1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 */ 28 29 /* 30 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 31 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 32 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 33 * PSMI 1.5 extensions are supported in Solaris Nevada. 34 * PSMI 1.6 extensions are supported in Solaris Nevada. 35 * PSMI 1.7 extensions are supported in Solaris Nevada. 36 */ 37 #define PSMI_1_7 38 39 #include <sys/processor.h> 40 #include <sys/time.h> 41 #include <sys/psm.h> 42 #include <sys/smp_impldefs.h> 43 #include <sys/cram.h> 44 #include <sys/acpi/acpi.h> 45 #include <sys/acpica.h> 46 #include <sys/psm_common.h> 47 #include <sys/apic.h> 48 #include <sys/pit.h> 49 #include <sys/ddi.h> 50 #include <sys/sunddi.h> 51 #include <sys/ddi_impldefs.h> 52 #include <sys/pci.h> 53 #include <sys/promif.h> 54 #include <sys/x86_archext.h> 55 #include <sys/cpc_impl.h> 56 #include <sys/uadmin.h> 57 #include <sys/panic.h> 58 #include <sys/debug.h> 59 #include <sys/archsystm.h> 60 #include <sys/trap.h> 61 #include <sys/machsystm.h> 62 #include <sys/cpuvar.h> 63 #include <sys/rm_platter.h> 64 #include <sys/privregs.h> 65 #include <sys/cyclic.h> 66 #include <sys/note.h> 67 #include <sys/pci_intr_lib.h> 68 #include <sys/sunndi.h> 69 #if !defined(__xpv) 70 #include <sys/hpet.h> 71 #include <sys/clock.h> 72 #endif 73 74 /* 75 * Local Function Prototypes 76 */ 77 static int apic_handle_defconf(); 78 static int apic_parse_mpct(caddr_t mpct, int bypass); 79 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size); 80 static int apic_checksum(caddr_t bptr, int len); 81 static int apic_find_bus_type(char *bus); 82 static int apic_find_bus(int busid); 83 static struct apic_io_intr *apic_find_io_intr(int irqno); 84 static int apic_find_free_irq(int start, int end); 85 struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid); 86 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp); 87 static void apic_free_apic_cpus(void); 88 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr); 89 static int apic_acpi_enter_apicmode(void); 90 91 int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, 92 int child_ipin, struct apic_io_intr **intrp); 93 int apic_find_bus_id(int bustype); 94 int apic_find_intin(uchar_t ioapic, uchar_t intin); 95 void apic_record_rdt_entry(apic_irq_t *irqptr, int irq); 96 97 int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */ 98 99 /* ACPI SCI interrupt configuration; -1 if SCI not used */ 100 int apic_sci_vect = -1; 101 iflag_t apic_sci_flags; 102 103 #if !defined(__xpv) 104 /* ACPI HPET interrupt configuration; -1 if HPET not used */ 105 int apic_hpet_vect = -1; 106 iflag_t apic_hpet_flags; 107 #endif 108 109 /* 110 * psm name pointer 111 */ 112 char *psm_name; 113 114 /* ACPI support routines */ 115 static int acpi_probe(char *); 116 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 117 int *pci_irqp, iflag_t *intr_flagp); 118 119 int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 120 int ipin, int *pci_irqp, iflag_t *intr_flagp); 121 uchar_t acpi_find_ioapic(int irq); 122 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2); 123 124 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */ 125 int apic_max_reps_clear_pending = 1000; 126 127 int apic_intr_policy = INTR_ROUND_ROBIN; 128 129 int apic_next_bind_cpu = 1; /* For round robin assignment */ 130 /* start with cpu 1 */ 131 132 /* 133 * If enabled, the distribution works as follows: 134 * On every interrupt entry, the current ipl for the CPU is set in cpu_info 135 * and the irq corresponding to the ipl is also set in the aci_current array. 136 * interrupt exit and setspl (due to soft interrupts) will cause the current 137 * ipl to be be changed. This is cache friendly as these frequently used 138 * paths write into a per cpu structure. 139 * 140 * Sampling is done by checking the structures for all CPUs and incrementing 141 * the busy field of the irq (if any) executing on each CPU and the busy field 142 * of the corresponding CPU. 143 * In periodic mode this is done on every clock interrupt. 144 * In one-shot mode, this is done thru a cyclic with an interval of 145 * apic_redistribute_sample_interval (default 10 milli sec). 146 * 147 * Every apic_sample_factor_redistribution times we sample, we do computations 148 * to decide which interrupt needs to be migrated (see comments 149 * before apic_intr_redistribute(). 150 */ 151 152 /* 153 * Following 3 variables start as % and can be patched or set using an 154 * API to be defined in future. They will be scaled to 155 * sample_factor_redistribution which is in turn set to hertz+1 (in periodic 156 * mode), or 101 in one-shot mode to stagger it away from one sec processing 157 */ 158 159 int apic_int_busy_mark = 60; 160 int apic_int_free_mark = 20; 161 int apic_diff_for_redistribution = 10; 162 163 /* sampling interval for interrupt redistribution for dynamic migration */ 164 int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */ 165 166 /* 167 * number of times we sample before deciding to redistribute interrupts 168 * for dynamic migration 169 */ 170 int apic_sample_factor_redistribution = 101; 171 172 int apic_redist_cpu_skip = 0; 173 int apic_num_imbalance = 0; 174 int apic_num_rebind = 0; 175 176 /* 177 * Maximum number of APIC CPUs in the system, -1 indicates that dynamic 178 * allocation of CPU ids is disabled. 179 */ 180 int apic_max_nproc = -1; 181 int apic_nproc = 0; 182 size_t apic_cpus_size = 0; 183 int apic_defconf = 0; 184 int apic_irq_translate = 0; 185 int apic_spec_rev = 0; 186 int apic_imcrp = 0; 187 188 int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */ 189 int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */ 190 191 /* 192 * For interrupt link devices, if apic_unconditional_srs is set, an irq resource 193 * will be assigned (via _SRS). If it is not set, use the current 194 * irq setting (via _CRS), but only if that irq is in the set of possible 195 * irqs (returned by _PRS) for the device. 196 */ 197 int apic_unconditional_srs = 1; 198 199 /* 200 * For interrupt link devices, if apic_prefer_crs is set when we are 201 * assigning an IRQ resource to a device, prefer the current IRQ setting 202 * over other possible irq settings under same conditions. 203 */ 204 205 int apic_prefer_crs = 1; 206 207 uchar_t apic_io_id[MAX_IO_APIC]; 208 volatile uint32_t *apicioadr[MAX_IO_APIC]; 209 uchar_t apic_io_ver[MAX_IO_APIC]; 210 uchar_t apic_io_vectbase[MAX_IO_APIC]; 211 uchar_t apic_io_vectend[MAX_IO_APIC]; 212 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1]; 213 uint32_t apic_physaddr[MAX_IO_APIC]; 214 215 boolean_t ioapic_mask_workaround[MAX_IO_APIC]; 216 217 /* 218 * First available slot to be used as IRQ index into the apic_irq_table 219 * for those interrupts (like MSI/X) that don't have a physical IRQ. 220 */ 221 int apic_first_avail_irq = APIC_FIRST_FREE_IRQ; 222 223 /* 224 * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound 225 * and bound elements of cpus_info and the temp_cpu element of irq_struct 226 */ 227 lock_t apic_ioapic_lock; 228 229 int apic_io_max = 0; /* no. of i/o apics enabled */ 230 231 struct apic_io_intr *apic_io_intrp = NULL; 232 static struct apic_bus *apic_busp; 233 234 uchar_t apic_resv_vector[MAXIPL+1]; 235 236 char apic_level_intr[APIC_MAX_VECTOR+1]; 237 238 uint32_t eisa_level_intr_mask = 0; 239 /* At least MSB will be set if EISA bus */ 240 241 int apic_pci_bus_total = 0; 242 uchar_t apic_single_pci_busid = 0; 243 244 /* 245 * airq_mutex protects additions to the apic_irq_table - the first 246 * pointer and any airq_nexts off of that one. It also protects 247 * apic_max_device_irq & apic_min_device_irq. It also guarantees 248 * that share_id is unique as new ids are generated only when new 249 * irq_t structs are linked in. Once linked in the structs are never 250 * deleted. temp_cpu & mps_intr_index field indicate if it is programmed 251 * or allocated. Note that there is a slight gap between allocating in 252 * apic_introp_xlate and programming in addspl. 253 */ 254 kmutex_t airq_mutex; 255 apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1]; 256 int apic_max_device_irq = 0; 257 int apic_min_device_irq = APIC_MAX_VECTOR; 258 259 typedef struct prs_irq_list_ent { 260 int list_prio; 261 int32_t irq; 262 iflag_t intrflags; 263 acpi_prs_private_t prsprv; 264 struct prs_irq_list_ent *next; 265 } prs_irq_list_t; 266 267 268 /* 269 * ACPI variables 270 */ 271 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */ 272 int apic_enable_acpi = 0; 273 274 /* ACPI Multiple APIC Description Table ptr */ 275 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL; 276 277 /* ACPI Interrupt Source Override Structure ptr */ 278 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL; 279 int acpi_iso_cnt = 0; 280 281 /* ACPI Non-maskable Interrupt Sources ptr */ 282 static ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL; 283 static int acpi_nmi_scnt = 0; 284 static ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL; 285 static int acpi_nmi_ccnt = 0; 286 287 /* 288 * The following added to identify a software poweroff method if available. 