1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2016 Nexenta Systems, Inc. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 30 /* 31 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 32 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 33 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 34 * PSMI 1.5 extensions are supported in Solaris Nevada. 35 * PSMI 1.6 extensions are supported in Solaris Nevada. 36 * PSMI 1.7 extensions are supported in Solaris Nevada. 37 */ 38 #define PSMI_1_7 39 40 #include <sys/processor.h> 41 #include <sys/time.h> 42 #include <sys/psm.h> 43 #include <sys/smp_impldefs.h> 44 #include <sys/cram.h> 45 #include <sys/acpi/acpi.h> 46 #include <sys/acpica.h> 47 #include <sys/psm_common.h> 48 #include <sys/apic.h> 49 #include <sys/apic_timer.h> 50 #include <sys/pit.h> 51 #include <sys/ddi.h> 52 #include <sys/sunddi.h> 53 #include <sys/ddi_impldefs.h> 54 #include <sys/pci.h> 55 #include <sys/promif.h> 56 #include <sys/x86_archext.h> 57 #include <sys/cpc_impl.h> 58 #include <sys/uadmin.h> 59 #include <sys/panic.h> 60 #include <sys/debug.h> 61 #include <sys/archsystm.h> 62 #include <sys/trap.h> 63 #include <sys/machsystm.h> 64 #include <sys/cpuvar.h> 65 #include <sys/rm_platter.h> 66 #include <sys/privregs.h> 67 #include <sys/cyclic.h> 68 #include <sys/note.h> 69 #include <sys/pci_intr_lib.h> 70 #include <sys/sunndi.h> 71 #if !defined(__xpv) 72 #include <sys/hpet.h> 73 #include <sys/clock.h> 74 #endif 75 76 /* 77 * Local Function Prototypes 78 */ 79 static int apic_handle_defconf(); 80 static int apic_parse_mpct(caddr_t mpct, int bypass); 81 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size); 82 static int apic_checksum(caddr_t bptr, int len); 83 static int apic_find_bus_type(char *bus); 84 static int apic_find_bus(int busid); 85 static struct apic_io_intr *apic_find_io_intr(int irqno); 86 static int apic_find_free_irq(int start, int end); 87 struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid); 88 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp); 89 static void apic_free_apic_cpus(void); 90 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr); 91 static int apic_acpi_enter_apicmode(void); 92 93 int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, 94 int child_ipin, struct apic_io_intr **intrp); 95 int apic_find_bus_id(int bustype); 96 int apic_find_intin(uchar_t ioapic, uchar_t intin); 97 void apic_record_rdt_entry(apic_irq_t *irqptr, int irq); 98 99 int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */ 100 101 /* ACPI SCI interrupt configuration; -1 if SCI not used */ 102 int apic_sci_vect = -1; 103 iflag_t apic_sci_flags; 104 105 #if !defined(__xpv) 106 /* ACPI HPET interrupt configuration; -1 if HPET not used */ 107 int apic_hpet_vect = -1; 108 iflag_t apic_hpet_flags; 109 #endif 110 111 /* 112 * psm name pointer 113 */ 114 char *psm_name; 115 116 /* ACPI support routines */ 117 static int acpi_probe(char *); 118 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 119 int *pci_irqp, iflag_t *intr_flagp); 120 121 int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 122 int ipin, int *pci_irqp, iflag_t *intr_flagp); 123 uchar_t acpi_find_ioapic(int irq); 124 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2); 125 126 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */ 127 int apic_max_reps_clear_pending = 1000; 128 129 int apic_intr_policy = INTR_ROUND_ROBIN; 130 131 int apic_next_bind_cpu = 1; /* For round robin assignment */ 132 /* start with cpu 1 */ 133 134 /* 135 * If enabled, the distribution works as follows: 136 * On every interrupt entry, the current ipl for the CPU is set in cpu_info 137 * and the irq corresponding to the ipl is also set in the aci_current array. 138 * interrupt exit and setspl (due to soft interrupts) will cause the current 139 * ipl to be be changed. This is cache friendly as these frequently used 140 * paths write into a per cpu structure. 141 * 142 * Sampling is done by checking the structures for all CPUs and incrementing 143 * the busy field of the irq (if any) executing on each CPU and the busy field 144 * of the corresponding CPU. 145 * In periodic mode this is done on every clock interrupt. 146 * In one-shot mode, this is done thru a cyclic with an interval of 147 * apic_redistribute_sample_interval (default 10 milli sec). 148 * 149 * Every apic_sample_factor_redistribution times we sample, we do computations 150 * to decide which interrupt needs to be migrated (see comments 151 * before apic_intr_redistribute(). 152 */ 153 154 /* 155 * Following 3 variables start as % and can be patched or set using an 156 * API to be defined in future. They will be scaled to 157 * sample_factor_redistribution which is in turn set to hertz+1 (in periodic 158 * mode), or 101 in one-shot mode to stagger it away from one sec processing 159 */ 160 161 int apic_int_busy_mark = 60; 162 int apic_int_free_mark = 20; 163 int apic_diff_for_redistribution = 10; 164 165 /* sampling interval for interrupt redistribution for dynamic migration */ 166 int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */ 167 168 /* 169 * number of times we sample before deciding to redistribute interrupts 170 * for dynamic migration 171 */ 172 int apic_sample_factor_redistribution = 101; 173 174 int apic_redist_cpu_skip = 0; 175 int apic_num_imbalance = 0; 176 int apic_num_rebind = 0; 177 178 /* 179 * Maximum number of APIC CPUs in the system, -1 indicates that dynamic 180 * allocation of CPU ids is disabled. 