1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 28 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 29 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 30 * PSMI 1.5 extensions are supported in Solaris Nevada. 31 * PSMI 1.6 extensions are supported in Solaris Nevada. 32 */ 33 #define PSMI_1_6 34 35 #include <sys/processor.h> 36 #include <sys/time.h> 37 #include <sys/psm.h> 38 #include <sys/smp_impldefs.h> 39 #include <sys/cram.h> 40 #include <sys/acpi/acpi.h> 41 #include <sys/acpica.h> 42 #include <sys/psm_common.h> 43 #include <sys/apic.h> 44 #include <sys/pit.h> 45 #include <sys/ddi.h> 46 #include <sys/sunddi.h> 47 #include <sys/ddi_impldefs.h> 48 #include <sys/pci.h> 49 #include <sys/promif.h> 50 #include <sys/x86_archext.h> 51 #include <sys/cpc_impl.h> 52 #include <sys/uadmin.h> 53 #include <sys/panic.h> 54 #include <sys/debug.h> 55 #include <sys/archsystm.h> 56 #include <sys/trap.h> 57 #include <sys/machsystm.h> 58 #include <sys/cpuvar.h> 59 #include <sys/rm_platter.h> 60 #include <sys/privregs.h> 61 #include <sys/cyclic.h> 62 #include <sys/note.h> 63 #include <sys/pci_intr_lib.h> 64 #include <sys/sunndi.h> 65 #if !defined(__xpv) 66 #include <sys/hpet.h> 67 #include <sys/clock.h> 68 #endif 69 70 /* 71 * Local Function Prototypes 72 */ 73 static int apic_handle_defconf(); 74 static int apic_parse_mpct(caddr_t mpct, int bypass); 75 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size); 76 static int apic_checksum(caddr_t bptr, int len); 77 static int apic_find_bus_type(char *bus); 78 static int apic_find_bus(int busid); 79 static int apic_find_bus_id(int bustype); 80 static struct apic_io_intr *apic_find_io_intr(int irqno); 81 static int apic_find_free_irq(int start, int end); 82 static void apic_mark_vector(uchar_t oldvector, uchar_t newvector); 83 static void apic_xlate_vector_free_timeout_handler(void *arg); 84 static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu, 85 int new_bind_cpu, int apicindex, int intin_no, int which_irq, 86 struct ioapic_reprogram_data *drep); 87 static void apic_record_rdt_entry(apic_irq_t *irqptr, int irq); 88 static struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid); 89 static int apic_find_intin(uchar_t ioapic, uchar_t intin); 90 static int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, 91 int child_ipin, struct apic_io_intr **intrp); 92 static int apic_setup_irq_table(dev_info_t *dip, int irqno, 93 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp, 94 int type); 95 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp); 96 static void apic_try_deferred_reprogram(int ipl, int vect); 97 static void delete_defer_repro_ent(int which_irq); 98 static void apic_ioapic_wait_pending_clear(int ioapicindex, 99 int intin_no); 100 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr); 101 static int apic_acpi_enter_apicmode(void); 102 103 int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */ 104 105 /* ACPI SCI interrupt configuration; -1 if SCI not used */ 106 int apic_sci_vect = -1; 107 iflag_t apic_sci_flags; 108 109 #if !defined(__xpv) 110 /* ACPI HPET interrupt configuration; -1 if HPET not used */ 111 int apic_hpet_vect = -1; 112 iflag_t apic_hpet_flags; 113 #endif 114 115 /* 116 * psm name pointer 117 */ 118 static char *psm_name; 119 120 /* ACPI support routines */ 121 static int acpi_probe(char *); 122 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 123 int *pci_irqp, iflag_t *intr_flagp); 124 125 static int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 126 int ipin, int *pci_irqp, iflag_t *intr_flagp); 127 static uchar_t acpi_find_ioapic(int irq); 128 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2); 129 130 /* 131 * number of bits per byte, from <sys/param.h> 132 */ 133 #define UCHAR_MAX ((1 << NBBY) - 1) 134 135 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */ 136 int apic_max_reps_clear_pending = 1000; 137 138 /* The irq # is implicit in the array index: */ 139 struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1]; 140 /* 141 * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info 142 * is indexed by IRQ number, NOT by vector number. 143 */ 144 145 int apic_intr_policy = INTR_ROUND_ROBIN; 146 147 int apic_next_bind_cpu = 1; /* For round robin assignment */ 148 /* start with cpu 1 */ 149 150 /* 151 * If enabled, the distribution works as follows: 152 * On every interrupt entry, the current ipl for the CPU is set in cpu_info 153 * and the irq corresponding to the ipl is also set in the aci_current array. 154 * interrupt exit and setspl (due to soft interrupts) will cause the current 155 * ipl to be be changed. This is cache friendly as these frequently used 156 * paths write into a per cpu structure. 157 * 158 * Sampling is done by checking the structures for all CPUs and incrementing 159 * the busy field of the irq (if any) executing on each CPU and the busy field 160 * of the corresponding CPU. 161 * In periodic mode this is done on every clock interrupt. 162 * In one-shot mode, this is done thru a cyclic with an interval of 163 * apic_redistribute_sample_interval (default 10 milli sec). 164 * 165 * Every apic_sample_factor_redistribution times we sample, we do computations 166 * to decide which interrupt needs to be migrated (see comments 167 * before apic_intr_redistribute(). 168 */ 169 170 /* 171 * Following 3 variables start as % and can be patched or set using an 172 * API to be defined in future. They will be scaled to 173 * sample_factor_redistribution which is in turn set to hertz+1 (in periodic 174 * mode), or 101 in one-shot mode to stagger it away from one sec processing 175 */ 176 177 int apic_int_busy_mark = 60; 178 int apic_int_free_mark = 20; 179 int apic_diff_for_redistribution = 10; 180 181 /* sampling interval for interrupt redistribution for dynamic migration */ 182 int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */ 183 184 /* 185 * number of times we sample before deciding to redistribute interrupts 186 * for dynamic migration 187 */ 188 int apic_sample_factor_redistribution = 101; 189 190 /* timeout for xlate_vector, mark_vector */ 191 int apic_revector_timeout = 16 * 10000; /* 160 millisec */ 192 193 int apic_redist_cpu_skip = 0; 194 int apic_num_imbalance = 0; 195 int apic_num_rebind = 0; 196 197 int apic_nproc = 0; 198 size_t apic_cpus_size = 0; 199 int apic_defconf = 0; 200 int apic_irq_translate = 0; 201 int apic_spec_rev = 0; 202 int apic_imcrp = 0; 203 204 int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */ 205 int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */ 206 207 /* 208 * For interrupt link devices, if apic_unconditional_srs is set, an irq resource 209 * will be assigned (via _SRS). If it is not set, use the current 210 * irq setting (via _CRS), but only if that irq is in the set of possible 211 * irqs (returned by _PRS) for the device. 212 */ 213 int apic_unconditional_srs = 1; 214 215 /* 216 * For interrupt link devices, if apic_prefer_crs is set when we are 217 * assigning an IRQ resource to a device, prefer the current IRQ setting 218 * over other possible irq settings under same conditions. 219 */ 220 221 int apic_prefer_crs = 1; 222 223 uchar_t apic_io_id[MAX_IO_APIC]; 224 volatile uint32_t *apicioadr[MAX_IO_APIC]; 225 static uchar_t apic_io_ver[MAX_IO_APIC]; 226 static uchar_t apic_io_vectbase[MAX_IO_APIC]; 227 static uchar_t apic_io_vectend[MAX_IO_APIC]; 228 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1]; 229 uint32_t apic_physaddr[MAX_IO_APIC]; 230 231 static boolean_t ioapic_mask_workaround[MAX_IO_APIC]; 232 233 /* 234 * First available slot to be used as IRQ index into the apic_irq_table 235 * for those interrupts (like MSI/X) that don't have a physical IRQ. 236 */ 237 int apic_first_avail_irq = APIC_FIRST_FREE_IRQ; 238 239 /* 240 * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound 241 * and bound elements of cpus_info and the temp_cpu element of irq_struct 242 */ 243 lock_t apic_ioapic_lock; 244 245 /* 246 * apic_defer_reprogram_lock ensures that only one processor is handling 247 * deferred interrupt programming at *_intr_exit time. 248 */ 249 static lock_t apic_defer_reprogram_lock; 250 251 /* 252 * The current number of deferred reprogrammings outstanding 253 */ 254 uint_t apic_reprogram_outstanding = 0; 255 256 #ifdef DEBUG 257 /* 258 * Counters that keep track of deferred reprogramming stats 259 */ 260 uint_t apic_intr_deferrals = 0; 261 uint_t apic_intr_deliver_timeouts = 0; 262 uint_t apic_last_ditch_reprogram_failures = 0; 263 uint_t apic_deferred_setup_failures = 0; 264 uint_t apic_defer_repro_total_retries = 0; 265 uint_t apic_defer_repro_successes = 0; 266 uint_t apic_deferred_spurious_enters = 0; 267 #endif 268 269 static int apic_io_max = 0; /* no. of i/o apics enabled */ 270 271 static struct apic_io_intr *apic_io_intrp = 0; 272 static struct apic_bus *apic_busp; 273 274 uchar_t apic_vector_to_irq[APIC_MAX_VECTOR+1]; 275 uchar_t apic_resv_vector[MAXIPL+1]; 276 277 char apic_level_intr[APIC_MAX_VECTOR+1]; 278 279 static uint32_t eisa_level_intr_mask = 0; 280 /* At least MSB will be set if EISA bus */ 281 282 static int apic_pci_bus_total = 0; 283 static uchar_t apic_single_pci_busid = 0; 284 285 /* 286 * airq_mutex protects additions to the apic_irq_table - the first 287 * pointer and any airq_nexts off of that one. It also protects 288 * apic_max_device_irq & apic_min_device_irq. It also guarantees 289 * that share_id is unique as new ids are generated only when new 290 * irq_t structs are linked in. Once linked in the structs are never 291 * deleted. temp_cpu & mps_intr_index field indicate if it is programmed 292 * or allocated. Note that there is a slight gap between allocating in 293 * apic_introp_xlate and programming in addspl. 294 */ 295 kmutex_t airq_mutex; 296 apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1]; 297 int apic_max_device_irq = 0; 298 int apic_min_device_irq = APIC_MAX_VECTOR; 299 300 /* 301 * Following declarations are for revectoring; used when ISRs at different 302 * IPLs share an irq. 303 */ 304 static lock_t apic_revector_lock; 305 int apic_revector_pending = 0; 306 static uchar_t *apic_oldvec_to_newvec; 307 static uchar_t *apic_newvec_to_oldvec; 308 309 typedef struct prs_irq_list_ent { 310 int list_prio; 311 int32_t irq; 312 iflag_t intrflags; 313 acpi_prs_private_t prsprv; 314 struct prs_irq_list_ent *next; 315 } prs_irq_list_t; 316 317 318 /* 319 * ACPI variables 320 */ 321 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */ 322 int apic_enable_acpi = 0; 323 324 /* ACPI Multiple APIC Description Table ptr */ 325 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL; 326 327 /* ACPI Interrupt Source Override Structure ptr */ 328 static ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL; 329 static int acpi_iso_cnt = 0; 330 331 /* ACPI Non-maskable Interrupt Sources ptr */ 332 static ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL; 333 static int acpi_nmi_scnt = 0; 334 static ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL; 335 static int acpi_nmi_ccnt = 0; 336 337 /* 338 * The following added to identify a software poweroff method if available. 339 */ 340 341 static struct { 342 int poweroff_method; 343 char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */ 344 char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */ 345 } apic_mps_ids[] = { 346 { APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */ 347 { APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */ 348 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */ 349 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */ 350 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */ 351 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */ 352 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */ 353 }; 354 355 int apic_poweroff_method = APIC_POWEROFF_NONE; 356 357 /* 358 * Auto-configuration routines 359 */ 360 361 /* 362 * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here 363 * May work with 1.1 - but not guaranteed. 364 * According to the MP Spec, the MP floating pointer structure 365 * will be searched in the order described below: 366 * 1. In the first kilobyte of Extended BIOS Data Area (EBDA) 367 * 2. Within the last kilobyte of system base memory 368 * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh 369 * Once we find the right signature with proper checksum, we call 370 * either handle_defconf or parse_mpct to get all info necessary for 371 * subsequent operations. 372 */ 373 int 374 apic_probe_common(char *modname) 375 { 376 uint32_t mpct_addr, ebda_start = 0, base_mem_end; 377 caddr_t biosdatap; 378 caddr_t mpct; 379 caddr_t fptr; 380 int i, mpct_size, mapsize, retval = PSM_FAILURE; 381 ushort_t ebda_seg, base_mem_size; 382 struct apic_mpfps_hdr *fpsp; 383 struct apic_mp_cnf_hdr *hdrp; 384 int bypass_cpu_and_ioapics_in_mptables; 385 int acpi_user_options; 386 387 if (apic_forceload < 0) 388 return (retval); 389 390 /* 391 * Remember who we are 392 */ 393 psm_name = modname; 394 395 /* Allow override for MADT-only mode */ 396 acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0, 397 "acpi-user-options", 0); 398 apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0); 399 400 /* Allow apic_use_acpi to override MADT-only mode */ 401 if (!apic_use_acpi) 402 apic_use_acpi_madt_only = 0; 403 404 retval = acpi_probe(modname); 405 406 /* 407 * mapin the bios data area 40:0 408 * 40:13h - two-byte location reports the base memory size 409 * 40:0Eh - two-byte location for the exact starting address of 410 * the EBDA segment for EISA 411 */ 412 biosdatap = psm_map_phys(0x400, 0x20, PROT_READ); 413 if (!biosdatap) 414 return (retval); 415 fpsp = (struct apic_mpfps_hdr *)NULL; 416 mapsize = MPFPS_RAM_WIN_LEN; 417 /*LINTED: pointer cast may result in improper alignment */ 418 ebda_seg = *((ushort_t *)(biosdatap+0xe)); 419 /* check the 1k of EBDA */ 420 if (ebda_seg) { 421 ebda_start = ((uint32_t)ebda_seg) << 4; 422 fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ); 423 if (fptr) { 424 if (!(fpsp = 425 apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN))) 426 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 427 } 428 } 429 /* If not in EBDA, check the last k of system base memory */ 430 if (!fpsp) { 431 /*LINTED: pointer cast may result in improper alignment */ 432 base_mem_size = *((ushort_t *)(biosdatap + 0x13)); 433 434 if (base_mem_size > 512) 435 base_mem_end = 639 * 1024; 436 else 437 base_mem_end = 511 * 1024; 438 /* if ebda == last k of base mem, skip to check BIOS ROM */ 439 if (base_mem_end != ebda_start) { 440 441 fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN, 442 PROT_READ); 443 444 if (fptr) { 445 if (!(fpsp = apic_find_fps_sig(fptr, 446 MPFPS_RAM_WIN_LEN))) 447 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 448 } 449 } 450 } 451 psm_unmap_phys(biosdatap, 0x20); 452 453 /* If still cannot find it, check the BIOS ROM space */ 454 if (!fpsp) { 455 mapsize = MPFPS_ROM_WIN_LEN; 456 fptr = psm_map_phys(MPFPS_ROM_WIN_START, 457 MPFPS_ROM_WIN_LEN, PROT_READ); 458 if (fptr) { 459 if (!(fpsp = 460 apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) { 461 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 462 return (retval); 463 } 464 } 465 } 466 467 if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) { 468 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 469 return (retval); 470 } 471 472 apic_spec_rev = fpsp->mpfps_spec_rev; 473 if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) { 474 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 475 return (retval); 476 } 477 478 /* check IMCR is present or not */ 479 apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP; 480 481 /* check default configuration (dual CPUs) */ 482 if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) { 483 psm_unmap_phys(fptr, mapsize); 484 return (apic_handle_defconf()); 485 } 486 487 /* MP Configuration Table */ 488 mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr); 489 490 psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */ 491 492 /* 493 * Map in enough memory for the MP Configuration Table Header. 