xref: /illumos-gate/usr/src/uts/i86pc/io/mp_platform_misc.c (revision 8c69cc8fbe729fa7b091e901c4b50508ccc6bb33)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2017 Joyent, Inc.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 /*
31  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
32  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
33  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
34  * PSMI 1.5 extensions are supported in Solaris Nevada.
35  * PSMI 1.6 extensions are supported in Solaris Nevada.
36  * PSMI 1.7 extensions are supported in Solaris Nevada.
37  */
38 #define	PSMI_1_7
39 
40 #include <sys/processor.h>
41 #include <sys/time.h>
42 #include <sys/psm.h>
43 #include <sys/smp_impldefs.h>
44 #include <sys/inttypes.h>
45 #include <sys/cram.h>
46 #include <sys/acpi/acpi.h>
47 #include <sys/acpica.h>
48 #include <sys/psm_common.h>
49 #include <sys/apic.h>
50 #include <sys/apic_common.h>
51 #include <sys/pit.h>
52 #include <sys/ddi.h>
53 #include <sys/sunddi.h>
54 #include <sys/ddi_impldefs.h>
55 #include <sys/pci.h>
56 #include <sys/promif.h>
57 #include <sys/x86_archext.h>
58 #include <sys/cpc_impl.h>
59 #include <sys/uadmin.h>
60 #include <sys/panic.h>
61 #include <sys/debug.h>
62 #include <sys/archsystm.h>
63 #include <sys/trap.h>
64 #include <sys/machsystm.h>
65 #include <sys/cpuvar.h>
66 #include <sys/rm_platter.h>
67 #include <sys/privregs.h>
68 #include <sys/cyclic.h>
69 #include <sys/note.h>
70 #include <sys/pci_intr_lib.h>
71 #include <sys/sunndi.h>
72 #include <sys/hpet.h>
73 #include <sys/clock.h>
74 
75 /*
76  * Part of mp_platfrom_common.c that's used only by pcplusmp & xpv_psm
77  * but not apix.
78  * These functions may be moved to xpv_psm later when apix and pcplusmp
79  * are merged together
80  */
81 
82 /*
83  *	Local Function Prototypes
84  */
85 static void apic_mark_vector(uchar_t oldvector, uchar_t newvector);
86 static void apic_xlate_vector_free_timeout_handler(void *arg);
87 static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
88     int new_bind_cpu, int apicindex, int intin_no, int which_irq,
89     struct ioapic_reprogram_data *drep);
90 static int apic_setup_irq_table(dev_info_t *dip, int irqno,
91     struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp,
92     int type);
93 static void apic_try_deferred_reprogram(int ipl, int vect);
94 static void delete_defer_repro_ent(int which_irq);
95 static void apic_ioapic_wait_pending_clear(int ioapicindex,
96     int intin_no);
97 
98 extern int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
99     int ipin, int *pci_irqp, iflag_t *intr_flagp);
100 extern int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
101     int child_ipin, struct apic_io_intr **intrp);
102 extern uchar_t acpi_find_ioapic(int irq);
103 extern struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
104 extern int apic_find_bus_id(int bustype);
105 extern int apic_find_intin(uchar_t ioapic, uchar_t intin);
106 extern void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
107 
108 extern	int apic_sci_vect;
109 extern	iflag_t apic_sci_flags;
110 /* ACPI HPET interrupt configuration; -1 if HPET not used */
111 extern	int apic_hpet_vect;
112 extern	iflag_t apic_hpet_flags;
113 extern	int	apic_intr_policy;
114 extern	char *psm_name;
115 
116 /*
117  * number of bits per byte, from <sys/param.h>
118  */
119 #define	UCHAR_MAX	UINT8_MAX
120 
121 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
122 extern int apic_max_reps_clear_pending;
123 
124 /* The irq # is implicit in the array index: */
125 struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1];
126 /*
127  * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info
128  * is indexed by IRQ number, NOT by vector number.
129  */
130 
131 extern	int	apic_int_busy_mark;
132 extern	int	apic_int_free_mark;
133 extern	int	apic_diff_for_redistribution;
134 extern	int	apic_sample_factor_redistribution;
135 extern	int	apic_redist_cpu_skip;
136 extern	int	apic_num_imbalance;
137 extern	int	apic_num_rebind;
138 
139 /* timeout for xlate_vector, mark_vector */
140 int	apic_revector_timeout = 16 * 10000; /* 160 millisec */
141 
142 extern int	apic_defconf;
143 extern int	apic_irq_translate;
144 
145 extern int	apic_use_acpi_madt_only;	/* 1=ONLY use MADT from ACPI */
146 
147 extern	uchar_t	apic_io_vectbase[MAX_IO_APIC];
148 
149 extern	boolean_t ioapic_mask_workaround[MAX_IO_APIC];
150 
151 /*
152  * First available slot to be used as IRQ index into the apic_irq_table
153  * for those interrupts (like MSI/X) that don't have a physical IRQ.
154  */
155 extern int apic_first_avail_irq;
156 
157 /*
158  * apic_defer_reprogram_lock ensures that only one processor is handling
159  * deferred interrupt programming at *_intr_exit time.
160  */
161 static	lock_t	apic_defer_reprogram_lock;
162 
163 /*
164  * The current number of deferred reprogrammings outstanding
165  */
166 uint_t	apic_reprogram_outstanding = 0;
167 
168 #ifdef DEBUG
169 /*
170  * Counters that keep track of deferred reprogramming stats
171  */
172 uint_t	apic_intr_deferrals = 0;
173 uint_t	apic_intr_deliver_timeouts = 0;
174 uint_t	apic_last_ditch_reprogram_failures = 0;
175 uint_t	apic_deferred_setup_failures = 0;
176 uint_t	apic_defer_repro_total_retries = 0;
177 uint_t	apic_defer_repro_successes = 0;
178 uint_t	apic_deferred_spurious_enters = 0;
179 #endif
180 
181 extern	int	apic_io_max;
182 extern	struct apic_io_intr *apic_io_intrp;
183 
184 uchar_t	apic_vector_to_irq[APIC_MAX_VECTOR+1];
185 
186 extern	uint32_t	eisa_level_intr_mask;
187 	/* At least MSB will be set if EISA bus */
188 
189 extern	int	apic_pci_bus_total;
190 extern	uchar_t	apic_single_pci_busid;
191 
192 /*
193  * Following declarations are for revectoring; used when ISRs at different
194  * IPLs share an irq.
195  */
196 static	lock_t	apic_revector_lock;
197 int	apic_revector_pending = 0;
198 static	uchar_t	*apic_oldvec_to_newvec;
199 static	uchar_t	*apic_newvec_to_oldvec;
200 
201 /* ACPI Interrupt Source Override Structure ptr */
202 extern ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop;
203 extern int acpi_iso_cnt;
204 
205 /*
206  * Auto-configuration routines
207  */
208 
209 /*
210  * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable
211  * are also set to NULL. vector->irq is set to a value which cannot map
212  * to a real irq to show that it is free.
213  */
214 void
215 apic_init_common(void)
216 {
217 	int	i, j, indx;
218 	int	*iptr;
219 
220 	/*
221 	 * Initialize apic_ipls from apic_vectortoipl.  This array is
222 	 * used in apic_intr_enter to determine the IPL to use for the
223 	 * corresponding vector.  On some systems, due to hardware errata
224 	 * and interrupt sharing, the IPL may not correspond to the IPL listed
225 	 * in apic_vectortoipl (see apic_addspl and apic_delspl).
226 	 */
227 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
228 		indx = i * APIC_VECTOR_PER_IPL;
229 
230 		for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++)
231 			apic_ipls[indx] = apic_vectortoipl[i];
232 	}
233 
234 	/* cpu 0 is always up (for now) */
235 	apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
236 
237 	iptr = (int *)&apic_irq_table[0];
238 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
239 		apic_level_intr[i] = 0;
240 		*iptr++ = NULL;
241 		apic_vector_to_irq[i] = APIC_RESV_IRQ;
242 
243 		/* These *must* be initted to B_TRUE! */
244 		apic_reprogram_info[i].done = B_TRUE;
245 		apic_reprogram_info[i].irqp = NULL;
246 		apic_reprogram_info[i].tries = 0;
247 		apic_reprogram_info[i].bindcpu = 0;
248 	}
249 
250 	/*
251 	 * Allocate a dummy irq table entry for the reserved entry.
252 	 * This takes care of the race between removing an irq and
253 	 * clock detecting a CPU in that irq during interrupt load
254 	 * sampling.
255 	 */
256 	apic_irq_table[APIC_RESV_IRQ] =
257 	    kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
258 
259 	mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
260 }
261 
262 void
263 ioapic_init_intr(int mask_apic)
264 {
265 	int ioapic_ix;
266 	struct intrspec ispec;
267 	apic_irq_t *irqptr;
268 	int i, j;
269 	ulong_t iflag;
270 
271 	LOCK_INIT_CLEAR(&apic_revector_lock);
272 	LOCK_INIT_CLEAR(&apic_defer_reprogram_lock);
273 
274 	/* mask interrupt vectors */
275 	for (j = 0; j < apic_io_max && mask_apic; j++) {
276 		int intin_max;
277 
278 		ioapic_ix = j;
279 		/* Bits 23-16 define the maximum redirection entries */
280 		intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
281 		    & 0xff;
282 		for (i = 0; i <= intin_max; i++)
283 			ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * i, AV_MASK);
284 	}
285 
286 	/*
287 	 * Hack alert: deal with ACPI SCI interrupt chicken/egg here
288 	 */
289 	if (apic_sci_vect > 0) {
290 		/*
291 		 * acpica has already done add_avintr(); we just
292 		 * to finish the job by mimicing translate_irq()
293 		 *
294 		 * Fake up an intrspec and setup the tables
295 		 */
296 		ispec.intrspec_vec = apic_sci_vect;
297 		ispec.intrspec_pri = SCI_IPL;
298 
299 		if (apic_setup_irq_table(NULL, apic_sci_vect, NULL,
300 		    &ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) {
301 			cmn_err(CE_WARN, "!apic: SCI setup failed");
302 			return;
303 		}
304 		irqptr = apic_irq_table[apic_sci_vect];
305 
306 		iflag = intr_clear();
307 		lock_set(&apic_ioapic_lock);
308 
309 		/* Program I/O APIC */
310 		(void) apic_setup_io_intr(irqptr, apic_sci_vect, B_FALSE);
311 
312 		lock_clear(&apic_ioapic_lock);
313 		intr_restore(iflag);
314 
315 		irqptr->airq_share++;
316 	}
317 
318 	/*
319 	 * Hack alert: deal with ACPI HPET interrupt chicken/egg here.