289 */ 290 291 static struct { 292 int poweroff_method; 293 char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */ 294 char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */ 295 } apic_mps_ids[] = { 296 { APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */ 297 { APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */ 298 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */ 299 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */ 300 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */ 301 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */ 302 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */ 303 }; 304 305 int apic_poweroff_method = APIC_POWEROFF_NONE; 306 307 /* 308 * Auto-configuration routines 309 */ 310 311 /* 312 * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here 313 * May work with 1.1 - but not guaranteed. 314 * According to the MP Spec, the MP floating pointer structure 315 * will be searched in the order described below: 316 * 1. In the first kilobyte of Extended BIOS Data Area (EBDA) 317 * 2. Within the last kilobyte of system base memory 318 * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh 319 * Once we find the right signature with proper checksum, we call 320 * either handle_defconf or parse_mpct to get all info necessary for 321 * subsequent operations. 322 */ 323 int 324 apic_probe_common(char *modname) 325 { 326 uint32_t mpct_addr, ebda_start = 0, base_mem_end; 327 caddr_t biosdatap; 328 caddr_t mpct = 0; 329 caddr_t fptr; 330 int i, mpct_size, mapsize, retval = PSM_FAILURE; 331 ushort_t ebda_seg, base_mem_size; 332 struct apic_mpfps_hdr *fpsp; 333 struct apic_mp_cnf_hdr *hdrp; 334 int bypass_cpu_and_ioapics_in_mptables; 335 int acpi_user_options; 336 337 if (apic_forceload < 0) 338 return (retval); 339 340 /* 341 * Remember who we are 342 */ 343 psm_name = modname; 344 345 /* Allow override for MADT-only mode */ 346 acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0, 347 "acpi-user-options", 0); 348 apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0); 349 350 /* Allow apic_use_acpi to override MADT-only mode */ 351 if (!apic_use_acpi) 352 apic_use_acpi_madt_only = 0; 353 354 retval = acpi_probe(modname); 355 356 /* 357 * mapin the bios data area 40:0 358 * 40:13h - two-byte location reports the base memory size 359 * 40:0Eh - two-byte location for the exact starting address of 360 * the EBDA segment for EISA 361 */ 362 biosdatap = psm_map_phys(0x400, 0x20, PROT_READ); 363 if (!biosdatap) 364 goto apic_ret; 365 fpsp = (struct apic_mpfps_hdr *)NULL; 366 mapsize = MPFPS_RAM_WIN_LEN; 367 /*LINTED: pointer cast may result in improper alignment */ 368 ebda_seg = *((ushort_t *)(biosdatap+0xe)); 369 /* check the 1k of EBDA */ 370 if (ebda_seg) { 371 ebda_start = ((uint32_t)ebda_seg) << 4; 372 fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ); 373 if (fptr) { 374 if (!(fpsp = 375 apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN))) 376 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 377 } 378 } 379 /* If not in EBDA, check the last k of system base memory */ 380 if (!fpsp) { 381 /*LINTED: pointer cast may result in improper alignment */ 382 base_mem_size = *((ushort_t *)(biosdatap + 0x13)); 383 384 if (base_mem_size > 512) 385 base_mem_end = 639 * 1024; 386 else 387 base_mem_end = 511 * 1024; 388 /* if ebda == last k of base mem, skip to check BIOS ROM */ 389 if (base_mem_end != ebda_start) { 390 391 fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN, 392 PROT_READ); 393 394 if (fptr) { 395 if (!(fpsp = apic_find_fps_sig(fptr, 396 MPFPS_RAM_WIN_LEN))) 397 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 398 } 399 } 400 } 401 psm_unmap_phys(biosdatap, 0x20); 402 403 /* If still cannot find it, check the BIOS ROM space */ 404 if (!fpsp) { 405 mapsize = MPFPS_ROM_WIN_LEN; 406 fptr = psm_map_phys(MPFPS_ROM_WIN_START, 407 MPFPS_ROM_WIN_LEN, PROT_READ); 408 if (fptr) { 409 if (!(fpsp = 410 apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) { 411 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 412 goto apic_ret; 413 } 414 } 415 } 416 417 if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) { 418 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 419 goto apic_ret; 420 } 421 422 apic_spec_rev = fpsp->mpfps_spec_rev; 423 if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) { 424 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 425 goto apic_ret; 426 } 427 428 /* check IMCR is present or not */ 429 apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP; 430 431 /* check default configuration (dual CPUs) */ 432 if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) { 433 psm_unmap_phys(fptr, mapsize); 434 if ((retval = apic_handle_defconf()) != PSM_SUCCESS) 435 return (retval); 436 437 goto apic_ret; 438 } 439 440 /* MP Configuration Table */ 441 mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr); 442 443 psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */ 444 445 /* 446 * Map in enough memory for the MP Configuration Table Header. 447 * Use this table to read the total length of the BIOS data and 448 * map in all the info 449 */ 450 /*LINTED: pointer cast may result in improper alignment */ 451 hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr, 452 sizeof (struct apic_mp_cnf_hdr), PROT_READ); 453 if (!hdrp) 454 goto apic_ret; 455 456 /* check mp configuration table signature PCMP */ 457 if (hdrp->mpcnf_sig != 0x504d4350) { 458 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 459 goto apic_ret; 460 } 461 mpct_size = (int)hdrp->mpcnf_tbl_length; 462 463 apic_set_pwroff_method_from_mpcnfhdr(hdrp); 464 465 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 466 467 if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) { 468 /* This is an ACPI machine No need for further checks */ 469 goto apic_ret; 470 } 471 472 /* 473 * Map in the entries for this machine, ie. Processor 474 * Entry Tables, Bus Entry Tables, etc. 475 * They are in fixed order following one another 476 */ 477 mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ); 478 if (!mpct) 479 goto apic_ret; 480 481 if (apic_checksum(mpct, mpct_size) != 0) 482 goto apic_fail1; 483 484 /*LINTED: pointer cast may result in improper alignment */ 485 hdrp = (struct apic_mp_cnf_hdr *)mpct; 486 apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic, 487 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 488 if (!apicadr) 489 goto apic_fail1; 490 491 /* Parse all information in the tables */ 492 bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS); 493 if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) == 494 PSM_SUCCESS) { 495 retval = PSM_SUCCESS; 496 goto apic_ret; 497 } 498 499 apic_fail1: 500 psm_unmap_phys(mpct, mpct_size); 501 mpct = NULL; 502 503 apic_ret: 504 if (retval == PSM_SUCCESS) { 505 extern int apic_ioapic_method_probe(); 506 507 if ((retval = apic_ioapic_method_probe()) == PSM_SUCCESS) 508 return (PSM_SUCCESS); 509 } 510 511 for (i = 0; i < apic_io_max; i++) 512 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 513 if (apic_cpus) { 514 kmem_free(apic_cpus, apic_cpus_size); 515 apic_cpus = NULL; 516 } 517 if (apicadr) { 518 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 519 apicadr = NULL; 520 } 521 if (mpct) 522 psm_unmap_phys(mpct, mpct_size); 523 524 return (retval); 525 } 526 527 static void 528 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp) 529 { 530 int i; 531 532 for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0])); 533 i++) { 534 if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id, 535 strlen(apic_mps_ids[i].oem_id)) == 0) && 536 (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id, 537 strlen(apic_mps_ids[i].prod_id)) == 0)) { 538 539 apic_poweroff_method = apic_mps_ids[i].poweroff_method; 540 break; 541 } 542 } 543 544 if (apic_debug_mps_id != 0) { 545 cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'" 546 "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n", 547 psm_name, 548 hdrp->mpcnf_oem_str[0], 549 hdrp->mpcnf_oem_str[1], 550 hdrp->mpcnf_oem_str[2], 551 hdrp->mpcnf_oem_str[3], 552 hdrp->mpcnf_oem_str[4], 553 hdrp->mpcnf_oem_str[5], 554 hdrp->mpcnf_oem_str[6], 555 hdrp->mpcnf_oem_str[7], 556 hdrp->mpcnf_prod_str[0], 557 hdrp->mpcnf_prod_str[1], 558 hdrp->mpcnf_prod_str[2], 559 hdrp->mpcnf_prod_str[3], 560 hdrp->mpcnf_prod_str[4], 561 hdrp->mpcnf_prod_str[5], 562 hdrp->mpcnf_prod_str[6], 563 hdrp->mpcnf_prod_str[7], 564 hdrp->mpcnf_prod_str[8], 565 hdrp->mpcnf_prod_str[9], 566 hdrp->mpcnf_prod_str[10], 567 hdrp->mpcnf_prod_str[11]); 568 } 569 } 570 571 static void 572 apic_free_apic_cpus(void) 573 { 574 if (apic_cpus != NULL) { 575 kmem_free(apic_cpus, apic_cpus_size); 576 apic_cpus = NULL; 577 apic_cpus_size = 0; 578 } 579 } 580 581 static int 582 acpi_probe(char *modname) 583 { 584 int i, intmax, index; 585 uint32_t id, ver; 586 int acpi_verboseflags = 