xref: /illumos-gate/usr/src/uts/i86pc/io/mp_platform_misc.c (revision 5243e3342f14ea9f300eadae1c8524571a933a1b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2017 Joyent, Inc.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 /*
31  * Copyright (c) 2018, Joyent, Inc.
32  */
33 
34 /*
35  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
36  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
37  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
38  * PSMI 1.5 extensions are supported in Solaris Nevada.
39  * PSMI 1.6 extensions are supported in Solaris Nevada.
40  * PSMI 1.7 extensions are supported in Solaris Nevada.
41  */
42 #define	PSMI_1_7
43 
44 #include <sys/processor.h>
45 #include <sys/time.h>
46 #include <sys/psm.h>
47 #include <sys/smp_impldefs.h>
48 #include <sys/inttypes.h>
49 #include <sys/cram.h>
50 #include <sys/acpi/acpi.h>
51 #include <sys/acpica.h>
52 #include <sys/psm_common.h>
53 #include <sys/apic.h>
54 #include <sys/apic_common.h>
55 #include <sys/pit.h>
56 #include <sys/ddi.h>
57 #include <sys/sunddi.h>
58 #include <sys/ddi_impldefs.h>
59 #include <sys/pci.h>
60 #include <sys/promif.h>
61 #include <sys/x86_archext.h>
62 #include <sys/cpc_impl.h>
63 #include <sys/uadmin.h>
64 #include <sys/panic.h>
65 #include <sys/debug.h>
66 #include <sys/archsystm.h>
67 #include <sys/trap.h>
68 #include <sys/machsystm.h>
69 #include <sys/cpuvar.h>
70 #include <sys/rm_platter.h>
71 #include <sys/privregs.h>
72 #include <sys/cyclic.h>
73 #include <sys/note.h>
74 #include <sys/pci_intr_lib.h>
75 #include <sys/sunndi.h>
76 #include <sys/hpet.h>
77 #include <sys/clock.h>
78 
79 /*
80  * Part of mp_platfrom_common.c that's used only by pcplusmp & xpv_psm
81  * but not apix.
82  * These functions may be moved to xpv_psm later when apix and pcplusmp
83  * are merged together
84  */
85 
86 /*
87  *	Local Function Prototypes
88  */
89 static void apic_mark_vector(uchar_t oldvector, uchar_t newvector);
90 static void apic_xlate_vector_free_timeout_handler(void *arg);
91 static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
92     int new_bind_cpu, int apicindex, int intin_no, int which_irq,
93     struct ioapic_reprogram_data *drep);
94 static int apic_setup_irq_table(dev_info_t *dip, int irqno,
95     struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp,
96     int type);
97 static void apic_try_deferred_reprogram(int ipl, int vect);
98 static void delete_defer_repro_ent(int which_irq);
99 static void apic_ioapic_wait_pending_clear(int ioapicindex,
100     int intin_no);
101 
102 extern int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
103     int ipin, int *pci_irqp, iflag_t *intr_flagp);
104 extern int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
105     int child_ipin, struct apic_io_intr **intrp);
106 extern uchar_t acpi_find_ioapic(int irq);
107 extern struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
108 extern int apic_find_bus_id(int bustype);
109 extern int apic_find_intin(uchar_t ioapic, uchar_t intin);
110 extern void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
111 
112 extern	int apic_sci_vect;
113 extern	iflag_t apic_sci_flags;
114 /* ACPI HPET interrupt configuration; -1 if HPET not used */
115 extern	int apic_hpet_vect;
116 extern	iflag_t apic_hpet_flags;
117 extern	int	apic_intr_policy;
118 extern	char *psm_name;
119 
120 /*
121  * number of bits per byte, from <sys/param.h>
122  */
123 #define	UCHAR_MAX	UINT8_MAX
124 
125 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
126 extern int apic_max_reps_clear_pending;
127 
128 /* The irq # is implicit in the array index: */
129 struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1];
130 /*
131  * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info
132  * is indexed by IRQ number, NOT by vector number.
133  */
134 
135 extern	int	apic_int_busy_mark;
136 extern	int	apic_int_free_mark;
137 extern	int	apic_diff_for_redistribution;
138 extern	int	apic_sample_factor_redistribution;
139 extern	int	apic_redist_cpu_skip;
140 extern	int	apic_num_imbalance;
141 extern	int	apic_num_rebind;
142 
143 /* timeout for xlate_vector, mark_vector */
144 int	apic_revector_timeout = 16 * 10000; /* 160 millisec */
145 
146 extern int	apic_defconf;
147 extern int	apic_irq_translate;
148 
149 extern int	apic_use_acpi_madt_only;	/* 1=ONLY use MADT from ACPI */
150 
151 extern	uchar_t	apic_io_vectbase[MAX_IO_APIC];
152 
153 extern	boolean_t ioapic_mask_workaround[MAX_IO_APIC];
154 
155 /*
156  * First available slot to be used as IRQ index into the apic_irq_table
157  * for those interrupts (like MSI/X) that don't have a physical IRQ.
158  */
159 extern int apic_first_avail_irq;
160 
161 /*
162  * apic_defer_reprogram_lock ensures that only one processor is handling
163  * deferred interrupt programming at *_intr_exit time.
164  */
165 static	lock_t	apic_defer_reprogram_lock;
166 
167 /*
168  * The current number of deferred reprogrammings outstanding
169  */
170 uint_t	apic_reprogram_outstanding = 0;
171 
172 #ifdef DEBUG
173 /*
174  * Counters that keep track of deferred reprogramming stats
175  */
176 uint_t	apic_intr_deferrals = 0;
177 uint_t	apic_intr_deliver_timeouts = 0;
178 uint_t	apic_last_ditch_reprogram_failures = 0;
179 uint_t	apic_deferred_setup_failures = 0;
180 uint_t	apic_defer_repro_total_retries = 0;
181 uint_t	apic_defer_repro_successes = 0;
182 uint_t	apic_deferred_spurious_enters = 0;
183 #endif
184 
185 extern	int	apic_io_max;
186 extern	struct apic_io_intr *apic_io_intrp;
187 
188 uchar_t	apic_vector_to_irq[APIC_MAX_VECTOR+1];
189 
190 extern	uint32_t	eisa_level_intr_mask;
191 	/* At least MSB will be set if EISA bus */
192 
193 extern	int	apic_pci_bus_total;
194 extern	uchar_t	apic_single_pci_busid;
195 
196 /*
197  * Following declarations are for revectoring; used when ISRs at different
198  * IPLs share an irq.
199  */
200 static	lock_t	apic_revector_lock;
201 int	apic_revector_pending = 0;
202 static	uchar_t	*apic_oldvec_to_newvec;
203 static	uchar_t	*apic_newvec_to_oldvec;
204 
205 /* ACPI Interrupt Source Override Structure ptr */
206 extern ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop;
207 extern int acpi_iso_cnt;
208 
209 /*
210  * Auto-configuration routines
211  */
212 
213 /*
214  * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable
215  * are also set to NULL. vector->irq is set to a value which cannot map
216  * to a real irq to show that it is free.
217  */
218 void
219 apic_init_common(void)
220 {
221 	int	i, j, indx;
222 	int	*iptr;
223 
224 	/*
225 	 * Initialize apic_ipls from apic_vectortoipl.  This array is
226 	 * used in apic_intr_enter to determine the IPL to use for the
227 	 * corresponding vector.  On some systems, due to hardware errata
228 	 * and interrupt sharing, the IPL may not correspond to the IPL listed
229 	 * in apic_vectortoipl (see apic_addspl and apic_delspl).
230 	 */
231 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
232 		indx = i * APIC_VECTOR_PER_IPL;
233 
234 		for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++)
235 			apic_ipls[indx] = apic_vectortoipl[i];
236 	}
237 
238 	/* cpu 0 is always up (for now) */
239 	apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
240 
241 	iptr = (int *)&apic_irq_table[0];
242 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
243 		apic_level_intr[i] = 0;
244 		*iptr++ = NULL;
245 		apic_vector_to_irq[i] = APIC_RESV_IRQ;
246 
247 		/* These *must* be initted to B_TRUE! */
248 		apic_reprogram_info[i].done = B_TRUE;
249 		apic_reprogram_info[i].irqp = NULL;
250 		apic_reprogram_info[i].tries = 0;
251 		apic_reprogram_info[i].bindcpu = 0;
252 	}
253 
254 	/*
255 	 * Allocate a dummy irq table entry for the reserved entry.
256 	 * This takes care of the race between removing an irq and
257 	 * clock detecting a CPU in that irq during interrupt load
258 	 * sampling.
259 	 */
260 	apic_irq_table[APIC_RESV_IRQ] =
261 	    kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
262 
263 	mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
264 }
265 
266 void
267 ioapic_init_intr(int mask_apic)
268 {
269 	int ioapic_ix;
270 	struct intrspec ispec;
271 	apic_irq_t *irqptr;
272 	int i, j;
273 	ulong_t iflag;
274 
275 	LOCK_INIT_CLEAR(&apic_revector_lock);
276 	LOCK_INIT_CLEAR(&apic_defer_reprogram_lock);
277 
278 	/* mask interrupt vectors */
279 	for (j = 0; j < apic_io_max && mask_apic; j++) {
280 		int intin_max;
281 
282 		ioapic_ix = j;
283 		/* Bits 23-16 define the maximum redirection entries */
284 		intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
285 		    & 0xff;
286 		for (i = 0; i <= intin_max; i++)
287 			ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * i, AV_MASK);
288 	}
289 
290 	/*
291 	 * Hack alert: deal with ACPI SCI interrupt chicken/egg here
292 	 */
293 	if (apic_sci_vect > 0) {
294 		/*
295 		 * acpica has already done add_avintr(); we just
296 		 * to finish the job by mimicing translate_irq()
297 		 *
298 		 * Fake up an intrspec and setup the tables
299 		 */
300 		ispec.intrspec_vec = apic_sci_vect;
301 		ispec.intrspec_pri = SCI_IPL;
302 
303 		if (apic_setup_irq_table(NULL, apic_sci_vect, NULL,
304 		    &ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) {
305 			cmn_err(CE_WARN, "!apic: SCI setup failed");
306 			return;
307 		}
308 		irqptr = apic_irq_table[apic_sci_vect];
309 
310 		iflag = intr_clear();
311 		lock_set(&apic_ioapic_lock);
312 
313 		/* Program I/O APIC */
314 		(void) apic_setup_io_intr(irqptr, apic_sci_vect, B_FALSE);
315 
316 		lock_clear(&apic_ioapic_lock);
317 		intr_restore(iflag);
318 
319 		irqptr->airq_share++;
320 	}
321 
322 	/*
323 	 * Hack alert: deal with ACPI HPET interrupt chicken/egg here.
