xref: /illumos-gate/usr/src/uts/i86pc/io/mp_platform_common.c (revision 985cc36c07a787e0cb720fcf2fab565aa2a77590)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2016 Nexenta Systems, Inc.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 /*
31  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
32  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
33  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
34  * PSMI 1.5 extensions are supported in Solaris Nevada.
35  * PSMI 1.6 extensions are supported in Solaris Nevada.
36  * PSMI 1.7 extensions are supported in Solaris Nevada.
37  */
38 #define	PSMI_1_7
39 
40 #include <sys/processor.h>
41 #include <sys/time.h>
42 #include <sys/psm.h>
43 #include <sys/smp_impldefs.h>
44 #include <sys/cram.h>
45 #include <sys/acpi/acpi.h>
46 #include <sys/acpica.h>
47 #include <sys/psm_common.h>
48 #include <sys/apic.h>
49 #include <sys/apic_timer.h>
50 #include <sys/pit.h>
51 #include <sys/ddi.h>
52 #include <sys/sunddi.h>
53 #include <sys/ddi_impldefs.h>
54 #include <sys/pci.h>
55 #include <sys/promif.h>
56 #include <sys/x86_archext.h>
57 #include <sys/cpc_impl.h>
58 #include <sys/uadmin.h>
59 #include <sys/panic.h>
60 #include <sys/debug.h>
61 #include <sys/archsystm.h>
62 #include <sys/trap.h>
63 #include <sys/machsystm.h>
64 #include <sys/cpuvar.h>
65 #include <sys/rm_platter.h>
66 #include <sys/privregs.h>
67 #include <sys/cyclic.h>
68 #include <sys/note.h>
69 #include <sys/pci_intr_lib.h>
70 #include <sys/sunndi.h>
71 #if !defined(__xpv)
72 #include <sys/hpet.h>
73 #include <sys/clock.h>
74 #endif
75 
76 /*
77  *	Local Function Prototypes
78  */
79 static int apic_handle_defconf();
80 static int apic_parse_mpct(caddr_t mpct, int bypass);
81 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size);
82 static int apic_checksum(caddr_t bptr, int len);
83 static int apic_find_bus_type(char *bus);
84 static int apic_find_bus(int busid);
85 static struct apic_io_intr *apic_find_io_intr(int irqno);
86 static int apic_find_free_irq(int start, int end);
87 struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
88 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp);
89 static void apic_free_apic_cpus(void);
90 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr);
91 static int apic_acpi_enter_apicmode(void);
92 
93 int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
94     int child_ipin, struct apic_io_intr **intrp);
95 int apic_find_bus_id(int bustype);
96 int apic_find_intin(uchar_t ioapic, uchar_t intin);
97 void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
98 
99 int apic_debug_mps_id = 0;	/* 1 - print MPS ID strings */
100 
101 /* ACPI SCI interrupt configuration; -1 if SCI not used */
102 int apic_sci_vect = -1;
103 iflag_t apic_sci_flags;
104 
105 #if !defined(__xpv)
106 /* ACPI HPET interrupt configuration; -1 if HPET not used */
107 int apic_hpet_vect = -1;
108 iflag_t apic_hpet_flags;
109 #endif
110 
111 /*
112  * psm name pointer
113  */
114 char *psm_name;
115 
116 /* ACPI support routines */
117 static int acpi_probe(char *);
118 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
119     int *pci_irqp, iflag_t *intr_flagp);
120 
121 int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
122     int ipin, int *pci_irqp, iflag_t *intr_flagp);
123 uchar_t acpi_find_ioapic(int irq);
124 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2);
125 
126 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
127 int apic_max_reps_clear_pending = 1000;
128 
129 int	apic_intr_policy = INTR_ROUND_ROBIN;
130 
131 int	apic_next_bind_cpu = 1; /* For round robin assignment */
132 				/* start with cpu 1 */
133 
134 /*
135  * If enabled, the distribution works as follows:
136  * On every interrupt entry, the current ipl for the CPU is set in cpu_info
137  * and the irq corresponding to the ipl is also set in the aci_current array.
138  * interrupt exit and setspl (due to soft interrupts) will cause the current
139  * ipl to be be changed. This is cache friendly as these frequently used
140  * paths write into a per cpu structure.
141  *
142  * Sampling is done by checking the structures for all CPUs and incrementing
143  * the busy field of the irq (if any) executing on each CPU and the busy field
144  * of the corresponding CPU.
145  * In periodic mode this is done on every clock interrupt.
146  * In one-shot mode, this is done thru a cyclic with an interval of
147  * apic_redistribute_sample_interval (default 10 milli sec).
148  *
149  * Every apic_sample_factor_redistribution times we sample, we do computations
150  * to decide which interrupt needs to be migrated (see comments
151  * before apic_intr_redistribute().
152  */
153 
154 /*
155  * Following 3 variables start as % and can be patched or set using an
156  * API to be defined in future. They will be scaled to
157  * sample_factor_redistribution which is in turn set to hertz+1 (in periodic
158  * mode), or 101 in one-shot mode to stagger it away from one sec processing
159  */
160 
161 int	apic_int_busy_mark = 60;
162 int	apic_int_free_mark = 20;
163 int	apic_diff_for_redistribution = 10;
164 
165 /* sampling interval for interrupt redistribution for dynamic migration */
166 int	apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */
167 
168 /*
169  * number of times we sample before deciding to redistribute interrupts
170  * for dynamic migration
171  */
172 int	apic_sample_factor_redistribution = 101;
173 
174 int	apic_redist_cpu_skip = 0;
175 int	apic_num_imbalance = 0;
176 int	apic_num_rebind = 0;
177 
178 /*
179  * Maximum number of APIC CPUs in the system, -1 indicates that dynamic
180  * allocation of CPU ids is disabled.
181  */
182 int 	apic_max_nproc = -1;
183 int	apic_nproc = 0;
184 size_t	apic_cpus_size = 0;
185 int	apic_defconf = 0;
186 int	apic_irq_translate = 0;
187 int	apic_spec_rev = 0;
188 int	apic_imcrp = 0;
189 
190 int	apic_use_acpi = 1;	/* 1 = use ACPI, 0 = don't use ACPI */
191 int	apic_use_acpi_madt_only = 0;	/* 1=ONLY use MADT from ACPI */
192 
193 /*
194  * For interrupt link devices, if apic_unconditional_srs is set, an irq resource
195  * will be assigned (via _SRS). If it is not set, use the current
196  * irq setting (via _CRS), but only if that irq is in the set of possible
197  * irqs (returned by _PRS) for the device.
198  */
199 int	apic_unconditional_srs = 1;
200 
201 /*
202  * For interrupt link devices, if apic_prefer_crs is set when we are
203  * assigning an IRQ resource to a device, prefer the current IRQ setting
204  * over other possible irq settings under same conditions.
205  */
206 
207 int	apic_prefer_crs = 1;
208 
209 uchar_t apic_io_id[MAX_IO_APIC];
210 volatile uint32_t *apicioadr[MAX_IO_APIC];
211 uchar_t	apic_io_ver[MAX_IO_APIC];
212 uchar_t	apic_io_vectbase[MAX_IO_APIC];
213 uchar_t	apic_io_vectend[MAX_IO_APIC];
214 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1];
215 uint32_t apic_physaddr[MAX_IO_APIC];
216 
217 boolean_t ioapic_mask_workaround[MAX_IO_APIC];
218 
219 /*
220  * First available slot to be used as IRQ index into the apic_irq_table
221  * for those interrupts (like MSI/X) that don't have a physical IRQ.
222  */
223 int apic_first_avail_irq  = APIC_FIRST_FREE_IRQ;
224 
225 /*
226  * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound
227  * and bound elements of cpus_info and the temp_cpu element of irq_struct
228  */
229 lock_t	apic_ioapic_lock;
230 
231 int	apic_io_max = 0;	/* no. of i/o apics enabled */
232 
233 struct apic_io_intr *apic_io_intrp = NULL;
234 static	struct apic_bus	*apic_busp;
235 
236 uchar_t	apic_resv_vector[MAXIPL+1];
237 
238 char	apic_level_intr[APIC_MAX_VECTOR+1];
239 
240 uint32_t	eisa_level_intr_mask = 0;
241 	/* At least MSB will be set if EISA bus */
242 
243 int	apic_pci_bus_total = 0;
244 uchar_t	apic_single_pci_busid = 0;
245 
246 /*
247  * airq_mutex protects additions to the apic_irq_table - the first
248  * pointer and any airq_nexts off of that one. It also protects
249  * apic_max_device_irq & apic_min_device_irq. It also guarantees
250  * that share_id is unique as new ids are generated only when new
251  * irq_t structs are linked in. Once linked in the structs are never
252  * deleted. temp_cpu & mps_intr_index field indicate if it is programmed
253  * or allocated. Note that there is a slight gap between allocating in
254  * apic_introp_xlate and programming in addspl.
255  */
256 kmutex_t	airq_mutex;
257 apic_irq_t	*apic_irq_table[APIC_MAX_VECTOR+1];
258 int		apic_max_device_irq = 0;
259 int		apic_min_device_irq = APIC_MAX_VECTOR;
260 
261 typedef struct prs_irq_list_ent {
262 	int			list_prio;
263 	int32_t			irq;
264 	iflag_t			intrflags;
265 	acpi_prs_private_t	prsprv;
266 	struct prs_irq_list_ent	*next;
267 } prs_irq_list_t;
268 
269 
270 /*
271  * ACPI variables
272  */
273 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */
274 int apic_enable_acpi = 0;
275 
276 /* ACPI Multiple APIC Description Table ptr */
277 static	ACPI_TABLE_MADT *acpi_mapic_dtp = NULL;
278 
279 /* ACPI Interrupt Source Override Structure ptr */
280 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL;
281 int acpi_iso_cnt = 0;
282 
283 /* ACPI Non-maskable Interrupt Sources ptr */
284 static	ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL;
285 static	int acpi_nmi_scnt = 0;
286 static	ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL;
287 static	int acpi_nmi_ccnt = 0;
288 
289 /*
290  * The following added to identify a software poweroff method if available.
291  */
292 
293 static struct {
294 	int	poweroff_method;
295 	char	oem_id[APIC_MPS_OEM_ID_LEN + 1];	/* MAX + 1 for NULL */
296 	char	prod_id[APIC_MPS_PROD_ID_LEN + 1];	/* MAX + 1 for NULL */
297 } apic_mps_ids[] = {
298 	{ APIC_POWEROFF_VIA_RTC,	"INTEL",	"ALDER" },   /* 4300 */
299 	{ APIC_POWEROFF_VIA_RTC,	"NCR",		"AMC" },    /* 4300 */
300 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"A450NX" },  /* 4400? */
301 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AD450NX" }, /* 4400 */
302 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AC450NX" }, /* 4400R */
303 	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"S450NX" },  /* S50  */
304 	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"SC450NX" }  /* S50? */
305 };
306 
307 int	apic_poweroff_method = APIC_POWEROFF_NONE;
308 
309 /*
310  * Auto-configuration routines
311  */
312 
313 /*
314  * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here
315  * May work with 1.1 - but not guaranteed.