0; 587 int madt_seen, madt_size; 588 ACPI_SUBTABLE_HEADER *ap; 589 ACPI_MADT_LOCAL_APIC *mpa; 590 ACPI_MADT_LOCAL_X2APIC *mpx2a; 591 ACPI_MADT_IO_APIC *mia; 592 ACPI_MADT_IO_SAPIC *misa; 593 ACPI_MADT_INTERRUPT_OVERRIDE *mio; 594 ACPI_MADT_NMI_SOURCE *mns; 595 ACPI_MADT_INTERRUPT_SOURCE *mis; 596 ACPI_MADT_LOCAL_APIC_NMI *mlan; 597 ACPI_MADT_LOCAL_X2APIC_NMI *mx2alan; 598 ACPI_MADT_LOCAL_APIC_OVERRIDE *mao; 599 int sci; 600 iflag_t sci_flags; 601 volatile uint32_t *ioapic; 602 int ioapic_ix; 603 uint32_t *local_ids; 604 uint32_t *proc_ids; 605 uchar_t hid; 606 int warned = 0; 607 608 if (!apic_use_acpi) 609 return (PSM_FAILURE); 610 611 if (AcpiGetTable(ACPI_SIG_MADT, 1, 612 (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) 613 return (PSM_FAILURE); 614 615 apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address, 616 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 617 if (!apicadr) 618 return (PSM_FAILURE); 619 620 if ((local_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t), 621 KM_NOSLEEP)) == NULL) 622 return (PSM_FAILURE); 623 624 if ((proc_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t), 625 KM_NOSLEEP)) == NULL) { 626 kmem_free(local_ids, NCPU * sizeof (uint32_t)); 627 return (PSM_FAILURE); 628 } 629 630 id = apic_reg_ops->apic_read(APIC_LID_REG); 631 local_ids[0] = (uchar_t)(id >> 24); 632 apic_nproc = index = 1; 633 apic_io_max = 0; 634 635 ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1); 636 madt_size = acpi_mapic_dtp->Header.Length; 637 madt_seen = sizeof (*acpi_mapic_dtp); 638 639 while (madt_seen < madt_size) { 640 switch (ap->Type) { 641 case ACPI_MADT_TYPE_LOCAL_APIC: 642 mpa = (ACPI_MADT_LOCAL_APIC *) ap; 643 if (mpa->LapicFlags & ACPI_MADT_ENABLED) { 644 if (mpa->Id == local_ids[0]) { 645 ASSERT(index == 1); 646 proc_ids[0] = mpa->ProcessorId; 647 } else if (apic_nproc < NCPU && use_mp && 648 apic_nproc < boot_ncpus) { 649 local_ids[index] = mpa->Id; 650 proc_ids[index] = mpa->ProcessorId; 651 index++; 652 apic_nproc++; 653 } else if (apic_nproc == NCPU && !warned) { 654 cmn_err(CE_WARN, "%s: CPU limit " 655 "exceeded" 656 #if !defined(__amd64) 657 " for 32-bit mode" 658 #endif 659 "; Solaris will use %d CPUs.", 660 psm_name, NCPU); 661 warned = 1; 662 } 663 } 664 break; 665 666 case ACPI_MADT_TYPE_IO_APIC: 667 mia = (ACPI_MADT_IO_APIC *) ap; 668 if (apic_io_max < MAX_IO_APIC) { 669 ioapic_ix = apic_io_max; 670 apic_io_id[apic_io_max] = mia->Id; 671 apic_io_vectbase[apic_io_max] = 672 mia->GlobalIrqBase; 673 apic_physaddr[apic_io_max] = 674 (uint32_t)mia->Address; 675 ioapic = apicioadr[apic_io_max] = 676 mapin_ioapic((uint32_t)mia->Address, 677 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 678 if (!ioapic) 679 goto cleanup; 680 ioapic_mask_workaround[apic_io_max] = 681 apic_is_ioapic_AMD_813x(mia->Address); 682 apic_io_max++; 683 } 684 break; 685 686 case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE: 687 mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap; 688 if (acpi_isop == NULL) 689 acpi_isop = mio; 690 acpi_iso_cnt++; 691 break; 692 693 case ACPI_MADT_TYPE_NMI_SOURCE: 694 /* UNIMPLEMENTED */ 695 mns = (ACPI_MADT_NMI_SOURCE *) ap; 696 if (acpi_nmi_sp == NULL) 697 acpi_nmi_sp = mns; 698 acpi_nmi_scnt++; 699 700 cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n", 701 mns->GlobalIrq, mns->IntiFlags); 702 break; 703 704 case ACPI_MADT_TYPE_LOCAL_APIC_NMI: 705 /* UNIMPLEMENTED */ 706 mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap; 707 if (acpi_nmi_cp == NULL) 708 acpi_nmi_cp = mlan; 709 acpi_nmi_ccnt++; 710 711 cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n", 712 mlan->ProcessorId, mlan->IntiFlags, 713 mlan->Lint); 714 break; 715 716 case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE: 717 /* UNIMPLEMENTED */ 718 mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap; 719 cmn_err(CE_NOTE, "!apic: address override: %lx\n", 720 (long)mao->Address); 721 break; 722 723 case ACPI_MADT_TYPE_IO_SAPIC: 724 /* UNIMPLEMENTED */ 725 misa = (ACPI_MADT_IO_SAPIC *) ap; 726 727 cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n", 728 misa->Id, misa->GlobalIrqBase, 729 (long)misa->Address); 730 break; 731 732 case ACPI_MADT_TYPE_INTERRUPT_SOURCE: 733 /* UNIMPLEMENTED */ 734 mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap; 735 736 cmn_err(CE_NOTE, 737 "!apic: irq source: %d %d %d 0x%x %d %d\n", 738 mis->Id, mis->Eid, mis->GlobalIrq, 739 mis->IntiFlags, mis->Type, 740 mis->IoSapicVector); 741 break; 742 743 case ACPI_MADT_TYPE_LOCAL_X2APIC: 744 mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap; 745 746 /* 747 * All logical processors with APIC ID values 748 * of 255 and greater will have their APIC 749 * reported through Processor X2APIC structure. 750 * All logical processors with APIC ID less than 751 * 255 will have their APIC reported through 752 * Processor Local APIC. 753 */ 754 if ((mpx2a->LapicFlags & ACPI_MADT_ENABLED) && 755 (mpx2a->LocalApicId >> 8)) { 756 if (apic_nproc < NCPU && use_mp && 757 apic_nproc < boot_ncpus) { 758 local_ids[index] = mpx2a->LocalApicId; 759 proc_ids[index] = mpa->ProcessorId; 760 index++; 761 apic_nproc++; 762 } else if (apic_nproc == NCPU && !warned) { 763 cmn_err(CE_WARN, "%s: CPU limit " 764 "exceeded" 765 #if !defined(__amd64) 766 " for 32-bit mode" 767 #endif 768 "; Solaris will use %d CPUs.", 769 psm_name, NCPU); 770 warned = 1; 771 } 772 } 773 774 break; 775 776 case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI: 777 /* UNIMPLEMENTED */ 778 mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap; 779 if (mx2alan->Uid >> 8) 780 acpi_nmi_ccnt++; 781 782 #ifdef DEBUG 783 cmn_err(CE_NOTE, 784 "!apic: local x2apic nmi: %d 0x%x %d\n", 785 mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint); 786 #endif 787 788 break; 789 790 case ACPI_MADT_TYPE_RESERVED: 791 default: 792 break; 793 } 794 795 /* advance to next entry */ 796 madt_seen += ap->Length; 797 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length); 798 } 799 800 /* 801 * allocate enough space for possible hot-adding of CPUs. 802 * max_ncpus may be less than apic_nproc if it's set by user. 803 */ 804 if (plat_dr_support_cpu()) { 805 apic_max_nproc = max_ncpus; 806 } 807 apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus); 808 if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL) 809 goto cleanup; 810 811 /* 812 * ACPI doesn't provide the local apic ver, get it directly from the 813 * local apic 814 */ 815 ver = apic_reg_ops->apic_read(APIC_VERS_REG); 816 for (i = 0; i < apic_nproc; i++) { 817 apic_cpus[i].aci_local_id = local_ids[i]; 818 apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF); 819 apic_cpus[i].aci_processor_id = proc_ids[i]; 820 /* Only build mapping info for CPUs present at boot. */ 821 if (i < boot_ncpus) 822 (void) acpica_map_cpu(i, proc_ids[i]); 823 } 824 825 /* 826 * To support CPU dynamic reconfiguration, the apic CPU info structure 827 * for each possible CPU will be pre-allocated at boot time. 828 * The state for each apic CPU info structure will be assigned according 829 * to the following rules: 830 * Rule 1: 831 * Slot index range: [0, min(apic_nproc, boot_ncpus)) 832 * State flags: 0 833 * Note: cpu exists and will be configured/enabled at boot time 834 * Rule 2: 835 * Slot index range: [boot_ncpus, apic_nproc) 836 * State flags: APIC_CPU_FREE | APIC_CPU_DIRTY 837 * Note: cpu exists but won't be configured/enabled at boot time 838 * Rule 3: 839 * Slot index range: [apic_nproc, boot_ncpus) 840 * State flags: APIC_CPU_FREE 841 * Note: cpu doesn't exist at boot time 842 * Rule 4: 843 * Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus) 844 * State flags: APIC_CPU_FREE 845 * Note: cpu doesn't exist at boot time 846 */ 847 CPUSET_ZERO(apic_cpumask); 848 for (i = 0; i < min(boot_ncpus, apic_nproc); i++) { 849 CPUSET_ADD(apic_cpumask, i); 850 apic_cpus[i].aci_status = 0; 851 } 852 for (i = boot_ncpus; i < apic_nproc; i++) { 853 apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY; 854 } 855 for (i = apic_nproc; i < boot_ncpus; i++) { 856 apic_cpus[i].aci_status = APIC_CPU_FREE; 857 } 858 for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) { 859 apic_cpus[i].aci_status = APIC_CPU_FREE; 860 } 861 862 for (i = 0; i < apic_io_max; i++) { 863 ioapic_ix = i; 864 865 /* 866 * need to check Sitka on the following acpi problem 867 * On the Sitka, the ioapic's apic_id field isn't reporting 868 * the actual io apic id. We have reported this problem 869 * to Intel. Until they fix the problem, we will get the 870 * actual id directly from the ioapic. 