324 	 */
325 	if (apic_hpet_vect > 0) {
326 		/*
327 		 * hpet has already done add_avintr(); we just need
328 		 * to finish the job by mimicing translate_irq()
329 		 *
330 		 * Fake up an intrspec and setup the tables
331 		 */
332 		ispec.intrspec_vec = apic_hpet_vect;
333 		ispec.intrspec_pri = CBE_HIGH_PIL;
334 
335 		if (apic_setup_irq_table(NULL, apic_hpet_vect, NULL,
336 		    &ispec, &apic_hpet_flags, DDI_INTR_TYPE_FIXED) < 0) {
337 			cmn_err(CE_WARN, "!apic: HPET setup failed");
338 			return;
339 		}
340 		irqptr = apic_irq_table[apic_hpet_vect];
341 
342 		iflag = intr_clear();
343 		lock_set(&apic_ioapic_lock);
344 
345 		/* Program I/O APIC */
346 		(void) apic_setup_io_intr(irqptr, apic_hpet_vect, B_FALSE);
347 
348 		lock_clear(&apic_ioapic_lock);
349 		intr_restore(iflag);
350 
351 		irqptr->airq_share++;
352 	}
353 }
354 
355 /*
356  * Add mask bits to disable interrupt vector from happening
357  * at or above IPL. In addition, it should remove mask bits
358  * to enable interrupt vectors below the given IPL.
359  *
360  * Both add and delspl are complicated by the fact that different interrupts
361  * may share IRQs. This can happen in two ways.
362  * 1. The same H/W line is shared by more than 1 device
363  * 1a. with interrupts at different IPLs
364  * 1b. with interrupts at same IPL
365  * 2. We ran out of vectors at a given IPL and started sharing vectors.
366  * 1b and 2 should be handled gracefully, except for the fact some ISRs
367  * will get called often when no interrupt is pending for the device.
368  * For 1a, we handle it at the higher IPL.
369  */
370 /*ARGSUSED*/
371 int
372 apic_addspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
373 {
374 	uchar_t vector;
375 	ulong_t iflag;
376 	apic_irq_t *irqptr, *irqheadptr;
377 	int irqindex;
378 
379 	ASSERT(max_ipl <= UCHAR_MAX);
380 	irqindex = IRQINDEX(irqno);
381 
382 	if ((irqindex == -1) || (!apic_irq_table[irqindex]))
383 		return (PSM_FAILURE);
384 
385 	mutex_enter(&airq_mutex);
386 	irqptr = irqheadptr = apic_irq_table[irqindex];
387 
388 	DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x "
389 	    "vector=0x%x\n", (void *)irqptr->airq_dip,
390 	    irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
391 
392 	while (irqptr) {
393 		if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
394 			break;
395 		irqptr = irqptr->airq_next;
396 	}
397 	irqptr->airq_share++;
398 
399 	mutex_exit(&airq_mutex);
400 
401 	/* return if it is not hardware interrupt */
402 	if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
403 		return (PSM_SUCCESS);
404 
405 	/* Or if there are more interupts at a higher IPL */
406 	if (ipl != max_ipl)
407 		return (PSM_SUCCESS);
408 
409 	/*
410 	 * if apic_picinit() has not been called yet, just return.
411 	 * At the end of apic_picinit(), we will call setup_io_intr().
412 	 */
413 
414 	if (!apic_picinit_called)
415 		return (PSM_SUCCESS);
416 
417 	/*
418 	 * Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate,
419 	 * return failure.
420 	 */
421 	if (irqptr->airq_ipl != max_ipl &&
422 	    !ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
423 
424 		vector = apic_allocate_vector(max_ipl, irqindex, 1);
425 		if (vector == 0) {
426 			irqptr->airq_share--;
427 			return (PSM_FAILURE);
428 		}
429 		irqptr = irqheadptr;
430 		apic_mark_vector(irqptr->airq_vector, vector);
431 		while (irqptr) {
432 			irqptr->airq_vector = vector;
433 			irqptr->airq_ipl = (uchar_t)max_ipl;
434 			/*
435 			 * reprogram irq being added and every one else
436 			 * who is not in the UNINIT state
437 			 */
438 			if ((VIRTIRQ(irqindex, irqptr->airq_share_id) ==
439 			    irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) {
440 				apic_record_rdt_entry(irqptr, irqindex);
441 
442 				iflag = intr_clear();
443 				lock_set(&apic_ioapic_lock);
444 
445 				(void) apic_setup_io_intr(irqptr, irqindex,
446 				    B_FALSE);
447 
448 				lock_clear(&apic_ioapic_lock);
449 				intr_restore(iflag);
450 			}
451 			irqptr = irqptr->airq_next;
452 		}
453 		return (PSM_SUCCESS);
454 
455 	} else if (irqptr->airq_ipl != max_ipl &&
456 	    ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
457 		/*
458 		 * We cannot upgrade the vector, but we can change
459 		 * the IPL that this vector induces.
460 		 *
461 		 * Note that we subtract APIC_BASE_VECT from the vector
462 		 * here because this array is used in apic_intr_enter
463 		 * (no need to add APIC_BASE_VECT in that hot code
464 		 * path since we can do it in the rarely-executed path
465 		 * here).
466 		 */
467 		apic_ipls[irqptr->airq_vector - APIC_BASE_VECT] =
468 		    (uchar_t)max_ipl;
469 
470 		irqptr = irqheadptr;
471 		while (irqptr) {
472 			irqptr->airq_ipl = (uchar_t)max_ipl;
473 			irqptr = irqptr->airq_next;
474 		}
475 
476 		return (PSM_SUCCESS);
477 	}
478 
479 	ASSERT(irqptr);
480 
481 	iflag = intr_clear();
482 	lock_set(&apic_ioapic_lock);
483 
484 	(void) apic_setup_io_intr(irqptr, irqindex, B_FALSE);
485 
486 	lock_clear(&apic_ioapic_lock);
487 	intr_restore(iflag);
488 
489 	return (PSM_SUCCESS);
490 }
491 
492 /*
493  * Recompute mask bits for the given interrupt vector.
494  * If there is no interrupt servicing routine for this
495  * vector, this function should disable interrupt vector
496  * from happening at all IPLs. If there are still
497  * handlers using the given vector, this function should
498  * disable the given vector from happening below the lowest
499  * IPL of the remaining hadlers.
500  */
501 /*ARGSUSED*/
502 int
503 apic_delspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
504 {
505 	uchar_t vector;
506 	uint32_t bind_cpu;
507 	int intin, irqindex;
508 	int ioapic_ix;
509 	apic_irq_t	*irqptr, *preirqptr, *irqheadptr, *irqp;
510 	ulong_t iflag;
511 
512 	mutex_enter(&airq_mutex);
513 	irqindex = IRQINDEX(irqno);
514 	irqptr = preirqptr = irqheadptr = apic_irq_table[irqindex];
515 
516 	DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x "
517 	    "vector=0x%x\n", (void *)irqptr->airq_dip,
518 	    irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
519 
520 	while (irqptr) {
521 		if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
522 			break;
523 		preirqptr = irqptr;
524 		irqptr = irqptr->airq_next;
525 	}
526 	ASSERT(irqptr);
527 
528 	irqptr->airq_share--;
529 
530 	mutex_exit(&airq_mutex);
531 
532 	/*
533 	 * If there are more interrupts at a higher IPL, we don't need
534 	 * to disable anything.
535 	 */
536 	if (ipl < max_ipl)
537 		return (PSM_SUCCESS);
538 
539 	/* return if it is not hardware interrupt */
540 	if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
541 		return (PSM_SUCCESS);
542 
543 	if (!apic_picinit_called) {
544 		/*
545 		 * Clear irq_struct. If two devices shared an intpt
546 		 * line & 1 unloaded before picinit, we are hosed. But, then
547 		 * we hope the machine survive.
548 		 */
549 		irqptr->airq_mps_intr_index = FREE_INDEX;
550 		irqptr->airq_temp_cpu = IRQ_UNINIT;
551 		apic_free_vector(irqptr->airq_vector);
552 		return (PSM_SUCCESS);
553 	}
554 	/*
555 	 * Downgrade vector to new max_ipl if needed. If we cannot allocate,
556 	 * use old IPL. Not very elegant, but it should work.
557 	 */
558 	if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL) &&
559 	    !ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
560 		apic_irq_t	*irqp;
561 		if ((vector = apic_allocate_vector(max_ipl, irqno, 1))) {
562 			apic_mark_vector(irqheadptr->airq_vector, vector);
563 			irqp = irqheadptr;
564 			while (irqp) {
565 				irqp->airq_vector = vector;
566 				irqp->airq_ipl = (uchar_t)max_ipl;
567 				if (irqp->airq_temp_cpu != IRQ_UNINIT) {
568 					apic_record_rdt_entry(irqp, irqindex);
569 
570 					iflag = intr_clear();
571 					lock_set(&apic_ioapic_lock);
572 
573 					(void) apic_setup_io_intr(irqp,
574 					    irqindex, B_FALSE);
575 
576 					lock_clear(&apic_ioapic_lock);
577 					intr_restore(iflag);
578 				}
579 				irqp = irqp->airq_next;
580 			}
581 		}
582 
583 	} else if (irqptr->airq_ipl != max_ipl &&
584 	    max_ipl != PSM_INVALID_IPL &&
585 	    ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
586 
587 	/*
588 	 * We cannot downgrade the IPL of the vector below the vector's
589 	 * hardware priority. If we did, it would be possible for a
590 	 * higher-priority hardware vector to interrupt a CPU running at an IPL
591 	 * lower than the hardware priority of the interrupting vector (but
592 	 * higher than the soft IPL of this IRQ). When this happens, we would
593 	 * then try to drop the IPL BELOW what it was (effectively dropping
594 	 * below base_spl) which would be potentially catastrophic.
595 	 *
596 	 * (e.g. Suppose the hardware vector associated with this IRQ is 0x40
597 	 * (hardware IPL of 4).  Further assume that the old IPL of this IRQ
598 	 * was 4, but the new IPL is 1.  If we forced vector 0x40 to result in
599 	 * an IPL of 1, it would be possible for the processor to be executing
600 	 * at IPL 3 and for an interrupt to come in on vector 0x40, interrupting
601 	 * the currently-executing ISR.  When apic_intr_enter consults
602 	 * apic_irqs[], it will return 1, bringing the IPL of the CPU down to 1
603 	 * so even though the processor was running at IPL 4, an IPL 1
604 	 * interrupt will have interrupted it, which must not happen)).
