xref: /illumos-gate/usr/src/uts/i86pc/io/mp_platform_common.c (revision f8cbe0e7fd4f172d5ed456a8f7425890e1ea20cd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2016 Nexenta Systems, Inc.
24  * Copyright (c) 2017 by Delphix. All rights reserved.
25  */
26 /*
27  * Copyright (c) 2010, Intel Corporation.
28  * All rights reserved.
29  */
30 
31 /*
32  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
33  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
34  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
35  * PSMI 1.5 extensions are supported in Solaris Nevada.
36  * PSMI 1.6 extensions are supported in Solaris Nevada.
37  * PSMI 1.7 extensions are supported in Solaris Nevada.
38  */
39 #define	PSMI_1_7
40 
41 #include <sys/processor.h>
42 #include <sys/time.h>
43 #include <sys/psm.h>
44 #include <sys/smp_impldefs.h>
45 #include <sys/cram.h>
46 #include <sys/acpi/acpi.h>
47 #include <sys/acpica.h>
48 #include <sys/psm_common.h>
49 #include <sys/apic.h>
50 #include <sys/apic_timer.h>
51 #include <sys/pit.h>
52 #include <sys/ddi.h>
53 #include <sys/sunddi.h>
54 #include <sys/ddi_impldefs.h>
55 #include <sys/pci.h>
56 #include <sys/promif.h>
57 #include <sys/x86_archext.h>
58 #include <sys/cpc_impl.h>
59 #include <sys/uadmin.h>
60 #include <sys/panic.h>
61 #include <sys/debug.h>
62 #include <sys/archsystm.h>
63 #include <sys/trap.h>
64 #include <sys/machsystm.h>
65 #include <sys/cpuvar.h>
66 #include <sys/rm_platter.h>
67 #include <sys/privregs.h>
68 #include <sys/cyclic.h>
69 #include <sys/note.h>
70 #include <sys/pci_intr_lib.h>
71 #include <sys/sunndi.h>
72 #if !defined(__xpv)
73 #include <sys/hpet.h>
74 #include <sys/clock.h>
75 #endif
76 
77 /*
78  *	Local Function Prototypes
79  */
80 static int apic_handle_defconf();
81 static int apic_parse_mpct(caddr_t mpct, int bypass);
82 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size);
83 static int apic_checksum(caddr_t bptr, int len);
84 static int apic_find_bus_type(char *bus);
85 static int apic_find_bus(int busid);
86 static struct apic_io_intr *apic_find_io_intr(int irqno);
87 static int apic_find_free_irq(int start, int end);
88 struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
89 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp);
90 static void apic_free_apic_cpus(void);
91 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr);
92 static int apic_acpi_enter_apicmode(void);
93 
94 int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
95     int child_ipin, struct apic_io_intr **intrp);
96 int apic_find_bus_id(int bustype);
97 int apic_find_intin(uchar_t ioapic, uchar_t intin);
98 void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
99 
100 int apic_debug_mps_id = 0;	/* 1 - print MPS ID strings */
101 
102 /* ACPI SCI interrupt configuration; -1 if SCI not used */
103 int apic_sci_vect = -1;
104 iflag_t apic_sci_flags;
105 
106 #if !defined(__xpv)
107 /* ACPI HPET interrupt configuration; -1 if HPET not used */
108 int apic_hpet_vect = -1;
109 iflag_t apic_hpet_flags;
110 #endif
111 
112 /*
113  * psm name pointer
114  */
115 char *psm_name;
116 
117 /* ACPI support routines */
118 static int acpi_probe(char *);
119 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
120     int *pci_irqp, iflag_t *intr_flagp);
121 
122 int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
123     int ipin, int *pci_irqp, iflag_t *intr_flagp);
124 uchar_t acpi_find_ioapic(int irq);
125 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2);
126 
127 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
128 int apic_max_reps_clear_pending = 1000;
129 
130 int	apic_intr_policy = INTR_ROUND_ROBIN;
131 
132 int	apic_next_bind_cpu = 1; /* For round robin assignment */
133 				/* start with cpu 1 */
134 
135 /*
136  * If enabled, the distribution works as follows:
137  * On every interrupt entry, the current ipl for the CPU is set in cpu_info
138  * and the irq corresponding to the ipl is also set in the aci_current array.
139  * interrupt exit and setspl (due to soft interrupts) will cause the current
140  * ipl to be be changed. This is cache friendly as these frequently used
141  * paths write into a per cpu structure.
142  *
143  * Sampling is done by checking the structures for all CPUs and incrementing
144  * the busy field of the irq (if any) executing on each CPU and the busy field
145  * of the corresponding CPU.
146  * In periodic mode this is done on every clock interrupt.
147  * In one-shot mode, this is done thru a cyclic with an interval of
148  * apic_redistribute_sample_interval (default 10 milli sec).
149  *
150  * Every apic_sample_factor_redistribution times we sample, we do computations
151  * to decide which interrupt needs to be migrated (see comments
152  * before apic_intr_redistribute().
153  */
154 
155 /*
156  * Following 3 variables start as % and can be patched or set using an
157  * API to be defined in future. They will be scaled to
158  * sample_factor_redistribution which is in turn set to hertz+1 (in periodic
159  * mode), or 101 in one-shot mode to stagger it away from one sec processing
160  */
161 
162 int	apic_int_busy_mark = 60;
163 int	apic_int_free_mark = 20;
164 int	apic_diff_for_redistribution = 10;
165 
166 /* sampling interval for interrupt redistribution for dynamic migration */
167 int	apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */
168 
169 /*
170  * number of times we sample before deciding to redistribute interrupts
171  * for dynamic migration
172  */
173 int	apic_sample_factor_redistribution = 101;
174 
175 int	apic_redist_cpu_skip = 0;
176 int	apic_num_imbalance = 0;
177 int	apic_num_rebind = 0;
178 
179 /*
180  * Maximum number of APIC CPUs in the system, -1 indicates that dynamic
181  * allocation of CPU ids is disabled.
182  */
183 int 	apic_max_nproc = -1;
184 int	apic_nproc = 0;
185 size_t	apic_cpus_size = 0;
186 int	apic_defconf = 0;
187 int	apic_irq_translate = 0;
188 int	apic_spec_rev = 0;
189 int	apic_imcrp = 0;
190 
191 int	apic_use_acpi = 1;	/* 1 = use ACPI, 0 = don't use ACPI */
192 int	apic_use_acpi_madt_only = 0;	/* 1=ONLY use MADT from ACPI */
193 
194 /*
195  * For interrupt link devices, if apic_unconditional_srs is set, an irq resource
196  * will be assigned (via _SRS). If it is not set, use the current
197  * irq setting (via _CRS), but only if that irq is in the set of possible
198  * irqs (returned by _PRS) for the device.
199  */
200 int	apic_unconditional_srs = 1;
201 
202 /*
203  * For interrupt link devices, if apic_prefer_crs is set when we are
204  * assigning an IRQ resource to a device, prefer the current IRQ setting
205  * over other possible irq settings under same conditions.
206  */
207 
208 int	apic_prefer_crs = 1;
209 
210 uchar_t apic_io_id[MAX_IO_APIC];
211 volatile uint32_t *apicioadr[MAX_IO_APIC];
212 uchar_t	apic_io_ver[MAX_IO_APIC];
213 uchar_t	apic_io_vectbase[MAX_IO_APIC];
214 uchar_t	apic_io_vectend[MAX_IO_APIC];
215 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1];
216 uint32_t apic_physaddr[MAX_IO_APIC];
217 
218 boolean_t ioapic_mask_workaround[MAX_IO_APIC];
219 
220 /*
221  * First available slot to be used as IRQ index into the apic_irq_table
222  * for those interrupts (like MSI/X) that don't have a physical IRQ.
223  */
224 int apic_first_avail_irq  = APIC_FIRST_FREE_IRQ;
225 
226 /*
227  * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound
228  * and bound elements of cpus_info and the temp_cpu element of irq_struct
229  */
230 lock_t	apic_ioapic_lock;
231 
232 int	apic_io_max = 0;	/* no. of i/o apics enabled */
233 
234 struct apic_io_intr *apic_io_intrp = NULL;
235 static	struct apic_bus	*apic_busp;
236 
237 uchar_t	apic_resv_vector[MAXIPL+1];
238 
239 char	apic_level_intr[APIC_MAX_VECTOR+1];
240 
241 uint32_t	eisa_level_intr_mask = 0;
242 	/* At least MSB will be set if EISA bus */
243 
244 int	apic_pci_bus_total = 0;
245 uchar_t	apic_single_pci_busid = 0;
246 
247 /*
248  * airq_mutex protects additions to the apic_irq_table - the first
249  * pointer and any airq_nexts off of that one. It also protects
250  * apic_max_device_irq & apic_min_device_irq. It also guarantees
251  * that share_id is unique as new ids are generated only when new
252  * irq_t structs are linked in. Once linked in the structs are never
253  * deleted. temp_cpu & mps_intr_index field indicate if it is programmed
254  * or allocated. Note that there is a slight gap between allocating in
255  * apic_introp_xlate and programming in addspl.
256  */
257 kmutex_t	airq_mutex;
258 apic_irq_t	*apic_irq_table[APIC_MAX_VECTOR+1];
259 int		apic_max_device_irq = 0;
260 int		apic_min_device_irq = APIC_MAX_VECTOR;
261 
262 typedef struct prs_irq_list_ent {
263 	int			list_prio;
264 	int32_t			irq;
265 	iflag_t			intrflags;
266 	acpi_prs_private_t	prsprv;
267 	struct prs_irq_list_ent	*next;
268 } prs_irq_list_t;
269 
270 
271 /*
272  * ACPI variables
273  */
274 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */
275 int apic_enable_acpi = 0;
276 
277 /* ACPI Multiple APIC Description Table ptr */
278 static	ACPI_TABLE_MADT *acpi_mapic_dtp = NULL;
279 
280 /* ACPI Interrupt Source Override Structure ptr */
281 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL;
282 int acpi_iso_cnt = 0;
283 
284 /* ACPI Non-maskable Interrupt Sources ptr */
285 static	ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL;
286 static	int acpi_nmi_scnt = 0;
287 static	ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL;
288 static	int acpi_nmi_ccnt = 0;
289 
290 static	boolean_t acpi_found_smp_config = B_FALSE;
291 
292 /*
293  * The following added to identify a software poweroff method if available.
294  */
295 
296 static struct {
297 	int	poweroff_method;
298 	char	oem_id[APIC_MPS_OEM_ID_LEN + 1];	/* MAX + 1 for NULL */
299 	char	prod_id[APIC_MPS_PROD_ID_LEN + 1];	/* MAX + 1 for NULL */
300 } apic_mps_ids[] = {
301 	{ APIC_POWEROFF_VIA_RTC,	"INTEL",	"ALDER" },   /* 4300 */
302 	{ APIC_POWEROFF_VIA_RTC,	"NCR",		"AMC" },    /* 4300 */
303 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"A450NX" },  /* 4400? */
304 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AD450NX" }, /* 4400 */
305 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AC450NX" }, /* 4400R */
306 	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"S450NX" },  /* S50  */
307 	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"SC450NX" }  /* S50? */
308 };
309 
310 int	apic_poweroff_method = APIC_POWEROFF_NONE;
311 
312 /*
313  * Auto-configuration routines
314  */
315 
316 /*
317  * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here
318  * May work with 1.1 - but not guaranteed.