316  * According to the MP Spec, the MP floating pointer structure
317  * will be searched in the order described below:
318  * 1. In the first kilobyte of Extended BIOS Data Area (EBDA)
319  * 2. Within the last kilobyte of system base memory
320  * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh
321  * Once we find the right signature with proper checksum, we call
322  * either handle_defconf or parse_mpct to get all info necessary for
323  * subsequent operations.
324  */
325 int
326 apic_probe_common(char *modname)
327 {
328 	uint32_t mpct_addr, ebda_start = 0, base_mem_end;
329 	caddr_t	biosdatap;
330 	caddr_t	mpct = 0;
331 	caddr_t	fptr;
332 	int	i, mpct_size, mapsize, retval = PSM_FAILURE;
333 	ushort_t	ebda_seg, base_mem_size;
334 	struct	apic_mpfps_hdr	*fpsp;
335 	struct	apic_mp_cnf_hdr	*hdrp;
336 	int bypass_cpu_and_ioapics_in_mptables;
337 	int acpi_user_options;
338 
339 	if (apic_forceload < 0)
340 		return (retval);
341 
342 	/*
343 	 * Remember who we are
344 	 */
345 	psm_name = modname;
346 
347 	/* Allow override for MADT-only mode */
348 	acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0,
349 	    "acpi-user-options", 0);
350 	apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0);
351 
352 	/* Allow apic_use_acpi to override MADT-only mode */
353 	if (!apic_use_acpi)
354 		apic_use_acpi_madt_only = 0;
355 
356 	retval = acpi_probe(modname);
357 
358 	/*
359 	 * mapin the bios data area 40:0
360 	 * 40:13h - two-byte location reports the base memory size
361 	 * 40:0Eh - two-byte location for the exact starting address of
362 	 *	    the EBDA segment for EISA
363 	 */
364 	biosdatap = psm_map_phys(0x400, 0x20, PROT_READ);
365 	if (!biosdatap)
366 		goto apic_ret;
367 	fpsp = (struct apic_mpfps_hdr *)NULL;
368 	mapsize = MPFPS_RAM_WIN_LEN;
369 	/*LINTED: pointer cast may result in improper alignment */
370 	ebda_seg = *((ushort_t *)(biosdatap+0xe));
371 	/* check the 1k of EBDA */
372 	if (ebda_seg) {
373 		ebda_start = ((uint32_t)ebda_seg) << 4;
374 		fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ);
375 		if (fptr) {
376 			if (!(fpsp =
377 			    apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN)))
378 				psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
379 		}
380 	}
381 	/* If not in EBDA, check the last k of system base memory */
382 	if (!fpsp) {
383 		/*LINTED: pointer cast may result in improper alignment */
384 		base_mem_size = *((ushort_t *)(biosdatap + 0x13));
385 
386 		if (base_mem_size > 512)
387 			base_mem_end = 639 * 1024;
388 		else
389 			base_mem_end = 511 * 1024;
390 		/* if ebda == last k of base mem, skip to check BIOS ROM */
391 		if (base_mem_end != ebda_start) {
392 
393 			fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN,
394 			    PROT_READ);
395 
396 			if (fptr) {
397 				if (!(fpsp = apic_find_fps_sig(fptr,
398 				    MPFPS_RAM_WIN_LEN)))
399 					psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
400 			}
401 		}
402 	}
403 	psm_unmap_phys(biosdatap, 0x20);
404 
405 	/* If still cannot find it, check the BIOS ROM space */
406 	if (!fpsp) {
407 		mapsize = MPFPS_ROM_WIN_LEN;
408 		fptr = psm_map_phys(MPFPS_ROM_WIN_START,
409 		    MPFPS_ROM_WIN_LEN, PROT_READ);
410 		if (fptr) {
411 			if (!(fpsp =
412 			    apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) {
413 				psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
414 				goto apic_ret;
415 			}
416 		}
417 	}
418 
419 	if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) {
420 		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
421 		goto apic_ret;
422 	}
423 
424 	apic_spec_rev = fpsp->mpfps_spec_rev;
425 	if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) {
426 		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
427 		goto apic_ret;
428 	}
429 
430 	/* check IMCR is present or not */
431 	apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP;
432 
433 	/* check default configuration (dual CPUs) */
434 	if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) {
435 		psm_unmap_phys(fptr, mapsize);
436 		if ((retval = apic_handle_defconf()) != PSM_SUCCESS)
437 			return (retval);
438 
439 		goto apic_ret;
440 	}
441 
442 	/* MP Configuration Table */
443 	mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr);
444 
445 	psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */
446 
447 	/*
448 	 * Map in enough memory for the MP Configuration Table Header.
449 	 * Use this table to read the total length of the BIOS data and
450 	 * map in all the info
451 	 */
452 	/*LINTED: pointer cast may result in improper alignment */
453 	hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr,
454 	    sizeof (struct apic_mp_cnf_hdr), PROT_READ);
455 	if (!hdrp)
456 		goto apic_ret;
457 
458 	/* check mp configuration table signature PCMP */
459 	if (hdrp->mpcnf_sig != 0x504d4350) {
460 		psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
461 		goto apic_ret;
462 	}
463 	mpct_size = (int)hdrp->mpcnf_tbl_length;
464 
465 	apic_set_pwroff_method_from_mpcnfhdr(hdrp);
466 
467 	psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
468 
469 	if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) {
470 		/* This is an ACPI machine No need for further checks */
471 		goto apic_ret;
472 	}
473 
474 	/*
475 	 * Map in the entries for this machine, ie. Processor
476 	 * Entry Tables, Bus Entry Tables, etc.
477 	 * They are in fixed order following one another
478 	 */
479 	mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ);
480 	if (!mpct)
481 		goto apic_ret;
482 
483 	if (apic_checksum(mpct, mpct_size) != 0)
484 		goto apic_fail1;
485 
486 	/*LINTED: pointer cast may result in improper alignment */
487 	hdrp = (struct apic_mp_cnf_hdr *)mpct;
488 	apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic,
489 	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
490 	if (!apicadr)
491 		goto apic_fail1;
492 
493 	/* Parse all information in the tables */
494 	bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS);
495 	if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) ==
496 	    PSM_SUCCESS) {
497 		retval = PSM_SUCCESS;
498 		goto apic_ret;
499 	}
500 
501 apic_fail1:
502 	psm_unmap_phys(mpct, mpct_size);
503 	mpct = NULL;
504 
505 apic_ret:
506 	if (retval == PSM_SUCCESS) {
507 		extern int apic_ioapic_method_probe();
508 
509 		if ((retval = apic_ioapic_method_probe()) == PSM_SUCCESS)
510 			return (PSM_SUCCESS);
511 	}
512 
513 	for (i = 0; i < apic_io_max; i++)
514 		mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
515 	if (apic_cpus) {
516 		kmem_free(apic_cpus, apic_cpus_size);
517 		apic_cpus = NULL;
518 	}
519 	if (apicadr) {
520 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
521 		apicadr = NULL;
522 	}
523 	if (mpct)
524 		psm_unmap_phys(mpct, mpct_size);
525 
526 	return (retval);
527 }
528 
529 static void
530 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp)
531 {
532 	int	i;
533 
534 	for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0]));
535 	    i++) {
536 		if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id,
537 		    strlen(apic_mps_ids[i].oem_id)) == 0) &&
538 		    (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id,
539 		    strlen(apic_mps_ids[i].prod_id)) == 0)) {
540 
541 			apic_poweroff_method = apic_mps_ids[i].poweroff_method;
542 			break;
543 		}
544 	}
545 
546 	if (apic_debug_mps_id != 0) {
547 		cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'"
548 		    "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n",
549 		    psm_name,
550 		    hdrp->mpcnf_oem_str[0],
551 		    hdrp->mpcnf_oem_str[1],
552 		    hdrp->mpcnf_oem_str[2],
553 		    hdrp->mpcnf_oem_str[3],
554 		    hdrp->mpcnf_oem_str[4],
555 		    hdrp->mpcnf_oem_str[5],
556 		    hdrp->mpcnf_oem_str[6],
557 		    hdrp->mpcnf_oem_str[7],
558 		    hdrp->mpcnf_prod_str[0],
559 		    hdrp->mpcnf_prod_str[1],
560 		    hdrp->mpcnf_prod_str[2],
561 		    hdrp->mpcnf_prod_str[3],
562 		    hdrp->mpcnf_prod_str[4],
563 		    hdrp->mpcnf_prod_str[5],
564 		    hdrp->mpcnf_prod_str[6],
565 		    hdrp->mpcnf_prod_str[7],
566 		    hdrp->mpcnf_prod_str[8],
567 		    hdrp->mpcnf_prod_str[9],
568 		    hdrp->mpcnf_prod_str[10],
569 		    hdrp->mpcnf_prod_str[11]);
570 	}
571 }
572 
573 static void
574 apic_free_apic_cpus(void)
575 {
576 	if (apic_cpus != NULL) {
577 		kmem_free(apic_cpus, apic_cpus_size);
578 		apic_cpus = NULL;
579 		apic_cpus_size = 0;
580 	}
581 }
582 
583 static int
584 acpi_probe(char *modname)
585 {
586 	int			i, intmax, index;
587 	uint32_t		id, ver;
588 	int			acpi_verboseflags = 0;
589 	int			madt_seen, madt_size;
590 	ACPI_SUBTABLE_HEADER		*ap;
591 	ACPI_MADT_LOCAL_APIC	*mpa;
592 	ACPI_MADT_LOCAL_X2APIC	*mpx2a;
593 	ACPI_MADT_IO_APIC		*mia;
594 	ACPI_MADT_IO_SAPIC		*misa;
595 	ACPI_MADT_INTERRUPT_OVERRIDE	*mio;
596 	ACPI_MADT_NMI_SOURCE		*mns;
597 	ACPI_MADT_INTERRUPT_SOURCE	*mis;
598 	ACPI_MADT_LOCAL_APIC_NMI	*mlan;
599 	ACPI_MADT_LOCAL_X2APIC_NMI	*mx2alan;
600 	ACPI_MADT_LOCAL_APIC_OVERRIDE	*mao;
601 	int			sci;
602 	iflag_t			sci_flags;
603 	volatile uint32_t	*ioapic;
604 	int			ioapic_ix;
605 	uint32_t		*local_ids;
606 	uint32_t		*proc_ids;
607 	uchar_t			hid;
608 	int			warned = 0;
609 
610 	if (!apic_use_acpi)
611 		return (PSM_FAILURE);
612 
613 	if (AcpiGetTable(ACPI_SIG_MADT, 1,