181 */ 182 int apic_max_nproc = -1; 183 int apic_nproc = 0; 184 size_t apic_cpus_size = 0; 185 int apic_defconf = 0; 186 int apic_irq_translate = 0; 187 int apic_spec_rev = 0; 188 int apic_imcrp = 0; 189 190 int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */ 191 int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */ 192 193 /* 194 * For interrupt link devices, if apic_unconditional_srs is set, an irq resource 195 * will be assigned (via _SRS). If it is not set, use the current 196 * irq setting (via _CRS), but only if that irq is in the set of possible 197 * irqs (returned by _PRS) for the device. 198 */ 199 int apic_unconditional_srs = 1; 200 201 /* 202 * For interrupt link devices, if apic_prefer_crs is set when we are 203 * assigning an IRQ resource to a device, prefer the current IRQ setting 204 * over other possible irq settings under same conditions. 205 */ 206 207 int apic_prefer_crs = 1; 208 209 uchar_t apic_io_id[MAX_IO_APIC]; 210 volatile uint32_t *apicioadr[MAX_IO_APIC]; 211 uchar_t apic_io_ver[MAX_IO_APIC]; 212 uchar_t apic_io_vectbase[MAX_IO_APIC]; 213 uchar_t apic_io_vectend[MAX_IO_APIC]; 214 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1]; 215 uint32_t apic_physaddr[MAX_IO_APIC]; 216 217 boolean_t ioapic_mask_workaround[MAX_IO_APIC]; 218 219 /* 220 * First available slot to be used as IRQ index into the apic_irq_table 221 * for those interrupts (like MSI/X) that don't have a physical IRQ. 222 */ 223 int apic_first_avail_irq = APIC_FIRST_FREE_IRQ; 224 225 /* 226 * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound 227 * and bound elements of cpus_info and the temp_cpu element of irq_struct 228 */ 229 lock_t apic_ioapic_lock; 230 231 int apic_io_max = 0; /* no. of i/o apics enabled */ 232 233 struct apic_io_intr *apic_io_intrp = NULL; 234 static struct apic_bus *apic_busp; 235 236 uchar_t apic_resv_vector[MAXIPL+1]; 237 238 char apic_level_intr[APIC_MAX_VECTOR+1]; 239 240 uint32_t eisa_level_intr_mask = 0; 241 /* At least MSB will be set if EISA bus */ 242 243 int apic_pci_bus_total = 0; 244 uchar_t apic_single_pci_busid = 0; 245 246 /* 247 * airq_mutex protects additions to the apic_irq_table - the first 248 * pointer and any airq_nexts off of that one. It also protects 249 * apic_max_device_irq & apic_min_device_irq. It also guarantees 250 * that share_id is unique as new ids are generated only when new 251 * irq_t structs are linked in. Once linked in the structs are never 252 * deleted. temp_cpu & mps_intr_index field indicate if it is programmed 253 * or allocated. Note that there is a slight gap between allocating in 254 * apic_introp_xlate and programming in addspl. 255 */ 256 kmutex_t airq_mutex; 257 apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1]; 258 int apic_max_device_irq = 0; 259 int apic_min_device_irq = APIC_MAX_VECTOR; 260 261 typedef struct prs_irq_list_ent { 262 int list_prio; 263 int32_t irq; 264 iflag_t intrflags; 265 acpi_prs_private_t prsprv; 266 struct prs_irq_list_ent *next; 267 } prs_irq_list_t; 268 269 270 /* 271 * ACPI variables 272 */ 273 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */ 274 int apic_enable_acpi = 0; 275 276 /* ACPI Multiple APIC Description Table ptr */ 277 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL; 278 279 /* ACPI Interrupt Source Override Structure ptr */ 280 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL; 281 int acpi_iso_cnt = 0; 282 283 /* ACPI Non-maskable Interrupt Sources ptr */ 284 static ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL; 285 static int acpi_nmi_scnt = 0; 286 static ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL; 287 static int acpi_nmi_ccnt = 0; 288 289 /* 290 * The following added to identify a software poweroff method if available. 291 */ 292 293 static struct { 294 int poweroff_method; 295 char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */ 296 char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */ 297 } apic_mps_ids[] = { 298 { APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */ 299 { APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */ 300 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */ 301 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */ 302 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */ 303 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */ 304 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */ 305 }; 306 307 int apic_poweroff_method = APIC_POWEROFF_NONE; 308 309 /* 310 * Auto-configuration routines 311 */ 312 313 /* 314 * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here 315 * May work with 1.1 - but not guaranteed. 316 * According to the MP Spec, the MP floating pointer structure 317 * will be searched in the order described below: 318 * 1. In the first kilobyte of Extended BIOS Data Area (EBDA) 319 * 2. Within the last kilobyte of system base memory 320 * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh 321 * Once we find the right signature with proper checksum, we call 322 * either handle_defconf or parse_mpct to get all info necessary for 323 * subsequent operations. 