494 * Use this table to read the total length of the BIOS data and 495 * map in all the info 496 */ 497 /*LINTED: pointer cast may result in improper alignment */ 498 hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr, 499 sizeof (struct apic_mp_cnf_hdr), PROT_READ); 500 if (!hdrp) 501 return (retval); 502 503 /* check mp configuration table signature PCMP */ 504 if (hdrp->mpcnf_sig != 0x504d4350) { 505 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 506 return (retval); 507 } 508 mpct_size = (int)hdrp->mpcnf_tbl_length; 509 510 apic_set_pwroff_method_from_mpcnfhdr(hdrp); 511 512 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 513 514 if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) { 515 /* This is an ACPI machine No need for further checks */ 516 return (retval); 517 } 518 519 /* 520 * Map in the entries for this machine, ie. Processor 521 * Entry Tables, Bus Entry Tables, etc. 522 * They are in fixed order following one another 523 */ 524 mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ); 525 if (!mpct) 526 return (retval); 527 528 if (apic_checksum(mpct, mpct_size) != 0) 529 goto apic_fail1; 530 531 532 /*LINTED: pointer cast may result in improper alignment */ 533 hdrp = (struct apic_mp_cnf_hdr *)mpct; 534 apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic, 535 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 536 if (!apicadr) 537 goto apic_fail1; 538 539 /* Parse all information in the tables */ 540 bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS); 541 if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) == 542 PSM_SUCCESS) 543 return (PSM_SUCCESS); 544 545 for (i = 0; i < apic_io_max; i++) 546 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 547 if (apic_cpus) 548 kmem_free(apic_cpus, apic_cpus_size); 549 if (apicadr) 550 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 551 apic_fail1: 552 psm_unmap_phys(mpct, mpct_size); 553 return (retval); 554 } 555 556 static void 557 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp) 558 { 559 int i; 560 561 for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0])); 562 i++) { 563 if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id, 564 strlen(apic_mps_ids[i].oem_id)) == 0) && 565 (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id, 566 strlen(apic_mps_ids[i].prod_id)) == 0)) { 567 568 apic_poweroff_method = apic_mps_ids[i].poweroff_method; 569 break; 570 } 571 } 572 573 if (apic_debug_mps_id != 0) { 574 cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'" 575 "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n", 576 psm_name, 577 hdrp->mpcnf_oem_str[0], 578 hdrp->mpcnf_oem_str[1], 579 hdrp->mpcnf_oem_str[2], 580 hdrp->mpcnf_oem_str[3], 581 hdrp->mpcnf_oem_str[4], 582 hdrp->mpcnf_oem_str[5], 583 hdrp->mpcnf_oem_str[6], 584 hdrp->mpcnf_oem_str[7], 585 hdrp->mpcnf_prod_str[0], 586 hdrp->mpcnf_prod_str[1], 587 hdrp->mpcnf_prod_str[2], 588 hdrp->mpcnf_prod_str[3], 589 hdrp->mpcnf_prod_str[4], 590 hdrp->mpcnf_prod_str[5], 591 hdrp->mpcnf_prod_str[6], 592 hdrp->mpcnf_prod_str[7], 593 hdrp->mpcnf_prod_str[8], 594 hdrp->mpcnf_prod_str[9], 595 hdrp->mpcnf_prod_str[10], 596 hdrp->mpcnf_prod_str[11]); 597 } 598 } 599 600 static int 601 acpi_probe(char *modname) 602 { 603 int i, intmax, index; 604 uint32_t id, ver; 605 int acpi_verboseflags = 0; 606 int madt_seen, madt_size; 607 ACPI_SUBTABLE_HEADER *ap; 608 ACPI_MADT_LOCAL_APIC *mpa; 609 ACPI_MADT_LOCAL_X2APIC *mpx2a; 610 ACPI_MADT_IO_APIC *mia; 611 ACPI_MADT_IO_SAPIC *misa; 612 ACPI_MADT_INTERRUPT_OVERRIDE *mio; 613 ACPI_MADT_NMI_SOURCE *mns; 614 ACPI_MADT_INTERRUPT_SOURCE *mis; 615 ACPI_MADT_LOCAL_APIC_NMI *mlan; 616 ACPI_MADT_LOCAL_X2APIC_NMI *mx2alan; 617 ACPI_MADT_LOCAL_APIC_OVERRIDE *mao; 618 int sci; 619 iflag_t sci_flags; 620 volatile uint32_t *ioapic; 621 int ioapic_ix; 622 uint32_t local_ids[NCPU]; 623 uint32_t proc_ids[NCPU]; 624 uchar_t hid; 625 int warned = 0; 626 627 if (!apic_use_acpi) 628 return (PSM_FAILURE); 629 630 if (AcpiGetTable(ACPI_SIG_MADT, 1, 631 (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) 632 return (PSM_FAILURE); 633 634 apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address, 635 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 636 if (!apicadr) 637 return (PSM_FAILURE); 638 639 id = apic_reg_ops->apic_read(APIC_LID_REG); 640 local_ids[0] = (uchar_t)(id >> 24); 641 apic_nproc = index = 1; 642 CPUSET_ONLY(apic_cpumask, 0); 643 apic_io_max = 0; 644 645 ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1); 646 madt_size = acpi_mapic_dtp->Header.Length; 647 madt_seen = sizeof (*acpi_mapic_dtp); 648 649 while (madt_seen < madt_size) { 650 switch (ap->Type) { 651 case ACPI_MADT_TYPE_LOCAL_APIC: 652 mpa = (ACPI_MADT_LOCAL_APIC *) ap; 653 if (mpa->LapicFlags & ACPI_MADT_ENABLED) { 654 if (mpa->Id == local_ids[0]) { 655 proc_ids[0] = mpa->ProcessorId; 656 (void) acpica_map_cpu(0, 657 mpa->ProcessorId); 658 } else if (apic_nproc < NCPU && use_mp && 659 apic_nproc < boot_ncpus) { 660 local_ids[index] = mpa->Id; 661 proc_ids[index] = mpa->ProcessorId; 662 CPUSET_ADD(apic_cpumask, index); 663 (void) acpica_map_cpu(index, 664 mpa->ProcessorId); 665 index++; 666 apic_nproc++; 667 } else if (apic_nproc == NCPU && !warned) { 668 cmn_err(CE_WARN, "%s: CPU limit " 669 "exceeded" 670 #if !defined(__amd64) 671 " for 32-bit mode" 672 #endif 673 "; Solaris will use %d CPUs.", 674 psm_name, NCPU); 675 warned = 1; 676 } 677 } 678 break; 679 680 case ACPI_MADT_TYPE_IO_APIC: 681 mia = (ACPI_MADT_IO_APIC *) ap; 682 if (apic_io_max < MAX_IO_APIC) { 683 ioapic_ix = apic_io_max; 684 apic_io_id[apic_io_max] = mia->Id; 685 apic_io_vectbase[apic_io_max] = 686 mia->GlobalIrqBase; 687 apic_physaddr[apic_io_max] = 688 (uint32_t)mia->Address; 689 ioapic = apicioadr[apic_io_max] = 690 mapin_ioapic((uint32_t)mia->Address, 691 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 692 if (!ioapic) 693 goto cleanup; 694 ioapic_mask_workaround[apic_io_max] = 695 apic_is_ioapic_AMD_813x(mia->Address); 696 apic_io_max++; 697 } 698 break; 699 700 case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE: 701 mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap; 702 if (acpi_isop == NULL) 703 acpi_isop = mio; 704 acpi_iso_cnt++; 705 break; 706 707 case ACPI_MADT_TYPE_NMI_SOURCE: 708 /* UNIMPLEMENTED */ 709 mns = (ACPI_MADT_NMI_SOURCE *) ap; 710 if (acpi_nmi_sp == NULL) 711 acpi_nmi_sp = mns; 712 acpi_nmi_scnt++; 713 714 cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n", 715 mns->GlobalIrq, mns->IntiFlags); 716 break; 717 718 case ACPI_MADT_TYPE_LOCAL_APIC_NMI: 719 /* UNIMPLEMENTED */ 720 mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap; 721 if (acpi_nmi_cp == NULL) 722 acpi_nmi_cp = mlan; 723 acpi_nmi_ccnt++; 724 725 cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n", 726 mlan->ProcessorId, mlan->IntiFlags, 727 mlan->Lint); 728 break; 729 730 case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE: 731 /* UNIMPLEMENTED */ 732 mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap; 733 cmn_err(CE_NOTE, "!apic: address override: %lx\n", 734 (long)mao->Address); 735 break; 736 737 case ACPI_MADT_TYPE_IO_SAPIC: 738 /* UNIMPLEMENTED */ 739 misa = (ACPI_MADT_IO_SAPIC *) ap; 740 741 cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n", 742 misa->Id, misa->GlobalIrqBase, 743 (long)misa->Address); 744 break; 745 746 case ACPI_MADT_TYPE_INTERRUPT_SOURCE: 747 /* UNIMPLEMENTED */ 748 mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap; 749 750 cmn_err(CE_NOTE, 751 "!apic: irq source: %d %d %d 0x%x %d %d\n", 752 mis->Id, mis->Eid, mis->GlobalIrq, 753 mis->IntiFlags, mis->Type, 754 mis->IoSapicVector); 755 break; 756 757 case ACPI_MADT_TYPE_LOCAL_X2APIC: 758 mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap; 759 760 /* 761 * All logical processors with APIC ID values 762 * of 255 and greater will have their APIC 763 * reported through Processor X2APIC structure. 764 * All logical processors with APIC ID less than 765 * 255 will have their APIC reported through 766 * Processor Local APIC. 767 */ 768 if ((mpx2a->LapicFlags & ACPI_MADT_ENABLED) && 769 (mpx2a->LocalApicId >> 8)) { 770 if (apic_nproc < NCPU && use_mp && 771 apic_nproc < boot_ncpus) { 772 local_ids[index] = mpx2a->LocalApicId; 773 CPUSET_ADD(apic_cpumask, index); 774 (void) acpica_map_cpu(index, 775 mpx2a->Uid); 776 index++; 777 apic_nproc++; 778 } else if (apic_nproc == NCPU && !warned) { 779 cmn_err(CE_WARN, "%s: CPU limit " 780 "exceeded" 781 #if !defined(__amd64) 782 " for 32-bit mode" 783 #endif 784 "; Solaris will use %d CPUs.", 785 psm_name, NCPU); 786 warned = 1; 787 } 788 } 789 790 break; 791 792 case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI: 793 /* UNIMPLEMENTED */ 794 mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap; 795 if (mx2alan->Uid >> 8) 796 acpi_nmi_ccnt++; 797 798 #ifdef DEBUG 799 cmn_err(CE_NOTE, 800 "!apic: local x2apic nmi: %d 0x%x %d\n", 801 mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint); 802 #endif 803 804 break; 805 806 case ACPI_MADT_TYPE_RESERVED: 807 default: 808 break; 809 } 810 811 /* advance to next entry */ 812 madt_seen += ap->Length; 813 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length); 814 } 815 816 apic_cpus_size = apic_nproc * sizeof (*apic_cpus); 817 if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL) 818 goto cleanup; 819 820 /* 821 * ACPI doesn't provide the local apic ver, get it directly from the 822 * local apic 823 */ 824 ver = apic_reg_ops->apic_read(APIC_VERS_REG); 825 for (i = 0; i < apic_nproc; i++) { 826 apic_cpus[i].aci_local_id = local_ids[i]; 827 apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF); 828 } 829 830 for (i = 0; i < apic_io_max; i++) { 831 ioapic_ix = i; 832 833 /* 834 * need to check Sitka on the following acpi problem 835 * On the Sitka, the ioapic's apic_id field isn't reporting 836 * the actual io apic id. We have reported this problem 837 * to Intel. Until they fix the problem, we will get the 838 * actual id directly from the ioapic. 839 */ 840 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 841 hid = (uchar_t)(id >> 24); 842 843 if (hid != apic_io_id[i]) { 844 if (apic_io_id[i] == 0) 845 apic_io_id[i] = hid; 846 else { /* set ioapic id to whatever reported by ACPI */ 847 id = ((uint32_t)apic_io_id[i]) << 24; 848 ioapic_write(ioapic_ix, APIC_ID_CMD, id); 849 } 850 } 851 ver = ioapic_read(ioapic_ix, APIC_VERS_CMD); 852 apic_io_ver[i] = (uchar_t)(ver & 0xff); 853 intmax = (ver >> 16) & 0xff; 854 apic_io_vectend[i] = apic_io_vectbase[i] + intmax; 855 if (apic_first_avail_irq <= apic_io_vectend[i]) 856 apic_first_avail_irq = apic_io_vectend[i] + 1; 857 } 858 859 860 /* 861 * Process SCI configuration here 862 * An error may be returned here if 863 * acpi-user-options specifies legacy mode 864 * (no SCI, no ACPI mode) 865 */ 866 if (acpica_get_sci(&sci, &sci_flags) != AE_OK) 867 sci = -1; 868 869 /* 870 * Now call acpi_init() to generate namespaces 871 * If this fails, we don't attempt to use ACPI 872 * even if we were able to get a MADT above 873 */ 874 if (acpica_init() != AE_OK) 875 goto cleanup; 876 877 /* 878 * Call acpica_build_processor_map() now that we have 879 * ACPI namesspace access 880 */ 881 (void) acpica_build_processor_map(); 882 883 /* 884 * Squirrel away the SCI and flags for later on 885 * in apic_picinit() when we're ready 886 */ 887 apic_sci_vect = sci; 888 apic_sci_flags = sci_flags; 889 890 if (apic_verbose & APIC_VERBOSE_IRQ_FLAG) 891 acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG; 892 893 if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG) 894 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG; 895 896 if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG) 897 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG; 898 899 if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE) 900 goto cleanup; 901 902 /* Enable ACPI APIC interrupt routing */ 903 if (apic_acpi_enter_apicmode() != PSM_FAILURE) { 904 build_reserved_irqlist((uchar_t *)apic_reserved_irqlist); 905 apic_enable_acpi = 1; 906 if (apic_sci_vect > 0) { 907 acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT); 908 } 909 if (apic_use_acpi_madt_only) { 910 cmn_err(CE_CONT, 911 "?Using ACPI for CPU/IOAPIC information ONLY\n"); 912 } 913 914 #if !defined(__xpv) 915 /* 916 * probe ACPI for hpet information here which is used later 917 * in apic_picinit(). 918 */ 919 if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) { 920 cmn_err(CE_NOTE, "!ACPI HPET table query failed\n"); 921 } 922 #endif 923 924 return (PSM_SUCCESS); 925 } 926 /* if setting APIC mode failed above, we fall through to cleanup */ 927 928 cleanup: 929 if (apicadr != NULL) { 930 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 931 apicadr = NULL; 932 } 933 apic_nproc = 0; 934 for (i = 0; i < apic_io_max; i++) { 935 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 936 apicioadr[i] = NULL; 937 } 938 apic_io_max = 0; 939 acpi_isop = NULL; 940 acpi_iso_cnt = 0; 941 acpi_nmi_sp = NULL; 942 acpi_nmi_scnt = 0; 943 acpi_nmi_cp = NULL; 944 acpi_nmi_ccnt = 0; 945 return (PSM_FAILURE); 946 } 947 948 /* 949 * Handle default configuration. Fill in reqd global variables & tables 950 * Fill all details as MP table does not give any more info 951 */ 952 static int 953 apic_handle_defconf() 954 { 955 uint_t lid; 956 957 /*LINTED: pointer cast may result in improper alignment */ 958 apicioadr[0] = mapin_ioapic(APIC_IO_ADDR, 959 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 960 /*LINTED: pointer cast may result in improper alignment */ 961 apicadr = (uint32_t *)psm_map_phys(APIC_LOCAL_ADDR, 962 APIC_LOCAL_MEMLEN, PROT_READ); 963 apic_cpus_size = 2 * sizeof (*apic_cpus); 964 apic_cpus = (apic_cpus_info_t *) 965 kmem_zalloc(apic_cpus_size, KM_NOSLEEP); 966 if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus)) 967 goto apic_handle_defconf_fail; 968 CPUSET_ONLY(apic_cpumask, 0); 969 CPUSET_ADD(apic_cpumask, 1); 970 apic_nproc = 2; 971 lid = apic_reg_ops->apic_read(APIC_LID_REG); 972 apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET); 973 /* 974 * According to the PC+MP spec 1.1, the local ids 975 * for the default configuration has to be 0 or 1 976 */ 977 if (apic_cpus[0].aci_local_id == 1) 978 apic_cpus[1].aci_local_id = 0; 979 else if (apic_cpus[0].aci_local_id == 0) 980 apic_cpus[1].aci_local_id = 1; 981 else 982 goto apic_handle_defconf_fail; 983 984 apic_io_id[0] = 2; 985 apic_io_max = 1; 986 if (apic_defconf >= 5) { 987 apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS; 988 apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS; 989 apic_io_ver[0] = APIC_INTEGRATED_VERS; 990 } else { 991 apic_cpus[0].aci_local_ver = 0; /* 82489 DX */ 992 apic_cpus[1].aci_local_ver = 0; 993 apic_io_ver[0] = 0; 994 } 995 if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6) 996 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 997 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 998 return (PSM_SUCCESS); 999 1000 apic_handle_defconf_fail: 1001 if (apic_cpus) 1002 kmem_free(apic_cpus, apic_cpus_size); 1003 if (apicadr) 1004 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 1005 if (apicioadr[0]) 1006 mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN); 1007 return (PSM_FAILURE); 1008 } 1009 1010 /* Parse the entries in MP configuration table and collect info that we need */ 1011 static int 1012 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics) 1013 { 1014 struct apic_procent *procp; 1015 struct apic_bus *busp; 1016 struct apic_io_entry *ioapicp; 1017 struct apic_io_intr *intrp; 1018 int ioapic_ix; 1019 uint_t lid; 1020 uint32_t id; 1021 uchar_t hid; 1022 int warned = 0; 1023 1024 /*LINTED: pointer cast may result in improper alignment */ 1025 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1026 1027 /* No need to count cpu entries if we won't use them */ 1028 if (!bypass_cpus_and_ioapics) { 1029 1030 /* Find max # of CPUS and allocate structure accordingly */ 1031 apic_nproc = 0; 1032 CPUSET_ZERO(apic_cpumask); 1033 while (procp->proc_entry == APIC_CPU_ENTRY) { 1034 if (procp->proc_cpuflags & CPUFLAGS_EN) { 1035 if (apic_nproc < NCPU && use_mp && 1036 apic_nproc < boot_ncpus) { 1037 CPUSET_ADD(apic_cpumask, apic_nproc); 1038 apic_nproc++; 1039 } else if (apic_nproc == NCPU && !warned) { 1040 cmn_err(CE_WARN, "%s: CPU limit " 1041 "exceeded" 1042 #if !defined(__amd64) 1043 " for 32-bit mode" 1044 #endif 1045 "; Solaris will use %d CPUs.", 1046 psm_name, NCPU); 1047 warned = 1; 1048 } 1049 1050 } 1051 procp++; 1052 } 1053 apic_cpus_size = apic_nproc * sizeof (*apic_cpus); 1054 if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *) 1055 kmem_zalloc(apic_cpus_size, KM_NOSLEEP))) 1056 return (PSM_FAILURE); 1057 } 1058 1059 /*LINTED: pointer cast may result in improper alignment */ 1060 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1061 1062 /* 1063 * start with index 1 as 0 needs to be filled in with Boot CPU, but 1064 * if we're bypassing this information, it has already been filled 1065 * in by acpi_probe(), so don't overwrite it. 1066 */ 1067 if (!bypass_cpus_and_ioapics) 1068 apic_nproc = 1; 1069 1070 while (procp->proc_entry == APIC_CPU_ENTRY) { 1071 /* check whether the cpu exists or not */ 1072 if (!bypass_cpus_and_ioapics && 1073 procp->proc_cpuflags & CPUFLAGS_EN) { 1074 if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */ 1075 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1076 apic_cpus[0].aci_local_id = procp->proc_apicid; 1077 if (apic_cpus[0].aci_local_id != 1078 (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) { 1079 return (PSM_FAILURE); 1080 } 1081 apic_cpus[0].aci_local_ver = 1082 procp->proc_version; 1083 } else if (apic_nproc < NCPU && use_mp && 1084 apic_nproc < boot_ncpus) { 1085 apic_cpus[apic_nproc].aci_local_id = 1086 procp->proc_apicid; 1087 1088 apic_cpus[apic_nproc].aci_local_ver = 1089 procp->proc_version; 1090 apic_nproc++; 1091 1092 } 1093 } 1094 procp++; 1095 } 1096 1097 /* 1098 * Save start of bus entries for later use. 1099 * Get EISA level cntrl if EISA bus is present. 