xref: /illumos-gate/usr/src/uts/i86pc/io/mp_platform_common.c (revision a0fb1590788f4dcbcee3fabaeb082ab7d1ad4203)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2016 Nexenta Systems, Inc.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 /*
31  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
32  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
33  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
34  * PSMI 1.5 extensions are supported in Solaris Nevada.
35  * PSMI 1.6 extensions are supported in Solaris Nevada.
36  * PSMI 1.7 extensions are supported in Solaris Nevada.
37  */
38 #define	PSMI_1_7
39 
40 #include <sys/processor.h>
41 #include <sys/time.h>
42 #include <sys/psm.h>
43 #include <sys/smp_impldefs.h>
44 #include <sys/cram.h>
45 #include <sys/acpi/acpi.h>
46 #include <sys/acpica.h>
47 #include <sys/psm_common.h>
48 #include <sys/apic.h>
49 #include <sys/apic_timer.h>
50 #include <sys/pit.h>
51 #include <sys/ddi.h>
52 #include <sys/sunddi.h>
53 #include <sys/ddi_impldefs.h>
54 #include <sys/pci.h>
55 #include <sys/promif.h>
56 #include <sys/x86_archext.h>
57 #include <sys/cpc_impl.h>
58 #include <sys/uadmin.h>
59 #include <sys/panic.h>
60 #include <sys/debug.h>
61 #include <sys/archsystm.h>
62 #include <sys/trap.h>
63 #include <sys/machsystm.h>
64 #include <sys/cpuvar.h>
65 #include <sys/rm_platter.h>
66 #include <sys/privregs.h>
67 #include <sys/cyclic.h>
68 #include <sys/note.h>
69 #include <sys/pci_intr_lib.h>
70 #include <sys/sunndi.h>
71 #if !defined(__xpv)
72 #include <sys/hpet.h>
73 #include <sys/clock.h>
74 #endif
75 
76 /*
77  *	Local Function Prototypes
78  */
79 static int apic_handle_defconf();
80 static int apic_parse_mpct(caddr_t mpct, int bypass);
81 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size);
82 static int apic_checksum(caddr_t bptr, int len);
83 static int apic_find_bus_type(char *bus);
84 static int apic_find_bus(int busid);
85 static struct apic_io_intr *apic_find_io_intr(int irqno);
86 static int apic_find_free_irq(int start, int end);
87 struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
88 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp);
89 static void apic_free_apic_cpus(void);
90 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr);
91 static int apic_acpi_enter_apicmode(void);
92 
93 int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
94     int child_ipin, struct apic_io_intr **intrp);
95 int apic_find_bus_id(int bustype);
96 int apic_find_intin(uchar_t ioapic, uchar_t intin);
97 void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
98 
99 int apic_debug_mps_id = 0;	/* 1 - print MPS ID strings */
100 
101 /* ACPI SCI interrupt configuration; -1 if SCI not used */
102 int apic_sci_vect = -1;
103 iflag_t apic_sci_flags;
104 
105 #if !defined(__xpv)
106 /* ACPI HPET interrupt configuration; -1 if HPET not used */
107 int apic_hpet_vect = -1;
108 iflag_t apic_hpet_flags;
109 #endif
110 
111 /*
112  * psm name pointer
113  */
114 char *psm_name;
115 
116 /* ACPI support routines */
117 static int acpi_probe(char *);
118 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
119     int *pci_irqp, iflag_t *intr_flagp);
120 
121 int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
122     int ipin, int *pci_irqp, iflag_t *intr_flagp);
123 uchar_t acpi_find_ioapic(int irq);
124 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2);
125 
126 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
127 int apic_max_reps_clear_pending = 1000;
128 
129 int	apic_intr_policy = INTR_ROUND_ROBIN;
130 
131 int	apic_next_bind_cpu = 1; /* For round robin assignment */
132 				/* start with cpu 1 */
133 
134 /*
135  * If enabled, the distribution works as follows:
136  * On every interrupt entry, the current ipl for the CPU is set in cpu_info
137  * and the irq corresponding to the ipl is also set in the aci_current array.
138  * interrupt exit and setspl (due to soft interrupts) will cause the current
139  * ipl to be be changed. This is cache friendly as these frequently used
140  * paths write into a per cpu structure.
141  *
142  * Sampling is done by checking the structures for all CPUs and incrementing
143  * the busy field of the irq (if any) executing on each CPU and the busy field
144  * of the corresponding CPU.
145  * In periodic mode this is done on every clock interrupt.
146  * In one-shot mode, this is done thru a cyclic with an interval of
147  * apic_redistribute_sample_interval (default 10 milli sec).
148  *
149  * Every apic_sample_factor_redistribution times we sample, we do computations
150  * to decide which interrupt needs to be migrated (see comments
151  * before apic_intr_redistribute().
152  */
153 
154 /*
155  * Following 3 variables start as % and can be patched or set using an
156  * API to be defined in future. They will be scaled to
157  * sample_factor_redistribution which is in turn set to hertz+1 (in periodic
158  * mode), or 101 in one-shot mode to stagger it away from one sec processing
159  */
160 
161 int	apic_int_busy_mark = 60;
162 int	apic_int_free_mark = 20;
163 int	apic_diff_for_redistribution = 10;
164 
165 /* sampling interval for interrupt redistribution for dynamic migration */
166 int	apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */
167 
168 /*
169  * number of times we sample before deciding to redistribute interrupts
170  * for dynamic migration
171  */
172 int	apic_sample_factor_redistribution = 101;
173 
174 int	apic_redist_cpu_skip = 0;
175 int	apic_num_imbalance = 0;
176 int	apic_num_rebind = 0;
177 
178 /*
179  * Maximum number of APIC CPUs in the system, -1 indicates that dynamic
180  * allocation of CPU ids is disabled.
181  */
182 int 	apic_max_nproc = -1;
183 int	apic_nproc = 0;
184 size_t	apic_cpus_size = 0;
185 int	apic_defconf = 0;
186 int	apic_irq_translate = 0;
187 int	apic_spec_rev = 0;
188 int	apic_imcrp = 0;
189 
190 int	apic_use_acpi = 1;	/* 1 = use ACPI, 0 = don't use ACPI */
191 int	apic_use_acpi_madt_only = 0;	/* 1=ONLY use MADT from ACPI */
192 
193 /*
194  * For interrupt link devices, if apic_unconditional_srs is set, an irq resource
195  * will be assigned (via _SRS). If it is not set, use the current
196  * irq setting (via _CRS), but only if that irq is in the set of possible
197  * irqs (returned by _PRS) for the device.
198  */
199 int	apic_unconditional_srs = 1;
200 
201 /*
202  * For interrupt link devices, if apic_prefer_crs is set when we are
203  * assigning an IRQ resource to a device, prefer the current IRQ setting
204  * over other possible irq settings under same conditions.
205  */
206 
207 int	apic_prefer_crs = 1;
208 
209 uchar_t apic_io_id[MAX_IO_APIC];
210 volatile uint32_t *apicioadr[MAX_IO_APIC];
211 uchar_t	apic_io_ver[MAX_IO_APIC];
212 uchar_t	apic_io_vectbase[MAX_IO_APIC];
213 uchar_t	apic_io_vectend[MAX_IO_APIC];
214 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1];
215 uint32_t apic_physaddr[MAX_IO_APIC];
216 
217 boolean_t ioapic_mask_workaround[MAX_IO_APIC];
218 
219 /*
220  * First available slot to be used as IRQ index into the apic_irq_table
221  * for those interrupts (like MSI/X) that don't have a physical IRQ.
222  */
223 int apic_first_avail_irq  = APIC_FIRST_FREE_IRQ;
224 
225 /*
226  * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound
227  * and bound elements of cpus_info and the temp_cpu element of irq_struct
228  */
229 lock_t	apic_ioapic_lock;
230 
231 int	apic_io_max = 0;	/* no. of i/o apics enabled */
232 
233 struct apic_io_intr *apic_io_intrp = NULL;
234 static	struct apic_bus	*apic_busp;
235 
236 uchar_t	apic_resv_vector[MAXIPL+1];
237 
238 char	apic_level_intr[APIC_MAX_VECTOR+1];
239 
240 uint32_t	eisa_level_intr_mask = 0;
241 	/* At least MSB will be set if EISA bus */
242 
243 int	apic_pci_bus_total = 0;
244 uchar_t	apic_single_pci_busid = 0;
245 
246 /*
247  * airq_mutex protects additions to the apic_irq_table - the first
248  * pointer and any airq_nexts off of that one. It also protects
249  * apic_max_device_irq & apic_min_device_irq. It also guarantees
250  * that share_id is unique as new ids are generated only when new
251  * irq_t structs are linked in. Once linked in the structs are never
252  * deleted. temp_cpu & mps_intr_index field indicate if it is programmed
253  * or allocated. Note that there is a slight gap between allocating in
254  * apic_introp_xlate and programming in addspl.
255  */
256 kmutex_t	airq_mutex;
257 apic_irq_t	*apic_irq_table[APIC_MAX_VECTOR+1];
258 int		apic_max_device_irq = 0;
259 int		apic_min_device_irq = APIC_MAX_VECTOR;
260 
261 typedef struct prs_irq_list_ent {
262 	int			list_prio;
263 	int32_t			irq;
264 	iflag_t			intrflags;
265 	acpi_prs_private_t	prsprv;
266 	struct prs_irq_list_ent	*next;
267 } prs_irq_list_t;
268 
269 
270 /*
271  * ACPI variables
272  */
273 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */
274 int apic_enable_acpi = 0;
275 
276 /* ACPI Multiple APIC Description Table ptr */
277 static	ACPI_TABLE_MADT *acpi_mapic_dtp = NULL;
278 
279 /* ACPI Interrupt Source Override Structure ptr */
280 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL;
281 int acpi_iso_cnt = 0;
282 
283 /* ACPI Non-maskable Interrupt Sources ptr */
284 static	ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL;
285 static	int acpi_nmi_scnt = 0;
286 static	ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL;
287 static	int acpi_nmi_ccnt = 0;
288 
289 /*
290  * The following added to identify a software poweroff method if available.
291  */
292 
293 static struct {
294 	int	poweroff_method;
295 	char	oem_id[APIC_MPS_OEM_ID_LEN + 1];	/* MAX + 1 for NULL */
296 	char	prod_id[APIC_MPS_PROD_ID_LEN + 1];	/* MAX + 1 for NULL */
297 } apic_mps_ids[] = {
298 	{ APIC_POWEROFF_VIA_RTC,	"INTEL",	"ALDER" },   /* 4300 */
299 	{ APIC_POWEROFF_VIA_RTC,	"NCR",		"AMC" },    /* 4300 */
300 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"A450NX" },  /* 4400? */
301 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AD450NX" }, /* 4400 */
302 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AC450NX" }, /* 4400R */
303 	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"S450NX" },  /* S50  */
304 	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"SC450NX" }  /* S50? */
305 };
306 
307 int	apic_poweroff_method = APIC_POWEROFF_NONE;
308 
309 /*
310  * Auto-configuration routines
311  */
312 
313 /*
314  * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here
315  * May work with 1.1 - but not guaranteed.