324 */ 325 int 326 apic_probe_common(char *modname) 327 { 328 uint32_t mpct_addr, ebda_start = 0, base_mem_end; 329 caddr_t biosdatap; 330 caddr_t mpct = 0; 331 caddr_t fptr; 332 int i, mpct_size, mapsize, retval = PSM_FAILURE; 333 ushort_t ebda_seg, base_mem_size; 334 struct apic_mpfps_hdr *fpsp; 335 struct apic_mp_cnf_hdr *hdrp; 336 int bypass_cpu_and_ioapics_in_mptables; 337 int acpi_user_options; 338 339 if (apic_forceload < 0) 340 return (retval); 341 342 /* 343 * Remember who we are 344 */ 345 psm_name = modname; 346 347 /* Allow override for MADT-only mode */ 348 acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0, 349 "acpi-user-options", 0); 350 apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0); 351 352 /* Allow apic_use_acpi to override MADT-only mode */ 353 if (!apic_use_acpi) 354 apic_use_acpi_madt_only = 0; 355 356 retval = acpi_probe(modname); 357 358 /* 359 * mapin the bios data area 40:0 360 * 40:13h - two-byte location reports the base memory size 361 * 40:0Eh - two-byte location for the exact starting address of 362 * the EBDA segment for EISA 363 */ 364 biosdatap = psm_map_phys(0x400, 0x20, PROT_READ); 365 if (!biosdatap) 366 goto apic_ret; 367 fpsp = (struct apic_mpfps_hdr *)NULL; 368 mapsize = MPFPS_RAM_WIN_LEN; 369 /*LINTED: pointer cast may result in improper alignment */ 370 ebda_seg = *((ushort_t *)(biosdatap+0xe)); 371 /* check the 1k of EBDA */ 372 if (ebda_seg) { 373 ebda_start = ((uint32_t)ebda_seg) << 4; 374 fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ); 375 if (fptr) { 376 if (!(fpsp = 377 apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN))) 378 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 379 } 380 } 381 /* If not in EBDA, check the last k of system base memory */ 382 if (!fpsp) { 383 /*LINTED: pointer cast may result in improper alignment */ 384 base_mem_size = *((ushort_t *)(biosdatap + 0x13)); 385 386 if (base_mem_size > 512) 387 base_mem_end = 639 * 1024; 388 else 389 base_mem_end = 511 * 1024; 390 /* if ebda == last k of base mem, skip to check BIOS ROM */ 391 if (base_mem_end != ebda_start) { 392 393 fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN, 394 PROT_READ); 395 396 if (fptr) { 397 if (!(fpsp = apic_find_fps_sig(fptr, 398 MPFPS_RAM_WIN_LEN))) 399 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 400 } 401 } 402 } 403 psm_unmap_phys(biosdatap, 0x20); 404 405 /* If still cannot find it, check the BIOS ROM space */ 406 if (!fpsp) { 407 mapsize = MPFPS_ROM_WIN_LEN; 408 fptr = psm_map_phys(MPFPS_ROM_WIN_START, 409 MPFPS_ROM_WIN_LEN, PROT_READ); 410 if (fptr) { 411 if (!(fpsp = 412 apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) { 413 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 414 goto apic_ret; 415 } 416 } 417 } 418 419 if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) { 420 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 421 goto apic_ret; 422 } 423 424 apic_spec_rev = fpsp->mpfps_spec_rev; 425 if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) { 426 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 427 goto apic_ret; 428 } 429 430 /* check IMCR is present or not */ 431 apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP; 432 433 /* check default configuration (dual CPUs) */ 434 if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) { 435 psm_unmap_phys(fptr, mapsize); 436 if ((retval = apic_handle_defconf()) != PSM_SUCCESS) 437 return (retval); 438 439 goto apic_ret; 440 } 441 442 /* MP Configuration Table */ 443 mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr); 444 445 psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */ 446 447 /* 448 * Map in enough memory for the MP Configuration Table Header. 449 * Use this table to read the total length of the BIOS data and 450 * map in all the info 451 */ 452 /*LINTED: pointer cast may result in improper alignment */ 453 hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr, 454 sizeof (struct apic_mp_cnf_hdr), PROT_READ); 455 if (!hdrp) 456 goto apic_ret; 457 458 /* check mp configuration table signature PCMP */ 459 if (hdrp->mpcnf_sig != 0x504d4350) { 460 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 461 goto apic_ret; 462 } 463 mpct_size = (int)hdrp->mpcnf_tbl_length; 464 465 apic_set_pwroff_method_from_mpcnfhdr(hdrp); 466 467 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 468 469 if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) { 470 /* This is an ACPI machine No need for further checks */ 471 goto apic_ret; 472 } 473 474 /* 475 * Map in the entries for this machine, ie. Processor 476 * Entry Tables, Bus Entry Tables, etc. 477 * They are in fixed order following one another 478 */ 479 mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ); 480 if (!mpct) 481 goto apic_ret; 482 483 if (apic_checksum(mpct, mpct_size) != 0) 484 goto apic_fail1; 485 486 /*LINTED: pointer cast may result in improper alignment */ 487 hdrp = (struct apic_mp_cnf_hdr *)mpct; 488 apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic, 489 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 490 if (!apicadr) 491 goto apic_fail1; 492 493 /* Parse all information in the tables */ 494 bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS); 495 if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) == 496 PSM_SUCCESS) { 497 retval = PSM_SUCCESS; 498 goto apic_ret; 499 } 500 501 apic_fail1: 502 psm_unmap_phys(mpct, mpct_size); 