614 	    (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK)
615 		return (PSM_FAILURE);
616 
617 	apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address,
618 	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
619 	if (!apicadr)
620 		return (PSM_FAILURE);
621 
622 	if ((local_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
623 	    KM_NOSLEEP)) == NULL)
624 		return (PSM_FAILURE);
625 
626 	if ((proc_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
627 	    KM_NOSLEEP)) == NULL) {
628 		kmem_free(local_ids, NCPU * sizeof (uint32_t));
629 		return (PSM_FAILURE);
630 	}
631 
632 	id = apic_reg_ops->apic_read(APIC_LID_REG);
633 	local_ids[0] = (uchar_t)(id >> 24);
634 	apic_nproc = index = 1;
635 	apic_io_max = 0;
636 
637 	ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1);
638 	madt_size = acpi_mapic_dtp->Header.Length;
639 	madt_seen = sizeof (*acpi_mapic_dtp);
640 
641 	while (madt_seen < madt_size) {
642 		switch (ap->Type) {
643 		case ACPI_MADT_TYPE_LOCAL_APIC:
644 			mpa = (ACPI_MADT_LOCAL_APIC *) ap;
645 			if (mpa->LapicFlags & ACPI_MADT_ENABLED) {
646 				if (mpa->Id == 255) {
647 					cmn_err(CE_WARN, "!%s: encountered "
648 					    "invalid entry in MADT: CPU %d "
649 					    "has Local APIC Id equal to 255 ",
650 					    psm_name, mpa->ProcessorId);
651 				}
652 				if (mpa->Id == local_ids[0]) {
653 					ASSERT(index == 1);
654 					proc_ids[0] = mpa->ProcessorId;
655 				} else if (apic_nproc < NCPU && use_mp &&
656 				    apic_nproc < boot_ncpus) {
657 					local_ids[index] = mpa->Id;
658 					proc_ids[index] = mpa->ProcessorId;
659 					index++;
660 					apic_nproc++;
661 				} else if (apic_nproc == NCPU && !warned) {
662 					cmn_err(CE_WARN, "%s: CPU limit "
663 					    "exceeded"
664 #if !defined(__amd64)
665 					    " for 32-bit mode"
666 #endif
667 					    "; Solaris will use %d CPUs.",
668 					    psm_name,  NCPU);
669 					warned = 1;
670 				}
671 			}
672 			break;
673 
674 		case ACPI_MADT_TYPE_IO_APIC:
675 			mia = (ACPI_MADT_IO_APIC *) ap;
676 			if (apic_io_max < MAX_IO_APIC) {
677 				ioapic_ix = apic_io_max;
678 				apic_io_id[apic_io_max] = mia->Id;
679 				apic_io_vectbase[apic_io_max] =
680 				    mia->GlobalIrqBase;
681 				apic_physaddr[apic_io_max] =
682 				    (uint32_t)mia->Address;
683 				ioapic = apicioadr[apic_io_max] =
684 				    mapin_ioapic((uint32_t)mia->Address,
685 				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
686 				if (!ioapic)
687 					goto cleanup;
688 				ioapic_mask_workaround[apic_io_max] =
689 				    apic_is_ioapic_AMD_813x(mia->Address);
690 				apic_io_max++;
691 			}
692 			break;
693 
694 		case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:
695 			mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap;
696 			if (acpi_isop == NULL)
697 				acpi_isop = mio;
698 			acpi_iso_cnt++;
699 			break;
700 
701 		case ACPI_MADT_TYPE_NMI_SOURCE:
702 			/* UNIMPLEMENTED */
703 			mns = (ACPI_MADT_NMI_SOURCE *) ap;
704 			if (acpi_nmi_sp == NULL)
705 				acpi_nmi_sp = mns;
706 			acpi_nmi_scnt++;
707 
708 			cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n",
709 			    mns->GlobalIrq, mns->IntiFlags);
710 			break;
711 
712 		case ACPI_MADT_TYPE_LOCAL_APIC_NMI:
713 			/* UNIMPLEMENTED */
714 			mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap;
715 			if (acpi_nmi_cp == NULL)
716 				acpi_nmi_cp = mlan;
717 			acpi_nmi_ccnt++;
718 
719 			cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n",
720 			    mlan->ProcessorId, mlan->IntiFlags,
721 			    mlan->Lint);
722 			break;
723 
724 		case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:
725 			/* UNIMPLEMENTED */
726 			mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap;
727 			cmn_err(CE_NOTE, "!apic: address override: %lx\n",
728 			    (long)mao->Address);
729 			break;
730 
731 		case ACPI_MADT_TYPE_IO_SAPIC:
732 			/* UNIMPLEMENTED */
733 			misa = (ACPI_MADT_IO_SAPIC *) ap;
734 
735 			cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n",
736 			    misa->Id, misa->GlobalIrqBase,
737 			    (long)misa->Address);
738 			break;
739 
740 		case ACPI_MADT_TYPE_INTERRUPT_SOURCE:
741 			/* UNIMPLEMENTED */
742 			mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap;
743 
744 			cmn_err(CE_NOTE,
745 			    "!apic: irq source: %d %d %d 0x%x %d %d\n",
746 			    mis->Id, mis->Eid, mis->GlobalIrq,
747 			    mis->IntiFlags, mis->Type,
748 			    mis->IoSapicVector);
749 			break;
750 
751 		case ACPI_MADT_TYPE_LOCAL_X2APIC:
752 			mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap;
753 
754 			/*
755 			 * All logical processors with APIC ID values
756 			 * of 255 and greater will have their APIC
757 			 * reported through Processor X2APIC structure.
758 			 * All logical processors with APIC ID less than
759 			 * 255 will have their APIC reported through
760 			 * Processor Local APIC.
761 			 *
762 			 * Some systems apparently don't care and report all
763 			 * processors through Processor X2APIC structures. We
764 			 * warn about that but don't ignore those CPUs.
765 			 */
766 			if (mpx2a->LocalApicId < 255) {
767 				cmn_err(CE_WARN, "!%s: ignoring invalid entry "
768 				    "in MADT: CPU %d has X2APIC Id %d (< 255)",
769 				    psm_name, mpx2a->Uid, mpx2a->LocalApicId);
770 			}
771 			if (mpx2a->LapicFlags & ACPI_MADT_ENABLED) {
772 				if (mpx2a->LocalApicId == local_ids[0]) {
773 					ASSERT(index == 1);
774 					proc_ids[0] = mpx2a->Uid;
775 				} else if (apic_nproc < NCPU && use_mp &&
776 				    apic_nproc < boot_ncpus) {
777 					local_ids[index] = mpx2a->LocalApicId;
778 					proc_ids[index] = mpx2a->Uid;
779 					index++;
780 					apic_nproc++;
781 				} else if (apic_nproc == NCPU && !warned) {
782 					cmn_err(CE_WARN, "%s: CPU limit "
783 					    "exceeded"
784 #if !defined(__amd64)
785 					    " for 32-bit mode"
786 #endif
787 					    "; Solaris will use %d CPUs.",
788 					    psm_name,  NCPU);
789 					warned = 1;
790 				}
791 			}
792 
793 			break;
794 
795 		case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:
796 			/* UNIMPLEMENTED */
797 			mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap;
798 			if (mx2alan->Uid >> 8)
799 				acpi_nmi_ccnt++;
800 
801 #ifdef	DEBUG
802 			cmn_err(CE_NOTE,
803 			    "!apic: local x2apic nmi: %d 0x%x %d\n",
804 			    mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint);
805 #endif
806 
807 			break;
808 
809 		case ACPI_MADT_TYPE_RESERVED:
810 		default:
811 			break;
812 		}
813 
814 		/* advance to next entry */
815 		madt_seen += ap->Length;
816 		ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length);
817 	}
818 
819 	/*
820 	 * allocate enough space for possible hot-adding of CPUs.
821 	 * max_ncpus may be less than apic_nproc if it's set by user.
822 	 */
823 	if (plat_dr_support_cpu()) {
824 		apic_max_nproc = max_ncpus;
825 	}
826 	apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus);
827 	if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL)
828 		goto cleanup;
829 
830 	/*
831 	 * ACPI doesn't provide the local apic ver, get it directly from the
832 	 * local apic
833 	 */
834 	ver = apic_reg_ops->apic_read(APIC_VERS_REG);
835 	for (i = 0; i < apic_nproc; i++) {
836 		apic_cpus[i].aci_local_id = local_ids[i];
837 		apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF);
838 		apic_cpus[i].aci_processor_id = proc_ids[i];
839 		/* Only build mapping info for CPUs present at boot. */
840 		if (i < boot_ncpus)
841 			(void) acpica_map_cpu(i, proc_ids[i]);
842 	}
843 
844 	/*
845 	 * To support CPU dynamic reconfiguration, the apic CPU info structure
846 	 * for each possible CPU will be pre-allocated at boot time.
847 	 * The state for each apic CPU info structure will be assigned according
848 	 * to the following rules:
849 	 * Rule 1:
850 	 * 	Slot index range: [0, min(apic_nproc, boot_ncpus))
851 	 *	State flags: 0
852 	 *	Note: cpu exists and will be configured/enabled at boot time
853 	 * Rule 2:
854 	 * 	Slot index range: [boot_ncpus, apic_nproc)
855 	 *	State flags: APIC_CPU_FREE | APIC_CPU_DIRTY
856 	 *	Note: cpu exists but won't be configured/enabled at boot time
857 	 * Rule 3:
858 	 * 	Slot index range: [apic_nproc, boot_ncpus)
859 	 *	State flags: APIC_CPU_FREE
860 	 *	Note: cpu doesn't exist at boot time
861 	 * Rule 4:
862 	 * 	Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus)
863 	 *	State flags: APIC_CPU_FREE
864 	 *	Note: cpu doesn't exist at boot time
865 	 */
866 	CPUSET_ZERO(apic_cpumask);
867 	for (i = 0; i < min(boot_ncpus, apic_nproc); i++) {
868 		CPUSET_ADD(apic_cpumask, i);
869 		apic_cpus[i].aci_status = 0;
870 	}
871 	for (i = boot_ncpus; i < apic_nproc; i++) {
872 		apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY;
873 	}
874 	for (i = apic_nproc; i < boot_ncpus; i++) {
875 		apic_cpus[i].aci_status = APIC_CPU_FREE;
876 	}
877 	for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) {
878 		apic_cpus[i].aci_status = APIC_CPU_FREE;
879 	}
880 
881 	for (i = 0; i < apic_io_max; i++) {
882 		ioapic_ix = i;
883 
884 		/*
885 		 * need to check Sitka on the following acpi problem
886 		 * On the Sitka, the ioapic's apic_id field isn't reporting
887 		 * the actual io apic id. We have reported this problem
888 		 * to Intel. Until they fix the problem, we will get the
889 		 * actual id directly from the ioapic.