605 	 *
606 	 * Effectively, this means that the hardware priority corresponding to
607 	 * the IRQ's IPL (in apic_ipls[]) cannot be lower than the vector's
608 	 * hardware priority.
609 	 *
610 	 * (In the above example, then, after removal of the IPL 4 device's
611 	 * interrupt handler, the new IPL will continue to be 4 because the
612 	 * hardware priority that IPL 1 implies is lower than the hardware
613 	 * priority of the vector used.)
614 	 */
615 		/* apic_ipls is indexed by vector, starting at APIC_BASE_VECT */
616 		const int apic_ipls_index = irqptr->airq_vector -
617 		    APIC_BASE_VECT;
618 		const int vect_inherent_hwpri = irqptr->airq_vector >>
619 		    APIC_IPL_SHIFT;
620 
621 		/*
622 		 * If there are still devices using this IRQ, determine the
623 		 * new ipl to use.
624 		 */
625 		if (irqptr->airq_share) {
626 			int vect_desired_hwpri, hwpri;
627 
628 			ASSERT(max_ipl < MAXIPL);
629 			vect_desired_hwpri = apic_ipltopri[max_ipl] >>
630 			    APIC_IPL_SHIFT;
631 
632 			/*
633 			 * If the desired IPL's hardware priority is lower
634 			 * than that of the vector, use the hardware priority
635 			 * of the vector to determine the new IPL.
636 			 */
637 			hwpri = (vect_desired_hwpri < vect_inherent_hwpri) ?
638 			    vect_inherent_hwpri : vect_desired_hwpri;
639 
640 			/*
641 			 * Now, to get the right index for apic_vectortoipl,
642 			 * we need to subtract APIC_BASE_VECT from the
643 			 * hardware-vector-equivalent (in hwpri).  Since hwpri
644 			 * is already shifted, we shift APIC_BASE_VECT before
645 			 * doing the subtraction.
646 			 */
647 			hwpri -= (APIC_BASE_VECT >> APIC_IPL_SHIFT);
648 
649 			ASSERT(hwpri >= 0);
650 			ASSERT(hwpri < MAXIPL);
651 			max_ipl = apic_vectortoipl[hwpri];
652 			apic_ipls[apic_ipls_index] = (uchar_t)max_ipl;
653 
654 			irqp = irqheadptr;
655 			while (irqp) {
656 				irqp->airq_ipl = (uchar_t)max_ipl;
657 				irqp = irqp->airq_next;
658 			}
659 		} else {
660 			/*
661 			 * No more devices on this IRQ, so reset this vector's
662 			 * element in apic_ipls to the original IPL for this
663 			 * vector
664 			 */
665 			apic_ipls[apic_ipls_index] =
666 			    apic_vectortoipl[vect_inherent_hwpri];
667 		}
668 	}
669 
670 	/*
671 	 * If there are still active interrupts, we are done.
672 	 */
673 	if (irqptr->airq_share)
674 		return (PSM_SUCCESS);
675 
676 	iflag = intr_clear();
677 	lock_set(&apic_ioapic_lock);
678 
679 	if (irqptr->airq_mps_intr_index == MSI_INDEX) {
680 		/*
681 		 * Disable the MSI vector
682 		 * Make sure we only disable on the last
683 		 * of the multi-MSI support
684 		 */
685 		if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) {
686 			apic_pci_msi_disable_mode(irqptr->airq_dip,
687 			    DDI_INTR_TYPE_MSI);
688 		}
689 	} else if (irqptr->airq_mps_intr_index == MSIX_INDEX) {
690 		/*
691 		 * Disable the MSI-X vector
692 		 * needs to clear its mask and addr/data for each MSI-X
693 		 */
694 		apic_pci_msi_unconfigure(irqptr->airq_dip, DDI_INTR_TYPE_MSIX,
695 		    irqptr->airq_origirq);
696 		/*
697 		 * Make sure we only disable on the last MSI-X
698 		 */
699 		if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) {
700 			apic_pci_msi_disable_mode(irqptr->airq_dip,
701 			    DDI_INTR_TYPE_MSIX);
702 		}
703 	} else {
704 		/*
705 		 * The assumption here is that this is safe, even for
706 		 * systems with IOAPICs that suffer from the hardware
707 		 * erratum because all devices have been quiesced before
708 		 * they unregister their interrupt handlers.  If that
709 		 * assumption turns out to be false, this mask operation
710 		 * can induce the same erratum result we're trying to
711 		 * avoid.
712 		 */
713 		ioapic_ix = irqptr->airq_ioapicindex;
714 		intin = irqptr->airq_intin_no;
715 		ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin, AV_MASK);
716 	}
717 
718 	apic_vt_ops->apic_intrmap_free_entry(&irqptr->airq_intrmap_private);
719 
720 	/*
721 	 * This irq entry is the only one in the chain.
722 	 */
723 	if (irqheadptr->airq_next == NULL) {
724 		ASSERT(irqheadptr == irqptr);
725 		bind_cpu = irqptr->airq_temp_cpu;
726 		if (((uint32_t)bind_cpu != IRQ_UNBOUND) &&
727 		    ((uint32_t)bind_cpu != IRQ_UNINIT)) {
728 			ASSERT(apic_cpu_in_range(bind_cpu));
729 			if (bind_cpu & IRQ_USER_BOUND) {
730 				/* If hardbound, temp_cpu == cpu */
731 				bind_cpu &= ~IRQ_USER_BOUND;
732 				apic_cpus[bind_cpu].aci_bound--;
733 			} else
734 				apic_cpus[bind_cpu].aci_temp_bound--;
735 		}
736 		irqptr->airq_temp_cpu = IRQ_UNINIT;
737 		irqptr->airq_mps_intr_index = FREE_INDEX;
738 		lock_clear(&apic_ioapic_lock);
739 		intr_restore(iflag);
740 		apic_free_vector(irqptr->airq_vector);
741 		return (PSM_SUCCESS);
742 	}
743 
744 	/*
745 	 * If we get here, we are sharing the vector and there are more than
746 	 * one active irq entries in the chain.
747 	 */
748 	lock_clear(&apic_ioapic_lock);
749 	intr_restore(iflag);
750 
751 	mutex_enter(&airq_mutex);
752 	/* Remove the irq entry from the chain */
753 	if (irqptr == irqheadptr) { /* The irq entry is at the head */
754 		apic_irq_table[irqindex] = irqptr->airq_next;
755 	} else {
756 		preirqptr->airq_next = irqptr->airq_next;
757 	}
758 	/* Free the irq entry */
759 	kmem_free(irqptr, sizeof (apic_irq_t));
760 	mutex_exit(&airq_mutex);
761 
762 	return (PSM_SUCCESS);
763 }
764 
765 /*
766  * apic_introp_xlate() replaces apic_translate_irq() and is
767  * called only from apic_intr_ops().  With the new ADII framework,
768  * the priority can no longer be retrieved through i_ddi_get_intrspec().
769  * It has to be passed in from the caller.
770  *
771  * Return value:
772  *      Success: irqno for the given device
773  *      Failure: -1
774  */
775 int
776 apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type)
777 {
778 	char dev_type[16];
779 	int dev_len, pci_irq, newirq, bustype, devid, busid, i;
780 	int irqno = ispec->intrspec_vec;
781 	ddi_acc_handle_t cfg_handle;
782 	uchar_t ipin;
783 	struct apic_io_intr *intrp;
784 	iflag_t intr_flag;
785 	ACPI_SUBTABLE_HEADER	*hp;
786 	ACPI_MADT_INTERRUPT_OVERRIDE *isop;
787 	apic_irq_t *airqp;
788 	int parent_is_pci_or_pciex = 0;
789 	int child_is_pciex = 0;
790 
791 	DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s "
792 	    "type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type,
793 	    irqno));
794 
795 	dev_len = sizeof (dev_type);
796 	if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
797 	    DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
798 	    &dev_len) == DDI_PROP_SUCCESS) {
799 		if ((strcmp(dev_type, "pci") == 0) ||
800 		    (strcmp(dev_type, "pciex") == 0))
801 			parent_is_pci_or_pciex = 1;
802 	}
803 
804 	if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
805 	    DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type,
806 	    &dev_len) == DDI_PROP_SUCCESS) {
807 		if (strstr(dev_type, "pciex"))
808 			child_is_pciex = 1;
809 	}
810 
811 	if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
812 		if ((airqp = apic_find_irq(dip, ispec, type)) != NULL) {
813 			airqp->airq_iflag.bustype =
814 			    child_is_pciex ? BUS_PCIE : BUS_PCI;
815 			return (apic_vector_to_irq[airqp->airq_vector]);
816 		}
817 		return (apic_setup_irq_table(dip, irqno, NULL, ispec,
818 		    NULL, type));
819 	}
820 
821 	bustype = 0;
822 
823 	/* check if we have already translated this irq */
824 	mutex_enter(&airq_mutex);
825 	newirq = apic_min_device_irq;
826 	for (; newirq <= apic_max_device_irq; newirq++) {
827 		airqp = apic_irq_table[newirq];
828 		while (airqp) {
829 			if ((airqp->airq_dip == dip) &&
830 			    (airqp->airq_origirq == irqno) &&
831 			    (airqp->airq_mps_intr_index != FREE_INDEX)) {
832 
833 				mutex_exit(&airq_mutex);
834 				return (VIRTIRQ(newirq, airqp->airq_share_id));
835 			}
836 			airqp = airqp->airq_next;
837 		}
838 	}
839 	mutex_exit(&airq_mutex);
840 
841 	if (apic_defconf)
842 		goto defconf;
843 
844 	if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi))
845 		goto nonpci;
846 
847 	if (parent_is_pci_or_pciex) {
848 		/* pci device */
849 		if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
850 			goto nonpci;
851 		if (busid == 0 && apic_pci_bus_total == 1)
852 			busid = (int)apic_single_pci_busid;
853 
854 		if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
855 			return (-1);
856 		ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
857 		pci_config_teardown(&cfg_handle);
858 		if (apic_enable_acpi && !apic_use_acpi_madt_only) {
859 			if (apic_acpi_translate_pci_irq(dip, busid, devid,
860 			    ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
861 				return (-1);
862 
863 			intr_flag.bustype = child_is_pciex ? BUS_PCIE : BUS_PCI;
864 			return (apic_setup_irq_table(dip, pci_irq, NULL, ispec,
865 			    &intr_flag, type));
866 		} else {
867 			pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
868 			if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid))
869 			    == NULL) {
870 				if ((pci_irq = apic_handle_pci_pci_bridge(dip,
871 				    devid, ipin, &intrp)) == -1)
872 					return (-1);
873 			}
874 			return (apic_setup_irq_table(dip, pci_irq, intrp, ispec,
875 			    NULL, type));
876 		}
877 	} else if (strcmp(dev_type, "isa") == 0)
878 		bustype = BUS_ISA;
879 	else if (strcmp(dev_type, "eisa") == 0)
880 		bustype = BUS_EISA;
881 
882 nonpci:
883 	if (apic_enable_acpi && !apic_use_acpi_madt_only) {
884 		/* search iso entries first */
885 		if (acpi_iso_cnt != 0) {
886 			hp = (ACPI_SUBTABLE_HEADER *)acpi_isop;
887 			i = 0;
888 			while (i < acpi_iso_cnt) {
889 				if (hp->Type ==
890 				    ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
891 					isop =
892 					    (ACPI_MADT_INTERRUPT_OVERRIDE *) hp;
893 					if (isop->Bus == 0 &&
894 					    isop->SourceIrq == irqno) {
895 						newirq = isop->GlobalIrq;
896 						intr_flag.intr_po =
897 						    isop->IntiFlags &
898 						    ACPI_MADT_POLARITY_MASK;
899 						intr_flag.intr_el =
900 						    (isop->IntiFlags &
901 						    ACPI_MADT_TRIGGER_MASK)
902 						    >> 2;
903 						intr_flag.bustype = BUS_ISA;
904 
905 						return (apic_setup_irq_table(
906 						    dip, newirq, NULL, ispec,
907 						    &intr_flag, type));
908 
909 					}
910 					i++;
911 				}