503 mpct = NULL; 504 505 apic_ret: 506 if (retval == PSM_SUCCESS) { 507 extern int apic_ioapic_method_probe(); 508 509 if ((retval = apic_ioapic_method_probe()) == PSM_SUCCESS) 510 return (PSM_SUCCESS); 511 } 512 513 for (i = 0; i < apic_io_max; i++) 514 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 515 if (apic_cpus) { 516 kmem_free(apic_cpus, apic_cpus_size); 517 apic_cpus = NULL; 518 } 519 if (apicadr) { 520 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 521 apicadr = NULL; 522 } 523 if (mpct) 524 psm_unmap_phys(mpct, mpct_size); 525 526 return (retval); 527 } 528 529 static void 530 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp) 531 { 532 int i; 533 534 for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0])); 535 i++) { 536 if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id, 537 strlen(apic_mps_ids[i].oem_id)) == 0) && 538 (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id, 539 strlen(apic_mps_ids[i].prod_id)) == 0)) { 540 541 apic_poweroff_method = apic_mps_ids[i].poweroff_method; 542 break; 543 } 544 } 545 546 if (apic_debug_mps_id != 0) { 547 cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'" 548 "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n", 549 psm_name, 550 hdrp->mpcnf_oem_str[0], 551 hdrp->mpcnf_oem_str[1], 552 hdrp->mpcnf_oem_str[2], 553 hdrp->mpcnf_oem_str[3], 554 hdrp->mpcnf_oem_str[4], 555 hdrp->mpcnf_oem_str[5], 556 hdrp->mpcnf_oem_str[6], 557 hdrp->mpcnf_oem_str[7], 558 hdrp->mpcnf_prod_str[0], 559 hdrp->mpcnf_prod_str[1], 560 hdrp->mpcnf_prod_str[2], 561 hdrp->mpcnf_prod_str[3], 562 hdrp->mpcnf_prod_str[4], 563 hdrp->mpcnf_prod_str[5], 564 hdrp->mpcnf_prod_str[6], 565 hdrp->mpcnf_prod_str[7], 566 hdrp->mpcnf_prod_str[8], 567 hdrp->mpcnf_prod_str[9], 568 hdrp->mpcnf_prod_str[10], 569 hdrp->mpcnf_prod_str[11]); 570 } 571 } 572 573 static void 574 apic_free_apic_cpus(void) 575 { 576 if (apic_cpus != NULL) { 577 kmem_free(apic_cpus, apic_cpus_size); 578 apic_cpus = NULL; 579 apic_cpus_size = 0; 580 } 581 } 582 583 static int 584 acpi_probe(char *modname) 585 { 586 int i, intmax, index; 587 uint32_t id, ver; 588 int acpi_verboseflags = 0; 589 int madt_seen, madt_size; 590 ACPI_SUBTABLE_HEADER *ap; 591 ACPI_MADT_LOCAL_APIC *mpa; 592 ACPI_MADT_LOCAL_X2APIC *mpx2a; 593 ACPI_MADT_IO_APIC *mia; 594 ACPI_MADT_IO_SAPIC *misa; 595 ACPI_MADT_INTERRUPT_OVERRIDE *mio; 596 ACPI_MADT_NMI_SOURCE *mns; 597 ACPI_MADT_INTERRUPT_SOURCE *mis; 598 ACPI_MADT_LOCAL_APIC_NMI *mlan; 599 ACPI_MADT_LOCAL_X2APIC_NMI *mx2alan; 600 ACPI_MADT_LOCAL_APIC_OVERRIDE *mao; 601 int sci; 602 iflag_t sci_flags; 603 volatile uint32_t *ioapic; 604 int ioapic_ix; 605 uint32_t *local_ids; 606 uint32_t *proc_ids; 607 uchar_t hid; 608 int warned = 0; 609 610 if (!apic_use_acpi) 611 return (PSM_FAILURE); 612 613 if (AcpiGetTable(ACPI_SIG_MADT, 1, 614 (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) 615 return (PSM_FAILURE); 616 617 apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address, 618 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 619 if (!apicadr) 620 return (PSM_FAILURE); 621 622 if ((local_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t), 623 KM_NOSLEEP)) == NULL) 624 return (PSM_FAILURE); 625 626 if ((proc_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t), 627 KM_NOSLEEP)) == NULL) { 628 kmem_free(local_ids, NCPU * sizeof (uint32_t)); 629 return (PSM_FAILURE); 630 } 631 632 id = apic_reg_ops->apic_read(APIC_LID_REG); 633 local_ids[0] = (uchar_t)(id >> 24); 634 apic_nproc = index = 1; 635 apic_io_max = 0; 636 637 ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1); 638 madt_size = acpi_mapic_dtp->Header.Length; 639 madt_seen = sizeof (*acpi_mapic_dtp); 640 641 while (madt_seen < madt_size) { 642 switch (ap->Type) { 643 case ACPI_MADT_TYPE_LOCAL_APIC: 644 mpa = (ACPI_MADT_LOCAL_APIC *) ap; 645 if (mpa->LapicFlags & ACPI_MADT_ENABLED) { 646 if (mpa->Id == 255) { 647 cmn_err(CE_WARN, "!%s: encountered " 648 "invalid entry in MADT: CPU %d " 649 "has Local APIC Id equal to 255 ", 650 psm_name, mpa->ProcessorId); 651 } 652 if (mpa->Id == local_ids[0]) { 653 ASSERT(index == 1); 654 proc_ids[0] = mpa->ProcessorId; 655 } else if (apic_nproc < NCPU && use_mp && 656 apic_nproc < boot_ncpus) { 657 local_ids[index] = mpa->Id; 658 proc_ids[index] = mpa->ProcessorId; 659 index++; 660 apic_nproc++; 661 } else if (apic_nproc == NCPU && !warned) { 662 cmn_err(CE_WARN, "%s: CPU limit " 663 "exceeded" 664 #if !defined(__amd64) 665 " for 32-bit mode" 666 #endif 667 "; Solaris will use %d CPUs.", 668 psm_name, NCPU); 669 warned = 1; 670 } 671 } 672 break; 673 674 case ACPI_MADT_TYPE_IO_APIC: 675 mia = (ACPI_MADT_IO_APIC *) ap; 676 if (apic_io_max < MAX_IO_APIC) { 677 ioapic_ix = apic_io_max; 678 apic_io_id[apic_io_max] = mia->Id; 679 apic_io_vectbase[apic_io_max] = 680 mia->GlobalIrqBase; 681 apic_physaddr[apic_io_max] = 682 (uint32_t)mia->Address; 683 ioapic = apicioadr[apic_io_max] = 684 mapin_ioapic((uint32_t)mia->Address, 685 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 686 if (!ioapic) 687 goto cleanup; 688 ioapic_mask_workaround[apic_io_max] = 689 apic_is_ioapic_AMD_813x(mia->Address); 690 apic_io_max++; 691 } 692 break; 693 694 case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE: 695 mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap; 696 if (acpi_isop == NULL) 697 acpi_isop = mio; 698 acpi_iso_cnt++; 699 break; 700 701 case ACPI_MADT_TYPE_NMI_SOURCE: 702 /* UNIMPLEMENTED */ 703 mns = (ACPI_MADT_NMI_SOURCE *) ap; 704 if (acpi_nmi_sp == NULL) 705 acpi_nmi_sp = mns; 706 acpi_nmi_scnt++; 707 708 cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n", 709 mns->GlobalIrq, mns->IntiFlags); 710 break; 711 712 case ACPI_MADT_TYPE_LOCAL_APIC_NMI: 713 /* UNIMPLEMENTED */ 714 mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap; 715 if (acpi_nmi_cp == NULL) 716 acpi_nmi_cp = mlan; 717 acpi_nmi_ccnt++; 718 719 cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n", 720 mlan->ProcessorId, mlan->IntiFlags, 721 mlan->Lint); 722 break; 723 724 case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE: 725 /* UNIMPLEMENTED */ 726 mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap; 727 cmn_err(CE_NOTE, "!apic: address override: %lx\n", 728 (long)mao->Address); 729 break; 730 731 case ACPI_MADT_TYPE_IO_SAPIC: 732 /* UNIMPLEMENTED */ 733 misa = (ACPI_MADT_IO_SAPIC *) ap; 734 735 cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n", 736 misa->Id, misa->GlobalIrqBase, 737 (long)misa->Address); 738 break; 739 740 case ACPI_MADT_TYPE_INTERRUPT_SOURCE: 741 /* UNIMPLEMENTED */ 742 mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap; 743 744 cmn_err(CE_NOTE, 745 "!apic: irq source: %d %d %d 0x%x %d %d\n", 746 mis->Id, mis->Eid, mis->GlobalIrq, 747 mis->IntiFlags, mis->Type, 748 mis->IoSapicVector); 749 break; 750 751 case ACPI_MADT_TYPE_LOCAL_X2APIC: 752 mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap; 753 754 /* 755 * All logical processors with APIC ID values 756 * of 255 and greater will have their APIC 757 * reported through Processor X2APIC structure. 758 * All logical processors with APIC ID less than 759 * 255 will have their APIC reported through 760 * Processor Local APIC. 761 * 762 * Some systems apparently don't care and report all 763 * processors through Processor X2APIC structures. We 764 * warn about that but don't ignore those CPUs. 765 */ 766 if (mpx2a->LocalApicId < 255) { 767 cmn_err(CE_WARN, "!%s: ignoring invalid entry " 768 "in MADT: CPU %d has X2APIC Id %d (< 255)", 769 psm_name, mpx2a->Uid, mpx2a->LocalApicId); 770 } 771 if (mpx2a->LapicFlags & ACPI_MADT_ENABLED) { 772 if (mpx2a->LocalApicId == local_ids[0]) { 773 ASSERT(index == 1); 774 proc_ids[0] = mpx2a->Uid; 775 } else if (apic_nproc < NCPU && use_mp && 776 apic_nproc < boot_ncpus) { 777 local_ids[index] = mpx2a->LocalApicId; 778 proc_ids[index] = mpx2a->Uid; 779 index++; 780 apic_nproc++; 781 } else if (apic_nproc == NCPU && !warned) { 782 cmn_err(CE_WARN, "%s: CPU limit " 783 "exceeded" 784 #if !defined(__amd64) 785 " for 32-bit mode" 786 #endif 787 "; Solaris will use %d CPUs.", 788 psm_name, NCPU); 789 warned = 1; 790 } 791 } 792 793 break; 794 795 case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI: 796 /* UNIMPLEMENTED */ 797 mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap; 798 if (mx2alan->Uid >> 8) 799 acpi_nmi_ccnt++; 800 801 #ifdef DEBUG 802 cmn_err(CE_NOTE, 803 "!apic: local x2apic nmi: %d 0x%x %d\n", 804 mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint); 805 #endif 806 807 break; 808 809 case ACPI_MADT_TYPE_RESERVED: 810 default: 811 break; 812 } 813 814 /* advance to next entry */ 815 madt_seen += ap->Length; 816 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length); 817 } 818 819 /* 820 * allocate enough space for possible hot-adding of CPUs. 821 * max_ncpus may be less than apic_nproc if it's set by user. 822 */ 823 if (plat_dr_support_cpu()) { 824 apic_max_nproc = max_ncpus; 825 } 826 apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus); 827 if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL) 828 goto cleanup; 829 830 /* 831 * ACPI doesn't provide the local apic ver, get it directly from the 832 * local apic 833 */ 834 ver = apic_reg_ops->apic_read(APIC_VERS_REG); 835 for (i = 0; i < apic_nproc; i++) { 836 apic_cpus[i].aci_local_id = local_ids[i]; 837 apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF); 838 apic_cpus[i].aci_processor_id = proc_ids[i]; 839 /* Only build mapping info for CPUs present at boot. */ 840 if (i < boot_ncpus) 841 (void) acpica_map_cpu(i, proc_ids[i]); 842 } 843 844 /* 845 * To support CPU dynamic reconfiguration, the apic CPU info structure 846 * for each possible CPU will be pre-allocated at boot time. 847 * The state for each apic CPU info structure will be assigned according 848 * to the following rules: 849 * Rule 1: 850 * Slot index range: [0, min(apic_nproc, boot_ncpus)) 851 * State flags: 0 852 * Note: cpu exists and will be configured/enabled at boot time 853 * Rule 2: 854 * Slot index range: [boot_ncpus, apic_nproc) 855 * State flags: APIC_CPU_FREE | APIC_CPU_DIRTY 856 * Note: cpu exists but won't be configured/enabled at boot time 857 * Rule 3: 858 * Slot index range: [apic_nproc, boot_ncpus) 859 * State flags: APIC_CPU_FREE 860 * Note: cpu doesn't exist at boot time 861 * Rule 4: 862 * Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus) 863 * State flags: APIC_CPU_FREE 864 * Note: cpu doesn't exist at boot time 865 */ 866 CPUSET_ZERO(apic_cpumask); 867 for (i = 0; i < min(boot_ncpus, apic_nproc); i++) { 868 CPUSET_ADD(apic_cpumask, i); 869 apic_cpus[i].aci_status = 0; 870 } 871 for (i = boot_ncpus; i < apic_nproc; i++) { 872 apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY; 873 } 874 for (i = apic_nproc; i < boot_ncpus; i++) { 875 apic_cpus[i].aci_status = APIC_CPU_FREE; 876 } 877 for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) { 878 apic_cpus[i].aci_status = APIC_CPU_FREE; 879 } 880 881 for (i = 0; i < apic_io_max; i++) { 882 ioapic_ix = i; 883 884 /* 885 * need to check Sitka on the following acpi problem 886 * On the Sitka, the ioapic's apic_id field isn't reporting 887 * the actual io apic id. We have reported this problem 888 * to Intel. Until they fix the problem, we will get the 889 * actual id directly from the ioapic. 