890 		 */
891 		id = ioapic_read(ioapic_ix, APIC_ID_CMD);
892 		hid = (uchar_t)(id >> 24);
893 
894 		if (hid != apic_io_id[i]) {
895 			if (apic_io_id[i] == 0)
896 				apic_io_id[i] = hid;
897 			else { /* set ioapic id to whatever reported by ACPI */
898 				id = ((uint32_t)apic_io_id[i]) << 24;
899 				ioapic_write(ioapic_ix, APIC_ID_CMD, id);
900 			}
901 		}
902 		ver = ioapic_read(ioapic_ix, APIC_VERS_CMD);
903 		apic_io_ver[i] = (uchar_t)(ver & 0xff);
904 		intmax = (ver >> 16) & 0xff;
905 		apic_io_vectend[i] = apic_io_vectbase[i] + intmax;
906 		if (apic_first_avail_irq <= apic_io_vectend[i])
907 			apic_first_avail_irq = apic_io_vectend[i] + 1;
908 	}
909 
910 
911 	/*
912 	 * Process SCI configuration here
913 	 * An error may be returned here if
914 	 * acpi-user-options specifies legacy mode
915 	 * (no SCI, no ACPI mode)
916 	 */
917 	if (acpica_get_sci(&sci, &sci_flags) != AE_OK)
918 		sci = -1;
919 
920 	/*
921 	 * Now call acpi_init() to generate namespaces
922 	 * If this fails, we don't attempt to use ACPI
923 	 * even if we were able to get a MADT above
924 	 */
925 	if (acpica_init() != AE_OK)
926 		goto cleanup;
927 
928 	/*
929 	 * Call acpica_build_processor_map() now that we have
930 	 * ACPI namesspace access
931 	 */
932 	(void) acpica_build_processor_map();
933 
934 	/*
935 	 * Squirrel away the SCI and flags for later on
936 	 * in apic_picinit() when we're ready
937 	 */
938 	apic_sci_vect = sci;
939 	apic_sci_flags = sci_flags;
940 
941 	if (apic_verbose & APIC_VERBOSE_IRQ_FLAG)
942 		acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG;
943 
944 	if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG)
945 		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG;
946 
947 	if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG)
948 		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG;
949 
950 	if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE)
951 		goto cleanup;
952 
953 	/* Enable ACPI APIC interrupt routing */
954 	if (apic_acpi_enter_apicmode() != PSM_FAILURE) {
955 		build_reserved_irqlist((uchar_t *)apic_reserved_irqlist);
956 		apic_enable_acpi = 1;
957 		if (apic_sci_vect > 0) {
958 			acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT);
959 		}
960 		if (apic_use_acpi_madt_only) {
961 			cmn_err(CE_CONT,
962 			    "?Using ACPI for CPU/IOAPIC information ONLY\n");
963 		}
964 
965 #if !defined(__xpv)
966 		/*
967 		 * probe ACPI for hpet information here which is used later
968 		 * in apic_picinit().
969 		 */
970 		if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) {
971 			cmn_err(CE_NOTE, "!ACPI HPET table query failed\n");
972 		}
973 #endif
974 
975 		kmem_free(local_ids, NCPU * sizeof (uint32_t));
976 		kmem_free(proc_ids, NCPU * sizeof (uint32_t));
977 		return (PSM_SUCCESS);
978 	}
979 	/* if setting APIC mode failed above, we fall through to cleanup */
980 
981 cleanup:
982 	apic_free_apic_cpus();
983 	if (apicadr != NULL) {
984 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
985 		apicadr = NULL;
986 	}
987 	apic_max_nproc = -1;
988 	apic_nproc = 0;
989 	for (i = 0; i < apic_io_max; i++) {
990 		mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
991 		apicioadr[i] = NULL;
992 	}
993 	apic_io_max = 0;
994 	acpi_isop = NULL;
995 	acpi_iso_cnt = 0;
996 	acpi_nmi_sp = NULL;
997 	acpi_nmi_scnt = 0;
998 	acpi_nmi_cp = NULL;
999 	acpi_nmi_ccnt = 0;
1000 	kmem_free(local_ids, NCPU * sizeof (uint32_t));
1001 	kmem_free(proc_ids, NCPU * sizeof (uint32_t));
1002 	return (PSM_FAILURE);
1003 }
1004 
1005 /*
1006  * Handle default configuration. Fill in reqd global variables & tables
1007  * Fill all details as MP table does not give any more info
1008  */
1009 static int
1010 apic_handle_defconf()
1011 {
1012 	uint_t	lid;
1013 
1014 	/* Failed to probe ACPI MADT tables, disable CPU DR. */
1015 	apic_max_nproc = -1;
1016 	apic_free_apic_cpus();
1017 	plat_dr_disable_cpu();
1018 
1019 	apicioadr[0] = (void *)mapin_ioapic(APIC_IO_ADDR,
1020 	    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1021 	apicadr = (void *)psm_map_phys(APIC_LOCAL_ADDR,
1022 	    APIC_LOCAL_MEMLEN, PROT_READ);
1023 	apic_cpus_size = 2 * sizeof (*apic_cpus);
1024 	apic_cpus = (apic_cpus_info_t *)
1025 	    kmem_zalloc(apic_cpus_size, KM_NOSLEEP);
1026 	if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus))
1027 		goto apic_handle_defconf_fail;
1028 	CPUSET_ONLY(apic_cpumask, 0);
1029 	CPUSET_ADD(apic_cpumask, 1);
1030 	apic_nproc = 2;
1031 	lid = apic_reg_ops->apic_read(APIC_LID_REG);
1032 	apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET);
1033 	/*
1034 	 * According to the PC+MP spec 1.1, the local ids
1035 	 * for the default configuration has to be 0 or 1
1036 	 */
1037 	if (apic_cpus[0].aci_local_id == 1)
1038 		apic_cpus[1].aci_local_id = 0;
1039 	else if (apic_cpus[0].aci_local_id == 0)
1040 		apic_cpus[1].aci_local_id = 1;
1041 	else
1042 		goto apic_handle_defconf_fail;
1043 
1044 	apic_io_id[0] = 2;
1045 	apic_io_max = 1;
1046 	if (apic_defconf >= 5) {
1047 		apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS;
1048 		apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS;
1049 		apic_io_ver[0] = APIC_INTEGRATED_VERS;
1050 	} else {
1051 		apic_cpus[0].aci_local_ver = 0;		/* 82489 DX */
1052 		apic_cpus[1].aci_local_ver = 0;
1053 		apic_io_ver[0] = 0;
1054 	}
1055 	if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6)
1056 		eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1057 		    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1058 	return (PSM_SUCCESS);
1059 
1060 apic_handle_defconf_fail:
1061 	if (apicadr)
1062 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
1063 	if (apicioadr[0])
1064 		mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN);
1065 	return (PSM_FAILURE);
1066 }
1067 
1068 /* Parse the entries in MP configuration table and collect info that we need */
1069 static int
1070 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics)
1071 {
1072 	struct	apic_procent	*procp;
1073 	struct	apic_bus	*busp;
1074 	struct	apic_io_entry	*ioapicp;
1075 	struct	apic_io_intr	*intrp;
1076 	int			ioapic_ix;
1077 	uint_t	lid;
1078 	uint32_t	id;
1079 	uchar_t hid;
1080 	int	warned = 0;
1081 
1082 	/*LINTED: pointer cast may result in improper alignment */
1083 	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1084 
1085 	/* No need to count cpu entries if we won't use them */
1086 	if (!bypass_cpus_and_ioapics) {
1087 
1088 		/* Find max # of CPUS and allocate structure accordingly */
1089 		apic_nproc = 0;
1090 		CPUSET_ZERO(apic_cpumask);
1091 		while (procp->proc_entry == APIC_CPU_ENTRY) {
1092 			if (procp->proc_cpuflags & CPUFLAGS_EN) {
1093 				if (apic_nproc < NCPU && use_mp &&
1094 				    apic_nproc < boot_ncpus) {
1095 					CPUSET_ADD(apic_cpumask, apic_nproc);
1096 					apic_nproc++;
1097 				} else if (apic_nproc == NCPU && !warned) {
1098 					cmn_err(CE_WARN, "%s: CPU limit "
1099 					    "exceeded"
1100 #if !defined(__amd64)
1101 					    " for 32-bit mode"
1102 #endif
1103 					    "; Solaris will use %d CPUs.",
1104 					    psm_name,  NCPU);
1105 					warned = 1;
1106 				}
1107 
1108 			}
1109 			procp++;
1110 		}
1111 		apic_cpus_size = apic_nproc * sizeof (*apic_cpus);
1112 		if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *)
1113 		    kmem_zalloc(apic_cpus_size, KM_NOSLEEP)))
1114 			return (PSM_FAILURE);
1115 	}
1116 
1117 	/*LINTED: pointer cast may result in improper alignment */
1118 	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1119 
1120 	/*
1121 	 * start with index 1 as 0 needs to be filled in with Boot CPU, but
1122 	 * if we're bypassing this information, it has already been filled
1123 	 * in by acpi_probe(), so don't overwrite it.
1124 	 */
1125 	if (!bypass_cpus_and_ioapics)
1126 		apic_nproc = 1;
1127 
1128 	while (procp->proc_entry == APIC_CPU_ENTRY) {
1129 		/* check whether the cpu exists or not */
1130 		if (!bypass_cpus_and_ioapics &&
1131 		    procp->proc_cpuflags & CPUFLAGS_EN) {
1132 			if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */
1133 				lid = apic_reg_ops->apic_read(APIC_LID_REG);
1134 				apic_cpus[0].aci_local_id = procp->proc_apicid;
1135 				if (apic_cpus[0].aci_local_id !=
1136 				    (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) {
1137 					return (PSM_FAILURE);
1138 				}
1139 				apic_cpus[0].aci_local_ver =
1140 				    procp->proc_version;
1141 			} else if (apic_nproc < NCPU && use_mp &&
1142 			    apic_nproc < boot_ncpus) {
1143 				apic_cpus[apic_nproc].aci_local_id =
1144 				    procp->proc_apicid;
1145 
1146 				apic_cpus[apic_nproc].aci_local_ver =
1147 				    procp->proc_version;
1148 				apic_nproc++;
1149 
1150 			}
1151 		}
1152 		procp++;
1153 	}
1154 
1155 	/*
1156 	 * Save start of bus entries for later use.
1157 	 * Get EISA level cntrl if EISA bus is present.