320 	 */
321 	if (apic_hpet_vect > 0) {
322 		/*
323 		 * hpet has already done add_avintr(); we just need
324 		 * to finish the job by mimicing translate_irq()
325 		 *
326 		 * Fake up an intrspec and setup the tables
327 		 */
328 		ispec.intrspec_vec = apic_hpet_vect;
329 		ispec.intrspec_pri = CBE_HIGH_PIL;
330 
331 		if (apic_setup_irq_table(NULL, apic_hpet_vect, NULL,
332 		    &ispec, &apic_hpet_flags, DDI_INTR_TYPE_FIXED) < 0) {
333 			cmn_err(CE_WARN, "!apic: HPET setup failed");
334 			return;
335 		}
336 		irqptr = apic_irq_table[apic_hpet_vect];
337 
338 		iflag = intr_clear();
339 		lock_set(&apic_ioapic_lock);
340 
341 		/* Program I/O APIC */
342 		(void) apic_setup_io_intr(irqptr, apic_hpet_vect, B_FALSE);
343 
344 		lock_clear(&apic_ioapic_lock);
345 		intr_restore(iflag);
346 
347 		irqptr->airq_share++;
348 	}
349 }
350 
351 /*
352  * Add mask bits to disable interrupt vector from happening
353  * at or above IPL. In addition, it should remove mask bits
354  * to enable interrupt vectors below the given IPL.
355  *
356  * Both add and delspl are complicated by the fact that different interrupts
357  * may share IRQs. This can happen in two ways.
358  * 1. The same H/W line is shared by more than 1 device
359  * 1a. with interrupts at different IPLs
360  * 1b. with interrupts at same IPL
361  * 2. We ran out of vectors at a given IPL and started sharing vectors.
362  * 1b and 2 should be handled gracefully, except for the fact some ISRs
363  * will get called often when no interrupt is pending for the device.
364  * For 1a, we handle it at the higher IPL.
365  */
366 /*ARGSUSED*/
367 int
368 apic_addspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
369 {
370 	uchar_t vector;
371 	ulong_t iflag;
372 	apic_irq_t *irqptr, *irqheadptr;
373 	int irqindex;
374 
375 	ASSERT(max_ipl <= UCHAR_MAX);
376 	irqindex = IRQINDEX(irqno);
377 
378 	if ((irqindex == -1) || (!apic_irq_table[irqindex]))
379 		return (PSM_FAILURE);
380 
381 	mutex_enter(&airq_mutex);
382 	irqptr = irqheadptr = apic_irq_table[irqindex];
383 
384 	DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x "
385 	    "vector=0x%x\n", (void *)irqptr->airq_dip,
386 	    irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
387 
388 	while (irqptr) {
389 		if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
390 			break;
391 		irqptr = irqptr->airq_next;
392 	}
393 	irqptr->airq_share++;
394 
395 	mutex_exit(&airq_mutex);
396 
397 	/* return if it is not hardware interrupt */
398 	if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
399 		return (PSM_SUCCESS);
400 
401 	/* Or if there are more interupts at a higher IPL */
402 	if (ipl != max_ipl)
403 		return (PSM_SUCCESS);
404 
405 	/*
406 	 * if apic_picinit() has not been called yet, just return.
407 	 * At the end of apic_picinit(), we will call setup_io_intr().
408 	 */
409 
410 	if (!apic_picinit_called)
411 		return (PSM_SUCCESS);
412 
413 	/*
414 	 * Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate,
415 	 * return failure.
416 	 */
417 	if (irqptr->airq_ipl != max_ipl &&
418 	    !ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
419 
420 		vector = apic_allocate_vector(max_ipl, irqindex, 1);
421 		if (vector == 0) {
422 			irqptr->airq_share--;
423 			return (PSM_FAILURE);
424 		}
425 		irqptr = irqheadptr;
426 		apic_mark_vector(irqptr->airq_vector, vector);
427 		while (irqptr) {
428 			irqptr->airq_vector = vector;
429 			irqptr->airq_ipl = (uchar_t)max_ipl;
430 			/*
431 			 * reprogram irq being added and every one else
432 			 * who is not in the UNINIT state
433 			 */
434 			if ((VIRTIRQ(irqindex, irqptr->airq_share_id) ==
435 			    irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) {
436 				apic_record_rdt_entry(irqptr, irqindex);
437 
438 				iflag = intr_clear();
439 				lock_set(&apic_ioapic_lock);
440 
441 				(void) apic_setup_io_intr(irqptr, irqindex,
442 				    B_FALSE);
443 
444 				lock_clear(&apic_ioapic_lock);
445 				intr_restore(iflag);
446 			}
447 			irqptr = irqptr->airq_next;
448 		}
449 		return (PSM_SUCCESS);
450 
451 	} else if (irqptr->airq_ipl != max_ipl &&
452 	    ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
453 		/*
454 		 * We cannot upgrade the vector, but we can change
455 		 * the IPL that this vector induces.
456 		 *
457 		 * Note that we subtract APIC_BASE_VECT from the vector
458 		 * here because this array is used in apic_intr_enter
459 		 * (no need to add APIC_BASE_VECT in that hot code
460 		 * path since we can do it in the rarely-executed path
461 		 * here).
462 		 */
463 		apic_ipls[irqptr->airq_vector - APIC_BASE_VECT] =
464 		    (uchar_t)max_ipl;
465 
466 		irqptr = irqheadptr;
467 		while (irqptr) {
468 			irqptr->airq_ipl = (uchar_t)max_ipl;
469 			irqptr = irqptr->airq_next;
470 		}
471 
472 		return (PSM_SUCCESS);
473 	}
474 
475 	ASSERT(irqptr);
476 
477 	iflag = intr_clear();
478 	lock_set(&apic_ioapic_lock);
479 
480 	(void) apic_setup_io_intr(irqptr, irqindex, B_FALSE);
481 
482 	lock_clear(&apic_ioapic_lock);
483 	intr_restore(iflag);
484 
485 	return (PSM_SUCCESS);
486 }
487 
488 /*
489  * Recompute mask bits for the given interrupt vector.
490  * If there is no interrupt servicing routine for this
491  * vector, this function should disable interrupt vector
492  * from happening at all IPLs. If there are still
493  * handlers using the given vector, this function should
494  * disable the given vector from happening below the lowest
495  * IPL of the remaining hadlers.
496  */
497 /*ARGSUSED*/
498 int
499 apic_delspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
500 {
501 	uchar_t vector;
502 	uint32_t bind_cpu;
503 	int intin, irqindex;
504 	int ioapic_ix;
505 	apic_irq_t	*irqptr, *preirqptr, *irqheadptr, *irqp;
506 	ulong_t iflag;
507 
508 	mutex_enter(&airq_mutex);
509 	irqindex = IRQINDEX(irqno);
510 	irqptr = preirqptr = irqheadptr = apic_irq_table[irqindex];
511 
512 	DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x "
513 	    "vector=0x%x\n", (void *)irqptr->airq_dip,
514 	    irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
515 
516 	while (irqptr) {
517 		if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
518 			break;
519 		preirqptr = irqptr;
520 		irqptr = irqptr->airq_next;
521 	}
522 	ASSERT(irqptr);
523 
524 	irqptr->airq_share--;
525 
526 	mutex_exit(&airq_mutex);
527 
528 	/*
529 	 * If there are more interrupts at a higher IPL, we don't need
530 	 * to disable anything.
531 	 */
532 	if (ipl < max_ipl)
533 		return (PSM_SUCCESS);
534 
535 	/* return if it is not hardware interrupt */
536 	if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
537 		return (PSM_SUCCESS);
538 
539 	if (!apic_picinit_called) {
540 		/*
541 		 * Clear irq_struct. If two devices shared an intpt
542 		 * line & 1 unloaded before picinit, we are hosed. But, then
543 		 * we hope the machine survive.
544 		 */
545 		irqptr->airq_mps_intr_index = FREE_INDEX;
546 		irqptr->airq_temp_cpu = IRQ_UNINIT;
547 		apic_free_vector(irqptr->airq_vector);
548 		return (PSM_SUCCESS);
549 	}
550 	/*
551 	 * Downgrade vector to new max_ipl if needed. If we cannot allocate,
552 	 * use old IPL. Not very elegant, but it should work.
553 	 */
554 	if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL) &&
555 	    !ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
556 		apic_irq_t	*irqp;
557 		if ((vector = apic_allocate_vector(max_ipl, irqno, 1))) {
558 			apic_mark_vector(irqheadptr->airq_vector, vector);
559 			irqp = irqheadptr;
560 			while (irqp) {
561 				irqp->airq_vector = vector;
562 				irqp->airq_ipl = (uchar_t)max_ipl;
563 				if (irqp->airq_temp_cpu != IRQ_UNINIT) {
564 					apic_record_rdt_entry(irqp, irqindex);
565 
566 					iflag = intr_clear();
567 					lock_set(&apic_ioapic_lock);
568 
569 					(void) apic_setup_io_intr(irqp,
570 					    irqindex, B_FALSE);
571 
572 					lock_clear(&apic_ioapic_lock);
573 					intr_restore(iflag);
574 				}
575 				irqp = irqp->airq_next;
576 			}
577 		}
578 
579 	} else if (irqptr->airq_ipl != max_ipl &&
580 	    max_ipl != PSM_INVALID_IPL &&
581 	    ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
582 
583 	/*
584 	 * We cannot downgrade the IPL of the vector below the vector's
585 	 * hardware priority. If we did, it would be possible for a
586 	 * higher-priority hardware vector to interrupt a CPU running at an IPL
587 	 * lower than the hardware priority of the interrupting vector (but
588 	 * higher than the soft IPL of this IRQ). When this happens, we would
589 	 * then try to drop the IPL BELOW what it was (effectively dropping
590 	 * below base_spl) which would be potentially catastrophic.
591 	 *
592 	 * (e.g. Suppose the hardware vector associated with this IRQ is 0x40
593 	 * (hardware IPL of 4).  Further assume that the old IPL of this IRQ
594 	 * was 4, but the new IPL is 1.  If we forced vector 0x40 to result in
595 	 * an IPL of 1, it would be possible for the processor to be executing
596 	 * at IPL 3 and for an interrupt to come in on vector 0x40, interrupting
597 	 * the currently-executing ISR.  When apic_intr_enter consults
598 	 * apic_irqs[], it will return 1, bringing the IPL of the CPU down to 1
599 	 * so even though the processor was running at IPL 4, an IPL 1
600 	 * interrupt will have interrupted it, which must not happen)).