890 */ 891 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 892 hid = (uchar_t)(id >> 24); 893 894 if (hid != apic_io_id[i]) { 895 if (apic_io_id[i] == 0) 896 apic_io_id[i] = hid; 897 else { /* set ioapic id to whatever reported by ACPI */ 898 id = ((uint32_t)apic_io_id[i]) << 24; 899 ioapic_write(ioapic_ix, APIC_ID_CMD, id); 900 } 901 } 902 ver = ioapic_read(ioapic_ix, APIC_VERS_CMD); 903 apic_io_ver[i] = (uchar_t)(ver & 0xff); 904 intmax = (ver >> 16) & 0xff; 905 apic_io_vectend[i] = apic_io_vectbase[i] + intmax; 906 if (apic_first_avail_irq <= apic_io_vectend[i]) 907 apic_first_avail_irq = apic_io_vectend[i] + 1; 908 } 909 910 911 /* 912 * Process SCI configuration here 913 * An error may be returned here if 914 * acpi-user-options specifies legacy mode 915 * (no SCI, no ACPI mode) 916 */ 917 if (acpica_get_sci(&sci, &sci_flags) != AE_OK) 918 sci = -1; 919 920 /* 921 * Now call acpi_init() to generate namespaces 922 * If this fails, we don't attempt to use ACPI 923 * even if we were able to get a MADT above 924 */ 925 if (acpica_init() != AE_OK) 926 goto cleanup; 927 928 /* 929 * Call acpica_build_processor_map() now that we have 930 * ACPI namesspace access 931 */ 932 (void) acpica_build_processor_map(); 933 934 /* 935 * Squirrel away the SCI and flags for later on 936 * in apic_picinit() when we're ready 937 */ 938 apic_sci_vect = sci; 939 apic_sci_flags = sci_flags; 940 941 if (apic_verbose & APIC_VERBOSE_IRQ_FLAG) 942 acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG; 943 944 if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG) 945 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG; 946 947 if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG) 948 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG; 949 950 if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE) 951 goto cleanup; 952 953 /* Enable ACPI APIC interrupt routing */ 954 if (apic_acpi_enter_apicmode() != PSM_FAILURE) { 955 build_reserved_irqlist((uchar_t *)apic_reserved_irqlist); 956 apic_enable_acpi = 1; 957 if (apic_sci_vect > 0) { 958 acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT); 959 } 960 if (apic_use_acpi_madt_only) { 961 cmn_err(CE_CONT, 962 "?Using ACPI for CPU/IOAPIC information ONLY\n"); 963 } 964 965 #if !defined(__xpv) 966 /* 967 * probe ACPI for hpet information here which is used later 968 * in apic_picinit(). 969 */ 970 if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) { 971 cmn_err(CE_NOTE, "!ACPI HPET table query failed\n"); 972 } 973 #endif 974 975 kmem_free(local_ids, NCPU * sizeof (uint32_t)); 976 kmem_free(proc_ids, NCPU * sizeof (uint32_t)); 977 return (PSM_SUCCESS); 978 } 979 /* if setting APIC mode failed above, we fall through to cleanup */ 980 981 cleanup: 982 apic_free_apic_cpus(); 983 if (apicadr != NULL) { 984 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 985 apicadr = NULL; 986 } 987 apic_max_nproc = -1; 988 apic_nproc = 0; 989 for (i = 0; i < apic_io_max; i++) { 990 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 991 apicioadr[i] = NULL; 992 } 993 apic_io_max = 0; 994 acpi_isop = NULL; 995 acpi_iso_cnt = 0; 996 acpi_nmi_sp = NULL; 997 acpi_nmi_scnt = 0; 998 acpi_nmi_cp = NULL; 999 acpi_nmi_ccnt = 0; 1000 kmem_free(local_ids, NCPU * sizeof (uint32_t)); 1001 kmem_free(proc_ids, NCPU * sizeof (uint32_t)); 1002 return (PSM_FAILURE); 1003 } 1004 1005 /* 1006 * Handle default configuration. Fill in reqd global variables & tables 1007 * Fill all details as MP table does not give any more info 1008 */ 1009 static int 1010 apic_handle_defconf() 1011 { 1012 uint_t lid; 1013 1014 /* Failed to probe ACPI MADT tables, disable CPU DR. */ 1015 apic_max_nproc = -1; 1016 apic_free_apic_cpus(); 1017 plat_dr_disable_cpu(); 1018 1019 apicioadr[0] = (void *)mapin_ioapic(APIC_IO_ADDR, 1020 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1021 apicadr = (void *)psm_map_phys(APIC_LOCAL_ADDR, 1022 APIC_LOCAL_MEMLEN, PROT_READ); 1023 apic_cpus_size = 2 * sizeof (*apic_cpus); 1024 apic_cpus = (apic_cpus_info_t *) 1025 kmem_zalloc(apic_cpus_size, KM_NOSLEEP); 1026 if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus)) 1027 goto apic_handle_defconf_fail; 1028 CPUSET_ONLY(apic_cpumask, 0); 1029 CPUSET_ADD(apic_cpumask, 1); 1030 apic_nproc = 2; 1031 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1032 apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET); 1033 /* 1034 * According to the PC+MP spec 1.1, the local ids 1035 * for the default configuration has to be 0 or 1 1036 */ 1037 if (apic_cpus[0].aci_local_id == 1) 1038 apic_cpus[1].aci_local_id = 0; 1039 else if (apic_cpus[0].aci_local_id == 0) 1040 apic_cpus[1].aci_local_id = 1; 1041 