1158 	 * Also get the CPI bus id for single CPI bus case
1159 	 */
1160 	apic_busp = busp = (struct apic_bus *)procp;
1161 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1162 		lid = apic_find_bus_type((char *)&busp->bus_str1);
1163 		if (lid	== BUS_EISA) {
1164 			eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1165 			    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1166 		} else if (lid == BUS_PCI) {
1167 			/*
1168 			 * apic_single_pci_busid will be used only if
1169 			 * apic_pic_bus_total is equal to 1
1170 			 */
1171 			apic_pci_bus_total++;
1172 			apic_single_pci_busid = busp->bus_id;
1173 		}
1174 		busp++;
1175 	}
1176 
1177 	ioapicp = (struct apic_io_entry *)busp;
1178 
1179 	if (!bypass_cpus_and_ioapics)
1180 		apic_io_max = 0;
1181 	do {
1182 		if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) {
1183 			if (ioapicp->io_flags & IOAPIC_FLAGS_EN) {
1184 				apic_io_id[apic_io_max] = ioapicp->io_apicid;
1185 				apic_io_ver[apic_io_max] = ioapicp->io_version;
1186 				apicioadr[apic_io_max] =
1187 				    (void *)mapin_ioapic(
1188 				    (uint32_t)ioapicp->io_apic_addr,
1189 				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1190 
1191 				if (!apicioadr[apic_io_max])
1192 					return (PSM_FAILURE);
1193 
1194 				ioapic_mask_workaround[apic_io_max] =
1195 				    apic_is_ioapic_AMD_813x(
1196 				    ioapicp->io_apic_addr);
1197 
1198 				ioapic_ix = apic_io_max;
1199 				id = ioapic_read(ioapic_ix, APIC_ID_CMD);
1200 				hid = (uchar_t)(id >> 24);
1201 
1202 				if (hid != apic_io_id[apic_io_max]) {
1203 					if (apic_io_id[apic_io_max] == 0)
1204 						apic_io_id[apic_io_max] = hid;
1205 					else {
1206 						/*
1207 						 * set ioapic id to whatever
1208 						 * reported by MPS
1209 						 *
1210 						 * may not need to set index
1211 						 * again ???
1212 						 * take it out and try
1213 						 */
1214 
1215 						id = ((uint32_t)
1216 						    apic_io_id[apic_io_max]) <<
1217 						    24;
1218 
1219 						ioapic_write(ioapic_ix,
1220 						    APIC_ID_CMD, id);
1221 					}
1222 				}
1223 				apic_io_max++;
1224 			}
1225 		}
1226 		ioapicp++;
1227 	} while (ioapicp->io_entry == APIC_IO_ENTRY);
1228 
1229 	apic_io_intrp = (struct apic_io_intr *)ioapicp;
1230 
1231 	intrp = apic_io_intrp;
1232 	while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1233 		if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) ||
1234 		    (apic_find_bus(intrp->intr_busid) == BUS_PCI)) {
1235 			apic_irq_translate = 1;
1236 			break;
1237 		}
1238 		intrp++;
1239 	}
1240 
1241 	return (PSM_SUCCESS);
1242 }
1243 
1244 boolean_t
1245 apic_cpu_in_range(int cpu)
1246 {
1247 	cpu &= ~IRQ_USER_BOUND;
1248 	/* Check whether cpu id is in valid range. */
1249 	if (cpu < 0 || cpu >= apic_nproc) {
1250 		return (B_FALSE);
1251 	} else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) {
1252 		/*
1253 		 * Check whether cpuid is in valid range if CPU DR is enabled.
1254 		 */
1255 		return (B_FALSE);
1256 	} else if (!CPU_IN_SET(apic_cpumask, cpu)) {
1257 		return (B_FALSE);
1258 	}
1259 
1260 	return (B_TRUE);
1261 }
1262 
1263 processorid_t
1264 apic_get_next_bind_cpu(void)
1265 {
1266 	int i, count;
1267 	processorid_t cpuid = 0;
1268 
1269 	for (count = 0; count < apic_nproc; count++) {
1270 		if (apic_next_bind_cpu >= apic_nproc) {
1271 			apic_next_bind_cpu = 0;
1272 		}
1273 		i = apic_next_bind_cpu++;
1274 		if (apic_cpu_in_range(i)) {
1275 			cpuid = i;
1276 			break;
1277 		}
1278 	}
1279 
1280 	return (cpuid);
1281 }
1282 
1283 uint16_t
1284 apic_get_apic_version()
1285 {
1286 	int i;
1287 	uchar_t min_io_apic_ver = 0;
1288 	static uint16_t version;		/* Cache as value is constant */
1289 	static boolean_t found = B_FALSE;	/* Accomodate zero version */
1290 
1291 	if (found == B_FALSE) {
1292 		found = B_TRUE;
1293 
1294 		/*
1295 		 * Don't assume all IO APICs in the system are the same.
1296 		 *
1297 		 * Set to the minimum version.
1298 		 */
1299 		for (i = 0; i < apic_io_max; i++) {
1300 			if ((apic_io_ver[i] != 0) &&
1301 			    ((min_io_apic_ver == 0) ||
1302 			    (min_io_apic_ver >= apic_io_ver[i])))
1303 				min_io_apic_ver = apic_io_ver[i];
1304 		}
1305 
1306 		/* Assume all local APICs are of the same version. */
1307 		version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver;
1308 	}
1309 	return (version);
1310 }
1311 
1312 static struct apic_mpfps_hdr *
1313 apic_find_fps_sig(caddr_t cptr, int len)
1314 {
1315 	int	i;
1316 
1317 	/* Look for the pattern "_MP_" */
1318 	for (i = 0; i < len; i += 16) {
1319 		if ((*(cptr+i) == '_') &&
1320 		    (*(cptr+i+1) == 'M') &&
1321 		    (*(cptr+i+2) == 'P') &&
1322 		    (*(cptr+i+3) == '_'))
1323 		    /*LINTED: pointer cast may result in improper alignment */
1324 			return ((struct apic_mpfps_hdr *)(cptr + i));
1325 	}
1326 	return (NULL);
1327 }
1328 
1329 static int
1330 apic_checksum(caddr_t bptr, int len)
1331 {
1332 	int	i;
1333 	uchar_t	cksum;
1334 
1335 	cksum = 0;
1336 	for (i = 0; i < len; i++)
1337 		cksum += *bptr++;
1338 	return ((int)cksum);
1339 }
1340 
1341 /*
1342  * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge
1343  * needs special handling.  We may need to chase up the device tree,
1344  * using the PCI-PCI Bridge specification's "rotating IPIN assumptions",
1345  * to find the IPIN at the root bus that relates to the IPIN on the
1346  * subsidiary bus (for ACPI or MP).  We may, however, have an entry
1347  * in the MP table or the ACPI namespace for this device itself.
1348  * We handle both cases in the search below.
1349  */
1350 /* this is the non-acpi version */
1351 int
1352 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin,
1353     struct apic_io_intr **intrp)
1354 {
1355 	dev_info_t *dipp, *dip;
1356 	int pci_irq;
1357 	ddi_acc_handle_t cfg_handle;
1358 	int bridge_devno, bridge_bus;
1359 	int ipin;
1360 
1361 	dip = idip;
1362 
1363 	/*CONSTCOND*/
1364 	while (1) {
1365 		if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) ||
1366 		    (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS))
1367 			return (-1);
1368 		if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) ==
1369 		    PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle,
1370 		    PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) {
1371 			pci_config_teardown(&cfg_handle);
1372 			if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno,
1373 			    NULL) != 0)
1374 				return (-1);
1375 			/*
1376 			 * This is the rotating scheme documented in the
1377 			 * PCI-to-PCI spec.  If the PCI-to-PCI bridge is
1378 			 * behind another PCI-to-PCI bridge, then it needs
1379 			 * to keep ascending until an interrupt entry is
1380 			 * found or the root is reached.
1381 			 */
1382 			ipin = (child_devno + child_ipin) % PCI_INTD;
1383 				if (bridge_bus == 0 && apic_pci_bus_total == 1)
1384 					bridge_bus = (int)apic_single_pci_busid;
1385 				pci_irq = ((bridge_devno & 0x1f) << 2) |
1386 				    (ipin & 0x3);
1387 				if ((*intrp = apic_find_io_intr_w_busid(pci_irq,
1388 				    bridge_bus)) != NULL) {
1389 					return (pci_irq);
1390 				}
1391 			dip = dipp;
1392 			child_devno = bridge_devno;
1393 			child_ipin = ipin;
1394 		} else {
1395 			pci_config_teardown(&cfg_handle);
1396 			return (-1);
1397 		}
1398 	}
1399 	/*LINTED: function will not fall off the bottom */
1400 }
1401 
1402 uchar_t
1403 acpi_find_ioapic(int irq)
1404 {
1405 	int i;
1406 
1407 	for (i = 0; i < apic_io_max; i++) {
1408 		if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i])
1409 			return ((uchar_t)i);
1410 	}
1411 	return (0xFF);	/* shouldn't happen */
1412 }
1413 
1414 /*
1415  * See if two irqs are compatible for sharing a vector.
1416  * Currently we only support sharing of PCI devices.
