 - If clock decremented it from 1 to 0, clock has to call redistribute. 275 * apic_redistribute_lock prevents multiple idle cpus from redistributing 276 */ 277 int apic_num_idle_redistributions = 0; 278 static int apic_let_idle_redistribute = 0; 279 static uint_t apic_nticks = 0; 280 static uint_t apic_skipped_redistribute = 0; 281 282 /* to gather intr data and redistribute */ 283 static void apic_redistribute_compute(void); 284 285 static uint_t last_count_read = 0; 286 static lock_t apic_gethrtime_lock; 287 volatile int apic_hrtime_stamp = 0; 288 volatile hrtime_t apic_nsec_since_boot = 0; 289 static uint_t apic_hertz_count; 290 291 uint64_t apic_ticks_per_SFnsecs; /* # of ticks in SF nsecs */ 292 293 static hrtime_t apic_nsec_max; 294 295 static hrtime_t apic_last_hrtime = 0; 296 int apic_hrtime_error = 0; 297 int apic_remote_hrterr = 0; 298 int apic_num_nmis = 0; 299 int apic_apic_error = 0; 300 int apic_num_apic_errors = 0; 301 int apic_num_cksum_errors = 0; 302 303 int apic_error = 0; 304 static int apic_cmos_ssb_set = 0; 305 306 /* use to make sure only one cpu handles the nmi */ 307 static lock_t apic_nmi_lock; 308 /* use to make sure only one cpu handles the error interrupt */ 309 static lock_t apic_error_lock; 310 311 static struct { 312 uchar_t cntl; 313 uchar_t data; 314 } aspen_bmc[] = { 315 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ 316 { CC_SMS_WR_NEXT, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ 317 { CC_SMS_WR_NEXT, 0x84 }, /* DataByte 1: SMS/OS no log */ 318 { CC_SMS_WR_NEXT, 0x2 }, /* DataByte 2: Power Down */ 319 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 3: no pre-timeout */ 320 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 4: timer expir. */ 321 { CC_SMS_WR_NEXT, 0xa }, /* DataByte 5: init countdown */ 322 { CC_SMS_WR_END, 0x0 }, /* DataByte 6: init countdown */ 323 324 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ 325 { CC_SMS_WR_END, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ 326 }; 327 328 static struct { 329 int port; 330 uchar_t data; 331 } sitka_bmc[] = { 332 { SMS_COMMAND_REGISTER, SMS_WRITE_START }, 333 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ 334 { SMS_DATA_REGISTER, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ 335 { SMS_DATA_REGISTER, 0x84 }, /* DataByte 1: SMS/OS no log */ 336 { SMS_DATA_REGISTER, 0x2 }, /* DataByte 2: Power Down */ 337 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 3: no pre-timeout */ 338 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 4: timer expir. */ 339 { SMS_DATA_REGISTER, 0xa }, /* DataByte 5: init countdown */ 340 { SMS_COMMAND_REGISTER, SMS_WRITE_END }, 341 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 6: init countdown */ 342 343 { SMS_COMMAND_REGISTER, SMS_WRITE_START }, 344 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ 345 { SMS_COMMAND_REGISTER, SMS_WRITE_END }, 346 { SMS_DATA_REGISTER, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ 347 }; 348 349 /* Patchable global variables. */ 350 int apic_kmdb_on_nmi = 0; /* 0 - no, 1 - yes enter kmdb */ 351 uint32_t apic_divide_reg_init = 0; /* 0 - divide by 2 */ 352 353 /* 354 * This is the loadable module wrapper 355 */ 356 357 int 358 _init(void) 359 { 360 if (apic_coarse_hrtime) 361 apic_ops.psm_gethrtime = &apic_gettime; 362 return (psm_mod_init(&apic_hdlp, &apic_psm_info)); 363 } 364 365 int 366 _fini(void) 367 { 368 return (psm_mod_fini(&apic_hdlp, &apic_psm_info)); 369 } 370 371 int 372 _info(struct modinfo *modinfop) 373 { 374 return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop)); 375 } 376 377 378 static int 379 apic_probe() 380 { 381 return (apic_probe_common(apic_psm_info.p_mach_idstring)); 382 } 383 384 void 385 apic_init() 386 { 387 int i; 388 int j = 1; 389 390 apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */ 391 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { 392 if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) && 393 (apic_vectortoipl[i + 1] == apic_vectortoipl[i])) 394 /* get to highest vector at the same ipl */ 395 continue; 396 for (; j <= apic_vectortoipl[i]; j++) { 397 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + 398 APIC_BASE_VECT; 399 } 400 } 401 for (; j < MAXIPL + 1; j++) 402 /* fill up any empty ipltopri slots */ 403 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT; 404 apic_init_common(); 405 #if defined(__amd64) 406 /* 407 * Make cpu-specific interrupt info point to cr8pri vector 408 */ 409 for (i = 0; i <= MAXIPL; i++) 410 apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT; 411 CPU->cpu_pri_data = apic_cr8pri; 412 #endif /* __amd64 */ 413 } 414 415 /* 416 * handler for APIC Error interrupt. Just print a warning and continue 417 */ 418 static int 419 apic_error_intr() 420 { 421 uint_t error0, error1, error; 422 uint_t i; 423 424 /* 425 * We need to write before read as per 7.4.17 of system prog manual. 426 * We do both and or the results to be safe 427 */ 428 error0 = apicadr[APIC_ERROR_STATUS]; 429 apicadr[APIC_ERROR_STATUS] = 0; 430 error1 = apicadr[APIC_ERROR_STATUS]; 431 error = error0 | error1; 432 433 /* 434 * Clear the APIC error status (do this on all cpus that enter here) 435 * (two writes are required due to the semantics of accessing the 436 * error status register.) 437 */ 438 apicadr[APIC_ERROR_STATUS] = 0; 439 apicadr[APIC_ERROR_STATUS] = 0; 440 441 /* 442 * Prevent more than 1 CPU from handling error interrupt causing 443 * double printing (interleave of characters from multiple 444 * CPU's when using prom_printf) 445 */ 446 if (lock_try(&apic_error_lock) == 0) 447 return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); 448 if (error) { 449 #if DEBUG 450 if (apic_debug) 451 debug_enter("pcplusmp: APIC Error interrupt received"); 452 #endif /* DEBUG */ 453 if (apic_panic_on_apic_error) 454 cmn_err(CE_PANIC, 455 "APIC Error interrupt on CPU %d. Status = %x\n", 456 psm_get_cpu_id(), error); 457 else { 458 if ((error & ~APIC_CS_ERRORS) == 0) { 459 /* cksum error only */ 460 apic_error |= APIC_ERR_APIC_ERROR; 461 apic_apic_error |= error; 462 apic_num_apic_errors++; 463 apic_num_cksum_errors++; 464 } else { 465 /* 466 * prom_printf is the best shot we have of 467 * something which is problem free from 468 * high level/NMI type of interrupts 469 */ 470 prom_printf("APIC Error interrupt on CPU %d. " 471 "Status 0 = %x, Status 1 = %x\n", 472 psm_get_cpu_id(), error0, error1); 473 apic_error |= APIC_ERR_APIC_ERROR; 474 apic_apic_error |= error; 475 apic_num_apic_errors++; 476 for (i = 0; i < apic_error_display_delay; i++) { 477 tenmicrosec(); 478 } 479 /* 480 * provide more delay next time limited to 481 * roughly 1 clock tick time 482 */ 483 if (apic_error_display_delay < 500) 484 apic_error_display_delay *= 2; 485 } 486 } 487 lock_clear(&apic_error_lock); 488 return (DDI_INTR_CLAIMED); 489 } else { 490 lock_clear(&apic_error_lock); 491 return (DDI_INTR_UNCLAIMED); 492 } 493 /* NOTREACHED */ 494 } 495 496 /* 497 * Turn off the mask bit in the performance counter Local Vector Table entry. 