319  * According to the MP Spec, the MP floating pointer structure
320  * will be searched in the order described below:
321  * 1. In the first kilobyte of Extended BIOS Data Area (EBDA)
322  * 2. Within the last kilobyte of system base memory
323  * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh
324  * Once we find the right signature with proper checksum, we call
325  * either handle_defconf or parse_mpct to get all info necessary for
326  * subsequent operations.
327  */
328 int
329 apic_probe_common(char *modname)
330 {
331 	uint32_t mpct_addr, ebda_start = 0, base_mem_end;
332 	caddr_t	biosdatap;
333 	caddr_t	mpct = 0;
334 	caddr_t	fptr;
335 	int	i, mpct_size, mapsize, retval = PSM_FAILURE;
336 	ushort_t	ebda_seg, base_mem_size;
337 	struct	apic_mpfps_hdr	*fpsp;
338 	struct	apic_mp_cnf_hdr	*hdrp;
339 	int bypass_cpu_and_ioapics_in_mptables;
340 	int acpi_user_options;
341 
342 	if (apic_forceload < 0)
343 		return (retval);
344 
345 	/*
346 	 * Remember who we are
347 	 */
348 	psm_name = modname;
349 
350 	/* Allow override for MADT-only mode */
351 	acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0,
352 	    "acpi-user-options", 0);
353 	apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0);
354 
355 	/* Allow apic_use_acpi to override MADT-only mode */
356 	if (!apic_use_acpi)
357 		apic_use_acpi_madt_only = 0;
358 
359 	retval = acpi_probe(modname);
360 
361 	/*
362 	 * mapin the bios data area 40:0
363 	 * 40:13h - two-byte location reports the base memory size
364 	 * 40:0Eh - two-byte location for the exact starting address of
365 	 *	    the EBDA segment for EISA
366 	 */
367 	biosdatap = psm_map_phys(0x400, 0x20, PROT_READ);
368 	if (!biosdatap)
369 		goto apic_ret;
370 	fpsp = (struct apic_mpfps_hdr *)NULL;
371 	mapsize = MPFPS_RAM_WIN_LEN;
372 	/*LINTED: pointer cast may result in improper alignment */
373 	ebda_seg = *((ushort_t *)(biosdatap+0xe));
374 	/* check the 1k of EBDA */
375 	if (ebda_seg) {
376 		ebda_start = ((uint32_t)ebda_seg) << 4;
377 		fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ);
378 		if (fptr) {
379 			if (!(fpsp =
380 			    apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN)))
381 				psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
382 		}
383 	}
384 	/* If not in EBDA, check the last k of system base memory */
385 	if (!fpsp) {
386 		/*LINTED: pointer cast may result in improper alignment */
387 		base_mem_size = *((ushort_t *)(biosdatap + 0x13));
388 
389 		if (base_mem_size > 512)
390 			base_mem_end = 639 * 1024;
391 		else
392 			base_mem_end = 511 * 1024;
393 		/* if ebda == last k of base mem, skip to check BIOS ROM */
394 		if (base_mem_end != ebda_start) {
395 
396 			fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN,
397 			    PROT_READ);
398 
399 			if (fptr) {
400 				if (!(fpsp = apic_find_fps_sig(fptr,
401 				    MPFPS_RAM_WIN_LEN)))
402 					psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
403 			}
404 		}
405 	}
406 	psm_unmap_phys(biosdatap, 0x20);
407 
408 	/* If still cannot find it, check the BIOS ROM space */
409 	if (!fpsp) {
410 		mapsize = MPFPS_ROM_WIN_LEN;
411 		fptr = psm_map_phys(MPFPS_ROM_WIN_START,
412 		    MPFPS_ROM_WIN_LEN, PROT_READ);
413 		if (fptr) {
414 			if (!(fpsp =
415 			    apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) {
416 				psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
417 				goto apic_ret;
418 			}
419 		}
420 	}
421 
422 	if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) {
423 		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
424 		goto apic_ret;
425 	}
426 
427 	apic_spec_rev = fpsp->mpfps_spec_rev;
428 	if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) {
429 		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
430 		goto apic_ret;
431 	}
432 
433 	/* check IMCR is present or not */
434 	apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP;
435 
436 	/* check default configuration (dual CPUs) */
437 	if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) {
438 		psm_unmap_phys(fptr, mapsize);
439 		if ((retval = apic_handle_defconf()) != PSM_SUCCESS)
440 			return (retval);
441 
442 		goto apic_ret;
443 	}
444 
445 	/* MP Configuration Table */
446 	mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr);
447 
448 	psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */
449 
450 	/*
451 	 * Map in enough memory for the MP Configuration Table Header.
452 	 * Use this table to read the total length of the BIOS data and
453 	 * map in all the info
454 	 */
455 	/*LINTED: pointer cast may result in improper alignment */
456 	hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr,
457 	    sizeof (struct apic_mp_cnf_hdr), PROT_READ);
458 	if (!hdrp)
459 		goto apic_ret;
460 
461 	/* check mp configuration table signature PCMP */
462 	if (hdrp->mpcnf_sig != 0x504d4350) {
463 		psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
464 		goto apic_ret;
465 	}
466 	mpct_size = (int)hdrp->mpcnf_tbl_length;
467 
468 	apic_set_pwroff_method_from_mpcnfhdr(hdrp);
469 
470 	psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
471 
472 	if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) {
473 		/* This is an ACPI machine No need for further checks */
474 		goto apic_ret;
475 	}
476 
477 	/*
478 	 * Map in the entries for this machine, ie. Processor
479 	 * Entry Tables, Bus Entry Tables, etc.
480 	 * They are in fixed order following one another
481 	 */
482 	mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ);
483 	if (!mpct)
484 		goto apic_ret;
485 
486 	if (apic_checksum(mpct, mpct_size) != 0)
487 		goto apic_fail1;
488 
489 	/*LINTED: pointer cast may result in improper alignment */
490 	hdrp = (struct apic_mp_cnf_hdr *)mpct;
491 	apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic,
492 	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
493 	if (!apicadr)
494 		goto apic_fail1;
495 
496 	/* Parse all information in the tables */
497 	bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS);
498 	if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) ==
499 	    PSM_SUCCESS) {
500 		retval = PSM_SUCCESS;
501 		goto apic_ret;
502 	}
503 
504 apic_fail1:
505 	psm_unmap_phys(mpct, mpct_size);
506 	mpct = NULL;
507 
508 apic_ret:
509 	if (retval == PSM_SUCCESS) {
510 		extern int apic_ioapic_method_probe();
511 
512 		if ((retval = apic_ioapic_method_probe()) == PSM_SUCCESS)
513 			return (PSM_SUCCESS);
514 	}
515 
516 	for (i = 0; i < apic_io_max; i++)
517 		mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
518 	if (apic_cpus) {
519 		kmem_free(apic_cpus, apic_cpus_size);
520 		apic_cpus = NULL;
521 	}
522 	if (apicadr) {
523 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
524 		apicadr = NULL;
525 	}
526 	if (mpct)
527 		psm_unmap_phys(mpct, mpct_size);
528 
529 	return (retval);
530 }
531 
532 static void
533 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp)
534 {
535 	int	i;
536 
537 	for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0]));
538 	    i++) {
539 		if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id,
540 		    strlen(apic_mps_ids[i].oem_id)) == 0) &&
541 		    (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id,
542 		    strlen(apic_mps_ids[i].prod_id)) == 0)) {
543 
544 			apic_poweroff_method = apic_mps_ids[i].poweroff_method;
545 			break;
546 		}
547 	}
548 
549 	if (apic_debug_mps_id != 0) {
550 		cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'"
551 		    "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n",
552 		    psm_name,
553 		    hdrp->mpcnf_oem_str[0],
554 		    hdrp->mpcnf_oem_str[1],
555 		    hdrp->mpcnf_oem_str[2],
556 		    hdrp->mpcnf_oem_str[3],
557 		    hdrp->mpcnf_oem_str[4],
558 		    hdrp->mpcnf_oem_str[5],
559 		    hdrp->mpcnf_oem_str[6],
560 		    hdrp->mpcnf_oem_str[7],
561 		    hdrp->mpcnf_prod_str[0],
562 		    hdrp->mpcnf_prod_str[1],
563 		    hdrp->mpcnf_prod_str[2],
564 		    hdrp->mpcnf_prod_str[3],
565 		    hdrp->mpcnf_prod_str[4],
566 		    hdrp->mpcnf_prod_str[5],
567 		    hdrp->mpcnf_prod_str[6],
568 		    hdrp->mpcnf_prod_str[7],
569 		    hdrp->mpcnf_prod_str[8],
570 		    hdrp->mpcnf_prod_str[9],
571 		    hdrp->mpcnf_prod_str[10],
572 		    hdrp->mpcnf_prod_str[11]);
573 	}
574 }
575 
576 static void
577 apic_free_apic_cpus(void)
578 {
579 	if (apic_cpus != NULL) {
580 		kmem_free(apic_cpus, apic_cpus_size);
581 		apic_cpus = NULL;
582 		apic_cpus_size = 0;
583 	}
584 }
585 
586 static int
587 acpi_probe(char *modname)
588 {
589 	int			i, intmax, index;
590 	uint32_t		id, ver;
591 	int			acpi_verboseflags = 0;
592 	int			madt_seen, madt_size;
593 	ACPI_SUBTABLE_HEADER		*ap;
594 	ACPI_MADT_LOCAL_APIC	*mpa;
595 	ACPI_MADT_LOCAL_X2APIC	*mpx2a;
596 	ACPI_MADT_IO_APIC		*mia;
597 	ACPI_MADT_IO_SAPIC		*misa;
598 	ACPI_MADT_INTERRUPT_OVERRIDE	*mio;
599 	ACPI_MADT_NMI_SOURCE		*mns;
600 	ACPI_MADT_INTERRUPT_SOURCE	*mis;
601 	ACPI_MADT_LOCAL_APIC_NMI	*mlan;
602 	ACPI_MADT_LOCAL_X2APIC_NMI	*mx2alan;
603 	ACPI_MADT_LOCAL_APIC_OVERRIDE	*mao;
604 	int			sci;
605 	iflag_t			sci_flags;
606 	volatile uint32_t	*ioapic;
607 	int			ioapic_ix;
608 	uint32_t		*local_ids;
609 	uint32_t		*proc_ids;
610 	uchar_t			hid;
611 	int			warned = 0;
612 
613 	if (!apic_use_acpi)
614 		return (PSM_FAILURE);
615 
616 	if (AcpiGetTable(ACPI_SIG_MADT, 1,
617 	    (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) {
618 		cmn_err(CE_WARN, "!acpi_probe: No MADT found!");
619 		return (PSM_FAILURE);
620 	}
621 