601 	 *
602 	 * Effectively, this means that the hardware priority corresponding to
603 	 * the IRQ's IPL (in apic_ipls[]) cannot be lower than the vector's
604 	 * hardware priority.
605 	 *
606 	 * (In the above example, then, after removal of the IPL 4 device's
607 	 * interrupt handler, the new IPL will continue to be 4 because the
608 	 * hardware priority that IPL 1 implies is lower than the hardware
609 	 * priority of the vector used.)
610 	 */
611 		/* apic_ipls is indexed by vector, starting at APIC_BASE_VECT */
612 		const int apic_ipls_index = irqptr->airq_vector -
613 		    APIC_BASE_VECT;
614 		const int vect_inherent_hwpri = irqptr->airq_vector >>
615 		    APIC_IPL_SHIFT;
616 
617 		/*
618 		 * If there are still devices using this IRQ, determine the
619 		 * new ipl to use.
620 		 */
621 		if (irqptr->airq_share) {
622 			int vect_desired_hwpri, hwpri;
623 
624 			ASSERT(max_ipl < MAXIPL);
625 			vect_desired_hwpri = apic_ipltopri[max_ipl] >>
626 			    APIC_IPL_SHIFT;
627 
628 			/*
629 			 * If the desired IPL's hardware priority is lower
630 			 * than that of the vector, use the hardware priority
631 			 * of the vector to determine the new IPL.
632 			 */
633 			hwpri = (vect_desired_hwpri < vect_inherent_hwpri) ?
634 			    vect_inherent_hwpri : vect_desired_hwpri;
635 
636 			/*
637 			 * Now, to get the right index for apic_vectortoipl,
638 			 * we need to subtract APIC_BASE_VECT from the
639 			 * hardware-vector-equivalent (in hwpri).  Since hwpri
640 			 * is already shifted, we shift APIC_BASE_VECT before
641 			 * doing the subtraction.
642 			 */
643 			hwpri -= (APIC_BASE_VECT >> APIC_IPL_SHIFT);
644 
645 			ASSERT(hwpri >= 0);
646 			ASSERT(hwpri < MAXIPL);
647 			max_ipl = apic_vectortoipl[hwpri];
648 			apic_ipls[apic_ipls_index] = (uchar_t)max_ipl;
649 
650 			irqp = irqheadptr;
651 			while (irqp) {
652 				irqp->airq_ipl = (uchar_t)max_ipl;
653 				irqp = irqp->airq_next;
654 			}
655 		} else {
656 			/*
657 			 * No more devices on this IRQ, so reset this vector's
658 			 * element in apic_ipls to the original IPL for this
659 			 * vector
660 			 */
661 			apic_ipls[apic_ipls_index] =
662 			    apic_vectortoipl[vect_inherent_hwpri];
663 		}
664 	}
665 
666 	/*
667 	 * If there are still active interrupts, we are done.
668 	 */
669 	if (irqptr->airq_share)
670 		return (PSM_SUCCESS);
671 
672 	iflag = intr_clear();
673 	lock_set(&apic_ioapic_lock);
674 
675 	if (irqptr->airq_mps_intr_index == MSI_INDEX) {
676 		/*
677 		 * Disable the MSI vector
678 		 * Make sure we only disable on the last
679 		 * of the multi-MSI support
680 		 */
681 		if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) {
682 			apic_pci_msi_disable_mode(irqptr->airq_dip,
683 			    DDI_INTR_TYPE_MSI);
684 		}
685 	} else if (irqptr->airq_mps_intr_index == MSIX_INDEX) {
686 		/*
687 		 * Disable the MSI-X vector
688 		 * needs to clear its mask and addr/data for each MSI-X
689 		 */
690 		apic_pci_msi_unconfigure(irqptr->airq_dip, DDI_INTR_TYPE_MSIX,
691 		    irqptr->airq_origirq);
692 		/*
693 		 * Make sure we only disable on the last MSI-X
694 		 */
695 		if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) {
696 			apic_pci_msi_disable_mode(irqptr->airq_dip,
697 			    DDI_INTR_TYPE_MSIX);
698 		}
699 	} else {
700 		/*
701 		 * The assumption here is that this is safe, even for
702 		 * systems with IOAPICs that suffer from the hardware
703 		 * erratum because all devices have been quiesced before
704 		 * they unregister their interrupt handlers.  If that
705 		 * assumption turns out to be false, this mask operation
706 		 * can induce the same erratum result we're trying to
707 		 * avoid.
708 		 */
709 		ioapic_ix = irqptr->airq_ioapicindex;
710 		intin = irqptr->airq_intin_no;
711 		ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin, AV_MASK);
712 	}
713 
714 	apic_vt_ops->apic_intrmap_free_entry(&irqptr->airq_intrmap_private);
715 
716 	/*
717 	 * This irq entry is the only one in the chain.
718 	 */
719 	if (irqheadptr->airq_next == NULL) {
720 		ASSERT(irqheadptr == irqptr);
721 		bind_cpu = irqptr->airq_temp_cpu;
722 		if (((uint32_t)bind_cpu != IRQ_UNBOUND) &&
723 		    ((uint32_t)bind_cpu != IRQ_UNINIT)) {
724 			ASSERT(apic_cpu_in_range(bind_cpu));
725 			if (bind_cpu & IRQ_USER_BOUND) {
726 				/* If hardbound, temp_cpu == cpu */
727 				bind_cpu &= ~IRQ_USER_BOUND;
728 				apic_cpus[bind_cpu].aci_bound--;
729 			} else
730 				apic_cpus[bind_cpu].aci_temp_bound--;
731 		}
732 		irqptr->airq_temp_cpu = IRQ_UNINIT;
733 		irqptr->airq_mps_intr_index = FREE_INDEX;
734 		lock_clear(&apic_ioapic_lock);
735 		intr_restore(iflag);
736 		apic_free_vector(irqptr->airq_vector);
737 		return (PSM_SUCCESS);
738 	}
739 
740 	/*
741 	 * If we get here, we are sharing the vector and there are more than
742 	 * one active irq entries in the chain.
743 	 */
744 	lock_clear(&apic_ioapic_lock);
745 	intr_restore(iflag);
746 
747 	mutex_enter(&airq_mutex);
748 	/* Remove the irq entry from the chain */
749 	if (irqptr == irqheadptr) { /* The irq entry is at the head */
750 		apic_irq_table[irqindex] = irqptr->airq_next;
751 	} else {
752 		preirqptr->airq_next = irqptr->airq_next;
753 	}
754 	/* Free the irq entry */
755 	kmem_free(irqptr, sizeof (apic_irq_t));
756 	mutex_exit(&airq_mutex);
757 
758 	return (PSM_SUCCESS);
759 }
760 
761 /*
762  * apic_introp_xlate() replaces apic_translate_irq() and is
763  * called only from apic_intr_ops().  With the new ADII framework,
764  * the priority can no longer be retrieved through i_ddi_get_intrspec().
765  * It has to be passed in from the caller.
766  *
767  * Return value:
768  *      Success: irqno for the given device
769  *      Failure: -1
770  */
771 int
772 apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type)
773 {
774 	char dev_type[16];
775 	int dev_len, pci_irq, newirq, bustype, devid, busid, i;
776 	int irqno = ispec->intrspec_vec;
777 	ddi_acc_handle_t cfg_handle;
778 	uchar_t ipin;
779 	struct apic_io_intr *intrp;
780 	iflag_t intr_flag;
781 	ACPI_SUBTABLE_HEADER	*hp;
782 	ACPI_MADT_INTERRUPT_OVERRIDE *isop;
783 	apic_irq_t *airqp;
784 	int parent_is_pci_or_pciex = 0;
785 	int child_is_pciex = 0;
786 
787 	DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s "
788 	    "type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type,
789 	    irqno));
790 
791 	dev_len = sizeof (dev_type);
792 	if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
793 	    DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
794 	    &dev_len) == DDI_PROP_SUCCESS) {
795 		if ((strcmp(dev_type, "pci") == 0) ||
796 		    (strcmp(dev_type, "pciex") == 0))
797 			parent_is_pci_or_pciex = 1;
798 	}
799 
800 	if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
801 	    DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type,
802 	    &dev_len) == DDI_PROP_SUCCESS) {
803 		if (strstr(dev_type, "pciex"))
804 			child_is_pciex = 1;
805 	}
806 
807 	if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
808 		if ((airqp = apic_find_irq(dip, ispec, type)) != NULL) {
809 			airqp->airq_iflag.bustype =
810 			    child_is_pciex ? BUS_PCIE : BUS_PCI;
811 			return (apic_vector_to_irq[airqp->airq_vector]);
812 		}
813 		return (apic_setup_irq_table(dip, irqno, NULL, ispec,
814 		    NULL, type));
815 	}
816 
817 	bustype = 0;
818 
819 	/* check if we have already translated this irq */
820 	mutex_enter(&airq_mutex);
821 	newirq = apic_min_device_irq;
822 	for (; newirq <= apic_max_device_irq; newirq++) {
823 		airqp = apic_irq_table[newirq];
824 		while (airqp) {
825 			if ((airqp->airq_dip == dip) &&
826 			    (airqp->airq_origirq == irqno) &&
827 			    (airqp->airq_mps_intr_index != FREE_INDEX)) {
828 
829 				mutex_exit(&airq_mutex);
830 				return (VIRTIRQ(newirq, airqp->airq_share_id));
831 			}
832 			airqp = airqp->airq_next;
833 		}
834 	}
835 	mutex_exit(&airq_mutex);
836 
837 	if (apic_defconf)
838 		goto defconf;
839 
840 	if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi))
841 		goto nonpci;
842 
843 	if (parent_is_pci_or_pciex) {
844 		/* pci device */
845 		if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
846 			goto nonpci;
847 		if (busid == 0 && apic_pci_bus_total == 1)
848 			busid = (int)apic_single_pci_busid;
849 
850 		if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
851 			return (-1);
852 		ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
853 		pci_config_teardown(&cfg_handle);
854 		if (apic_enable_acpi && !apic_use_acpi_madt_only) {
855 			if (apic_acpi_translate_pci_irq(dip, busid, devid,
856 			    ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
857 				return (-1);
858 
859 			intr_flag.bustype = child_is_pciex ? BUS_PCIE : BUS_PCI;
860 			return (apic_setup_irq_table(dip, pci_irq, NULL, ispec,
861 			    &intr_flag, type));
862 		} else {
863 			pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
864 			if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid))
865 			    == NULL) {
866 				if ((pci_irq = apic_handle_pci_pci_bridge(dip,
867 				    devid, ipin, &intrp)) == -1)
868 					return (-1);
869 			}
870 			return (apic_setup_irq_table(dip, pci_irq, intrp, ispec,
871 			    NULL, type));
872 		}
873 	} else if (strcmp(dev_type, "isa") == 0)
874 		bustype = BUS_ISA;
875 	else if (strcmp(dev_type, "eisa") == 0)
876 		bustype = BUS_EISA;
877 
878 nonpci:
879 	if (apic_enable_acpi && !apic_use_acpi_madt_only) {
880 		/* search iso entries first */
881 		if (acpi_iso_cnt != 0) {
882 			hp = (ACPI_SUBTABLE_HEADER *)acpi_isop;
883 			i = 0;
884 			while (i < acpi_iso_cnt) {
885 				if (hp->Type ==
886 				    ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
887 					isop =
888 					    (ACPI_MADT_INTERRUPT_OVERRIDE *) hp;
889 					if (isop->Bus == 0 &&
890 					    isop->SourceIrq == irqno) {
891 						newirq = isop->GlobalIrq;
892 						intr_flag.intr_po =
893 						    isop->IntiFlags &
894 						    ACPI_MADT_POLARITY_MASK;
895 						intr_flag.intr_el =
896 						    (isop->IntiFlags &
897 						    ACPI_MADT_TRIGGER_MASK)
898 						    >> 2;
899 						intr_flag.bustype = BUS_ISA;
900 
901 						return (apic_setup_irq_table(
902 						    dip, newirq, NULL, ispec,
903 						    &intr_flag, type));
904 
905 					}
906 					i++;
907 				}