498 */ 499 static void 500 apic_cpcovf_mask_clear(void) 501 { 502 apicadr[APIC_PCINT_VECT] &= ~APIC_LVT_MASK; 503 } 504 505 static void 506 apic_init_intr() 507 { 508 processorid_t cpun = psm_get_cpu_id(); 509 510 #if defined(__amd64) 511 setcr8((ulong_t)(APIC_MASK_ALL >> APIC_IPL_SHIFT)); 512 #else 513 apicadr[APIC_TASK_REG] = APIC_MASK_ALL; 514 #endif 515 516 if (apic_flat_model) 517 apicadr[APIC_FORMAT_REG] = APIC_FLAT_MODEL; 518 else 519 apicadr[APIC_FORMAT_REG] = APIC_CLUSTER_MODEL; 520 apicadr[APIC_DEST_REG] = AV_HIGH_ORDER >> cpun; 521 522 /* need to enable APIC before unmasking NMI */ 523 apicadr[APIC_SPUR_INT_REG] = AV_UNIT_ENABLE | APIC_SPUR_INTR; 524 525 apicadr[APIC_LOCAL_TIMER] = AV_MASK; 526 apicadr[APIC_INT_VECT0] = AV_MASK; /* local intr reg 0 */ 527 apicadr[APIC_INT_VECT1] = AV_NMI; /* enable NMI */ 528 529 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) 530 return; 531 532 /* Enable performance counter overflow interrupt */ 533 534 if ((x86_feature & X86_MSR) != X86_MSR) 535 apic_enable_cpcovf_intr = 0; 536 if (apic_enable_cpcovf_intr) { 537 if (apic_cpcovf_vect == 0) { 538 int ipl = APIC_PCINT_IPL; 539 int irq = apic_get_ipivect(ipl, -1); 540 541 ASSERT(irq != -1); 542 apic_cpcovf_vect = apic_irq_table[irq]->airq_vector; 543 ASSERT(apic_cpcovf_vect); 544 (void) add_avintr(NULL, ipl, 545 (avfunc)kcpc_hw_overflow_intr, 546 "apic pcint", irq, NULL, NULL, NULL, NULL); 547 kcpc_hw_overflow_intr_installed = 1; 548 kcpc_hw_enable_cpc_intr = apic_cpcovf_mask_clear; 549 } 550 apicadr[APIC_PCINT_VECT] = apic_cpcovf_vect; 551 } 552 553 /* Enable error interrupt */ 554 555 if (apic_enable_error_intr) { 556 if (apic_errvect == 0) { 557 int ipl = 0xf; /* get highest priority intr */ 558 int irq = apic_get_ipivect(ipl, -1); 559 560 ASSERT(irq != -1); 561 apic_errvect = apic_irq_table[irq]->airq_vector; 562 ASSERT(apic_errvect); 563 /* 564 * Not PSMI compliant, but we are going to merge 565 * with ON anyway 566 */ 567 (void) add_avintr((void *)NULL, ipl, 568 (avfunc)apic_error_intr, "apic error intr", 569 irq, NULL, NULL, NULL, NULL); 570 } 571 apicadr[APIC_ERR_VECT] = apic_errvect; 572 apicadr[APIC_ERROR_STATUS] = 0; 573 apicadr[APIC_ERROR_STATUS] = 0; 574 } 575 } 576 577 static void 578 apic_disable_local_apic() 579 { 580 apicadr[APIC_TASK_REG] = APIC_MASK_ALL; 581 apicadr[APIC_LOCAL_TIMER] = AV_MASK; 582 apicadr[APIC_INT_VECT0] = AV_MASK; /* local intr reg 0 */ 583 apicadr[APIC_INT_VECT1] = AV_MASK; /* disable NMI */ 584 apicadr[APIC_ERR_VECT] = AV_MASK; /* and error interrupt */ 585 apicadr[APIC_PCINT_VECT] = AV_MASK; /* and perf counter intr */ 586 apicadr[APIC_SPUR_INT_REG] = APIC_SPUR_INTR; 587 } 588 589 static void 590 apic_picinit(void) 591 { 592 int i, j; 593 uint_t isr; 594 595 /* 596 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr 597 * bit on without clearing it with EOI. Since softint 598 * uses vector 0x20 to interrupt itself, so softint will 599 * not work on this machine. In order to fix this problem 600 * a check is made to verify all the isr bits are clear. 601 * If not, EOIs are issued to clear the bits. 602 */ 603 for (i = 7; i >= 1; i--) { 604 if ((isr = apicadr[APIC_ISR_REG + (i * 4)]) != 0) 605 for (j = 0; ((j < 32) && (isr != 0)); j++) 606 if (isr & (1 << j)) { 607 apicadr[APIC_EOI_REG] = 0; 608 isr &= ~(1 << j); 609 apic_error |= APIC_ERR_BOOT_EOI; 610 } 611 } 612 613 /* set a flag so we know we have run apic_picinit() */ 614 apic_flag = 1; 615 LOCK_INIT_CLEAR(&apic_gethrtime_lock); 616 LOCK_INIT_CLEAR(&apic_ioapic_lock); 617 LOCK_INIT_CLEAR(&apic_error_lock); 618 619 picsetup(); /* initialise the 8259 */ 620 621 /* add nmi handler - least priority nmi handler */ 622 LOCK_INIT_CLEAR(&apic_nmi_lock); 623 624 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr, 625 "pcplusmp NMI handler", (caddr_t)NULL)) 626 cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler"); 627 628 apic_init_intr(); 629 630 /* enable apic mode if imcr present */ 631 if (apic_imcrp) { 632 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 633 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); 634 } 635 636 ioapic_init_intr(IOAPIC_MASK); 637 } 638 639 640 /*ARGSUSED1*/ 641 static int 642 apic_cpu_start(processorid_t cpun, caddr_t arg) 643 { 644 int loop_count; 645 uint32_t vector; 646 uint_t cpu_id; 647 ulong_t iflag; 648 649 cpu_id = apic_cpus[cpun].aci_local_id; 650 651 apic_cmos_ssb_set = 1; 652 653 /* 654 * Interrupts on BSP cpu will be disabled during these startup 655 * steps in order to avoid unwanted side effects from 656 * executing interrupt handlers on a problematic BIOS. 657 */ 658 659 iflag = intr_clear(); 660 outb(CMOS_ADDR, SSB); 661 outb(CMOS_DATA, BIOS_SHUTDOWN); 662 663 while (get_apic_cmd1() & AV_PENDING) 664 apic_ret(); 665 666 /* for integrated - make sure there is one INIT IPI in buffer */ 667 /* for external - it will wake up the cpu */ 668 apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET; 669 apicadr[APIC_INT_CMD1] = AV_ASSERT | AV_RESET; 670 671 /* If only 1 CPU is installed, PENDING bit will not go low */ 672 for (loop_count = 0x1000; loop_count; loop_count--) 673 if (get_apic_cmd1() & AV_PENDING) 674 apic_ret(); 675 else 676 break; 677 678 apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET; 679 apicadr[APIC_INT_CMD1] = AV_DEASSERT | AV_RESET; 680 681 drv_usecwait(20000); /* 20 milli sec */ 682 683 if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) { 684 /* integrated apic */ 685 686 vector = (rm_platter_pa >> MMU_PAGESHIFT) & 687 (APIC_VECTOR_MASK | APIC_IPL_MASK); 688 689 /* to offset the INIT IPI queue up in the buffer */ 690 apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET; 691 apicadr[APIC_INT_CMD1] = vector | AV_STARTUP; 692 693 drv_usecwait(200); /* 20 micro sec */ 694 695 apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET; 696 apicadr[APIC_INT_CMD1] = vector | AV_STARTUP; 697 698 drv_usecwait(200); /* 20 micro sec */ 699 } 700 intr_restore(iflag); 701 return (0); 702 } 703 704 705 #ifdef DEBUG 706 int apic_break_on_cpu = 9; 707 int apic_stretch_interrupts = 0; 708 int apic_stretch_ISR = 1 << 3; /* IPL of 3 matches nothing now */ 709 710 void 711 apic_break() 712 { 713 } 714 #endif /* DEBUG */ 715 716 /* 717 * platform_intr_enter 718 * 719 * Called at the beginning of the interrupt service routine to 720 * mask all level equal to and below the interrupt priority 721 * of the interrupting vector. An EOI should be given to 722 * the interrupt controller to enable other HW interrupts. 