622 	apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address,
623 	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
624 	if (!apicadr)
625 		return (PSM_FAILURE);
626 
627 	if ((local_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
628 	    KM_NOSLEEP)) == NULL)
629 		return (PSM_FAILURE);
630 
631 	if ((proc_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
632 	    KM_NOSLEEP)) == NULL) {
633 		kmem_free(local_ids, NCPU * sizeof (uint32_t));
634 		return (PSM_FAILURE);
635 	}
636 
637 	id = apic_reg_ops->apic_read(APIC_LID_REG);
638 	local_ids[0] = (uchar_t)(id >> 24);
639 	apic_nproc = index = 1;
640 	apic_io_max = 0;
641 
642 	ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1);
643 	madt_size = acpi_mapic_dtp->Header.Length;
644 	madt_seen = sizeof (*acpi_mapic_dtp);
645 
646 	while (madt_seen < madt_size) {
647 		switch (ap->Type) {
648 		case ACPI_MADT_TYPE_LOCAL_APIC:
649 			mpa = (ACPI_MADT_LOCAL_APIC *) ap;
650 			if (mpa->LapicFlags & ACPI_MADT_ENABLED) {
651 				if (mpa->Id == 255) {
652 					cmn_err(CE_WARN, "!%s: encountered "
653 					    "invalid entry in MADT: CPU %d "
654 					    "has Local APIC Id equal to 255 ",
655 					    psm_name, mpa->ProcessorId);
656 				}
657 				if (mpa->Id == local_ids[0]) {
658 					ASSERT(index == 1);
659 					proc_ids[0] = mpa->ProcessorId;
660 				} else if (apic_nproc < NCPU && use_mp &&
661 				    apic_nproc < boot_ncpus) {
662 					local_ids[index] = mpa->Id;
663 					proc_ids[index] = mpa->ProcessorId;
664 					index++;
665 					apic_nproc++;
666 				} else if (apic_nproc == NCPU && !warned) {
667 					cmn_err(CE_WARN, "%s: CPU limit "
668 					    "exceeded"
669 #if !defined(__amd64)
670 					    " for 32-bit mode"
671 #endif
672 					    "; Solaris will use %d CPUs.",
673 					    psm_name,  NCPU);
674 					warned = 1;
675 				}
676 			}
677 			break;
678 
679 		case ACPI_MADT_TYPE_IO_APIC:
680 			mia = (ACPI_MADT_IO_APIC *) ap;
681 			if (apic_io_max < MAX_IO_APIC) {
682 				ioapic_ix = apic_io_max;
683 				apic_io_id[apic_io_max] = mia->Id;
684 				apic_io_vectbase[apic_io_max] =
685 				    mia->GlobalIrqBase;
686 				apic_physaddr[apic_io_max] =
687 				    (uint32_t)mia->Address;
688 				ioapic = apicioadr[apic_io_max] =
689 				    mapin_ioapic((uint32_t)mia->Address,
690 				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
691 				if (!ioapic)
692 					goto cleanup;
693 				ioapic_mask_workaround[apic_io_max] =
694 				    apic_is_ioapic_AMD_813x(mia->Address);
695 				apic_io_max++;
696 			}
697 			break;
698 
699 		case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:
700 			mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap;
701 			if (acpi_isop == NULL)
702 				acpi_isop = mio;
703 			acpi_iso_cnt++;
704 			break;
705 
706 		case ACPI_MADT_TYPE_NMI_SOURCE:
707 			/* UNIMPLEMENTED */
708 			mns = (ACPI_MADT_NMI_SOURCE *) ap;
709 			if (acpi_nmi_sp == NULL)
710 				acpi_nmi_sp = mns;
711 			acpi_nmi_scnt++;
712 
713 			cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n",
714 			    mns->GlobalIrq, mns->IntiFlags);
715 			break;
716 
717 		case ACPI_MADT_TYPE_LOCAL_APIC_NMI:
718 			/* UNIMPLEMENTED */
719 			mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap;
720 			if (acpi_nmi_cp == NULL)
721 				acpi_nmi_cp = mlan;
722 			acpi_nmi_ccnt++;
723 
724 			cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n",
725 			    mlan->ProcessorId, mlan->IntiFlags,
726 			    mlan->Lint);
727 			break;
728 
729 		case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:
730 			/* UNIMPLEMENTED */
731 			mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap;
732 			cmn_err(CE_NOTE, "!apic: address override: %lx\n",
733 			    (long)mao->Address);
734 			break;
735 
736 		case ACPI_MADT_TYPE_IO_SAPIC:
737 			/* UNIMPLEMENTED */
738 			misa = (ACPI_MADT_IO_SAPIC *) ap;
739 
740 			cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n",
741 			    misa->Id, misa->GlobalIrqBase,
742 			    (long)misa->Address);
743 			break;
744 
745 		case ACPI_MADT_TYPE_INTERRUPT_SOURCE:
746 			/* UNIMPLEMENTED */
747 			mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap;
748 
749 			cmn_err(CE_NOTE,
750 			    "!apic: irq source: %d %d %d 0x%x %d %d\n",
751 			    mis->Id, mis->Eid, mis->GlobalIrq,
752 			    mis->IntiFlags, mis->Type,
753 			    mis->IoSapicVector);
754 			break;
755 
756 		case ACPI_MADT_TYPE_LOCAL_X2APIC:
757 			mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap;
758 
759 			/*
760 			 * All logical processors with APIC ID values
761 			 * of 255 and greater will have their APIC
762 			 * reported through Processor X2APIC structure.
763 			 * All logical processors with APIC ID less than
764 			 * 255 will have their APIC reported through
765 			 * Processor Local APIC.
766 			 *
767 			 * Some systems apparently don't care and report all
768 			 * processors through Processor X2APIC structures. We
769 			 * warn about that but don't ignore those CPUs.
770 			 */
771 			if (mpx2a->LocalApicId < 255) {
772 				cmn_err(CE_WARN, "!%s: ignoring invalid entry "
773 				    "in MADT: CPU %d has X2APIC Id %d (< 255)",
774 				    psm_name, mpx2a->Uid, mpx2a->LocalApicId);
775 			}
776 			if (mpx2a->LapicFlags & ACPI_MADT_ENABLED) {
777 				if (mpx2a->LocalApicId == local_ids[0]) {
778 					ASSERT(index == 1);
779 					proc_ids[0] = mpx2a->Uid;
780 				} else if (apic_nproc < NCPU && use_mp &&
781 				    apic_nproc < boot_ncpus) {
782 					local_ids[index] = mpx2a->LocalApicId;
783 					proc_ids[index] = mpx2a->Uid;
784 					index++;
785 					apic_nproc++;
786 				} else if (apic_nproc == NCPU && !warned) {
787 					cmn_err(CE_WARN, "%s: CPU limit "
788 					    "exceeded"
789 #if !defined(__amd64)
790 					    " for 32-bit mode"
791 #endif
792 					    "; Solaris will use %d CPUs.",
793 					    psm_name,  NCPU);
794 					warned = 1;
795 				}
796 			}
797 
798 			break;
799 
800 		case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:
801 			/* UNIMPLEMENTED */
802 			mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap;
803 			if (mx2alan->Uid >> 8)
804 				acpi_nmi_ccnt++;
805 
806 #ifdef	DEBUG
807 			cmn_err(CE_NOTE,
808 			    "!apic: local x2apic nmi: %d 0x%x %d\n",
809 			    mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint);
810 #endif
811 
812 			break;
813 
814 		case ACPI_MADT_TYPE_RESERVED:
815 		default:
816 			break;
817 		}
818 
819 		/* advance to next entry */
820 		madt_seen += ap->Length;
821 		ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length);
822 	}
823 
824 	/* We found multiple enabled cpus via MADT */
825 	if ((apic_nproc > 1) && (apic_io_max > 0)) {
826 		acpi_found_smp_config = B_TRUE;
827 		cmn_err(CE_NOTE,
828 		    "!apic: Using ACPI (MADT) for SMP configuration");
829 	}
830 
831 	/*
832 	 * allocate enough space for possible hot-adding of CPUs.
833 	 * max_ncpus may be less than apic_nproc if it's set by user.
834 	 */
835 	if (plat_dr_support_cpu()) {
836 		apic_max_nproc = max_ncpus;
837 	}
838 	apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus);
839 	if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL)
840 		goto cleanup;
841 
842 	/*
843 	 * ACPI doesn't provide the local apic ver, get it directly from the
844 	 * local apic
845 	 */
846 	ver = apic_reg_ops->apic_read(APIC_VERS_REG);
847 	for (i = 0; i < apic_nproc; i++) {
848 		apic_cpus[i].aci_local_id = local_ids[i];
849 		apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF);
850 		apic_cpus[i].aci_processor_id = proc_ids[i];
851 		/* Only build mapping info for CPUs present at boot. */
852 		if (i < boot_ncpus)
853 			(void) acpica_map_cpu(i, proc_ids[i]);
854 	}
855 
856 	/*
857 	 * To support CPU dynamic reconfiguration, the apic CPU info structure
858 	 * for each possible CPU will be pre-allocated at boot time.
859 	 * The state for each apic CPU info structure will be assigned according
860 	 * to the following rules:
861 	 * Rule 1:
862 	 * 	Slot index range: [0, min(apic_nproc, boot_ncpus))
863 	 *	State flags: 0
864 	 *	Note: cpu exists and will be configured/enabled at boot time
865 	 * Rule 2:
866 	 * 	Slot index range: [boot_ncpus, apic_nproc)
867 	 *	State flags: APIC_CPU_FREE | APIC_CPU_DIRTY
868 	 *	Note: cpu exists but won't be configured/enabled at boot time
869 	 * Rule 3:
870 	 * 	Slot index range: [apic_nproc, boot_ncpus)
871 	 *	State flags: APIC_CPU_FREE
872 	 *	Note: cpu doesn't exist at boot time
873 	 * Rule 4:
874 	 * 	Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus)
875 	 *	State flags: APIC_CPU_FREE
876 	 *	Note: cpu doesn't exist at boot time
877 	 */
878 	CPUSET_ZERO(apic_cpumask);
879 	for (i = 0; i < min(boot_ncpus, apic_nproc); i++) {
880 		CPUSET_ADD(apic_cpumask, i);
881 		apic_cpus[i].aci_status = 0;
882 	}
883 	for (i = boot_ncpus; i < apic_nproc; i++) {
884 		apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY;
885 	}
886 	for (i = apic_nproc; i < boot_ncpus; i++) {
887 		apic_cpus[i].aci_status = APIC_CPU_FREE;
888 	}
889 	for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) {
890 		apic_cpus[i].aci_status = APIC_CPU_FREE;
891 	}
892 
893 	for (i = 0; i < apic_io_max; i++) {
894 		ioapic_ix = i;
895 
896 		/*
897 		 * need to check Sitka on the following acpi problem
898 		 * On the Sitka, the ioapic's apic_id field isn't reporting
899 		 * the actual io apic id. We have reported this problem
900 		 * to Intel. Until they fix the problem, we will get the
901 		 * actual id directly from the ioapic.