1100 * Also get the CPI bus id for single CPI bus case 1101 */ 1102 apic_busp = busp = (struct apic_bus *)procp; 1103 while (busp->bus_entry == APIC_BUS_ENTRY) { 1104 lid = apic_find_bus_type((char *)&busp->bus_str1); 1105 if (lid == BUS_EISA) { 1106 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1107 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1108 } else if (lid == BUS_PCI) { 1109 /* 1110 * apic_single_pci_busid will be used only if 1111 * apic_pic_bus_total is equal to 1 1112 */ 1113 apic_pci_bus_total++; 1114 apic_single_pci_busid = busp->bus_id; 1115 } 1116 busp++; 1117 } 1118 1119 ioapicp = (struct apic_io_entry *)busp; 1120 1121 if (!bypass_cpus_and_ioapics) 1122 apic_io_max = 0; 1123 do { 1124 if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) { 1125 if (ioapicp->io_flags & IOAPIC_FLAGS_EN) { 1126 apic_io_id[apic_io_max] = ioapicp->io_apicid; 1127 apic_io_ver[apic_io_max] = ioapicp->io_version; 1128 /*LINTED: pointer cast may result in improper alignment */ 1129 apicioadr[apic_io_max] = 1130 mapin_ioapic( 1131 (uint32_t)ioapicp->io_apic_addr, 1132 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1133 1134 if (!apicioadr[apic_io_max]) 1135 return (PSM_FAILURE); 1136 1137 ioapic_mask_workaround[apic_io_max] = 1138 apic_is_ioapic_AMD_813x( 1139 ioapicp->io_apic_addr); 1140 1141 ioapic_ix = apic_io_max; 1142 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 1143 hid = (uchar_t)(id >> 24); 1144 1145 if (hid != apic_io_id[apic_io_max]) { 1146 if (apic_io_id[apic_io_max] == 0) 1147 apic_io_id[apic_io_max] = hid; 1148 else { 1149 /* 1150 * set ioapic id to whatever 1151 * reported by MPS 1152 * 1153 * may not need to set index 1154 * again ??? 1155 * take it out and try 1156 */ 1157 1158 id = ((uint32_t) 1159 apic_io_id[apic_io_max]) << 1160 24; 1161 1162 ioapic_write(ioapic_ix, 1163 APIC_ID_CMD, id); 1164 } 1165 } 1166 apic_io_max++; 1167 } 1168 } 1169 ioapicp++; 1170 } while (ioapicp->io_entry == APIC_IO_ENTRY); 1171 1172 apic_io_intrp = (struct apic_io_intr *)ioapicp; 1173 1174 intrp = apic_io_intrp; 1175 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1176 if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) || 1177 (apic_find_bus(intrp->intr_busid) == BUS_PCI)) { 1178 apic_irq_translate = 1; 1179 break; 1180 } 1181 intrp++; 1182 } 1183 1184 return (PSM_SUCCESS); 1185 } 1186 1187 boolean_t 1188 apic_cpu_in_range(int cpu) 1189 { 1190 return ((cpu & ~IRQ_USER_BOUND) < apic_nproc); 1191 } 1192 1193 uint16_t 1194 apic_get_apic_version() 1195 { 1196 int i; 1197 uchar_t min_io_apic_ver = 0; 1198 static uint16_t version; /* Cache as value is constant */ 1199 static boolean_t found = B_FALSE; /* Accomodate zero version */ 1200 1201 if (found == B_FALSE) { 1202 found = B_TRUE; 1203 1204 /* 1205 * Don't assume all IO APICs in the system are the same. 1206 * 1207 * Set to the minimum version. 1208 */ 1209 for (i = 0; i < apic_io_max; i++) { 1210 if ((apic_io_ver[i] != 0) && 1211 ((min_io_apic_ver == 0) || 1212 (min_io_apic_ver >= apic_io_ver[i]))) 1213 min_io_apic_ver = apic_io_ver[i]; 1214 } 1215 1216 /* Assume all local APICs are of the same version. */ 1217 version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver; 1218 } 1219 return (version); 1220 } 1221 1222 static struct apic_mpfps_hdr * 1223 apic_find_fps_sig(caddr_t cptr, int len) 1224 { 1225 int i; 1226 1227 /* Look for the pattern "_MP_" */ 1228 for (i = 0; i < len; i += 16) { 1229 if ((*(cptr+i) == '_') && 1230 (*(cptr+i+1) == 'M') && 1231 (*(cptr+i+2) == 'P') && 1232 (*(cptr+i+3) == '_')) 1233 /*LINTED: pointer cast may result in improper alignment */ 1234 return ((struct apic_mpfps_hdr *)(cptr + i)); 1235 } 1236 return (NULL); 1237 } 1238 1239 static int 1240 apic_checksum(caddr_t bptr, int len) 1241 { 1242 int i; 1243 uchar_t cksum; 1244 1245 cksum = 0; 1246 for (i = 0; i < len; i++) 1247 cksum += *bptr++; 1248 return ((int)cksum); 1249 } 1250 1251 1252 /* 1253 * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable 1254 * are also set to NULL. vector->irq is set to a value which cannot map 1255 * to a real irq to show that it is free. 1256 */ 1257 void 1258 apic_init_common() 1259 { 1260 int i, j, indx; 1261 int *iptr; 1262 1263 /* 1264 * Initialize apic_ipls from apic_vectortoipl. This array is 1265 * used in apic_intr_enter to determine the IPL to use for the 1266 * corresponding vector. On some systems, due to hardware errata 1267 * and interrupt sharing, the IPL may not correspond to the IPL listed 1268 * in apic_vectortoipl (see apic_addspl and apic_delspl). 1269 */ 1270 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { 1271 indx = i * APIC_VECTOR_PER_IPL; 1272 1273 for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++) 1274 apic_ipls[indx] = apic_vectortoipl[i]; 1275 } 1276 1277 /* cpu 0 is always up (for now) */ 1278 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; 1279 1280 iptr = (int *)&apic_irq_table[0]; 1281 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 1282 apic_level_intr[i] = 0; 1283 *iptr++ = NULL; 1284 apic_vector_to_irq[i] = APIC_RESV_IRQ; 1285 1286 /* These *must* be initted to B_TRUE! */ 1287 apic_reprogram_info[i].done = B_TRUE; 1288 apic_reprogram_info[i].irqp = NULL; 1289 apic_reprogram_info[i].tries = 0; 1290 apic_reprogram_info[i].bindcpu = 0; 1291 } 1292 1293 /* 1294 * Allocate a dummy irq table entry for the reserved entry. 1295 * This takes care of the race between removing an irq and 1296 * clock detecting a CPU in that irq during interrupt load 1297 * sampling. 1298 */ 1299 apic_irq_table[APIC_RESV_IRQ] = 1300 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); 1301 1302 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL); 1303 } 1304 1305 void 1306 ioapic_init_intr(int mask_apic) 1307 { 1308 int ioapic_ix; 1309 struct intrspec ispec; 1310 apic_irq_t *irqptr; 1311 int i, j; 1312 ulong_t iflag; 1313 1314 LOCK_INIT_CLEAR(&apic_revector_lock); 1315 LOCK_INIT_CLEAR(&apic_defer_reprogram_lock); 1316 1317 /* mask interrupt vectors */ 1318 for (j = 0; j < apic_io_max && mask_apic; j++) { 1319 int intin_max; 1320 1321 ioapic_ix = j; 1322 /* Bits 23-16 define the maximum redirection entries */ 1323 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) 1324 & 0xff; 1325 for (i = 0; i <= intin_max; i++) 1326 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * i, AV_MASK); 1327 } 1328 1329 /* 1330 * Hack alert: deal with ACPI SCI interrupt chicken/egg here 1331 */ 1332 if (apic_sci_vect > 0) { 1333 /* 1334 * acpica has already done add_avintr(); we just 1335 * to finish the job by mimicing translate_irq() 1336 * 1337 * Fake up an intrspec and setup the tables 1338 */ 1339 ispec.intrspec_vec = apic_sci_vect; 1340 ispec.intrspec_pri = SCI_IPL; 1341 1342 if (apic_setup_irq_table(NULL, apic_sci_vect, NULL, 1343 &ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) { 1344 cmn_err(CE_WARN, "!apic: SCI setup failed"); 1345 return; 1346 } 1347 irqptr = apic_irq_table[apic_sci_vect]; 1348 1349 iflag = intr_clear(); 1350 lock_set(&apic_ioapic_lock); 1351 1352 /* Program I/O APIC */ 1353 (void) apic_setup_io_intr(irqptr, apic_sci_vect, B_FALSE); 1354 1355 lock_clear(&apic_ioapic_lock); 1356 intr_restore(iflag); 1357 1358 irqptr->airq_share++; 1359 } 1360 1361 #if !defined(__xpv) 1362 /* 1363 * Hack alert: deal with ACPI HPET interrupt chicken/egg here. 1364 */ 1365 if (apic_hpet_vect > 0) { 1366 /* 1367 * hpet has already done add_avintr(); we just need 1368 * to finish the job by mimicing translate_irq() 1369 * 1370 * Fake up an intrspec and setup the tables 1371 */ 1372 ispec.intrspec_vec = apic_hpet_vect; 1373 ispec.intrspec_pri = CBE_HIGH_PIL; 1374 1375 if (apic_setup_irq_table(NULL, apic_hpet_vect, NULL, 1376 &ispec, &apic_hpet_flags, DDI_INTR_TYPE_FIXED) < 0) { 1377 cmn_err(CE_WARN, "!apic: HPET setup failed"); 1378 return; 1379 } 1380 irqptr = apic_irq_table[apic_hpet_vect]; 1381 1382 iflag = intr_clear(); 1383 lock_set(&apic_ioapic_lock); 1384 1385 /* Program I/O APIC */ 1386 (void) apic_setup_io_intr(irqptr, apic_hpet_vect, B_FALSE); 1387 1388 lock_clear(&apic_ioapic_lock); 1389 intr_restore(iflag); 1390 1391 irqptr->airq_share++; 1392 } 1393 #endif /* !defined(__xpv) */ 1394 } 1395 1396 /* 1397 * Add mask bits to disable interrupt vector from happening 1398 * at or above IPL. In addition, it should remove mask bits 1399 * to enable interrupt vectors below the given IPL. 1400 * 1401 * Both add and delspl are complicated by the fact that different interrupts 1402 * may share IRQs. This can happen in two ways. 1403 * 1. The same H/W line is shared by more than 1 device 1404 * 1a. with interrupts at different IPLs 1405 * 1b. with interrupts at same IPL 1406 * 2. We ran out of vectors at a given IPL and started sharing vectors. 1407 * 1b and 2 should be handled gracefully, except for the fact some ISRs 1408 * will get called often when no interrupt is pending for the device. 1409 * For 1a, we just hope that the machine blows up with the person who 1410 * set it up that way!. In the meantime, we handle it at the higher IPL. 1411 */ 1412 /*ARGSUSED*/ 1413 int 1414 apic_addspl_common(int irqno, int ipl, int min_ipl, int max_ipl) 1415 { 1416 uchar_t vector; 1417 ulong_t iflag; 1418 apic_irq_t *irqptr, *irqheadptr; 1419 int irqindex; 1420 1421 ASSERT(max_ipl <= UCHAR_MAX); 1422 irqindex = IRQINDEX(irqno); 1423 1424 if ((irqindex == -1) || (!apic_irq_table[irqindex])) 1425 return (PSM_FAILURE); 1426 1427 mutex_enter(&airq_mutex); 1428 irqptr = irqheadptr = apic_irq_table[irqindex]; 1429 1430 DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x " 1431 "vector=0x%x\n", (void *)irqptr->airq_dip, 1432 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector)); 1433 1434 while (irqptr) { 1435 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) 1436 break; 1437 irqptr = irqptr->airq_next; 1438 } 1439 irqptr->airq_share++; 1440 1441 mutex_exit(&airq_mutex); 1442 1443 /* return if it is not hardware interrupt */ 1444 if (irqptr->airq_mps_intr_index == RESERVE_INDEX) 1445 return (PSM_SUCCESS); 1446 1447 /* Or if there are more interupts at a higher IPL */ 1448 if (ipl != max_ipl) 1449 return (PSM_SUCCESS); 1450 1451 /* 1452 * if apic_picinit() has not been called yet, just return. 1453 * At the end of apic_picinit(), we will call setup_io_intr(). 1454 */ 1455 1456 if (!apic_picinit_called) 1457 return (PSM_SUCCESS); 1458 1459 /* 1460 * Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate, 1461 * return failure. Not very elegant, but then we hope the 1462 * machine will blow up with ... 1463 */ 1464 if (irqptr->airq_ipl != max_ipl && 1465 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1466 1467 vector = apic_allocate_vector(max_ipl, irqindex, 1); 1468 if (vector == 0) { 1469 irqptr->airq_share--; 1470 return (PSM_FAILURE); 1471 } 1472 irqptr = irqheadptr; 1473 apic_mark_vector(irqptr->airq_vector, vector); 1474 while (irqptr) { 1475 irqptr->airq_vector = vector; 1476 irqptr->airq_ipl = (uchar_t)max_ipl; 1477 /* 1478 * reprogram irq being added and every one else 1479 * who is not in the UNINIT state 1480 */ 1481 if ((VIRTIRQ(irqindex, irqptr->airq_share_id) == 1482 irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) { 1483 apic_record_rdt_entry(irqptr, irqindex); 1484 1485 iflag = intr_clear(); 1486 lock_set(&apic_ioapic_lock); 1487 1488 (void) apic_setup_io_intr(irqptr, irqindex, 1489 B_FALSE); 1490 1491 lock_clear(&apic_ioapic_lock); 1492 intr_restore(iflag); 1493 } 1494 irqptr = irqptr->airq_next; 1495 } 1496 return (PSM_SUCCESS); 1497 1498 } else if (irqptr->airq_ipl != max_ipl && 1499 ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1500 /* 1501 * We cannot upgrade the vector, but we can change 1502 * the IPL that this vector induces. 1503 * 1504 * Note that we subtract APIC_BASE_VECT from the vector 1505 * here because this array is used in apic_intr_enter 1506 * (no need to add APIC_BASE_VECT in that hot code 1507 * path since we can do it in the rarely-executed path 1508 * here). 1509 */ 1510 apic_ipls[irqptr->airq_vector - APIC_BASE_VECT] = 1511 (uchar_t)max_ipl; 1512 1513 irqptr = irqheadptr; 1514 while (irqptr) { 1515 irqptr->airq_ipl = (uchar_t)max_ipl; 1516 irqptr = irqptr->airq_next; 1517 } 1518 1519 return (PSM_SUCCESS); 1520 } 1521 1522 ASSERT(irqptr); 1523 1524 iflag = intr_clear(); 1525 lock_set(&apic_ioapic_lock); 1526 1527 (void) apic_setup_io_intr(irqptr, irqindex, B_FALSE); 1528 1529 lock_clear(&apic_ioapic_lock); 1530 intr_restore(iflag); 1531 1532 return (PSM_SUCCESS); 1533 } 1534 1535 /* 1536 * Recompute mask bits for the given interrupt vector. 1537 * If there is no interrupt servicing routine for this 1538 * vector, this function should disable interrupt vector 1539 * from happening at all IPLs. If there are still 1540 * handlers using the given vector, this function should 1541 * disable the given vector from happening below the lowest 1542 * IPL of the remaining hadlers. 1543 */ 1544 /*ARGSUSED*/ 1545 int 1546 apic_delspl_common(int irqno, int ipl, int min_ipl, int max_ipl) 1547 { 1548 uchar_t vector; 1549 uint32_t bind_cpu; 1550 int intin, irqindex; 1551 int ioapic_ix; 1552 apic_irq_t *irqptr, *preirqptr, *irqheadptr, *irqp; 1553 ulong_t iflag; 1554 1555 mutex_enter(&airq_mutex); 1556 irqindex = IRQINDEX(irqno); 1557 irqptr = preirqptr = irqheadptr = apic_irq_table[irqindex]; 1558 1559 DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x " 1560 "vector=0x%x\n", (void *)irqptr->airq_dip, 1561 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector)); 1562 1563 while (irqptr) { 1564 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) 1565 break; 1566 preirqptr = irqptr; 1567 irqptr = irqptr->airq_next; 1568 } 1569 ASSERT(irqptr); 1570 1571 irqptr->airq_share--; 1572 1573 mutex_exit(&airq_mutex); 1574 1575 /* 1576 * If there are more interrupts at a higher IPL, we don't need 1577 * to disable anything. 1578 */ 1579 if (ipl < max_ipl) 1580 return (PSM_SUCCESS); 1581 1582 /* return if it is not hardware interrupt */ 1583 if (irqptr->airq_mps_intr_index == RESERVE_INDEX) 1584 return (PSM_SUCCESS); 1585 1586 if (!apic_picinit_called) { 1587 /* 1588 * Clear irq_struct. If two devices shared an intpt 1589 * line & 1 unloaded before picinit, we are hosed. But, then 1590 * we hope the machine will survive. 1591 */ 1592 irqptr->airq_mps_intr_index = FREE_INDEX; 1593 irqptr->airq_temp_cpu = IRQ_UNINIT; 1594 apic_free_vector(irqptr->airq_vector); 1595 return (PSM_SUCCESS); 1596 } 1597 /* 1598 * Downgrade vector to new max_ipl if needed. If we cannot allocate, 1599 * use old IPL. Not very elegant, but it should work. 1600 */ 1601 if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL) && 1602 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1603 apic_irq_t *irqp; 1604 if (vector = apic_allocate_vector(max_ipl, irqno, 1)) { 1605 apic_mark_vector(irqheadptr->airq_vector, vector); 1606 irqp = irqheadptr; 1607 while (irqp) { 1608 irqp->airq_vector = vector; 1609 irqp->airq_ipl = (uchar_t)max_ipl; 1610 if (irqp->airq_temp_cpu != IRQ_UNINIT) { 1611 apic_record_rdt_entry(irqp, irqindex); 1612 1613 iflag = intr_clear(); 1614 lock_set(&apic_ioapic_lock); 1615 1616 (void) apic_setup_io_intr(irqp, 1617 irqindex, B_FALSE); 1618 1619 lock_clear(&apic_ioapic_lock); 1620 intr_restore(iflag); 1621 } 1622 irqp = irqp->airq_next; 1623 } 1624 } 1625 1626 } else if (irqptr->airq_ipl != max_ipl && 1627 max_ipl != PSM_INVALID_IPL && 1628 ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1629 1630 /* 1631 * We cannot downgrade the IPL of the vector below the vector's 1632 * hardware priority. If we did, it would be possible for a 1633 * higher-priority hardware vector to interrupt a CPU running at an IPL 1634 * lower than the hardware priority of the interrupting vector (but 1635 * higher than the soft IPL of this IRQ). When this happens, we would 1636 * then try to drop the IPL BELOW what it was (effectively dropping 1637 * below base_spl) which would be potentially catastrophic. 