908 				hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) +
909 				    hp->Length);
910 			}
911 		}
912 		intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
913 		intr_flag.intr_el = INTR_EL_EDGE;
914 		intr_flag.bustype = BUS_ISA;
915 		return (apic_setup_irq_table(dip, irqno, NULL, ispec,
916 		    &intr_flag, type));
917 	} else {
918 		if (bustype == 0)	/* not initialized */
919 			bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
920 		for (i = 0; i < 2; i++) {
921 			if (((busid = apic_find_bus_id(bustype)) != -1) &&
922 			    ((intrp = apic_find_io_intr_w_busid(irqno, busid))
923 			    != NULL)) {
924 				if ((newirq = apic_setup_irq_table(dip, irqno,
925 				    intrp, ispec, NULL, type)) != -1) {
926 					return (newirq);
927 				}
928 				goto defconf;
929 			}
930 			bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
931 		}
932 	}
933 
934 /* MPS default configuration */
935 defconf:
936 	newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type);
937 	if (newirq == -1)
938 		return (-1);
939 	ASSERT(IRQINDEX(newirq) == irqno);
940 	ASSERT(apic_irq_table[irqno]);
941 	return (newirq);
942 }
943 
944 /*
945  * Attempt to share vector with someone else
946  */
947 static int
948 apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl,
949     uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp)
950 {
951 #ifdef DEBUG
952 	apic_irq_t *tmpirqp = NULL;
953 #endif /* DEBUG */
954 	apic_irq_t *irqptr, dummyirq;
955 	int	newirq, chosen_irq = -1, share = 127;
956 	int	lowest, highest, i;
957 	uchar_t	share_id;
958 
959 	DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x "
960 	    "intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl));
961 
962 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
963 	lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL;
964 
965 	if (highest < lowest) /* Both ipl and ipl-1 map to same pri */
966 		lowest -= APIC_VECTOR_PER_IPL;
967 	dummyirq.airq_mps_intr_index = intr_index;
968 	dummyirq.airq_ioapicindex = ioapicindex;
969 	dummyirq.airq_intin_no = ipin;
970 	if (intr_flagp)
971 		dummyirq.airq_iflag = *intr_flagp;
972 	apic_record_rdt_entry(&dummyirq, irqno);
973 	for (i = lowest; i <= highest; i++) {
974 		newirq = apic_vector_to_irq[i];
975 		if (newirq == APIC_RESV_IRQ)
976 			continue;
977 		irqptr = apic_irq_table[newirq];
978 
979 		if ((dummyirq.airq_rdt_entry & 0xFF00) !=
980 		    (irqptr->airq_rdt_entry & 0xFF00))
981 			/* not compatible */
982 			continue;
983 
984 		if (irqptr->airq_share < share) {
985 			share = irqptr->airq_share;
986 			chosen_irq = newirq;
987 		}
988 	}
989 	if (chosen_irq != -1) {
990 		/*
991 		 * Assign a share id which is free or which is larger
992 		 * than the largest one.
993 		 */
994 		share_id = 1;
995 		mutex_enter(&airq_mutex);
996 		irqptr = apic_irq_table[chosen_irq];
997 		while (irqptr) {
998 			if (irqptr->airq_mps_intr_index == FREE_INDEX) {
999 				share_id = irqptr->airq_share_id;
1000 				break;
1001 			}
1002 			if (share_id <= irqptr->airq_share_id)
1003 				share_id = irqptr->airq_share_id + 1;
1004 #ifdef DEBUG
1005 			tmpirqp = irqptr;
1006 #endif /* DEBUG */
1007 			irqptr = irqptr->airq_next;
1008 		}
1009 		if (!irqptr) {
1010 			irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
1011 			irqptr->airq_temp_cpu = IRQ_UNINIT;
1012 			irqptr->airq_next =
1013 			    apic_irq_table[chosen_irq]->airq_next;
1014 			apic_irq_table[chosen_irq]->airq_next = irqptr;
1015 #ifdef	DEBUG
1016 			tmpirqp = apic_irq_table[chosen_irq];
1017 #endif /* DEBUG */
1018 		}
1019 		irqptr->airq_mps_intr_index = intr_index;
1020 		irqptr->airq_ioapicindex = ioapicindex;
1021 		irqptr->airq_intin_no = ipin;
1022 		if (intr_flagp)
1023 			irqptr->airq_iflag = *intr_flagp;
1024 		irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector;
1025 		irqptr->airq_share_id = share_id;
1026 		apic_record_rdt_entry(irqptr, irqno);
1027 		*irqptrp = irqptr;
1028 #ifdef	DEBUG
1029 		/* shuffle the pointers to test apic_delspl path */
1030 		if (tmpirqp) {
1031 			tmpirqp->airq_next = irqptr->airq_next;
1032 			irqptr->airq_next = apic_irq_table[chosen_irq];
1033 			apic_irq_table[chosen_irq] = irqptr;
1034 		}
1035 #endif /* DEBUG */
1036 		mutex_exit(&airq_mutex);
1037 		return (VIRTIRQ(chosen_irq, share_id));
1038 	}
1039 	return (-1);
1040 }
1041 
1042 /*
1043  * Allocate/Initialize the apic_irq_table[] entry for given irqno. If the entry
1044  * is used already, we will try to allocate a new irqno.
1045  *
1046  * Return value:
1047  *	Success: irqno
1048  *	Failure: -1
1049  */
1050 static int
1051 apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp,
1052     struct intrspec *ispec, iflag_t *intr_flagp, int type)
1053 {
1054 	int origirq;
1055 	uchar_t ipl;
1056 	int	newirq, intr_index;
1057 	uchar_t	ipin, ioapic, ioapicindex, vector;
1058 	apic_irq_t *irqptr;
1059 	major_t	major;
1060 	dev_info_t	*sdip;
1061 
1062 	ASSERT(ispec != NULL);
1063 
1064 	origirq = ispec->intrspec_vec;
1065 	ipl = ispec->intrspec_pri;
1066 
1067 	DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d "
1068 	    "irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq));
1069 
1070 	major =  (dip != NULL) ? ddi_driver_major(dip) : 0;
1071 
1072 	if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
1073 		/* MSI/X doesn't need to setup ioapic stuffs */
1074 		ioapicindex = 0xff;
1075 		ioapic = 0xff;
1076 		ipin = (uchar_t)0xff;
1077 		intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX :
1078 		    MSIX_INDEX;
1079 		mutex_enter(&airq_mutex);
1080 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == -1) {
1081 			mutex_exit(&airq_mutex);
1082 			/* need an irq for MSI/X to index into autovect[] */
1083 			cmn_err(CE_WARN, "No interrupt irq: %s instance %d",
1084 			    ddi_get_name(dip), ddi_get_instance(dip));
1085 			return (-1);
1086 		}
1087 		mutex_exit(&airq_mutex);
1088 
1089 	} else if (intrp != NULL) {
1090 		intr_index = (int)(intrp - apic_io_intrp);
1091 		ioapic = intrp->intr_destid;
1092 		ipin = intrp->intr_destintin;
1093 		/* Find ioapicindex. If destid was ALL, we will exit with 0. */
1094 		for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
1095 			if (apic_io_id[ioapicindex] == ioapic)
1096 				break;
1097 		ASSERT((ioapic == apic_io_id[ioapicindex]) ||
1098 		    (ioapic == INTR_ALL_APIC));
1099 
1100 		/* check whether this intin# has been used by another irqno */
1101 		if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) {
1102 			return (newirq);
1103 		}
1104 
1105 	} else if (intr_flagp != NULL) {
1106 		/* ACPI case */
1107 		intr_index = ACPI_INDEX;
1108 		ioapicindex = acpi_find_ioapic(irqno);
1109 		ASSERT(ioapicindex != 0xFF);
1110 		ioapic = apic_io_id[ioapicindex];
1111 		ipin = irqno - apic_io_vectbase[ioapicindex];
1112 		if (apic_irq_table[irqno] &&
1113 		    apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
1114 			ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
1115 			    apic_irq_table[irqno]->airq_ioapicindex ==
1116 			    ioapicindex);
1117 			return (irqno);
1118 		}
1119 
1120 	} else {
1121 		/* default configuration */
1122 		ioapicindex = 0;
1123 		ioapic = apic_io_id[ioapicindex];
1124 		ipin = (uchar_t)irqno;
1125 		intr_index = DEFAULT_INDEX;
1126 	}
1127 
1128 	if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) {
1129 		if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index,
1130 		    ipl, ioapicindex, ipin, &irqptr)) != -1) {
1131 			irqptr->airq_ipl = ipl;
1132 			irqptr->airq_origirq = (uchar_t)origirq;
1133 			irqptr->airq_dip = dip;
1134 			irqptr->airq_major = major;
1135 			sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip;
1136 			/* This is OK to do really */
1137 			if (sdip == NULL) {
1138 				cmn_err(CE_WARN, "Sharing vectors: %s"
1139 				    " instance %d and SCI",
1140 				    ddi_get_name(dip), ddi_get_instance(dip));
1141 			} else {
1142 				cmn_err(CE_WARN, "Sharing vectors: %s"
1143 				    " instance %d and %s instance %d",
1144 				    ddi_get_name(sdip), ddi_get_instance(sdip),
1145 				    ddi_get_name(dip), ddi_get_instance(dip));
1146 			}
1147 			return (newirq);
1148 		}
1149 		/* try high priority allocation now  that share has failed */
1150 		if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) {
1151 			cmn_err(CE_WARN, "No interrupt vector: %s instance %d",
1152 			    ddi_get_name(dip), ddi_get_instance(dip));
1153 			return (-1);
1154 		}
1155 	}
1156 
1157 	mutex_enter(&airq_mutex);
1158 	if (apic_irq_table[irqno] == NULL) {
1159 		irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
1160 		irqptr->airq_temp_cpu = IRQ_UNINIT;
1161 		apic_irq_table[irqno] = irqptr;
1162 	} else {
1163 		irqptr = apic_irq_table[irqno];
1164 		if (irqptr->airq_mps_intr_index != FREE_INDEX) {
1165 			/*
1166 			 * The slot is used by another irqno, so allocate
1167 			 * a free irqno for this interrupt
1168 			 */
1169 			newirq = apic_allocate_irq(apic_first_avail_irq);
1170 			if (newirq == -1) {
1171 				mutex_exit(&airq_mutex);
1172 				return (-1);
1173 			}
1174 			irqno = newirq;
1175 			irqptr = apic_irq_table[irqno];
1176 			if (irqptr == NULL) {
1177 				irqptr = kmem_zalloc(sizeof (apic_irq_t),
1178 				    KM_SLEEP);
1179 				irqptr->airq_temp_cpu = IRQ_UNINIT;
1180 				apic_irq_table[irqno] = irqptr;
1181 			}
1182 			vector = apic_modify_vector(vector, newirq);
1183 		}
1184 	}
1185 	apic_max_device_irq = max(irqno, apic_max_device_irq);
1186 	apic_min_device_irq = min(irqno, apic_min_device_irq);
1187 	mutex_exit(&airq_mutex);
1188 	irqptr->airq_ioapicindex = ioapicindex;
1189 	irqptr->airq_intin_no = ipin;
1190 	irqptr->airq_ipl = ipl;
1191 	irqptr->airq_vector = vector;
1192 	irqptr->airq_origirq = (uchar_t)origirq;
1193 	irqptr->airq_share_id = 0;
1194 	irqptr->airq_mps_intr_index = (short)intr_index;
1195 	irqptr->airq_dip = dip;
1196 	irqptr->airq_major = major;
1197 	irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin);
1198 	if (intr_flagp)
1199 		irqptr->airq_iflag = *intr_flagp;
1200 
1201 	if (!DDI_INTR_IS_MSI_OR_MSIX(type)) {
1202 		/* setup I/O APIC entry for non-MSI/X interrupts */
1203 		apic_record_rdt_entry(irqptr, irqno);
1204 	}
1205 	return (irqno);
1206 }
1207 
1208 /*
1209  * return the cpu to which this intr should be bound.