902 		 */
903 		id = ioapic_read(ioapic_ix, APIC_ID_CMD);
904 		hid = (uchar_t)(id >> 24);
905 
906 		if (hid != apic_io_id[i]) {
907 			if (apic_io_id[i] == 0)
908 				apic_io_id[i] = hid;
909 			else { /* set ioapic id to whatever reported by ACPI */
910 				id = ((uint32_t)apic_io_id[i]) << 24;
911 				ioapic_write(ioapic_ix, APIC_ID_CMD, id);
912 			}
913 		}
914 		ver = ioapic_read(ioapic_ix, APIC_VERS_CMD);
915 		apic_io_ver[i] = (uchar_t)(ver & 0xff);
916 		intmax = (ver >> 16) & 0xff;
917 		apic_io_vectend[i] = apic_io_vectbase[i] + intmax;
918 		if (apic_first_avail_irq <= apic_io_vectend[i])
919 			apic_first_avail_irq = apic_io_vectend[i] + 1;
920 	}
921 
922 
923 	/*
924 	 * Process SCI configuration here
925 	 * An error may be returned here if
926 	 * acpi-user-options specifies legacy mode
927 	 * (no SCI, no ACPI mode)
928 	 */
929 	if (acpica_get_sci(&sci, &sci_flags) != AE_OK)
930 		sci = -1;
931 
932 	/*
933 	 * Now call acpi_init() to generate namespaces
934 	 * If this fails, we don't attempt to use ACPI
935 	 * even if we were able to get a MADT above
936 	 */
937 	if (acpica_init() != AE_OK) {
938 		cmn_err(CE_WARN, "!apic: Failed to initialize acpica!");
939 		goto cleanup;
940 	}
941 
942 	/*
943 	 * Call acpica_build_processor_map() now that we have
944 	 * ACPI namesspace access
945 	 */
946 	(void) acpica_build_processor_map();
947 
948 	/*
949 	 * Squirrel away the SCI and flags for later on
950 	 * in apic_picinit() when we're ready
951 	 */
952 	apic_sci_vect = sci;
953 	apic_sci_flags = sci_flags;
954 
955 	if (apic_verbose & APIC_VERBOSE_IRQ_FLAG)
956 		acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG;
957 
958 	if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG)
959 		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG;
960 
961 	if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG)
962 		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG;
963 
964 	if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE)
965 		goto cleanup;
966 
967 	/* Enable ACPI APIC interrupt routing */
968 	if (apic_acpi_enter_apicmode() != PSM_FAILURE) {
969 		cmn_err(CE_NOTE, "!apic: Using APIC interrupt routing mode");
970 		build_reserved_irqlist((uchar_t *)apic_reserved_irqlist);
971 		apic_enable_acpi = 1;
972 		if (apic_sci_vect > 0) {
973 			acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT);
974 		}
975 		if (apic_use_acpi_madt_only) {
976 			cmn_err(CE_CONT,
977 			    "?Using ACPI for CPU/IOAPIC information ONLY\n");
978 		}
979 
980 #if !defined(__xpv)
981 		/*
982 		 * probe ACPI for hpet information here which is used later
983 		 * in apic_picinit().
984 		 */
985 		if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) {
986 			cmn_err(CE_NOTE, "!ACPI HPET table query failed\n");
987 		}
988 #endif
989 
990 		kmem_free(local_ids, NCPU * sizeof (uint32_t));
991 		kmem_free(proc_ids, NCPU * sizeof (uint32_t));
992 		return (PSM_SUCCESS);
993 	}
994 	/* if setting APIC mode failed above, we fall through to cleanup */
995 
996 cleanup:
997 	cmn_err(CE_WARN, "!apic: Failed acpi_probe, SMP config was %s",
998 	    acpi_found_smp_config ? "found" : "not found");
999 	apic_free_apic_cpus();
1000 	if (apicadr != NULL) {
1001 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
1002 		apicadr = NULL;
1003 	}
1004 	apic_max_nproc = -1;
1005 	apic_nproc = 0;
1006 	for (i = 0; i < apic_io_max; i++) {
1007 		mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
1008 		apicioadr[i] = NULL;
1009 	}
1010 	apic_io_max = 0;
1011 	acpi_isop = NULL;
1012 	acpi_iso_cnt = 0;
1013 	acpi_nmi_sp = NULL;
1014 	acpi_nmi_scnt = 0;
1015 	acpi_nmi_cp = NULL;
1016 	acpi_nmi_ccnt = 0;
1017 	acpi_found_smp_config = B_FALSE;
1018 	kmem_free(local_ids, NCPU * sizeof (uint32_t));
1019 	kmem_free(proc_ids, NCPU * sizeof (uint32_t));
1020 	return (PSM_FAILURE);
1021 }
1022 
1023 /*
1024  * Handle default configuration. Fill in reqd global variables & tables
1025  * Fill all details as MP table does not give any more info
1026  */
1027 static int
1028 apic_handle_defconf()
1029 {
1030 	uint_t	lid;
1031 
1032 	/* Failed to probe ACPI MADT tables, disable CPU DR. */
1033 	apic_max_nproc = -1;
1034 	apic_free_apic_cpus();
1035 	plat_dr_disable_cpu();
1036 
1037 	apicioadr[0] = (void *)mapin_ioapic(APIC_IO_ADDR,
1038 	    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1039 	apicadr = (void *)psm_map_phys(APIC_LOCAL_ADDR,
1040 	    APIC_LOCAL_MEMLEN, PROT_READ);
1041 	apic_cpus_size = 2 * sizeof (*apic_cpus);
1042 	apic_cpus = (apic_cpus_info_t *)
1043 	    kmem_zalloc(apic_cpus_size, KM_NOSLEEP);
1044 	if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus))
1045 		goto apic_handle_defconf_fail;
1046 	CPUSET_ONLY(apic_cpumask, 0);
1047 	CPUSET_ADD(apic_cpumask, 1);
1048 	apic_nproc = 2;
1049 	lid = apic_reg_ops->apic_read(APIC_LID_REG);
1050 	apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET);
1051 	/*
1052 	 * According to the PC+MP spec 1.1, the local ids
1053 	 * for the default configuration has to be 0 or 1
1054 	 */
1055 	if (apic_cpus[0].aci_local_id == 1)
1056 		apic_cpus[1].aci_local_id = 0;
1057 	else if (apic_cpus[0].aci_local_id == 0)
1058 		apic_cpus[1].aci_local_id = 1;
1059 	else
1060 		goto apic_handle_defconf_fail;
1061 
1062 	apic_io_id[0] = 2;
1063 	apic_io_max = 1;
1064 	if (apic_defconf >= 5) {
1065 		apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS;
1066 		apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS;
1067 		apic_io_ver[0] = APIC_INTEGRATED_VERS;
1068 	} else {
1069 		apic_cpus[0].aci_local_ver = 0;		/* 82489 DX */
1070 		apic_cpus[1].aci_local_ver = 0;
1071 		apic_io_ver[0] = 0;
1072 	}
1073 	if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6)
1074 		eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1075 		    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1076 	return (PSM_SUCCESS);
1077 
1078 apic_handle_defconf_fail:
1079 	if (apicadr)
1080 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
1081 	if (apicioadr[0])
1082 		mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN);
1083 	return (PSM_FAILURE);
1084 }
1085 
1086 /* Parse the entries in MP configuration table and collect info that we need */
1087 static int
1088 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics)
1089 {
1090 	struct	apic_procent	*procp;
1091 	struct	apic_bus	*busp;
1092 	struct	apic_io_entry	*ioapicp;
1093 	struct	apic_io_intr	*intrp;
1094 	int			ioapic_ix;
1095 	uint_t	lid;
1096 	uint32_t	id;
1097 	uchar_t hid;
1098 	int	warned = 0;
1099 
1100 	/*LINTED: pointer cast may result in improper alignment */
1101 	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1102 
1103 	/* No need to count cpu entries if we won't use them */
1104 	if (!bypass_cpus_and_ioapics) {
1105 
1106 		/* Find max # of CPUS and allocate structure accordingly */
1107 		apic_nproc = 0;
1108 		CPUSET_ZERO(apic_cpumask);
1109 		while (procp->proc_entry == APIC_CPU_ENTRY) {
1110 			if (procp->proc_cpuflags & CPUFLAGS_EN) {
1111 				if (apic_nproc < NCPU && use_mp &&
1112 				    apic_nproc < boot_ncpus) {
1113 					CPUSET_ADD(apic_cpumask, apic_nproc);
1114 					apic_nproc++;
1115 				} else if (apic_nproc == NCPU && !warned) {
1116 					cmn_err(CE_WARN, "%s: CPU limit "
1117 					    "exceeded"
1118 #if !defined(__amd64)
1119 					    " for 32-bit mode"
1120 #endif
1121 					    "; Solaris will use %d CPUs.",
1122 					    psm_name,  NCPU);
1123 					warned = 1;
1124 				}
1125 
1126 			}
1127 			procp++;
1128 		}
1129 		apic_cpus_size = apic_nproc * sizeof (*apic_cpus);
1130 		if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *)
1131 		    kmem_zalloc(apic_cpus_size, KM_NOSLEEP)))
1132 			return (PSM_FAILURE);
1133 	}
1134 
1135 	/*LINTED: pointer cast may result in improper alignment */
1136 	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1137 
1138 	/*
1139 	 * start with index 1 as 0 needs to be filled in with Boot CPU, but
1140 	 * if we're bypassing this information, it has already been filled
1141 	 * in by acpi_probe(), so don't overwrite it.
1142 	 */
1143 	if (!bypass_cpus_and_ioapics)
1144 		apic_nproc = 1;
1145 
1146 	while (procp->proc_entry == APIC_CPU_ENTRY) {
1147 		/* check whether the cpu exists or not */
1148 		if (!bypass_cpus_and_ioapics &&
1149 		    procp->proc_cpuflags & CPUFLAGS_EN) {
1150 			if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */
1151 				lid = apic_reg_ops->apic_read(APIC_LID_REG);
1152 				apic_cpus[0].aci_local_id = procp->proc_apicid;
1153 				if (apic_cpus[0].aci_local_id !=
1154 				    (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) {
1155 					return (PSM_FAILURE);
1156 				}
1157 				apic_cpus[0].aci_local_ver =
1158 				    procp->proc_version;
1159 			} else if (apic_nproc < NCPU && use_mp &&
1160 			    apic_nproc < boot_ncpus) {
1161 				apic_cpus[apic_nproc].aci_local_id =
1162 				    procp->proc_apicid;
1163 
1164 				apic_cpus[apic_nproc].aci_local_ver =
1165 				    procp->proc_version;
1166 				apic_nproc++;
1167 
1168 			}
1169 		}
1170 		procp++;
1171 	}
1172 
1173 	/*
1174 	 * Save start of bus entries for later use.
1175 	 * Get EISA level cntrl if EISA bus is present.