912 				hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) +
913 				    hp->Length);
914 			}
915 		}
916 		intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
917 		intr_flag.intr_el = INTR_EL_EDGE;
918 		intr_flag.bustype = BUS_ISA;
919 		return (apic_setup_irq_table(dip, irqno, NULL, ispec,
920 		    &intr_flag, type));
921 	} else {
922 		if (bustype == 0)	/* not initialized */
923 			bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
924 		for (i = 0; i < 2; i++) {
925 			if (((busid = apic_find_bus_id(bustype)) != -1) &&
926 			    ((intrp = apic_find_io_intr_w_busid(irqno, busid))
927 			    != NULL)) {
928 				if ((newirq = apic_setup_irq_table(dip, irqno,
929 				    intrp, ispec, NULL, type)) != -1) {
930 					return (newirq);
931 				}
932 				goto defconf;
933 			}
934 			bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
935 		}
936 	}
937 
938 /* MPS default configuration */
939 defconf:
940 	newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type);
941 	if (newirq == -1)
942 		return (-1);
943 	ASSERT(IRQINDEX(newirq) == irqno);
944 	ASSERT(apic_irq_table[irqno]);
945 	return (newirq);
946 }
947 
948 /*
949  * Attempt to share vector with someone else
950  */
951 static int
952 apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl,
953     uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp)
954 {
955 #ifdef DEBUG
956 	apic_irq_t *tmpirqp = NULL;
957 #endif /* DEBUG */
958 	apic_irq_t *irqptr, dummyirq;
959 	int	newirq, chosen_irq = -1, share = 127;
960 	int	lowest, highest, i;
961 	uchar_t	share_id;
962 
963 	DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x "
964 	    "intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl));
965 
966 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
967 	lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL;
968 
969 	if (highest < lowest) /* Both ipl and ipl-1 map to same pri */
970 		lowest -= APIC_VECTOR_PER_IPL;
971 	dummyirq.airq_mps_intr_index = intr_index;
972 	dummyirq.airq_ioapicindex = ioapicindex;
973 	dummyirq.airq_intin_no = ipin;
974 	if (intr_flagp)
975 		dummyirq.airq_iflag = *intr_flagp;
976 	apic_record_rdt_entry(&dummyirq, irqno);
977 	for (i = lowest; i <= highest; i++) {
978 		newirq = apic_vector_to_irq[i];
979 		if (newirq == APIC_RESV_IRQ)
980 			continue;
981 		irqptr = apic_irq_table[newirq];
982 
983 		if ((dummyirq.airq_rdt_entry & 0xFF00) !=
984 		    (irqptr->airq_rdt_entry & 0xFF00))
985 			/* not compatible */
986 			continue;
987 
988 		if (irqptr->airq_share < share) {
989 			share = irqptr->airq_share;
990 			chosen_irq = newirq;
991 		}
992 	}
993 	if (chosen_irq != -1) {
994 		/*
995 		 * Assign a share id which is free or which is larger
996 		 * than the largest one.
997 		 */
998 		share_id = 1;
999 		mutex_enter(&airq_mutex);
1000 		irqptr = apic_irq_table[chosen_irq];
1001 		while (irqptr) {
1002 			if (irqptr->airq_mps_intr_index == FREE_INDEX) {
1003 				share_id = irqptr->airq_share_id;
1004 				break;
1005 			}
1006 			if (share_id <= irqptr->airq_share_id)
1007 				share_id = irqptr->airq_share_id + 1;
1008 #ifdef DEBUG
1009 			tmpirqp = irqptr;
1010 #endif /* DEBUG */
1011 			irqptr = irqptr->airq_next;
1012 		}
1013 		if (!irqptr) {
1014 			irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
1015 			irqptr->airq_temp_cpu = IRQ_UNINIT;
1016 			irqptr->airq_next =
1017 			    apic_irq_table[chosen_irq]->airq_next;
1018 			apic_irq_table[chosen_irq]->airq_next = irqptr;
1019 #ifdef	DEBUG
1020 			tmpirqp = apic_irq_table[chosen_irq];
1021 #endif /* DEBUG */
1022 		}
1023 		irqptr->airq_mps_intr_index = intr_index;
1024 		irqptr->airq_ioapicindex = ioapicindex;
1025 		irqptr->airq_intin_no = ipin;
1026 		if (intr_flagp)
1027 			irqptr->airq_iflag = *intr_flagp;
1028 		irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector;
1029 		irqptr->airq_share_id = share_id;
1030 		apic_record_rdt_entry(irqptr, irqno);
1031 		*irqptrp = irqptr;
1032 #ifdef	DEBUG
1033 		/* shuffle the pointers to test apic_delspl path */
1034 		if (tmpirqp) {
1035 			tmpirqp->airq_next = irqptr->airq_next;
1036 			irqptr->airq_next = apic_irq_table[chosen_irq];
1037 			apic_irq_table[chosen_irq] = irqptr;
1038 		}
1039 #endif /* DEBUG */
1040 		mutex_exit(&airq_mutex);
1041 		return (VIRTIRQ(chosen_irq, share_id));
1042 	}
1043 	return (-1);
1044 }
1045 
1046 /*
1047  * Allocate/Initialize the apic_irq_table[] entry for given irqno. If the entry
1048  * is used already, we will try to allocate a new irqno.
1049  *
1050  * Return value:
1051  *	Success: irqno
1052  *	Failure: -1
1053  */
1054 static int
1055 apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp,
1056     struct intrspec *ispec, iflag_t *intr_flagp, int type)
1057 {
1058 	int origirq;
1059 	uchar_t ipl;
1060 	int	newirq, intr_index;
1061 	uchar_t	ipin, ioapic, ioapicindex, vector;
1062 	apic_irq_t *irqptr;
1063 	major_t	major;
1064 	dev_info_t	*sdip;
1065 
1066 	ASSERT(ispec != NULL);
1067 
1068 	origirq = ispec->intrspec_vec;
1069 	ipl = ispec->intrspec_pri;
1070 
1071 	DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d "
1072 	    "irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq));
1073 
1074 	major =  (dip != NULL) ? ddi_driver_major(dip) : 0;
1075 
1076 	if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
1077 		/* MSI/X doesn't need to setup ioapic stuffs */
1078 		ioapicindex = 0xff;
1079 		ioapic = 0xff;
1080 		ipin = (uchar_t)0xff;
1081 		intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX :
1082 		    MSIX_INDEX;
1083 		mutex_enter(&airq_mutex);
1084 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == -1) {
1085 			mutex_exit(&airq_mutex);
1086 			/* need an irq for MSI/X to index into autovect[] */
1087 			cmn_err(CE_WARN, "No interrupt irq: %s instance %d",
1088 			    ddi_get_name(dip), ddi_get_instance(dip));
1089 			return (-1);
1090 		}
1091 		mutex_exit(&airq_mutex);
1092 
1093 	} else if (intrp != NULL) {
1094 		intr_index = (int)(intrp - apic_io_intrp);
1095 		ioapic = intrp->intr_destid;
1096 		ipin = intrp->intr_destintin;
1097 		/* Find ioapicindex. If destid was ALL, we will exit with 0. */
1098 		for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
1099 			if (apic_io_id[ioapicindex] == ioapic)
1100 				break;
1101 		ASSERT((ioapic == apic_io_id[ioapicindex]) ||
1102 		    (ioapic == INTR_ALL_APIC));
1103 
1104 		/* check whether this intin# has been used by another irqno */
1105 		if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) {
1106 			return (newirq);
1107 		}
1108 
1109 	} else if (intr_flagp != NULL) {
1110 		/* ACPI case */
1111 		intr_index = ACPI_INDEX;
1112 		ioapicindex = acpi_find_ioapic(irqno);
1113 		ASSERT(ioapicindex != 0xFF);
1114 		ioapic = apic_io_id[ioapicindex];
1115 		ipin = irqno - apic_io_vectbase[ioapicindex];
1116 		if (apic_irq_table[irqno] &&
1117 		    apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
1118 			ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
1119 			    apic_irq_table[irqno]->airq_ioapicindex ==
1120 			    ioapicindex);
1121 			return (irqno);
1122 		}
1123 
1124 	} else {
1125 		/* default configuration */
1126 		ioapicindex = 0;
1127 		ioapic = apic_io_id[ioapicindex];
1128 		ipin = (uchar_t)irqno;
1129 		intr_index = DEFAULT_INDEX;
1130 	}
1131 
1132 	if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) {
1133 		if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index,
1134 		    ipl, ioapicindex, ipin, &irqptr)) != -1) {
1135 			irqptr->airq_ipl = ipl;
1136 			irqptr->airq_origirq = (uchar_t)origirq;
1137 			irqptr->airq_dip = dip;
1138 			irqptr->airq_major = major;
1139 			sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip;
1140 			/* This is OK to do really */
1141 			if (sdip == NULL) {
1142 				cmn_err(CE_WARN, "Sharing vectors: %s"
1143 				    " instance %d and SCI",
1144 				    ddi_get_name(dip), ddi_get_instance(dip));
1145 			} else {
1146 				cmn_err(CE_WARN, "Sharing vectors: %s"
1147 				    " instance %d and %s instance %d",
1148 				    ddi_get_name(sdip), ddi_get_instance(sdip),
1149 				    ddi_get_name(dip), ddi_get_instance(dip));
1150 			}
1151 			return (newirq);
1152 		}
1153 		/* try high priority allocation now  that share has failed */
1154 		if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) {
1155 			cmn_err(CE_WARN, "No interrupt vector: %s instance %d",
1156 			    ddi_get_name(dip), ddi_get_instance(dip));
1157 			return (-1);
1158 		}
1159 	}
1160 
1161 	mutex_enter(&airq_mutex);
1162 	if (apic_irq_table[irqno] == NULL) {
1163 		irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
1164 		irqptr->airq_temp_cpu = IRQ_UNINIT;
1165 		apic_irq_table[irqno] = irqptr;
1166 	} else {
1167 		irqptr = apic_irq_table[irqno];
1168 		if (irqptr->airq_mps_intr_index != FREE_INDEX) {
1169 			/*
1170 			 * The slot is used by another irqno, so allocate
1171 			 * a free irqno for this interrupt
1172 			 */
1173 			newirq = apic_allocate_irq(apic_first_avail_irq);
1174 			if (newirq == -1) {
1175 				mutex_exit(&airq_mutex);
1176 				return (-1);
1177 			}
1178 			irqno = newirq;
1179 			irqptr = apic_irq_table[irqno];
1180 			if (irqptr == NULL) {
1181 				irqptr = kmem_zalloc(sizeof (apic_irq_t),
1182 				    KM_SLEEP);
1183 				irqptr->airq_temp_cpu = IRQ_UNINIT;
1184 				apic_irq_table[irqno] = irqptr;
1185 			}
1186 			vector = apic_modify_vector(vector, newirq);
1187 		}
1188 	}
1189 	apic_max_device_irq = max(irqno, apic_max_device_irq);
1190 	apic_min_device_irq = min(irqno, apic_min_device_irq);
1191 	mutex_exit(&airq_mutex);
1192 	irqptr->airq_ioapicindex = ioapicindex;
1193 	irqptr->airq_intin_no = ipin;
1194 	irqptr->airq_ipl = ipl;
1195 	irqptr->airq_vector = vector;
1196 	irqptr->airq_origirq = (uchar_t)origirq;
1197 	irqptr->airq_share_id = 0;
1198 	irqptr->airq_mps_intr_index = (short)intr_index;
1199 	irqptr->airq_dip = dip;
1200 	irqptr->airq_major = major;
1201 	irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin);
1202 	if (intr_flagp)
1203 		irqptr->airq_iflag = *intr_flagp;
1204 
1205 	if (!DDI_INTR_IS_MSI_OR_MSIX(type)) {
1206 		/* setup I/O APIC entry for non-MSI/X interrupts */
1207 		apic_record_rdt_entry(irqptr, irqno);
1208 	}
1209 	return (irqno);
1210 }
1211 
1212 /*
1213  * return the cpu to which this intr should be bound.