723 * 724 * Return -1 for spurious interrupts 725 * 726 */ 727 /*ARGSUSED*/ 728 static int 729 apic_intr_enter(int ipl, int *vectorp) 730 { 731 uchar_t vector; 732 int nipl; 733 int irq; 734 ulong_t iflag; 735 apic_cpus_info_t *cpu_infop; 736 737 /* 738 * The real vector delivered is (*vectorp + 0x20), but our caller 739 * subtracts 0x20 from the vector before passing it to us. 740 * (That's why APIC_BASE_VECT is 0x20.) 741 */ 742 vector = (uchar_t)*vectorp; 743 744 /* if interrupted by the clock, increment apic_nsec_since_boot */ 745 if (vector == apic_clkvect) { 746 if (!apic_oneshot) { 747 /* NOTE: this is not MT aware */ 748 apic_hrtime_stamp++; 749 apic_nsec_since_boot += apic_nsec_per_intr; 750 apic_hrtime_stamp++; 751 last_count_read = apic_hertz_count; 752 apic_redistribute_compute(); 753 } 754 755 /* We will avoid all the book keeping overhead for clock */ 756 nipl = apic_ipls[vector]; 757 758 #if defined(__amd64) 759 setcr8((ulong_t)apic_cr8pri[nipl]); 760 #else 761 apicadr[APIC_TASK_REG] = apic_ipltopri[nipl]; 762 #endif 763 *vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT]; 764 apicadr[APIC_EOI_REG] = 0; 765 return (nipl); 766 } 767 768 cpu_infop = &apic_cpus[psm_get_cpu_id()]; 769 770 if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) { 771 cpu_infop->aci_spur_cnt++; 772 return (APIC_INT_SPURIOUS); 773 } 774 775 /* Check if the vector we got is really what we need */ 776 if (apic_revector_pending) { 777 /* 778 * Disable interrupts for the duration of 779 * the vector translation to prevent a self-race for 780 * the apic_revector_lock. This cannot be done 781 * in apic_xlate_vector because it is recursive and 782 * we want the vector translation to be atomic with 783 * respect to other (higher-priority) interrupts. 784 */ 785 iflag = intr_clear(); 786 vector = apic_xlate_vector(vector + APIC_BASE_VECT) - 787 APIC_BASE_VECT; 788 intr_restore(iflag); 789 } 790 791 nipl = apic_ipls[vector]; 792 *vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT]; 793 794 #if defined(__amd64) 795 setcr8((ulong_t)apic_cr8pri[nipl]); 796 #else 797 apicadr[APIC_TASK_REG] = apic_ipltopri[nipl]; 798 #endif 799 800 cpu_infop->aci_current[nipl] = (uchar_t)irq; 801 cpu_infop->aci_curipl = (uchar_t)nipl; 802 cpu_infop->aci_ISR_in_progress |= 1 << nipl; 803 804 /* 805 * apic_level_intr could have been assimilated into the irq struct. 806 * but, having it as a character array is more efficient in terms of 807 * cache usage. So, we leave it as is. 808 */ 809 if (!apic_level_intr[irq]) 810 apicadr[APIC_EOI_REG] = 0; 811 812 #ifdef DEBUG 813 APIC_DEBUG_BUF_PUT(vector); 814 APIC_DEBUG_BUF_PUT(irq); 815 APIC_DEBUG_BUF_PUT(nipl); 816 APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); 817 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) 818 drv_usecwait(apic_stretch_interrupts); 819 820 if (apic_break_on_cpu == psm_get_cpu_id()) 821 apic_break(); 822 #endif /* DEBUG */ 823 return (nipl); 824 } 825 826 void 827 apic_intr_exit(int prev_ipl, int irq) 828 { 829 apic_cpus_info_t *cpu_infop; 830 831 #if defined(__amd64) 832 setcr8((ulong_t)apic_cr8pri[prev_ipl]); 833 #else 834 apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl]; 835 #endif 836 837 cpu_infop = &apic_cpus[psm_get_cpu_id()]; 838 if (apic_level_intr[irq]) 839 apicadr[APIC_EOI_REG] = 0; 840 841 cpu_infop->aci_curipl = (uchar_t)prev_ipl; 842 /* ISR above current pri could not be in progress */ 843 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; 844 } 845 846 /* 847 * Mask all interrupts below or equal to the given IPL 848 */ 849 static void 850 apic_setspl(int ipl) 851 { 852 853 #if defined(__amd64) 854 setcr8((ulong_t)apic_cr8pri[ipl]); 855 #else 856 apicadr[APIC_TASK_REG] = apic_ipltopri[ipl]; 857 #endif 858 859 /* interrupts at ipl above this cannot be in progress */ 860 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 861 /* 862 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts 863 * have enough time to come in before the priority is raised again 864 * during the idle() loop. 865 */ 866 if (apic_setspl_delay) 867 (void) get_apic_pri(); 868 } 869 870 /* 871 * generates an interprocessor interrupt to another CPU 872 */ 873 static void 874 apic_send_ipi(int cpun, int ipl) 875 { 876 int vector; 877 ulong_t flag; 878 879 vector = apic_resv_vector[ipl]; 880 881 flag = intr_clear(); 882 883 while (get_apic_cmd1() & AV_PENDING) 884 apic_ret(); 885 886 apicadr[APIC_INT_CMD2] = 887 apic_cpus[cpun].aci_local_id << APIC_ICR_ID_BIT_OFFSET; 888 apicadr[APIC_INT_CMD1] = vector; 889 890 intr_restore(flag); 891 } 892 893 894 /*ARGSUSED*/ 895 static void 896 apic_set_idlecpu(processorid_t cpun) 897 { 898 } 899 900 /*ARGSUSED*/ 901 static void 902 apic_unset_idlecpu(processorid_t cpun) 903 { 904 } 905 906 907 static void 908 apic_ret() 909 { 910 } 911 912 static int 913 get_apic_cmd1() 914 { 915 return (apicadr[APIC_INT_CMD1]); 916 } 917 918 static int 919 get_apic_pri() 920 { 921 #if defined(__amd64) 922 return ((int)getcr8()); 923 #else 924 return (apicadr[APIC_TASK_REG]); 925 #endif 926 } 927 928 /* 929 * If apic_coarse_time == 1, then apic_gettime() is used instead of 930 * apic_gethrtime(). This is used for performance instead of accuracy. 931 */ 932 933 static hrtime_t 934 apic_gettime() 935 { 936 int old_hrtime_stamp; 937 hrtime_t temp; 938 939 /* 940 * In one-shot mode, we do not keep time, so if anyone 941 * calls psm_gettime() directly, we vector over to 942 * gethrtime(). 943 * one-shot mode MUST NOT be enabled if this psm is the source of 944 * hrtime. 945 */ 946 947 if (apic_oneshot) 948 return (gethrtime()); 949 950 951 gettime_again: 952 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) 953 apic_ret(); 954 955 temp = apic_nsec_since_boot; 956 957 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ 958 goto gettime_again; 959 } 960 return (temp); 961 } 962 963 /* 964 * Here we return the number of nanoseconds since booting. Note every 965 * clock interrupt increments apic_nsec_since_boot by the appropriate 966 * amount. 967 */ 968 static hrtime_t 969 apic_gethrtime() 970 { 971 int curr_timeval, countval, elapsed_ticks; 972 int old_hrtime_stamp, status; 973 hrtime_t temp; 974 uchar_t cpun; 975 ulong_t oflags; 976 977 /* 978 * In one-shot mode, we do not keep time, so if anyone 979 * calls psm_gethrtime() directly, we vector over to 980 * gethrtime(). 981 * one-shot mode MUST NOT be enabled if this psm is the source of 982 * hrtime. 