1638 * 1639 * (e.g. Suppose the hardware vector associated with this IRQ is 0x40 1640 * (hardware IPL of 4). Further assume that the old IPL of this IRQ 1641 * was 4, but the new IPL is 1. If we forced vector 0x40 to result in 1642 * an IPL of 1, it would be possible for the processor to be executing 1643 * at IPL 3 and for an interrupt to come in on vector 0x40, interrupting 1644 * the currently-executing ISR. When apic_intr_enter consults 1645 * apic_irqs[], it will return 1, bringing the IPL of the CPU down to 1 1646 * so even though the processor was running at IPL 4, an IPL 1 1647 * interrupt will have interrupted it, which must not happen)). 1648 * 1649 * Effectively, this means that the hardware priority corresponding to 1650 * the IRQ's IPL (in apic_ipls[]) cannot be lower than the vector's 1651 * hardware priority. 1652 * 1653 * (In the above example, then, after removal of the IPL 4 device's 1654 * interrupt handler, the new IPL will continue to be 4 because the 1655 * hardware priority that IPL 1 implies is lower than the hardware 1656 * priority of the vector used.) 1657 */ 1658 /* apic_ipls is indexed by vector, starting at APIC_BASE_VECT */ 1659 const int apic_ipls_index = irqptr->airq_vector - 1660 APIC_BASE_VECT; 1661 const int vect_inherent_hwpri = irqptr->airq_vector >> 1662 APIC_IPL_SHIFT; 1663 1664 /* 1665 * If there are still devices using this IRQ, determine the 1666 * new ipl to use. 1667 */ 1668 if (irqptr->airq_share) { 1669 int vect_desired_hwpri, hwpri; 1670 1671 ASSERT(max_ipl < MAXIPL); 1672 vect_desired_hwpri = apic_ipltopri[max_ipl] >> 1673 APIC_IPL_SHIFT; 1674 1675 /* 1676 * If the desired IPL's hardware priority is lower 1677 * than that of the vector, use the hardware priority 1678 * of the vector to determine the new IPL. 1679 */ 1680 hwpri = (vect_desired_hwpri < vect_inherent_hwpri) ? 1681 vect_inherent_hwpri : vect_desired_hwpri; 1682 1683 /* 1684 * Now, to get the right index for apic_vectortoipl, 1685 * we need to subtract APIC_BASE_VECT from the 1686 * hardware-vector-equivalent (in hwpri). Since hwpri 1687 * is already shifted, we shift APIC_BASE_VECT before 1688 * doing the subtraction. 1689 */ 1690 hwpri -= (APIC_BASE_VECT >> APIC_IPL_SHIFT); 1691 1692 ASSERT(hwpri >= 0); 1693 ASSERT(hwpri < MAXIPL); 1694 max_ipl = apic_vectortoipl[hwpri]; 1695 apic_ipls[apic_ipls_index] = max_ipl; 1696 1697 irqp = irqheadptr; 1698 while (irqp) { 1699 irqp->airq_ipl = (uchar_t)max_ipl; 1700 irqp = irqp->airq_next; 1701 } 1702 } else { 1703 /* 1704 * No more devices on this IRQ, so reset this vector's 1705 * element in apic_ipls to the original IPL for this 1706 * vector 1707 */ 1708 apic_ipls[apic_ipls_index] = 1709 apic_vectortoipl[vect_inherent_hwpri]; 1710 } 1711 } 1712 1713 /* 1714 * If there are still active interrupts, we are done. 1715 */ 1716 if (irqptr->airq_share) 1717 return (PSM_SUCCESS); 1718 1719 iflag = intr_clear(); 1720 lock_set(&apic_ioapic_lock); 1721 1722 if (irqptr->airq_mps_intr_index == MSI_INDEX) { 1723 /* 1724 * Disable the MSI vector 1725 * Make sure we only disable on the last 1726 * of the multi-MSI support 1727 */ 1728 if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) { 1729 apic_pci_msi_disable_mode(irqptr->airq_dip, 1730 DDI_INTR_TYPE_MSI); 1731 } 1732 } else if (irqptr->airq_mps_intr_index == MSIX_INDEX) { 1733 /* 1734 * Disable the MSI-X vector 1735 * needs to clear its mask and addr/data for each MSI-X 1736 */ 1737 apic_pci_msi_unconfigure(irqptr->airq_dip, DDI_INTR_TYPE_MSIX, 1738 irqptr->airq_origirq); 1739 /* 1740 * Make sure we only disable on the last MSI-X 1741 */ 1742 if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) { 1743 apic_pci_msi_disable_mode(irqptr->airq_dip, 1744 DDI_INTR_TYPE_MSIX); 1745 } 1746 } else { 1747 /* 1748 * The assumption here is that this is safe, even for 1749 * systems with IOAPICs that suffer from the hardware 1750 * erratum because all devices have been quiesced before 1751 * they unregister their interrupt handlers. If that 1752 * assumption turns out to be false, this mask operation 1753 * can induce the same erratum result we're trying to 1754 * avoid. 1755 */ 1756 ioapic_ix = irqptr->airq_ioapicindex; 1757 intin = irqptr->airq_intin_no; 1758 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin, AV_MASK); 1759 } 1760 1761 #if !defined(__xpv) 1762 apic_vt_ops->apic_intrr_free_entry(irqptr); 1763 #endif 1764 1765 /* 1766 * This irq entry is the only one in the chain. 1767 */ 1768 if (irqheadptr->airq_next == NULL) { 1769 ASSERT(irqheadptr == irqptr); 1770 bind_cpu = irqptr->airq_temp_cpu; 1771 if (((uint32_t)bind_cpu != IRQ_UNBOUND) && 1772 ((uint32_t)bind_cpu != IRQ_UNINIT)) { 1773 ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc); 1774 if (bind_cpu & IRQ_USER_BOUND) { 1775 /* If hardbound, temp_cpu == cpu */ 1776 bind_cpu &= ~IRQ_USER_BOUND; 1777 apic_cpus[bind_cpu].aci_bound--; 1778 } else 1779 apic_cpus[bind_cpu].aci_temp_bound--; 1780 } 1781 irqptr->airq_temp_cpu = IRQ_UNINIT; 1782 irqptr->airq_mps_intr_index = FREE_INDEX; 1783 lock_clear(&apic_ioapic_lock); 1784 intr_restore(iflag); 1785 apic_free_vector(irqptr->airq_vector); 1786 return (PSM_SUCCESS); 1787 } 1788 1789 /* 1790 * If we get here, we are sharing the vector and there are more than 1791 * one active irq entries in the chain. 1792 */ 1793 lock_clear(&apic_ioapic_lock); 1794 intr_restore(iflag); 1795 1796 mutex_enter(&airq_mutex); 1797 /* Remove the irq entry from the chain */ 1798 if (irqptr == irqheadptr) { /* The irq entry is at the head */ 1799 apic_irq_table[irqindex] = irqptr->airq_next; 1800 } else { 1801 preirqptr->airq_next = irqptr->airq_next; 1802 } 1803 /* Free the irq entry */ 1804 kmem_free(irqptr, sizeof (apic_irq_t)); 1805 mutex_exit(&airq_mutex); 1806 1807 return (PSM_SUCCESS); 1808 } 1809 1810 /* 1811 * apic_introp_xlate() replaces apic_translate_irq() and is 1812 * called only from apic_intr_ops(). With the new ADII framework, 1813 * the priority can no longer be retrieved through i_ddi_get_intrspec(). 1814 * It has to be passed in from the caller. 1815 * 1816 * Return value: 1817 * Success: irqno for the given device 1818 * Failure: -1 1819 */ 1820 int 1821 apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type) 1822 { 1823 char dev_type[16]; 1824 int dev_len, pci_irq, newirq, bustype, devid, busid, i; 1825 int irqno = ispec->intrspec_vec; 1826 ddi_acc_handle_t cfg_handle; 1827 uchar_t ipin; 1828 struct apic_io_intr *intrp; 1829 iflag_t intr_flag; 1830 ACPI_SUBTABLE_HEADER *hp; 1831 ACPI_MADT_INTERRUPT_OVERRIDE *isop; 1832 apic_irq_t *airqp; 1833 int parent_is_pci_or_pciex = 0; 1834 int child_is_pciex = 0; 1835 1836 DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s " 1837 "type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type, 1838 irqno)); 1839 1840 dev_len = sizeof (dev_type); 1841 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip), 1842 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type, 1843 &dev_len) == DDI_PROP_SUCCESS) { 1844 if ((strcmp(dev_type, "pci") == 0) || 1845 (strcmp(dev_type, "pciex") == 0)) 1846 parent_is_pci_or_pciex = 1; 1847 } 1848 1849 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 1850 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type, 1851 &dev_len) == DDI_PROP_SUCCESS) { 1852 if (strstr(dev_type, "pciex")) 1853 child_is_pciex = 1; 1854 } 1855 1856 1857 if (DDI_INTR_IS_MSI_OR_MSIX(type)) { 1858 if ((airqp = apic_find_irq(dip, ispec, type)) != NULL) { 1859 airqp->airq_iflag.bustype = 1860 child_is_pciex ? BUS_PCIE : BUS_PCI; 1861 return (apic_vector_to_irq[airqp->airq_vector]); 1862 } 1863 return (apic_setup_irq_table(dip, irqno, NULL, ispec, 1864 NULL, type)); 1865 } 1866 1867 bustype = 0; 1868 1869 /* check if we have already translated this irq */ 1870 mutex_enter(&airq_mutex); 1871 newirq = apic_min_device_irq; 1872 for (; newirq <= apic_max_device_irq; newirq++) { 1873 airqp = apic_irq_table[newirq]; 1874 while (airqp) { 1875 if ((airqp->airq_dip == dip) && 1876 (airqp->airq_origirq == irqno) && 1877 (airqp->airq_mps_intr_index != FREE_INDEX)) { 1878 1879 mutex_exit(&airq_mutex); 1880 return (VIRTIRQ(newirq, airqp->airq_share_id)); 1881 } 1882 airqp = airqp->airq_next; 1883 } 1884 } 1885 mutex_exit(&airq_mutex); 1886 1887 if (apic_defconf) 1888 goto defconf; 1889 1890 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) 1891 goto nonpci; 1892 1893 if (parent_is_pci_or_pciex) { 1894 /* pci device */ 1895 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0) 1896 goto nonpci; 1897 if (busid == 0 && apic_pci_bus_total == 1) 1898 busid = (int)apic_single_pci_busid; 1899 1900 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS) 1901 return (-1); 1902 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA; 1903 pci_config_teardown(&cfg_handle); 1904 if (apic_enable_acpi && !apic_use_acpi_madt_only) { 1905 if (apic_acpi_translate_pci_irq(dip, busid, devid, 1906 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS) 1907 return (-1); 1908 1909 intr_flag.bustype = child_is_pciex ? BUS_PCIE : BUS_PCI; 1910 return (apic_setup_irq_table(dip, pci_irq, NULL, ispec, 1911 &intr_flag, type)); 1912 } else { 1913 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3); 1914 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) 1915 == NULL) { 1916 if ((pci_irq = apic_handle_pci_pci_bridge(dip, 1917 devid, ipin, &intrp)) == -1) 1918 return (-1); 1919 } 1920 return (apic_setup_irq_table(dip, pci_irq, intrp, ispec, 1921 NULL, type)); 1922 } 1923 } else if (strcmp(dev_type, "isa") == 0) 1924 bustype = BUS_ISA; 1925 else if (strcmp(dev_type, "eisa") == 0) 1926 bustype = BUS_EISA; 1927 1928 nonpci: 1929 if (apic_enable_acpi && !apic_use_acpi_madt_only) { 1930 /* search iso entries first */ 1931 if (acpi_iso_cnt != 0) { 1932 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop; 1933 i = 0; 1934 while (i < acpi_iso_cnt) { 1935 if (hp->Type == 1936 ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) { 1937 isop = 1938 (ACPI_MADT_INTERRUPT_OVERRIDE *) hp; 1939 if (isop->Bus == 0 && 1940 isop->SourceIrq == irqno) { 1941 newirq = isop->GlobalIrq; 1942 intr_flag.intr_po = 1943 isop->IntiFlags & 1944 ACPI_MADT_POLARITY_MASK; 1945 intr_flag.intr_el = 1946 (isop->IntiFlags & 1947 ACPI_MADT_TRIGGER_MASK) 1948 >> 2; 1949 intr_flag.bustype = BUS_ISA; 1950 1951 return (apic_setup_irq_table( 1952 dip, newirq, NULL, ispec, 1953 &intr_flag, type)); 1954 1955 } 1956 i++; 1957 } 1958 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) + 1959 hp->Length); 1960 } 1961 } 1962 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH; 1963 intr_flag.intr_el = INTR_EL_EDGE; 1964 intr_flag.bustype = BUS_ISA; 1965 return (apic_setup_irq_table(dip, irqno, NULL, ispec, 1966 &intr_flag, type)); 1967 } else { 1968 if (bustype == 0) 1969 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA; 1970 for (i = 0; i < 2; i++) { 1971 if (((busid = apic_find_bus_id(bustype)) != -1) && 1972 ((intrp = apic_find_io_intr_w_busid(irqno, busid)) 1973 != NULL)) { 1974 if ((newirq = apic_setup_irq_table(dip, irqno, 1975 intrp, ispec, NULL, type)) != -1) { 1976 return (newirq); 1977 } 1978 goto defconf; 1979 } 1980 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA; 1981 } 1982 } 1983 1984 /* MPS default configuration */ 1985 defconf: 1986 newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type); 1987 if (newirq == -1) 1988 return (-1); 1989 ASSERT(IRQINDEX(newirq) == irqno); 1990 ASSERT(apic_irq_table[irqno]); 1991 return (newirq); 1992 } 1993 1994 1995 1996 1997 1998 1999 /* 2000 * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge 2001 * needs special handling. We may need to chase up the device tree, 2002 * using the PCI-PCI Bridge specification's "rotating IPIN assumptions", 2003 * to find the IPIN at the root bus that relates to the IPIN on the 2004 * subsidiary bus (for ACPI or MP). We may, however, have an entry 2005 * in the MP table or the ACPI namespace for this device itself. 2006 * We handle both cases in the search below. 2007 */ 2008 /* this is the non-acpi version */ 2009 static int 2010 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin, 2011 struct apic_io_intr **intrp) 2012 { 2013 dev_info_t *dipp, *dip; 2014 int pci_irq; 2015 ddi_acc_handle_t cfg_handle; 2016 int bridge_devno, bridge_bus; 2017 int ipin; 2018 2019 dip = idip; 2020 2021 /*CONSTCOND*/ 2022 while (1) { 2023 if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) || 2024 (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS)) 2025 return (-1); 2026 if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) == 2027 PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle, 2028 PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) { 2029 pci_config_teardown(&cfg_handle); 2030 if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno, 2031 NULL) != 0) 2032 return (-1); 2033 /* 2034 * This is the rotating scheme documented in the 2035 * PCI-to-PCI spec. If the PCI-to-PCI bridge is 2036 * behind another PCI-to-PCI bridge, then it needs 2037 * to keep ascending until an interrupt entry is 2038 * found or the root is reached. 2039 */ 2040 ipin = (child_devno + child_ipin) % PCI_INTD; 2041 if (bridge_bus == 0 && apic_pci_bus_total == 1) 2042 bridge_bus = (int)apic_single_pci_busid; 2043 pci_irq = ((bridge_devno & 0x1f) << 2) | 2044 (ipin & 0x3); 2045 if ((*intrp = apic_find_io_intr_w_busid(pci_irq, 2046 bridge_bus)) != NULL) { 2047 return (pci_irq); 2048 } 2049 dip = dipp; 2050 child_devno = bridge_devno; 2051 child_ipin = ipin; 2052 } else { 2053 pci_config_teardown(&cfg_handle); 2054 return (-1); 2055 } 2056 } 2057 /*LINTED: function will not fall off the bottom */ 2058 } 2059 2060 2061 2062 2063 static uchar_t 2064 acpi_find_ioapic(int irq) 2065 { 2066 int i; 2067 2068 for (i = 0; i < apic_io_max; i++) { 2069 if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i]) 2070 return (i); 2071 } 2072 return (0xFF); /* shouldn't happen */ 2073 } 2074 2075 /* 2076 * See if two irqs are compatible for sharing a vector. 2077 * Currently we only support sharing of PCI devices. 2078 */ 2079 static int 2080 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2) 2081 { 2082 uint_t level1, po1; 2083 uint_t level2, po2; 2084 2085 /* Assume active high by default */ 2086 po1 = 0; 2087 po2 = 0; 2088 2089 if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI) 2090 return (0); 2091 2092 if (iflag1.intr_el == INTR_EL_CONFORM) 2093 level1 = AV_LEVEL; 2094 else 2095 level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 2096 2097 if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) || 2098 (iflag1.intr_po == INTR_PO_CONFORM))) 2099 po1 = AV_ACTIVE_LOW; 2100 2101 if (iflag2.intr_el == INTR_EL_CONFORM) 2102 level2 = AV_LEVEL; 2103 else 2104 level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 2105 2106 if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) || 2107 (iflag2.intr_po == INTR_PO_CONFORM))) 2108 po2 = AV_ACTIVE_LOW; 2109 2110 if ((level1 == level2) && (po1 == po2)) 2111 return (1); 2112 2113 return (0); 2114 } 2115 2116 /* 2117 * Attempt to share vector with someone else 2118 */ 2119 static int 2120 apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl, 2121 uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp) 2122 { 2123 #ifdef DEBUG 2124 apic_irq_t *tmpirqp = NULL; 2125 #endif /* DEBUG */ 2126 apic_irq_t *irqptr, dummyirq; 2127 int newirq, chosen_irq = -1, share = 127; 2128 int lowest, highest, i; 2129 uchar_t share_id; 2130 2131 DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x " 2132 "intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl)); 2133 2134 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; 2135 lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL; 2136 2137 if (highest < lowest) /* Both ipl and ipl-1 map to same pri */ 2138 lowest -= APIC_VECTOR_PER_IPL; 2139 dummyirq.airq_mps_intr_index = intr_index; 2140 dummyirq.airq_ioapicindex = ioapicindex; 2141 dummyirq.airq_intin_no = ipin; 2142 if (intr_flagp) 2143 dummyirq.airq_iflag = *intr_flagp; 2144 apic_record_rdt_entry(&dummyirq, irqno); 2145 for (i = lowest; i <= highest; i++) { 2146 newirq = apic_vector_to_irq[i]; 2147 if (newirq == APIC_RESV_IRQ) 2148 continue; 2149 irqptr = apic_irq_table[newirq]; 2150 2151 if ((dummyirq.airq_rdt_entry & 0xFF00) != 2152 (irqptr->airq_rdt_entry & 0xFF00)) 2153 /* not compatible */ 2154 continue; 2155 2156 if (irqptr->airq_share < share) { 2157 share = irqptr->airq_share; 2158 chosen_irq = newirq; 2159 } 2160 } 2161 if (chosen_irq != -1) { 2162 /* 2163 * Assign a share id which is free or which is larger 2164 * than the largest one. 2165 */ 2166 share_id = 1; 2167 mutex_enter(&airq_mutex); 2168 irqptr = apic_irq_table[chosen_irq]; 2169 while (irqptr) { 2170 if (irqptr->airq_mps_intr_index == FREE_INDEX) { 2171 share_id = irqptr->airq_share_id; 2172 break; 2173 } 2174 if (share_id <= irqptr->airq_share_id) 2175 share_id = irqptr->airq_share_id + 1; 2176 #ifdef DEBUG 2177 tmpirqp = irqptr; 2178 #endif /* DEBUG */ 2179 irqptr = irqptr->airq_next; 2180 } 2181 if (!irqptr) { 2182 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); 2183 irqptr->airq_temp_cpu = IRQ_UNINIT; 2184 irqptr->airq_next = 2185 apic_irq_table[chosen_irq]->airq_next; 2186 apic_irq_table[chosen_irq]->airq_next = irqptr; 2187 #ifdef DEBUG 2188 tmpirqp = apic_irq_table[chosen_irq]; 2189 #endif /* DEBUG */ 2190 } 2191 irqptr->airq_mps_intr_index = intr_index; 2192 irqptr->airq_ioapicindex = ioapicindex; 2193 irqptr->airq_intin_no = ipin; 2194 if (intr_flagp) 2195 irqptr->airq_iflag = *intr_flagp; 2196 irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector; 2197 irqptr->airq_share_id = share_id; 2198 apic_record_rdt_entry(irqptr, irqno); 2199 *irqptrp = irqptr; 2200 #ifdef DEBUG 2201 /* shuffle the pointers to test apic_delspl path */ 2202 if (tmpirqp) { 2203 tmpirqp->airq_next = irqptr->airq_next; 2204 irqptr->airq_next = apic_irq_table[chosen_irq]; 2205 apic_irq_table[chosen_irq] = irqptr; 2206 } 2207 #endif /* DEBUG */ 2208 mutex_exit(&airq_mutex); 2209 return (VIRTIRQ(chosen_irq, share_id)); 2210 } 2211 return (-1); 2212 } 2213 2214 /* 2215 * Allocate/Initialize the apic_irq_table[] entry for given irqno. If the entry 2216 * is used already, we will try to allocate a new irqno. 