1176 	 * Also get the CPI bus id for single CPI bus case
1177 	 */
1178 	apic_busp = busp = (struct apic_bus *)procp;
1179 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1180 		lid = apic_find_bus_type((char *)&busp->bus_str1);
1181 		if (lid	== BUS_EISA) {
1182 			eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1183 			    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1184 		} else if (lid == BUS_PCI) {
1185 			/*
1186 			 * apic_single_pci_busid will be used only if
1187 			 * apic_pic_bus_total is equal to 1
1188 			 */
1189 			apic_pci_bus_total++;
1190 			apic_single_pci_busid = busp->bus_id;
1191 		}
1192 		busp++;
1193 	}
1194 
1195 	ioapicp = (struct apic_io_entry *)busp;
1196 
1197 	if (!bypass_cpus_and_ioapics)
1198 		apic_io_max = 0;
1199 	do {
1200 		if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) {
1201 			if (ioapicp->io_flags & IOAPIC_FLAGS_EN) {
1202 				apic_io_id[apic_io_max] = ioapicp->io_apicid;
1203 				apic_io_ver[apic_io_max] = ioapicp->io_version;
1204 				apicioadr[apic_io_max] =
1205 				    (void *)mapin_ioapic(
1206 				    (uint32_t)ioapicp->io_apic_addr,
1207 				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1208 
1209 				if (!apicioadr[apic_io_max])
1210 					return (PSM_FAILURE);
1211 
1212 				ioapic_mask_workaround[apic_io_max] =
1213 				    apic_is_ioapic_AMD_813x(
1214 				    ioapicp->io_apic_addr);
1215 
1216 				ioapic_ix = apic_io_max;
1217 				id = ioapic_read(ioapic_ix, APIC_ID_CMD);
1218 				hid = (uchar_t)(id >> 24);
1219 
1220 				if (hid != apic_io_id[apic_io_max]) {
1221 					if (apic_io_id[apic_io_max] == 0)
1222 						apic_io_id[apic_io_max] = hid;
1223 					else {
1224 						/*
1225 						 * set ioapic id to whatever
1226 						 * reported by MPS
1227 						 *
1228 						 * may not need to set index
1229 						 * again ???
1230 						 * take it out and try
1231 						 */
1232 
1233 						id = ((uint32_t)
1234 						    apic_io_id[apic_io_max]) <<
1235 						    24;
1236 
1237 						ioapic_write(ioapic_ix,
1238 						    APIC_ID_CMD, id);
1239 					}
1240 				}
1241 				apic_io_max++;
1242 			}
1243 		}
1244 		ioapicp++;
1245 	} while (ioapicp->io_entry == APIC_IO_ENTRY);
1246 
1247 	apic_io_intrp = (struct apic_io_intr *)ioapicp;
1248 
1249 	intrp = apic_io_intrp;
1250 	while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1251 		if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) ||
1252 		    (apic_find_bus(intrp->intr_busid) == BUS_PCI)) {
1253 			apic_irq_translate = 1;
1254 			break;
1255 		}
1256 		intrp++;
1257 	}
1258 
1259 	return (PSM_SUCCESS);
1260 }
1261 
1262 boolean_t
1263 apic_cpu_in_range(int cpu)
1264 {
1265 	cpu &= ~IRQ_USER_BOUND;
1266 	/* Check whether cpu id is in valid range. */
1267 	if (cpu < 0 || cpu >= apic_nproc) {
1268 		return (B_FALSE);
1269 	} else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) {
1270 		/*
1271 		 * Check whether cpuid is in valid range if CPU DR is enabled.
1272 		 */
1273 		return (B_FALSE);
1274 	} else if (!CPU_IN_SET(apic_cpumask, cpu)) {
1275 		return (B_FALSE);
1276 	}
1277 
1278 	return (B_TRUE);
1279 }
1280 
1281 processorid_t
1282 apic_get_next_bind_cpu(void)
1283 {
1284 	int i, count;
1285 	processorid_t cpuid = 0;
1286 
1287 	for (count = 0; count < apic_nproc; count++) {
1288 		if (apic_next_bind_cpu >= apic_nproc) {
1289 			apic_next_bind_cpu = 0;
1290 		}
1291 		i = apic_next_bind_cpu++;
1292 		if (apic_cpu_in_range(i)) {
1293 			cpuid = i;
1294 			break;
1295 		}
1296 	}
1297 
1298 	return (cpuid);
1299 }
1300 
1301 uint16_t
1302 apic_get_apic_version()
1303 {
1304 	int i;
1305 	uchar_t min_io_apic_ver = 0;
1306 	static uint16_t version;		/* Cache as value is constant */
1307 	static boolean_t found = B_FALSE;	/* Accomodate zero version */
1308 
1309 	if (found == B_FALSE) {
1310 		found = B_TRUE;
1311 
1312 		/*
1313 		 * Don't assume all IO APICs in the system are the same.
1314 		 *
1315 		 * Set to the minimum version.
1316 		 */
1317 		for (i = 0; i < apic_io_max; i++) {
1318 			if ((apic_io_ver[i] != 0) &&
1319 			    ((min_io_apic_ver == 0) ||
1320 			    (min_io_apic_ver >= apic_io_ver[i])))
1321 				min_io_apic_ver = apic_io_ver[i];
1322 		}
1323 
1324 		/* Assume all local APICs are of the same version. */
1325 		version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver;
1326 	}
1327 	return (version);
1328 }
1329 
1330 static struct apic_mpfps_hdr *
1331 apic_find_fps_sig(caddr_t cptr, int len)
1332 {
1333 	int	i;
1334 
1335 	/* Look for the pattern "_MP_" */
1336 	for (i = 0; i < len; i += 16) {
1337 		if ((*(cptr+i) == '_') &&
1338 		    (*(cptr+i+1) == 'M') &&
1339 		    (*(cptr+i+2) == 'P') &&
1340 		    (*(cptr+i+3) == '_'))
1341 		    /*LINTED: pointer cast may result in improper alignment */
1342 			return ((struct apic_mpfps_hdr *)(cptr + i));
1343 	}
1344 	return (NULL);
1345 }
1346 
1347 static int
1348 apic_checksum(caddr_t bptr, int len)
1349 {
1350 	int	i;
1351 	uchar_t	cksum;
1352 
1353 	cksum = 0;
1354 	for (i = 0; i < len; i++)
1355 		cksum += *bptr++;
1356 	return ((int)cksum);
1357 }
1358 
1359 /*
1360  * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge
1361  * needs special handling.  We may need to chase up the device tree,
1362  * using the PCI-PCI Bridge specification's "rotating IPIN assumptions",
1363  * to find the IPIN at the root bus that relates to the IPIN on the
1364  * subsidiary bus (for ACPI or MP).  We may, however, have an entry
1365  * in the MP table or the ACPI namespace for this device itself.
1366  * We handle both cases in the search below.
1367  */
1368 /* this is the non-acpi version */
1369 int
1370 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin,
1371     struct apic_io_intr **intrp)
1372 {
1373 	dev_info_t *dipp, *dip;
1374 	int pci_irq;
1375 	ddi_acc_handle_t cfg_handle;
1376 	int bridge_devno, bridge_bus;
1377 	int ipin;
1378 
1379 	dip = idip;
1380 
1381 	/*CONSTCOND*/
1382 	while (1) {
1383 		if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) ||
1384 		    (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS))
1385 			return (-1);
1386 		if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) ==
1387 		    PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle,
1388 		    PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) {
1389 			pci_config_teardown(&cfg_handle);
1390 			if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno,
1391 			    NULL) != 0)
1392 				return (-1);
1393 			/*
1394 			 * This is the rotating scheme documented in the
1395 			 * PCI-to-PCI spec.  If the PCI-to-PCI bridge is
1396 			 * behind another PCI-to-PCI bridge, then it needs
1397 			 * to keep ascending until an interrupt entry is
1398 			 * found or the root is reached.
1399 			 */
1400 			ipin = (child_devno + child_ipin) % PCI_INTD;
1401 				if (bridge_bus == 0 && apic_pci_bus_total == 1)
1402 					bridge_bus = (int)apic_single_pci_busid;
1403 				pci_irq = ((bridge_devno & 0x1f) << 2) |
1404 				    (ipin & 0x3);
1405 				if ((*intrp = apic_find_io_intr_w_busid(pci_irq,
1406 				    bridge_bus)) != NULL) {
1407 					return (pci_irq);
1408 				}
1409 			dip = dipp;
1410 			child_devno = bridge_devno;
1411 			child_ipin = ipin;
1412 		} else {
1413 			pci_config_teardown(&cfg_handle);
1414 			return (-1);
1415 		}
1416 	}
1417 	/*LINTED: function will not fall off the bottom */
1418 }
1419 
1420 uchar_t
1421 acpi_find_ioapic(int irq)
1422 {
1423 	int i;
1424 
1425 	for (i = 0; i < apic_io_max; i++) {
1426 		if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i])
1427 			return ((uchar_t)i);
1428 	}
1429 	return (0xFF);	/* shouldn't happen */
1430 }
1431 
1432 /*
1433  * See if two irqs are compatible for sharing a vector.
1434  * Currently we only support sharing of PCI devices.