983 */ 984 985 if (apic_oneshot) 986 return (gethrtime()); 987 988 oflags = intr_clear(); /* prevent migration */ 989 990 cpun = (uchar_t)((uint_t)apicadr[APIC_LID_REG] >> APIC_ID_BIT_OFFSET); 991 992 lock_set(&apic_gethrtime_lock); 993 994 gethrtime_again: 995 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) 996 apic_ret(); 997 998 /* 999 * Check to see which CPU we are on. Note the time is kept on 1000 * the local APIC of CPU 0. If on CPU 0, simply read the current 1001 * counter. If on another CPU, issue a remote read command to CPU 0. 1002 */ 1003 if (cpun == apic_cpus[0].aci_local_id) { 1004 countval = apicadr[APIC_CURR_COUNT]; 1005 } else { 1006 while (get_apic_cmd1() & AV_PENDING) 1007 apic_ret(); 1008 1009 apicadr[APIC_INT_CMD2] = 1010 apic_cpus[0].aci_local_id << APIC_ICR_ID_BIT_OFFSET; 1011 apicadr[APIC_INT_CMD1] = APIC_CURR_ADD|AV_REMOTE; 1012 1013 while ((status = get_apic_cmd1()) & AV_READ_PENDING) 1014 apic_ret(); 1015 1016 if (status & AV_REMOTE_STATUS) /* 1 = valid */ 1017 countval = apicadr[APIC_REMOTE_READ]; 1018 else { /* 0 = invalid */ 1019 apic_remote_hrterr++; 1020 /* 1021 * return last hrtime right now, will need more 1022 * testing if change to retry 1023 */ 1024 temp = apic_last_hrtime; 1025 1026 lock_clear(&apic_gethrtime_lock); 1027 1028 intr_restore(oflags); 1029 1030 return (temp); 1031 } 1032 } 1033 if (countval > last_count_read) 1034 countval = 0; 1035 else 1036 last_count_read = countval; 1037 1038 elapsed_ticks = apic_hertz_count - countval; 1039 1040 curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks); 1041 temp = apic_nsec_since_boot + curr_timeval; 1042 1043 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ 1044 /* we might have clobbered last_count_read. Restore it */ 1045 last_count_read = apic_hertz_count; 1046 goto gethrtime_again; 1047 } 1048 1049 if (temp < apic_last_hrtime) { 1050 /* return last hrtime if error occurs */ 1051 apic_hrtime_error++; 1052 temp = apic_last_hrtime; 1053 } 1054 else 1055 apic_last_hrtime = temp; 1056 1057 lock_clear(&apic_gethrtime_lock); 1058 intr_restore(oflags); 1059 1060 return (temp); 1061 } 1062 1063 /* apic NMI handler */ 1064 /*ARGSUSED*/ 1065 static void 1066 apic_nmi_intr(caddr_t arg) 1067 { 1068 if (apic_shutdown_processors) { 1069 apic_disable_local_apic(); 1070 return; 1071 } 1072 1073 if (lock_try(&apic_nmi_lock)) { 1074 if (apic_kmdb_on_nmi) { 1075 if (psm_debugger() == 0) { 1076 cmn_err(CE_PANIC, 1077 "NMI detected, kmdb is not available."); 1078 } else { 1079 debug_enter("\nNMI detected, entering kmdb.\n"); 1080 } 1081 } else { 1082 if (apic_panic_on_nmi) { 1083 /* Keep panic from entering kmdb. */ 1084 nopanicdebug = 1; 1085 cmn_err(CE_PANIC, "pcplusmp: NMI received"); 1086 } else { 1087 /* 1088 * prom_printf is the best shot we have 1089 * of something which is problem free from 1090 * high level/NMI type of interrupts 1091 */ 1092 prom_printf("pcplusmp: NMI received\n"); 1093 apic_error |= APIC_ERR_NMI; 1094 apic_num_nmis++; 1095 } 1096 } 1097 lock_clear(&apic_nmi_lock); 1098 } 1099 } 1100 1101 /*ARGSUSED*/ 1102 static int 1103 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl) 1104 { 1105 return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl)); 1106 } 1107 1108 static int 1109 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl) 1110 { 1111 return (apic_delspl_common(irqno, ipl, min_ipl, max_ipl)); 1112 } 1113 1114 static int 1115 apic_post_cpu_start() 1116 { 1117 int i, cpun; 1118 ulong_t iflag; 1119 apic_irq_t *irq_ptr; 1120 1121 splx(ipltospl(LOCK_LEVEL)); 1122 apic_init_intr(); 1123 1124 /* 1125 * since some systems don't enable the internal cache on the non-boot 1126 * cpus, so we have to enable them here 1127 */ 1128 setcr0(getcr0() & ~(CR0_CD | CR0_NW)); 1129 1130 while (get_apic_cmd1() & AV_PENDING) 1131 apic_ret(); 1132 1133 cpun = psm_get_cpu_id(); 1134 apic_cpus[cpun].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; 1135 1136 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 1137 irq_ptr = apic_irq_table[i]; 1138 if ((irq_ptr == NULL) || 1139 ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) != cpun)) 1140 continue; 1141 1142 while (irq_ptr) { 1143 if (irq_ptr->airq_temp_cpu != IRQ_UNINIT) { 1144 iflag = intr_clear(); 1145 lock_set(&apic_ioapic_lock); 1146 1147 (void) apic_rebind(irq_ptr, cpun, NULL); 1148 1149 lock_clear(&apic_ioapic_lock); 1150 intr_restore(iflag); 1151 } 1152 irq_ptr = irq_ptr->airq_next; 1153 } 1154 } 1155 1156 apicadr[APIC_DIVIDE_REG] = apic_divide_reg_init; 1157 return (PSM_SUCCESS); 1158 } 1159 1160 processorid_t 1161 apic_get_next_processorid(processorid_t cpu_id) 1162 { 1163 1164 int i; 1165 1166 if (cpu_id == -1) 1167 return ((processorid_t)0); 1168 1169 for (i = cpu_id + 1; i < NCPU; i++) { 1170 if (CPU_IN_SET(apic_cpumask, i)) 1171 return (i); 1172 } 1173 1174 return ((processorid_t)-1); 1175 } 1176 1177 1178 /* 1179 * type == -1 indicates it is an internal request. Do not change 1180 * resv_vector for these requests 1181 */ 1182 static int 1183 apic_get_ipivect(int ipl, int type) 1184 { 1185 uchar_t vector; 1186 int irq; 1187 1188 if (irq = apic_allocate_irq(APIC_VECTOR(ipl))) { 1189 if (vector = apic_allocate_vector(ipl, irq, 1)) { 1190 apic_irq_table[irq]->airq_mps_intr_index = 1191 RESERVE_INDEX; 1192 apic_irq_table[irq]->airq_vector = vector; 1193 if (type != -1) { 1194 apic_resv_vector[ipl] = vector; 1195 } 1196 return (irq); 1197 } 1198 } 1199 apic_error |= APIC_ERR_GET_IPIVECT_FAIL; 1200 return (-1); /* shouldn't happen */ 1201 } 1202 1203 static int 1204 apic_getclkirq(int ipl) 1205 { 1206 int irq; 1207 1208 if ((irq = apic_get_ipivect(ipl, -1)) == -1) 1209 return (-1); 1210 /* 1211 * Note the vector in apic_clkvect for per clock handling. 1212 */ 1213 apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT; 1214 APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n", 1215 apic_clkvect)); 1216 return (irq); 1217 } 1218 1219 1220 /* 1221 * Return the number of APIC clock ticks elapsed for 8245 to decrement 1222 * (APIC_TIME_COUNT + pit_ticks_adj) ticks. 