1210  * Check properties or any other mechanism to see if user wants it
1211  * bound to a specific CPU. If so, return the cpu id with high bit set.
1212  * If not, use the policy to choose a cpu and return the id.
1213  */
1214 uint32_t
1215 apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin)
1216 {
1217 	int	instance, instno, prop_len, bind_cpu, count;
1218 	uint_t	i, rc;
1219 	uint32_t cpu;
1220 	major_t	major;
1221 	char	*name, *drv_name, *prop_val, *cptr;
1222 	char	prop_name[32];
1223 	ulong_t iflag;
1224 
1225 
1226 	if (apic_intr_policy == INTR_LOWEST_PRIORITY)
1227 		return (IRQ_UNBOUND);
1228 
1229 	if (apic_nproc == 1)
1230 		return (0);
1231 
1232 	/*
1233 	 * dip may be NULL for interrupts not associated with a device driver,
1234 	 * such as the ACPI SCI or HPET interrupts. In that case just use the
1235 	 * next CPU and return.
1236 	 */
1237 	if (dip == NULL) {
1238 		iflag = intr_clear();
1239 		lock_set(&apic_ioapic_lock);
1240 		bind_cpu = apic_get_next_bind_cpu();
1241 		lock_clear(&apic_ioapic_lock);
1242 		intr_restore(iflag);
1243 
1244 		cmn_err(CE_CONT, "!%s: irq 0x%x "
1245 		    "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
1246 		    psm_name, irq, apic_irq_table[irq]->airq_vector, ioapicid,
1247 		    intin, bind_cpu & ~IRQ_USER_BOUND);
1248 
1249 		return ((uint32_t)bind_cpu);
1250 	}
1251 
1252 	name = ddi_get_name(dip);
1253 	major = ddi_name_to_major(name);
1254 	drv_name = ddi_major_to_name(major);
1255 	instance = ddi_get_instance(dip);
1256 	if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
1257 		i = apic_min_device_irq;
1258 		for (; i <= apic_max_device_irq; i++) {
1259 			if ((i == irq) || (apic_irq_table[i] == NULL) ||
1260 			    (apic_irq_table[i]->airq_mps_intr_index
1261 			    == FREE_INDEX))
1262 				continue;
1263 
1264 			if ((apic_irq_table[i]->airq_major == major) &&
1265 			    (!(apic_irq_table[i]->airq_cpu & IRQ_USER_BOUND))) {
1266 				cpu = apic_irq_table[i]->airq_cpu;
1267 
1268 				cmn_err(CE_CONT,
1269 				    "!%s: %s (%s) instance #%d "
1270 				    "irq 0x%x vector 0x%x ioapic 0x%x "
1271 				    "intin 0x%x is bound to cpu %d\n",
1272 				    psm_name,
1273 				    name, drv_name, instance, irq,
1274 				    apic_irq_table[irq]->airq_vector,
1275 				    ioapicid, intin, cpu);
1276 				return (cpu);
1277 			}
1278 		}
1279 	}
1280 	/*
1281 	 * search for "drvname"_intpt_bind_cpus property first, the
1282 	 * syntax of the property should be "a[,b,c,...]" where
1283 	 * instance 0 binds to cpu a, instance 1 binds to cpu b,
1284 	 * instance 3 binds to cpu c...
1285 	 * ddi_getlongprop() will search /option first, then /
1286 	 * if "drvname"_intpt_bind_cpus doesn't exist, then find
1287 	 * intpt_bind_cpus property.  The syntax is the same, and
1288 	 * it applies to all the devices if its "drvname" specific
1289 	 * property doesn't exist
1290 	 */
1291 	(void) strcpy(prop_name, drv_name);
1292 	(void) strcat(prop_name, "_intpt_bind_cpus");
1293 	rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name,
1294 	    (caddr_t)&prop_val, &prop_len);
1295 	if (rc != DDI_PROP_SUCCESS) {
1296 		rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0,
1297 		    "intpt_bind_cpus", (caddr_t)&prop_val, &prop_len);
1298 	}
1299 	if (rc == DDI_PROP_SUCCESS) {
1300 		for (i = count = 0; i < (prop_len - 1); i++)
1301 			if (prop_val[i] == ',')
1302 				count++;
1303 		if (prop_val[i-1] != ',')
1304 			count++;
1305 		/*
1306 		 * if somehow the binding instances defined in the
1307 		 * property are not enough for this instno., then
1308 		 * reuse the pattern for the next instance until
1309 		 * it reaches the requested instno
1310 		 */
1311 		instno = instance % count;
1312 		i = 0;
1313 		cptr = prop_val;
1314 		while (i < instno)
1315 			if (*cptr++ == ',')
1316 				i++;
1317 		bind_cpu = stoi(&cptr);
1318 		kmem_free(prop_val, prop_len);
1319 		/* if specific CPU is bogus, then default to next cpu */
1320 		if (!apic_cpu_in_range(bind_cpu)) {
1321 			cmn_err(CE_WARN, "%s: %s=%s: CPU %d not present",
1322 			    psm_name, prop_name, prop_val, bind_cpu);
1323 			rc = DDI_PROP_NOT_FOUND;
1324 		} else {
1325 			/* indicate that we are bound at user request */
1326 			bind_cpu |= IRQ_USER_BOUND;
1327 		}
1328 		/*
1329 		 * no need to check apic_cpus[].aci_status, if specific CPU is
1330 		 * not up, then post_cpu_start will handle it.
1331 		 */
1332 	}
1333 
1334 	if (rc != DDI_PROP_SUCCESS) {
1335 		iflag = intr_clear();
1336 		lock_set(&apic_ioapic_lock);
1337 		bind_cpu = apic_get_next_bind_cpu();
1338 		lock_clear(&apic_ioapic_lock);
1339 		intr_restore(iflag);
1340 	}
1341 
1342 	cmn_err(CE_CONT, "!%s: %s (%s) instance %d irq 0x%x "
1343 	    "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
1344 	    psm_name, name, drv_name, instance, irq,
1345 	    apic_irq_table[irq]->airq_vector, ioapicid, intin,
1346 	    bind_cpu & ~IRQ_USER_BOUND);
1347 
1348 	return ((uint32_t)bind_cpu);
1349 }
1350 
1351 /*
1352  * Mark vector as being in the process of being deleted. Interrupts
1353  * may still come in on some CPU. The moment an interrupt comes with
1354  * the new vector, we know we can free the old one. Called only from
1355  * addspl and delspl with interrupts disabled. Because an interrupt
1356  * can be shared, but no interrupt from either device may come in,
1357  * we also use a timeout mechanism, which we arbitrarily set to
1358  * apic_revector_timeout microseconds.
1359  */
1360 static void
1361 apic_mark_vector(uchar_t oldvector, uchar_t newvector)
1362 {
1363 	ulong_t iflag;
1364 
1365 	iflag = intr_clear();
1366 	lock_set(&apic_revector_lock);
1367 	if (!apic_oldvec_to_newvec) {
1368 		apic_oldvec_to_newvec =
1369 		    kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2,
1370 		    KM_NOSLEEP);
1371 
1372 		if (!apic_oldvec_to_newvec) {
1373 			/*
1374 			 * This failure is not catastrophic.
1375 			 * But, the oldvec will never be freed.
1376 			 */
1377 			apic_error |= APIC_ERR_MARK_VECTOR_FAIL;
1378 			lock_clear(&apic_revector_lock);
1379 			intr_restore(iflag);
1380 			return;
1381 		}
1382 		apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR];
1383 	}
1384 
1385 	/* See if we already did this for drivers which do double addintrs */
1386 	if (apic_oldvec_to_newvec[oldvector] != newvector) {
1387 		apic_oldvec_to_newvec[oldvector] = newvector;
1388 		apic_newvec_to_oldvec[newvector] = oldvector;
1389 		apic_revector_pending++;
1390 	}
1391 	lock_clear(&apic_revector_lock);
1392 	intr_restore(iflag);
1393 	(void) timeout(apic_xlate_vector_free_timeout_handler,
1394 	    (void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout));
1395 }
1396 
1397 /*
1398  * xlate_vector is called from intr_enter if revector_pending is set.