1435  */
1436 static int
1437 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2)
1438 {
1439 	uint_t	level1, po1;
1440 	uint_t	level2, po2;
1441 
1442 	/* Assume active high by default */
1443 	po1 = 0;
1444 	po2 = 0;
1445 
1446 	if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI)
1447 		return (0);
1448 
1449 	if (iflag1.intr_el == INTR_EL_CONFORM)
1450 		level1 = AV_LEVEL;
1451 	else
1452 		level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1453 
1454 	if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) ||
1455 	    (iflag1.intr_po == INTR_PO_CONFORM)))
1456 		po1 = AV_ACTIVE_LOW;
1457 
1458 	if (iflag2.intr_el == INTR_EL_CONFORM)
1459 		level2 = AV_LEVEL;
1460 	else
1461 		level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1462 
1463 	if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) ||
1464 	    (iflag2.intr_po == INTR_PO_CONFORM)))
1465 		po2 = AV_ACTIVE_LOW;
1466 
1467 	if ((level1 == level2) && (po1 == po2))
1468 		return (1);
1469 
1470 	return (0);
1471 }
1472 
1473 struct apic_io_intr *
1474 apic_find_io_intr_w_busid(int irqno, int busid)
1475 {
1476 	struct	apic_io_intr	*intrp;
1477 
1478 	/*
1479 	 * It can have more than 1 entry with same source bus IRQ,
1480 	 * but unique with the source bus id
1481 	 */
1482 	intrp = apic_io_intrp;
1483 	if (intrp != NULL) {
1484 		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1485 			if (intrp->intr_irq == irqno &&
1486 			    intrp->intr_busid == busid &&
1487 			    intrp->intr_type == IO_INTR_INT)
1488 				return (intrp);
1489 			intrp++;
1490 		}
1491 	}
1492 	APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:"
1493 	    "busid %x:%x\n", irqno, busid));
1494 	return ((struct apic_io_intr *)NULL);
1495 }
1496 
1497 
1498 struct mps_bus_info {
1499 	char	*bus_name;
1500 	int	bus_id;
1501 } bus_info_array[] = {
1502 	"ISA ", BUS_ISA,
1503 	"PCI ", BUS_PCI,
1504 	"EISA ", BUS_EISA,
1505 	"XPRESS", BUS_XPRESS,
1506 	"PCMCIA", BUS_PCMCIA,
1507 	"VL ", BUS_VL,
1508 	"CBUS ", BUS_CBUS,
1509 	"CBUSII", BUS_CBUSII,
1510 	"FUTURE", BUS_FUTURE,
1511 	"INTERN", BUS_INTERN,
1512 	"MBI ", BUS_MBI,
1513 	"MBII ", BUS_MBII,
1514 	"MPI ", BUS_MPI,
1515 	"MPSA ", BUS_MPSA,
1516 	"NUBUS ", BUS_NUBUS,
1517 	"TC ", BUS_TC,
1518 	"VME ", BUS_VME,
1519 	"PCI-E ", BUS_PCIE
1520 };
1521 
1522 static int
1523 apic_find_bus_type(char *bus)
1524 {
1525 	int	i = 0;
1526 
1527 	for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++)
1528 		if (strncmp(bus, bus_info_array[i].bus_name,
1529 		    strlen(bus_info_array[i].bus_name)) == 0)
1530 			return (bus_info_array[i].bus_id);
1531 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus));
1532 	return (0);
1533 }
1534 
1535 static int
1536 apic_find_bus(int busid)
1537 {
1538 	struct	apic_bus	*busp;
1539 
1540 	busp = apic_busp;
1541 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1542 		if (busp->bus_id == busid)
1543 			return (apic_find_bus_type((char *)&busp->bus_str1));
1544 		busp++;
1545 	}
1546 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid));
1547 	return (0);
1548 }
1549 
1550 int
1551 apic_find_bus_id(int bustype)
1552 {
1553 	struct	apic_bus	*busp;
1554 
1555 	busp = apic_busp;
1556 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1557 		if (apic_find_bus_type((char *)&busp->bus_str1) == bustype)
1558 			return (busp->bus_id);
1559 		busp++;
1560 	}
1561 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x",
1562 	    bustype));
1563 	return (-1);
1564 }
1565 
1566 /*
1567  * Check if a particular irq need to be reserved for any io_intr
1568  */
1569 static struct apic_io_intr *
1570 apic_find_io_intr(int irqno)
1571 {
1572 	struct	apic_io_intr	*intrp;
1573 
1574 	intrp = apic_io_intrp;
1575 	if (intrp != NULL) {
1576 		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1577 			if (intrp->intr_irq == irqno &&
1578 			    intrp->intr_type == IO_INTR_INT)
1579 				return (intrp);
1580 			intrp++;
1581 		}
1582 	}
1583 	return ((struct apic_io_intr *)NULL);
1584 }
1585 
1586 /*
1587  * Check if the given ioapicindex intin combination has already been assigned
1588  * an irq. If so return irqno. Else -1
1589  */
1590 int
1591 apic_find_intin(uchar_t ioapic, uchar_t intin)
1592 {
1593 	apic_irq_t *irqptr;
1594 	int	i;
1595 
1596 	/* find ioapic and intin in the apic_irq_table[] and return the index */
1597 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
1598 		irqptr = apic_irq_table[i];
1599 		while (irqptr) {
1600 			if ((irqptr->airq_mps_intr_index >= 0) &&
1601 			    (irqptr->airq_intin_no == intin) &&
1602 			    (irqptr->airq_ioapicindex == ioapic)) {
1603 				APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq "
1604 				    "entry for ioapic:intin %x:%x "
1605 				    "shared interrupts ?", ioapic, intin));
1606 				return (i);
1607 			}
1608 			irqptr = irqptr->airq_next;
1609 		}
1610 	}
1611 	return (-1);
1612 }
1613 
1614 int
1615 apic_allocate_irq(int irq)
1616 {
1617 	int	freeirq, i;
1618 
1619 	if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1)
1620 		if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ,
1621 		    (irq - 1))) == -1) {
1622 			/*
1623 			 * if BIOS really defines every single irq in the mps
1624 			 * table, then don't worry about conflicting with
1625 			 * them, just use any free slot in apic_irq_table
1626 			 */
1627 			for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
1628 				if ((apic_irq_table[i] == NULL) ||
1629 				    apic_irq_table[i]->airq_mps_intr_index ==
1630 				    FREE_INDEX) {
1631 				freeirq = i;
1632 				break;
1633 			}
1634 		}
1635 		if (freeirq == -1) {
1636 			/* This shouldn't happen, but just in case */
1637 			cmn_err(CE_WARN, "%s: NO available IRQ", psm_name);
1638 			return (-1);
1639 		}
1640 	}
1641 	if (apic_irq_table[freeirq] == NULL) {
1642 		apic_irq_table[freeirq] =
1643 		    kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
1644 		if (apic_irq_table[freeirq] == NULL) {
1645 			cmn_err(CE_WARN, "%s: NO memory to allocate IRQ",
1646 			    psm_name);
1647 			return (-1);
1648 		}
1649 		apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT;
1650 		apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX;
1651 	}
1652 	return (freeirq);
1653 }
1654 
1655 static int
1656 apic_find_free_irq(int start, int end)
1657 {
1658 	int	i;
1659 
1660 	for (i = start; i <= end; i++)
1661 		/* Check if any I/O entry needs this IRQ */
1662 		if (apic_find_io_intr(i) == NULL) {
1663 			/* Then see if it is free */
1664 			if ((apic_irq_table[i] == NULL) ||
1665 			    (apic_irq_table[i]->airq_mps_intr_index ==
1666 			    FREE_INDEX)) {
1667 				return (i);
1668 			}
1669 		}
1670 	return (-1);
1671 }
1672 
1673 /*
1674  * compute the polarity, trigger mode and vector for programming into
1675  * the I/O apic and record in airq_rdt_entry.
1676  */
1677 void
1678 apic_record_rdt_entry(apic_irq_t *irqptr, int irq)
1679 {
1680 	int	ioapicindex, bus_type, vector;
1681 	short	intr_index;
1682 	uint_t	level, po, io_po;
1683 	struct apic_io_intr *iointrp;
1684 
1685 	intr_index = irqptr->airq_mps_intr_index;
1686 	DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d "
1687 	    "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq,
1688 	    (void *)irqptr->airq_dip, irqptr->airq_vector));
1689 
1690 	if (intr_index == RESERVE_INDEX) {
1691 		apic_error |= APIC_ERR_INVALID_INDEX;
1692 		return;
1693 	} else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) {
1694 		return;
1695 	}
1696 
1697 	vector = irqptr->airq_vector;
1698 	ioapicindex = irqptr->airq_ioapicindex;
1699 	/* Assume edge triggered by default */
1700 	level = 0;
1701 	/* Assume active high by default */
1702 	po = 0;
1703 
1704 	if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) {
1705 		ASSERT(irq < 16);
1706 		if (eisa_level_intr_mask & (1 << irq))
1707 			level = AV_LEVEL;
1708 		if (intr_index == FREE_INDEX && apic_defconf == 0)
1709 			apic_error |= APIC_ERR_INVALID_INDEX;
1710 	} else if (intr_index == ACPI_INDEX) {
1711 		bus_type = irqptr->airq_iflag.bustype;
1712 		if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) {
1713 			if (bus_type == BUS_PCI)
1714 				level = AV_LEVEL;
1715 		} else
1716 			level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ?
1717 			    AV_LEVEL : 0;
1718 		if (level &&
1719 		    ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) ||
1720 		    (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM &&
1721 		    bus_type == BUS_PCI)))
1722 			po = AV_ACTIVE_LOW;
1723 	} else {
1724 		iointrp = apic_io_intrp + intr_index;
1725 		bus_type = apic_find_bus(iointrp->intr_busid);
1726 		if (iointrp->intr_el == INTR_EL_CONFORM) {
1727 			if ((irq < 16) && (eisa_level_intr_mask & (1 << irq)))
1728 				level = AV_LEVEL;
1729 			else if (bus_type == BUS_PCI)
1730 				level = AV_LEVEL;
1731 		} else
1732 			level = (iointrp->intr_el == INTR_EL_LEVEL) ?
1733 			    AV_LEVEL : 0;
1734 		if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) ||
1735 		    (iointrp->intr_po == INTR_PO_CONFORM &&
1736 		    bus_type == BUS_PCI)))
1737 			po = AV_ACTIVE_LOW;
1738 	}
1739 	if (level)
1740 		apic_level_intr[irq] = 1;
1741 	/*
1742 	 * The 82489DX External APIC cannot do active low polarity interrupts.
1743 	 */
1744 	if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX))
1745 		io_po = po;
1746 	else
1747 		io_po = 0;
1748 
1749 	if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG)
1750 		prom_printf("setio: ioapic=0x%x intin=0x%x level=0x%x po=0x%x "
1751 		    "vector=0x%x cpu=0x%x\n\n", ioapicindex,
1752 		    irqptr->airq_intin_no, level, io_po, vector,
1753 		    irqptr->airq_cpu);
1754 
1755 	irqptr->airq_rdt_entry = level|io_po|vector;
1756 }
1757 
1758 int
1759 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
1760     int ipin, int *pci_irqp, iflag_t *intr_flagp)
1761 {
1762 
1763 	int status;
1764 	acpi_psm_lnk_t acpipsmlnk;
1765 
1766 	if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp,
1767 	    intr_flagp)) == ACPI_PSM_SUCCESS) {
1768 		APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d "
1769 		    "from cache for device %s, instance #%d\n", psm_name,
1770 		    *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1771 		return (status);
1772 	}
1773 
1774 	bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t));
1775 
1776 	if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp,
1777 	    &acpipsmlnk)) == ACPI_PSM_FAILURE) {
1778 		APIC_VERBOSE_IRQ((CE_WARN, "%s: "
1779 		    " acpi_translate_pci_irq failed for device %s, instance"
1780 		    " #%d", psm_name, ddi_get_name(dip),
1781 		    ddi_get_instance(dip)));
1782 		return (status);
1783 	}
1784 
1785 	if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) {
1786 		status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp,
1787 		    intr_flagp);
1788 		if (status != ACPI_PSM_SUCCESS) {
1789 			status = acpi_get_current_irq_resource(&acpipsmlnk,
1790 			    pci_irqp, intr_flagp);
1791 		}
1792 	}
1793 
1794 	if (status == ACPI_PSM_SUCCESS) {
1795 		acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp,
1796 		    intr_flagp, &acpipsmlnk);
1797 
1798 		APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] "
1799 		    "new irq %d for device %s, instance #%d\n", psm_name,
1800 		    *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1801 	}
1802 
1803 	return (status);
1804 }
1805 
1806 /*
1807  * Adds an entry to the irq list passed in, and returns the new list.
1808  * Entries are added in priority order (lower numerical priorities are
1809  * placed closer to the head of the list)
1810  */
1811 static prs_irq_list_t *
1812 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq,
1813     iflag_t *iflagp, acpi_prs_private_t *prsprvp)
1814 {
1815 	struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp;
1816 
1817 	newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP);
1818 
1819 	newent->list_prio = priority;
1820 	newent->irq = irq;
1821 	newent->intrflags = *iflagp;
1822 	newent->prsprv = *prsprvp;
1823 	/* ->next is NULL from kmem_zalloc */
1824 
1825 	/*
1826 	 * New list -- return the new entry as the list.