871 */ 872 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 873 hid = (uchar_t)(id >> 24); 874 875 if (hid != apic_io_id[i]) { 876 if (apic_io_id[i] == 0) 877 apic_io_id[i] = hid; 878 else { /* set ioapic id to whatever reported by ACPI */ 879 id = ((uint32_t)apic_io_id[i]) << 24; 880 ioapic_write(ioapic_ix, APIC_ID_CMD, id); 881 } 882 } 883 ver = ioapic_read(ioapic_ix, APIC_VERS_CMD); 884 apic_io_ver[i] = (uchar_t)(ver & 0xff); 885 intmax = (ver >> 16) & 0xff; 886 apic_io_vectend[i] = apic_io_vectbase[i] + intmax; 887 if (apic_first_avail_irq <= apic_io_vectend[i]) 888 apic_first_avail_irq = apic_io_vectend[i] + 1; 889 } 890 891 892 /* 893 * Process SCI configuration here 894 * An error may be returned here if 895 * acpi-user-options specifies legacy mode 896 * (no SCI, no ACPI mode) 897 */ 898 if (acpica_get_sci(&sci, &sci_flags) != AE_OK) 899 sci = -1; 900 901 /* 902 * Now call acpi_init() to generate namespaces 903 * If this fails, we don't attempt to use ACPI 904 * even if we were able to get a MADT above 905 */ 906 if (acpica_init() != AE_OK) 907 goto cleanup; 908 909 /* 910 * Call acpica_build_processor_map() now that we have 911 * ACPI namesspace access 912 */ 913 (void) acpica_build_processor_map(); 914 915 /* 916 * Squirrel away the SCI and flags for later on 917 * in apic_picinit() when we're ready 918 */ 919 apic_sci_vect = sci; 920 apic_sci_flags = sci_flags; 921 922 if (apic_verbose & APIC_VERBOSE_IRQ_FLAG) 923 acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG; 924 925 if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG) 926 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG; 927 928 if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG) 929 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG; 930 931 if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE) 932 goto cleanup; 933 934 /* Enable ACPI APIC interrupt routing */ 935 if (apic_acpi_enter_apicmode() != PSM_FAILURE) { 936 build_reserved_irqlist((uchar_t *)apic_reserved_irqlist); 937 apic_enable_acpi = 1; 938 if (apic_sci_vect > 0) { 939 acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT); 940 } 941 if (apic_use_acpi_madt_only) { 942 cmn_err(CE_CONT, 943 "?Using ACPI for CPU/IOAPIC information ONLY\n"); 944 } 945 946 #if !defined(__xpv) 947 /* 948 * probe ACPI for hpet information here which is used later 949 * in apic_picinit(). 950 */ 951 if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) { 952 cmn_err(CE_NOTE, "!ACPI HPET table query failed\n"); 953 } 954 #endif 955 956 kmem_free(local_ids, NCPU * sizeof (uint32_t)); 957 kmem_free(proc_ids, NCPU * sizeof (uint32_t)); 958 return (PSM_SUCCESS); 959 } 960 /* if setting APIC mode failed above, we fall through to cleanup */ 961 962 cleanup: 963 apic_free_apic_cpus(); 964 if (apicadr != NULL) { 965 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 966 apicadr = NULL; 967 } 968 apic_max_nproc = -1; 969 apic_nproc = 0; 970 for (i = 0; i < apic_io_max; i++) { 971 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 972 apicioadr[i] = NULL; 973 } 974 apic_io_max = 0; 975 acpi_isop = NULL; 976 acpi_iso_cnt = 0; 977 acpi_nmi_sp = NULL; 978 acpi_nmi_scnt = 0; 979 acpi_nmi_cp = NULL; 980 acpi_nmi_ccnt = 0; 981 kmem_free(local_ids, NCPU * sizeof (uint32_t)); 982 kmem_free(proc_ids, NCPU * sizeof (uint32_t)); 983 return (PSM_FAILURE); 984 } 985 986 /* 987 * Handle default configuration. Fill in reqd global variables & tables 988 * Fill all details as MP table does not give any more info 989 */ 990 static int 991 apic_handle_defconf() 992 { 993 uint_t lid; 994 995 /* Failed to probe ACPI MADT tables, disable CPU DR. */ 996 apic_max_nproc = -1; 997 apic_free_apic_cpus(); 998 plat_dr_disable_cpu(); 999 1000 apicioadr[0] = (void *)mapin_ioapic(APIC_IO_ADDR, 1001 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1002 apicadr = (void *)psm_map_phys(APIC_LOCAL_ADDR, 1003 APIC_LOCAL_MEMLEN, PROT_READ); 1004 apic_cpus_size = 2 * sizeof (*apic_cpus); 1005 apic_cpus = (apic_cpus_info_t *) 1006 kmem_zalloc(apic_cpus_size, KM_NOSLEEP); 1007 if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus)) 1008 goto apic_handle_defconf_fail; 1009 CPUSET_ONLY(apic_cpumask, 0); 1010 CPUSET_ADD(apic_cpumask, 1); 1011 apic_nproc = 2; 1012 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1013 apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET); 1014 /* 1015 * According to the PC+MP spec 1.1, the local ids 1016 * for the default configuration has to be 0 or 1 1017 */ 1018 if (apic_cpus[0].aci_local_id == 1) 1019 apic_cpus[1].aci_local_id = 0; 1020 else if (apic_cpus[0].aci_local_id == 0) 1021 apic_cpus[1].aci_local_id = 1; 1022 else 1023 goto apic_handle_defconf_fail; 1024 1025 apic_io_id[0] = 2; 1026 apic_io_max = 1; 1027 if (apic_defconf >= 5) { 1028 apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS; 1029 apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS; 1030 apic_io_ver[0] = APIC_INTEGRATED_VERS; 1031 } else { 1032 apic_cpus[0].aci_local_ver = 0; /* 82489 DX */ 1033 apic_cpus[1].aci_local_ver = 0; 1034 apic_io_ver[0] = 0; 1035 } 1036 if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6) 1037 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1038 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1039 return (PSM_SUCCESS); 1040 1041 apic_handle_defconf_fail: 1042 if (apicadr) 1043 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 1044 if (apicioadr[0]) 1045 mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN); 1046 return (PSM_FAILURE); 1047 } 1048 1049 /* Parse the entries in MP configuration table and collect info that we need */ 1050 static int 1051 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics) 1052 { 1053 struct apic_procent *procp; 1054 struct apic_bus *busp; 1055 struct apic_io_entry *ioapicp; 1056 struct apic_io_intr *intrp; 1057 int ioapic_ix; 1058 uint_t lid; 1059 uint32_t id; 1060 uchar_t hid; 1061 int warned = 0; 1062 1063 /*LINTED: pointer cast may result in improper alignment */ 1064 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1065 1066 /* No need to count cpu entries if we won't use them */ 1067 if (!bypass_cpus_and_ioapics) { 1068 1069 /* Find max # of CPUS and allocate structure accordingly */ 1070 apic_nproc = 0; 1071 CPUSET_ZERO(apic_cpumask); 1072 while (procp->proc_entry == APIC_CPU_ENTRY) { 1073 if (procp->proc_cpuflags & CPUFLAGS_EN) { 1074 if (apic_nproc < NCPU && use_mp && 1075 apic_nproc < boot_ncpus) { 1076 CPUSET_ADD(apic_cpumask, apic_nproc); 1077 apic_nproc++; 1078 } else if (apic_nproc == NCPU && !warned) { 1079 cmn_err(CE_WARN, "%s: CPU limit " 1080 "exceeded" 1081 #if !defined(__amd64) 1082 " for 32-bit mode" 1083 #endif 1084 "; Solaris will use %d CPUs.", 1085 psm_name, NCPU); 1086 warned = 1; 1087 } 1088 1089 } 1090 procp++; 1091 } 1092 apic_cpus_size = apic_nproc * sizeof (*apic_cpus); 1093 if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *) 1094 kmem_zalloc(apic_cpus_size, KM_NOSLEEP))) 1095 return (PSM_FAILURE); 1096 } 1097 1098 /*LINTED: pointer cast may result in improper alignment */ 1099 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1100 1101 /* 1102 * start with index 1 as 0 needs to be filled in with Boot CPU, but 1103 * if we're bypassing this information, it has already been filled 1104 * in by acpi_probe(), so don't overwrite it. 1105 */ 1106 if (!bypass_cpus_and_ioapics) 1107 apic_nproc = 1; 1108 1109 while (procp->proc_entry == APIC_CPU_ENTRY) { 1110 /* check whether the cpu exists or not */ 1111 if (!bypass_cpus_and_ioapics && 1112 procp->proc_cpuflags & CPUFLAGS_EN) { 1113 if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */ 1114 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1115 apic_cpus[0].aci_local_id = procp->proc_apicid; 1116 if (apic_cpus[0].aci_local_id != 1117 (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) { 1118 return (PSM_FAILURE); 1119 } 1120 apic_cpus[0].aci_local_ver = 1121 procp->proc_version; 1122 } else if (apic_nproc < NCPU && use_mp && 1123 apic_nproc < boot_ncpus) { 1124 apic_cpus[apic_nproc].aci_local_id = 1125 procp->proc_apicid; 1126 1127 apic_cpus[apic_nproc].aci_local_ver = 1128 procp->proc_version; 1129 apic_nproc++; 1130 1131 } 1132 } 1133 procp++; 1134 } 1135 1136 /* 1137 * Save start of bus entries for later use. 1138 * Get EISA level cntrl if EISA bus is present. 1139 * Also get the CPI bus id for single CPI bus case 1140 */ 1141 apic_busp = busp = (struct apic_bus *)procp; 1142 while (busp->bus_entry == APIC_BUS_ENTRY) { 1143 lid = apic_find_bus_type((char *)&busp->bus_str1); 1144 if (lid == BUS_EISA) { 1145 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1146 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1147 } else if (lid == BUS_PCI) { 1148 /* 1149 * apic_single_pci_busid will be used only if 1150 * apic_pic_bus_total is equal to 1 1151 */ 1152 apic_pci_bus_total++; 1153 apic_single_pci_busid = busp->bus_id; 1154 } 1155 busp++; 1156 } 1157 1158 ioapicp = (struct apic_io_entry *)busp; 1159 1160 if (!bypass_cpus_and_ioapics) 1161 apic_io_max = 0; 1162 do { 1163 if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) { 1164 if (ioapicp->io_flags & IOAPIC_FLAGS_EN) { 1165 apic_io_id[apic_io_max] = ioapicp->io_apicid; 1166 apic_io_ver[apic_io_max] = ioapicp->io_version; 1167 apicioadr[apic_io_max] = 1168 (void *)mapin_ioapic( 1169 (uint32_t)ioapicp->io_apic_addr, 1170 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1171 1172 if (!apicioadr[apic_io_max]) 1173 return (PSM_FAILURE); 1174 1175 ioapic_mask_workaround[apic_io_max] = 1176 apic_is_ioapic_AMD_813x( 1177 ioapicp->io_apic_addr); 1178 1179 ioapic_ix = apic_io_max; 1180 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 1181 hid = (uchar_t)(id >> 24); 1182 1183 if (hid != apic_io_id[apic_io_max]) { 1184 if (apic_io_id[apic_io_max] == 0) 1185 apic_io_id[apic_io_max] = hid; 1186 else { 1187 /* 1188 * set ioapic id to whatever 1189 * reported by MPS 1190 * 1191 * may not need to set index 1192 * again ??? 