1399  * It will xlate it if needed and mark the old vector as free.
1400  */
1401 uchar_t
1402 apic_xlate_vector(uchar_t vector)
1403 {
1404 	uchar_t	newvector, oldvector = 0;
1405 
1406 	lock_set(&apic_revector_lock);
1407 	/* Do we really need to do this ? */
1408 	if (!apic_revector_pending) {
1409 		lock_clear(&apic_revector_lock);
1410 		return (vector);
1411 	}
1412 	if ((newvector = apic_oldvec_to_newvec[vector]) != 0)
1413 		oldvector = vector;
1414 	else {
1415 		/*
1416 		 * The incoming vector is new . See if a stale entry is
1417 		 * remaining
1418 		 */
1419 		if ((oldvector = apic_newvec_to_oldvec[vector]) != 0)
1420 			newvector = vector;
1421 	}
1422 
1423 	if (oldvector) {
1424 		apic_revector_pending--;
1425 		apic_oldvec_to_newvec[oldvector] = 0;
1426 		apic_newvec_to_oldvec[newvector] = 0;
1427 		apic_free_vector(oldvector);
1428 		lock_clear(&apic_revector_lock);
1429 		/* There could have been more than one reprogramming! */
1430 		return (apic_xlate_vector(newvector));
1431 	}
1432 	lock_clear(&apic_revector_lock);
1433 	return (vector);
1434 }
1435 
1436 void
1437 apic_xlate_vector_free_timeout_handler(void *arg)
1438 {
1439 	ulong_t iflag;
1440 	uchar_t oldvector, newvector;
1441 
1442 	oldvector = (uchar_t)(uintptr_t)arg;
1443 	iflag = intr_clear();
1444 	lock_set(&apic_revector_lock);
1445 	if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) {
1446 		apic_free_vector(oldvector);
1447 		apic_oldvec_to_newvec[oldvector] = 0;
1448 		apic_newvec_to_oldvec[newvector] = 0;
1449 		apic_revector_pending--;
1450 	}
1451 
1452 	lock_clear(&apic_revector_lock);
1453 	intr_restore(iflag);
1454 }
1455 
1456 /*
1457  * Bind interrupt corresponding to irq_ptr to bind_cpu.
1458  * Must be called with interrupts disabled and apic_ioapic_lock held
1459  */
1460 int
1461 apic_rebind(apic_irq_t *irq_ptr, int bind_cpu,
1462     struct ioapic_reprogram_data *drep)
1463 {
1464 	int			ioapicindex, intin_no;
1465 	uint32_t		airq_temp_cpu;
1466 	apic_cpus_info_t	*cpu_infop;
1467 	uint32_t		rdt_entry;
1468 	int			which_irq;
1469 	ioapic_rdt_t		irdt;
1470 
1471 	which_irq = apic_vector_to_irq[irq_ptr->airq_vector];
1472 
1473 	intin_no = irq_ptr->airq_intin_no;
1474 	ioapicindex = irq_ptr->airq_ioapicindex;
1475 	airq_temp_cpu = irq_ptr->airq_temp_cpu;
1476 	if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) {
1477 		if (airq_temp_cpu & IRQ_USER_BOUND)
1478 			/* Mask off high bit so it can be used as array index */
1479 			airq_temp_cpu &= ~IRQ_USER_BOUND;
1480 
1481 		ASSERT(apic_cpu_in_range(airq_temp_cpu));
1482 	}
1483 
1484 	/*
1485 	 * Can't bind to a CPU that's not accepting interrupts:
1486 	 */
1487 	cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND];
1488 	if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE))
1489 		return (1);
1490 
1491 	/*
1492 	 * If we are about to change the interrupt vector for this interrupt,
1493 	 * and this interrupt is level-triggered, attached to an IOAPIC,
1494 	 * has been delivered to a CPU and that CPU has not handled it
1495 	 * yet, we cannot reprogram the IOAPIC now.
1496 	 */
1497 	if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
1498 
1499 		rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex,
1500 		    intin_no);
1501 
1502 		if ((irq_ptr->airq_vector != RDT_VECTOR(rdt_entry)) &&
1503 		    apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu,
1504 		    bind_cpu, ioapicindex, intin_no, which_irq, drep) != 0) {
1505 
1506 			return (0);
1507 		}
1508 
1509 		/*
1510 		 * NOTE: We do not unmask the RDT here, as an interrupt MAY
1511 		 * still come in before we have a chance to reprogram it below.
1512 		 * The reprogramming below will simultaneously change and
1513 		 * unmask the RDT entry.
1514 		 */
1515 
1516 		if ((uint32_t)bind_cpu == IRQ_UNBOUND) {
1517 			irdt.ir_lo =  AV_LDEST | AV_LOPRI |
1518 			    irq_ptr->airq_rdt_entry;
1519 
1520 			irdt.ir_hi = AV_TOALL >> APIC_ID_BIT_OFFSET;
1521 
1522 			apic_vt_ops->apic_intrmap_alloc_entry(
1523 			    &irq_ptr->airq_intrmap_private, NULL,
1524 			    DDI_INTR_TYPE_FIXED, 1, ioapicindex);
1525 			apic_vt_ops->apic_intrmap_map_entry(
1526 			    irq_ptr->airq_intrmap_private, (void *)&irdt,
1527 			    DDI_INTR_TYPE_FIXED, 1);
1528 			apic_vt_ops->apic_intrmap_record_rdt(
1529 			    irq_ptr->airq_intrmap_private, &irdt);
1530 
1531 			/* Write the RDT entry -- no specific CPU binding */
1532 			WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
1533 			    irdt.ir_hi | AV_TOALL);
1534 
1535 			if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu !=
1536 			    IRQ_UNBOUND)
1537 				apic_cpus[airq_temp_cpu].aci_temp_bound--;
1538 
1539 			/*
1540 			 * Write the vector, trigger, and polarity portion of
1541 			 * the RDT
1542 			 */
1543 			WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
1544 			    irdt.ir_lo);
1545 
1546 			irq_ptr->airq_temp_cpu = IRQ_UNBOUND;
1547 			return (0);
1548 		}
1549 	}
1550 
1551 	if (bind_cpu & IRQ_USER_BOUND) {
1552 		cpu_infop->aci_bound++;
1553 	} else {
1554 		cpu_infop->aci_temp_bound++;
1555 	}
1556 	ASSERT(apic_cpu_in_range(bind_cpu));
1557 
1558 	if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) {
1559 		apic_cpus[airq_temp_cpu].aci_temp_bound--;
1560 	}
1561 	if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
1562 
1563 		irdt.ir_lo = AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry;
1564 		irdt.ir_hi = cpu_infop->aci_local_id;
1565 
1566 		apic_vt_ops->apic_intrmap_alloc_entry(
1567 		    &irq_ptr->airq_intrmap_private, NULL, DDI_INTR_TYPE_FIXED,
1568 		    1, ioapicindex);
1569 		apic_vt_ops->apic_intrmap_map_entry(
1570 		    irq_ptr->airq_intrmap_private,
1571 		    (void *)&irdt, DDI_INTR_TYPE_FIXED, 1);
1572 		apic_vt_ops->apic_intrmap_record_rdt(
1573 		    irq_ptr->airq_intrmap_private, &irdt);
1574 
1575 		/* Write the RDT entry -- bind to a specific CPU: */
1576 		WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
1577 		    irdt.ir_hi);
1578 
1579 		/* Write the vector, trigger, and polarity portion of the RDT */
1580 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
1581 		    irdt.ir_lo);
1582 
1583 	} else {
1584 		int type = (irq_ptr->airq_mps_intr_index == MSI_INDEX) ?
1585 		    DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX;
1586 		if (type == DDI_INTR_TYPE_MSI) {
1587 			if (irq_ptr->airq_ioapicindex ==
1588 			    irq_ptr->airq_origirq) {
1589 				/* first one */
1590 				DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
1591 				    "apic_pci_msi_enable_vector\n"));
1592 				apic_pci_msi_enable_vector(irq_ptr,
1593 				    type, which_irq, irq_ptr->airq_vector,
1594 				    irq_ptr->airq_intin_no,
1595 				    cpu_infop->aci_local_id);
1596 			}
1597 			if ((irq_ptr->airq_ioapicindex +
1598 			    irq_ptr->airq_intin_no - 1) ==
1599 			    irq_ptr->airq_origirq) { /* last one */
1600 				DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
1601 				    "apic_pci_msi_enable_mode\n"));
1602 				apic_pci_msi_enable_mode(irq_ptr->airq_dip,
1603 				    type, which_irq);
1604 			}
1605 		} else { /* MSI-X */
1606 			apic_pci_msi_enable_vector(irq_ptr, type,
1607 			    irq_ptr->airq_origirq, irq_ptr->airq_vector, 1,
1608 			    cpu_infop->aci_local_id);
1609 			apic_pci_msi_enable_mode(irq_ptr->airq_dip, type,
1610 			    irq_ptr->airq_origirq);
1611 		}
1612 	}
1613 	irq_ptr->airq_temp_cpu = (uint32_t)bind_cpu;
1614 	apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND));
1615 	return (0);
1616 }
1617 
1618 static void
1619 apic_last_ditch_clear_remote_irr(int ioapic_ix, int intin_no)
1620 {
1621 	if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no)
1622 	    & AV_REMOTE_IRR) != 0) {
1623 		/*
1624 		 * Trying to clear the bit through normal
1625 		 * channels has failed.  So as a last-ditch
1626 		 * effort, try to set the trigger mode to
1627 		 * edge, then to level.  This has been
1628 		 * observed to work on many systems.
1629 		 */
1630 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1631 		    intin_no,
1632 		    READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1633 		    intin_no) & ~AV_LEVEL);
1634 
1635 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1636 		    intin_no,
1637 		    READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1638 		    intin_no) | AV_LEVEL);
1639 
1640 		/*
1641 		 * If the bit's STILL set, this interrupt may
1642 		 * be hosed.