1827 	 */
1828 	if (listp == NULL)
1829 		return (newent);
1830 
1831 	/*
1832 	 * Save original list pointer for return (since we're not modifying
1833 	 * the head)
1834 	 */
1835 	origlistp = listp;
1836 
1837 	/*
1838 	 * Insertion sort, with entries with identical keys stored AFTER
1839 	 * existing entries (the less-than-or-equal test of priority does
1840 	 * this for us).
1841 	 */
1842 	while (listp != NULL && listp->list_prio <= priority) {
1843 		prevp = listp;
1844 		listp = listp->next;
1845 	}
1846 
1847 	newent->next = listp;
1848 
1849 	if (prevp == NULL) { /* Add at head of list (newent is the new head) */
1850 		return (newent);
1851 	} else {
1852 		prevp->next = newent;
1853 		return (origlistp);
1854 	}
1855 }
1856 
1857 /*
1858  * Frees the list passed in, deallocating all memory and leaving *listpp
1859  * set to NULL.
1860  */
1861 static void
1862 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp)
1863 {
1864 	struct prs_irq_list_ent *nextp;
1865 
1866 	ASSERT(listpp != NULL);
1867 
1868 	while (*listpp != NULL) {
1869 		nextp = (*listpp)->next;
1870 		kmem_free(*listpp, sizeof (struct prs_irq_list_ent));
1871 		*listpp = nextp;
1872 	}
1873 }
1874 
1875 /*
1876  * apic_choose_irqs_from_prs returns a list of irqs selected from the list of
1877  * irqs returned by the link device's _PRS method.  The irqs are chosen
1878  * to minimize contention in situations where the interrupt link device
1879  * can be programmed to steer interrupts to different interrupt controller
1880  * inputs (some of which may already be in use).  The list is sorted in order
1881  * of irqs to use, with the highest priority given to interrupt controller
1882  * inputs that are not shared.   When an interrupt controller input
1883  * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the
1884  * returned list in the order that minimizes sharing (thereby ensuring lowest
1885  * possible latency from interrupt trigger time to ISR execution time).
1886  */
1887 static prs_irq_list_t *
1888 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip,
1889     int crs_irq)
1890 {
1891 	int32_t irq;
1892 	int i;
1893 	prs_irq_list_t *prsirqlistp = NULL;
1894 	iflag_t iflags;
1895 
1896 	while (irqlistent != NULL) {
1897 		irqlistent->intr_flags.bustype = BUS_PCI;
1898 
1899 		for (i = 0; i < irqlistent->num_irqs; i++) {
1900 
1901 			irq = irqlistent->irqs[i];
1902 
1903 			if (irq <= 0) {
1904 				/* invalid irq number */
1905 				continue;
1906 			}
1907 
1908 			if ((irq < 16) && (apic_reserved_irqlist[irq]))
1909 				continue;
1910 
1911 			if ((apic_irq_table[irq] == NULL) ||
1912 			    (apic_irq_table[irq]->airq_dip == dip)) {
1913 
1914 				prsirqlistp = acpi_insert_prs_irq_ent(
1915 				    prsirqlistp, 0 /* Highest priority */, irq,
1916 				    &irqlistent->intr_flags,
1917 				    &irqlistent->acpi_prs_prv);
1918 
1919 				/*
1920 				 * If we do not prefer the current irq from _CRS
1921 				 * or if we do and this irq is the same as the
1922 				 * current irq from _CRS, this is the one
1923 				 * to pick.
1924 				 */
1925 				if (!(apic_prefer_crs) || (irq == crs_irq)) {
1926 					return (prsirqlistp);
1927 				}
1928 				continue;
1929 			}
1930 
1931 			/*
1932 			 * Edge-triggered interrupts cannot be shared
1933 			 */
1934 			if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE)
1935 				continue;
1936 
1937 			/*
1938 			 * To work around BIOSes that contain incorrect
1939 			 * interrupt polarity information in interrupt
1940 			 * descriptors returned by _PRS, we assume that
1941 			 * the polarity of the other device sharing this
1942 			 * interrupt controller input is compatible.
1943 			 * If it's not, the caller will catch it when
1944 			 * the caller invokes the link device's _CRS method
1945 			 * (after invoking its _SRS method).
1946 			 */
1947 			iflags = irqlistent->intr_flags;
1948 			iflags.intr_po =
1949 			    apic_irq_table[irq]->airq_iflag.intr_po;
1950 
1951 			if (!acpi_intr_compatible(iflags,
1952 			    apic_irq_table[irq]->airq_iflag)) {
1953 				APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d "
1954 				    "not compatible [%x:%x:%x !~ %x:%x:%x]",
1955 				    psm_name, irq,
1956 				    iflags.intr_po,
1957 				    iflags.intr_el,
1958 				    iflags.bustype,
1959 				    apic_irq_table[irq]->airq_iflag.intr_po,
1960 				    apic_irq_table[irq]->airq_iflag.intr_el,
1961 				    apic_irq_table[irq]->airq_iflag.bustype));
1962 				continue;
1963 			}
1964 
1965 			/*
1966 			 * If we prefer the irq from _CRS, no need
1967 			 * to search any further (and make sure
1968 			 * to add this irq with the highest priority
1969 			 * so it's tried first).
1970 			 */
1971 			if (crs_irq == irq && apic_prefer_crs) {
1972 
1973 				return (acpi_insert_prs_irq_ent(
1974 				    prsirqlistp,
1975 				    0 /* Highest priority */,
1976 				    irq, &iflags,
1977 				    &irqlistent->acpi_prs_prv));
1978 			}
1979 
1980 			/*
1981 			 * Priority is equal to the share count (lower
1982 			 * share count is higher priority). Note that
1983 			 * the intr flags passed in here are the ones we
1984 			 * changed above -- if incorrect, it will be
1985 			 * caught by the caller's _CRS flags comparison.
1986 			 */
1987 			prsirqlistp = acpi_insert_prs_irq_ent(
1988 			    prsirqlistp,
1989 			    apic_irq_table[irq]->airq_share, irq,
1990 			    &iflags, &irqlistent->acpi_prs_prv);
1991 		}
1992 
1993 		/* Go to the next irqlist entry */
1994 		irqlistent = irqlistent->next;
1995 	}
1996 
1997 	return (prsirqlistp);
1998 }
1999 
2000 /*
2001  * Configures the irq for the interrupt link device identified by
2002  * acpipsmlnkp.
2003  *
2004  * Gets the current and the list of possible irq settings for the
2005  * device. If apic_unconditional_srs is not set, and the current
2006  * resource setting is in the list of possible irq settings,
2007  * current irq resource setting is passed to the caller.
2008  *
2009  * Otherwise, picks an irq number from the list of possible irq
2010  * settings, and sets the irq of the device to this value.
2011  * If prefer_crs is set, among a set of irq numbers in the list that have
2012  * the least number of devices sharing the interrupt, we pick current irq
2013  * resource setting if it is a member of this set.
2014  *
2015  * Passes the irq number in the value pointed to by pci_irqp, and
2016  * polarity and sensitivity in the structure pointed to by dipintrflagp
2017  * to the caller.
2018  *
2019  * Note that if setting the irq resource failed, but successfuly obtained
2020  * the current irq resource settings, passes the current irq resources
2021  * and considers it a success.
2022  *
2023  * Returns:
2024  * ACPI_PSM_SUCCESS on success.
2025  *
2026  * ACPI_PSM_FAILURE if an error occured during the configuration or
2027  * if a suitable irq was not found for this device, or if setting the
2028  * irq resource and obtaining the current resource fails.
2029  *
2030  */
2031 static int
2032 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
2033     int *pci_irqp, iflag_t *dipintr_flagp)
2034 {
2035 	int32_t irq;
2036 	int cur_irq = -1;
2037 	acpi_irqlist_t *irqlistp;
2038 	prs_irq_list_t *prs_irq_listp, *prs_irq_entp;
2039 	boolean_t found_irq = B_FALSE;
2040 
2041 	dipintr_flagp->bustype = BUS_PCI;
2042 
2043 	if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp))
2044 	    == ACPI_PSM_FAILURE) {
2045 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine "
2046 		    "or assign IRQ for device %s, instance #%d: The system was "
2047 		    "unable to get the list of potential IRQs from ACPI.",
2048 		    psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2049 
2050 		return (ACPI_PSM_FAILURE);
2051 	}
2052 
2053 	if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2054 	    dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) &&
2055 	    (cur_irq > 0)) {
2056 		/*
2057 		 * If an IRQ is set in CRS and that IRQ exists in the set
2058 		 * returned from _PRS, return that IRQ, otherwise print
2059 		 * a warning
2060 		 */
2061 
2062 		if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL)
2063 		    == ACPI_PSM_SUCCESS) {
2064 
2065 			ASSERT(pci_irqp != NULL);
2066 			*pci_irqp = cur_irq;
2067 			acpi_free_irqlist(irqlistp);
2068 			return (ACPI_PSM_SUCCESS);
2069 		}
2070 
2071 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the "
2072 		    "current irq %d for device %s, instance #%d in ACPI's "
2073 		    "list of possible irqs for this device. Picking one from "
2074 		    " the latter list.", psm_name, cur_irq, ddi_get_name(dip),
2075 		    ddi_get_instance(dip)));
2076 	}
2077 
2078 	if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip,
2079 	    cur_irq)) == NULL) {
2080 
2081 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a "
2082 		    "suitable irq from the list of possible irqs for device "
2083 		    "%s, instance #%d in ACPI's list of possible irqs",
2084 		    psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2085 
2086 		acpi_free_irqlist(irqlistp);
2087 		return (ACPI_PSM_FAILURE);
2088 	}
2089 
2090 	acpi_free_irqlist(irqlistp);
2091 
2092 	for (prs_irq_entp = prs_irq_listp;
2093 	    prs_irq_entp != NULL && found_irq == B_FALSE;
2094 	    prs_irq_entp = prs_irq_entp->next) {
2095 
2096 		acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv;
2097 		irq = prs_irq_entp->irq;
2098 
2099 		APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for "
2100 		    "device %s instance #%d\n", psm_name, irq,
2101 		    ddi_get_name(dip), ddi_get_instance(dip)));
2102 
2103 		if ((acpi_set_irq_resource(acpipsmlnkp, irq))
2104 		    == ACPI_PSM_SUCCESS) {
2105 			/*
2106 			 * setting irq was successful, check to make sure CRS
2107 			 * reflects that. If CRS does not agree with what we
2108 			 * set, return the irq that was set.
2109 			 */
2110 
2111 			if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2112 			    dipintr_flagp) == ACPI_PSM_SUCCESS) {
2113 
2114 				if (cur_irq != irq)
2115 					APIC_VERBOSE_IRQ((CE_WARN,
2116 					    "!%s: IRQ resource set "
2117 					    "(irqno %d) for device %s "
2118 					    "instance #%d, differs from "
2119 					    "current setting irqno %d",
2120 					    psm_name, irq, ddi_get_name(dip),
2121 					    ddi_get_instance(dip), cur_irq));
2122 			} else {
2123 				/*
2124 				 * On at least one system, there was a bug in
2125 				 * a DSDT method called by _STA, causing _STA to
2126 				 * indicate that the link device was disabled
2127 				 * (when, in fact, it was enabled).  Since _SRS
2128 				 * succeeded, assume that _CRS is lying and use
2129 				 * the iflags from this _PRS interrupt choice.