316  * According to the MP Spec, the MP floating pointer structure
317  * will be searched in the order described below:
318  * 1. In the first kilobyte of Extended BIOS Data Area (EBDA)
319  * 2. Within the last kilobyte of system base memory
320  * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh
321  * Once we find the right signature with proper checksum, we call
322  * either handle_defconf or parse_mpct to get all info necessary for
323  * subsequent operations.
324  */
325 int
326 apic_probe_common(char *modname)
327 {
328 	uint32_t mpct_addr, ebda_start = 0, base_mem_end;
329 	caddr_t	biosdatap;
330 	caddr_t	mpct = 0;
331 	caddr_t	fptr;
332 	int	i, mpct_size, mapsize, retval = PSM_FAILURE;
333 	ushort_t	ebda_seg, base_mem_size;
334 	struct	apic_mpfps_hdr	*fpsp;
335 	struct	apic_mp_cnf_hdr	*hdrp;
336 	int bypass_cpu_and_ioapics_in_mptables;
337 	int acpi_user_options;
338 
339 	if (apic_forceload < 0)
340 		return (retval);
341 
342 	/*
343 	 * Remember who we are
344 	 */
345 	psm_name = modname;
346 
347 	/* Allow override for MADT-only mode */
348 	acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0,
349 	    "acpi-user-options", 0);
350 	apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0);
351 
352 	/* Allow apic_use_acpi to override MADT-only mode */
353 	if (!apic_use_acpi)
354 		apic_use_acpi_madt_only = 0;
355 
356 	retval = acpi_probe(modname);
357 
358 	/*
359 	 * mapin the bios data area 40:0
360 	 * 40:13h - two-byte location reports the base memory size
361 	 * 40:0Eh - two-byte location for the exact starting address of
362 	 *	    the EBDA segment for EISA
363 	 */
364 	biosdatap = psm_map_phys(0x400, 0x20, PROT_READ);
365 	if (!biosdatap)
366 		goto apic_ret;
367 	fpsp = (struct apic_mpfps_hdr *)NULL;
368 	mapsize = MPFPS_RAM_WIN_LEN;
369 	/*LINTED: pointer cast may result in improper alignment */
370 	ebda_seg = *((ushort_t *)(biosdatap+0xe));
371 	/* check the 1k of EBDA */
372 	if (ebda_seg) {
373 		ebda_start = ((uint32_t)ebda_seg) << 4;
374 		fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ);
375 		if (fptr) {
376 			if (!(fpsp =
377 			    apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN)))
378 				psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
379 		}
380 	}
381 	/* If not in EBDA, check the last k of system base memory */
382 	if (!fpsp) {
383 		/*LINTED: pointer cast may result in improper alignment */
384 		base_mem_size = *((ushort_t *)(biosdatap + 0x13));
385 
386 		if (base_mem_size > 512)
387 			base_mem_end = 639 * 1024;
388 		else
389 			base_mem_end = 511 * 1024;
390 		/* if ebda == last k of base mem, skip to check BIOS ROM */
391 		if (base_mem_end != ebda_start) {
392 
393 			fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN,
394 			    PROT_READ);
395 
396 			if (fptr) {
397 				if (!(fpsp = apic_find_fps_sig(fptr,
398 				    MPFPS_RAM_WIN_LEN)))
399 					psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
400 			}
401 		}
402 	}
403 	psm_unmap_phys(biosdatap, 0x20);
404 
405 	/* If still cannot find it, check the BIOS ROM space */
406 	if (!fpsp) {
407 		mapsize = MPFPS_ROM_WIN_LEN;
408 		fptr = psm_map_phys(MPFPS_ROM_WIN_START,
409 		    MPFPS_ROM_WIN_LEN, PROT_READ);
410 		if (fptr) {
411 			if (!(fpsp =
412 			    apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) {
413 				psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
414 				goto apic_ret;
415 			}
416 		}
417 	}
418 
419 	if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) {
420 		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
421 		goto apic_ret;
422 	}
423 
424 	apic_spec_rev = fpsp->mpfps_spec_rev;
425 	if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) {
426 		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
427 		goto apic_ret;
428 	}
429 
430 	/* check IMCR is present or not */
431 	apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP;
432 
433 	/* check default configuration (dual CPUs) */
434 	if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) {
435 		psm_unmap_phys(fptr, mapsize);
436 		if ((retval = apic_handle_defconf()) != PSM_SUCCESS)
437 			return (retval);
438 
439 		goto apic_ret;
440 	}
441 
442 	/* MP Configuration Table */
443 	mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr);
444 
445 	psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */
446 
447 	/*
448 	 * Map in enough memory for the MP Configuration Table Header.
449 	 * Use this table to read the total length of the BIOS data and
450 	 * map in all the info
451 	 */
452 	/*LINTED: pointer cast may result in improper alignment */
453 	hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr,
454 	    sizeof (struct apic_mp_cnf_hdr), PROT_READ);
455 	if (!hdrp)
456 		goto apic_ret;
457 
458 	/* check mp configuration table signature PCMP */
459 	if (hdrp->mpcnf_sig != 0x504d4350) {
460 		psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
461 		goto apic_ret;
462 	}
463 	mpct_size = (int)hdrp->mpcnf_tbl_length;
464 
465 	apic_set_pwroff_method_from_mpcnfhdr(hdrp);
466 
467 	psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
468 
469 	if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) {
470 		/* This is an ACPI machine No need for further checks */
471 		goto apic_ret;
472 	}
473 
474 	/*
475 	 * Map in the entries for this machine, ie. Processor
476 	 * Entry Tables, Bus Entry Tables, etc.
477 	 * They are in fixed order following one another
478 	 */
479 	mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ);
480 	if (!mpct)
481 		goto apic_ret;
482 
483 	if (apic_checksum(mpct, mpct_size) != 0)
484 		goto apic_fail1;
485 
486 	/*LINTED: pointer cast may result in improper alignment */
487 	hdrp = (struct apic_mp_cnf_hdr *)mpct;
488 	apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic,
489 	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
490 	if (!apicadr)
491 		goto apic_fail1;
492 
493 	/* Parse all information in the tables */
494 	bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS);
495 	if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) ==
496 	    PSM_SUCCESS) {
497 		retval = PSM_SUCCESS;
498 		goto apic_ret;
499 	}
500 
501 apic_fail1:
502 	psm_unmap_phys(mpct, mpct_size);
503 	mpct = NULL;
504 
505 apic_ret:
506 	if (retval == PSM_SUCCESS) {
507 		extern int apic_ioapic_method_probe();
508 
509 		if ((retval = apic_ioapic_method_probe()) == PSM_SUCCESS)
510 			return (PSM_SUCCESS);
511 	}
512 
513 	for (i = 0; i < apic_io_max; i++)
514 		mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
515 	if (apic_cpus) {
516 		kmem_free(apic_cpus, apic_cpus_size);
517 		apic_cpus = NULL;
518 	}
519 	if (apicadr) {
520 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
521 		apicadr = NULL;
522 	}
523 	if (mpct)
524 		psm_unmap_phys(mpct, mpct_size);
525 
526 	return (retval);
527 }
528 
529 static void
530 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp)
531 {
532 	int	i;
533 
534 	for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0]));
535 	    i++) {
536 		if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id,
537 		    strlen(apic_mps_ids[i].oem_id)) == 0) &&
538 		    (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id,
539 		    strlen(apic_mps_ids[i].prod_id)) == 0)) {
540 
541 			apic_poweroff_method = apic_mps_ids[i].poweroff_method;
542 			break;
543 		}
544 	}
545 
546 	if (apic_debug_mps_id != 0) {
547 		cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'"
548 		    "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n",
549 		    psm_name,
550 		    hdrp->mpcnf_oem_str[0],
551 		    hdrp->mpcnf_oem_str[1],
552 		    hdrp->mpcnf_oem_str[2],
553 		    hdrp->mpcnf_oem_str[3],
554 		    hdrp->mpcnf_oem_str[4],
555 		    hdrp->mpcnf_oem_str[5],
556 		    hdrp->mpcnf_oem_str[6],
557 		    hdrp->mpcnf_oem_str[7],
558 		    hdrp->mpcnf_prod_str[0],
559 		    hdrp->mpcnf_prod_str[1],
560 		    hdrp->mpcnf_prod_str[2],
561 		    hdrp->mpcnf_prod_str[3],
562 		    hdrp->mpcnf_prod_str[4],
563 		    hdrp->mpcnf_prod_str[5],
564 		    hdrp->mpcnf_prod_str[6],
565 		    hdrp->mpcnf_prod_str[7],
566 		    hdrp->mpcnf_prod_str[8],
567 		    hdrp->mpcnf_prod_str[9],
568 		    hdrp->mpcnf_prod_str[10],
569 		    hdrp->mpcnf_prod_str[11]);
570 	}
571 }
572 
573 static void
574 apic_free_apic_cpus(void)
575 {
576 	if (apic_cpus != NULL) {
577 		kmem_free(apic_cpus, apic_cpus_size);
578 		apic_cpus = NULL;
579 		apic_cpus_size = 0;
580 	}
581 }
582 
583 static int
584 acpi_probe(char *modname)
585 {
586 	int			i, intmax, index;
587 	uint32_t		id, ver;
588 	int			acpi_verboseflags = 0;
589 	int			madt_seen, madt_size;
590 	ACPI_SUBTABLE_HEADER		*ap;
591 	ACPI_MADT_LOCAL_APIC	*mpa;
592 	ACPI_MADT_LOCAL_X2APIC	*mpx2a;
593 	ACPI_MADT_IO_APIC		*mia;
594 	ACPI_MADT_IO_SAPIC		*misa;
595 	ACPI_MADT_INTERRUPT_OVERRIDE	*mio;
596 	ACPI_MADT_NMI_SOURCE		*mns;
597 	ACPI_MADT_INTERRUPT_SOURCE	*mis;
598 	ACPI_MADT_LOCAL_APIC_NMI	*mlan;
599 	ACPI_MADT_LOCAL_X2APIC_NMI	*mx2alan;
600 	ACPI_MADT_LOCAL_APIC_OVERRIDE	*mao;
601 	int			sci;
602 	iflag_t			sci_flags;
603 	volatile uint32_t	*ioapic;
604 	int			ioapic_ix;
605 	uint32_t		*local_ids;
606 	uint32_t		*proc_ids;
607 	uchar_t			hid;
608 	int			warned = 0;
609 