2217 * 2218 * Return value: 2219 * Success: irqno 2220 * Failure: -1 2221 */ 2222 static int 2223 apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp, 2224 struct intrspec *ispec, iflag_t *intr_flagp, int type) 2225 { 2226 int origirq = ispec->intrspec_vec; 2227 uchar_t ipl = ispec->intrspec_pri; 2228 int newirq, intr_index; 2229 uchar_t ipin, ioapic, ioapicindex, vector; 2230 apic_irq_t *irqptr; 2231 major_t major; 2232 dev_info_t *sdip; 2233 2234 DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d " 2235 "irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq)); 2236 2237 ASSERT(ispec != NULL); 2238 2239 major = (dip != NULL) ? ddi_driver_major(dip) : 0; 2240 2241 if (DDI_INTR_IS_MSI_OR_MSIX(type)) { 2242 /* MSI/X doesn't need to setup ioapic stuffs */ 2243 ioapicindex = 0xff; 2244 ioapic = 0xff; 2245 ipin = (uchar_t)0xff; 2246 intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX : 2247 MSIX_INDEX; 2248 mutex_enter(&airq_mutex); 2249 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == -1) { 2250 mutex_exit(&airq_mutex); 2251 /* need an irq for MSI/X to index into autovect[] */ 2252 cmn_err(CE_WARN, "No interrupt irq: %s instance %d", 2253 ddi_get_name(dip), ddi_get_instance(dip)); 2254 return (-1); 2255 } 2256 mutex_exit(&airq_mutex); 2257 2258 } else if (intrp != NULL) { 2259 intr_index = (int)(intrp - apic_io_intrp); 2260 ioapic = intrp->intr_destid; 2261 ipin = intrp->intr_destintin; 2262 /* Find ioapicindex. If destid was ALL, we will exit with 0. */ 2263 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--) 2264 if (apic_io_id[ioapicindex] == ioapic) 2265 break; 2266 ASSERT((ioapic == apic_io_id[ioapicindex]) || 2267 (ioapic == INTR_ALL_APIC)); 2268 2269 /* check whether this intin# has been used by another irqno */ 2270 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) { 2271 return (newirq); 2272 } 2273 2274 } else if (intr_flagp != NULL) { 2275 /* ACPI case */ 2276 intr_index = ACPI_INDEX; 2277 ioapicindex = acpi_find_ioapic(irqno); 2278 ASSERT(ioapicindex != 0xFF); 2279 ioapic = apic_io_id[ioapicindex]; 2280 ipin = irqno - apic_io_vectbase[ioapicindex]; 2281 if (apic_irq_table[irqno] && 2282 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) { 2283 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin && 2284 apic_irq_table[irqno]->airq_ioapicindex == 2285 ioapicindex); 2286 return (irqno); 2287 } 2288 2289 } else { 2290 /* default configuration */ 2291 ioapicindex = 0; 2292 ioapic = apic_io_id[ioapicindex]; 2293 ipin = (uchar_t)irqno; 2294 intr_index = DEFAULT_INDEX; 2295 } 2296 2297 if (ispec == NULL) { 2298 APIC_VERBOSE_IOAPIC((CE_WARN, "No intrspec for irqno = %x\n", 2299 irqno)); 2300 } else if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) { 2301 if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index, 2302 ipl, ioapicindex, ipin, &irqptr)) != -1) { 2303 irqptr->airq_ipl = ipl; 2304 irqptr->airq_origirq = (uchar_t)origirq; 2305 irqptr->airq_dip = dip; 2306 irqptr->airq_major = major; 2307 sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip; 2308 /* This is OK to do really */ 2309 if (sdip == NULL) { 2310 cmn_err(CE_WARN, "Sharing vectors: %s" 2311 " instance %d and SCI", 2312 ddi_get_name(dip), ddi_get_instance(dip)); 2313 } else { 2314 cmn_err(CE_WARN, "Sharing vectors: %s" 2315 " instance %d and %s instance %d", 2316 ddi_get_name(sdip), ddi_get_instance(sdip), 2317 ddi_get_name(dip), ddi_get_instance(dip)); 2318 } 2319 return (newirq); 2320 } 2321 /* try high priority allocation now that share has failed */ 2322 if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) { 2323 cmn_err(CE_WARN, "No interrupt vector: %s instance %d", 2324 ddi_get_name(dip), ddi_get_instance(dip)); 2325 return (-1); 2326 } 2327 } 2328 2329 mutex_enter(&airq_mutex); 2330 if (apic_irq_table[irqno] == NULL) { 2331 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); 2332 irqptr->airq_temp_cpu = IRQ_UNINIT; 2333 apic_irq_table[irqno] = irqptr; 2334 } else { 2335 irqptr = apic_irq_table[irqno]; 2336 if (irqptr->airq_mps_intr_index != FREE_INDEX) { 2337 /* 2338 * The slot is used by another irqno, so allocate 2339 * a free irqno for this interrupt 2340 */ 2341 newirq = apic_allocate_irq(apic_first_avail_irq); 2342 if (newirq == -1) { 2343 mutex_exit(&airq_mutex); 2344 return (-1); 2345 } 2346 irqno = newirq; 2347 irqptr = apic_irq_table[irqno]; 2348 if (irqptr == NULL) { 2349 irqptr = kmem_zalloc(sizeof (apic_irq_t), 2350 KM_SLEEP); 2351 irqptr->airq_temp_cpu = IRQ_UNINIT; 2352 apic_irq_table[irqno] = irqptr; 2353 } 2354 vector = apic_modify_vector(vector, newirq); 2355 } 2356 } 2357 apic_max_device_irq = max(irqno, apic_max_device_irq); 2358 apic_min_device_irq = min(irqno, apic_min_device_irq); 2359 mutex_exit(&airq_mutex); 2360 irqptr->airq_ioapicindex = ioapicindex; 2361 irqptr->airq_intin_no = ipin; 2362 irqptr->airq_ipl = ipl; 2363 irqptr->airq_vector = vector; 2364 irqptr->airq_origirq = (uchar_t)origirq; 2365 irqptr->airq_share_id = 0; 2366 irqptr->airq_mps_intr_index = (short)intr_index; 2367 irqptr->airq_dip = dip; 2368 irqptr->airq_major = major; 2369 irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin); 2370 if (intr_flagp) 2371 irqptr->airq_iflag = *intr_flagp; 2372 2373 if (!DDI_INTR_IS_MSI_OR_MSIX(type)) { 2374 /* setup I/O APIC entry for non-MSI/X interrupts */ 2375 apic_record_rdt_entry(irqptr, irqno); 2376 } 2377 return (irqno); 2378 } 2379 2380 /* 2381 * return the cpu to which this intr should be bound. 2382 * Check properties or any other mechanism to see if user wants it 2383 * bound to a specific CPU. If so, return the cpu id with high bit set. 2384 * If not, use the policy to choose a cpu and return the id. 2385 */ 2386 uint32_t 2387 apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin) 2388 { 2389 int instance, instno, prop_len, bind_cpu, count; 2390 uint_t i, rc; 2391 uint32_t cpu; 2392 major_t major; 2393 char *name, *drv_name, *prop_val, *cptr; 2394 char prop_name[32]; 2395 2396 2397 if (apic_intr_policy == INTR_LOWEST_PRIORITY) 2398 return (IRQ_UNBOUND); 2399 2400 if (apic_nproc == 1) 2401 return (0); 2402 2403 drv_name = NULL; 2404 rc = DDI_PROP_NOT_FOUND; 2405 major = (major_t)-1; 2406 if (dip != NULL) { 2407 name = ddi_get_name(dip); 2408 major = ddi_name_to_major(name); 2409 drv_name = ddi_major_to_name(major); 2410 instance = ddi_get_instance(dip); 2411 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) { 2412 i = apic_min_device_irq; 2413 for (; i <= apic_max_device_irq; i++) { 2414 2415 if ((i == irq) || (apic_irq_table[i] == NULL) || 2416 (apic_irq_table[i]->airq_mps_intr_index 2417 == FREE_INDEX)) 2418 continue; 2419 2420 if ((apic_irq_table[i]->airq_major == major) && 2421 (!(apic_irq_table[i]->airq_cpu & 2422 IRQ_USER_BOUND))) { 2423 2424 cpu = apic_irq_table[i]->airq_cpu; 2425 2426 cmn_err(CE_CONT, 2427 "!%s: %s (%s) instance #%d " 2428 "irq 0x%x vector 0x%x ioapic 0x%x " 2429 "intin 0x%x is bound to cpu %d\n", 2430 psm_name, 2431 name, drv_name, instance, irq, 2432 apic_irq_table[irq]->airq_vector, 2433 ioapicid, intin, cpu); 2434 return (cpu); 2435 } 2436 } 2437 } 2438 /* 2439 * search for "drvname"_intpt_bind_cpus property first, the 2440 * syntax of the property should be "a[,b,c,...]" where 2441 * instance 0 binds to cpu a, instance 1 binds to cpu b, 2442 * instance 3 binds to cpu c... 2443 * ddi_getlongprop() will search /option first, then / 2444 * if "drvname"_intpt_bind_cpus doesn't exist, then find 2445 * intpt_bind_cpus property. The syntax is the same, and 2446 * it applies to all the devices if its "drvname" specific 2447 * property doesn't exist 2448 */ 2449 (void) strcpy(prop_name, drv_name); 2450 (void) strcat(prop_name, "_intpt_bind_cpus"); 2451 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name, 2452 (caddr_t)&prop_val, &prop_len); 2453 if (rc != DDI_PROP_SUCCESS) { 2454 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, 2455 "intpt_bind_cpus", (caddr_t)&prop_val, &prop_len); 2456 } 2457 } 2458 if (rc == DDI_PROP_SUCCESS) { 2459 for (i = count = 0; i < (prop_len - 1); i++) 2460 if (prop_val[i] == ',') 2461 count++; 2462 if (prop_val[i-1] != ',') 2463 count++; 2464 /* 2465 * if somehow the binding instances defined in the 2466 * property are not enough for this instno., then 2467 * reuse the pattern for the next instance until 2468 * it reaches the requested instno 2469 */ 2470 instno = instance % count; 2471 i = 0; 2472 cptr = prop_val; 2473 while (i < instno) 2474 if (*cptr++ == ',') 2475 i++; 2476 bind_cpu = stoi(&cptr); 2477 kmem_free(prop_val, prop_len); 2478 /* if specific cpu is bogus, then default to cpu 0 */ 2479 if (bind_cpu >= apic_nproc) { 2480 cmn_err(CE_WARN, "%s: %s=%s: CPU %d not present", 2481 psm_name, prop_name, prop_val, bind_cpu); 2482 bind_cpu = 0; 2483 } else { 2484 /* indicate that we are bound at user request */ 2485 bind_cpu |= IRQ_USER_BOUND; 2486 } 2487 /* 2488 * no need to check apic_cpus[].aci_status, if specific cpu is 2489 * not up, then post_cpu_start will handle it. 2490 */ 2491 } else { 2492 bind_cpu = apic_next_bind_cpu++; 2493 if (bind_cpu >= apic_nproc) { 2494 apic_next_bind_cpu = 1; 2495 bind_cpu = 0; 2496 } 2497 } 2498 if (drv_name != NULL) 2499 cmn_err(CE_CONT, "!%s: %s (%s) instance %d irq 0x%x " 2500 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n", 2501 psm_name, name, drv_name, instance, irq, 2502 apic_irq_table[irq]->airq_vector, ioapicid, intin, 2503 bind_cpu & ~IRQ_USER_BOUND); 2504 else 2505 cmn_err(CE_CONT, "!%s: irq 0x%x " 2506 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n", 2507 psm_name, irq, apic_irq_table[irq]->airq_vector, ioapicid, 2508 intin, bind_cpu & ~IRQ_USER_BOUND); 2509 2510 return ((uint32_t)bind_cpu); 2511 } 2512 2513 static struct apic_io_intr * 2514 apic_find_io_intr_w_busid(int irqno, int busid) 2515 { 2516 struct apic_io_intr *intrp; 2517 2518 /* 2519 * It can have more than 1 entry with same source bus IRQ, 2520 * but unique with the source bus id 2521 */ 2522 intrp = apic_io_intrp; 2523 if (intrp != NULL) { 2524 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 2525 if (intrp->intr_irq == irqno && 2526 intrp->intr_busid == busid && 2527 intrp->intr_type == IO_INTR_INT) 2528 return (intrp); 2529 intrp++; 2530 } 2531 } 2532 APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:" 2533 "busid %x:%x\n", irqno, busid)); 2534 return ((struct apic_io_intr *)NULL); 2535 } 2536 2537 2538 struct mps_bus_info { 2539 char *bus_name; 2540 int bus_id; 2541 } bus_info_array[] = { 2542 "ISA ", BUS_ISA, 2543 "PCI ", BUS_PCI, 2544 "EISA ", BUS_EISA, 2545 "XPRESS", BUS_XPRESS, 2546 "PCMCIA", BUS_PCMCIA, 2547 "VL ", BUS_VL, 2548 "CBUS ", BUS_CBUS, 2549 "CBUSII", BUS_CBUSII, 2550 "FUTURE", BUS_FUTURE, 2551 "INTERN", BUS_INTERN, 2552 "MBI ", BUS_MBI, 2553 "MBII ", BUS_MBII, 2554 "MPI ", BUS_MPI, 2555 "MPSA ", BUS_MPSA, 2556 "NUBUS ", BUS_NUBUS, 2557 "TC ", BUS_TC, 2558 "VME ", BUS_VME, 2559 "PCI-E ", BUS_PCIE 2560 }; 2561 2562 static int 2563 apic_find_bus_type(char *bus) 2564 { 2565 int i = 0; 2566 2567 for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++) 2568 if (strncmp(bus, bus_info_array[i].bus_name, 2569 strlen(bus_info_array[i].bus_name)) == 0) 2570 return (bus_info_array[i].bus_id); 2571 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus)); 2572 return (0); 2573 } 2574 2575 static int 2576 apic_find_bus(int busid) 2577 { 2578 struct apic_bus *busp; 2579 2580 busp = apic_busp; 2581 while (busp->bus_entry == APIC_BUS_ENTRY) { 2582 if (busp->bus_id == busid) 2583 return (apic_find_bus_type((char *)&busp->bus_str1)); 2584 busp++; 2585 } 2586 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid)); 2587 return (0); 2588 } 2589 2590 static int 2591 apic_find_bus_id(int bustype) 2592 { 2593 struct apic_bus *busp; 2594 2595 busp = apic_busp; 2596 while (busp->bus_entry == APIC_BUS_ENTRY) { 2597 if (apic_find_bus_type((char *)&busp->bus_str1) == bustype) 2598 return (busp->bus_id); 2599 busp++; 2600 } 2601 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x", 2602 bustype)); 2603 return (-1); 2604 } 2605 2606 /* 2607 * Check if a particular irq need to be reserved for any io_intr 2608 */ 2609 static struct apic_io_intr * 2610 apic_find_io_intr(int irqno) 2611 { 2612 struct apic_io_intr *intrp; 2613 2614 intrp = apic_io_intrp; 2615 if (intrp != NULL) { 2616 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 2617 if (intrp->intr_irq == irqno && 2618 intrp->intr_type == IO_INTR_INT) 2619 return (intrp); 2620 intrp++; 2621 } 2622 } 2623 return ((struct apic_io_intr *)NULL); 2624 } 2625 2626 /* 2627 * Check if the given ioapicindex intin combination has already been assigned 2628 * an irq. If so return irqno. Else -1 2629 */ 2630 static int 2631 apic_find_intin(uchar_t ioapic, uchar_t intin) 2632 { 2633 apic_irq_t *irqptr; 2634 int i; 2635 2636 /* find ioapic and intin in the apic_irq_table[] and return the index */ 2637 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 2638 irqptr = apic_irq_table[i]; 2639 while (irqptr) { 2640 if ((irqptr->airq_mps_intr_index >= 0) && 2641 (irqptr->airq_intin_no == intin) && 2642 (irqptr->airq_ioapicindex == ioapic)) { 2643 APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq " 2644 "entry for ioapic:intin %x:%x " 2645 "shared interrupts ?", ioapic, intin)); 2646 return (i); 2647 } 2648 irqptr = irqptr->airq_next; 2649 } 2650 } 2651 return (-1); 2652 } 2653 2654 int 2655 apic_allocate_irq(int irq) 2656 { 2657 int freeirq, i; 2658 2659 if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1) 2660 if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ, 2661 (irq - 1))) == -1) { 2662 /* 2663 * if BIOS really defines every single irq in the mps 2664 * table, then don't worry about conflicting with 2665 * them, just use any free slot in apic_irq_table 2666 */ 2667 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 2668 if ((apic_irq_table[i] == NULL) || 2669 apic_irq_table[i]->airq_mps_intr_index == 2670 FREE_INDEX) { 2671 freeirq = i; 2672 break; 2673 } 2674 } 2675 if (freeirq == -1) { 2676 /* This shouldn't happen, but just in case */ 2677 cmn_err(CE_WARN, "%s: NO available IRQ", psm_name); 2678 return (-1); 2679 } 2680 } 2681 if (apic_irq_table[freeirq] == NULL) { 2682 apic_irq_table[freeirq] = 2683 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); 2684 if (apic_irq_table[freeirq] == NULL) { 2685 cmn_err(CE_WARN, "%s: NO memory to allocate IRQ", 2686 psm_name); 2687 return (-1); 2688 } 2689 apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT; 2690 apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX; 2691 } 2692 return (freeirq); 2693 } 2694 2695 static int 2696 apic_find_free_irq(int start, int end) 2697 { 2698 int i; 2699 2700 for (i = start; i <= end; i++) 2701 /* Check if any I/O entry needs this IRQ */ 2702 if (apic_find_io_intr(i) == NULL) { 2703 /* Then see if it is free */ 2704 if ((apic_irq_table[i] == NULL) || 2705 (apic_irq_table[i]->airq_mps_intr_index == 2706 FREE_INDEX)) { 2707 return (i); 2708 } 2709 } 2710 return (-1); 2711 } 2712 2713 2714 /* 2715 * Mark vector as being in the process of being deleted. Interrupts 2716 * may still come in on some CPU. The moment an interrupt comes with 2717 * the new vector, we know we can free the old one. Called only from 2718 * addspl and delspl with interrupts disabled. Because an interrupt 2719 * can be shared, but no interrupt from either device may come in, 2720 * we also use a timeout mechanism, which we arbitrarily set to 2721 * apic_revector_timeout microseconds. 