1223 */ 1224 static uint_t 1225 apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj) 1226 { 1227 uint8_t pit_tick_lo; 1228 uint16_t pit_tick, target_pit_tick; 1229 uint32_t start_apic_tick, end_apic_tick; 1230 ulong_t iflag; 1231 1232 addr += APIC_CURR_COUNT; 1233 1234 iflag = intr_clear(); 1235 1236 do { 1237 pit_tick_lo = inb(PITCTR0_PORT); 1238 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1239 } while (pit_tick < APIC_TIME_MIN || 1240 pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX); 1241 1242 /* 1243 * Wait for the 8254 to decrement by 5 ticks to ensure 1244 * we didn't start in the middle of a tick. 1245 * Compare with 0x10 for the wrap around case. 1246 */ 1247 target_pit_tick = pit_tick - 5; 1248 do { 1249 pit_tick_lo = inb(PITCTR0_PORT); 1250 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1251 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); 1252 1253 start_apic_tick = *addr; 1254 1255 /* 1256 * Wait for the 8254 to decrement by 1257 * (APIC_TIME_COUNT + pit_ticks_adj) ticks 1258 */ 1259 target_pit_tick = pit_tick - APIC_TIME_COUNT; 1260 do { 1261 pit_tick_lo = inb(PITCTR0_PORT); 1262 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1263 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); 1264 1265 end_apic_tick = *addr; 1266 1267 *pit_ticks_adj = target_pit_tick - pit_tick; 1268 1269 intr_restore(iflag); 1270 1271 return (start_apic_tick - end_apic_tick); 1272 } 1273 1274 /* 1275 * Initialise the APIC timer on the local APIC of CPU 0 to the desired 1276 * frequency. Note at this stage in the boot sequence, the boot processor 1277 * is the only active processor. 1278 * hertz value of 0 indicates a one-shot mode request. In this case 1279 * the function returns the resolution (in nanoseconds) for the hardware 1280 * timer interrupt. If one-shot mode capability is not available, 1281 * the return value will be 0. apic_enable_oneshot is a global switch 1282 * for disabling the functionality. 1283 * A non-zero positive value for hertz indicates a periodic mode request. 1284 * In this case the hardware will be programmed to generate clock interrupts 1285 * at hertz frequency and returns the resolution of interrupts in 1286 * nanosecond. 1287 */ 1288 1289 static int 1290 apic_clkinit(int hertz) 1291 { 1292 1293 uint_t apic_ticks = 0; 1294 uint_t pit_ticks; 1295 int ret; 1296 uint16_t pit_ticks_adj; 1297 static int firsttime = 1; 1298 1299 if (firsttime) { 1300 /* first time calibrate on CPU0 only */ 1301 1302 apicadr[APIC_DIVIDE_REG] = apic_divide_reg_init; 1303 apicadr[APIC_INIT_COUNT] = APIC_MAXVAL; 1304 apic_ticks = apic_calibrate(apicadr, &pit_ticks_adj); 1305 1306 /* total number of PIT ticks corresponding to apic_ticks */ 1307 pit_ticks = APIC_TIME_COUNT + pit_ticks_adj; 1308 1309 /* 1310 * Determine the number of nanoseconds per APIC clock tick 1311 * and then determine how many APIC ticks to interrupt at the 1312 * desired frequency 1313 * apic_ticks / (pitticks / PIT_HZ) = apic_ticks_per_s 1314 * (apic_ticks * PIT_HZ) / pitticks = apic_ticks_per_s 1315 * apic_ticks_per_ns = (apic_ticks * PIT_HZ) / (pitticks * 10^9) 1316 * pic_ticks_per_SFns = 1317 * (SF * apic_ticks * PIT_HZ) / (pitticks * 10^9) 1318 */ 1319 apic_ticks_per_SFnsecs = 1320 ((SF * apic_ticks * PIT_HZ) / 1321 ((uint64_t)pit_ticks * NANOSEC)); 1322 1323 /* the interval timer initial count is 32 bit max */ 1324 apic_nsec_max = APIC_TICKS_TO_NSECS(APIC_MAXVAL); 1325 firsttime = 0; 1326 } 1327 1328 if (hertz != 0) { 1329 /* periodic */ 1330 apic_nsec_per_intr = NANOSEC / hertz; 1331 apic_hertz_count = APIC_NSECS_TO_TICKS(apic_nsec_per_intr); 1332 } 1333 1334 apic_int_busy_mark = (apic_int_busy_mark * 1335 apic_sample_factor_redistribution) / 100; 1336 apic_int_free_mark = (apic_int_free_mark * 1337 apic_sample_factor_redistribution) / 100; 1338 apic_diff_for_redistribution = (apic_diff_for_redistribution * 1339 apic_sample_factor_redistribution) / 100; 1340 1341 if (hertz == 0) { 1342 /* requested one_shot */ 1343 if (!apic_oneshot_enable) 1344 return (0); 1345 apic_oneshot = 1; 1346 ret = (int)APIC_TICKS_TO_NSECS(1); 1347 } else { 1348 /* program the local APIC to interrupt at the given frequency */ 1349 apicadr[APIC_INIT_COUNT] = apic_hertz_count; 1350 apicadr[APIC_LOCAL_TIMER] = 1351 (apic_clkvect + APIC_BASE_VECT) | AV_TIME; 1352 apic_oneshot = 0; 1353 ret = NANOSEC / hertz; 1354 } 1355 1356 return (ret); 1357 1358 } 1359 1360 /* 1361 * apic_preshutdown: 1362 * Called early in shutdown whilst we can still access filesystems to do 1363 * things like loading modules which will be required to complete shutdown 1364 * after filesystems are all unmounted. 1365 */ 1366 static void 1367 apic_preshutdown(int cmd, int fcn) 1368 { 1369 APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n", 1370 cmd, fcn, apic_poweroff_method, apic_enable_acpi)); 1371 1372 } 1373 1374 static void 1375 apic_shutdown(int cmd, int fcn) 1376 { 1377 int restarts, attempts; 1378 int i; 1379 uchar_t byte; 1380 ulong_t iflag; 1381 1382 /* Send NMI to all CPUs except self to do per processor shutdown */ 1383 iflag = intr_clear(); 1384 while (get_apic_cmd1() & AV_PENDING) 1385 apic_ret(); 1386 apic_shutdown_processors = 1; 1387 apicadr[APIC_INT_CMD1] = AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF; 1388 1389 /* restore cmos shutdown byte before reboot */ 1390 if (apic_cmos_ssb_set) { 1391 outb(CMOS_ADDR, SSB); 1392 outb(CMOS_DATA, 0); 1393 } 1394 1395 ioapic_disable_redirection(); 1396 1397 /* disable apic mode if imcr present */ 1398 if (apic_imcrp) { 1399 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 1400 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC); 1401 } 1402 1403 apic_disable_local_apic(); 1404 1405 intr_restore(iflag); 1406 1407 /* remainder of function is for shutdown cases only */ 1408 if (cmd != A_SHUTDOWN) 1409 return; 1410 1411 /* 1412 * Switch system back into Legacy-Mode if using ACPI and 1413 * not powering-off. Some BIOSes need to remain in ACPI-mode 1414 * for power-off to succeed (Dell Dimension 4600) 1415 */ 1416 if (apic_enable_acpi && (fcn != AD_POWEROFF)) 1417 (void) AcpiDisable(); 1418 1419 /* remainder of function is for shutdown+poweroff case only */ 1420 if (fcn != AD_POWEROFF) 1421 return; 1422 1423 switch (apic_poweroff_method) { 1424 case APIC_POWEROFF_VIA_RTC: 1425 1426 /* select the extended NVRAM bank in the RTC */ 1427 outb(CMOS_ADDR, RTC_REGA); 1428 byte = inb(CMOS_DATA); 1429 outb(CMOS_DATA, (byte | EXT_BANK)); 1430 1431 outb(CMOS_ADDR, PFR_REG); 1432 1433 /* for Predator must toggle the PAB bit */ 1434 byte = inb(CMOS_DATA); 1435 1436 /* 1437 * clear power active bar, wakeup alarm and 1438 * kickstart 1439 */ 1440 byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG); 1441 outb(CMOS_DATA, byte); 1442 1443 /* delay before next write */ 1444 drv_usecwait(1000); 1445 1446 /* for S40 the following would suffice */ 1447 byte = inb(CMOS_DATA); 1448 1449 /* power active bar control bit */ 1450 byte |= PAB_CBIT; 1451 outb(CMOS_DATA, byte); 1452 1453 break; 1454 1455 case APIC_POWEROFF_VIA_ASPEN_BMC: 1456 restarts = 0; 1457 restart_aspen_bmc: 1458 if (++restarts == 3) 1459 break; 1460 attempts = 0; 1461 do { 1462 byte = inb(MISMIC_FLAG_REGISTER); 1463 byte &= MISMIC_BUSY_MASK; 1464 if (byte != 0) { 1465 drv_usecwait(1000); 1466 if (attempts >= 3) 1467 goto restart_aspen_bmc; 1468 ++attempts; 1469 } 1470 } while (byte != 0); 1471 outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS); 1472 byte = inb(MISMIC_FLAG_REGISTER); 1473 byte |= 