610 	if (!apic_use_acpi)
611 		return (PSM_FAILURE);
612 
613 	if (AcpiGetTable(ACPI_SIG_MADT, 1,
614 	    (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK)
615 		return (PSM_FAILURE);
616 
617 	apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address,
618 	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
619 	if (!apicadr)
620 		return (PSM_FAILURE);
621 
622 	if ((local_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
623 	    KM_NOSLEEP)) == NULL)
624 		return (PSM_FAILURE);
625 
626 	if ((proc_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
627 	    KM_NOSLEEP)) == NULL) {
628 		kmem_free(local_ids, NCPU * sizeof (uint32_t));
629 		return (PSM_FAILURE);
630 	}
631 
632 	id = apic_reg_ops->apic_read(APIC_LID_REG);
633 	local_ids[0] = (uchar_t)(id >> 24);
634 	apic_nproc = index = 1;
635 	apic_io_max = 0;
636 
637 	ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1);
638 	madt_size = acpi_mapic_dtp->Header.Length;
639 	madt_seen = sizeof (*acpi_mapic_dtp);
640 
641 	while (madt_seen < madt_size) {
642 		switch (ap->Type) {
643 		case ACPI_MADT_TYPE_LOCAL_APIC:
644 			mpa = (ACPI_MADT_LOCAL_APIC *) ap;
645 			if (mpa->LapicFlags & ACPI_MADT_ENABLED) {
646 				if (mpa->Id == local_ids[0]) {
647 					ASSERT(index == 1);
648 					proc_ids[0] = mpa->ProcessorId;
649 				} else if (apic_nproc < NCPU && use_mp &&
650 				    apic_nproc < boot_ncpus) {
651 					local_ids[index] = mpa->Id;
652 					proc_ids[index] = mpa->ProcessorId;
653 					index++;
654 					apic_nproc++;
655 				} else if (apic_nproc == NCPU && !warned) {
656 					cmn_err(CE_WARN, "%s: CPU limit "
657 					    "exceeded"
658 #if !defined(__amd64)
659 					    " for 32-bit mode"
660 #endif
661 					    "; Solaris will use %d CPUs.",
662 					    psm_name,  NCPU);
663 					warned = 1;
664 				}
665 			}
666 			break;
667 
668 		case ACPI_MADT_TYPE_IO_APIC:
669 			mia = (ACPI_MADT_IO_APIC *) ap;
670 			if (apic_io_max < MAX_IO_APIC) {
671 				ioapic_ix = apic_io_max;
672 				apic_io_id[apic_io_max] = mia->Id;
673 				apic_io_vectbase[apic_io_max] =
674 				    mia->GlobalIrqBase;
675 				apic_physaddr[apic_io_max] =
676 				    (uint32_t)mia->Address;
677 				ioapic = apicioadr[apic_io_max] =
678 				    mapin_ioapic((uint32_t)mia->Address,
679 				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
680 				if (!ioapic)
681 					goto cleanup;
682 				ioapic_mask_workaround[apic_io_max] =
683 				    apic_is_ioapic_AMD_813x(mia->Address);
684 				apic_io_max++;
685 			}
686 			break;
687 
688 		case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:
689 			mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap;
690 			if (acpi_isop == NULL)
691 				acpi_isop = mio;
692 			acpi_iso_cnt++;
693 			break;
694 
695 		case ACPI_MADT_TYPE_NMI_SOURCE:
696 			/* UNIMPLEMENTED */
697 			mns = (ACPI_MADT_NMI_SOURCE *) ap;
698 			if (acpi_nmi_sp == NULL)
699 				acpi_nmi_sp = mns;
700 			acpi_nmi_scnt++;
701 
702 			cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n",
703 			    mns->GlobalIrq, mns->IntiFlags);
704 			break;
705 
706 		case ACPI_MADT_TYPE_LOCAL_APIC_NMI:
707 			/* UNIMPLEMENTED */
708 			mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap;
709 			if (acpi_nmi_cp == NULL)
710 				acpi_nmi_cp = mlan;
711 			acpi_nmi_ccnt++;
712 
713 			cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n",
714 			    mlan->ProcessorId, mlan->IntiFlags,
715 			    mlan->Lint);
716 			break;
717 
718 		case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:
719 			/* UNIMPLEMENTED */
720 			mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap;
721 			cmn_err(CE_NOTE, "!apic: address override: %lx\n",
722 			    (long)mao->Address);
723 			break;
724 
725 		case ACPI_MADT_TYPE_IO_SAPIC:
726 			/* UNIMPLEMENTED */
727 			misa = (ACPI_MADT_IO_SAPIC *) ap;
728 
729 			cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n",
730 			    misa->Id, misa->GlobalIrqBase,
731 			    (long)misa->Address);
732 			break;
733 
734 		case ACPI_MADT_TYPE_INTERRUPT_SOURCE:
735 			/* UNIMPLEMENTED */
736 			mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap;
737 
738 			cmn_err(CE_NOTE,
739 			    "!apic: irq source: %d %d %d 0x%x %d %d\n",
740 			    mis->Id, mis->Eid, mis->GlobalIrq,
741 			    mis->IntiFlags, mis->Type,
742 			    mis->IoSapicVector);
743 			break;
744 
745 		case ACPI_MADT_TYPE_LOCAL_X2APIC:
746 			mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap;
747 
748 			/*
749 			 * All logical processors with APIC ID values
750 			 * of 255 and greater will have their APIC
751 			 * reported through Processor X2APIC structure.
752 			 * All logical processors with APIC ID less than
753 			 * 255 will have their APIC reported through
754 			 * Processor Local APIC.
755 			 *
756 			 * Some systems apparently don't care and report all
757 			 * processors through Processor X2APIC structures. We
758 			 * warn about that but don't ignore those CPUs.
759 			 */
760 			if (mpx2a->LocalApicId < 255) {
761 				cmn_err(CE_WARN, "!%s: ignoring invalid entry "
762 				    "in MADT: CPU %d has X2APIC Id %d (< 255)",
763 				    psm_name, mpx2a->Uid, mpx2a->LocalApicId);
764 			}
765 			if (mpx2a->LapicFlags & ACPI_MADT_ENABLED) {
766 				if (mpx2a->LocalApicId == local_ids[0]) {
767 					ASSERT(index == 1);
768 					proc_ids[0] = mpx2a->Uid;
769 				} else if (apic_nproc < NCPU && use_mp &&
770 				    apic_nproc < boot_ncpus) {
771 					local_ids[index] = mpx2a->LocalApicId;
772 					proc_ids[index] = mpx2a->Uid;
773 					index++;
774 					apic_nproc++;
775 				} else if (apic_nproc == NCPU && !warned) {
776 					cmn_err(CE_WARN, "%s: CPU limit "
777 					    "exceeded"
778 #if !defined(__amd64)
779 					    " for 32-bit mode"
780 #endif
781 					    "; Solaris will use %d CPUs.",
782 					    psm_name,  NCPU);
783 					warned = 1;
784 				}
785 			}
786 
787 			break;
788 
789 		case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:
790 			/* UNIMPLEMENTED */
791 			mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap;
792 			if (mx2alan->Uid >> 8)
793 				acpi_nmi_ccnt++;
794 
795 #ifdef	DEBUG
796 			cmn_err(CE_NOTE,
797 			    "!apic: local x2apic nmi: %d 0x%x %d\n",
798 			    mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint);
799 #endif
800 
801 			break;
802 
803 		case ACPI_MADT_TYPE_RESERVED:
804 		default:
805 			break;
806 		}
807 
808 		/* advance to next entry */
809 		madt_seen += ap->Length;
810 		ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length);
811 	}
812 
813 	/*
814 	 * allocate enough space for possible hot-adding of CPUs.
815 	 * max_ncpus may be less than apic_nproc if it's set by user.
816 	 */
817 	if (plat_dr_support_cpu()) {
818 		apic_max_nproc = max_ncpus;
819 	}
820 	apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus);
821 	if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL)
822 		goto cleanup;
823 
824 	/*
825 	 * ACPI doesn't provide the local apic ver, get it directly from the
826 	 * local apic
827 	 */
828 	ver = apic_reg_ops->apic_read(APIC_VERS_REG);
829 	for (i = 0; i < apic_nproc; i++) {
830 		apic_cpus[i].aci_local_id = local_ids[i];
831 		apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF);
832 		apic_cpus[i].aci_processor_id = proc_ids[i];
833 		/* Only build mapping info for CPUs present at boot. */
834 		if (i < boot_ncpus)
835 			(void) acpica_map_cpu(i, proc_ids[i]);
836 	}
837 
838 	/*
839 	 * To support CPU dynamic reconfiguration, the apic CPU info structure
840 	 * for each possible CPU will be pre-allocated at boot time.
841 	 * The state for each apic CPU info structure will be assigned according
842 	 * to the following rules:
843 	 * Rule 1:
844 	 * 	Slot index range: [0, min(apic_nproc, boot_ncpus))
845 	 *	State flags: 0
846 	 *	Note: cpu exists and will be configured/enabled at boot time
847 	 * Rule 2:
848 	 * 	Slot index range: [boot_ncpus, apic_nproc)
849 	 *	State flags: APIC_CPU_FREE | APIC_CPU_DIRTY
850 	 *	Note: cpu exists but won't be configured/enabled at boot time
851 	 * Rule 3:
852 	 * 	Slot index range: [apic_nproc, boot_ncpus)
853 	 *	State flags: APIC_CPU_FREE
854 	 *	Note: cpu doesn't exist at boot time
855 	 * Rule 4:
856 	 * 	Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus)
857 	 *	State flags: APIC_CPU_FREE
858 	 *	Note: cpu doesn't exist at boot time
859 	 */
860 	CPUSET_ZERO(apic_cpumask);
861 	for (i = 0; i < min(boot_ncpus, apic_nproc); i++) {
862 		CPUSET_ADD(apic_cpumask, i);
863 		apic_cpus[i].aci_status = 0;
864 	}
865 	for (i = boot_ncpus; i < apic_nproc; i++) {
866 		apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY;
867 	}
868 	for (i = apic_nproc; i < boot_ncpus; i++) {
869 		apic_cpus[i].aci_status = APIC_CPU_FREE;
870 	}
871 	for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) {
872 		apic_cpus[i].aci_status = APIC_CPU_FREE;
873 	}
874 
875 	for (i = 0; i < apic_io_max; i++) {
876 		ioapic_ix = i;
877 
878 		/*
879 		 * need to check Sitka on the following acpi problem
880 		 * On the Sitka, the ioapic's apic_id field isn't reporting
881 		 * the actual io apic id. We have reported this problem
882 		 * to Intel. Until they fix the problem, we will get the
883 		 * actual id directly from the ioapic.