2722 */ 2723 static void 2724 apic_mark_vector(uchar_t oldvector, uchar_t newvector) 2725 { 2726 ulong_t iflag; 2727 2728 iflag = intr_clear(); 2729 lock_set(&apic_revector_lock); 2730 if (!apic_oldvec_to_newvec) { 2731 apic_oldvec_to_newvec = 2732 kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2, 2733 KM_NOSLEEP); 2734 2735 if (!apic_oldvec_to_newvec) { 2736 /* 2737 * This failure is not catastrophic. 2738 * But, the oldvec will never be freed. 2739 */ 2740 apic_error |= APIC_ERR_MARK_VECTOR_FAIL; 2741 lock_clear(&apic_revector_lock); 2742 intr_restore(iflag); 2743 return; 2744 } 2745 apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR]; 2746 } 2747 2748 /* See if we already did this for drivers which do double addintrs */ 2749 if (apic_oldvec_to_newvec[oldvector] != newvector) { 2750 apic_oldvec_to_newvec[oldvector] = newvector; 2751 apic_newvec_to_oldvec[newvector] = oldvector; 2752 apic_revector_pending++; 2753 } 2754 lock_clear(&apic_revector_lock); 2755 intr_restore(iflag); 2756 (void) timeout(apic_xlate_vector_free_timeout_handler, 2757 (void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout)); 2758 } 2759 2760 /* 2761 * xlate_vector is called from intr_enter if revector_pending is set. 2762 * It will xlate it if needed and mark the old vector as free. 2763 */ 2764 uchar_t 2765 apic_xlate_vector(uchar_t vector) 2766 { 2767 uchar_t newvector, oldvector = 0; 2768 2769 lock_set(&apic_revector_lock); 2770 /* Do we really need to do this ? */ 2771 if (!apic_revector_pending) { 2772 lock_clear(&apic_revector_lock); 2773 return (vector); 2774 } 2775 if ((newvector = apic_oldvec_to_newvec[vector]) != 0) 2776 oldvector = vector; 2777 else { 2778 /* 2779 * The incoming vector is new . See if a stale entry is 2780 * remaining 2781 */ 2782 if ((oldvector = apic_newvec_to_oldvec[vector]) != 0) 2783 newvector = vector; 2784 } 2785 2786 if (oldvector) { 2787 apic_revector_pending--; 2788 apic_oldvec_to_newvec[oldvector] = 0; 2789 apic_newvec_to_oldvec[newvector] = 0; 2790 apic_free_vector(oldvector); 2791 lock_clear(&apic_revector_lock); 2792 /* There could have been more than one reprogramming! */ 2793 return (apic_xlate_vector(newvector)); 2794 } 2795 lock_clear(&apic_revector_lock); 2796 return (vector); 2797 } 2798 2799 void 2800 apic_xlate_vector_free_timeout_handler(void *arg) 2801 { 2802 ulong_t iflag; 2803 uchar_t oldvector, newvector; 2804 2805 oldvector = (uchar_t)(uintptr_t)arg; 2806 iflag = intr_clear(); 2807 lock_set(&apic_revector_lock); 2808 if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) { 2809 apic_free_vector(oldvector); 2810 apic_oldvec_to_newvec[oldvector] = 0; 2811 apic_newvec_to_oldvec[newvector] = 0; 2812 apic_revector_pending--; 2813 } 2814 2815 lock_clear(&apic_revector_lock); 2816 intr_restore(iflag); 2817 } 2818 2819 2820 /* 2821 * compute the polarity, trigger mode and vector for programming into 2822 * the I/O apic and record in airq_rdt_entry. 2823 */ 2824 static void 2825 apic_record_rdt_entry(apic_irq_t *irqptr, int irq) 2826 { 2827 int ioapicindex, bus_type, vector; 2828 short intr_index; 2829 uint_t level, po, io_po; 2830 struct apic_io_intr *iointrp; 2831 2832 intr_index = irqptr->airq_mps_intr_index; 2833 DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d " 2834 "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq, 2835 (void *)irqptr->airq_dip, irqptr->airq_vector)); 2836 2837 if (intr_index == RESERVE_INDEX) { 2838 apic_error |= APIC_ERR_INVALID_INDEX; 2839 return; 2840 } else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) { 2841 return; 2842 } 2843 2844 vector = irqptr->airq_vector; 2845 ioapicindex = irqptr->airq_ioapicindex; 2846 /* Assume edge triggered by default */ 2847 level = 0; 2848 /* Assume active high by default */ 2849 po = 0; 2850 2851 if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) { 2852 ASSERT(irq < 16); 2853 if (eisa_level_intr_mask & (1 << irq)) 2854 level = AV_LEVEL; 2855 if (intr_index == FREE_INDEX && apic_defconf == 0) 2856 apic_error |= APIC_ERR_INVALID_INDEX; 2857 } else if (intr_index == ACPI_INDEX) { 2858 bus_type = irqptr->airq_iflag.bustype; 2859 if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) { 2860 if (bus_type == BUS_PCI) 2861 level = AV_LEVEL; 2862 } else 2863 level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ? 2864 AV_LEVEL : 0; 2865 if (level && 2866 ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) || 2867 (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM && 2868 bus_type == BUS_PCI))) 2869 po = AV_ACTIVE_LOW; 2870 } else { 2871 iointrp = apic_io_intrp + intr_index; 2872 bus_type = apic_find_bus(iointrp->intr_busid); 2873 if (iointrp->intr_el == INTR_EL_CONFORM) { 2874 if ((irq < 16) && (eisa_level_intr_mask & (1 << irq))) 2875 level = AV_LEVEL; 2876 else if (bus_type == BUS_PCI) 2877 level = AV_LEVEL; 2878 } else 2879 level = (iointrp->intr_el == INTR_EL_LEVEL) ? 2880 AV_LEVEL : 0; 2881 if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) || 2882 (iointrp->intr_po == INTR_PO_CONFORM && 2883 bus_type == BUS_PCI))) 2884 po = AV_ACTIVE_LOW; 2885 } 2886 if (level) 2887 apic_level_intr[irq] = 1; 2888 /* 2889 * The 82489DX External APIC cannot do active low polarity interrupts. 2890 */ 2891 if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX)) 2892 io_po = po; 2893 else 2894 io_po = 0; 2895 2896 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) 2897 printf("setio: ioapic=%x intin=%x level=%x po=%x vector=%x\n", 2898 ioapicindex, irqptr->airq_intin_no, level, io_po, vector); 2899 2900 irqptr->airq_rdt_entry = level|io_po|vector; 2901 } 2902 2903 /* 2904 * Bind interrupt corresponding to irq_ptr to bind_cpu. 2905 * Must be called with interrupts disabled and apic_ioapic_lock held 2906 */ 2907 int 2908 apic_rebind(apic_irq_t *irq_ptr, int bind_cpu, 2909 struct ioapic_reprogram_data *drep) 2910 { 2911 int ioapicindex, intin_no; 2912 uint32_t airq_temp_cpu; 2913 apic_cpus_info_t *cpu_infop; 2914 uint32_t rdt_entry; 2915 int which_irq; 2916 ioapic_rdt_t irdt; 2917 2918 which_irq = apic_vector_to_irq[irq_ptr->airq_vector]; 2919 2920 intin_no = irq_ptr->airq_intin_no; 2921 ioapicindex = irq_ptr->airq_ioapicindex; 2922 airq_temp_cpu = irq_ptr->airq_temp_cpu; 2923 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) { 2924 if (airq_temp_cpu & IRQ_USER_BOUND) 2925 /* Mask off high bit so it can be used as array index */ 2926 airq_temp_cpu &= ~IRQ_USER_BOUND; 2927 2928 ASSERT(airq_temp_cpu < apic_nproc); 2929 } 2930 2931 /* 2932 * Can't bind to a CPU that's not accepting interrupts: 2933 */ 2934 cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND]; 2935 if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE)) 2936 return (1); 2937 2938 /* 2939 * If we are about to change the interrupt vector for this interrupt, 2940 * and this interrupt is level-triggered, attached to an IOAPIC, 2941 * has been delivered to a CPU and that CPU has not handled it 2942 * yet, we cannot reprogram the IOAPIC now. 2943 */ 2944 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) { 2945 2946 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, 2947 intin_no); 2948 2949 if ((irq_ptr->airq_vector != RDT_VECTOR(rdt_entry)) && 2950 apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu, 2951 bind_cpu, ioapicindex, intin_no, which_irq, drep) != 0) { 2952 2953 return (0); 2954 } 2955 2956 /* 2957 * NOTE: We do not unmask the RDT here, as an interrupt MAY 2958 * still come in before we have a chance to reprogram it below. 2959 * The reprogramming below will simultaneously change and 2960 * unmask the RDT entry. 2961 */ 2962 2963 if ((uint32_t)bind_cpu == IRQ_UNBOUND) { 2964 irdt.ir_lo = AV_LDEST | AV_LOPRI | 2965 irq_ptr->airq_rdt_entry; 2966 #if !defined(__xpv) 2967 irdt.ir_hi = AV_TOALL >> APIC_ID_BIT_OFFSET; 2968 2969 apic_vt_ops->apic_intrr_alloc_entry(irq_ptr); 2970 apic_vt_ops->apic_intrr_map_entry( 2971 irq_ptr, (void *)&irdt); 2972 apic_vt_ops->apic_intrr_record_rdt(irq_ptr, &irdt); 2973 2974 /* Write the RDT entry -- no specific CPU binding */ 2975 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 2976 irdt.ir_hi | AV_TOALL); 2977 #else 2978 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 2979 AV_TOALL); 2980 #endif 2981 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != 2982 IRQ_UNBOUND) 2983 apic_cpus[airq_temp_cpu].aci_temp_bound--; 2984 2985 /* 2986 * Write the vector, trigger, and polarity portion of 2987 * the RDT 2988 */ 2989 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no, 2990 irdt.ir_lo); 2991 2992 irq_ptr->airq_temp_cpu = IRQ_UNBOUND; 2993 return (0); 2994 } 2995 } 2996 2997 if (bind_cpu & IRQ_USER_BOUND) { 2998 cpu_infop->aci_bound++; 2999 } else { 3000 cpu_infop->aci_temp_bound++; 3001 } 3002 ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc); 3003 3004 if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) { 3005 apic_cpus[airq_temp_cpu].aci_temp_bound--; 3006 } 3007 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) { 3008 3009 irdt.ir_lo = AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry; 3010 irdt.ir_hi = cpu_infop->aci_local_id; 3011 3012 #if !defined(__xpv) 3013 apic_vt_ops->apic_intrr_alloc_entry(irq_ptr); 3014 apic_vt_ops->apic_intrr_map_entry(irq_ptr, (void *)&irdt); 3015 apic_vt_ops->apic_intrr_record_rdt(irq_ptr, &irdt); 3016 3017 /* Write the RDT entry -- bind to a specific CPU: */ 3018 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 3019 irdt.ir_hi); 3020 #else 3021 /* Write the RDT entry -- bind to a specific CPU: */ 3022 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 3023 irdt.ir_hi << APIC_ID_BIT_OFFSET); 3024 #endif 3025 /* Write the vector, trigger, and polarity portion of the RDT */ 3026 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no, 3027 irdt.ir_lo); 3028 3029 } else { 3030 int type = (irq_ptr->airq_mps_intr_index == MSI_INDEX) ? 3031 DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX; 3032 if (type == DDI_INTR_TYPE_MSI) { 3033 if (irq_ptr->airq_ioapicindex == 3034 irq_ptr->airq_origirq) { 3035 /* first one */ 3036 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call " 3037 "apic_pci_msi_enable_vector\n")); 3038 apic_pci_msi_enable_vector(irq_ptr, 3039 type, which_irq, irq_ptr->airq_vector, 3040 irq_ptr->airq_intin_no, 3041 cpu_infop->aci_local_id); 3042 } 3043 if ((irq_ptr->airq_ioapicindex + 3044 irq_ptr->airq_intin_no - 1) == 3045 irq_ptr->airq_origirq) { /* last one */ 3046 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call " 3047 "apic_pci_msi_enable_mode\n")); 3048 apic_pci_msi_enable_mode(irq_ptr->airq_dip, 3049 type, which_irq); 3050 } 3051 } else { /* MSI-X */ 3052 apic_pci_msi_enable_vector(irq_ptr, type, 3053 irq_ptr->airq_origirq, irq_ptr->airq_vector, 1, 3054 cpu_infop->aci_local_id); 3055 apic_pci_msi_enable_mode(irq_ptr->airq_dip, type, 3056 irq_ptr->airq_origirq); 3057 } 3058 } 3059 irq_ptr->airq_temp_cpu = (uint32_t)bind_cpu; 3060 apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND)); 3061 return (0); 3062 } 3063 3064 static void 3065 apic_last_ditch_clear_remote_irr(int ioapic_ix, int intin_no) 3066 { 3067 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) 3068 & AV_REMOTE_IRR) != 0) { 3069 /* 3070 * Trying to clear the bit through normal 3071 * channels has failed. So as a last-ditch 3072 * effort, try to set the trigger mode to 3073 * edge, then to level. This has been 3074 * observed to work on many systems. 3075 */ 3076 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3077 intin_no, 3078 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3079 intin_no) & ~AV_LEVEL); 3080 3081 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3082 intin_no, 3083 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3084 intin_no) | AV_LEVEL); 3085 3086 /* 3087 * If the bit's STILL set, this interrupt may 3088 * be hosed. 3089 */ 3090 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3091 intin_no) & AV_REMOTE_IRR) != 0) { 3092 3093 prom_printf("%s: Remote IRR still " 3094 "not clear for IOAPIC %d intin %d.\n" 3095 "\tInterrupts to this pin may cease " 3096 "functioning.\n", psm_name, ioapic_ix, 3097 intin_no); 3098 #ifdef DEBUG 3099 apic_last_ditch_reprogram_failures++; 3100 #endif 3101 } 3102 } 3103 } 3104 3105 /* 3106 * This function is protected by apic_ioapic_lock coupled with the 3107 * fact that interrupts are disabled. 3108 */ 3109 static void 3110 delete_defer_repro_ent(int which_irq) 3111 { 3112 ASSERT(which_irq >= 0); 3113 ASSERT(which_irq <= 255); 3114 3115 if (apic_reprogram_info[which_irq].done) 3116 return; 3117 3118 apic_reprogram_info[which_irq].done = B_TRUE; 3119 3120 #ifdef DEBUG 3121 apic_defer_repro_total_retries += 3122 apic_reprogram_info[which_irq].tries; 3123 3124 apic_defer_repro_successes++; 3125 #endif 3126 3127 if (--apic_reprogram_outstanding == 0) { 3128 3129 setlvlx = psm_intr_exit_fn(); 3130 } 3131 } 3132 3133 3134 /* 3135 * Interrupts must be disabled during this function to prevent 3136 * self-deadlock. Interrupts are disabled because this function 3137 * is called from apic_check_stuck_interrupt(), which is called 3138 * from apic_rebind(), which requires its caller to disable interrupts. 3139 */ 3140 static void 3141 add_defer_repro_ent(apic_irq_t *irq_ptr, int which_irq, int new_bind_cpu) 3142 { 3143 ASSERT(which_irq >= 0); 3144 ASSERT(which_irq <= 255); 3145 3146 /* 3147 * On the off-chance that there's already a deferred 3148 * reprogramming on this irq, check, and if so, just update the 3149 * CPU and irq pointer to which the interrupt is targeted, then return. 3150 */ 3151 if (!apic_reprogram_info[which_irq].done) { 3152 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu; 3153 apic_reprogram_info[which_irq].irqp = irq_ptr; 3154 return; 3155 } 3156 3157 apic_reprogram_info[which_irq].irqp = irq_ptr; 3158 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu; 3159 apic_reprogram_info[which_irq].tries = 0; 3160 /* 3161 * This must be the last thing set, since we're not 3162 * grabbing any locks, apic_try_deferred_reprogram() will 3163 * make its decision about using this entry iff done 3164 * is false. 3165 */ 3166 apic_reprogram_info[which_irq].done = B_FALSE; 3167 3168 /* 3169 * If there were previously no deferred reprogrammings, change 3170 * setlvlx to call apic_try_deferred_reprogram() 3171 */ 3172 if (++apic_reprogram_outstanding == 1) { 3173 3174 setlvlx = apic_try_deferred_reprogram; 3175 } 3176 } 3177 3178 static void 3179 apic_try_deferred_reprogram(int prev_ipl, int irq) 3180 { 3181 int reproirq; 3182 ulong_t iflag; 3183 struct ioapic_reprogram_data *drep; 3184 3185 (*psm_intr_exit_fn())(prev_ipl, irq); 3186 3187 if (!lock_try(&apic_defer_reprogram_lock)) { 3188 return; 3189 } 3190 3191 /* 3192 * Acquire the apic_ioapic_lock so that any other operations that 3193 * may affect the apic_reprogram_info state are serialized. 3194 * It's still possible for the last deferred reprogramming to clear 3195 * between the time we entered this function and the time we get to 3196 * the for loop below. In that case, *setlvlx will have been set 3197 * back to *_intr_exit and drep will be NULL. (There's no way to 3198 * stop that from happening -- we would need to grab a lock before 3199 * calling *setlvlx, which is neither realistic nor prudent). 3200 */ 3201 iflag = intr_clear(); 3202 lock_set(&apic_ioapic_lock); 3203 3204 /* 3205 * For each deferred RDT entry, try to reprogram it now. Note that 3206 * there is no lock acquisition to read apic_reprogram_info because 3207 * '.done' is set only after the other fields in the structure are set. 3208 */ 3209 3210 drep = NULL; 3211 for (reproirq = 0; reproirq <= APIC_MAX_VECTOR; reproirq++) { 3212 if (apic_reprogram_info[reproirq].done == B_FALSE) { 3213 drep = &apic_reprogram_info[reproirq]; 3214 break; 3215 } 3216 } 3217 3218 /* 3219 * Either we found a deferred action to perform, or 3220 * we entered this function spuriously, after *setlvlx 3221 * was restored to point to *_intr_exit. Any other 3222 * permutation is invalid. 3223 */ 3224 ASSERT(drep != NULL || *setlvlx == psm_intr_exit_fn()); 3225 3226 /* 3227 * Though we can't really do anything about errors 3228 * at this point, keep track of them for reporting. 3229 * Note that it is very possible for apic_setup_io_intr 3230 * to re-register this very timeout if the Remote IRR bit 3231 * has not yet cleared. 