1193 * take it out and try 1194 */ 1195 1196 id = ((uint32_t) 1197 apic_io_id[apic_io_max]) << 1198 24; 1199 1200 ioapic_write(ioapic_ix, 1201 APIC_ID_CMD, id); 1202 } 1203 } 1204 apic_io_max++; 1205 } 1206 } 1207 ioapicp++; 1208 } while (ioapicp->io_entry == APIC_IO_ENTRY); 1209 1210 apic_io_intrp = (struct apic_io_intr *)ioapicp; 1211 1212 intrp = apic_io_intrp; 1213 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1214 if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) || 1215 (apic_find_bus(intrp->intr_busid) == BUS_PCI)) { 1216 apic_irq_translate = 1; 1217 break; 1218 } 1219 intrp++; 1220 } 1221 1222 return (PSM_SUCCESS); 1223 } 1224 1225 boolean_t 1226 apic_cpu_in_range(int cpu) 1227 { 1228 cpu &= ~IRQ_USER_BOUND; 1229 /* Check whether cpu id is in valid range. */ 1230 if (cpu < 0 || cpu >= apic_nproc) { 1231 return (B_FALSE); 1232 } else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) { 1233 /* 1234 * Check whether cpuid is in valid range if CPU DR is enabled. 1235 */ 1236 return (B_FALSE); 1237 } else if (!CPU_IN_SET(apic_cpumask, cpu)) { 1238 return (B_FALSE); 1239 } 1240 1241 return (B_TRUE); 1242 } 1243 1244 processorid_t 1245 apic_get_next_bind_cpu(void) 1246 { 1247 int i, count; 1248 processorid_t cpuid = 0; 1249 1250 for (count = 0; count < apic_nproc; count++) { 1251 if (apic_next_bind_cpu >= apic_nproc) { 1252 apic_next_bind_cpu = 0; 1253 } 1254 i = apic_next_bind_cpu++; 1255 if (apic_cpu_in_range(i)) { 1256 cpuid = i; 1257 break; 1258 } 1259 } 1260 1261 return (cpuid); 1262 } 1263 1264 uint16_t 1265 apic_get_apic_version() 1266 { 1267 int i; 1268 uchar_t min_io_apic_ver = 0; 1269 static uint16_t version; /* Cache as value is constant */ 1270 static boolean_t found = B_FALSE; /* Accomodate zero version */ 1271 1272 if (found == B_FALSE) { 1273 found = B_TRUE; 1274 1275 /* 1276 * Don't assume all IO APICs in the system are the same. 1277 * 1278 * Set to the minimum version. 1279 */ 1280 for (i = 0; i < apic_io_max; i++) { 1281 if ((apic_io_ver[i] != 0) && 1282 ((min_io_apic_ver == 0) || 1283 (min_io_apic_ver >= apic_io_ver[i]))) 1284 min_io_apic_ver = apic_io_ver[i]; 1285 } 1286 1287 /* Assume all local APICs are of the same version. */ 1288 version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver; 1289 } 1290 return (version); 1291 } 1292 1293 static struct apic_mpfps_hdr * 1294 apic_find_fps_sig(caddr_t cptr, int len) 1295 { 1296 int i; 1297 1298 /* Look for the pattern "_MP_" */ 1299 for (i = 0; i < len; i += 16) { 1300 if ((*(cptr+i) == '_') && 1301 (*(cptr+i+1) == 'M') && 1302 (*(cptr+i+2) == 'P') && 1303 (*(cptr+i+3) == '_')) 1304 /*LINTED: pointer cast may result in improper alignment */ 1305 return ((struct apic_mpfps_hdr *)(cptr + i)); 1306 } 1307 return (NULL); 1308 } 1309 1310 static int 1311 apic_checksum(caddr_t bptr, int len) 1312 { 1313 int i; 1314 uchar_t cksum; 1315 1316 cksum = 0; 1317 for (i = 0; i < len; i++) 1318 cksum += *bptr++; 1319 return ((int)cksum); 1320 } 1321 1322 /* 1323 * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge 1324 * needs special handling. We may need to chase up the device tree, 1325 * using the PCI-PCI Bridge specification's "rotating IPIN assumptions", 1326 * to find the IPIN at the root bus that relates to the IPIN on the 1327 * subsidiary bus (for ACPI or MP). We may, however, have an entry 1328 * in the MP table or the ACPI namespace for this device itself. 1329 * We handle both cases in the search below. 1330 */ 1331 /* this is the non-acpi version */ 1332 int 1333 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin, 1334 struct apic_io_intr **intrp) 1335 { 1336 dev_info_t *dipp, *dip; 1337 int pci_irq; 1338 ddi_acc_handle_t cfg_handle; 1339 int bridge_devno, bridge_bus; 1340 int ipin; 1341 1342 dip = idip; 1343 1344 /*CONSTCOND*/ 1345 while (1) { 1346 if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) || 1347 (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS)) 1348 return (-1); 1349 if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) == 1350 PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle, 1351 PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) { 1352 pci_config_teardown(&cfg_handle); 1353 if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno, 1354 NULL) != 0) 1355 return (-1); 1356 /* 1357 * This is the rotating scheme documented in the 1358 * PCI-to-PCI spec. If the PCI-to-PCI bridge is 1359 * behind another PCI-to-PCI bridge, then it needs 1360 * to keep ascending until an interrupt entry is 1361 * found or the root is reached. 1362 */ 1363 ipin = (child_devno + child_ipin) % PCI_INTD; 1364 if (bridge_bus == 0 && apic_pci_bus_total == 1) 1365 bridge_bus = (int)apic_single_pci_busid; 1366 pci_irq = ((bridge_devno & 0x1f) << 2) | 1367 (ipin & 0x3); 1368 if ((*intrp = apic_find_io_intr_w_busid(pci_irq, 1369 bridge_bus)) != NULL) { 1370 return (pci_irq); 1371 } 1372 dip = dipp; 1373 child_devno = bridge_devno; 1374 child_ipin = ipin; 1375 } else { 1376 pci_config_teardown(&cfg_handle); 1377 return (-1); 1378 } 1379 } 1380 /*LINTED: function will not fall off the bottom */ 1381 } 1382 1383 uchar_t 1384 acpi_find_ioapic(int irq) 1385 { 1386 int i; 1387 1388 for (i = 0; i < apic_io_max; i++) { 1389 if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i]) 1390 return ((uchar_t)i); 1391 } 1392 return (0xFF); /* shouldn't happen */ 1393 } 1394 1395 /* 1396 * See if two irqs are compatible for sharing a vector. 1397 * Currently we only support sharing of PCI devices. 1398 */ 1399 static int 1400 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2) 1401 { 1402 uint_t level1, po1; 1403 uint_t level2, po2; 1404 1405 /* Assume active high by default */ 1406 po1 = 0; 1407 po2 = 0; 1408 1409 if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI) 1410 return (0); 1411 1412 if (iflag1.intr_el == INTR_EL_CONFORM) 1413 level1 = AV_LEVEL; 1414 else 1415 level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 1416 1417 if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) || 1418 (iflag1.intr_po == INTR_PO_CONFORM))) 1419 po1 = AV_ACTIVE_LOW; 1420 1421 if (iflag2.intr_el == INTR_EL_CONFORM) 1422 level2 = AV_LEVEL; 1423 else 1424 level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 1425 1426 if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) || 1427 (iflag2.intr_po == INTR_PO_CONFORM))) 1428 po2 = AV_ACTIVE_LOW; 1429 1430 if ((level1 == level2) && (po1 == po2)) 1431 return (1); 1432 1433 return (0); 1434 } 1435 1436 struct apic_io_intr * 1437 apic_find_io_intr_w_busid(int irqno, int busid) 1438 { 1439 struct apic_io_intr *intrp; 1440 1441 /* 1442 * It can have more than 1 entry with same source bus IRQ, 1443 * but unique with the source bus id 1444 */ 1445 intrp = apic_io_intrp; 1446 if (intrp != NULL) { 1447 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1448 if (intrp->intr_irq == irqno && 1449 intrp->intr_busid == busid && 1450 intrp->intr_type == IO_INTR_INT) 1451 return (intrp); 1452 intrp++; 1453 } 1454 } 1455 APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:" 1456 "busid %x:%x\n", irqno, busid)); 1457 return ((struct apic_io_intr *)NULL); 1458 } 1459 1460 1461 struct mps_bus_info { 1462 char *bus_name; 1463 int bus_id; 1464 } bus_info_array[] = { 1465 "ISA ", BUS_ISA, 1466 "PCI ", BUS_PCI, 1467 "EISA ", BUS_EISA, 1468 "XPRESS", BUS_XPRESS, 1469 "PCMCIA", BUS_PCMCIA, 1470 "VL ", BUS_VL, 1471 "CBUS ", BUS_CBUS, 1472 "CBUSII", BUS_CBUSII, 1473 "FUTURE", BUS_FUTURE, 1474 "INTERN", BUS_INTERN, 1475 "MBI ", BUS_MBI, 1476 "MBII ", BUS_MBII, 1477 "MPI ", BUS_MPI, 1478 "MPSA ", BUS_MPSA, 1479 "NUBUS ", BUS_NUBUS, 1480 "TC ", BUS_TC, 1481 "VME ", BUS_VME, 1482 "PCI-E ", BUS_PCIE 1483 }; 1484 1485 static int 1486 apic_find_bus_type(char *bus) 1487 { 1488 int i = 0; 1489 1490 for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++) 1491 if (strncmp(bus, bus_info_array[i].bus_name, 1492 strlen(bus_info_array[i].bus_name)) == 0) 1493 return (bus_info_array[i].bus_id); 1494 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus)); 1495 return (0); 1496 } 1497 1498 static int 1499 apic_find_bus(int busid) 1500 { 1501 struct apic_bus *busp; 1502 1503 busp = apic_busp; 1504 while (busp->bus_entry == APIC_BUS_ENTRY) { 1505 if (busp->bus_id == busid) 1506 return (apic_find_bus_type((char *)&busp->bus_str1)); 1507 busp++; 1508 } 1509 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid)); 1510 return (0); 1511 } 1512 1513 int 1514 apic_find_bus_id(int bustype) 1515 { 1516 struct apic_bus *busp; 1517 1518 busp = apic_busp; 1519 while (busp->bus_entry == APIC_BUS_ENTRY) { 1520 if (apic_find_bus_type((char *)&busp->bus_str1) == bustype) 1521 return (busp->bus_id); 1522 busp++; 1523 } 1524 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x", 1525 bustype)); 1526 return (-1); 1527 } 1528 1529 /* 1530 * Check if a particular irq need to be reserved for any io_intr 1531 */ 1532 static struct apic_io_intr * 1533 apic_find_io_intr(int irqno) 1534 { 1535 struct apic_io_intr *intrp; 1536 1537 intrp = apic_io_intrp; 1538 if (intrp != NULL) { 1539 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1540 if (intrp->intr_irq == irqno && 1541 intrp->intr_type == IO_INTR_INT) 1542 return (intrp); 1543 intrp++; 1544 } 1545 } 1546 return ((struct apic_io_intr *)NULL); 1547 } 1548 1549 /* 1550 * Check if the given ioapicindex intin combination has already been assigned 1551 * an irq. If so return irqno. Else -1 1552 */ 1553 int 1554 apic_find_intin(uchar_t ioapic, uchar_t intin) 1555 { 1556 apic_irq_t *irqptr; 1557 int i; 1558 1559 /* find ioapic and intin in the apic_irq_table[] and return the index */ 1560 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 1561 irqptr = apic_irq_table[i]; 1562 while (irqptr) { 1563 if ((irqptr->airq_mps_intr_index >= 0) && 1564 (irqptr->airq_intin_no == intin) && 1565 (irqptr->airq_ioapicindex == ioapic)) { 1566 APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq " 1567 "entry for ioapic:intin %x:%x " 1568 "shared interrupts ?", ioapic, intin)); 1569 return (i); 1570 } 1571 irqptr = irqptr->airq_next; 1572 } 1573 } 1574 return (-1); 1575 } 1576 1577 int 1578 apic_allocate_irq(int irq) 1579 { 1580 int freeirq, i; 1581 1582 if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1) 1583 if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ, 1584 (irq - 1))) == -1) { 1585 /* 1586 * if BIOS really defines every single irq in the mps 1587 * table, then don't worry about conflicting with 1588 * them, just use any free slot in apic_irq_table 1589 */ 1590 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 1591 if ((apic_irq_table[i] == NULL) || 1592 apic_irq_table[i]->airq_mps_intr_index == 1593 FREE_INDEX) { 1594 freeirq = i; 1595 break; 1596 } 1597 } 1598 if (freeirq == -1) { 1599 /* This shouldn't happen, but just in case */ 1600 cmn_err(CE_WARN, "%s: NO available IRQ", psm_name); 1601 return (-1); 1602 } 1603 } 1604 if (apic_irq_table[freeirq] == NULL) { 1605 apic_irq_table[freeirq] = 1606 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); 1607 if (apic_irq_table[freeirq] == NULL) { 1608 cmn_err(CE_WARN, "%s: NO memory to allocate IRQ", 1609 psm_name); 1610 return (-1); 1611 } 1612 apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT; 1613 apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX; 1614 } 1615 return (freeirq); 1616 } 1617 1618 static int 1619 apic_find_free_irq(int start, int end) 1620 { 1621 int i; 1622 1623 for (i = start; i <= end; i++) 1624 /* Check if any I/O entry needs this IRQ */ 1625 if (apic_find_io_intr(i) == NULL) { 1626 /* Then see if it is free */ 1627 if ((apic_irq_table[i] == NULL) || 1628 (apic_irq_table[i]->airq_mps_intr_index == 1629 FREE_INDEX)) { 1630 return (i); 1631 } 1632 } 1633 return (-1); 1634 } 1635 1636 /* 1637 * compute the polarity, trigger mode and vector for programming into 1638 * the I/O apic and record in airq_rdt_entry. 1639 */ 1640 void 1641 apic_record_rdt_entry(apic_irq_t *irqptr, int irq) 1642 { 1643 int ioapicindex, bus_type, vector; 1644 short intr_index; 1645 uint_t level, po, io_po; 1646 struct apic_io_intr *iointrp; 1647 1648 intr_index = irqptr->airq_mps_intr_index; 1649 DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d " 1650 "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq, 1651 (void *)irqptr->airq_dip, irqptr->airq_vector)); 1652 1653 if (intr_index == RESERVE_INDEX) { 1654 apic_error |= APIC_ERR_INVALID_INDEX; 1655 return; 1656 } else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) { 1657 return; 1658 } 1659 1660 vector = irqptr->airq_vector; 1661 ioapicindex = irqptr->airq_ioapicindex; 1662 /* Assume edge triggered by default */ 1663 level = 0; 1664 /* Assume active high by default */ 1665 po = 0; 1666 1667 if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) { 1668 ASSERT(irq < 16); 1669 if (eisa_level_intr_mask & (1 << irq)) 1670 level = AV_LEVEL; 1671 if (intr_index == FREE_INDEX && apic_defconf == 0) 1672 apic_error |= APIC_ERR_INVALID_INDEX; 1673 } else if (intr_index == ACPI_INDEX) { 1674 bus_type = irqptr->airq_iflag.bustype; 1675 if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) { 1676 if (bus_type == BUS_PCI) 1677 level = AV_LEVEL; 1678 } else 1679 level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ? 1680 AV_LEVEL : 0; 1681 if (level && 1682 ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) || 1683 (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM && 1684 bus_type == BUS_PCI))) 1685 po = AV_ACTIVE_LOW; 1686 } else { 1687 iointrp = apic_io_intrp + intr_index; 1688 bus_type = apic_find_bus(iointrp->intr_busid); 1689 if (iointrp->intr_el == INTR_EL_CONFORM) { 1690 if ((irq < 16) && (eisa_level_intr_mask & (1 << irq))) 1691 level = AV_LEVEL; 1692 else if (bus_type == BUS_PCI) 1693 level = AV_LEVEL; 1694 } else 1695 level = (iointrp->intr_el == INTR_EL_LEVEL) ? 1696 AV_LEVEL : 0; 1697 if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) || 1698 (iointrp->intr_po == INTR_PO_CONFORM && 1699 bus_type == BUS_PCI))) 1700 po = AV_ACTIVE_LOW; 1701 } 1702 if (level) 1703 apic_level_intr[irq] = 1; 1704 /* 1705 * The 82489DX External APIC cannot do active low polarity interrupts. 1706 */ 1707 if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX)) 1708 io_po = po; 1709 else 1710 io_po = 0; 1711 1712 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) 1713 prom_printf("setio: ioapic=0x%x intin=0x%x level=0x%x po=0x%x " 1714 "vector=0x%x cpu=0x%x\n\n", ioapicindex, 1715 irqptr->airq_intin_no, level, io_po, vector, 1716 irqptr->airq_cpu); 1717 1718 irqptr->airq_rdt_entry = level|io_po|vector; 1719 } 1720 1721 int 1722 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 1723 int ipin, int *pci_irqp, iflag_t *intr_flagp) 1724 { 1725 1726 int status; 1727 acpi_psm_lnk_t acpipsmlnk; 1728 1729 if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp, 1730 intr_flagp)) == ACPI_PSM_SUCCESS) { 1731 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d " 1732 "from cache for device %s, instance #%d\n", psm_name, 1733 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 1734 return (status); 1735 } 1736 1737 bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t)); 1738 1739 if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp, 1740 &acpipsmlnk)) == ACPI_PSM_FAILURE) { 1741 APIC_VERBOSE_IRQ((CE_WARN, "%s: " 1742 " acpi_translate_pci_irq failed for device %s, instance" 1743 " #%d", psm_name, ddi_get_name(dip), 1744 ddi_get_instance(dip))); 1745 return (status); 1746 } 1747 1748 if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) { 1749 status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp, 1750 intr_flagp); 1751 if (status != ACPI_PSM_SUCCESS) { 1752 status = acpi_get_current_irq_resource(&acpipsmlnk, 1753 pci_irqp, intr_flagp); 1754 } 1755 } 1756 1757 if (status == ACPI_PSM_SUCCESS) { 1758 acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp, 1759 intr_flagp, &acpipsmlnk); 1760 1761 APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] " 1762 "new irq %d for device %s, instance #%d\n", psm_name, 1763 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 1764 } 1765 1766 return (status); 1767 } 1768 1769 /* 1770 * Adds an entry to the irq list passed in, and returns the new list. 1771 * Entries are added in priority order (lower numerical priorities are 1772 * placed closer to the head of the list) 1773 */ 1774 static prs_irq_list_t * 1775 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq, 1776 iflag_t *iflagp, acpi_prs_private_t *prsprvp) 1777 { 1778 struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp; 1779 1780 newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP); 1781 1782 newent->list_prio = priority; 1783 newent->irq = irq; 1784 newent->intrflags = *iflagp; 1785 newent->prsprv = *prsprvp; 1786 /* ->next is NULL from kmem_zalloc */ 1787 1788 /* 1789 * New list -- return the new entry as the list. 1790 */ 1791 if (listp == NULL) 1792 return (newent); 1793 1794 /* 1795 * Save original list pointer for return (since we're not modifying 1796 * the head) 1797 */ 1798 origlistp = listp; 1799 1800 /* 1801 * Insertion sort, with entries with identical keys stored AFTER 1802 * existing entries (the less-than-or-equal test of priority does 1803 * this for us). 