884 		 */
885 		id = ioapic_read(ioapic_ix, APIC_ID_CMD);
886 		hid = (uchar_t)(id >> 24);
887 
888 		if (hid != apic_io_id[i]) {
889 			if (apic_io_id[i] == 0)
890 				apic_io_id[i] = hid;
891 			else { /* set ioapic id to whatever reported by ACPI */
892 				id = ((uint32_t)apic_io_id[i]) << 24;
893 				ioapic_write(ioapic_ix, APIC_ID_CMD, id);
894 			}
895 		}
896 		ver = ioapic_read(ioapic_ix, APIC_VERS_CMD);
897 		apic_io_ver[i] = (uchar_t)(ver & 0xff);
898 		intmax = (ver >> 16) & 0xff;
899 		apic_io_vectend[i] = apic_io_vectbase[i] + intmax;
900 		if (apic_first_avail_irq <= apic_io_vectend[i])
901 			apic_first_avail_irq = apic_io_vectend[i] + 1;
902 	}
903 
904 
905 	/*
906 	 * Process SCI configuration here
907 	 * An error may be returned here if
908 	 * acpi-user-options specifies legacy mode
909 	 * (no SCI, no ACPI mode)
910 	 */
911 	if (acpica_get_sci(&sci, &sci_flags) != AE_OK)
912 		sci = -1;
913 
914 	/*
915 	 * Now call acpi_init() to generate namespaces
916 	 * If this fails, we don't attempt to use ACPI
917 	 * even if we were able to get a MADT above
918 	 */
919 	if (acpica_init() != AE_OK)
920 		goto cleanup;
921 
922 	/*
923 	 * Call acpica_build_processor_map() now that we have
924 	 * ACPI namesspace access
925 	 */
926 	(void) acpica_build_processor_map();
927 
928 	/*
929 	 * Squirrel away the SCI and flags for later on
930 	 * in apic_picinit() when we're ready
931 	 */
932 	apic_sci_vect = sci;
933 	apic_sci_flags = sci_flags;
934 
935 	if (apic_verbose & APIC_VERBOSE_IRQ_FLAG)
936 		acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG;
937 
938 	if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG)
939 		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG;
940 
941 	if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG)
942 		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG;
943 
944 	if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE)
945 		goto cleanup;
946 
947 	/* Enable ACPI APIC interrupt routing */
948 	if (apic_acpi_enter_apicmode() != PSM_FAILURE) {
949 		build_reserved_irqlist((uchar_t *)apic_reserved_irqlist);
950 		apic_enable_acpi = 1;
951 		if (apic_sci_vect > 0) {
952 			acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT);
953 		}
954 		if (apic_use_acpi_madt_only) {
955 			cmn_err(CE_CONT,
956 			    "?Using ACPI for CPU/IOAPIC information ONLY\n");
957 		}
958 
959 #if !defined(__xpv)
960 		/*
961 		 * probe ACPI for hpet information here which is used later
962 		 * in apic_picinit().
963 		 */
964 		if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) {
965 			cmn_err(CE_NOTE, "!ACPI HPET table query failed\n");
966 		}
967 #endif
968 
969 		kmem_free(local_ids, NCPU * sizeof (uint32_t));
970 		kmem_free(proc_ids, NCPU * sizeof (uint32_t));
971 		return (PSM_SUCCESS);
972 	}
973 	/* if setting APIC mode failed above, we fall through to cleanup */
974 
975 cleanup:
976 	apic_free_apic_cpus();
977 	if (apicadr != NULL) {
978 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
979 		apicadr = NULL;
980 	}
981 	apic_max_nproc = -1;
982 	apic_nproc = 0;
983 	for (i = 0; i < apic_io_max; i++) {
984 		mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
985 		apicioadr[i] = NULL;
986 	}
987 	apic_io_max = 0;
988 	acpi_isop = NULL;
989 	acpi_iso_cnt = 0;
990 	acpi_nmi_sp = NULL;
991 	acpi_nmi_scnt = 0;
992 	acpi_nmi_cp = NULL;
993 	acpi_nmi_ccnt = 0;
994 	kmem_free(local_ids, NCPU * sizeof (uint32_t));
995 	kmem_free(proc_ids, NCPU * sizeof (uint32_t));
996 	return (PSM_FAILURE);
997 }
998 
999 /*
1000  * Handle default configuration. Fill in reqd global variables & tables
1001  * Fill all details as MP table does not give any more info
1002  */
1003 static int
1004 apic_handle_defconf()
1005 {
1006 	uint_t	lid;
1007 
1008 	/* Failed to probe ACPI MADT tables, disable CPU DR. */
1009 	apic_max_nproc = -1;
1010 	apic_free_apic_cpus();
1011 	plat_dr_disable_cpu();
1012 
1013 	apicioadr[0] = (void *)mapin_ioapic(APIC_IO_ADDR,
1014 	    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1015 	apicadr = (void *)psm_map_phys(APIC_LOCAL_ADDR,
1016 	    APIC_LOCAL_MEMLEN, PROT_READ);
1017 	apic_cpus_size = 2 * sizeof (*apic_cpus);
1018 	apic_cpus = (apic_cpus_info_t *)
1019 	    kmem_zalloc(apic_cpus_size, KM_NOSLEEP);
1020 	if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus))
1021 		goto apic_handle_defconf_fail;
1022 	CPUSET_ONLY(apic_cpumask, 0);
1023 	CPUSET_ADD(apic_cpumask, 1);
1024 	apic_nproc = 2;
1025 	lid = apic_reg_ops->apic_read(APIC_LID_REG);
1026 	apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET);
1027 	/*
1028 	 * According to the PC+MP spec 1.1, the local ids
1029 	 * for the default configuration has to be 0 or 1
1030 	 */
1031 	if (apic_cpus[0].aci_local_id == 1)
1032 		apic_cpus[1].aci_local_id = 0;
1033 	else if (apic_cpus[0].aci_local_id == 0)
1034 		apic_cpus[1].aci_local_id = 1;
1035 	else
1036 		goto apic_handle_defconf_fail;
1037 
1038 	apic_io_id[0] = 2;
1039 	apic_io_max = 1;
1040 	if (apic_defconf >= 5) {
1041 		apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS;
1042 		apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS;
1043 		apic_io_ver[0] = APIC_INTEGRATED_VERS;
1044 	} else {
1045 		apic_cpus[0].aci_local_ver = 0;		/* 82489 DX */
1046 		apic_cpus[1].aci_local_ver = 0;
1047 		apic_io_ver[0] = 0;
1048 	}
1049 	if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6)
1050 		eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1051 		    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1052 	return (PSM_SUCCESS);
1053 
1054 apic_handle_defconf_fail:
1055 	if (apicadr)
1056 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
1057 	if (apicioadr[0])
1058 		mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN);
1059 	return (PSM_FAILURE);
1060 }
1061 
1062 /* Parse the entries in MP configuration table and collect info that we need */
1063 static int
1064 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics)
1065 {
1066 	struct	apic_procent	*procp;
1067 	struct	apic_bus	*busp;
1068 	struct	apic_io_entry	*ioapicp;
1069 	struct	apic_io_intr	*intrp;
1070 	int			ioapic_ix;
1071 	uint_t	lid;
1072 	uint32_t	id;
1073 	uchar_t hid;
1074 	int	warned = 0;
1075 
1076 	/*LINTED: pointer cast may result in improper alignment */
1077 	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1078 
1079 	/* No need to count cpu entries if we won't use them */
1080 	if (!bypass_cpus_and_ioapics) {
1081 
1082 		/* Find max # of CPUS and allocate structure accordingly */
1083 		apic_nproc = 0;
1084 		CPUSET_ZERO(apic_cpumask);
1085 		while (procp->proc_entry == APIC_CPU_ENTRY) {
1086 			if (procp->proc_cpuflags & CPUFLAGS_EN) {
1087 				if (apic_nproc < NCPU && use_mp &&
1088 				    apic_nproc < boot_ncpus) {
1089 					CPUSET_ADD(apic_cpumask, apic_nproc);
1090 					apic_nproc++;
1091 				} else if (apic_nproc == NCPU && !warned) {
1092 					cmn_err(CE_WARN, "%s: CPU limit "
1093 					    "exceeded"
1094 #if !defined(__amd64)
1095 					    " for 32-bit mode"
1096 #endif
1097 					    "; Solaris will use %d CPUs.",
1098 					    psm_name,  NCPU);
1099 					warned = 1;
1100 				}
1101 
1102 			}
1103 			procp++;
1104 		}
1105 		apic_cpus_size = apic_nproc * sizeof (*apic_cpus);
1106 		if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *)
1107 		    kmem_zalloc(apic_cpus_size, KM_NOSLEEP)))
1108 			return (PSM_FAILURE);
1109 	}
1110 
1111 	/*LINTED: pointer cast may result in improper alignment */
1112 	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1113 
1114 	/*
1115 	 * start with index 1 as 0 needs to be filled in with Boot CPU, but
1116 	 * if we're bypassing this information, it has already been filled
1117 	 * in by acpi_probe(), so don't overwrite it.
1118 	 */
1119 	if (!bypass_cpus_and_ioapics)
1120 		apic_nproc = 1;
1121 
1122 	while (procp->proc_entry == APIC_CPU_ENTRY) {
1123 		/* check whether the cpu exists or not */
1124 		if (!bypass_cpus_and_ioapics &&
1125 		    procp->proc_cpuflags & CPUFLAGS_EN) {
1126 			if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */
1127 				lid = apic_reg_ops->apic_read(APIC_LID_REG);
1128 				apic_cpus[0].aci_local_id = procp->proc_apicid;
1129 				if (apic_cpus[0].aci_local_id !=
1130 				    (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) {
1131 					return (PSM_FAILURE);
1132 				}
1133 				apic_cpus[0].aci_local_ver =
1134 				    procp->proc_version;
1135 			} else if (apic_nproc < NCPU && use_mp &&
1136 			    apic_nproc < boot_ncpus) {
1137 				apic_cpus[apic_nproc].aci_local_id =
1138 				    procp->proc_apicid;
1139 
1140 				apic_cpus[apic_nproc].aci_local_ver =
1141 				    procp->proc_version;
1142 				apic_nproc++;
1143 
1144 			}
1145 		}
1146 		procp++;
1147 	}
1148 
1149 	/*
1150 	 * Save start of bus entries for later use.
1151 	 * Get EISA level cntrl if EISA bus is present.