1214  * Check properties or any other mechanism to see if user wants it
1215  * bound to a specific CPU. If so, return the cpu id with high bit set.
1216  * If not, use the policy to choose a cpu and return the id.
1217  */
1218 uint32_t
1219 apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin)
1220 {
1221 	int	instance, instno, prop_len, bind_cpu, count;
1222 	uint_t	i, rc;
1223 	uint32_t cpu;
1224 	major_t	major;
1225 	char	*name, *drv_name, *prop_val, *cptr;
1226 	char	prop_name[32];
1227 	ulong_t iflag;
1228 
1229 
1230 	if (apic_intr_policy == INTR_LOWEST_PRIORITY)
1231 		return (IRQ_UNBOUND);
1232 
1233 	if (apic_nproc == 1)
1234 		return (0);
1235 
1236 	/*
1237 	 * dip may be NULL for interrupts not associated with a device driver,
1238 	 * such as the ACPI SCI or HPET interrupts. In that case just use the
1239 	 * next CPU and return.
1240 	 */
1241 	if (dip == NULL) {
1242 		iflag = intr_clear();
1243 		lock_set(&apic_ioapic_lock);
1244 		bind_cpu = apic_get_next_bind_cpu();
1245 		lock_clear(&apic_ioapic_lock);
1246 		intr_restore(iflag);
1247 
1248 		cmn_err(CE_CONT, "!%s: irq 0x%x "
1249 		    "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
1250 		    psm_name, irq, apic_irq_table[irq]->airq_vector, ioapicid,
1251 		    intin, bind_cpu & ~IRQ_USER_BOUND);
1252 
1253 		return ((uint32_t)bind_cpu);
1254 	}
1255 
1256 	name = ddi_get_name(dip);
1257 	major = ddi_name_to_major(name);
1258 	drv_name = ddi_major_to_name(major);
1259 	instance = ddi_get_instance(dip);
1260 	if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
1261 		i = apic_min_device_irq;
1262 		for (; i <= apic_max_device_irq; i++) {
1263 			if ((i == irq) || (apic_irq_table[i] == NULL) ||
1264 			    (apic_irq_table[i]->airq_mps_intr_index
1265 			    == FREE_INDEX))
1266 				continue;
1267 
1268 			if ((apic_irq_table[i]->airq_major == major) &&
1269 			    (!(apic_irq_table[i]->airq_cpu & IRQ_USER_BOUND))) {
1270 				cpu = apic_irq_table[i]->airq_cpu;
1271 
1272 				cmn_err(CE_CONT,
1273 				    "!%s: %s (%s) instance #%d "
1274 				    "irq 0x%x vector 0x%x ioapic 0x%x "
1275 				    "intin 0x%x is bound to cpu %d\n",
1276 				    psm_name,
1277 				    name, drv_name, instance, irq,
1278 				    apic_irq_table[irq]->airq_vector,
1279 				    ioapicid, intin, cpu);
1280 				return (cpu);
1281 			}
1282 		}
1283 	}
1284 	/*
1285 	 * search for "drvname"_intpt_bind_cpus property first, the
1286 	 * syntax of the property should be "a[,b,c,...]" where
1287 	 * instance 0 binds to cpu a, instance 1 binds to cpu b,
1288 	 * instance 3 binds to cpu c...
1289 	 * ddi_getlongprop() will search /option first, then /
1290 	 * if "drvname"_intpt_bind_cpus doesn't exist, then find
1291 	 * intpt_bind_cpus property.  The syntax is the same, and
1292 	 * it applies to all the devices if its "drvname" specific
1293 	 * property doesn't exist
1294 	 */
1295 	(void) strcpy(prop_name, drv_name);
1296 	(void) strcat(prop_name, "_intpt_bind_cpus");
1297 	rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name,
1298 	    (caddr_t)&prop_val, &prop_len);
1299 	if (rc != DDI_PROP_SUCCESS) {
1300 		rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0,
1301 		    "intpt_bind_cpus", (caddr_t)&prop_val, &prop_len);
1302 	}
1303 	if (rc == DDI_PROP_SUCCESS) {
1304 		for (i = count = 0; i < (prop_len - 1); i++)
1305 			if (prop_val[i] == ',')
1306 				count++;
1307 		if (prop_val[i-1] != ',')
1308 			count++;
1309 		/*
1310 		 * if somehow the binding instances defined in the
1311 		 * property are not enough for this instno., then
1312 		 * reuse the pattern for the next instance until
1313 		 * it reaches the requested instno
1314 		 */
1315 		instno = instance % count;
1316 		i = 0;
1317 		cptr = prop_val;
1318 		while (i < instno)
1319 			if (*cptr++ == ',')
1320 				i++;
1321 		bind_cpu = stoi(&cptr);
1322 		kmem_free(prop_val, prop_len);
1323 		/* if specific CPU is bogus, then default to next cpu */
1324 		if (!apic_cpu_in_range(bind_cpu)) {
1325 			cmn_err(CE_WARN, "%s: %s=%s: CPU %d not present",
1326 			    psm_name, prop_name, prop_val, bind_cpu);
1327 			rc = DDI_PROP_NOT_FOUND;
1328 		} else {
1329 			/* indicate that we are bound at user request */
1330 			bind_cpu |= IRQ_USER_BOUND;
1331 		}
1332 		/*
1333 		 * no need to check apic_cpus[].aci_status, if specific CPU is
1334 		 * not up, then post_cpu_start will handle it.
1335 		 */
1336 	}
1337 
1338 	if (rc != DDI_PROP_SUCCESS) {
1339 		iflag = intr_clear();
1340 		lock_set(&apic_ioapic_lock);
1341 		bind_cpu = apic_get_next_bind_cpu();
1342 		lock_clear(&apic_ioapic_lock);
1343 		intr_restore(iflag);
1344 	}
1345 
1346 	cmn_err(CE_CONT, "!%s: %s (%s) instance %d irq 0x%x "
1347 	    "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
1348 	    psm_name, name, drv_name, instance, irq,
1349 	    apic_irq_table[irq]->airq_vector, ioapicid, intin,
1350 	    bind_cpu & ~IRQ_USER_BOUND);
1351 
1352 	return ((uint32_t)bind_cpu);
1353 }
1354 
1355 /*
1356  * Mark vector as being in the process of being deleted. Interrupts
1357  * may still come in on some CPU. The moment an interrupt comes with
1358  * the new vector, we know we can free the old one. Called only from
1359  * addspl and delspl with interrupts disabled. Because an interrupt
1360  * can be shared, but no interrupt from either device may come in,
1361  * we also use a timeout mechanism, which we arbitrarily set to
1362  * apic_revector_timeout microseconds.
1363  */
1364 static void
1365 apic_mark_vector(uchar_t oldvector, uchar_t newvector)
1366 {
1367 	ulong_t iflag;
1368 
1369 	iflag = intr_clear();
1370 	lock_set(&apic_revector_lock);
1371 	if (!apic_oldvec_to_newvec) {
1372 		apic_oldvec_to_newvec =
1373 		    kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2,
1374 		    KM_NOSLEEP);
1375 
1376 		if (!apic_oldvec_to_newvec) {
1377 			/*
1378 			 * This failure is not catastrophic.
1379 			 * But, the oldvec will never be freed.