3232 */ 3233 3234 #ifdef DEBUG 3235 if (drep != NULL) { 3236 if (apic_setup_io_intr(drep, reproirq, B_TRUE) != 0) { 3237 apic_deferred_setup_failures++; 3238 } 3239 } else { 3240 apic_deferred_spurious_enters++; 3241 } 3242 #else 3243 if (drep != NULL) 3244 (void) apic_setup_io_intr(drep, reproirq, B_TRUE); 3245 #endif 3246 3247 lock_clear(&apic_ioapic_lock); 3248 intr_restore(iflag); 3249 3250 lock_clear(&apic_defer_reprogram_lock); 3251 } 3252 3253 static void 3254 apic_ioapic_wait_pending_clear(int ioapic_ix, int intin_no) 3255 { 3256 int waited; 3257 3258 /* 3259 * Wait for the delivery pending bit to clear. 3260 */ 3261 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & 3262 (AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) { 3263 3264 /* 3265 * If we're still waiting on the delivery of this interrupt, 3266 * continue to wait here until it is delivered (this should be 3267 * a very small amount of time, but include a timeout just in 3268 * case). 3269 */ 3270 for (waited = 0; waited < apic_max_reps_clear_pending; 3271 waited++) { 3272 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3273 intin_no) & AV_PENDING) == 0) { 3274 break; 3275 } 3276 } 3277 } 3278 } 3279 3280 3281 /* 3282 * Checks to see if the IOAPIC interrupt entry specified has its Remote IRR 3283 * bit set. Calls functions that modify the function that setlvlx points to, 3284 * so that the reprogramming can be retried very shortly. 3285 * 3286 * This function will mask the RDT entry if the interrupt is level-triggered. 3287 * (The caller is responsible for unmasking the RDT entry.) 3288 * 3289 * Returns non-zero if the caller should defer IOAPIC reprogramming. 3290 */ 3291 static int 3292 apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu, 3293 int new_bind_cpu, int ioapic_ix, int intin_no, int which_irq, 3294 struct ioapic_reprogram_data *drep) 3295 { 3296 int32_t rdt_entry; 3297 int waited; 3298 int reps = 0; 3299 3300 /* 3301 * Wait for the delivery pending bit to clear. 3302 */ 3303 do { 3304 ++reps; 3305 3306 apic_ioapic_wait_pending_clear(ioapic_ix, intin_no); 3307 3308 /* 3309 * Mask the RDT entry, but only if it's a level-triggered 3310 * interrupt 3311 */ 3312 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3313 intin_no); 3314 if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) { 3315 3316 /* Mask it */ 3317 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, 3318 AV_MASK | rdt_entry); 3319 } 3320 3321 if ((rdt_entry & AV_LEVEL) == AV_LEVEL) { 3322 /* 3323 * If there was a race and an interrupt was injected 3324 * just before we masked, check for that case here. 3325 * Then, unmask the RDT entry and try again. If we're 3326 * on our last try, don't unmask (because we want the 3327 * RDT entry to remain masked for the rest of the 3328 * function). 3329 */ 3330 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3331 intin_no); 3332 if ((rdt_entry & AV_PENDING) && 3333 (reps < apic_max_reps_clear_pending)) { 3334 /* Unmask it */ 3335 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3336 intin_no, rdt_entry & ~AV_MASK); 3337 } 3338 } 3339 3340 } while ((rdt_entry & AV_PENDING) && 3341 (reps < apic_max_reps_clear_pending)); 3342 3343 #ifdef DEBUG 3344 if (rdt_entry & AV_PENDING) 3345 apic_intr_deliver_timeouts++; 3346 #endif 3347 3348 /* 3349 * If the remote IRR bit is set, then the interrupt has been sent 3350 * to a CPU for processing. We have no choice but to wait for 3351 * that CPU to process the interrupt, at which point the remote IRR 3352 * bit will be cleared. 3353 */ 3354 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & 3355 (AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) { 3356 3357 /* 3358 * If the CPU that this RDT is bound to is NOT the current 3359 * CPU, wait until that CPU handles the interrupt and ACKs 3360 * it. If this interrupt is not bound to any CPU (that is, 3361 * if it's bound to the logical destination of "anyone"), it 3362 * may have been delivered to the current CPU so handle that 3363 * case by deferring the reprogramming (below). 3364 */ 3365 if ((old_bind_cpu != IRQ_UNBOUND) && 3366 (old_bind_cpu != IRQ_UNINIT) && 3367 (old_bind_cpu != psm_get_cpu_id())) { 3368 for (waited = 0; waited < apic_max_reps_clear_pending; 3369 waited++) { 3370 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3371 intin_no) & AV_REMOTE_IRR) == 0) { 3372 3373 delete_defer_repro_ent(which_irq); 3374 3375 /* Remote IRR has cleared! */ 3376 return (0); 3377 } 3378 } 3379 } 3380 3381 /* 3382 * If we waited and the Remote IRR bit is still not cleared, 3383 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS 3384 * times for this interrupt, try the last-ditch workaround: 3385 */ 3386 if (drep && drep->tries >= APIC_REPROGRAM_MAX_TRIES) { 3387 3388 apic_last_ditch_clear_remote_irr(ioapic_ix, intin_no); 3389 3390 /* Mark this one as reprogrammed: */ 3391 delete_defer_repro_ent(which_irq); 3392 3393 return (0); 3394 } else { 3395 #ifdef DEBUG 3396 apic_intr_deferrals++; 3397 #endif 3398 3399 /* 3400 * If waiting for the Remote IRR bit (above) didn't 3401 * allow it to clear, defer the reprogramming. 3402 * Add a new deferred-programming entry if the 3403 * caller passed a NULL one (and update the existing one 3404 * in case anything changed). 3405 */ 3406 add_defer_repro_ent(irq_ptr, which_irq, new_bind_cpu); 3407 if (drep) 3408 drep->tries++; 3409 3410 /* Inform caller to defer IOAPIC programming: */ 3411 return (1); 3412 } 3413 3414 } 3415 3416 /* Remote IRR is clear */ 3417 delete_defer_repro_ent(which_irq); 3418 3419 return (0); 3420 } 3421 3422 /* 3423 * Called to migrate all interrupts at an irq to another cpu. 3424 * Must be called with interrupts disabled and apic_ioapic_lock held 3425 */ 3426 int 3427 apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu) 3428 { 3429 apic_irq_t *irqptr = irq_ptr; 3430 int retval = 0; 3431 3432 while (irqptr) { 3433 if (irqptr->airq_temp_cpu != IRQ_UNINIT) 3434 retval |= apic_rebind(irqptr, bind_cpu, NULL); 3435 irqptr = irqptr->airq_next; 3436 } 3437 3438 return (retval); 3439 } 3440 3441 /* 3442 * apic_intr_redistribute does all the messy computations for identifying 3443 * which interrupt to move to which CPU. Currently we do just one interrupt 3444 * at a time. This reduces the time we spent doing all this within clock 3445 * interrupt. When it is done in idle, we could do more than 1. 3446 * First we find the most busy and the most free CPU (time in ISR only) 3447 * skipping those CPUs that has been identified as being ineligible (cpu_skip) 3448 * Then we look for IRQs which are closest to the difference between the 3449 * most busy CPU and the average ISR load. We try to find one whose load 3450 * is less than difference.If none exists, then we chose one larger than the 3451 * difference, provided it does not make the most idle CPU worse than the 3452 * most busy one. In the end, we clear all the busy fields for CPUs. For 3453 * IRQs, they are cleared as they are scanned. 3454 */ 3455 void 3456 apic_intr_redistribute() 3457 { 3458 int busiest_cpu, most_free_cpu; 3459 int cpu_free, cpu_busy, max_busy, min_busy; 3460 int min_free, diff; 3461 int average_busy, cpus_online; 3462 int i, busy; 3463 ulong_t iflag; 3464 apic_cpus_info_t *cpu_infop; 3465 apic_irq_t *min_busy_irq = NULL; 3466 apic_irq_t *max_busy_irq = NULL; 3467 3468 busiest_cpu = most_free_cpu = -1; 3469 cpu_free = cpu_busy = max_busy = average_busy = 0; 3470 min_free = apic_sample_factor_redistribution; 3471 cpus_online = 0; 3472 /* 3473 * Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu 3474 * without ioapic_lock. That is OK as we are just doing statistical 3475 * sampling anyway and any inaccuracy now will get corrected next time 3476 * The call to rebind which actually changes things will make sure 3477 * we are consistent. 3478 */ 3479 for (i = 0; i < apic_nproc; i++) { 3480 if (!(apic_redist_cpu_skip & (1 << i)) && 3481 (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) { 3482 3483 cpu_infop = &apic_cpus[i]; 3484 /* 3485 * If no unbound interrupts or only 1 total on this 3486 * CPU, skip 3487 */ 3488 if (!cpu_infop->aci_temp_bound || 3489 (cpu_infop->aci_bound + cpu_infop->aci_temp_bound) 3490 == 1) { 3491 apic_redist_cpu_skip |= 1 << i; 3492 continue; 3493 } 3494 3495 busy = cpu_infop->aci_busy; 3496 average_busy += busy; 3497 cpus_online++; 3498 if (max_busy < busy) { 3499 max_busy = busy; 3500 busiest_cpu = i; 3501 } 3502 if (min_free > busy) { 3503 min_free = busy; 3504 most_free_cpu = i; 3505 } 3506 if (busy > apic_int_busy_mark) { 3507 cpu_busy |= 1 << i; 3508 } else { 3509 if (busy < apic_int_free_mark) 3510 cpu_free |= 1 << i; 3511 } 3512 } 3513 } 3514 if ((cpu_busy && cpu_free) || 3515 (max_busy >= (min_free + apic_diff_for_redistribution))) { 3516 3517 apic_num_imbalance++; 3518 #ifdef DEBUG 3519 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { 3520 prom_printf( 3521 "redistribute busy=%x free=%x max=%x min=%x", 3522 cpu_busy, cpu_free, max_busy, min_free); 3523 } 3524 #endif /* DEBUG */ 3525 3526 3527 average_busy /= cpus_online; 3528 3529 diff = max_busy - average_busy; 3530 min_busy = max_busy; /* start with the max possible value */ 3531 max_busy = 0; 3532 min_busy_irq = max_busy_irq = NULL; 3533 i = apic_min_device_irq; 3534 for (; i <= apic_max_device_irq; i++) { 3535 apic_irq_t *irq_ptr; 3536 /* Change to linked list per CPU ? */ 3537 if ((irq_ptr = apic_irq_table[i]) == NULL) 3538 continue; 3539 /* Check for irq_busy & decide which one to move */ 3540 /* Also zero them for next round */ 3541 if ((irq_ptr->airq_temp_cpu == busiest_cpu) && 3542 irq_ptr->airq_busy) { 3543 if (irq_ptr->airq_busy < diff) { 3544 /* 3545 * Check for least busy CPU, 3546 * best fit or what ? 3547 */ 3548 if (max_busy < irq_ptr->airq_busy) { 3549 /* 3550 * Most busy within the 3551 * required differential 3552 */ 3553 max_busy = irq_ptr->airq_busy; 3554 max_busy_irq = irq_ptr; 3555 } 3556 } else { 3557 if (min_busy > irq_ptr->airq_busy) { 3558 /* 3559 * least busy, but more than 3560 * the reqd diff 3561 */ 3562 if (min_busy < 3563 (diff + average_busy - 3564 min_free)) { 3565 /* 3566 * Making sure new cpu 3567 * will not end up 3568 * worse 3569 */ 3570 min_busy = 3571 irq_ptr->airq_busy; 3572 3573 min_busy_irq = irq_ptr; 3574 } 3575 } 3576 } 3577 } 3578 irq_ptr->airq_busy = 0; 3579 } 3580 3581 if (max_busy_irq != NULL) { 3582 #ifdef DEBUG 3583 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { 3584 prom_printf("rebinding %x to %x", 3585 max_busy_irq->airq_vector, most_free_cpu); 3586 } 3587 #endif /* DEBUG */ 3588 iflag = intr_clear(); 3589 if (lock_try(&apic_ioapic_lock)) { 3590 if (apic_rebind_all(max_busy_irq, 3591 most_free_cpu) == 0) { 3592 /* Make change permenant */ 3593 max_busy_irq->airq_cpu = 3594 (uint32_t)most_free_cpu; 3595 } 3596 lock_clear(&apic_ioapic_lock); 3597 } 3598 intr_restore(iflag); 3599 3600 } else if (min_busy_irq != NULL) { 3601 #ifdef DEBUG 3602 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { 3603 prom_printf("rebinding %x to %x", 3604 min_busy_irq->airq_vector, most_free_cpu); 3605 } 3606 #endif /* DEBUG */ 3607 3608 iflag = intr_clear(); 3609 if (lock_try(&apic_ioapic_lock)) { 3610 if (apic_rebind_all(min_busy_irq, 3611 most_free_cpu) == 0) { 3612 /* Make change permenant */ 3613 min_busy_irq->airq_cpu = 3614 (uint32_t)most_free_cpu; 3615 } 3616 lock_clear(&apic_ioapic_lock); 3617 } 3618 intr_restore(iflag); 3619 3620 } else { 3621 if (cpu_busy != (1 << busiest_cpu)) { 3622 apic_redist_cpu_skip |= 1 << busiest_cpu; 3623 /* 3624 * We leave cpu_skip set so that next time we 3625 * can choose another cpu 3626 */ 3627 } 3628 } 3629 apic_num_rebind++; 3630 } else { 3631 /* 3632 * found nothing. Could be that we skipped over valid CPUs 3633 * or we have balanced everything. If we had a variable 3634 * ticks_for_redistribution, it could be increased here. 3635 * apic_int_busy, int_free etc would also need to be 3636 * changed. 3637 */ 3638 if (apic_redist_cpu_skip) 3639 apic_redist_cpu_skip = 0; 3640 } 3641 for (i = 0; i < apic_nproc; i++) { 3642 apic_cpus[i].aci_busy = 0; 3643 } 3644 } 3645 3646 void 3647 apic_cleanup_busy() 3648 { 3649 int i; 3650 apic_irq_t *irq_ptr; 3651 3652 for (i = 0; i < apic_nproc; i++) { 3653 apic_cpus[i].aci_busy = 0; 3654 } 3655 3656 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 3657 if ((irq_ptr = apic_irq_table[i]) != NULL) 3658 irq_ptr->airq_busy = 0; 3659 } 3660 } 3661 3662 3663 static int 3664 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 3665 int ipin, int *pci_irqp, iflag_t *intr_flagp) 3666 { 3667 3668 int status; 3669 acpi_psm_lnk_t acpipsmlnk; 3670 3671 if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp, 3672 intr_flagp)) == ACPI_PSM_SUCCESS) { 3673 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d " 3674 "from cache for device %s, instance #%d\n", psm_name, 3675 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 3676 return (status); 3677 } 3678 3679 bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t)); 3680 3681 if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp, 3682 &acpipsmlnk)) == ACPI_PSM_FAILURE) { 3683 APIC_VERBOSE_IRQ((CE_WARN, "%s: " 3684 " acpi_translate_pci_irq failed for device %s, instance" 3685 " #%d", psm_name, ddi_get_name(dip), 3686 ddi_get_instance(dip))); 3687 return (status); 3688 } 3689 3690 if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) { 3691 status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp, 3692 intr_flagp); 3693 if (status != ACPI_PSM_SUCCESS) { 3694 status = acpi_get_current_irq_resource(&acpipsmlnk, 3695 pci_irqp, intr_flagp); 3696 } 3697 } 3698 3699 if (status == ACPI_PSM_SUCCESS) { 3700 acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp, 3701 intr_flagp, &acpipsmlnk); 3702 3703 APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] " 3704 "new irq %d for device %s, instance #%d\n", psm_name, 3705 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 3706 } 3707 3708 return (status); 3709 } 3710 3711 /* 3712 * Adds an entry to the irq list passed in, and returns the new list. 3713 * Entries are added in priority order (lower numerical priorities are 3714 * placed closer to the head of the list) 3715 */ 3716 static prs_irq_list_t * 3717 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq, 3718 iflag_t *iflagp, acpi_prs_private_t *prsprvp) 3719 { 3720 struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp; 3721 3722 newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP); 3723 3724 newent->list_prio = priority; 3725 newent->irq = irq; 3726 newent->intrflags = *iflagp; 3727 newent->prsprv = *prsprvp; 3728 /* ->next is NULL from kmem_zalloc */ 3729 3730 /* 3731 * New list -- return the new entry as the list. 3732 */ 3733 if (listp == NULL) 3734 return (newent); 3735 3736 /* 3737 * Save original list pointer for return (since we're not modifying 3738 * the head) 3739 */ 3740 origlistp = listp; 3741 3742 /* 3743 * Insertion sort, with entries with identical keys stored AFTER 3744 * existing entries (the less-than-or-equal test of priority does 3745 * this for us). 3746 */ 3747 while (listp != NULL && listp->list_prio <= priority) { 3748 prevp = listp; 3749 listp = listp->next; 3750 } 3751 3752 newent->next = listp; 3753 3754 if (prevp == NULL) { /* Add at head of list (newent is the new head) */ 3755 return (newent); 3756 } else { 3757 prevp->next = newent; 3758 return (origlistp); 3759 } 3760 } 3761 3762 /* 3763 * Frees the list passed in, deallocating all memory and leaving *listpp 3764 * set to NULL. 3765 */ 3766 static void 3767 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp) 3768 { 3769 struct prs_irq_list_ent *nextp; 3770 3771 ASSERT(listpp != NULL); 3772 3773 while (*listpp != NULL) { 3774 nextp = (*listpp)->next; 3775 kmem_free(*listpp, sizeof (struct prs_irq_list_ent)); 3776 *listpp = nextp; 3777 } 3778 } 3779 3780 /* 3781 * apic_choose_irqs_from_prs returns a list of irqs selected from the list of 3782 * irqs returned by the link device's _PRS method. The irqs are chosen 3783 * to minimize contention in situations where the interrupt link device 3784 * can be programmed to steer interrupts to different interrupt controller 3785 * inputs (some of which may already be in use). The list is sorted in order 3786 * of irqs to use, with the highest priority given to interrupt controller 3787 * inputs that are not shared. When an interrupt controller input 3788 * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the 3789 * returned list in the order that minimizes sharing (thereby ensuring lowest 3790 * possible latency from interrupt trigger time to ISR execution time). 