0x1; 1474 outb(MISMIC_FLAG_REGISTER, byte); 1475 i = 0; 1476 for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0])); 1477 i++) { 1478 attempts = 0; 1479 do { 1480 byte = inb(MISMIC_FLAG_REGISTER); 1481 byte &= MISMIC_BUSY_MASK; 1482 if (byte != 0) { 1483 drv_usecwait(1000); 1484 if (attempts >= 3) 1485 goto restart_aspen_bmc; 1486 ++attempts; 1487 } 1488 } while (byte != 0); 1489 outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl); 1490 outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data); 1491 byte = inb(MISMIC_FLAG_REGISTER); 1492 byte |= 0x1; 1493 outb(MISMIC_FLAG_REGISTER, byte); 1494 } 1495 break; 1496 1497 case APIC_POWEROFF_VIA_SITKA_BMC: 1498 restarts = 0; 1499 restart_sitka_bmc: 1500 if (++restarts == 3) 1501 break; 1502 attempts = 0; 1503 do { 1504 byte = inb(SMS_STATUS_REGISTER); 1505 byte &= SMS_STATE_MASK; 1506 if ((byte == SMS_READ_STATE) || 1507 (byte == SMS_WRITE_STATE)) { 1508 drv_usecwait(1000); 1509 if (attempts >= 3) 1510 goto restart_sitka_bmc; 1511 ++attempts; 1512 } 1513 } while ((byte == SMS_READ_STATE) || 1514 (byte == SMS_WRITE_STATE)); 1515 outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS); 1516 i = 0; 1517 for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0])); 1518 i++) { 1519 attempts = 0; 1520 do { 1521 byte = inb(SMS_STATUS_REGISTER); 1522 byte &= SMS_IBF_MASK; 1523 if (byte != 0) { 1524 drv_usecwait(1000); 1525 if (attempts >= 3) 1526 goto restart_sitka_bmc; 1527 ++attempts; 1528 } 1529 } while (byte != 0); 1530 outb(sitka_bmc[i].port, sitka_bmc[i].data); 1531 } 1532 break; 1533 1534 case APIC_POWEROFF_NONE: 1535 1536 /* If no APIC direct method, we will try using ACPI */ 1537 if (apic_enable_acpi) { 1538 if (acpi_poweroff() == 1) 1539 return; 1540 } else 1541 return; 1542 1543 break; 1544 } 1545 /* 1546 * Wait a limited time here for power to go off. 1547 * If the power does not go off, then there was a 1548 * problem and we should continue to the halt which 1549 * prints a message for the user to press a key to 1550 * reboot. 1551 */ 1552 drv_usecwait(7000000); /* wait seven seconds */ 1553 1554 } 1555 1556 /* 1557 * Try and disable all interrupts. We just assign interrupts to other 1558 * processors based on policy. If any were bound by user request, we 1559 * let them continue and return failure. We do not bother to check 1560 * for cache affinity while rebinding. 1561 */ 1562 1563 static int 1564 apic_disable_intr(processorid_t cpun) 1565 { 1566 int bind_cpu = 0, i, hardbound = 0; 1567 apic_irq_t *irq_ptr; 1568 ulong_t iflag; 1569 1570 iflag = intr_clear(); 1571 lock_set(&apic_ioapic_lock); 1572 1573 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 1574 if (apic_reprogram_info[i].done == B_FALSE) { 1575 if (apic_reprogram_info[i].bindcpu == cpun) { 1576 /* 1577 * CPU is busy -- it's the target of 1578 * a pending reprogramming attempt 1579 */ 1580 lock_clear(&apic_ioapic_lock); 1581 intr_restore(iflag); 1582 return (PSM_FAILURE); 1583 } 1584 } 1585 } 1586 1587 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; 1588 1589 apic_cpus[cpun].aci_curipl = 0; 1590 1591 i = apic_min_device_irq; 1592 for (; i <= apic_max_device_irq; i++) { 1593 /* 1594 * If there are bound interrupts on this cpu, then 1595 * rebind them to other processors. 1596 */ 1597 if ((irq_ptr = apic_irq_table[i]) != NULL) { 1598 ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) || 1599 (irq_ptr->airq_temp_cpu == IRQ_UNINIT) || 1600 ((irq_ptr->airq_temp_cpu & ~IRQ_USER_BOUND) < 1601 apic_nproc)); 1602 1603 if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) { 1604 hardbound = 1; 1605 continue; 1606 } 1607 1608 if (irq_ptr->airq_temp_cpu == cpun) { 1609 do { 1610 bind_cpu = apic_next_bind_cpu++; 1611 if (bind_cpu >= apic_nproc) { 1612 apic_next_bind_cpu = 1; 1613 bind_cpu = 0; 1614 1615 } 1616 } while (apic_rebind_all(irq_ptr, bind_cpu)); 1617 } 1618 } 1619 } 1620 1621 lock_clear(&apic_ioapic_lock); 1622 intr_restore(iflag); 1623 1624 if (hardbound) { 1625 cmn_err(CE_WARN, "Could not disable interrupts on %d" 1626 "due to user bound interrupts", cpun); 1627 return (PSM_FAILURE); 1628 } 1629 else 1630 return (PSM_SUCCESS); 1631 } 1632 1633 static void 1634 apic_enable_intr(processorid_t cpun) 1635 { 1636 int i; 1637 apic_irq_t *irq_ptr; 1638 ulong_t iflag; 1639 1640 iflag = intr_clear(); 1641 lock_set(&apic_ioapic_lock); 1642 1643 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; 1644 1645 i = apic_min_device_irq; 1646 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 1647 if ((irq_ptr = apic_irq_table[i]) != NULL) { 1648 if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) { 1649 (void) apic_rebind_all(irq_ptr, 1650 irq_ptr->airq_cpu); 1651 } 1652 } 1653 } 1654 1655 lock_clear(&apic_ioapic_lock); 1656 intr_restore(iflag); 1657 } 1658 1659 1660 /* 1661 * This function will reprogram the timer. 1662 * 1663 * When in oneshot mode the argument is the absolute time in future to 1664 * generate the interrupt at. 1665 * 1666 * When in periodic mode, the argument is the interval at which the 1667 * interrupts should be generated. There is no need to support the periodic 1668 * mode timer change at this time. 1669 */ 1670 static void 1671 apic_timer_reprogram(hrtime_t time) 1672 { 1673 hrtime_t now; 1674 uint_t ticks; 1675 int64_t delta; 1676 1677 /* 1678 * We should be called from high PIL context (CBE_HIGH_PIL), 1679 * so kpreempt is disabled. 1680 */ 1681 1682 if (!apic_oneshot) { 1683 /* time is the interval for periodic mode */ 1684 ticks = APIC_NSECS_TO_TICKS(time); 1685 } else { 1686 /* one shot mode */ 1687 1688 now = gethrtime(); 1689 delta = time - now; 1690 1691 if (delta <= 0) { 1692 /* 1693 * requested to generate an interrupt in the past 1694 * generate an interrupt as soon as possible 1695 */ 1696 ticks = apic_min_timer_ticks; 1697 } else if (delta > apic_nsec_max) { 1698 /* 1699 * requested to generate an interrupt at a time 1700 * further than what we are capable of. Set to max 1701 * the hardware can handle 1702 */ 1703 1704 ticks = APIC_MAXVAL; 1705 #ifdef DEBUG 1706 cmn_err(CE_CONT, "apic_timer_reprogram, request at" 1707 " %lld too far in future, current time" 1708 " %lld \n", time, now); 1709 #endif 1710 } else 1711 ticks = APIC_NSECS_TO_TICKS(delta); 1712 } 1713 1714 if (ticks < apic_min_timer_ticks) 1715 ticks = apic_min_timer_ticks; 1716 1717 apicadr[APIC_INIT_COUNT] = ticks; 1718 1719 } 1720 1721 /* 1722 * This function will enable timer interrupts. 1723 */ 1724 static void 1725 apic_timer_enable(void) 1726 { 1727 /* 1728 * We should be Called from high PIL context (CBE_HIGH_PIL), 1729 * so kpreempt is disabled. 