1380 			 */
1381 			apic_error |= APIC_ERR_MARK_VECTOR_FAIL;
1382 			lock_clear(&apic_revector_lock);
1383 			intr_restore(iflag);
1384 			return;
1385 		}
1386 		apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR];
1387 	}
1388 
1389 	/* See if we already did this for drivers which do double addintrs */
1390 	if (apic_oldvec_to_newvec[oldvector] != newvector) {
1391 		apic_oldvec_to_newvec[oldvector] = newvector;
1392 		apic_newvec_to_oldvec[newvector] = oldvector;
1393 		apic_revector_pending++;
1394 	}
1395 	lock_clear(&apic_revector_lock);
1396 	intr_restore(iflag);
1397 	(void) timeout(apic_xlate_vector_free_timeout_handler,
1398 	    (void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout));
1399 }
1400 
1401 /*
1402  * xlate_vector is called from intr_enter if revector_pending is set.
1403  * It will xlate it if needed and mark the old vector as free.
1404  */
1405 uchar_t
1406 apic_xlate_vector(uchar_t vector)
1407 {
1408 	uchar_t	newvector, oldvector = 0;
1409 
1410 	lock_set(&apic_revector_lock);
1411 	/* Do we really need to do this ? */
1412 	if (!apic_revector_pending) {
1413 		lock_clear(&apic_revector_lock);
1414 		return (vector);
1415 	}
1416 	if ((newvector = apic_oldvec_to_newvec[vector]) != 0)
1417 		oldvector = vector;
1418 	else {
1419 		/*
1420 		 * The incoming vector is new . See if a stale entry is
1421 		 * remaining
1422 		 */
1423 		if ((oldvector = apic_newvec_to_oldvec[vector]) != 0)
1424 			newvector = vector;
1425 	}
1426 
1427 	if (oldvector) {
1428 		apic_revector_pending--;
1429 		apic_oldvec_to_newvec[oldvector] = 0;
1430 		apic_newvec_to_oldvec[newvector] = 0;
1431 		apic_free_vector(oldvector);
1432 		lock_clear(&apic_revector_lock);
1433 		/* There could have been more than one reprogramming! */
1434 		return (apic_xlate_vector(newvector));
1435 	}
1436 	lock_clear(&apic_revector_lock);
1437 	return (vector);
1438 }
1439 
1440 void
1441 apic_xlate_vector_free_timeout_handler(void *arg)
1442 {
1443 	ulong_t iflag;
1444 	uchar_t oldvector, newvector;
1445 
1446 	oldvector = (uchar_t)(uintptr_t)arg;
1447 	iflag = intr_clear();
1448 	lock_set(&apic_revector_lock);
1449 	if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) {
1450 		apic_free_vector(oldvector);
1451 		apic_oldvec_to_newvec[oldvector] = 0;
1452 		apic_newvec_to_oldvec[newvector] = 0;
1453 		apic_revector_pending--;
1454 	}
1455 
1456 	lock_clear(&apic_revector_lock);
1457 	intr_restore(iflag);
1458 }
1459 
1460 /*
1461  * Bind interrupt corresponding to irq_ptr to bind_cpu.
1462  * Must be called with interrupts disabled and apic_ioapic_lock held
1463  */
1464 int
1465 apic_rebind(apic_irq_t *irq_ptr, int bind_cpu,
1466     struct ioapic_reprogram_data *drep)
1467 {
1468 	int			ioapicindex, intin_no;
1469 	uint32_t		airq_temp_cpu;
1470 	apic_cpus_info_t	*cpu_infop;
1471 	uint32_t		rdt_entry;
1472 	int			which_irq;
1473 	ioapic_rdt_t		irdt;
1474 
1475 	which_irq = apic_vector_to_irq[irq_ptr->airq_vector];
1476 
1477 	intin_no = irq_ptr->airq_intin_no;
1478 	ioapicindex = irq_ptr->airq_ioapicindex;
1479 	airq_temp_cpu = irq_ptr->airq_temp_cpu;
1480 	if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) {
1481 		if (airq_temp_cpu & IRQ_USER_BOUND)
1482 			/* Mask off high bit so it can be used as array index */
1483 			airq_temp_cpu &= ~IRQ_USER_BOUND;
1484 
1485 		ASSERT(apic_cpu_in_range(airq_temp_cpu));
1486 	}
1487 
1488 	/*
1489 	 * Can't bind to a CPU that's not accepting interrupts:
1490 	 */
1491 	cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND];
1492 	if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE))
1493 		return (1);
1494 
1495 	/*
1496 	 * If we are about to change the interrupt vector for this interrupt,
1497 	 * and this interrupt is level-triggered, attached to an IOAPIC,
1498 	 * has been delivered to a CPU and that CPU has not handled it
1499 	 * yet, we cannot reprogram the IOAPIC now.
1500 	 */
1501 	if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
1502 
1503 		rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex,
1504 		    intin_no);
1505 
1506 		if ((irq_ptr->airq_vector != RDT_VECTOR(rdt_entry)) &&
1507 		    apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu,
1508 		    bind_cpu, ioapicindex, intin_no, which_irq, drep) != 0) {
1509 
1510 			return (0);
1511 		}
1512 
1513 		/*
1514 		 * NOTE: We do not unmask the RDT here, as an interrupt MAY
1515 		 * still come in before we have a chance to reprogram it below.
1516 		 * The reprogramming below will simultaneously change and
1517 		 * unmask the RDT entry.
1518 		 */
1519 
1520 		if ((uint32_t)bind_cpu == IRQ_UNBOUND) {
1521 			irdt.ir_lo =  AV_LDEST | AV_LOPRI |
1522 			    irq_ptr->airq_rdt_entry;
1523 
1524 			irdt.ir_hi = AV_TOALL >> APIC_ID_BIT_OFFSET;
1525 
1526 			apic_vt_ops->apic_intrmap_alloc_entry(
1527 			    &irq_ptr->airq_intrmap_private, NULL,
1528 			    DDI_INTR_TYPE_FIXED, 1, ioapicindex);
1529 			apic_vt_ops->apic_intrmap_map_entry(
1530 			    irq_ptr->airq_intrmap_private, (void *)&irdt,
1531 			    DDI_INTR_TYPE_FIXED, 1);
1532 			apic_vt_ops->apic_intrmap_record_rdt(
1533 			    irq_ptr->airq_intrmap_private, &irdt);
1534 
1535 			/* Write the RDT entry -- no specific CPU binding */
1536 			WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
1537 			    irdt.ir_hi | AV_TOALL);
1538 
1539 			if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu !=
1540 			    IRQ_UNBOUND)
1541 				apic_cpus[airq_temp_cpu].aci_temp_bound--;
1542 
1543 			/*
1544 			 * Write the vector, trigger, and polarity portion of
1545 			 * the RDT
1546 			 */
1547 			WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
1548 			    irdt.ir_lo);
1549 
1550 			irq_ptr->airq_temp_cpu = IRQ_UNBOUND;
1551 			return (0);
1552 		}
1553 	}
1554 
1555 	if (bind_cpu & IRQ_USER_BOUND) {
1556 		cpu_infop->aci_bound++;
1557 	} else {
1558 		cpu_infop->aci_temp_bound++;
1559 	}
1560 	ASSERT(apic_cpu_in_range(bind_cpu));
1561 
1562 	if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) {
1563 		apic_cpus[airq_temp_cpu].aci_temp_bound--;
1564 	}
1565 	if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
1566 
1567 		irdt.ir_lo = AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry;
1568 		irdt.ir_hi = cpu_infop->aci_local_id;
1569 
1570 		apic_vt_ops->apic_intrmap_alloc_entry(
1571 		    &irq_ptr->airq_intrmap_private, NULL, DDI_INTR_TYPE_FIXED,
1572 		    1, ioapicindex);
1573 		apic_vt_ops->apic_intrmap_map_entry(
1574 		    irq_ptr->airq_intrmap_private,
1575 		    (void *)&irdt, DDI_INTR_TYPE_FIXED, 1);
1576 		apic_vt_ops->apic_intrmap_record_rdt(
1577 		    irq_ptr->airq_intrmap_private, &irdt);
1578 
1579 		/* Write the RDT entry -- bind to a specific CPU: */
1580 		WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
1581 		    irdt.ir_hi);
1582 
1583 		/* Write the vector, trigger, and polarity portion of the RDT */
1584 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
1585 		    irdt.ir_lo);
1586 
1587 	} else {
1588 		int type = (irq_ptr->airq_mps_intr_index == MSI_INDEX) ?
1589 		    DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX;
1590 		if (type == DDI_INTR_TYPE_MSI) {
1591 			if (irq_ptr->airq_ioapicindex ==
1592 			    irq_ptr->airq_origirq) {
1593 				/* first one */
1594 				DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
1595 				    "apic_pci_msi_enable_vector\n"));
1596 				apic_pci_msi_enable_vector(irq_ptr,
1597 				    type, which_irq, irq_ptr->airq_vector,
1598 				    irq_ptr->airq_intin_no,
1599 				    cpu_infop->aci_local_id);
1600 			}
1601 			if ((irq_ptr->airq_ioapicindex +
1602 			    irq_ptr->airq_intin_no - 1) ==
1603 			    irq_ptr->airq_origirq) { /* last one */
1604 				DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
1605 				    "apic_pci_msi_enable_mode\n"));
1606 				apic_pci_msi_enable_mode(irq_ptr->airq_dip,
1607 				    type, which_irq);
1608 			}
1609 		} else { /* MSI-X */
1610 			apic_pci_msi_enable_vector(irq_ptr, type,
1611 			    irq_ptr->airq_origirq, irq_ptr->airq_vector, 1,
1612 			    cpu_infop->aci_local_id);
1613 			apic_pci_msi_enable_mode(irq_ptr->airq_dip, type,
1614 			    irq_ptr->airq_origirq);
1615 		}
1616 	}
1617 	irq_ptr->airq_temp_cpu = (uint32_t)bind_cpu;
1618 	apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND));
1619 	return (0);
1620 }
1621 
1622 static void
1623 apic_last_ditch_clear_remote_irr(int ioapic_ix, int intin_no)
1624 {
1625 	if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no)
1626 	    & AV_REMOTE_IRR) != 0) {
1627 		/*
1628 		 * Trying to clear the bit through normal
1629 		 * channels has failed.  So as a last-ditch
1630 		 * effort, try to set the trigger mode to
1631 		 * edge, then to level.  This has been
1632 		 * observed to work on many systems.
1633 		 */
1634 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1635 		    intin_no,
1636 		    READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1637 		    intin_no) & ~AV_LEVEL);
1638 
1639 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1640 		    intin_no,
1641 		    READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1642 		    intin_no) | AV_LEVEL);
1643 
1644 		/*
1645 		 * If the bit's STILL set, this interrupt may
1646 		 * be hosed.