1804 */ 1805 while (listp != NULL && listp->list_prio <= priority) { 1806 prevp = listp; 1807 listp = listp->next; 1808 } 1809 1810 newent->next = listp; 1811 1812 if (prevp == NULL) { /* Add at head of list (newent is the new head) */ 1813 return (newent); 1814 } else { 1815 prevp->next = newent; 1816 return (origlistp); 1817 } 1818 } 1819 1820 /* 1821 * Frees the list passed in, deallocating all memory and leaving *listpp 1822 * set to NULL. 1823 */ 1824 static void 1825 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp) 1826 { 1827 struct prs_irq_list_ent *nextp; 1828 1829 ASSERT(listpp != NULL); 1830 1831 while (*listpp != NULL) { 1832 nextp = (*listpp)->next; 1833 kmem_free(*listpp, sizeof (struct prs_irq_list_ent)); 1834 *listpp = nextp; 1835 } 1836 } 1837 1838 /* 1839 * apic_choose_irqs_from_prs returns a list of irqs selected from the list of 1840 * irqs returned by the link device's _PRS method. The irqs are chosen 1841 * to minimize contention in situations where the interrupt link device 1842 * can be programmed to steer interrupts to different interrupt controller 1843 * inputs (some of which may already be in use). The list is sorted in order 1844 * of irqs to use, with the highest priority given to interrupt controller 1845 * inputs that are not shared. When an interrupt controller input 1846 * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the 1847 * returned list in the order that minimizes sharing (thereby ensuring lowest 1848 * possible latency from interrupt trigger time to ISR execution time). 1849 */ 1850 static prs_irq_list_t * 1851 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip, 1852 int crs_irq) 1853 { 1854 int32_t irq; 1855 int i; 1856 prs_irq_list_t *prsirqlistp = NULL; 1857 iflag_t iflags; 1858 1859 while (irqlistent != NULL) { 1860 irqlistent->intr_flags.bustype = BUS_PCI; 1861 1862 for (i = 0; i < irqlistent->num_irqs; i++) { 1863 1864 irq = irqlistent->irqs[i]; 1865 1866 if (irq <= 0) { 1867 /* invalid irq number */ 1868 continue; 1869 } 1870 1871 if ((irq < 16) && (apic_reserved_irqlist[irq])) 1872 continue; 1873 1874 if ((apic_irq_table[irq] == NULL) || 1875 (apic_irq_table[irq]->airq_dip == dip)) { 1876 1877 prsirqlistp = acpi_insert_prs_irq_ent( 1878 prsirqlistp, 0 /* Highest priority */, irq, 1879 &irqlistent->intr_flags, 1880 &irqlistent->acpi_prs_prv); 1881 1882 /* 1883 * If we do not prefer the current irq from _CRS 1884 * or if we do and this irq is the same as the 1885 * current irq from _CRS, this is the one 1886 * to pick. 1887 */ 1888 if (!(apic_prefer_crs) || (irq == crs_irq)) { 1889 return (prsirqlistp); 1890 } 1891 continue; 1892 } 1893 1894 /* 1895 * Edge-triggered interrupts cannot be shared 1896 */ 1897 if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE) 1898 continue; 1899 1900 /* 1901 * To work around BIOSes that contain incorrect 1902 * interrupt polarity information in interrupt 1903 * descriptors returned by _PRS, we assume that 1904 * the polarity of the other device sharing this 1905 * interrupt controller input is compatible. 1906 * If it's not, the caller will catch it when 1907 * the caller invokes the link device's _CRS method 1908 * (after invoking its _SRS method). 1909 */ 1910 iflags = irqlistent->intr_flags; 1911 iflags.intr_po = 1912 apic_irq_table[irq]->airq_iflag.intr_po; 1913 1914 if (!acpi_intr_compatible(iflags, 1915 apic_irq_table[irq]->airq_iflag)) { 1916 APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d " 1917 "not compatible [%x:%x:%x !~ %x:%x:%x]", 1918 psm_name, irq, 1919 iflags.intr_po, 1920 iflags.intr_el, 1921 iflags.bustype, 1922 apic_irq_table[irq]->airq_iflag.intr_po, 1923 apic_irq_table[irq]->airq_iflag.intr_el, 1924 apic_irq_table[irq]->airq_iflag.bustype)); 1925 continue; 1926 } 1927 1928 /* 1929 * If we prefer the irq from _CRS, no need 1930 * to search any further (and make sure 1931 * to add this irq with the highest priority 1932 * so it's tried first). 1933 */ 1934 if (crs_irq == irq && apic_prefer_crs) { 1935 1936 return (acpi_insert_prs_irq_ent( 1937 prsirqlistp, 1938 0 /* Highest priority */, 1939 irq, &iflags, 1940 &irqlistent->acpi_prs_prv)); 1941 } 1942 1943 /* 1944 * Priority is equal to the share count (lower 1945 * share count is higher priority). Note that 1946 * the intr flags passed in here are the ones we 1947 * changed above -- if incorrect, it will be 1948 * caught by the caller's _CRS flags comparison. 1949 */ 1950 prsirqlistp = acpi_insert_prs_irq_ent( 1951 prsirqlistp, 1952 apic_irq_table[irq]->airq_share, irq, 1953 &iflags, &irqlistent->acpi_prs_prv); 1954 } 1955 1956 /* Go to the next irqlist entry */ 1957 irqlistent = irqlistent->next; 1958 } 1959 1960 return (prsirqlistp); 1961 } 1962 1963 /* 1964 * Configures the irq for the interrupt link device identified by 1965 * acpipsmlnkp. 1966 * 1967 * Gets the current and the list of possible irq settings for the 1968 * device. If apic_unconditional_srs is not set, and the current 1969 * resource setting is in the list of possible irq settings, 1970 * current irq resource setting is passed to the caller. 1971 * 1972 * Otherwise, picks an irq number from the list of possible irq 1973 * settings, and sets the irq of the device to this value. 1974 * If prefer_crs is set, among a set of irq numbers in the list that have 1975 * the least number of devices sharing the interrupt, we pick current irq 1976 * resource setting if it is a member of this set. 1977 * 1978 * Passes the irq number in the value pointed to by pci_irqp, and 1979 * polarity and sensitivity in the structure pointed to by dipintrflagp 1980 * to the caller. 1981 * 1982 * Note that if setting the irq resource failed, but successfuly obtained 1983 * the current irq resource settings, passes the current irq resources 1984 * and considers it a success. 1985 * 1986 * Returns: 1987 * ACPI_PSM_SUCCESS on success. 1988 * 1989 * ACPI_PSM_FAILURE if an error occured during the configuration or 1990 * if a suitable irq was not found for this device, or if setting the 1991 * irq resource and obtaining the current resource fails. 1992 * 1993 */ 1994 static int 1995 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 1996 int *pci_irqp, iflag_t *dipintr_flagp) 1997 { 1998 int32_t irq; 1999 int cur_irq = -1; 2000 acpi_irqlist_t *irqlistp; 2001 prs_irq_list_t *prs_irq_listp, *prs_irq_entp; 2002 boolean_t found_irq = B_FALSE; 2003 2004 dipintr_flagp->bustype = BUS_PCI; 2005 2006 if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp)) 2007 == ACPI_PSM_FAILURE) { 2008 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine " 2009 "or assign IRQ for device %s, instance #%d: The system was " 2010 "unable to get the list of potential IRQs from ACPI.", 2011 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 2012 2013 return (ACPI_PSM_FAILURE); 2014 } 2015 2016 if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 2017 dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) && 2018 (cur_irq > 0)) { 2019 /* 2020 * If an IRQ is set in CRS and that IRQ exists in the set 2021 * returned from _PRS, return that IRQ, otherwise print 2022 * a warning 2023 */ 2024 2025 if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL) 2026 == ACPI_PSM_SUCCESS) { 2027 2028 ASSERT(pci_irqp != NULL); 2029 *pci_irqp = cur_irq; 2030 acpi_free_irqlist(irqlistp); 2031 return (ACPI_PSM_SUCCESS); 2032 } 2033 2034 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the " 2035 "current irq %d for device %s, instance #%d in ACPI's " 2036 "list of possible irqs for this device. Picking one from " 2037 " the latter list.", psm_name, cur_irq, ddi_get_name(dip), 2038 ddi_get_instance(dip))); 2039 } 2040 2041 if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip, 2042 cur_irq)) == NULL) { 2043 2044 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a " 2045 "suitable irq from the list of possible irqs for device " 2046 "%s, instance #%d in ACPI's list of possible irqs", 2047 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 2048 2049 acpi_free_irqlist(irqlistp); 2050 return (ACPI_PSM_FAILURE); 2051 } 2052 2053 acpi_free_irqlist(irqlistp); 2054 2055 for (prs_irq_entp = prs_irq_listp; 2056 prs_irq_entp != NULL && found_irq == B_FALSE; 2057 prs_irq_entp = prs_irq_entp->next) { 2058 2059 acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv; 2060 irq = prs_irq_entp->irq; 2061 2062 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for " 2063 "device %s instance #%d\n", psm_name, irq, 2064 ddi_get_name(dip), ddi_get_instance(dip))); 2065 2066 if ((acpi_set_irq_resource(acpipsmlnkp, irq)) 2067 == ACPI_PSM_SUCCESS) { 2068 /* 2069 * setting irq was successful, check to make sure CRS 2070 * reflects that. If CRS does not agree with what we 2071 * set, return the irq that was set. 2072 */ 2073 2074 if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 2075 dipintr_flagp) == ACPI_PSM_SUCCESS) { 2076 2077 if (cur_irq != irq) 2078 APIC_VERBOSE_IRQ((CE_WARN, 2079 "!%s: IRQ resource set " 2080 "(irqno %d) for device %s " 2081 "instance #%d, differs from " 2082 "current setting irqno %d", 2083 psm_name, irq, ddi_get_name(dip), 2084 ddi_get_instance(dip), cur_irq)); 2085 } else { 2086 /* 2087 * On at least one system, there was a bug in 2088 * a DSDT method called by _STA, causing _STA to 2089 * indicate that the link device was disabled 2090 * (when, in fact, it was enabled). Since _SRS 2091 * succeeded, assume that _CRS is lying and use 2092 * the iflags from this _PRS interrupt choice. 