1417  */
1418 static int
1419 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2)
1420 {
1421 	uint_t	level1, po1;
1422 	uint_t	level2, po2;
1423 
1424 	/* Assume active high by default */
1425 	po1 = 0;
1426 	po2 = 0;
1427 
1428 	if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI)
1429 		return (0);
1430 
1431 	if (iflag1.intr_el == INTR_EL_CONFORM)
1432 		level1 = AV_LEVEL;
1433 	else
1434 		level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1435 
1436 	if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) ||
1437 	    (iflag1.intr_po == INTR_PO_CONFORM)))
1438 		po1 = AV_ACTIVE_LOW;
1439 
1440 	if (iflag2.intr_el == INTR_EL_CONFORM)
1441 		level2 = AV_LEVEL;
1442 	else
1443 		level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1444 
1445 	if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) ||
1446 	    (iflag2.intr_po == INTR_PO_CONFORM)))
1447 		po2 = AV_ACTIVE_LOW;
1448 
1449 	if ((level1 == level2) && (po1 == po2))
1450 		return (1);
1451 
1452 	return (0);
1453 }
1454 
1455 struct apic_io_intr *
1456 apic_find_io_intr_w_busid(int irqno, int busid)
1457 {
1458 	struct	apic_io_intr	*intrp;
1459 
1460 	/*
1461 	 * It can have more than 1 entry with same source bus IRQ,
1462 	 * but unique with the source bus id
1463 	 */
1464 	intrp = apic_io_intrp;
1465 	if (intrp != NULL) {
1466 		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1467 			if (intrp->intr_irq == irqno &&
1468 			    intrp->intr_busid == busid &&
1469 			    intrp->intr_type == IO_INTR_INT)
1470 				return (intrp);
1471 			intrp++;
1472 		}
1473 	}
1474 	APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:"
1475 	    "busid %x:%x\n", irqno, busid));
1476 	return ((struct apic_io_intr *)NULL);
1477 }
1478 
1479 
1480 struct mps_bus_info {
1481 	char	*bus_name;
1482 	int	bus_id;
1483 } bus_info_array[] = {
1484 	"ISA ", BUS_ISA,
1485 	"PCI ", BUS_PCI,
1486 	"EISA ", BUS_EISA,
1487 	"XPRESS", BUS_XPRESS,
1488 	"PCMCIA", BUS_PCMCIA,
1489 	"VL ", BUS_VL,
1490 	"CBUS ", BUS_CBUS,
1491 	"CBUSII", BUS_CBUSII,
1492 	"FUTURE", BUS_FUTURE,
1493 	"INTERN", BUS_INTERN,
1494 	"MBI ", BUS_MBI,
1495 	"MBII ", BUS_MBII,
1496 	"MPI ", BUS_MPI,
1497 	"MPSA ", BUS_MPSA,
1498 	"NUBUS ", BUS_NUBUS,
1499 	"TC ", BUS_TC,
1500 	"VME ", BUS_VME,
1501 	"PCI-E ", BUS_PCIE
1502 };
1503 
1504 static int
1505 apic_find_bus_type(char *bus)
1506 {
1507 	int	i = 0;
1508 
1509 	for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++)
1510 		if (strncmp(bus, bus_info_array[i].bus_name,
1511 		    strlen(bus_info_array[i].bus_name)) == 0)
1512 			return (bus_info_array[i].bus_id);
1513 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus));
1514 	return (0);
1515 }
1516 
1517 static int
1518 apic_find_bus(int busid)
1519 {
1520 	struct	apic_bus	*busp;
1521 
1522 	busp = apic_busp;
1523 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1524 		if (busp->bus_id == busid)
1525 			return (apic_find_bus_type((char *)&busp->bus_str1));
1526 		busp++;
1527 	}
1528 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid));
1529 	return (0);
1530 }
1531 
1532 int
1533 apic_find_bus_id(int bustype)
1534 {
1535 	struct	apic_bus	*busp;
1536 
1537 	busp = apic_busp;
1538 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1539 		if (apic_find_bus_type((char *)&busp->bus_str1) == bustype)
1540 			return (busp->bus_id);
1541 		busp++;
1542 	}
1543 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x",
1544 	    bustype));
1545 	return (-1);
1546 }
1547 
1548 /*
1549  * Check if a particular irq need to be reserved for any io_intr
1550  */
1551 static struct apic_io_intr *
1552 apic_find_io_intr(int irqno)
1553 {
1554 	struct	apic_io_intr	*intrp;
1555 
1556 	intrp = apic_io_intrp;
1557 	if (intrp != NULL) {
1558 		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1559 			if (intrp->intr_irq == irqno &&
1560 			    intrp->intr_type == IO_INTR_INT)
1561 				return (intrp);
1562 			intrp++;
1563 		}
1564 	}
1565 	return ((struct apic_io_intr *)NULL);
1566 }
1567 
1568 /*
1569  * Check if the given ioapicindex intin combination has already been assigned
1570  * an irq. If so return irqno. Else -1
1571  */
1572 int
1573 apic_find_intin(uchar_t ioapic, uchar_t intin)
1574 {
1575 	apic_irq_t *irqptr;
1576 	int	i;
1577 
1578 	/* find ioapic and intin in the apic_irq_table[] and return the index */
1579 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
1580 		irqptr = apic_irq_table[i];
1581 		while (irqptr) {
1582 			if ((irqptr->airq_mps_intr_index >= 0) &&
1583 			    (irqptr->airq_intin_no == intin) &&
1584 			    (irqptr->airq_ioapicindex == ioapic)) {
1585 				APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq "
1586 				    "entry for ioapic:intin %x:%x "
1587 				    "shared interrupts ?", ioapic, intin));
1588 				return (i);
1589 			}
1590 			irqptr = irqptr->airq_next;
1591 		}
1592 	}
1593 	return (-1);
1594 }
1595 
1596 int
1597 apic_allocate_irq(int irq)
1598 {
1599 	int	freeirq, i;
1600 
1601 	if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1)
1602 		if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ,
1603 		    (irq - 1))) == -1) {
1604 			/*
1605 			 * if BIOS really defines every single irq in the mps
1606 			 * table, then don't worry about conflicting with
1607 			 * them, just use any free slot in apic_irq_table
1608 			 */
1609 			for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
1610 				if ((apic_irq_table[i] == NULL) ||
1611 				    apic_irq_table[i]->airq_mps_intr_index ==
1612 				    FREE_INDEX) {
1613 				freeirq = i;
1614 				break;
1615 			}
1616 		}
1617 		if (freeirq == -1) {
1618 			/* This shouldn't happen, but just in case */
1619 			cmn_err(CE_WARN, "%s: NO available IRQ", psm_name);
1620 			return (-1);
1621 		}
1622 	}
1623 	if (apic_irq_table[freeirq] == NULL) {
1624 		apic_irq_table[freeirq] =
1625 		    kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
1626 		if (apic_irq_table[freeirq] == NULL) {
1627 			cmn_err(CE_WARN, "%s: NO memory to allocate IRQ",
1628 			    psm_name);
1629 			return (-1);
1630 		}
1631 		apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT;
1632 		apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX;
1633 	}
1634 	return (freeirq);
1635 }
1636 
1637 static int
1638 apic_find_free_irq(int start, int end)
1639 {
1640 	int	i;
1641 
1642 	for (i = start; i <= end; i++)
1643 		/* Check if any I/O entry needs this IRQ */
1644 		if (apic_find_io_intr(i) == NULL) {
1645 			/* Then see if it is free */
1646 			if ((apic_irq_table[i] == NULL) ||
1647 			    (apic_irq_table[i]->airq_mps_intr_index ==
1648 			    FREE_INDEX)) {
1649 				return (i);
1650 			}
1651 		}
1652 	return (-1);
1653 }
1654 
1655 /*
1656  * compute the polarity, trigger mode and vector for programming into
1657  * the I/O apic and record in airq_rdt_entry.
1658  */
1659 void
1660 apic_record_rdt_entry(apic_irq_t *irqptr, int irq)
1661 {
1662 	int	ioapicindex, bus_type, vector;
1663 	short	intr_index;
1664 	uint_t	level, po, io_po;
1665 	struct apic_io_intr *iointrp;
1666 
1667 	intr_index = irqptr->airq_mps_intr_index;
1668 	DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d "
1669 	    "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq,
1670 	    (void *)irqptr->airq_dip, irqptr->airq_vector));
1671 
1672 	if (intr_index == RESERVE_INDEX) {
1673 		apic_error |= APIC_ERR_INVALID_INDEX;
1674 		return;
1675 	} else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) {
1676 		return;
1677 	}
1678 
1679 	vector = irqptr->airq_vector;
1680 	ioapicindex = irqptr->airq_ioapicindex;
1681 	/* Assume edge triggered by default */
1682 	level = 0;
1683 	/* Assume active high by default */
1684 	po = 0;
1685 
1686 	if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) {
1687 		ASSERT(irq < 16);
1688 		if (eisa_level_intr_mask & (1 << irq))
1689 			level = AV_LEVEL;
1690 		if (intr_index == FREE_INDEX && apic_defconf == 0)
1691 			apic_error |= APIC_ERR_INVALID_INDEX;
1692 	} else if (intr_index == ACPI_INDEX) {
1693 		bus_type = irqptr->airq_iflag.bustype;
1694 		if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) {
1695 			if (bus_type == BUS_PCI)
1696 				level = AV_LEVEL;
1697 		} else
1698 			level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ?
1699 			    AV_LEVEL : 0;
1700 		if (level &&
1701 		    ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) ||
1702 		    (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM &&
1703 		    bus_type == BUS_PCI)))
1704 			po = AV_ACTIVE_LOW;
1705 	} else {
1706 		iointrp = apic_io_intrp + intr_index;
1707 		bus_type = apic_find_bus(iointrp->intr_busid);
1708 		if (iointrp->intr_el == INTR_EL_CONFORM) {
1709 			if ((irq < 16) && (eisa_level_intr_mask & (1 << irq)))
1710 				level = AV_LEVEL;
1711 			else if (bus_type == BUS_PCI)
1712 				level = AV_LEVEL;
1713 		} else
1714 			level = (iointrp->intr_el == INTR_EL_LEVEL) ?
1715 			    AV_LEVEL : 0;
1716 		if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) ||
1717 		    (iointrp->intr_po == INTR_PO_CONFORM &&
1718 		    bus_type == BUS_PCI)))
1719 			po = AV_ACTIVE_LOW;
1720 	}
1721 	if (level)
1722 		apic_level_intr[irq] = 1;
1723 	/*
1724 	 * The 82489DX External APIC cannot do active low polarity interrupts.
1725 	 */
1726 	if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX))
1727 		io_po = po;
1728 	else
1729 		io_po = 0;
1730 
1731 	if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG)
1732 		prom_printf("setio: ioapic=0x%x intin=0x%x level=0x%x po=0x%x "
1733 		    "vector=0x%x cpu=0x%x\n\n", ioapicindex,
1734 		    irqptr->airq_intin_no, level, io_po, vector,
1735 		    irqptr->airq_cpu);
1736 
1737 	irqptr->airq_rdt_entry = level|io_po|vector;
1738 }
1739 
1740 int
1741 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
1742     int ipin, int *pci_irqp, iflag_t *intr_flagp)
1743 {
1744 
1745 	int status;
1746 	acpi_psm_lnk_t acpipsmlnk;
1747 
1748 	if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp,
1749 	    intr_flagp)) == ACPI_PSM_SUCCESS) {
1750 		APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d "
1751 		    "from cache for device %s, instance #%d\n", psm_name,
1752 		    *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1753 		return (status);
1754 	}
1755 
1756 	bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t));
1757 
1758 	if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp,
1759 	    &acpipsmlnk)) == ACPI_PSM_FAILURE) {
1760 		APIC_VERBOSE_IRQ((CE_WARN, "%s: "
1761 		    " acpi_translate_pci_irq failed for device %s, instance"
1762 		    " #%d", psm_name, ddi_get_name(dip),
1763 		    ddi_get_instance(dip)));
1764 		return (status);
1765 	}
1766 
1767 	if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) {
1768 		status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp,
1769 		    intr_flagp);
1770 		if (status != ACPI_PSM_SUCCESS) {
1771 			status = acpi_get_current_irq_resource(&acpipsmlnk,
1772 			    pci_irqp, intr_flagp);
1773 		}
1774 	}
1775 
1776 	if (status == ACPI_PSM_SUCCESS) {
1777 		acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp,
1778 		    intr_flagp, &acpipsmlnk);
1779 
1780 		APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] "
1781 		    "new irq %d for device %s, instance #%d\n", psm_name,
1782 		    *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1783 	}
1784 
1785 	return (status);
1786 }
1787 
1788 /*
1789  * Adds an entry to the irq list passed in, and returns the new list.
1790  * Entries are added in priority order (lower numerical priorities are
1791  * placed closer to the head of the list)
1792  */
1793 static prs_irq_list_t *
1794 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq,
1795     iflag_t *iflagp, acpi_prs_private_t *prsprvp)
1796 {
1797 	struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp;
1798 
1799 	newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP);
1800 
1801 	newent->list_prio = priority;
1802 	newent->irq = irq;
1803 	newent->intrflags = *iflagp;
1804 	newent->prsprv = *prsprvp;
1805 	/* ->next is NULL from kmem_zalloc */
1806 
1807 	/*
1808 	 * New list -- return the new entry as the list.