1647 		 */
1648 		if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1649 		    intin_no) & AV_REMOTE_IRR) != 0) {
1650 
1651 			prom_printf("%s: Remote IRR still "
1652 			    "not clear for IOAPIC %d intin %d.\n"
1653 			    "\tInterrupts to this pin may cease "
1654 			    "functioning.\n", psm_name, ioapic_ix,
1655 			    intin_no);
1656 #ifdef DEBUG
1657 			apic_last_ditch_reprogram_failures++;
1658 #endif
1659 		}
1660 	}
1661 }
1662 
1663 /*
1664  * This function is protected by apic_ioapic_lock coupled with the
1665  * fact that interrupts are disabled.
1666  */
1667 static void
1668 delete_defer_repro_ent(int which_irq)
1669 {
1670 	ASSERT(which_irq >= 0);
1671 	ASSERT(which_irq <= 255);
1672 	ASSERT(LOCK_HELD(&apic_ioapic_lock));
1673 
1674 	if (apic_reprogram_info[which_irq].done)
1675 		return;
1676 
1677 	apic_reprogram_info[which_irq].done = B_TRUE;
1678 
1679 #ifdef DEBUG
1680 	apic_defer_repro_total_retries +=
1681 	    apic_reprogram_info[which_irq].tries;
1682 
1683 	apic_defer_repro_successes++;
1684 #endif
1685 
1686 	if (--apic_reprogram_outstanding == 0) {
1687 
1688 		setlvlx = psm_intr_exit_fn();
1689 	}
1690 }
1691 
1692 
1693 /*
1694  * Interrupts must be disabled during this function to prevent
1695  * self-deadlock.  Interrupts are disabled because this function
1696  * is called from apic_check_stuck_interrupt(), which is called
1697  * from apic_rebind(), which requires its caller to disable interrupts.
1698  */
1699 static void
1700 add_defer_repro_ent(apic_irq_t *irq_ptr, int which_irq, int new_bind_cpu)
1701 {
1702 	ASSERT(which_irq >= 0);
1703 	ASSERT(which_irq <= 255);
1704 	ASSERT(!interrupts_enabled());
1705 
1706 	/*
1707 	 * On the off-chance that there's already a deferred
1708 	 * reprogramming on this irq, check, and if so, just update the
1709 	 * CPU and irq pointer to which the interrupt is targeted, then return.
1710 	 */
1711 	if (!apic_reprogram_info[which_irq].done) {
1712 		apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
1713 		apic_reprogram_info[which_irq].irqp = irq_ptr;
1714 		return;
1715 	}
1716 
1717 	apic_reprogram_info[which_irq].irqp = irq_ptr;
1718 	apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
1719 	apic_reprogram_info[which_irq].tries = 0;
1720 	/*
1721 	 * This must be the last thing set, since we're not
1722 	 * grabbing any locks, apic_try_deferred_reprogram() will
1723 	 * make its decision about using this entry iff done
1724 	 * is false.
1725 	 */
1726 	apic_reprogram_info[which_irq].done = B_FALSE;
1727 
1728 	/*
1729 	 * If there were previously no deferred reprogrammings, change
1730 	 * setlvlx to call apic_try_deferred_reprogram()
1731 	 */
1732 	if (++apic_reprogram_outstanding == 1) {
1733 
1734 		setlvlx = apic_try_deferred_reprogram;
1735 	}
1736 }
1737 
1738 static void
1739 apic_try_deferred_reprogram(int prev_ipl, int irq)
1740 {
1741 	int reproirq;
1742 	ulong_t iflag;
1743 	struct ioapic_reprogram_data *drep;
1744 
1745 	(*psm_intr_exit_fn())(prev_ipl, irq);
1746 
1747 	if (!lock_try(&apic_defer_reprogram_lock)) {
1748 		return;
1749 	}
1750 
1751 	/*
1752 	 * Acquire the apic_ioapic_lock so that any other operations that
1753 	 * may affect the apic_reprogram_info state are serialized.
1754 	 * It's still possible for the last deferred reprogramming to clear
1755 	 * between the time we entered this function and the time we get to
1756 	 * the for loop below.  In that case, *setlvlx will have been set
1757 	 * back to *_intr_exit and drep will be NULL. (There's no way to
1758 	 * stop that from happening -- we would need to grab a lock before
1759 	 * calling *setlvlx, which is neither realistic nor prudent).
1760 	 */
1761 	iflag = intr_clear();
1762 	lock_set(&apic_ioapic_lock);
1763 
1764 	/*
1765 	 * For each deferred RDT entry, try to reprogram it now.  Note that
1766 	 * there is no lock acquisition to read apic_reprogram_info because
1767 	 * '.done' is set only after the other fields in the structure are set.
1768 	 */
1769 
1770 	drep = NULL;
1771 	for (reproirq = 0; reproirq <= APIC_MAX_VECTOR; reproirq++) {
1772 		if (apic_reprogram_info[reproirq].done == B_FALSE) {
1773 			drep = &apic_reprogram_info[reproirq];
1774 			break;
1775 		}
1776 	}
1777 
1778 	/*
1779 	 * Either we found a deferred action to perform, or
1780 	 * we entered this function spuriously, after *setlvlx
1781 	 * was restored to point to *_intr_exit.  Any other
1782 	 * permutation is invalid.
1783 	 */
1784 	ASSERT(drep != NULL || *setlvlx == psm_intr_exit_fn());
1785 
1786 	/*
1787 	 * Though we can't really do anything about errors
1788 	 * at this point, keep track of them for reporting.
1789 	 * Note that it is very possible for apic_setup_io_intr
1790 	 * to re-register this very timeout if the Remote IRR bit
1791 	 * has not yet cleared.
1792 	 */
1793 
1794 #ifdef DEBUG
1795 	if (drep != NULL) {
1796 		if (apic_setup_io_intr(drep, reproirq, B_TRUE) != 0) {
1797 			apic_deferred_setup_failures++;
1798 		}
1799 	} else {
1800 		apic_deferred_spurious_enters++;
1801 	}
1802 #else
1803 	if (drep != NULL)
1804 		(void) apic_setup_io_intr(drep, reproirq, B_TRUE);
1805 #endif
1806 
1807 	lock_clear(&apic_ioapic_lock);
1808 	intr_restore(iflag);
1809 
1810 	lock_clear(&apic_defer_reprogram_lock);
1811 }
1812 
1813 static void
1814 apic_ioapic_wait_pending_clear(int ioapic_ix, int intin_no)
1815 {
1816 	int waited;
1817 
1818 	/*
1819 	 * Wait for the delivery pending bit to clear.
1820 	 */
1821 	if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
1822 	    (AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) {
1823 
1824 		/*
1825 		 * If we're still waiting on the delivery of this interrupt,
1826 		 * continue to wait here until it is delivered (this should be
1827 		 * a very small amount of time, but include a timeout just in
1828 		 * case).
1829 		 */
1830 		for (waited = 0; waited < apic_max_reps_clear_pending;
1831 		    waited++) {
1832 			if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1833 			    intin_no) & AV_PENDING) == 0) {
1834 				break;
1835 			}
1836 		}
1837 	}
1838 }
1839 
1840 
1841 /*
1842  * Checks to see if the IOAPIC interrupt entry specified has its Remote IRR
1843  * bit set.  Calls functions that modify the function that setlvlx points to,
1844  * so that the reprogramming can be retried very shortly.
1845  *
1846  * This function will mask the RDT entry if the interrupt is level-triggered.
1847  * (The caller is responsible for unmasking the RDT entry.)
1848  *
1849  * Returns non-zero if the caller should defer IOAPIC reprogramming.
1850  */
1851 static int
1852 apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
1853     int new_bind_cpu, int ioapic_ix, int intin_no, int which_irq,
1854     struct ioapic_reprogram_data *drep)
1855 {
1856 	int32_t			rdt_entry;
1857 	int			waited;
1858 	int			reps = 0;
1859 
1860 	/*
1861 	 * Wait for the delivery pending bit to clear.
1862 	 */
1863 	do {
1864 		++reps;
1865 
1866 		apic_ioapic_wait_pending_clear(ioapic_ix, intin_no);
1867 
1868 		/*
1869 		 * Mask the RDT entry, but only if it's a level-triggered
1870 		 * interrupt
1871 		 */
1872 		rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1873 		    intin_no);
1874 		if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) {
1875 
1876 			/* Mask it */
1877 			WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no,
1878 			    AV_MASK | rdt_entry);
1879 		}
1880 
1881 		if ((rdt_entry & AV_LEVEL) == AV_LEVEL) {
1882 			/*
1883 			 * If there was a race and an interrupt was injected
1884 			 * just before we masked, check for that case here.
1885 			 * Then, unmask the RDT entry and try again.  If we're
1886 			 * on our last try, don't unmask (because we want the
1887 			 * RDT entry to remain masked for the rest of the
1888 			 * function).
1889 			 */
1890 			rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1891 			    intin_no);
1892 			if ((rdt_entry & AV_PENDING) &&
1893 			    (reps < apic_max_reps_clear_pending)) {
1894 				/* Unmask it */
1895 				WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1896 				    intin_no, rdt_entry & ~AV_MASK);
1897 			}
1898 		}
1899 
1900 	} while ((rdt_entry & AV_PENDING) &&
1901 	    (reps < apic_max_reps_clear_pending));
1902 
1903 #ifdef DEBUG
1904 	if (rdt_entry & AV_PENDING)
1905 		apic_intr_deliver_timeouts++;
1906 #endif
1907 
1908 	/*
1909 	 * If the remote IRR bit is set, then the interrupt has been sent
1910 	 * to a CPU for processing.  We have no choice but to wait for
1911 	 * that CPU to process the interrupt, at which point the remote IRR
1912 	 * bit will be cleared.
1913 	 */
1914 	if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
1915 	    (AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) {
1916 
1917 		/*
1918 		 * If the CPU that this RDT is bound to is NOT the current
1919 		 * CPU, wait until that CPU handles the interrupt and ACKs
1920 		 * it.  If this interrupt is not bound to any CPU (that is,
1921 		 * if it's bound to the logical destination of "anyone"), it
1922 		 * may have been delivered to the current CPU so handle that
1923 		 * case by deferring the reprogramming (below).