1152 	 * Also get the CPI bus id for single CPI bus case
1153 	 */
1154 	apic_busp = busp = (struct apic_bus *)procp;
1155 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1156 		lid = apic_find_bus_type((char *)&busp->bus_str1);
1157 		if (lid	== BUS_EISA) {
1158 			eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1159 			    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1160 		} else if (lid == BUS_PCI) {
1161 			/*
1162 			 * apic_single_pci_busid will be used only if
1163 			 * apic_pic_bus_total is equal to 1
1164 			 */
1165 			apic_pci_bus_total++;
1166 			apic_single_pci_busid = busp->bus_id;
1167 		}
1168 		busp++;
1169 	}
1170 
1171 	ioapicp = (struct apic_io_entry *)busp;
1172 
1173 	if (!bypass_cpus_and_ioapics)
1174 		apic_io_max = 0;
1175 	do {
1176 		if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) {
1177 			if (ioapicp->io_flags & IOAPIC_FLAGS_EN) {
1178 				apic_io_id[apic_io_max] = ioapicp->io_apicid;
1179 				apic_io_ver[apic_io_max] = ioapicp->io_version;
1180 				apicioadr[apic_io_max] =
1181 				    (void *)mapin_ioapic(
1182 				    (uint32_t)ioapicp->io_apic_addr,
1183 				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1184 
1185 				if (!apicioadr[apic_io_max])
1186 					return (PSM_FAILURE);
1187 
1188 				ioapic_mask_workaround[apic_io_max] =
1189 				    apic_is_ioapic_AMD_813x(
1190 				    ioapicp->io_apic_addr);
1191 
1192 				ioapic_ix = apic_io_max;
1193 				id = ioapic_read(ioapic_ix, APIC_ID_CMD);
1194 				hid = (uchar_t)(id >> 24);
1195 
1196 				if (hid != apic_io_id[apic_io_max]) {
1197 					if (apic_io_id[apic_io_max] == 0)
1198 						apic_io_id[apic_io_max] = hid;
1199 					else {
1200 						/*
1201 						 * set ioapic id to whatever
1202 						 * reported by MPS
1203 						 *
1204 						 * may not need to set index
1205 						 * again ???
1206 						 * take it out and try
1207 						 */
1208 
1209 						id = ((uint32_t)
1210 						    apic_io_id[apic_io_max]) <<
1211 						    24;
1212 
1213 						ioapic_write(ioapic_ix,
1214 						    APIC_ID_CMD, id);
1215 					}
1216 				}
1217 				apic_io_max++;
1218 			}
1219 		}
1220 		ioapicp++;
1221 	} while (ioapicp->io_entry == APIC_IO_ENTRY);
1222 
1223 	apic_io_intrp = (struct apic_io_intr *)ioapicp;
1224 
1225 	intrp = apic_io_intrp;
1226 	while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1227 		if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) ||
1228 		    (apic_find_bus(intrp->intr_busid) == BUS_PCI)) {
1229 			apic_irq_translate = 1;
1230 			break;
1231 		}
1232 		intrp++;
1233 	}
1234 
1235 	return (PSM_SUCCESS);
1236 }
1237 
1238 boolean_t
1239 apic_cpu_in_range(int cpu)
1240 {
1241 	cpu &= ~IRQ_USER_BOUND;
1242 	/* Check whether cpu id is in valid range. */
1243 	if (cpu < 0 || cpu >= apic_nproc) {
1244 		return (B_FALSE);
1245 	} else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) {
1246 		/*
1247 		 * Check whether cpuid is in valid range if CPU DR is enabled.
1248 		 */
1249 		return (B_FALSE);
1250 	} else if (!CPU_IN_SET(apic_cpumask, cpu)) {
1251 		return (B_FALSE);
1252 	}
1253 
1254 	return (B_TRUE);
1255 }
1256 
1257 processorid_t
1258 apic_get_next_bind_cpu(void)
1259 {
1260 	int i, count;
1261 	processorid_t cpuid = 0;
1262 
1263 	for (count = 0; count < apic_nproc; count++) {
1264 		if (apic_next_bind_cpu >= apic_nproc) {
1265 			apic_next_bind_cpu = 0;
1266 		}
1267 		i = apic_next_bind_cpu++;
1268 		if (apic_cpu_in_range(i)) {
1269 			cpuid = i;
1270 			break;
1271 		}
1272 	}
1273 
1274 	return (cpuid);
1275 }
1276 
1277 uint16_t
1278 apic_get_apic_version()
1279 {
1280 	int i;
1281 	uchar_t min_io_apic_ver = 0;
1282 	static uint16_t version;		/* Cache as value is constant */
1283 	static boolean_t found = B_FALSE;	/* Accomodate zero version */
1284 
1285 	if (found == B_FALSE) {
1286 		found = B_TRUE;
1287 
1288 		/*
1289 		 * Don't assume all IO APICs in the system are the same.
1290 		 *
1291 		 * Set to the minimum version.
1292 		 */
1293 		for (i = 0; i < apic_io_max; i++) {
1294 			if ((apic_io_ver[i] != 0) &&
1295 			    ((min_io_apic_ver == 0) ||
1296 			    (min_io_apic_ver >= apic_io_ver[i])))
1297 				min_io_apic_ver = apic_io_ver[i];
1298 		}
1299 
1300 		/* Assume all local APICs are of the same version. */
1301 		version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver;
1302 	}
1303 	return (version);
1304 }
1305 
1306 static struct apic_mpfps_hdr *
1307 apic_find_fps_sig(caddr_t cptr, int len)
1308 {
1309 	int	i;
1310 
1311 	/* Look for the pattern "_MP_" */
1312 	for (i = 0; i < len; i += 16) {
1313 		if ((*(cptr+i) == '_') &&
1314 		    (*(cptr+i+1) == 'M') &&
1315 		    (*(cptr+i+2) == 'P') &&
1316 		    (*(cptr+i+3) == '_'))
1317 		    /*LINTED: pointer cast may result in improper alignment */
1318 			return ((struct apic_mpfps_hdr *)(cptr + i));
1319 	}
1320 	return (NULL);
1321 }
1322 
1323 static int
1324 apic_checksum(caddr_t bptr, int len)
1325 {
1326 	int	i;
1327 	uchar_t	cksum;
1328 
1329 	cksum = 0;
1330 	for (i = 0; i < len; i++)
1331 		cksum += *bptr++;
1332 	return ((int)cksum);
1333 }
1334 
1335 /*
1336  * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge
1337  * needs special handling.  We may need to chase up the device tree,
1338  * using the PCI-PCI Bridge specification's "rotating IPIN assumptions",
1339  * to find the IPIN at the root bus that relates to the IPIN on the
1340  * subsidiary bus (for ACPI or MP).  We may, however, have an entry
1341  * in the MP table or the ACPI namespace for this device itself.
1342  * We handle both cases in the search below.
1343  */
1344 /* this is the non-acpi version */
1345 int
1346 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin,
1347     struct apic_io_intr **intrp)
1348 {
1349 	dev_info_t *dipp, *dip;
1350 	int pci_irq;
1351 	ddi_acc_handle_t cfg_handle;
1352 	int bridge_devno, bridge_bus;
1353 	int ipin;
1354 
1355 	dip = idip;
1356 
1357 	/*CONSTCOND*/
1358 	while (1) {
1359 		if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) ||
1360 		    (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS))
1361 			return (-1);
1362 		if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) ==
1363 		    PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle,
1364 		    PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) {
1365 			pci_config_teardown(&cfg_handle);
1366 			if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno,
1367 			    NULL) != 0)
1368 				return (-1);
1369 			/*
1370 			 * This is the rotating scheme documented in the
1371 			 * PCI-to-PCI spec.  If the PCI-to-PCI bridge is
1372 			 * behind another PCI-to-PCI bridge, then it needs
1373 			 * to keep ascending until an interrupt entry is
1374 			 * found or the root is reached.
1375 			 */
1376 			ipin = (child_devno + child_ipin) % PCI_INTD;
1377 				if (bridge_bus == 0 && apic_pci_bus_total == 1)
1378 					bridge_bus = (int)apic_single_pci_busid;
1379 				pci_irq = ((bridge_devno & 0x1f) << 2) |
1380 				    (ipin & 0x3);
1381 				if ((*intrp = apic_find_io_intr_w_busid(pci_irq,
1382 				    bridge_bus)) != NULL) {
1383 					return (pci_irq);
1384 				}
1385 			dip = dipp;
1386 			child_devno = bridge_devno;
1387 			child_ipin = ipin;
1388 		} else {
1389 			pci_config_teardown(&cfg_handle);
1390 			return (-1);
1391 		}
1392 	}
1393 	/*LINTED: function will not fall off the bottom */
1394 }
1395 
1396 uchar_t
1397 acpi_find_ioapic(int irq)
1398 {
1399 	int i;
1400 
1401 	for (i = 0; i < apic_io_max; i++) {
1402 		if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i])
1403 			return ((uchar_t)i);
1404 	}
1405 	return (0xFF);	/* shouldn't happen */
1406 }
1407 
1408 /*
1409  * See if two irqs are compatible for sharing a vector.
1410  * Currently we only support sharing of PCI devices.