1809 	 */
1810 	if (listp == NULL)
1811 		return (newent);
1812 
1813 	/*
1814 	 * Save original list pointer for return (since we're not modifying
1815 	 * the head)
1816 	 */
1817 	origlistp = listp;
1818 
1819 	/*
1820 	 * Insertion sort, with entries with identical keys stored AFTER
1821 	 * existing entries (the less-than-or-equal test of priority does
1822 	 * this for us).
1823 	 */
1824 	while (listp != NULL && listp->list_prio <= priority) {
1825 		prevp = listp;
1826 		listp = listp->next;
1827 	}
1828 
1829 	newent->next = listp;
1830 
1831 	if (prevp == NULL) { /* Add at head of list (newent is the new head) */
1832 		return (newent);
1833 	} else {
1834 		prevp->next = newent;
1835 		return (origlistp);
1836 	}
1837 }
1838 
1839 /*
1840  * Frees the list passed in, deallocating all memory and leaving *listpp
1841  * set to NULL.
1842  */
1843 static void
1844 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp)
1845 {
1846 	struct prs_irq_list_ent *nextp;
1847 
1848 	ASSERT(listpp != NULL);
1849 
1850 	while (*listpp != NULL) {
1851 		nextp = (*listpp)->next;
1852 		kmem_free(*listpp, sizeof (struct prs_irq_list_ent));
1853 		*listpp = nextp;
1854 	}
1855 }
1856 
1857 /*
1858  * apic_choose_irqs_from_prs returns a list of irqs selected from the list of
1859  * irqs returned by the link device's _PRS method.  The irqs are chosen
1860  * to minimize contention in situations where the interrupt link device
1861  * can be programmed to steer interrupts to different interrupt controller
1862  * inputs (some of which may already be in use).  The list is sorted in order
1863  * of irqs to use, with the highest priority given to interrupt controller
1864  * inputs that are not shared.   When an interrupt controller input
1865  * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the
1866  * returned list in the order that minimizes sharing (thereby ensuring lowest
1867  * possible latency from interrupt trigger time to ISR execution time).
1868  */
1869 static prs_irq_list_t *
1870 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip,
1871     int crs_irq)
1872 {
1873 	int32_t irq;
1874 	int i;
1875 	prs_irq_list_t *prsirqlistp = NULL;
1876 	iflag_t iflags;
1877 
1878 	while (irqlistent != NULL) {
1879 		irqlistent->intr_flags.bustype = BUS_PCI;
1880 
1881 		for (i = 0; i < irqlistent->num_irqs; i++) {
1882 
1883 			irq = irqlistent->irqs[i];
1884 
1885 			if (irq <= 0) {
1886 				/* invalid irq number */
1887 				continue;
1888 			}
1889 
1890 			if ((irq < 16) && (apic_reserved_irqlist[irq]))
1891 				continue;
1892 
1893 			if ((apic_irq_table[irq] == NULL) ||
1894 			    (apic_irq_table[irq]->airq_dip == dip)) {
1895 
1896 				prsirqlistp = acpi_insert_prs_irq_ent(
1897 				    prsirqlistp, 0 /* Highest priority */, irq,
1898 				    &irqlistent->intr_flags,
1899 				    &irqlistent->acpi_prs_prv);
1900 
1901 				/*
1902 				 * If we do not prefer the current irq from _CRS
1903 				 * or if we do and this irq is the same as the
1904 				 * current irq from _CRS, this is the one
1905 				 * to pick.
1906 				 */
1907 				if (!(apic_prefer_crs) || (irq == crs_irq)) {
1908 					return (prsirqlistp);
1909 				}
1910 				continue;
1911 			}
1912 
1913 			/*
1914 			 * Edge-triggered interrupts cannot be shared
1915 			 */
1916 			if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE)
1917 				continue;
1918 
1919 			/*
1920 			 * To work around BIOSes that contain incorrect
1921 			 * interrupt polarity information in interrupt
1922 			 * descriptors returned by _PRS, we assume that
1923 			 * the polarity of the other device sharing this
1924 			 * interrupt controller input is compatible.
1925 			 * If it's not, the caller will catch it when
1926 			 * the caller invokes the link device's _CRS method
1927 			 * (after invoking its _SRS method).
1928 			 */
1929 			iflags = irqlistent->intr_flags;
1930 			iflags.intr_po =
1931 			    apic_irq_table[irq]->airq_iflag.intr_po;
1932 
1933 			if (!acpi_intr_compatible(iflags,
1934 			    apic_irq_table[irq]->airq_iflag)) {
1935 				APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d "
1936 				    "not compatible [%x:%x:%x !~ %x:%x:%x]",
1937 				    psm_name, irq,
1938 				    iflags.intr_po,
1939 				    iflags.intr_el,
1940 				    iflags.bustype,
1941 				    apic_irq_table[irq]->airq_iflag.intr_po,
1942 				    apic_irq_table[irq]->airq_iflag.intr_el,
1943 				    apic_irq_table[irq]->airq_iflag.bustype));
1944 				continue;
1945 			}
1946 
1947 			/*
1948 			 * If we prefer the irq from _CRS, no need
1949 			 * to search any further (and make sure
1950 			 * to add this irq with the highest priority
1951 			 * so it's tried first).
1952 			 */
1953 			if (crs_irq == irq && apic_prefer_crs) {
1954 
1955 				return (acpi_insert_prs_irq_ent(
1956 				    prsirqlistp,
1957 				    0 /* Highest priority */,
1958 				    irq, &iflags,
1959 				    &irqlistent->acpi_prs_prv));
1960 			}
1961 
1962 			/*
1963 			 * Priority is equal to the share count (lower
1964 			 * share count is higher priority). Note that
1965 			 * the intr flags passed in here are the ones we
1966 			 * changed above -- if incorrect, it will be
1967 			 * caught by the caller's _CRS flags comparison.
1968 			 */
1969 			prsirqlistp = acpi_insert_prs_irq_ent(
1970 			    prsirqlistp,
1971 			    apic_irq_table[irq]->airq_share, irq,
1972 			    &iflags, &irqlistent->acpi_prs_prv);
1973 		}
1974 
1975 		/* Go to the next irqlist entry */
1976 		irqlistent = irqlistent->next;
1977 	}
1978 
1979 	return (prsirqlistp);
1980 }
1981 
1982 /*
1983  * Configures the irq for the interrupt link device identified by
1984  * acpipsmlnkp.
1985  *
1986  * Gets the current and the list of possible irq settings for the
1987  * device. If apic_unconditional_srs is not set, and the current
1988  * resource setting is in the list of possible irq settings,
1989  * current irq resource setting is passed to the caller.
1990  *
1991  * Otherwise, picks an irq number from the list of possible irq
1992  * settings, and sets the irq of the device to this value.
1993  * If prefer_crs is set, among a set of irq numbers in the list that have
1994  * the least number of devices sharing the interrupt, we pick current irq
1995  * resource setting if it is a member of this set.
1996  *
1997  * Passes the irq number in the value pointed to by pci_irqp, and
1998  * polarity and sensitivity in the structure pointed to by dipintrflagp
1999  * to the caller.
2000  *
2001  * Note that if setting the irq resource failed, but successfuly obtained
2002  * the current irq resource settings, passes the current irq resources
2003  * and considers it a success.
2004  *
2005  * Returns:
2006  * ACPI_PSM_SUCCESS on success.
2007  *
2008  * ACPI_PSM_FAILURE if an error occured during the configuration or
2009  * if a suitable irq was not found for this device, or if setting the
2010  * irq resource and obtaining the current resource fails.
2011  *
2012  */
2013 static int
2014 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
2015     int *pci_irqp, iflag_t *dipintr_flagp)
2016 {
2017 	int32_t irq;
2018 	int cur_irq = -1;
2019 	acpi_irqlist_t *irqlistp;
2020 	prs_irq_list_t *prs_irq_listp, *prs_irq_entp;
2021 	boolean_t found_irq = B_FALSE;
2022 
2023 	dipintr_flagp->bustype = BUS_PCI;
2024 
2025 	if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp))
2026 	    == ACPI_PSM_FAILURE) {
2027 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine "
2028 		    "or assign IRQ for device %s, instance #%d: The system was "
2029 		    "unable to get the list of potential IRQs from ACPI.",
2030 		    psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2031 
2032 		return (ACPI_PSM_FAILURE);
2033 	}
2034 
2035 	if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2036 	    dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) &&
2037 	    (cur_irq > 0)) {
2038 		/*
2039 		 * If an IRQ is set in CRS and that IRQ exists in the set
2040 		 * returned from _PRS, return that IRQ, otherwise print
2041 		 * a warning
2042 		 */
2043 
2044 		if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL)
2045 		    == ACPI_PSM_SUCCESS) {
2046 
2047 			ASSERT(pci_irqp != NULL);
2048 			*pci_irqp = cur_irq;
2049 			acpi_free_irqlist(irqlistp);
2050 			return (ACPI_PSM_SUCCESS);
2051 		}
2052 
2053 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the "
2054 		    "current irq %d for device %s, instance #%d in ACPI's "
2055 		    "list of possible irqs for this device. Picking one from "
2056 		    " the latter list.", psm_name, cur_irq, ddi_get_name(dip),
2057 		    ddi_get_instance(dip)));
2058 	}
2059 
2060 	if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip,
2061 	    cur_irq)) == NULL) {
2062 
2063 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a "
2064 		    "suitable irq from the list of possible irqs for device "
2065 		    "%s, instance #%d in ACPI's list of possible irqs",
2066 		    psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2067 
2068 		acpi_free_irqlist(irqlistp);
2069 		return (ACPI_PSM_FAILURE);
2070 	}
2071 
2072 	acpi_free_irqlist(irqlistp);
2073 
2074 	for (prs_irq_entp = prs_irq_listp;
2075 	    prs_irq_entp != NULL && found_irq == B_FALSE;
2076 	    prs_irq_entp = prs_irq_entp->next) {
2077 
2078 		acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv;
2079 		irq = prs_irq_entp->irq;
2080 
2081 		APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for "
2082 		    "device %s instance #%d\n", psm_name, irq,
2083 		    ddi_get_name(dip), ddi_get_instance(dip)));
2084 
2085 		if ((acpi_set_irq_resource(acpipsmlnkp, irq))
2086 		    == ACPI_PSM_SUCCESS) {
2087 			/*
2088 			 * setting irq was successful, check to make sure CRS
2089 			 * reflects that. If CRS does not agree with what we
2090 			 * set, return the irq that was set.