else 1042 goto apic_handle_defconf_fail; 1043 1044 apic_io_id[0] = 2; 1045 apic_io_max = 1; 1046 if (apic_defconf >= 5) { 1047 apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS; 1048 apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS; 1049 apic_io_ver[0] = APIC_INTEGRATED_VERS; 1050 } else { 1051 apic_cpus[0].aci_local_ver = 0; /* 82489 DX */ 1052 apic_cpus[1].aci_local_ver = 0; 1053 apic_io_ver[0] = 0; 1054 } 1055 if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6) 1056 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1057 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1058 return (PSM_SUCCESS); 1059 1060 apic_handle_defconf_fail: 1061 if (apicadr) 1062 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 1063 if (apicioadr[0]) 1064 mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN); 1065 return (PSM_FAILURE); 1066 } 1067 1068 /* Parse the entries in MP configuration table and collect info that we need */ 1069 static int 1070 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics) 1071 { 1072 struct apic_procent *procp; 1073 struct apic_bus *busp; 1074 struct apic_io_entry *ioapicp; 1075 struct apic_io_intr *intrp; 1076 int ioapic_ix; 1077 uint_t lid; 1078 uint32_t id; 1079 uchar_t hid; 1080 int warned = 0; 1081 1082 /*LINTED: pointer cast may result in improper alignment */ 1083 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1084 1085 /* No need to count cpu entries if we won't use them */ 1086 if (!bypass_cpus_and_ioapics) { 1087 1088 /* Find max # of CPUS and allocate structure accordingly */ 1089 apic_nproc = 0; 1090 CPUSET_ZERO(apic_cpumask); 1091 while (procp->proc_entry == APIC_CPU_ENTRY) { 1092 if (procp->proc_cpuflags & CPUFLAGS_EN) { 1093 if (apic_nproc < NCPU && use_mp && 1094 apic_nproc < boot_ncpus) { 1095 CPUSET_ADD(apic_cpumask, apic_nproc); 1096 apic_nproc++; 1097 } else if (apic_nproc == NCPU && !warned) { 1098 cmn_err(CE_WARN, "%s: CPU limit " 1099 "exceeded" 1100 #if !defined(__amd64) 1101 " for 32-bit mode" 1102 #endif 1103 "; Solaris will use %d CPUs.", 1104 psm_name, NCPU); 1105 warned = 1; 1106 } 1107 1108 } 1109 procp++; 1110 } 1111 apic_cpus_size = apic_nproc * sizeof (*apic_cpus); 1112 if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *) 1113 kmem_zalloc(apic_cpus_size, KM_NOSLEEP))) 1114 return (PSM_FAILURE); 1115 } 1116 1117 /*LINTED: pointer cast may result in improper alignment */ 1118 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1119 1120 /* 1121 * start with index 1 as 0 needs to be filled in with Boot CPU, but 1122 * if we're bypassing this information, it has already been filled 1123 * in by acpi_probe(), so don't overwrite it. 1124 */ 1125 if (!bypass_cpus_and_ioapics) 1126 apic_nproc = 1; 1127 1128 while (procp->proc_entry == APIC_CPU_ENTRY) { 1129 /* check whether the cpu exists or not */ 1130 if (!bypass_cpus_and_ioapics && 1131 procp->proc_cpuflags & CPUFLAGS_EN) { 1132 if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */ 1133 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1134 apic_cpus[0].aci_local_id = procp->proc_apicid; 1135 if (apic_cpus[0].aci_local_id != 1136 (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) { 1137 return (PSM_FAILURE); 1138 } 1139 apic_cpus[0].aci_local_ver = 1140 procp->proc_version; 1141 } else if (apic_nproc < NCPU && use_mp && 1142 apic_nproc < boot_ncpus) { 1143 apic_cpus[apic_nproc].aci_local_id = 1144 procp->proc_apicid; 1145 1146 apic_cpus[apic_nproc].aci_local_ver = 1147 procp->proc_version; 1148 apic_nproc++; 1149 1150 } 1151 } 1152 procp++; 1153 } 1154 1155 /* 1156 * Save start of bus entries for later use. 1157 * Get EISA level cntrl if EISA bus is present. 1158 * Also get the CPI bus id for single CPI bus case 1159 */ 1160 apic_busp = busp = (struct apic_bus *)procp; 1161 while (busp->bus_entry == APIC_BUS_ENTRY) { 1162 lid = apic_find_bus_type((char *)&busp->bus_str1); 1163 if (lid == BUS_EISA) { 1164 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1165 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1166 } else if (lid == BUS_PCI) { 1167 /* 1168 * apic_single_pci_busid will be used only if 1169 * apic_pic_bus_total is equal to 1 1170 */ 1171 apic_pci_bus_total++; 1172 apic_single_pci_busid = busp->bus_id; 1173 } 1174 busp++; 1175 } 1176 1177 ioapicp = (struct apic_io_entry *)busp; 1178 1179 if (!bypass_cpus_and_ioapics) 1180 apic_io_max = 0; 1181 do { 1182 if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) { 1183 if (ioapicp->io_flags & IOAPIC_FLAGS_EN) { 1184 apic_io_id[apic_io_max] = ioapicp->io_apicid; 1185 apic_io_ver[apic_io_max] = ioapicp->io_version; 1186 apicioadr[apic_io_max] = 1187 (void *)mapin_ioapic( 1188 (uint32_t)ioapicp->io_apic_addr, 1189 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1190 1191 if (!apicioadr[apic_io_max]) 1192 return (PSM_FAILURE); 1193 1194 ioapic_mask_workaround[apic_io_max] = 1195 apic_is_ioapic_AMD_813x( 1196 ioapicp->io_apic_addr); 1197 1198 ioapic_ix = apic_io_max; 1199 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 1200 hid = (uchar_t)(id >> 24); 1201 1202 if (hid != apic_io_id[apic_io_max]) { 1203 if (apic_io_id[apic_io_max] == 0) 1204 apic_io_id[apic_io_max] = hid; 1205 else { 1206 /* 1207 * set ioapic id to whatever 1208 * reported by MPS 1209 * 1210 * may not need to set index 1211 * again ??? 