1411  */
1412 static int
1413 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2)
1414 {
1415 	uint_t	level1, po1;
1416 	uint_t	level2, po2;
1417 
1418 	/* Assume active high by default */
1419 	po1 = 0;
1420 	po2 = 0;
1421 
1422 	if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI)
1423 		return (0);
1424 
1425 	if (iflag1.intr_el == INTR_EL_CONFORM)
1426 		level1 = AV_LEVEL;
1427 	else
1428 		level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1429 
1430 	if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) ||
1431 	    (iflag1.intr_po == INTR_PO_CONFORM)))
1432 		po1 = AV_ACTIVE_LOW;
1433 
1434 	if (iflag2.intr_el == INTR_EL_CONFORM)
1435 		level2 = AV_LEVEL;
1436 	else
1437 		level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1438 
1439 	if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) ||
1440 	    (iflag2.intr_po == INTR_PO_CONFORM)))
1441 		po2 = AV_ACTIVE_LOW;
1442 
1443 	if ((level1 == level2) && (po1 == po2))
1444 		return (1);
1445 
1446 	return (0);
1447 }
1448 
1449 struct apic_io_intr *
1450 apic_find_io_intr_w_busid(int irqno, int busid)
1451 {
1452 	struct	apic_io_intr	*intrp;
1453 
1454 	/*
1455 	 * It can have more than 1 entry with same source bus IRQ,
1456 	 * but unique with the source bus id
1457 	 */
1458 	intrp = apic_io_intrp;
1459 	if (intrp != NULL) {
1460 		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1461 			if (intrp->intr_irq == irqno &&
1462 			    intrp->intr_busid == busid &&
1463 			    intrp->intr_type == IO_INTR_INT)
1464 				return (intrp);
1465 			intrp++;
1466 		}
1467 	}
1468 	APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:"
1469 	    "busid %x:%x\n", irqno, busid));
1470 	return ((struct apic_io_intr *)NULL);
1471 }
1472 
1473 
1474 struct mps_bus_info {
1475 	char	*bus_name;
1476 	int	bus_id;
1477 } bus_info_array[] = {
1478 	"ISA ", BUS_ISA,
1479 	"PCI ", BUS_PCI,
1480 	"EISA ", BUS_EISA,
1481 	"XPRESS", BUS_XPRESS,
1482 	"PCMCIA", BUS_PCMCIA,
1483 	"VL ", BUS_VL,
1484 	"CBUS ", BUS_CBUS,
1485 	"CBUSII", BUS_CBUSII,
1486 	"FUTURE", BUS_FUTURE,
1487 	"INTERN", BUS_INTERN,
1488 	"MBI ", BUS_MBI,
1489 	"MBII ", BUS_MBII,
1490 	"MPI ", BUS_MPI,
1491 	"MPSA ", BUS_MPSA,
1492 	"NUBUS ", BUS_NUBUS,
1493 	"TC ", BUS_TC,
1494 	"VME ", BUS_VME,
1495 	"PCI-E ", BUS_PCIE
1496 };
1497 
1498 static int
1499 apic_find_bus_type(char *bus)
1500 {
1501 	int	i = 0;
1502 
1503 	for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++)
1504 		if (strncmp(bus, bus_info_array[i].bus_name,
1505 		    strlen(bus_info_array[i].bus_name)) == 0)
1506 			return (bus_info_array[i].bus_id);
1507 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus));
1508 	return (0);
1509 }
1510 
1511 static int
1512 apic_find_bus(int busid)
1513 {
1514 	struct	apic_bus	*busp;
1515 
1516 	busp = apic_busp;
1517 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1518 		if (busp->bus_id == busid)
1519 			return (apic_find_bus_type((char *)&busp->bus_str1));
1520 		busp++;
1521 	}
1522 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid));
1523 	return (0);
1524 }
1525 
1526 int
1527 apic_find_bus_id(int bustype)
1528 {
1529 	struct	apic_bus	*busp;
1530 
1531 	busp = apic_busp;
1532 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1533 		if (apic_find_bus_type((char *)&busp->bus_str1) == bustype)
1534 			return (busp->bus_id);
1535 		busp++;
1536 	}
1537 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x",
1538 	    bustype));
1539 	return (-1);
1540 }
1541 
1542 /*
1543  * Check if a particular irq need to be reserved for any io_intr
1544  */
1545 static struct apic_io_intr *
1546 apic_find_io_intr(int irqno)
1547 {
1548 	struct	apic_io_intr	*intrp;
1549 
1550 	intrp = apic_io_intrp;
1551 	if (intrp != NULL) {
1552 		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1553 			if (intrp->intr_irq == irqno &&
1554 			    intrp->intr_type == IO_INTR_INT)
1555 				return (intrp);
1556 			intrp++;
1557 		}
1558 	}
1559 	return ((struct apic_io_intr *)NULL);
1560 }
1561 
1562 /*
1563  * Check if the given ioapicindex intin combination has already been assigned
1564  * an irq. If so return irqno. Else -1
1565  */
1566 int
1567 apic_find_intin(uchar_t ioapic, uchar_t intin)
1568 {
1569 	apic_irq_t *irqptr;
1570 	int	i;
1571 
1572 	/* find ioapic and intin in the apic_irq_table[] and return the index */
1573 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
1574 		irqptr = apic_irq_table[i];
1575 		while (irqptr) {
1576 			if ((irqptr->airq_mps_intr_index >= 0) &&
1577 			    (irqptr->airq_intin_no == intin) &&
1578 			    (irqptr->airq_ioapicindex == ioapic)) {
1579 				APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq "
1580 				    "entry for ioapic:intin %x:%x "
1581 				    "shared interrupts ?", ioapic, intin));
1582 				return (i);
1583 			}
1584 			irqptr = irqptr->airq_next;
1585 		}
1586 	}
1587 	return (-1);
1588 }
1589 
1590 int
1591 apic_allocate_irq(int irq)
1592 {
1593 	int	freeirq, i;
1594 
1595 	if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1)
1596 		if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ,
1597 		    (irq - 1))) == -1) {
1598 			/*
1599 			 * if BIOS really defines every single irq in the mps
1600 			 * table, then don't worry about conflicting with
1601 			 * them, just use any free slot in apic_irq_table
1602 			 */
1603 			for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
1604 				if ((apic_irq_table[i] == NULL) ||
1605 				    apic_irq_table[i]->airq_mps_intr_index ==
1606 				    FREE_INDEX) {
1607 				freeirq = i;
1608 				break;
1609 			}
1610 		}
1611 		if (freeirq == -1) {
1612 			/* This shouldn't happen, but just in case */
1613 			cmn_err(CE_WARN, "%s: NO available IRQ", psm_name);
1614 			return (-1);
1615 		}
1616 	}
1617 	if (apic_irq_table[freeirq] == NULL) {
1618 		apic_irq_table[freeirq] =
1619 		    kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
1620 		if (apic_irq_table[freeirq] == NULL) {
1621 			cmn_err(CE_WARN, "%s: NO memory to allocate IRQ",
1622 			    psm_name);
1623 			return (-1);
1624 		}
1625 		apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT;
1626 		apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX;
1627 	}
1628 	return (freeirq);
1629 }
1630 
1631 static int
1632 apic_find_free_irq(int start, int end)
1633 {
1634 	int	i;
1635 
1636 	for (i = start; i <= end; i++)
1637 		/* Check if any I/O entry needs this IRQ */
1638 		if (apic_find_io_intr(i) == NULL) {
1639 			/* Then see if it is free */
1640 			if ((apic_irq_table[i] == NULL) ||
1641 			    (apic_irq_table[i]->airq_mps_intr_index ==
1642 			    FREE_INDEX)) {
1643 				return (i);
1644 			}
1645 		}
1646 	return (-1);
1647 }
1648 
1649 /*
1650  * compute the polarity, trigger mode and vector for programming into
1651  * the I/O apic and record in airq_rdt_entry.
1652  */
1653 void
1654 apic_record_rdt_entry(apic_irq_t *irqptr, int irq)
1655 {
1656 	int	ioapicindex, bus_type, vector;
1657 	short	intr_index;
1658 	uint_t	level, po, io_po;
1659 	struct apic_io_intr *iointrp;
1660 
1661 	intr_index = irqptr->airq_mps_intr_index;
1662 	DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d "
1663 	    "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq,
1664 	    (void *)irqptr->airq_dip, irqptr->airq_vector));
1665 
1666 	if (intr_index == RESERVE_INDEX) {
1667 		apic_error |= APIC_ERR_INVALID_INDEX;
1668 		return;
1669 	} else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) {
1670 		return;
1671 	}
1672 
1673 	vector = irqptr->airq_vector;
1674 	ioapicindex = irqptr->airq_ioapicindex;
1675 	/* Assume edge triggered by default */
1676 	level = 0;
1677 	/* Assume active high by default */
1678 	po = 0;
1679 
1680 	if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) {
1681 		ASSERT(irq < 16);
1682 		if (eisa_level_intr_mask & (1 << irq))
1683 			level = AV_LEVEL;
1684 		if (intr_index == FREE_INDEX && apic_defconf == 0)
1685 			apic_error |= APIC_ERR_INVALID_INDEX;
1686 	} else if (intr_index == ACPI_INDEX) {
1687 		bus_type = irqptr->airq_iflag.bustype;
1688 		if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) {
1689 			if (bus_type == BUS_PCI)
1690 				level = AV_LEVEL;
1691 		} else
1692 			level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ?
1693 			    AV_LEVEL : 0;
1694 		if (level &&
1695 		    ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) ||
1696 		    (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM &&
1697 		    bus_type == BUS_PCI)))
1698 			po = AV_ACTIVE_LOW;
1699 	} else {
1700 		iointrp = apic_io_intrp + intr_index;
1701 		bus_type = apic_find_bus(iointrp->intr_busid);
1702 		if (iointrp->intr_el == INTR_EL_CONFORM) {
1703 			if ((irq < 16) && (eisa_level_intr_mask & (1 << irq)))
1704 				level = AV_LEVEL;
1705 			else if (bus_type == BUS_PCI)
1706 				level = AV_LEVEL;
1707 		} else
1708 			level = (iointrp->intr_el == INTR_EL_LEVEL) ?
1709 			    AV_LEVEL : 0;
1710 		if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) ||
1711 		    (iointrp->intr_po == INTR_PO_CONFORM &&
1712 		    bus_type == BUS_PCI)))
1713 			po = AV_ACTIVE_LOW;
1714 	}
1715 	if (level)
1716 		apic_level_intr[irq] = 1;
1717 	/*
1718 	 * The 82489DX External APIC cannot do active low polarity interrupts.
1719 	 */
1720 	if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX))
1721 		io_po = po;
1722 	else
1723 		io_po = 0;
1724 
1725 	if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG)
1726 		prom_printf("setio: ioapic=0x%x intin=0x%x level=0x%x po=0x%x "
1727 		    "vector=0x%x cpu=0x%x\n\n", ioapicindex,
1728 		    irqptr->airq_intin_no, level, io_po, vector,
1729 		    irqptr->airq_cpu);
1730 
1731 	irqptr->airq_rdt_entry = level|io_po|vector;
1732 }
1733 
1734 int
1735 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
1736     int ipin, int *pci_irqp, iflag_t *intr_flagp)
1737 {
1738 
1739 	int status;
1740 	acpi_psm_lnk_t acpipsmlnk;
1741 
1742 	if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp,
1743 	    intr_flagp)) == ACPI_PSM_SUCCESS) {
1744 		APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d "
1745 		    "from cache for device %s, instance #%d\n", psm_name,
1746 		    *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1747 		return (status);
1748 	}
1749 
1750 	bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t));
1751 
1752 	if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp,
1753 	    &acpipsmlnk)) == ACPI_PSM_FAILURE) {
1754 		APIC_VERBOSE_IRQ((CE_WARN, "%s: "
1755 		    " acpi_translate_pci_irq failed for device %s, instance"
1756 		    " #%d", psm_name, ddi_get_name(dip),
1757 		    ddi_get_instance(dip)));
1758 		return (status);
1759 	}
1760 
1761 	if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) {
1762 		status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp,
1763 		    intr_flagp);
1764 		if (status != ACPI_PSM_SUCCESS) {
1765 			status = acpi_get_current_irq_resource(&acpipsmlnk,
1766 			    pci_irqp, intr_flagp);
1767 		}
1768 	}
1769 
1770 	if (status == ACPI_PSM_SUCCESS) {
1771 		acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp,
1772 		    intr_flagp, &acpipsmlnk);
1773 
1774 		APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] "
1775 		    "new irq %d for device %s, instance #%d\n", psm_name,
1776 		    *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1777 	}
1778 
1779 	return (status);
1780 }
1781 
1782 /*
1783  * Adds an entry to the irq list passed in, and returns the new list.
1784  * Entries are added in priority order (lower numerical priorities are
1785  * placed closer to the head of the list)
1786  */
1787 static prs_irq_list_t *
1788 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq,
1789     iflag_t *iflagp, acpi_prs_private_t *prsprvp)
1790 {
1791 	struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp;
1792 
1793 	newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP);
1794 
1795 	newent->list_prio = priority;
1796 	newent->irq = irq;
1797 	newent->intrflags = *iflagp;
1798 	newent->prsprv = *prsprvp;
1799 	/* ->next is NULL from kmem_zalloc */
1800 
1801 	/*
1802 	 * New list -- return the new entry as the list.