1924 		 */
1925 		if ((old_bind_cpu != IRQ_UNBOUND) &&
1926 		    (old_bind_cpu != IRQ_UNINIT) &&
1927 		    (old_bind_cpu != psm_get_cpu_id())) {
1928 			for (waited = 0; waited < apic_max_reps_clear_pending;
1929 			    waited++) {
1930 				if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1931 				    intin_no) & AV_REMOTE_IRR) == 0) {
1932 
1933 					delete_defer_repro_ent(which_irq);
1934 
1935 					/* Remote IRR has cleared! */
1936 					return (0);
1937 				}
1938 			}
1939 		}
1940 
1941 		/*
1942 		 * If we waited and the Remote IRR bit is still not cleared,
1943 		 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
1944 		 * times for this interrupt, try the last-ditch workaround:
1945 		 */
1946 		if (drep && drep->tries >= APIC_REPROGRAM_MAX_TRIES) {
1947 
1948 			apic_last_ditch_clear_remote_irr(ioapic_ix, intin_no);
1949 
1950 			/* Mark this one as reprogrammed: */
1951 			delete_defer_repro_ent(which_irq);
1952 
1953 			return (0);
1954 		} else {
1955 #ifdef DEBUG
1956 			apic_intr_deferrals++;
1957 #endif
1958 
1959 			/*
1960 			 * If waiting for the Remote IRR bit (above) didn't
1961 			 * allow it to clear, defer the reprogramming.
1962 			 * Add a new deferred-programming entry if the
1963 			 * caller passed a NULL one (and update the existing one
1964 			 * in case anything changed).
1965 			 */
1966 			add_defer_repro_ent(irq_ptr, which_irq, new_bind_cpu);
1967 			if (drep)
1968 				drep->tries++;
1969 
1970 			/* Inform caller to defer IOAPIC programming: */
1971 			return (1);
1972 		}
1973 
1974 	}
1975 
1976 	/* Remote IRR is clear */
1977 	delete_defer_repro_ent(which_irq);
1978 
1979 	return (0);
1980 }
1981 
1982 /*
1983  * Called to migrate all interrupts at an irq to another cpu.
1984  * Must be called with interrupts disabled and apic_ioapic_lock held
1985  */
1986 int
1987 apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu)
1988 {
1989 	apic_irq_t	*irqptr = irq_ptr;
1990 	int		retval = 0;
1991 
1992 	while (irqptr) {
1993 		if (irqptr->airq_temp_cpu != IRQ_UNINIT)
1994 			retval |= apic_rebind(irqptr, bind_cpu, NULL);
1995 		irqptr = irqptr->airq_next;
1996 	}
1997 
1998 	return (retval);
1999 }
2000 
2001 /*
2002  * apic_intr_redistribute does all the messy computations for identifying
2003  * which interrupt to move to which CPU. Currently we do just one interrupt
2004  * at a time. This reduces the time we spent doing all this within clock
2005  * interrupt. When it is done in idle, we could do more than 1.
2006  * First we find the most busy and the most free CPU (time in ISR only)
2007  * skipping those CPUs that has been identified as being ineligible (cpu_skip)
2008  * Then we look for IRQs which are closest to the difference between the
2009  * most busy CPU and the average ISR load. We try to find one whose load
2010  * is less than difference.If none exists, then we chose one larger than the
2011  * difference, provided it does not make the most idle CPU worse than the
2012  * most busy one. In the end, we clear all the busy fields for CPUs. For
2013  * IRQs, they are cleared as they are scanned.
2014  */
2015 void
2016 apic_intr_redistribute(void)
2017 {
2018 	int busiest_cpu, most_free_cpu;
2019 	int cpu_free, cpu_busy, max_busy, min_busy;
2020 	int min_free, diff;
2021 	int average_busy, cpus_online;
2022 	int i, busy;
2023 	ulong_t iflag;
2024 	apic_cpus_info_t *cpu_infop;
2025 	apic_irq_t *min_busy_irq = NULL;
2026 	apic_irq_t *max_busy_irq = NULL;
2027 
2028 	busiest_cpu = most_free_cpu = -1;
2029 	cpu_free = cpu_busy = max_busy = average_busy = 0;
2030 	min_free = apic_sample_factor_redistribution;
2031 	cpus_online = 0;
2032 	/*
2033 	 * Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu
2034 	 * without ioapic_lock. That is OK as we are just doing statistical
2035 	 * sampling anyway and any inaccuracy now will get corrected next time
2036 	 * The call to rebind which actually changes things will make sure
2037 	 * we are consistent.
2038 	 */
2039 	for (i = 0; i < apic_nproc; i++) {
2040 		if (apic_cpu_in_range(i) &&
2041 		    !(apic_redist_cpu_skip & (1 << i)) &&
2042 		    (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) {
2043 
2044 			cpu_infop = &apic_cpus[i];
2045 			/*
2046 			 * If no unbound interrupts or only 1 total on this
2047 			 * CPU, skip
2048 			 */
2049 			if (!cpu_infop->aci_temp_bound ||
2050 			    (cpu_infop->aci_bound + cpu_infop->aci_temp_bound)
2051 			    == 1) {
2052 				apic_redist_cpu_skip |= 1 << i;
2053 				continue;
2054 			}
2055 
2056 			busy = cpu_infop->aci_busy;
2057 			average_busy += busy;
2058 			cpus_online++;
2059 			if (max_busy < busy) {
2060 				max_busy = busy;
2061 				busiest_cpu = i;
2062 			}
2063 			if (min_free > busy) {
2064 				min_free = busy;
2065 				most_free_cpu = i;
2066 			}
2067 			if (busy > apic_int_busy_mark) {
2068 				cpu_busy |= 1 << i;
2069 			} else {
2070 				if (busy < apic_int_free_mark)
2071 					cpu_free |= 1 << i;
2072 			}
2073 		}
2074 	}
2075 	if ((cpu_busy && cpu_free) ||
2076 	    (max_busy >= (min_free + apic_diff_for_redistribution))) {
2077 
2078 		apic_num_imbalance++;
2079 #ifdef	DEBUG
2080 		if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2081 			prom_printf(
2082 			    "redistribute busy=%x free=%x max=%x min=%x",
2083 			    cpu_busy, cpu_free, max_busy, min_free);
2084 		}
2085 #endif /* DEBUG */
2086 
2087 
2088 		average_busy /= cpus_online;
2089 
2090 		diff = max_busy - average_busy;
2091 		min_busy = max_busy; /* start with the max possible value */
2092 		max_busy = 0;
2093 		min_busy_irq = max_busy_irq = NULL;
2094 		i = apic_min_device_irq;
2095 		for (; i <= apic_max_device_irq; i++) {
2096 			apic_irq_t *irq_ptr;
2097 			/* Change to linked list per CPU ? */
2098 			if ((irq_ptr = apic_irq_table[i]) == NULL)
2099 				continue;
2100 			/* Check for irq_busy & decide which one to move */
2101 			/* Also zero them for next round */
2102 			if ((irq_ptr->airq_temp_cpu == busiest_cpu) &&
2103 			    irq_ptr->airq_busy) {
2104 				if (irq_ptr->airq_busy < diff) {
2105 					/*
2106 					 * Check for least busy CPU,
2107 					 * best fit or what ?
2108 					 */
2109 					if (max_busy < irq_ptr->airq_busy) {
2110 						/*
2111 						 * Most busy within the
2112 						 * required differential
2113 						 */
2114 						max_busy = irq_ptr->airq_busy;
2115 						max_busy_irq = irq_ptr;
2116 					}
2117 				} else {
2118 					if (min_busy > irq_ptr->airq_busy) {
2119 						/*
2120 						 * least busy, but more than
2121 						 * the reqd diff
2122 						 */
2123 						if (min_busy <
2124 						    (diff + average_busy -
2125 						    min_free)) {
2126 							/*
2127 							 * Making sure new cpu
2128 							 * will not end up
2129 							 * worse
2130 							 */
2131 							min_busy =
2132 							    irq_ptr->airq_busy;
2133 
2134 							min_busy_irq = irq_ptr;
2135 						}
2136 					}
2137 				}
2138 			}
2139 			irq_ptr->airq_busy = 0;
2140 		}
2141 
2142 		if (max_busy_irq != NULL) {
2143 #ifdef	DEBUG
2144 			if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2145 				prom_printf("rebinding %x to %x",
2146 				    max_busy_irq->airq_vector, most_free_cpu);
2147 			}
2148 #endif /* DEBUG */
2149 			iflag = intr_clear();
2150 			if (lock_try(&apic_ioapic_lock)) {
2151 				if (apic_rebind_all(max_busy_irq,
2152 				    most_free_cpu) == 0) {
2153 					/* Make change permenant */
2154 					max_busy_irq->airq_cpu =
2155 					    (uint32_t)most_free_cpu;
2156 				}
2157 				lock_clear(&apic_ioapic_lock);
2158 			}
2159 			intr_restore(iflag);
2160 
2161 		} else if (min_busy_irq != NULL) {
2162 #ifdef	DEBUG
2163 			if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2164 				prom_printf("rebinding %x to %x",
2165 				    min_busy_irq->airq_vector, most_free_cpu);
2166 			}
2167 #endif /* DEBUG */
2168 
2169 			iflag = intr_clear();
2170 			if (lock_try(&apic_ioapic_lock)) {
2171 				if (apic_rebind_all(min_busy_irq,
2172 				    most_free_cpu) == 0) {
2173 					/* Make change permenant */
2174 					min_busy_irq->airq_cpu =
2175 					    (uint32_t)most_free_cpu;
2176 				}
2177 				lock_clear(&apic_ioapic_lock);
2178 			}
2179 			intr_restore(iflag);
2180 
2181 		} else {
2182 			if (cpu_busy != (1 << busiest_cpu)) {
2183 				apic_redist_cpu_skip |= 1 << busiest_cpu;
2184 				/*
2185 				 * We leave cpu_skip set so that next time we
2186 				 * can choose another cpu
2187 				 */
2188 			}
2189 		}
2190 		apic_num_rebind++;
2191 	} else {
2192 		/*
2193 		 * found nothing. Could be that we skipped over valid CPUs
2194 		 * or we have balanced everything. If we had a variable
2195 		 * ticks_for_redistribution, it could be increased here.
2196 		 * apic_int_busy, int_free etc would also need to be
2197 		 * changed.
2198 		 */
2199 		if (apic_redist_cpu_skip)
2200 			apic_redist_cpu_skip = 0;
2201 	}
2202 	for (i = 0; i < apic_nproc; i++) {
2203 		if (apic_cpu_in_range(i)) {
2204 			apic_cpus[i].aci_busy = 0;
2205 		}
2206 	}
2207 }
2208 
2209 void
2210 apic_cleanup_busy(void)
2211 {
2212 	int i;
2213 	apic_irq_t *irq_ptr;
2214 
2215 	for (i = 0; i < apic_nproc; i++) {
2216 		if (apic_cpu_in_range(i)) {
2217 			apic_cpus[i].aci_busy = 0;
2218 		}
2219 	}
2220 
2221 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
2222 		if ((irq_ptr = apic_irq_table[i]) != NULL)
2223 			irq_ptr->airq_busy = 0;
2224 	}
2225 }
2226