2091 			 */
2092 
2093 			if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2094 			    dipintr_flagp) == ACPI_PSM_SUCCESS) {
2095 
2096 				if (cur_irq != irq)
2097 					APIC_VERBOSE_IRQ((CE_WARN,
2098 					    "!%s: IRQ resource set "
2099 					    "(irqno %d) for device %s "
2100 					    "instance #%d, differs from "
2101 					    "current setting irqno %d",
2102 					    psm_name, irq, ddi_get_name(dip),
2103 					    ddi_get_instance(dip), cur_irq));
2104 			} else {
2105 				/*
2106 				 * On at least one system, there was a bug in
2107 				 * a DSDT method called by _STA, causing _STA to
2108 				 * indicate that the link device was disabled
2109 				 * (when, in fact, it was enabled).  Since _SRS
2110 				 * succeeded, assume that _CRS is lying and use
2111 				 * the iflags from this _PRS interrupt choice.
2112 				 * If we're wrong about the flags, the polarity
2113 				 * will be incorrect and we may get an interrupt
2114 				 * storm, but there's not much else we can do
2115 				 * at this point.
2116 				 */
2117 				*dipintr_flagp = prs_irq_entp->intrflags;
2118 			}
2119 
2120 			/*
2121 			 * Return the irq that was set, and not what _CRS
2122 			 * reports, since _CRS has been seen to return
2123 			 * different IRQs than what was passed to _SRS on some
2124 			 * systems (and just not return successfully on others).
2125 			 */
2126 			cur_irq = irq;
2127 			found_irq = B_TRUE;
2128 		} else {
2129 			APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource "
2130 			    "irq %d failed for device %s instance #%d",
2131 			    psm_name, irq, ddi_get_name(dip),
2132 			    ddi_get_instance(dip)));
2133 
2134 			if (cur_irq == -1) {
2135 				acpi_destroy_prs_irq_list(&prs_irq_listp);
2136 				return (ACPI_PSM_FAILURE);
2137 			}
2138 		}
2139 	}
2140 
2141 	acpi_destroy_prs_irq_list(&prs_irq_listp);
2142 
2143 	if (!found_irq)
2144 		return (ACPI_PSM_FAILURE);
2145 
2146 	ASSERT(pci_irqp != NULL);
2147 	*pci_irqp = cur_irq;
2148 	return (ACPI_PSM_SUCCESS);
2149 }
2150 
2151 void
2152 ioapic_disable_redirection()
2153 {
2154 	int ioapic_ix;
2155 	int intin_max;
2156 	int intin_ix;
2157 
2158 	/* Disable the I/O APIC redirection entries */
2159 	for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) {
2160 
2161 		/* Bits 23-16 define the maximum redirection entries */
2162 		intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
2163 		    & 0xff;
2164 
2165 		for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) {
2166 			/*
2167 			 * The assumption here is that this is safe, even for
2168 			 * systems with IOAPICs that suffer from the hardware
2169 			 * erratum because all devices have been quiesced before
2170 			 * this function is called from apic_shutdown()
2171 			 * (or equivalent). If that assumption turns out to be
2172 			 * false, this mask operation can induce the same
2173 			 * erratum result we're trying to avoid.
2174 			 */
2175 			ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix,
2176 			    AV_MASK);
2177 		}
2178 	}
2179 }
2180 
2181 /*
2182  * Looks for an IOAPIC with the specified physical address in the /ioapics
2183  * node in the device tree (created by the PCI enumerator).
2184  */
2185 static boolean_t
2186 apic_is_ioapic_AMD_813x(uint32_t physaddr)
2187 {
2188 	/*
2189 	 * Look in /ioapics, for the ioapic with
2190 	 * the physical address given
2191 	 */
2192 	dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0);
2193 	dev_info_t *ioapic_child;
2194 	boolean_t rv = B_FALSE;
2195 	int vid, did;
2196 	uint64_t ioapic_paddr;
2197 	boolean_t done = B_FALSE;
2198 
2199 	if (ioapicsnode == NULL)
2200 		return (B_FALSE);
2201 
2202 	/* Load first child: */
2203 	ioapic_child = ddi_get_child(ioapicsnode);
2204 	while (!done && ioapic_child != 0) { /* Iterate over children */
2205 
2206 		if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY,
2207 		    ioapic_child, DDI_PROP_DONTPASS, "reg", 0))
2208 		    != 0 && physaddr == ioapic_paddr) {
2209 
2210 			vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child,
2211 			    DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0);
2212 
2213 			if (vid == VENID_AMD) {
2214 
2215 				did = ddi_prop_get_int(DDI_DEV_T_ANY,
2216 				    ioapic_child, DDI_PROP_DONTPASS,
2217 				    IOAPICS_PROP_DEVID, 0);
2218 
2219 				if (did == DEVID_8131_IOAPIC ||
2220 				    did == DEVID_8132_IOAPIC) {
2221 					rv = B_TRUE;
2222 					done = B_TRUE;
2223 				}
2224 			}
2225 		}
2226 
2227 		if (!done)
2228 			ioapic_child = ddi_get_next_sibling(ioapic_child);
2229 	}
2230 
2231 	/* The ioapics node was held by ddi_find_devinfo, so release it */
2232 	ndi_rele_devi(ioapicsnode);
2233 	return (rv);
2234 }
2235 
2236 struct apic_state {
2237 	int32_t as_task_reg;
2238 	int32_t as_dest_reg;
2239 	int32_t as_format_reg;
2240 	int32_t as_local_timer;
2241 	int32_t as_pcint_vect;
2242 	int32_t as_int_vect0;
2243 	int32_t as_int_vect1;
2244 	int32_t as_err_vect;
2245 	int32_t as_init_count;
2246 	int32_t as_divide_reg;
2247 	int32_t as_spur_int_reg;
2248 	uint32_t as_ioapic_ids[MAX_IO_APIC];
2249 };
2250 
2251 
2252 static int
2253 apic_acpi_enter_apicmode(void)
2254 {
2255 	ACPI_OBJECT_LIST	arglist;
2256 	ACPI_OBJECT		arg;
2257 	ACPI_STATUS		status;
2258 
2259 	/* Setup parameter object */
2260 	arglist.Count = 1;
2261 	arglist.Pointer = &arg;
2262 	arg.Type = ACPI_TYPE_INTEGER;
2263 	arg.Integer.Value = ACPI_APIC_MODE;
2264 
2265 	status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL);
2266 	if (ACPI_FAILURE(status))
2267 		return (PSM_FAILURE);
2268 	else
2269 		return (PSM_SUCCESS);
2270 }
2271 
2272 
2273 static void
2274 apic_save_state(struct apic_state *sp)
2275 {
2276 	int	i, cpuid;
2277 	ulong_t	iflag;
2278 
2279 	PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp))
2280 	/*
2281 	 * First the local APIC.
2282 	 */
2283 	sp->as_task_reg = apic_reg_ops->apic_get_pri();
2284 	sp->as_dest_reg =  apic_reg_ops->apic_read(APIC_DEST_REG);
2285 	if (apic_mode == LOCAL_APIC)
2286 		sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG);
2287 	sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER);
2288 	sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT);
2289 	sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0);
2290 	sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1);
2291 	sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT);
2292 	sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT);
2293 	sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG);
2294 	sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG);
2295 
2296 	/*
2297 	 * If on the boot processor then save the IOAPICs' IDs
2298 	 */
2299 	if ((cpuid = psm_get_cpu_id()) == 0) {
2300 
2301 		iflag = intr_clear();
2302 		lock_set(&apic_ioapic_lock);
2303 
2304 		for (i = 0; i < apic_io_max; i++)
2305 			sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD);
2306 
2307 		lock_clear(&apic_ioapic_lock);
2308 		intr_restore(iflag);
2309 	}
2310 
2311 	/* apic_state() is currently invoked only in Suspend/Resume */
2312 	apic_cpus[cpuid].aci_status |= APIC_CPU_SUSPEND;
2313 }
2314 
2315 static void
2316 apic_restore_state(struct apic_state *sp)
2317 {
2318 	int	i;
2319 	ulong_t	iflag;
2320 
2321 	/*
2322 	 * First the local APIC.
2323 	 */
2324 	apic_reg_ops->apic_write_task_reg(sp->as_task_reg);
2325 	if (apic_mode == LOCAL_APIC) {
2326 		apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg);
2327 		apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg);
2328 	}
2329 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer);
2330 	apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect);
2331 	apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0);
2332 	apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1);
2333 	apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect);
2334 	apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count);
2335 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg);
2336 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg);
2337 
2338 	/*
2339 	 * the following only needs to be done once, so we do it on the
2340 	 * boot processor, since we know that we only have one of those
2341 	 */
2342 	if (psm_get_cpu_id() == 0) {
2343 
2344 		iflag = intr_clear();
2345 		lock_set(&apic_ioapic_lock);
2346 
2347 		/* Restore IOAPICs' APIC IDs */
2348 		for (i = 0; i < apic_io_max; i++) {
2349 			ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]);
2350 		}
2351 
2352 		lock_clear(&apic_ioapic_lock);
2353 		intr_restore(iflag);
2354 
2355 		/*
2356 		 * Reenter APIC mode before restoring LNK devices
2357 		 */
2358 		(void) apic_acpi_enter_apicmode();
2359 
2360 		/*
2361 		 * restore acpi link device mappings
2362 		 */
2363 		acpi_restore_link_devices();
2364 	}
2365 }
2366 
2367 /*
2368  * Returns 0 on success
2369  */
2370 int
2371 apic_state(psm_state_request_t *rp)
2372 {
2373 	PMD(PMD_SX, ("apic_state "))
2374 	switch (rp->psr_cmd) {
2375 	case PSM_STATE_ALLOC:
2376 		rp->req.psm_state_req.psr_state =
2377 		    kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP);
2378 		if (rp->req.psm_state_req.psr_state == NULL)
2379 			return (ENOMEM);
2380 		rp->req.psm_state_req.psr_state_size =
2381 		    sizeof (struct apic_state);
2382 		PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n",
2383 		    rp->req.psm_state_req.psr_state,
2384 		    rp->req.psm_state_req.psr_state_size))
2385 		return (0);
2386 
2387 	case PSM_STATE_FREE:
2388 		kmem_free(rp->req.psm_state_req.psr_state,
2389 		    rp->req.psm_state_req.psr_state_size);
2390 		PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n",
2391 		    rp->req.psm_state_req.psr_state,
2392 		    rp->req.psm_state_req.psr_state_size))
2393 		return (0);
2394 
2395 	case PSM_STATE_SAVE:
2396 		PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n",
2397 		    rp->req.psm_state_req.psr_state,
2398 		    rp->req.psm_state_req.psr_state_size))
2399 		apic_save_state(rp->req.psm_state_req.psr_state);
2400 		return (0);
2401 
2402 	case PSM_STATE_RESTORE:
2403 		apic_restore_state(rp->req.psm_state_req.psr_state);
2404 		PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n",
2405 		    rp->req.psm_state_req.psr_state,
2406 		    rp->req.psm_state_req.psr_state_size))
2407 		return (0);
2408 
2409 	default:
2410 		return (EINVAL);
2411 	}
2412 }
2413