1730 */ 1731 1732 if (!apic_oneshot) 1733 apicadr[APIC_LOCAL_TIMER] = 1734 (apic_clkvect + APIC_BASE_VECT) | AV_TIME; 1735 else { 1736 /* one shot */ 1737 apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT); 1738 } 1739 } 1740 1741 /* 1742 * This function will disable timer interrupts. 1743 */ 1744 static void 1745 apic_timer_disable(void) 1746 { 1747 /* 1748 * We should be Called from high PIL context (CBE_HIGH_PIL), 1749 * so kpreempt is disabled. 1750 */ 1751 1752 apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT) | AV_MASK; 1753 } 1754 1755 1756 cyclic_id_t apic_cyclic_id; 1757 1758 /* 1759 * If this module needs to be a consumer of cyclic subsystem, they 1760 * can be added here, since at this time kernel cyclic subsystem is initialized 1761 * argument is not currently used, and is reserved for future. 1762 */ 1763 static void 1764 apic_post_cyclic_setup(void *arg) 1765 { 1766 _NOTE(ARGUNUSED(arg)) 1767 cyc_handler_t hdlr; 1768 cyc_time_t when; 1769 1770 /* cpu_lock is held */ 1771 1772 /* set up cyclics for intr redistribution */ 1773 1774 /* 1775 * In peridoc mode intr redistribution processing is done in 1776 * apic_intr_enter during clk intr processing 1777 */ 1778 if (!apic_oneshot) 1779 return; 1780 1781 hdlr.cyh_level = CY_LOW_LEVEL; 1782 hdlr.cyh_func = (cyc_func_t)apic_redistribute_compute; 1783 hdlr.cyh_arg = NULL; 1784 1785 when.cyt_when = 0; 1786 when.cyt_interval = apic_redistribute_sample_interval; 1787 apic_cyclic_id = cyclic_add(&hdlr, &when); 1788 1789 1790 } 1791 1792 static void 1793 apic_redistribute_compute(void) 1794 { 1795 int i, j, max_busy; 1796 1797 if (apic_enable_dynamic_migration) { 1798 if (++apic_nticks == apic_sample_factor_redistribution) { 1799 /* 1800 * Time to call apic_intr_redistribute(). 1801 * reset apic_nticks. This will cause max_busy 1802 * to be calculated below and if it is more than 1803 * apic_int_busy, we will do the whole thing 1804 */ 1805 apic_nticks = 0; 1806 } 1807 max_busy = 0; 1808 for (i = 0; i < apic_nproc; i++) { 1809 1810 /* 1811 * Check if curipl is non zero & if ISR is in 1812 * progress 1813 */ 1814 if (((j = apic_cpus[i].aci_curipl) != 0) && 1815 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { 1816 1817 int irq; 1818 apic_cpus[i].aci_busy++; 1819 irq = apic_cpus[i].aci_current[j]; 1820 apic_irq_table[irq]->airq_busy++; 1821 } 1822 1823 if (!apic_nticks && 1824 (apic_cpus[i].aci_busy > max_busy)) 1825 max_busy = apic_cpus[i].aci_busy; 1826 } 1827 if (!apic_nticks) { 1828 if (max_busy > apic_int_busy_mark) { 1829 /* 1830 * We could make the following check be 1831 * skipped > 1 in which case, we get a 1832 * redistribution at half the busy mark (due to 1833 * double interval). Need to be able to collect 1834 * more empirical data to decide if that is a 1835 * good strategy. Punt for now. 1836 */ 1837 if (apic_skipped_redistribute) { 1838 apic_cleanup_busy(); 1839 apic_skipped_redistribute = 0; 1840 } else { 1841 apic_intr_redistribute(); 1842 } 1843 } else 1844 apic_skipped_redistribute++; 1845 } 1846 } 1847 } 1848 1849 1850 /* 1851 * The following functions are in the platform specific file so that they 1852 * can be different functions depending on whether we are running on 1853 * bare metal or a hypervisor. 1854 */ 1855 1856 /* 1857 * map an apic for memory-mapped access 1858 */ 1859 uint32_t * 1860 mapin_apic(uint32_t addr, size_t len, int flags) 1861 { 1862 /*LINTED: pointer cast may result in improper alignment */ 1863 return ((uint32_t *)psm_map_phys(addr, len, flags)); 1864 } 1865 1866 uint32_t * 1867 mapin_ioapic(uint32_t addr, size_t len, int flags) 1868 { 1869 return (mapin_apic(addr, len, flags)); 1870 } 1871 1872 /* 1873 * unmap an apic 1874 */ 1875 void 1876 mapout_apic(caddr_t addr, size_t len) 1877 { 1878 psm_unmap_phys(addr, len); 1879 } 1880 1881 void 1882 mapout_ioapic(caddr_t addr, size_t len) 1883 { 1884 mapout_apic(addr, len); 1885 } 1886 1887 /* 1888 * Check to make sure there are enough irq slots 1889 */ 1890 int 1891 apic_check_free_irqs(int count) 1892 { 1893 int i, avail; 1894 1895 avail = 0; 1896 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 1897 if ((apic_irq_table[i] == NULL) || 1898 apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) { 1899 if (++avail >= count) 1900 return (PSM_SUCCESS); 1901 } 1902 } 1903 return (PSM_FAILURE); 1904 } 1905 1906 /* 1907 * This function allocates "count" MSI vector(s) for the given "dip/pri/type" 1908 */ 1909 int 1910 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri, 1911 int behavior) 1912 { 1913 int rcount, i; 1914 uchar_t start, irqno, cpu; 1915 major_t major; 1916 apic_irq_t *irqptr; 1917 1918 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p " 1919 "inum=0x%x pri=0x%x count=0x%x behavior=%d\n", 1920 (void *)dip, inum, pri, count, behavior)); 1921 1922 if (count > 1) { 1923 if (behavior == DDI_INTR_ALLOC_STRICT && 1924 (apic_multi_msi_enable == 0 || count > apic_multi_msi_max)) 1925 return (0); 1926 1927 if (apic_multi_msi_enable == 0) 1928 count = 1; 1929 else if (count > apic_multi_msi_max) 1930 count = apic_multi_msi_max; 1931 } 1932 1933 if ((rcount = apic_navail_vector(dip, pri)) > count) 1934 rcount = count; 1935 else if (rcount == 0 || (rcount < count && 1936 behavior == DDI_INTR_ALLOC_STRICT)) 1937 return (0); 1938 1939 /* if not ISP2, then round it down */ 1940 if (!ISP2(rcount)) 1941 rcount = 1 << (highbit(rcount) - 1); 1942 1943 mutex_enter(&airq_mutex); 1944 1945 for (start = 0; rcount > 0; rcount >>= 1) { 1946 if ((start = apic_find_multi_vectors(pri, rcount)) != 0 || 1947 behavior == DDI_INTR_ALLOC_STRICT) 1948 break; 1949 } 1950 1951 if (start == 0) { 1952 /* no vector available */ 1953 mutex_exit(&airq_mutex); 1954 return (0); 1955 } 1956 1957 if (apic_check_free_irqs(rcount) == PSM_FAILURE) { 1958 /* not enough free irq slots available */ 1959 mutex_exit(&airq_mutex); 1960 return (0); 1961 } 1962 1963 major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0; 1964 for (i = 0; i < rcount; i++) { 1965 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == 1966 (uchar_t)-1) { 1967 /* 1968 * shouldn't happen because of the 1969 * apic_check_free_irqs() check earlier 1970 */ 1971 mutex_exit(&airq_mutex); 1972 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " 1973 "apic_allocate_irq failed\n")); 1974 return (i); 1975 } 1976 apic_max_device_irq = max(irqno, apic_max_device_irq); 1977 apic_min_device_irq = min(irqno, apic_min_device_irq); 1978 irqptr = apic_irq_table[irqno]; 1979 #ifdef DEBUG 1980 if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ) 1981 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " 1982 "apic_vector_to_irq is not APIC_RESV_IRQ\n")); 1983 #endif 1984 apic_vector_to_irq[start + i] = (uchar_t)irqno; 1985 1986 irqptr->airq_vector = (uchar_t)(start + i); 