3791 */ 3792 static prs_irq_list_t * 3793 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip, 3794 int crs_irq) 3795 { 3796 int32_t irq; 3797 int i; 3798 prs_irq_list_t *prsirqlistp = NULL; 3799 iflag_t iflags; 3800 3801 while (irqlistent != NULL) { 3802 irqlistent->intr_flags.bustype = BUS_PCI; 3803 3804 for (i = 0; i < irqlistent->num_irqs; i++) { 3805 3806 irq = irqlistent->irqs[i]; 3807 3808 if (irq <= 0) { 3809 /* invalid irq number */ 3810 continue; 3811 } 3812 3813 if ((irq < 16) && (apic_reserved_irqlist[irq])) 3814 continue; 3815 3816 if ((apic_irq_table[irq] == NULL) || 3817 (apic_irq_table[irq]->airq_dip == dip)) { 3818 3819 prsirqlistp = acpi_insert_prs_irq_ent( 3820 prsirqlistp, 0 /* Highest priority */, irq, 3821 &irqlistent->intr_flags, 3822 &irqlistent->acpi_prs_prv); 3823 3824 /* 3825 * If we do not prefer the current irq from _CRS 3826 * or if we do and this irq is the same as the 3827 * current irq from _CRS, this is the one 3828 * to pick. 3829 */ 3830 if (!(apic_prefer_crs) || (irq == crs_irq)) { 3831 return (prsirqlistp); 3832 } 3833 continue; 3834 } 3835 3836 /* 3837 * Edge-triggered interrupts cannot be shared 3838 */ 3839 if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE) 3840 continue; 3841 3842 /* 3843 * To work around BIOSes that contain incorrect 3844 * interrupt polarity information in interrupt 3845 * descriptors returned by _PRS, we assume that 3846 * the polarity of the other device sharing this 3847 * interrupt controller input is compatible. 3848 * If it's not, the caller will catch it when 3849 * the caller invokes the link device's _CRS method 3850 * (after invoking its _SRS method). 3851 */ 3852 iflags = irqlistent->intr_flags; 3853 iflags.intr_po = 3854 apic_irq_table[irq]->airq_iflag.intr_po; 3855 3856 if (!acpi_intr_compatible(iflags, 3857 apic_irq_table[irq]->airq_iflag)) { 3858 APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d " 3859 "not compatible [%x:%x:%x !~ %x:%x:%x]", 3860 psm_name, irq, 3861 iflags.intr_po, 3862 iflags.intr_el, 3863 iflags.bustype, 3864 apic_irq_table[irq]->airq_iflag.intr_po, 3865 apic_irq_table[irq]->airq_iflag.intr_el, 3866 apic_irq_table[irq]->airq_iflag.bustype)); 3867 continue; 3868 } 3869 3870 /* 3871 * If we prefer the irq from _CRS, no need 3872 * to search any further (and make sure 3873 * to add this irq with the highest priority 3874 * so it's tried first). 3875 */ 3876 if (crs_irq == irq && apic_prefer_crs) { 3877 3878 return (acpi_insert_prs_irq_ent( 3879 prsirqlistp, 3880 0 /* Highest priority */, 3881 irq, &iflags, 3882 &irqlistent->acpi_prs_prv)); 3883 } 3884 3885 /* 3886 * Priority is equal to the share count (lower 3887 * share count is higher priority). Note that 3888 * the intr flags passed in here are the ones we 3889 * changed above -- if incorrect, it will be 3890 * caught by the caller's _CRS flags comparison. 3891 */ 3892 prsirqlistp = acpi_insert_prs_irq_ent( 3893 prsirqlistp, 3894 apic_irq_table[irq]->airq_share, irq, 3895 &iflags, &irqlistent->acpi_prs_prv); 3896 } 3897 3898 /* Go to the next irqlist entry */ 3899 irqlistent = irqlistent->next; 3900 } 3901 3902 return (prsirqlistp); 3903 } 3904 3905 /* 3906 * Configures the irq for the interrupt link device identified by 3907 * acpipsmlnkp. 3908 * 3909 * Gets the current and the list of possible irq settings for the 3910 * device. If apic_unconditional_srs is not set, and the current 3911 * resource setting is in the list of possible irq settings, 3912 * current irq resource setting is passed to the caller. 3913 * 3914 * Otherwise, picks an irq number from the list of possible irq 3915 * settings, and sets the irq of the device to this value. 3916 * If prefer_crs is set, among a set of irq numbers in the list that have 3917 * the least number of devices sharing the interrupt, we pick current irq 3918 * resource setting if it is a member of this set. 3919 * 3920 * Passes the irq number in the value pointed to by pci_irqp, and 3921 * polarity and sensitivity in the structure pointed to by dipintrflagp 3922 * to the caller. 3923 * 3924 * Note that if setting the irq resource failed, but successfuly obtained 3925 * the current irq resource settings, passes the current irq resources 3926 * and considers it a success. 3927 * 3928 * Returns: 3929 * ACPI_PSM_SUCCESS on success. 3930 * 3931 * ACPI_PSM_FAILURE if an error occured during the configuration or 3932 * if a suitable irq was not found for this device, or if setting the 3933 * irq resource and obtaining the current resource fails. 3934 * 3935 */ 3936 static int 3937 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 3938 int *pci_irqp, iflag_t *dipintr_flagp) 3939 { 3940 int32_t irq; 3941 int cur_irq = -1; 3942 acpi_irqlist_t *irqlistp; 3943 prs_irq_list_t *prs_irq_listp, *prs_irq_entp; 3944 boolean_t found_irq = B_FALSE; 3945 3946 dipintr_flagp->bustype = BUS_PCI; 3947 3948 if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp)) 3949 == ACPI_PSM_FAILURE) { 3950 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine " 3951 "or assign IRQ for device %s, instance #%d: The system was " 3952 "unable to get the list of potential IRQs from ACPI.", 3953 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 3954 3955 return (ACPI_PSM_FAILURE); 3956 } 3957 3958 if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 3959 dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) && 3960 (cur_irq > 0)) { 3961 /* 3962 * If an IRQ is set in CRS and that IRQ exists in the set 3963 * returned from _PRS, return that IRQ, otherwise print 3964 * a warning 3965 */ 3966 3967 if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL) 3968 == ACPI_PSM_SUCCESS) { 3969 3970 ASSERT(pci_irqp != NULL); 3971 *pci_irqp = cur_irq; 3972 acpi_free_irqlist(irqlistp); 3973 return (ACPI_PSM_SUCCESS); 3974 } 3975 3976 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the " 3977 "current irq %d for device %s, instance #%d in ACPI's " 3978 "list of possible irqs for this device. Picking one from " 3979 " the latter list.", psm_name, cur_irq, ddi_get_name(dip), 3980 ddi_get_instance(dip))); 3981 } 3982 3983 if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip, 3984 cur_irq)) == NULL) { 3985 3986 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a " 3987 "suitable irq from the list of possible irqs for device " 3988 "%s, instance #%d in ACPI's list of possible irqs", 3989 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 3990 3991 acpi_free_irqlist(irqlistp); 3992 return (ACPI_PSM_FAILURE); 3993 } 3994 3995 acpi_free_irqlist(irqlistp); 3996 3997 for (prs_irq_entp = prs_irq_listp; 3998 prs_irq_entp != NULL && found_irq == B_FALSE; 3999 prs_irq_entp = prs_irq_entp->next) { 4000 4001 acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv; 4002 irq = prs_irq_entp->irq; 4003 4004 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for " 4005 "device %s instance #%d\n", psm_name, irq, 4006 ddi_get_name(dip), ddi_get_instance(dip))); 4007 4008 if ((acpi_set_irq_resource(acpipsmlnkp, irq)) 4009 == ACPI_PSM_SUCCESS) { 4010 /* 4011 * setting irq was successful, check to make sure CRS 4012 * reflects that. If CRS does not agree with what we 4013 * set, return the irq that was set. 4014 */ 4015 4016 if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 4017 dipintr_flagp) == ACPI_PSM_SUCCESS) { 4018 4019 if (cur_irq != irq) 4020 APIC_VERBOSE_IRQ((CE_WARN, 4021 "!%s: IRQ resource set " 4022 "(irqno %d) for device %s " 4023 "instance #%d, differs from " 4024 "current setting irqno %d", 4025 psm_name, irq, ddi_get_name(dip), 4026 ddi_get_instance(dip), cur_irq)); 4027 } else { 4028 /* 4029 * On at least one system, there was a bug in 4030 * a DSDT method called by _STA, causing _STA to 4031 * indicate that the link device was disabled 4032 * (when, in fact, it was enabled). Since _SRS 4033 * succeeded, assume that _CRS is lying and use 4034 * the iflags from this _PRS interrupt choice. 4035 * If we're wrong about the flags, the polarity 4036 * will be incorrect and we may get an interrupt 4037 * storm, but there's not much else we can do 4038 * at this point. 4039 */ 4040 *dipintr_flagp = prs_irq_entp->intrflags; 4041 } 4042 4043 /* 4044 * Return the irq that was set, and not what _CRS 4045 * reports, since _CRS has been seen to return 4046 * different IRQs than what was passed to _SRS on some 4047 * systems (and just not return successfully on others). 4048 */ 4049 cur_irq = irq; 4050 found_irq = B_TRUE; 4051 } else { 4052 APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource " 4053 "irq %d failed for device %s instance #%d", 4054 psm_name, irq, ddi_get_name(dip), 4055 ddi_get_instance(dip))); 4056 4057 if (cur_irq == -1) { 4058 acpi_destroy_prs_irq_list(&prs_irq_listp); 4059 return (ACPI_PSM_FAILURE); 4060 } 4061 } 4062 } 4063 4064 acpi_destroy_prs_irq_list(&prs_irq_listp); 4065 4066 if (!found_irq) 4067 return (ACPI_PSM_FAILURE); 4068 4069 ASSERT(pci_irqp != NULL); 4070 *pci_irqp = cur_irq; 4071 return (ACPI_PSM_SUCCESS); 4072 } 4073 4074 void 4075 ioapic_disable_redirection() 4076 { 4077 int ioapic_ix; 4078 int intin_max; 4079 int intin_ix; 4080 4081 /* Disable the I/O APIC redirection entries */ 4082 for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) { 4083 4084 /* Bits 23-16 define the maximum redirection entries */ 4085 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) 4086 & 0xff; 4087 4088 for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) { 4089 /* 4090 * The assumption here is that this is safe, even for 4091 * systems with IOAPICs that suffer from the hardware 4092 * erratum because all devices have been quiesced before 4093 * this function is called from apic_shutdown() 4094 * (or equivalent). If that assumption turns out to be 4095 * false, this mask operation can induce the same 4096 * erratum result we're trying to avoid. 4097 */ 4098 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix, 4099 AV_MASK); 4100 } 4101 } 4102 } 4103 4104 /* 4105 * Looks for an IOAPIC with the specified physical address in the /ioapics 4106 * node in the device tree (created by the PCI enumerator). 4107 */ 4108 static boolean_t 4109 apic_is_ioapic_AMD_813x(uint32_t physaddr) 4110 { 4111 /* 4112 * Look in /ioapics, for the ioapic with 4113 * the physical address given 4114 */ 4115 dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0); 4116 dev_info_t *ioapic_child; 4117 boolean_t rv = B_FALSE; 4118 int vid, did; 4119 uint64_t ioapic_paddr; 4120 boolean_t done = B_FALSE; 4121 4122 if (ioapicsnode == NULL) 4123 return (B_FALSE); 4124 4125 /* Load first child: */ 4126 ioapic_child = ddi_get_child(ioapicsnode); 4127 while (!done && ioapic_child != 0) { /* Iterate over children */ 4128 4129 if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY, 4130 ioapic_child, DDI_PROP_DONTPASS, "reg", 0)) 4131 != 0 && physaddr == ioapic_paddr) { 4132 4133 vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child, 4134 DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0); 4135 4136 if (vid == VENID_AMD) { 4137 4138 did = ddi_prop_get_int(DDI_DEV_T_ANY, 4139 ioapic_child, DDI_PROP_DONTPASS, 4140 IOAPICS_PROP_DEVID, 0); 4141 4142 if (did == DEVID_8131_IOAPIC || 4143 did == DEVID_8132_IOAPIC) { 4144 4145 rv = B_TRUE; 4146 done = B_TRUE; 4147 } 4148 } 4149 } 4150 4151 if (!done) 4152 ioapic_child = ddi_get_next_sibling(ioapic_child); 4153 } 4154 4155 /* The ioapics node was held by ddi_find_devinfo, so release it */ 4156 ndi_rele_devi(ioapicsnode); 4157 return (rv); 4158 } 4159 4160 struct apic_state { 4161 int32_t as_task_reg; 4162 int32_t as_dest_reg; 4163 int32_t as_format_reg; 4164 int32_t as_local_timer; 4165 int32_t as_pcint_vect; 4166 int32_t as_int_vect0; 4167 int32_t as_int_vect1; 4168 int32_t as_err_vect; 4169 int32_t as_init_count; 4170 int32_t as_divide_reg; 4171 int32_t as_spur_int_reg; 4172 uint32_t as_ioapic_ids[MAX_IO_APIC]; 4173 }; 4174 4175 4176 static int 4177 apic_acpi_enter_apicmode(void) 4178 { 4179 ACPI_OBJECT_LIST arglist; 4180 ACPI_OBJECT arg; 4181 ACPI_STATUS status; 4182 4183 /* Setup parameter object */ 4184 arglist.Count = 1; 4185 arglist.Pointer = &arg; 4186 arg.Type = ACPI_TYPE_INTEGER; 4187 arg.Integer.Value = ACPI_APIC_MODE; 4188 4189 status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL); 4190 if (ACPI_FAILURE(status)) 4191 return (PSM_FAILURE); 4192 else 4193 return (PSM_SUCCESS); 4194 } 4195 4196 4197 static void 4198 apic_save_state(struct apic_state *sp) 4199 { 4200 int i; 4201 ulong_t iflag; 4202 4203 PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp)) 4204 /* 4205 * First the local APIC. 4206 */ 4207 sp->as_task_reg = apic_reg_ops->apic_get_pri(); 4208 sp->as_dest_reg = apic_reg_ops->apic_read(APIC_DEST_REG); 4209 if (apic_mode == LOCAL_APIC) 4210 sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG); 4211 sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER); 4212 sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT); 4213 sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0); 4214 sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1); 4215 sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT); 4216 sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT); 4217 sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG); 4218 sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG); 4219 4220 /* 4221 * If on the boot processor then save the IOAPICs' IDs 4222 */ 4223 if (psm_get_cpu_id() == 0) { 4224 4225 iflag = intr_clear(); 4226 lock_set(&apic_ioapic_lock); 4227 4228 for (i = 0; i < apic_io_max; i++) 4229 sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD); 4230 4231 lock_clear(&apic_ioapic_lock); 4232 intr_restore(iflag); 4233 } 4234 } 4235 4236 static void 4237 apic_restore_state(struct apic_state *sp) 4238 { 4239 int i; 4240 ulong_t iflag; 4241 4242 /* 4243 * First the local APIC. 4244 */ 4245 apic_reg_ops->apic_write_task_reg(sp->as_task_reg); 4246 if (apic_mode == LOCAL_APIC) { 4247 apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg); 4248 apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg); 4249 } 4250 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer); 4251 apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect); 4252 apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0); 4253 apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1); 4254 apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect); 4255 apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count); 4256 apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg); 4257 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg); 4258 4259 /* 4260 * the following only needs to be done once, so we do it on the 4261 * boot processor, since we know that we only have one of those 4262 */ 4263 if (psm_get_cpu_id() == 0) { 4264 4265 iflag = intr_clear(); 4266 lock_set(&apic_ioapic_lock); 4267 4268 /* Restore IOAPICs' APIC IDs */ 4269 for (i = 0; i < apic_io_max; i++) { 4270 ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]); 4271 } 4272 4273 lock_clear(&apic_ioapic_lock); 4274 intr_restore(iflag); 4275 4276 /* 4277 * Reenter APIC mode before restoring LNK devices 4278 */ 4279 (void) apic_acpi_enter_apicmode(); 4280 4281 /* 4282 * restore acpi link device mappings 4283 */ 4284 acpi_restore_link_devices(); 4285 } 4286 } 4287 4288 /* 4289 * Returns 0 on success 4290 */ 4291 int 4292 apic_state(psm_state_request_t *rp) 4293 { 4294 PMD(PMD_SX, ("apic_state ")) 4295 switch (rp->psr_cmd) { 4296 case PSM_STATE_ALLOC: 4297 rp->req.psm_state_req.psr_state = 4298 kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP); 4299 if (rp->req.psm_state_req.psr_state == NULL) 4300 return (ENOMEM); 4301 rp->req.psm_state_req.psr_state_size = 4302 sizeof (struct apic_state); 4303 PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n", 4304 rp->req.psm_state_req.psr_state, 4305 rp->req.psm_state_req.psr_state_size)) 4306 return (0); 4307 4308 case PSM_STATE_FREE: 4309 kmem_free(rp->req.psm_state_req.psr_state, 4310 rp->req.psm_state_req.psr_state_size); 4311 PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n", 4312 rp->req.psm_state_req.psr_state, 4313 rp->req.psm_state_req.psr_state_size)) 4314 return (0); 4315 4316 case PSM_STATE_SAVE: 4317 PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n", 4318 rp->req.psm_state_req.psr_state, 4319 rp->req.psm_state_req.psr_state_size)) 4320 apic_save_state(rp->req.psm_state_req.psr_state); 4321 return (0); 4322 4323 case PSM_STATE_RESTORE: 4324 apic_restore_state(rp->req.psm_state_req.psr_state); 4325 PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n", 4326 rp->req.psm_state_req.psr_state, 4327 rp->req.psm_state_req.psr_state_size)) 4328 return (0); 4329 4330 default: 4331 return (EINVAL); 4332 } 4333 } 4334