1643 		 */
1644 		if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1645 		    intin_no) & AV_REMOTE_IRR) != 0) {
1646 
1647 			prom_printf("%s: Remote IRR still "
1648 			    "not clear for IOAPIC %d intin %d.\n"
1649 			    "\tInterrupts to this pin may cease "
1650 			    "functioning.\n", psm_name, ioapic_ix,
1651 			    intin_no);
1652 #ifdef DEBUG
1653 			apic_last_ditch_reprogram_failures++;
1654 #endif
1655 		}
1656 	}
1657 }
1658 
1659 /*
1660  * This function is protected by apic_ioapic_lock coupled with the
1661  * fact that interrupts are disabled.
1662  */
1663 static void
1664 delete_defer_repro_ent(int which_irq)
1665 {
1666 	ASSERT(which_irq >= 0);
1667 	ASSERT(which_irq <= 255);
1668 	ASSERT(LOCK_HELD(&apic_ioapic_lock));
1669 
1670 	if (apic_reprogram_info[which_irq].done)
1671 		return;
1672 
1673 	apic_reprogram_info[which_irq].done = B_TRUE;
1674 
1675 #ifdef DEBUG
1676 	apic_defer_repro_total_retries +=
1677 	    apic_reprogram_info[which_irq].tries;
1678 
1679 	apic_defer_repro_successes++;
1680 #endif
1681 
1682 	if (--apic_reprogram_outstanding == 0) {
1683 
1684 		setlvlx = psm_intr_exit_fn();
1685 	}
1686 }
1687 
1688 
1689 /*
1690  * Interrupts must be disabled during this function to prevent
1691  * self-deadlock.  Interrupts are disabled because this function
1692  * is called from apic_check_stuck_interrupt(), which is called
1693  * from apic_rebind(), which requires its caller to disable interrupts.
1694  */
1695 static void
1696 add_defer_repro_ent(apic_irq_t *irq_ptr, int which_irq, int new_bind_cpu)
1697 {
1698 	ASSERT(which_irq >= 0);
1699 	ASSERT(which_irq <= 255);
1700 	ASSERT(!interrupts_enabled());
1701 
1702 	/*
1703 	 * On the off-chance that there's already a deferred
1704 	 * reprogramming on this irq, check, and if so, just update the
1705 	 * CPU and irq pointer to which the interrupt is targeted, then return.
1706 	 */
1707 	if (!apic_reprogram_info[which_irq].done) {
1708 		apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
1709 		apic_reprogram_info[which_irq].irqp = irq_ptr;
1710 		return;
1711 	}
1712 
1713 	apic_reprogram_info[which_irq].irqp = irq_ptr;
1714 	apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
1715 	apic_reprogram_info[which_irq].tries = 0;
1716 	/*
1717 	 * This must be the last thing set, since we're not
1718 	 * grabbing any locks, apic_try_deferred_reprogram() will
1719 	 * make its decision about using this entry iff done
1720 	 * is false.
1721 	 */
1722 	apic_reprogram_info[which_irq].done = B_FALSE;
1723 
1724 	/*
1725 	 * If there were previously no deferred reprogrammings, change
1726 	 * setlvlx to call apic_try_deferred_reprogram()
1727 	 */
1728 	if (++apic_reprogram_outstanding == 1) {
1729 
1730 		setlvlx = apic_try_deferred_reprogram;
1731 	}
1732 }
1733 
1734 static void
1735 apic_try_deferred_reprogram(int prev_ipl, int irq)
1736 {
1737 	int reproirq;
1738 	ulong_t iflag;
1739 	struct ioapic_reprogram_data *drep;
1740 
1741 	(*psm_intr_exit_fn())(prev_ipl, irq);
1742 
1743 	if (!lock_try(&apic_defer_reprogram_lock)) {
1744 		return;
1745 	}
1746 
1747 	/*
1748 	 * Acquire the apic_ioapic_lock so that any other operations that
1749 	 * may affect the apic_reprogram_info state are serialized.
1750 	 * It's still possible for the last deferred reprogramming to clear
1751 	 * between the time we entered this function and the time we get to
1752 	 * the for loop below.  In that case, *setlvlx will have been set
1753 	 * back to *_intr_exit and drep will be NULL. (There's no way to
1754 	 * stop that from happening -- we would need to grab a lock before
1755 	 * calling *setlvlx, which is neither realistic nor prudent).
1756 	 */
1757 	iflag = intr_clear();
1758 	lock_set(&apic_ioapic_lock);
1759 
1760 	/*
1761 	 * For each deferred RDT entry, try to reprogram it now.  Note that
1762 	 * there is no lock acquisition to read apic_reprogram_info because
1763 	 * '.done' is set only after the other fields in the structure are set.
1764 	 */
1765 
1766 	drep = NULL;
1767 	for (reproirq = 0; reproirq <= APIC_MAX_VECTOR; reproirq++) {
1768 		if (apic_reprogram_info[reproirq].done == B_FALSE) {
1769 			drep = &apic_reprogram_info[reproirq];
1770 			break;
1771 		}
1772 	}
1773 
1774 	/*
1775 	 * Either we found a deferred action to perform, or
1776 	 * we entered this function spuriously, after *setlvlx
1777 	 * was restored to point to *_intr_exit.  Any other
1778 	 * permutation is invalid.
1779 	 */
1780 	ASSERT(drep != NULL || *setlvlx == psm_intr_exit_fn());
1781 
1782 	/*
1783 	 * Though we can't really do anything about errors
1784 	 * at this point, keep track of them for reporting.
1785 	 * Note that it is very possible for apic_setup_io_intr
1786 	 * to re-register this very timeout if the Remote IRR bit
1787 	 * has not yet cleared.
1788 	 */
1789 
1790 #ifdef DEBUG
1791 	if (drep != NULL) {
1792 		if (apic_setup_io_intr(drep, reproirq, B_TRUE) != 0) {
1793 			apic_deferred_setup_failures++;
1794 		}
1795 	} else {
1796 		apic_deferred_spurious_enters++;
1797 	}
1798 #else
1799 	if (drep != NULL)
1800 		(void) apic_setup_io_intr(drep, reproirq, B_TRUE);
1801 #endif
1802 
1803 	lock_clear(&apic_ioapic_lock);
1804 	intr_restore(iflag);
1805 
1806 	lock_clear(&apic_defer_reprogram_lock);
1807 }
1808 
1809 static void
1810 apic_ioapic_wait_pending_clear(int ioapic_ix, int intin_no)
1811 {
1812 	int waited;
1813 
1814 	/*
1815 	 * Wait for the delivery pending bit to clear.
1816 	 */
1817 	if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
1818 	    (AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) {
1819 
1820 		/*
1821 		 * If we're still waiting on the delivery of this interrupt,
1822 		 * continue to wait here until it is delivered (this should be
1823 		 * a very small amount of time, but include a timeout just in
1824 		 * case).
1825 		 */
1826 		for (waited = 0; waited < apic_max_reps_clear_pending;
1827 		    waited++) {
1828 			if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1829 			    intin_no) & AV_PENDING) == 0) {
1830 				break;
1831 			}
1832 		}
1833 	}
1834 }
1835 
1836 
1837 /*
1838  * Checks to see if the IOAPIC interrupt entry specified has its Remote IRR
1839  * bit set.  Calls functions that modify the function that setlvlx points to,
1840  * so that the reprogramming can be retried very shortly.
1841  *
1842  * This function will mask the RDT entry if the interrupt is level-triggered.
1843  * (The caller is responsible for unmasking the RDT entry.)
1844  *
1845  * Returns non-zero if the caller should defer IOAPIC reprogramming.
1846  */
1847 static int
1848 apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
1849     int new_bind_cpu, int ioapic_ix, int intin_no, int which_irq,
1850     struct ioapic_reprogram_data *drep)
1851 {
1852 	int32_t			rdt_entry;
1853 	int			waited;
1854 	int			reps = 0;
1855 
1856 	/*
1857 	 * Wait for the delivery pending bit to clear.
1858 	 */
1859 	do {
1860 		++reps;
1861 
1862 		apic_ioapic_wait_pending_clear(ioapic_ix, intin_no);
1863 
1864 		/*
1865 		 * Mask the RDT entry, but only if it's a level-triggered
1866 		 * interrupt
1867 		 */
1868 		rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1869 		    intin_no);
1870 		if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) {
1871 
1872 			/* Mask it */
1873 			WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no,
1874 			    AV_MASK | rdt_entry);
1875 		}
1876 
1877 		if ((rdt_entry & AV_LEVEL) == AV_LEVEL) {
1878 			/*
1879 			 * If there was a race and an interrupt was injected
1880 			 * just before we masked, check for that case here.
1881 			 * Then, unmask the RDT entry and try again.  If we're
1882 			 * on our last try, don't unmask (because we want the
1883 			 * RDT entry to remain masked for the rest of the
1884 			 * function).
1885 			 */
1886 			rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1887 			    intin_no);
1888 			if ((rdt_entry & AV_PENDING) &&
1889 			    (reps < apic_max_reps_clear_pending)) {
1890 				/* Unmask it */
1891 				WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1892 				    intin_no, rdt_entry & ~AV_MASK);
1893 			}
1894 		}
1895 
1896 	} while ((rdt_entry & AV_PENDING) &&
1897 	    (reps < apic_max_reps_clear_pending));
1898 
1899 #ifdef DEBUG
1900 		if (rdt_entry & AV_PENDING)
1901 			apic_intr_deliver_timeouts++;
1902 #endif
1903 
1904 	/*
1905 	 * If the remote IRR bit is set, then the interrupt has been sent
1906 	 * to a CPU for processing.  We have no choice but to wait for
1907 	 * that CPU to process the interrupt, at which point the remote IRR
1908 	 * bit will be cleared.
1909 	 */
1910 	if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
1911 	    (AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) {
1912 
1913 		/*
1914 		 * If the CPU that this RDT is bound to is NOT the current
1915 		 * CPU, wait until that CPU handles the interrupt and ACKs
1916 		 * it.  If this interrupt is not bound to any CPU (that is,
1917 		 * if it's bound to the logical destination of "anyone"), it
1918 		 * may have been delivered to the current CPU so handle that
1919 		 * case by deferring the reprogramming (below).