1803 	 */
1804 	if (listp == NULL)
1805 		return (newent);
1806 
1807 	/*
1808 	 * Save original list pointer for return (since we're not modifying
1809 	 * the head)
1810 	 */
1811 	origlistp = listp;
1812 
1813 	/*
1814 	 * Insertion sort, with entries with identical keys stored AFTER
1815 	 * existing entries (the less-than-or-equal test of priority does
1816 	 * this for us).
1817 	 */
1818 	while (listp != NULL && listp->list_prio <= priority) {
1819 		prevp = listp;
1820 		listp = listp->next;
1821 	}
1822 
1823 	newent->next = listp;
1824 
1825 	if (prevp == NULL) { /* Add at head of list (newent is the new head) */
1826 		return (newent);
1827 	} else {
1828 		prevp->next = newent;
1829 		return (origlistp);
1830 	}
1831 }
1832 
1833 /*
1834  * Frees the list passed in, deallocating all memory and leaving *listpp
1835  * set to NULL.
1836  */
1837 static void
1838 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp)
1839 {
1840 	struct prs_irq_list_ent *nextp;
1841 
1842 	ASSERT(listpp != NULL);
1843 
1844 	while (*listpp != NULL) {
1845 		nextp = (*listpp)->next;
1846 		kmem_free(*listpp, sizeof (struct prs_irq_list_ent));
1847 		*listpp = nextp;
1848 	}
1849 }
1850 
1851 /*
1852  * apic_choose_irqs_from_prs returns a list of irqs selected from the list of
1853  * irqs returned by the link device's _PRS method.  The irqs are chosen
1854  * to minimize contention in situations where the interrupt link device
1855  * can be programmed to steer interrupts to different interrupt controller
1856  * inputs (some of which may already be in use).  The list is sorted in order
1857  * of irqs to use, with the highest priority given to interrupt controller
1858  * inputs that are not shared.   When an interrupt controller input
1859  * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the
1860  * returned list in the order that minimizes sharing (thereby ensuring lowest
1861  * possible latency from interrupt trigger time to ISR execution time).
1862  */
1863 static prs_irq_list_t *
1864 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip,
1865     int crs_irq)
1866 {
1867 	int32_t irq;
1868 	int i;
1869 	prs_irq_list_t *prsirqlistp = NULL;
1870 	iflag_t iflags;
1871 
1872 	while (irqlistent != NULL) {
1873 		irqlistent->intr_flags.bustype = BUS_PCI;
1874 
1875 		for (i = 0; i < irqlistent->num_irqs; i++) {
1876 
1877 			irq = irqlistent->irqs[i];
1878 
1879 			if (irq <= 0) {
1880 				/* invalid irq number */
1881 				continue;
1882 			}
1883 
1884 			if ((irq < 16) && (apic_reserved_irqlist[irq]))
1885 				continue;
1886 
1887 			if ((apic_irq_table[irq] == NULL) ||
1888 			    (apic_irq_table[irq]->airq_dip == dip)) {
1889 
1890 				prsirqlistp = acpi_insert_prs_irq_ent(
1891 				    prsirqlistp, 0 /* Highest priority */, irq,
1892 				    &irqlistent->intr_flags,
1893 				    &irqlistent->acpi_prs_prv);
1894 
1895 				/*
1896 				 * If we do not prefer the current irq from _CRS
1897 				 * or if we do and this irq is the same as the
1898 				 * current irq from _CRS, this is the one
1899 				 * to pick.
1900 				 */
1901 				if (!(apic_prefer_crs) || (irq == crs_irq)) {
1902 					return (prsirqlistp);
1903 				}
1904 				continue;
1905 			}
1906 
1907 			/*
1908 			 * Edge-triggered interrupts cannot be shared
1909 			 */
1910 			if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE)
1911 				continue;
1912 
1913 			/*
1914 			 * To work around BIOSes that contain incorrect
1915 			 * interrupt polarity information in interrupt
1916 			 * descriptors returned by _PRS, we assume that
1917 			 * the polarity of the other device sharing this
1918 			 * interrupt controller input is compatible.
1919 			 * If it's not, the caller will catch it when
1920 			 * the caller invokes the link device's _CRS method
1921 			 * (after invoking its _SRS method).
1922 			 */
1923 			iflags = irqlistent->intr_flags;
1924 			iflags.intr_po =
1925 			    apic_irq_table[irq]->airq_iflag.intr_po;
1926 
1927 			if (!acpi_intr_compatible(iflags,
1928 			    apic_irq_table[irq]->airq_iflag)) {
1929 				APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d "
1930 				    "not compatible [%x:%x:%x !~ %x:%x:%x]",
1931 				    psm_name, irq,
1932 				    iflags.intr_po,
1933 				    iflags.intr_el,
1934 				    iflags.bustype,
1935 				    apic_irq_table[irq]->airq_iflag.intr_po,
1936 				    apic_irq_table[irq]->airq_iflag.intr_el,
1937 				    apic_irq_table[irq]->airq_iflag.bustype));
1938 				continue;
1939 			}
1940 
1941 			/*
1942 			 * If we prefer the irq from _CRS, no need
1943 			 * to search any further (and make sure
1944 			 * to add this irq with the highest priority
1945 			 * so it's tried first).
1946 			 */
1947 			if (crs_irq == irq && apic_prefer_crs) {
1948 
1949 				return (acpi_insert_prs_irq_ent(
1950 				    prsirqlistp,
1951 				    0 /* Highest priority */,
1952 				    irq, &iflags,
1953 				    &irqlistent->acpi_prs_prv));
1954 			}
1955 
1956 			/*
1957 			 * Priority is equal to the share count (lower
1958 			 * share count is higher priority). Note that
1959 			 * the intr flags passed in here are the ones we
1960 			 * changed above -- if incorrect, it will be
1961 			 * caught by the caller's _CRS flags comparison.
1962 			 */
1963 			prsirqlistp = acpi_insert_prs_irq_ent(
1964 			    prsirqlistp,
1965 			    apic_irq_table[irq]->airq_share, irq,
1966 			    &iflags, &irqlistent->acpi_prs_prv);
1967 		}
1968 
1969 		/* Go to the next irqlist entry */
1970 		irqlistent = irqlistent->next;
1971 	}
1972 
1973 	return (prsirqlistp);
1974 }
1975 
1976 /*
1977  * Configures the irq for the interrupt link device identified by
1978  * acpipsmlnkp.
1979  *
1980  * Gets the current and the list of possible irq settings for the
1981  * device. If apic_unconditional_srs is not set, and the current
1982  * resource setting is in the list of possible irq settings,
1983  * current irq resource setting is passed to the caller.
1984  *
1985  * Otherwise, picks an irq number from the list of possible irq
1986  * settings, and sets the irq of the device to this value.
1987  * If prefer_crs is set, among a set of irq numbers in the list that have
1988  * the least number of devices sharing the interrupt, we pick current irq
1989  * resource setting if it is a member of this set.
1990  *
1991  * Passes the irq number in the value pointed to by pci_irqp, and
1992  * polarity and sensitivity in the structure pointed to by dipintrflagp
1993  * to the caller.
1994  *
1995  * Note that if setting the irq resource failed, but successfuly obtained
1996  * the current irq resource settings, passes the current irq resources
1997  * and considers it a success.
1998  *
1999  * Returns:
2000  * ACPI_PSM_SUCCESS on success.
2001  *
2002  * ACPI_PSM_FAILURE if an error occured during the configuration or
2003  * if a suitable irq was not found for this device, or if setting the
2004  * irq resource and obtaining the current resource fails.
2005  *
2006  */
2007 static int
2008 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
2009     int *pci_irqp, iflag_t *dipintr_flagp)
2010 {
2011 	int32_t irq;
2012 	int cur_irq = -1;
2013 	acpi_irqlist_t *irqlistp;
2014 	prs_irq_list_t *prs_irq_listp, *prs_irq_entp;
2015 	boolean_t found_irq = B_FALSE;
2016 
2017 	dipintr_flagp->bustype = BUS_PCI;
2018 
2019 	if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp))
2020 	    == ACPI_PSM_FAILURE) {
2021 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine "
2022 		    "or assign IRQ for device %s, instance #%d: The system was "
2023 		    "unable to get the list of potential IRQs from ACPI.",
2024 		    psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2025 
2026 		return (ACPI_PSM_FAILURE);
2027 	}
2028 
2029 	if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2030 	    dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) &&
2031 	    (cur_irq > 0)) {
2032 		/*
2033 		 * If an IRQ is set in CRS and that IRQ exists in the set
2034 		 * returned from _PRS, return that IRQ, otherwise print
2035 		 * a warning
2036 		 */
2037 
2038 		if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL)
2039 		    == ACPI_PSM_SUCCESS) {
2040 
2041 			ASSERT(pci_irqp != NULL);
2042 			*pci_irqp = cur_irq;
2043 			acpi_free_irqlist(irqlistp);
2044 			return (ACPI_PSM_SUCCESS);
2045 		}
2046 
2047 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the "
2048 		    "current irq %d for device %s, instance #%d in ACPI's "
2049 		    "list of possible irqs for this device. Picking one from "
2050 		    " the latter list.", psm_name, cur_irq, ddi_get_name(dip),
2051 		    ddi_get_instance(dip)));
2052 	}
2053 
2054 	if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip,
2055 	    cur_irq)) == NULL) {
2056 
2057 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a "
2058 		    "suitable irq from the list of possible irqs for device "
2059 		    "%s, instance #%d in ACPI's list of possible irqs",
2060 		    psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2061 
2062 		acpi_free_irqlist(irqlistp);
2063 		return (ACPI_PSM_FAILURE);
2064 	}
2065 
2066 	acpi_free_irqlist(irqlistp);
2067 
2068 	for (prs_irq_entp = prs_irq_listp;
2069 	    prs_irq_entp != NULL && found_irq == B_FALSE;
2070 	    prs_irq_entp = prs_irq_entp->next) {
2071 
2072 		acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv;
2073 		irq = prs_irq_entp->irq;
2074 
2075 		APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for "
2076 		    "device %s instance #%d\n", psm_name, irq,
2077 		    ddi_get_name(dip), ddi_get_instance(dip)));
2078 
2079 		if ((acpi_set_irq_resource(acpipsmlnkp, irq))
2080 		    == ACPI_PSM_SUCCESS) {
2081 			/*
2082 			 * setting irq was successful, check to make sure CRS
2083 			 * reflects that. If CRS does not agree with what we
2084 			 * set, return the irq that was set.