1987 irqptr->airq_ioapicindex = (uchar_t)inum; /* start */ 1988 irqptr->airq_intin_no = (uchar_t)rcount; 1989 irqptr->airq_ipl = pri; 1990 irqptr->airq_vector = start + i; 1991 irqptr->airq_origirq = (uchar_t)(inum + i); 1992 irqptr->airq_share_id = 0; 1993 irqptr->airq_mps_intr_index = MSI_INDEX; 1994 irqptr->airq_dip = dip; 1995 irqptr->airq_major = major; 1996 if (i == 0) /* they all bound to the same cpu */ 1997 cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno, 1998 0xff, 0xff); 1999 else 2000 irqptr->airq_cpu = cpu; 2001 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x " 2002 "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno, 2003 (void *)irqptr->airq_dip, irqptr->airq_vector, 2004 irqptr->airq_origirq, pri)); 2005 } 2006 mutex_exit(&airq_mutex); 2007 return (rcount); 2008 } 2009 2010 /* 2011 * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type" 2012 */ 2013 int 2014 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri, 2015 int behavior) 2016 { 2017 int rcount, i; 2018 major_t major; 2019 2020 if (count > 1) { 2021 if (behavior == DDI_INTR_ALLOC_STRICT) { 2022 if (count > apic_msix_max) 2023 return (0); 2024 } else if (count > apic_msix_max) 2025 count = apic_msix_max; 2026 } 2027 2028 mutex_enter(&airq_mutex); 2029 2030 if ((rcount = apic_navail_vector(dip, pri)) > count) 2031 rcount = count; 2032 else if (rcount == 0 || (rcount < count && 2033 behavior == DDI_INTR_ALLOC_STRICT)) { 2034 rcount = 0; 2035 goto out; 2036 } 2037 2038 if (apic_check_free_irqs(rcount) == PSM_FAILURE) { 2039 /* not enough free irq slots available */ 2040 rcount = 0; 2041 goto out; 2042 } 2043 2044 major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0; 2045 for (i = 0; i < rcount; i++) { 2046 uchar_t vector, irqno; 2047 apic_irq_t *irqptr; 2048 2049 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == 2050 (uchar_t)-1) { 2051 /* 2052 * shouldn't happen because of the 2053 * apic_check_free_irqs() check earlier 2054 */ 2055 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " 2056 "apic_allocate_irq failed\n")); 2057 rcount = i; 2058 goto out; 2059 } 2060 if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) { 2061 /* 2062 * shouldn't happen because of the 2063 * apic_navail_vector() call earlier 2064 */ 2065 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " 2066 "apic_allocate_vector failed\n")); 2067 rcount = i; 2068 goto out; 2069 } 2070 apic_max_device_irq = max(irqno, apic_max_device_irq); 2071 apic_min_device_irq = min(irqno, apic_min_device_irq); 2072 irqptr = apic_irq_table[irqno]; 2073 irqptr->airq_vector = (uchar_t)vector; 2074 irqptr->airq_ipl = pri; 2075 irqptr->airq_origirq = (uchar_t)(inum + i); 2076 irqptr->airq_share_id = 0; 2077 irqptr->airq_mps_intr_index = MSIX_INDEX; 2078 irqptr->airq_dip = dip; 2079 irqptr->airq_major = major; 2080 irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff); 2081 } 2082 out: 2083 mutex_exit(&airq_mutex); 2084 return (rcount); 2085 } 2086 2087 /* 2088 * Allocate a free vector for irq at ipl. Takes care of merging of multiple 2089 * IPLs into a single APIC level as well as stretching some IPLs onto multiple 2090 * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority 2091 * requests and allocated only when pri is set. 2092 */ 2093 uchar_t 2094 apic_allocate_vector(int ipl, int irq, int pri) 2095 { 2096 int lowest, highest, i; 2097 2098 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; 2099 lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL; 2100 2101 if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */ 2102 lowest -= APIC_VECTOR_PER_IPL; 2103 2104 #ifdef DEBUG 2105 if (apic_restrict_vector) /* for testing shared interrupt logic */ 2106 highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS; 2107 #endif /* DEBUG */ 2108 if (pri == 0) 2109 highest -= APIC_HI_PRI_VECTS; 2110 2111 for (i = lowest; i < highest; i++) { 2112 if (APIC_CHECK_RESERVE_VECTORS(i)) 2113 continue; 2114 if (apic_vector_to_irq[i] == APIC_RESV_IRQ) { 2115 apic_vector_to_irq[i] = (uchar_t)irq; 2116 return (i); 2117 } 2118 } 2119 2120 return (0); 2121 } 2122 2123 /* Mark vector as not being used by any irq */ 2124 void 2125 apic_free_vector(uchar_t vector) 2126 { 2127 apic_vector_to_irq[vector] = APIC_RESV_IRQ; 2128 } 2129 2130 uint32_t 2131 ioapic_read(int ioapic_ix, uint32_t reg) 2132 { 2133 volatile uint32_t *ioapic; 2134 2135 ioapic = apicioadr[ioapic_ix]; 2136 ioapic[APIC_IO_REG] = reg; 2137 return (ioapic[APIC_IO_DATA]); 2138 } 2139 2140 void 2141 ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value) 2142 { 2143 volatile uint32_t *ioapic; 2144 2145 ioapic = apicioadr[ioapic_ix]; 2146 ioapic[APIC_IO_REG] = reg; 2147 ioapic[APIC_IO_DATA] = value; 2148 } 2149 2150 static processorid_t 2151 apic_find_cpu(int flag) 2152 { 2153 processorid_t acid = 0; 2154 int i; 2155 2156 /* Find the first CPU with the passed-in flag set */ 2157 for (i = 0; i < apic_nproc; i++) { 2158 if (apic_cpus[i].aci_status & flag) { 2159 acid = i; 2160 break; 2161 } 2162 } 2163 2164 ASSERT((apic_cpus[acid].aci_status & flag) != 0); 2165 return (acid); 2166 } 2167 2168 /* 2169 * Call rebind to do the actual programming. 2170 * Must be called with interrupts disabled and apic_ioapic_lock held 2171 * 'p' is polymorphic -- if this function is called to process a deferred 2172 * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which 2173 * the irq pointer is retrieved. If not doing deferred reprogramming, 2174 * p is of the type 'apic_irq_t *'. 2175 * 2176 * apic_ioapic_lock must be held across this call, as it protects apic_rebind 2177 * and it protects apic_find_cpu() from a race in which a CPU can be taken 2178 * offline after a cpu is selected, but before apic_rebind is called to 2179 * bind interrupts to it. 2180 */ 2181 int 2182 apic_setup_io_intr(void *p, int irq, boolean_t deferred) 2183 { 2184 apic_irq_t *irqptr; 2185 struct ioapic_reprogram_data *drep = NULL; 2186 int rv; 2187 2188 if (deferred) { 2189 drep = (struct ioapic_reprogram_data *)p; 2190 ASSERT(drep != NULL); 2191 irqptr = drep->irqp; 2192 } else 2193 irqptr = (apic_irq_t *)p; 2194 2195 ASSERT(irqptr != NULL); 2196 2197 rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep); 2198 if (rv) { 2199 /* 2200 * CPU is not up or interrupts are disabled. Fall back to 2201 * the first available CPU 2202 */ 2203 rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE), 2204 drep); 2205 } 2206 2207 return (rv); 2208 } 2209 2210 2211 uchar_t 2212 apic_modify_vector(uchar_t vector, int irq) 2213 { 2214 apic_vector_to_irq[vector] = (uchar_t)irq; 2215 return (vector); 2216 } 2217 2218 char * 2219 apic_get_apic_type() 2220 { 2221 return (apic_psm_info.p_mach_idstring); 2222 } 2223