1920 		 */
1921 		if ((old_bind_cpu != IRQ_UNBOUND) &&
1922 		    (old_bind_cpu != IRQ_UNINIT) &&
1923 		    (old_bind_cpu != psm_get_cpu_id())) {
1924 			for (waited = 0; waited < apic_max_reps_clear_pending;
1925 			    waited++) {
1926 				if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1927 				    intin_no) & AV_REMOTE_IRR) == 0) {
1928 
1929 					delete_defer_repro_ent(which_irq);
1930 
1931 					/* Remote IRR has cleared! */
1932 					return (0);
1933 				}
1934 			}
1935 		}
1936 
1937 		/*
1938 		 * If we waited and the Remote IRR bit is still not cleared,
1939 		 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
1940 		 * times for this interrupt, try the last-ditch workaround:
1941 		 */
1942 		if (drep && drep->tries >= APIC_REPROGRAM_MAX_TRIES) {
1943 
1944 			apic_last_ditch_clear_remote_irr(ioapic_ix, intin_no);
1945 
1946 			/* Mark this one as reprogrammed: */
1947 			delete_defer_repro_ent(which_irq);
1948 
1949 			return (0);
1950 		} else {
1951 #ifdef DEBUG
1952 			apic_intr_deferrals++;
1953 #endif
1954 
1955 			/*
1956 			 * If waiting for the Remote IRR bit (above) didn't
1957 			 * allow it to clear, defer the reprogramming.
1958 			 * Add a new deferred-programming entry if the
1959 			 * caller passed a NULL one (and update the existing one
1960 			 * in case anything changed).
1961 			 */
1962 			add_defer_repro_ent(irq_ptr, which_irq, new_bind_cpu);
1963 			if (drep)
1964 				drep->tries++;
1965 
1966 			/* Inform caller to defer IOAPIC programming: */
1967 			return (1);
1968 		}
1969 
1970 	}
1971 
1972 	/* Remote IRR is clear */
1973 	delete_defer_repro_ent(which_irq);
1974 
1975 	return (0);
1976 }
1977 
1978 /*
1979  * Called to migrate all interrupts at an irq to another cpu.
1980  * Must be called with interrupts disabled and apic_ioapic_lock held
1981  */
1982 int
1983 apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu)
1984 {
1985 	apic_irq_t	*irqptr = irq_ptr;
1986 	int		retval = 0;
1987 
1988 	while (irqptr) {
1989 		if (irqptr->airq_temp_cpu != IRQ_UNINIT)
1990 			retval |= apic_rebind(irqptr, bind_cpu, NULL);
1991 		irqptr = irqptr->airq_next;
1992 	}
1993 
1994 	return (retval);
1995 }
1996 
1997 /*
1998  * apic_intr_redistribute does all the messy computations for identifying
1999  * which interrupt to move to which CPU. Currently we do just one interrupt
2000  * at a time. This reduces the time we spent doing all this within clock
2001  * interrupt. When it is done in idle, we could do more than 1.
2002  * First we find the most busy and the most free CPU (time in ISR only)
2003  * skipping those CPUs that has been identified as being ineligible (cpu_skip)
2004  * Then we look for IRQs which are closest to the difference between the
2005  * most busy CPU and the average ISR load. We try to find one whose load
2006  * is less than difference.If none exists, then we chose one larger than the
2007  * difference, provided it does not make the most idle CPU worse than the
2008  * most busy one. In the end, we clear all the busy fields for CPUs. For
2009  * IRQs, they are cleared as they are scanned.
2010  */
2011 void
2012 apic_intr_redistribute(void)
2013 {
2014 	int busiest_cpu, most_free_cpu;
2015 	int cpu_free, cpu_busy, max_busy, min_busy;
2016 	int min_free, diff;
2017 	int average_busy, cpus_online;
2018 	int i, busy;
2019 	ulong_t iflag;
2020 	apic_cpus_info_t *cpu_infop;
2021 	apic_irq_t *min_busy_irq = NULL;
2022 	apic_irq_t *max_busy_irq = NULL;
2023 
2024 	busiest_cpu = most_free_cpu = -1;
2025 	cpu_free = cpu_busy = max_busy = average_busy = 0;
2026 	min_free = apic_sample_factor_redistribution;
2027 	cpus_online = 0;
2028 	/*
2029 	 * Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu
2030 	 * without ioapic_lock. That is OK as we are just doing statistical
2031 	 * sampling anyway and any inaccuracy now will get corrected next time
2032 	 * The call to rebind which actually changes things will make sure
2033 	 * we are consistent.
2034 	 */
2035 	for (i = 0; i < apic_nproc; i++) {
2036 		if (apic_cpu_in_range(i) &&
2037 		    !(apic_redist_cpu_skip & (1 << i)) &&
2038 		    (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) {
2039 
2040 			cpu_infop = &apic_cpus[i];
2041 			/*
2042 			 * If no unbound interrupts or only 1 total on this
2043 			 * CPU, skip
2044 			 */
2045 			if (!cpu_infop->aci_temp_bound ||
2046 			    (cpu_infop->aci_bound + cpu_infop->aci_temp_bound)
2047 			    == 1) {
2048 				apic_redist_cpu_skip |= 1 << i;
2049 				continue;
2050 			}
2051 
2052 			busy = cpu_infop->aci_busy;
2053 			average_busy += busy;
2054 			cpus_online++;
2055 			if (max_busy < busy) {
2056 				max_busy = busy;
2057 				busiest_cpu = i;
2058 			}
2059 			if (min_free > busy) {
2060 				min_free = busy;
2061 				most_free_cpu = i;
2062 			}
2063 			if (busy > apic_int_busy_mark) {
2064 				cpu_busy |= 1 << i;
2065 			} else {
2066 				if (busy < apic_int_free_mark)
2067 					cpu_free |= 1 << i;
2068 			}
2069 		}
2070 	}
2071 	if ((cpu_busy && cpu_free) ||
2072 	    (max_busy >= (min_free + apic_diff_for_redistribution))) {
2073 
2074 		apic_num_imbalance++;
2075 #ifdef	DEBUG
2076 		if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2077 			prom_printf(
2078 			    "redistribute busy=%x free=%x max=%x min=%x",
2079 			    cpu_busy, cpu_free, max_busy, min_free);
2080 		}
2081 #endif /* DEBUG */
2082 
2083 
2084 		average_busy /= cpus_online;
2085 
2086 		diff = max_busy - average_busy;
2087 		min_busy = max_busy; /* start with the max possible value */
2088 		max_busy = 0;
2089 		min_busy_irq = max_busy_irq = NULL;
2090 		i = apic_min_device_irq;
2091 		for (; i <= apic_max_device_irq; i++) {
2092 			apic_irq_t *irq_ptr;
2093 			/* Change to linked list per CPU ? */
2094 			if ((irq_ptr = apic_irq_table[i]) == NULL)
2095 				continue;
2096 			/* Check for irq_busy & decide which one to move */
2097 			/* Also zero them for next round */
2098 			if ((irq_ptr->airq_temp_cpu == busiest_cpu) &&
2099 			    irq_ptr->airq_busy) {
2100 				if (irq_ptr->airq_busy < diff) {
2101 					/*
2102 					 * Check for least busy CPU,
2103 					 * best fit or what ?
2104 					 */
2105 					if (max_busy < irq_ptr->airq_busy) {
2106 						/*
2107 						 * Most busy within the
2108 						 * required differential
2109 						 */
2110 						max_busy = irq_ptr->airq_busy;
2111 						max_busy_irq = irq_ptr;
2112 					}
2113 				} else {
2114 					if (min_busy > irq_ptr->airq_busy) {
2115 						/*
2116 						 * least busy, but more than
2117 						 * the reqd diff
2118 						 */
2119 						if (min_busy <
2120 						    (diff + average_busy -
2121 						    min_free)) {
2122 							/*
2123 							 * Making sure new cpu
2124 							 * will not end up
2125 							 * worse
2126 							 */
2127 							min_busy =
2128 							    irq_ptr->airq_busy;
2129 
2130 							min_busy_irq = irq_ptr;
2131 						}
2132 					}
2133 				}
2134 			}
2135 			irq_ptr->airq_busy = 0;
2136 		}
2137 
2138 		if (max_busy_irq != NULL) {
2139 #ifdef	DEBUG
2140 			if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2141 				prom_printf("rebinding %x to %x",
2142 				    max_busy_irq->airq_vector, most_free_cpu);
2143 			}
2144 #endif /* DEBUG */
2145 			iflag = intr_clear();
2146 			if (lock_try(&apic_ioapic_lock)) {
2147 				if (apic_rebind_all(max_busy_irq,
2148 				    most_free_cpu) == 0) {
2149 					/* Make change permenant */
2150 					max_busy_irq->airq_cpu =
2151 					    (uint32_t)most_free_cpu;
2152 				}
2153 				lock_clear(&apic_ioapic_lock);
2154 			}
2155 			intr_restore(iflag);
2156 
2157 		} else if (min_busy_irq != NULL) {
2158 #ifdef	DEBUG
2159 			if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2160 				prom_printf("rebinding %x to %x",
2161 				    min_busy_irq->airq_vector, most_free_cpu);
2162 			}
2163 #endif /* DEBUG */
2164 
2165 			iflag = intr_clear();
2166 			if (lock_try(&apic_ioapic_lock)) {
2167 				if (apic_rebind_all(min_busy_irq,
2168 				    most_free_cpu) == 0) {
2169 					/* Make change permenant */
2170 					min_busy_irq->airq_cpu =
2171 					    (uint32_t)most_free_cpu;
2172 				}
2173 				lock_clear(&apic_ioapic_lock);
2174 			}
2175 			intr_restore(iflag);
2176 
2177 		} else {
2178 			if (cpu_busy != (1 << busiest_cpu)) {
2179 				apic_redist_cpu_skip |= 1 << busiest_cpu;
2180 				/*
2181 				 * We leave cpu_skip set so that next time we
2182 				 * can choose another cpu
2183 				 */
2184 			}
2185 		}
2186 		apic_num_rebind++;
2187 	} else {
2188 		/*
2189 		 * found nothing. Could be that we skipped over valid CPUs
2190 		 * or we have balanced everything. If we had a variable
2191 		 * ticks_for_redistribution, it could be increased here.
2192 		 * apic_int_busy, int_free etc would also need to be
2193 		 * changed.
2194 		 */
2195 		if (apic_redist_cpu_skip)
2196 			apic_redist_cpu_skip = 0;
2197 	}
2198 	for (i = 0; i < apic_nproc; i++) {
2199 		if (apic_cpu_in_range(i)) {
2200 			apic_cpus[i].aci_busy = 0;
2201 		}
2202 	}
2203 }
2204 
2205 void
2206 apic_cleanup_busy(void)
2207 {
2208 	int i;
2209 	apic_irq_t *irq_ptr;
2210 
2211 	for (i = 0; i < apic_nproc; i++) {
2212 		if (apic_cpu_in_range(i)) {
2213 			apic_cpus[i].aci_busy = 0;
2214 		}
2215 	}
2216 
2217 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
2218 		if ((irq_ptr = apic_irq_table[i]) != NULL)
2219 			irq_ptr->airq_busy = 0;
2220 	}
2221 }
2222