2085 			 */
2086 
2087 			if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2088 			    dipintr_flagp) == ACPI_PSM_SUCCESS) {
2089 
2090 				if (cur_irq != irq)
2091 					APIC_VERBOSE_IRQ((CE_WARN,
2092 					    "!%s: IRQ resource set "
2093 					    "(irqno %d) for device %s "
2094 					    "instance #%d, differs from "
2095 					    "current setting irqno %d",
2096 					    psm_name, irq, ddi_get_name(dip),
2097 					    ddi_get_instance(dip), cur_irq));
2098 			} else {
2099 				/*
2100 				 * On at least one system, there was a bug in
2101 				 * a DSDT method called by _STA, causing _STA to
2102 				 * indicate that the link device was disabled
2103 				 * (when, in fact, it was enabled).  Since _SRS
2104 				 * succeeded, assume that _CRS is lying and use
2105 				 * the iflags from this _PRS interrupt choice.
2106 				 * If we're wrong about the flags, the polarity
2107 				 * will be incorrect and we may get an interrupt
2108 				 * storm, but there's not much else we can do
2109 				 * at this point.
2110 				 */
2111 				*dipintr_flagp = prs_irq_entp->intrflags;
2112 			}
2113 
2114 			/*
2115 			 * Return the irq that was set, and not what _CRS
2116 			 * reports, since _CRS has been seen to return
2117 			 * different IRQs than what was passed to _SRS on some
2118 			 * systems (and just not return successfully on others).
2119 			 */
2120 			cur_irq = irq;
2121 			found_irq = B_TRUE;
2122 		} else {
2123 			APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource "
2124 			    "irq %d failed for device %s instance #%d",
2125 			    psm_name, irq, ddi_get_name(dip),
2126 			    ddi_get_instance(dip)));
2127 
2128 			if (cur_irq == -1) {
2129 				acpi_destroy_prs_irq_list(&prs_irq_listp);
2130 				return (ACPI_PSM_FAILURE);
2131 			}
2132 		}
2133 	}
2134 
2135 	acpi_destroy_prs_irq_list(&prs_irq_listp);
2136 
2137 	if (!found_irq)
2138 		return (ACPI_PSM_FAILURE);
2139 
2140 	ASSERT(pci_irqp != NULL);
2141 	*pci_irqp = cur_irq;
2142 	return (ACPI_PSM_SUCCESS);
2143 }
2144 
2145 void
2146 ioapic_disable_redirection()
2147 {
2148 	int ioapic_ix;
2149 	int intin_max;
2150 	int intin_ix;
2151 
2152 	/* Disable the I/O APIC redirection entries */
2153 	for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) {
2154 
2155 		/* Bits 23-16 define the maximum redirection entries */
2156 		intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
2157 		    & 0xff;
2158 
2159 		for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) {
2160 			/*
2161 			 * The assumption here is that this is safe, even for
2162 			 * systems with IOAPICs that suffer from the hardware
2163 			 * erratum because all devices have been quiesced before
2164 			 * this function is called from apic_shutdown()
2165 			 * (or equivalent). If that assumption turns out to be
2166 			 * false, this mask operation can induce the same
2167 			 * erratum result we're trying to avoid.
2168 			 */
2169 			ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix,
2170 			    AV_MASK);
2171 		}
2172 	}
2173 }
2174 
2175 /*
2176  * Looks for an IOAPIC with the specified physical address in the /ioapics
2177  * node in the device tree (created by the PCI enumerator).
2178  */
2179 static boolean_t
2180 apic_is_ioapic_AMD_813x(uint32_t physaddr)
2181 {
2182 	/*
2183 	 * Look in /ioapics, for the ioapic with
2184 	 * the physical address given
2185 	 */
2186 	dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0);
2187 	dev_info_t *ioapic_child;
2188 	boolean_t rv = B_FALSE;
2189 	int vid, did;
2190 	uint64_t ioapic_paddr;
2191 	boolean_t done = B_FALSE;
2192 
2193 	if (ioapicsnode == NULL)
2194 		return (B_FALSE);
2195 
2196 	/* Load first child: */
2197 	ioapic_child = ddi_get_child(ioapicsnode);
2198 	while (!done && ioapic_child != 0) { /* Iterate over children */
2199 
2200 		if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY,
2201 		    ioapic_child, DDI_PROP_DONTPASS, "reg", 0))
2202 		    != 0 && physaddr == ioapic_paddr) {
2203 
2204 			vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child,
2205 			    DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0);
2206 
2207 			if (vid == VENID_AMD) {
2208 
2209 				did = ddi_prop_get_int(DDI_DEV_T_ANY,
2210 				    ioapic_child, DDI_PROP_DONTPASS,
2211 				    IOAPICS_PROP_DEVID, 0);
2212 
2213 				if (did == DEVID_8131_IOAPIC ||
2214 				    did == DEVID_8132_IOAPIC) {
2215 					rv = B_TRUE;
2216 					done = B_TRUE;
2217 				}
2218 			}
2219 		}
2220 
2221 		if (!done)
2222 			ioapic_child = ddi_get_next_sibling(ioapic_child);
2223 	}
2224 
2225 	/* The ioapics node was held by ddi_find_devinfo, so release it */
2226 	ndi_rele_devi(ioapicsnode);
2227 	return (rv);
2228 }
2229 
2230 struct apic_state {
2231 	int32_t as_task_reg;
2232 	int32_t as_dest_reg;
2233 	int32_t as_format_reg;
2234 	int32_t as_local_timer;
2235 	int32_t as_pcint_vect;
2236 	int32_t as_int_vect0;
2237 	int32_t as_int_vect1;
2238 	int32_t as_err_vect;
2239 	int32_t as_init_count;
2240 	int32_t as_divide_reg;
2241 	int32_t as_spur_int_reg;
2242 	uint32_t as_ioapic_ids[MAX_IO_APIC];
2243 };
2244 
2245 
2246 static int
2247 apic_acpi_enter_apicmode(void)
2248 {
2249 	ACPI_OBJECT_LIST	arglist;
2250 	ACPI_OBJECT		arg;
2251 	ACPI_STATUS		status;
2252 
2253 	/* Setup parameter object */
2254 	arglist.Count = 1;
2255 	arglist.Pointer = &arg;
2256 	arg.Type = ACPI_TYPE_INTEGER;
2257 	arg.Integer.Value = ACPI_APIC_MODE;
2258 
2259 	status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL);
2260 	if (ACPI_FAILURE(status))
2261 		return (PSM_FAILURE);
2262 	else
2263 		return (PSM_SUCCESS);
2264 }
2265 
2266 
2267 static void
2268 apic_save_state(struct apic_state *sp)
2269 {
2270 	int	i, cpuid;
2271 	ulong_t	iflag;
2272 
2273 	PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp))
2274 	/*
2275 	 * First the local APIC.
2276 	 */
2277 	sp->as_task_reg = apic_reg_ops->apic_get_pri();
2278 	sp->as_dest_reg =  apic_reg_ops->apic_read(APIC_DEST_REG);
2279 	if (apic_mode == LOCAL_APIC)
2280 		sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG);
2281 	sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER);
2282 	sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT);
2283 	sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0);
2284 	sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1);
2285 	sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT);
2286 	sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT);
2287 	sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG);
2288 	sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG);
2289 
2290 	/*
2291 	 * If on the boot processor then save the IOAPICs' IDs
2292 	 */
2293 	if ((cpuid = psm_get_cpu_id()) == 0) {
2294 
2295 		iflag = intr_clear();
2296 		lock_set(&apic_ioapic_lock);
2297 
2298 		for (i = 0; i < apic_io_max; i++)
2299 			sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD);
2300 
2301 		lock_clear(&apic_ioapic_lock);
2302 		intr_restore(iflag);
2303 	}
2304 
2305 	/* apic_state() is currently invoked only in Suspend/Resume */
2306 	apic_cpus[cpuid].aci_status |= APIC_CPU_SUSPEND;
2307 }
2308 
2309 static void
2310 apic_restore_state(struct apic_state *sp)
2311 {
2312 	int	i;
2313 	ulong_t	iflag;
2314 
2315 	/*
2316 	 * First the local APIC.
2317 	 */
2318 	apic_reg_ops->apic_write_task_reg(sp->as_task_reg);
2319 	if (apic_mode == LOCAL_APIC) {
2320 		apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg);
2321 		apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg);
2322 	}
2323 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer);
2324 	apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect);
2325 	apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0);
2326 	apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1);
2327 	apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect);
2328 	apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count);
2329 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg);
2330 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg);
2331 
2332 	/*
2333 	 * the following only needs to be done once, so we do it on the
2334 	 * boot processor, since we know that we only have one of those
2335 	 */
2336 	if (psm_get_cpu_id() == 0) {
2337 
2338 		iflag = intr_clear();
2339 		lock_set(&apic_ioapic_lock);
2340 
2341 		/* Restore IOAPICs' APIC IDs */
2342 		for (i = 0; i < apic_io_max; i++) {
2343 			ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]);
2344 		}
2345 
2346 		lock_clear(&apic_ioapic_lock);
2347 		intr_restore(iflag);
2348 
2349 		/*
2350 		 * Reenter APIC mode before restoring LNK devices
2351 		 */
2352 		(void) apic_acpi_enter_apicmode();
2353 
2354 		/*
2355 		 * restore acpi link device mappings
2356 		 */
2357 		acpi_restore_link_devices();
2358 	}
2359 }
2360 
2361 /*
2362  * Returns 0 on success
2363  */
2364 int
2365 apic_state(psm_state_request_t *rp)
2366 {
2367 	PMD(PMD_SX, ("apic_state "))
2368 	switch (rp->psr_cmd) {
2369 	case PSM_STATE_ALLOC:
2370 		rp->req.psm_state_req.psr_state =
2371 		    kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP);
2372 		if (rp->req.psm_state_req.psr_state == NULL)
2373 			return (ENOMEM);
2374 		rp->req.psm_state_req.psr_state_size =
2375 		    sizeof (struct apic_state);
2376 		PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n",
2377 		    rp->req.psm_state_req.psr_state,
2378 		    rp->req.psm_state_req.psr_state_size))
2379 		return (0);
2380 
2381 	case PSM_STATE_FREE:
2382 		kmem_free(rp->req.psm_state_req.psr_state,
2383 		    rp->req.psm_state_req.psr_state_size);
2384 		PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n",
2385 		    rp->req.psm_state_req.psr_state,
2386 		    rp->req.psm_state_req.psr_state_size))
2387 		return (0);
2388 
2389 	case PSM_STATE_SAVE:
2390 		PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n",
2391 		    rp->req.psm_state_req.psr_state,
2392 		    rp->req.psm_state_req.psr_state_size))
2393 		apic_save_state(rp->req.psm_state_req.psr_state);
2394 		return (0);
2395 
2396 	case PSM_STATE_RESTORE:
2397 		apic_restore_state(rp->req.psm_state_req.psr_state);
2398 		PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n",
2399 		    rp->req.psm_state_req.psr_state,
2400 		    rp->req.psm_state_req.psr_state_size))
2401 		return (0);
2402 
2403 	default:
2404 		return (EINVAL);
2405 	}
2406 }
2407