2130 				 * If we're wrong about the flags, the polarity
2131 				 * will be incorrect and we may get an interrupt
2132 				 * storm, but there's not much else we can do
2133 				 * at this point.
2134 				 */
2135 				*dipintr_flagp = prs_irq_entp->intrflags;
2136 			}
2137 
2138 			/*
2139 			 * Return the irq that was set, and not what _CRS
2140 			 * reports, since _CRS has been seen to return
2141 			 * different IRQs than what was passed to _SRS on some
2142 			 * systems (and just not return successfully on others).
2143 			 */
2144 			cur_irq = irq;
2145 			found_irq = B_TRUE;
2146 		} else {
2147 			APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource "
2148 			    "irq %d failed for device %s instance #%d",
2149 			    psm_name, irq, ddi_get_name(dip),
2150 			    ddi_get_instance(dip)));
2151 
2152 			if (cur_irq == -1) {
2153 				acpi_destroy_prs_irq_list(&prs_irq_listp);
2154 				return (ACPI_PSM_FAILURE);
2155 			}
2156 		}
2157 	}
2158 
2159 	acpi_destroy_prs_irq_list(&prs_irq_listp);
2160 
2161 	if (!found_irq)
2162 		return (ACPI_PSM_FAILURE);
2163 
2164 	ASSERT(pci_irqp != NULL);
2165 	*pci_irqp = cur_irq;
2166 	return (ACPI_PSM_SUCCESS);
2167 }
2168 
2169 void
2170 ioapic_disable_redirection()
2171 {
2172 	int ioapic_ix;
2173 	int intin_max;
2174 	int intin_ix;
2175 
2176 	/* Disable the I/O APIC redirection entries */
2177 	for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) {
2178 
2179 		/* Bits 23-16 define the maximum redirection entries */
2180 		intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
2181 		    & 0xff;
2182 
2183 		for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) {
2184 			/*
2185 			 * The assumption here is that this is safe, even for
2186 			 * systems with IOAPICs that suffer from the hardware
2187 			 * erratum because all devices have been quiesced before
2188 			 * this function is called from apic_shutdown()
2189 			 * (or equivalent). If that assumption turns out to be
2190 			 * false, this mask operation can induce the same
2191 			 * erratum result we're trying to avoid.
2192 			 */
2193 			ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix,
2194 			    AV_MASK);
2195 		}
2196 	}
2197 }
2198 
2199 /*
2200  * Looks for an IOAPIC with the specified physical address in the /ioapics
2201  * node in the device tree (created by the PCI enumerator).
2202  */
2203 static boolean_t
2204 apic_is_ioapic_AMD_813x(uint32_t physaddr)
2205 {
2206 	/*
2207 	 * Look in /ioapics, for the ioapic with
2208 	 * the physical address given
2209 	 */
2210 	dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0);
2211 	dev_info_t *ioapic_child;
2212 	boolean_t rv = B_FALSE;
2213 	int vid, did;
2214 	uint64_t ioapic_paddr;
2215 	boolean_t done = B_FALSE;
2216 
2217 	if (ioapicsnode == NULL)
2218 		return (B_FALSE);
2219 
2220 	/* Load first child: */
2221 	ioapic_child = ddi_get_child(ioapicsnode);
2222 	while (!done && ioapic_child != 0) { /* Iterate over children */
2223 
2224 		if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY,
2225 		    ioapic_child, DDI_PROP_DONTPASS, "reg", 0))
2226 		    != 0 && physaddr == ioapic_paddr) {
2227 
2228 			vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child,
2229 			    DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0);
2230 
2231 			if (vid == VENID_AMD) {
2232 
2233 				did = ddi_prop_get_int(DDI_DEV_T_ANY,
2234 				    ioapic_child, DDI_PROP_DONTPASS,
2235 				    IOAPICS_PROP_DEVID, 0);
2236 
2237 				if (did == DEVID_8131_IOAPIC ||
2238 				    did == DEVID_8132_IOAPIC) {
2239 					rv = B_TRUE;
2240 					done = B_TRUE;
2241 				}
2242 			}
2243 		}
2244 
2245 		if (!done)
2246 			ioapic_child = ddi_get_next_sibling(ioapic_child);
2247 	}
2248 
2249 	/* The ioapics node was held by ddi_find_devinfo, so release it */
2250 	ndi_rele_devi(ioapicsnode);
2251 	return (rv);
2252 }
2253 
2254 struct apic_state {
2255 	int32_t as_task_reg;
2256 	int32_t as_dest_reg;
2257 	int32_t as_format_reg;
2258 	int32_t as_local_timer;
2259 	int32_t as_pcint_vect;
2260 	int32_t as_int_vect0;
2261 	int32_t as_int_vect1;
2262 	int32_t as_err_vect;
2263 	int32_t as_init_count;
2264 	int32_t as_divide_reg;
2265 	int32_t as_spur_int_reg;
2266 	uint32_t as_ioapic_ids[MAX_IO_APIC];
2267 };
2268 
2269 
2270 static int
2271 apic_acpi_enter_apicmode(void)
2272 {
2273 	ACPI_OBJECT_LIST	arglist;
2274 	ACPI_OBJECT		arg;
2275 	ACPI_STATUS		status;
2276 
2277 	/* Setup parameter object */
2278 	arglist.Count = 1;
2279 	arglist.Pointer = &arg;
2280 	arg.Type = ACPI_TYPE_INTEGER;
2281 	arg.Integer.Value = ACPI_APIC_MODE;
2282 
2283 	status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL);
2284 	/*
2285 	 * Per ACPI spec - section 5.8.1 _PIC Method
2286 	 * calling the \_PIC control method is optional for the OS
2287 	 * and might not be found. It's ok to not fail in such cases.
2288 	 * This is the case on linux KVM and qemu (status AE_NOT_FOUND)
2289 	 */
2290 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
2291 		cmn_err(CE_NOTE,
2292 		    "!apic: Reporting APIC mode failed (via _PIC), err: 0x%x",
2293 		    ACPI_FAILURE(status));
2294 		return (PSM_FAILURE);
2295 	} else {
2296 		return (PSM_SUCCESS);
2297 	}
2298 }
2299 
2300 
2301 static void
2302 apic_save_state(struct apic_state *sp)
2303 {
2304 	int	i, cpuid;
2305 	ulong_t	iflag;
2306 
2307 	PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp))
2308 	/*
2309 	 * First the local APIC.
2310 	 */
2311 	sp->as_task_reg = apic_reg_ops->apic_get_pri();
2312 	sp->as_dest_reg =  apic_reg_ops->apic_read(APIC_DEST_REG);
2313 	if (apic_mode == LOCAL_APIC)
2314 		sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG);
2315 	sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER);
2316 	sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT);
2317 	sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0);
2318 	sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1);
2319 	sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT);
2320 	sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT);
2321 	sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG);
2322 	sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG);
2323 
2324 	/*
2325 	 * If on the boot processor then save the IOAPICs' IDs
2326 	 */
2327 	if ((cpuid = psm_get_cpu_id()) == 0) {
2328 
2329 		iflag = intr_clear();
2330 		lock_set(&apic_ioapic_lock);
2331 
2332 		for (i = 0; i < apic_io_max; i++)
2333 			sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD);
2334 
2335 		lock_clear(&apic_ioapic_lock);
2336 		intr_restore(iflag);
2337 	}
2338 
2339 	/* apic_state() is currently invoked only in Suspend/Resume */
2340 	apic_cpus[cpuid].aci_status |= APIC_CPU_SUSPEND;
2341 }
2342 
2343 static void
2344 apic_restore_state(struct apic_state *sp)
2345 {
2346 	int	i;
2347 	ulong_t	iflag;
2348 
2349 	/*
2350 	 * First the local APIC.
2351 	 */
2352 	apic_reg_ops->apic_write_task_reg(sp->as_task_reg);
2353 	if (apic_mode == LOCAL_APIC) {
2354 		apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg);
2355 		apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg);
2356 	}
2357 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer);
2358 	apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect);
2359 	apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0);
2360 	apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1);
2361 	apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect);
2362 	apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count);
2363 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg);
2364 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg);
2365 
2366 	/*
2367 	 * the following only needs to be done once, so we do it on the
2368 	 * boot processor, since we know that we only have one of those
2369 	 */
2370 	if (psm_get_cpu_id() == 0) {
2371 
2372 		iflag = intr_clear();
2373 		lock_set(&apic_ioapic_lock);
2374 
2375 		/* Restore IOAPICs' APIC IDs */
2376 		for (i = 0; i < apic_io_max; i++) {
2377 			ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]);
2378 		}
2379 
2380 		lock_clear(&apic_ioapic_lock);
2381 		intr_restore(iflag);
2382 
2383 		/*
2384 		 * Reenter APIC mode before restoring LNK devices
2385 		 */
2386 		(void) apic_acpi_enter_apicmode();
2387 
2388 		/*
2389 		 * restore acpi link device mappings
2390 		 */
2391 		acpi_restore_link_devices();
2392 	}
2393 }
2394 
2395 /*
2396  * Returns 0 on success
2397  */
2398 int
2399 apic_state(psm_state_request_t *rp)
2400 {
2401 	PMD(PMD_SX, ("apic_state "))
2402 	switch (rp->psr_cmd) {
2403 	case PSM_STATE_ALLOC:
2404 		rp->req.psm_state_req.psr_state =
2405 		    kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP);
2406 		if (rp->req.psm_state_req.psr_state == NULL)
2407 			return (ENOMEM);
2408 		rp->req.psm_state_req.psr_state_size =
2409 		    sizeof (struct apic_state);
2410 		PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n",
2411 		    rp->req.psm_state_req.psr_state,
2412 		    rp->req.psm_state_req.psr_state_size))
2413 		return (0);
2414 
2415 	case PSM_STATE_FREE:
2416 		kmem_free(rp->req.psm_state_req.psr_state,
2417 		    rp->req.psm_state_req.psr_state_size);
2418 		PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n",
2419 		    rp->req.psm_state_req.psr_state,
2420 		    rp->req.psm_state_req.psr_state_size))
2421 		return (0);
2422 
2423 	case PSM_STATE_SAVE:
2424 		PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n",
2425 		    rp->req.psm_state_req.psr_state,
2426 		    rp->req.psm_state_req.psr_state_size))
2427 		apic_save_state(rp->req.psm_state_req.psr_state);
2428 		return (0);
2429 
2430 	case PSM_STATE_RESTORE:
2431 		apic_restore_state(rp->req.psm_state_req.psr_state);
2432 		PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n",
2433 		    rp->req.psm_state_req.psr_state,
2434 		    rp->req.psm_state_req.psr_state_size))
2435 		return (0);
2436 
2437 	default:
2438 		return (EINVAL);
2439 	}
2440 }
2441