2093 * If we're wrong about the flags, the polarity 2094 * will be incorrect and we may get an interrupt 2095 * storm, but there's not much else we can do 2096 * at this point. 2097 */ 2098 *dipintr_flagp = prs_irq_entp->intrflags; 2099 } 2100 2101 /* 2102 * Return the irq that was set, and not what _CRS 2103 * reports, since _CRS has been seen to return 2104 * different IRQs than what was passed to _SRS on some 2105 * systems (and just not return successfully on others). 2106 */ 2107 cur_irq = irq; 2108 found_irq = B_TRUE; 2109 } else { 2110 APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource " 2111 "irq %d failed for device %s instance #%d", 2112 psm_name, irq, ddi_get_name(dip), 2113 ddi_get_instance(dip))); 2114 2115 if (cur_irq == -1) { 2116 acpi_destroy_prs_irq_list(&prs_irq_listp); 2117 return (ACPI_PSM_FAILURE); 2118 } 2119 } 2120 } 2121 2122 acpi_destroy_prs_irq_list(&prs_irq_listp); 2123 2124 if (!found_irq) 2125 return (ACPI_PSM_FAILURE); 2126 2127 ASSERT(pci_irqp != NULL); 2128 *pci_irqp = cur_irq; 2129 return (ACPI_PSM_SUCCESS); 2130 } 2131 2132 void 2133 ioapic_disable_redirection() 2134 { 2135 int ioapic_ix; 2136 int intin_max; 2137 int intin_ix; 2138 2139 /* Disable the I/O APIC redirection entries */ 2140 for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) { 2141 2142 /* Bits 23-16 define the maximum redirection entries */ 2143 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) 2144 & 0xff; 2145 2146 for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) { 2147 /* 2148 * The assumption here is that this is safe, even for 2149 * systems with IOAPICs that suffer from the hardware 2150 * erratum because all devices have been quiesced before 2151 * this function is called from apic_shutdown() 2152 * (or equivalent). If that assumption turns out to be 2153 * false, this mask operation can induce the same 2154 * erratum result we're trying to avoid. 2155 */ 2156 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix, 2157 AV_MASK); 2158 } 2159 } 2160 } 2161 2162 /* 2163 * Looks for an IOAPIC with the specified physical address in the /ioapics 2164 * node in the device tree (created by the PCI enumerator). 2165 */ 2166 static boolean_t 2167 apic_is_ioapic_AMD_813x(uint32_t physaddr) 2168 { 2169 /* 2170 * Look in /ioapics, for the ioapic with 2171 * the physical address given 2172 */ 2173 dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0); 2174 dev_info_t *ioapic_child; 2175 boolean_t rv = B_FALSE; 2176 int vid, did; 2177 uint64_t ioapic_paddr; 2178 boolean_t done = B_FALSE; 2179 2180 if (ioapicsnode == NULL) 2181 return (B_FALSE); 2182 2183 /* Load first child: */ 2184 ioapic_child = ddi_get_child(ioapicsnode); 2185 while (!done && ioapic_child != 0) { /* Iterate over children */ 2186 2187 if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY, 2188 ioapic_child, DDI_PROP_DONTPASS, "reg", 0)) 2189 != 0 && physaddr == ioapic_paddr) { 2190 2191 vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child, 2192 DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0); 2193 2194 if (vid == VENID_AMD) { 2195 2196 did = ddi_prop_get_int(DDI_DEV_T_ANY, 2197 ioapic_child, DDI_PROP_DONTPASS, 2198 IOAPICS_PROP_DEVID, 0); 2199 2200 if (did == DEVID_8131_IOAPIC || 2201 did == DEVID_8132_IOAPIC) { 2202 rv = B_TRUE; 2203 done = B_TRUE; 2204 } 2205 } 2206 } 2207 2208 if (!done) 2209 ioapic_child = ddi_get_next_sibling(ioapic_child); 2210 } 2211 2212 /* The ioapics node was held by ddi_find_devinfo, so release it */ 2213 ndi_rele_devi(ioapicsnode); 2214 return (rv); 2215 } 2216 2217 struct apic_state { 2218 int32_t as_task_reg; 2219 int32_t as_dest_reg; 2220 int32_t as_format_reg; 2221 int32_t as_local_timer; 2222 int32_t as_pcint_vect; 2223 int32_t as_int_vect0; 2224 int32_t as_int_vect1; 2225 int32_t as_err_vect; 2226 int32_t as_init_count; 2227 int32_t as_divide_reg; 2228 int32_t as_spur_int_reg; 2229 uint32_t as_ioapic_ids[MAX_IO_APIC]; 2230 }; 2231 2232 2233 static int 2234 apic_acpi_enter_apicmode(void) 2235 { 2236 ACPI_OBJECT_LIST arglist; 2237 ACPI_OBJECT arg; 2238 ACPI_STATUS status; 2239 2240 /* Setup parameter object */ 2241 arglist.Count = 1; 2242 arglist.Pointer = &arg; 2243 arg.Type = ACPI_TYPE_INTEGER; 2244 arg.Integer.Value = ACPI_APIC_MODE; 2245 2246 status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL); 2247 if (ACPI_FAILURE(status)) 2248 return (PSM_FAILURE); 2249 else 2250 return (PSM_SUCCESS); 2251 } 2252 2253 2254 static void 2255 apic_save_state(struct apic_state *sp) 2256 { 2257 int i, cpuid; 2258 ulong_t iflag; 2259 2260 PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp)) 2261 /* 2262 * First the local APIC. 2263 */ 2264 sp->as_task_reg = apic_reg_ops->apic_get_pri(); 2265 sp->as_dest_reg = apic_reg_ops->apic_read(APIC_DEST_REG); 2266 if (apic_mode == LOCAL_APIC) 2267 sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG); 2268 sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER); 2269 sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT); 2270 sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0); 2271 sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1); 2272 sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT); 2273 sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT); 2274 sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG); 2275 sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG); 2276 2277 /* 2278 * If on the boot processor then save the IOAPICs' IDs 2279 */ 2280 if ((cpuid = psm_get_cpu_id()) == 0) { 2281 2282 iflag = intr_clear(); 2283 lock_set(&apic_ioapic_lock); 2284 2285 for (i = 0; i < apic_io_max; i++) 2286 sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD); 2287 2288 lock_clear(&apic_ioapic_lock); 2289 intr_restore(iflag); 2290 } 2291 2292 /* apic_state() is currently invoked only in Suspend/Resume */ 2293 apic_cpus[cpuid].aci_status |= APIC_CPU_SUSPEND; 2294 } 2295 2296 static void 2297 apic_restore_state(struct apic_state *sp) 2298 { 2299 int i; 2300 ulong_t iflag; 2301 2302 /* 2303 * First the local APIC. 2304 */ 2305 apic_reg_ops->apic_write_task_reg(sp->as_task_reg); 2306 if (apic_mode == LOCAL_APIC) { 2307 apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg); 2308 apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg); 2309 } 2310 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer); 2311 apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect); 2312 apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0); 2313 apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1); 2314 apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect); 2315 apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count); 2316 apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg); 2317 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg); 2318 2319 /* 2320 * the following only needs to be done once, so we do it on the 2321 * boot processor, since we know that we only have one of those 2322 */ 2323 if (psm_get_cpu_id() == 0) { 2324 2325 iflag = intr_clear(); 2326 lock_set(&apic_ioapic_lock); 2327 2328 /* Restore IOAPICs' APIC IDs */ 2329 for (i = 0; i < apic_io_max; i++) { 2330 ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]); 2331 } 2332 2333 lock_clear(&apic_ioapic_lock); 2334 intr_restore(iflag); 2335 2336 /* 2337 * Reenter APIC mode before restoring LNK devices 2338 */ 2339 (void) apic_acpi_enter_apicmode(); 2340 2341 /* 2342 * restore acpi link device mappings 2343 */ 2344 acpi_restore_link_devices(); 2345 } 2346 } 2347 2348 /* 2349 * Returns 0 on success 2350 */ 2351 int 2352 apic_state(psm_state_request_t *rp) 2353 { 2354 PMD(PMD_SX, ("apic_state ")) 2355 switch (rp->psr_cmd) { 2356 case PSM_STATE_ALLOC: 2357 rp->req.psm_state_req.psr_state = 2358 kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP); 2359 if (rp->req.psm_state_req.psr_state == NULL) 2360 return (ENOMEM); 2361 rp->req.psm_state_req.psr_state_size = 2362 sizeof (struct apic_state); 2363 PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n", 2364 rp->req.psm_state_req.psr_state, 2365 rp->req.psm_state_req.psr_state_size)) 2366 return (0); 2367 2368 case PSM_STATE_FREE: 2369 kmem_free(rp->req.psm_state_req.psr_state, 2370 rp->req.psm_state_req.psr_state_size); 2371 PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n", 2372 rp->req.psm_state_req.psr_state, 2373 rp->req.psm_state_req.psr_state_size)) 2374 return (0); 2375 2376 case PSM_STATE_SAVE: 2377 PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n", 2378 rp->req.psm_state_req.psr_state, 2379 rp->req.psm_state_req.psr_state_size)) 2380 apic_save_state(rp->req.psm_state_req.psr_state); 2381 return (0); 2382 2383 case PSM_STATE_RESTORE: 2384 apic_restore_state(rp->req.psm_state_req.psr_state); 2385 PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n", 2386 rp->req.psm_state_req.psr_state, 2387 rp->req.psm_state_req.psr_state_size)) 2388 return (0); 2389 2390 default: 2391 return (EINVAL); 2392 } 2393 } 2394