1212 * take it out and try 1213 */ 1214 1215 id = ((uint32_t) 1216 apic_io_id[apic_io_max]) << 1217 24; 1218 1219 ioapic_write(ioapic_ix, 1220 APIC_ID_CMD, id); 1221 } 1222 } 1223 apic_io_max++; 1224 } 1225 } 1226 ioapicp++; 1227 } while (ioapicp->io_entry == APIC_IO_ENTRY); 1228 1229 apic_io_intrp = (struct apic_io_intr *)ioapicp; 1230 1231 intrp = apic_io_intrp; 1232 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1233 if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) || 1234 (apic_find_bus(intrp->intr_busid) == BUS_PCI)) { 1235 apic_irq_translate = 1; 1236 break; 1237 } 1238 intrp++; 1239 } 1240 1241 return (PSM_SUCCESS); 1242 } 1243 1244 boolean_t 1245 apic_cpu_in_range(int cpu) 1246 { 1247 cpu &= ~IRQ_USER_BOUND; 1248 /* Check whether cpu id is in valid range. */ 1249 if (cpu < 0 || cpu >= apic_nproc) { 1250 return (B_FALSE); 1251 } else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) { 1252 /* 1253 * Check whether cpuid is in valid range if CPU DR is enabled. 1254 */ 1255 return (B_FALSE); 1256 } else if (!CPU_IN_SET(apic_cpumask, cpu)) { 1257 return (B_FALSE); 1258 } 1259 1260 return (B_TRUE); 1261 } 1262 1263 processorid_t 1264 apic_get_next_bind_cpu(void) 1265 { 1266 int i, count; 1267 processorid_t cpuid = 0; 1268 1269 for (count = 0; count < apic_nproc; count++) { 1270 if (apic_next_bind_cpu >= apic_nproc) { 1271 apic_next_bind_cpu = 0; 1272 } 1273 i = apic_next_bind_cpu++; 1274 if (apic_cpu_in_range(i)) { 1275 cpuid = i; 1276 break; 1277 } 1278 } 1279 1280 return (cpuid); 1281 } 1282 1283 uint16_t 1284 apic_get_apic_version() 1285 { 1286 int i; 1287 uchar_t min_io_apic_ver = 0; 1288 static uint16_t version; /* Cache as value is constant */ 1289 static boolean_t found = B_FALSE; /* Accomodate zero version */ 1290 1291 if (found == B_FALSE) { 1292 found = B_TRUE; 1293 1294 /* 1295 * Don't assume all IO APICs in the system are the same. 1296 * 1297 * Set to the minimum version. 1298 */ 1299 for (i = 0; i < apic_io_max; i++) { 1300 if ((apic_io_ver[i] != 0) && 1301 ((min_io_apic_ver == 0) || 1302 (min_io_apic_ver >= apic_io_ver[i]))) 1303 min_io_apic_ver = apic_io_ver[i]; 1304 } 1305 1306 /* Assume all local APICs are of the same version. */ 1307 version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver; 1308 } 1309 return (version); 1310 } 1311 1312 static struct apic_mpfps_hdr * 1313 apic_find_fps_sig(caddr_t cptr, int len) 1314 { 1315 int i; 1316 1317 /* Look for the pattern "_MP_" */ 1318 for (i = 0; i < len; i += 16) { 1319 if ((*(cptr+i) == '_') && 1320 (*(cptr+i+1) == 'M') && 1321 (*(cptr+i+2) == 'P') && 1322 (*(cptr+i+3) == '_')) 1323 /*LINTED: pointer cast may result in improper alignment */ 1324 return ((struct apic_mpfps_hdr *)(cptr + i)); 1325 } 1326 return (NULL); 1327 } 1328 1329 static int 1330 apic_checksum(caddr_t bptr, int len) 1331 { 1332 int i; 1333 uchar_t cksum; 1334 1335 cksum = 0; 1336 for (i = 0; i < len; i++) 1337 cksum += *bptr++; 1338 return ((int)cksum); 1339 } 1340 1341 /* 1342 * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge 1343 * needs special handling. We may need to chase up the device tree, 1344 * using the PCI-PCI Bridge specification's "rotating IPIN assumptions", 1345 * to find the IPIN at the root bus that relates to the IPIN on the 1346 * subsidiary bus (for ACPI or MP). We may, however, have an entry 1347 * in the MP table or the ACPI namespace for this device itself. 1348 * We handle both cases in the search below. 1349 */ 1350 /* this is the non-acpi version */ 1351 int 1352 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin, 1353 struct apic_io_intr **intrp) 1354 { 1355 dev_info_t *dipp, *dip; 1356 int pci_irq; 1357 ddi_acc_handle_t cfg_handle; 1358 int bridge_devno, bridge_bus; 1359 int ipin; 1360 1361 dip = idip; 1362 1363 /*CONSTCOND*/ 1364 while (1) { 1365 if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) || 1366 (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS)) 1367 return (-1); 1368 if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) == 1369 PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle, 1370 PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) { 1371 pci_config_teardown(&cfg_handle); 1372 if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno, 1373 NULL) != 0) 1374 return (-1); 1375 /* 1376 * This is the rotating scheme documented in the 1377 * PCI-to-PCI spec. If the PCI-to-PCI bridge is 1378 * behind another PCI-to-PCI bridge, then it needs 1379 * to keep ascending until an interrupt entry is 1380 * found or the root is reached. 1381 */ 1382 ipin = (child_devno + child_ipin) % PCI_INTD; 1383 if (bridge_bus == 0 && apic_pci_bus_total == 1) 1384 bridge_bus = (int)apic_single_pci_busid; 1385 pci_irq = ((bridge_devno & 0x1f) << 2) | 1386 (ipin & 0x3); 1387 if ((*intrp = apic_find_io_intr_w_busid(pci_irq, 1388 bridge_bus)) != NULL) { 1389 return (pci_irq); 1390 } 1391 dip = dipp; 1392 child_devno = bridge_devno; 1393 child_ipin = ipin; 1394 } else { 1395 pci_config_teardown(&cfg_handle); 1396 return (-1); 1397 } 1398 } 1399 /*LINTED: function will not fall off the bottom */ 1400 } 1401 1402 uchar_t 1403 acpi_find_ioapic(int irq) 1404 { 1405 int i; 1406 1407 for (i = 0; i < apic_io_max; i++) { 1408 if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i]) 1409 return ((uchar_t)i); 1410 } 1411 return (0xFF); /* shouldn't happen */ 1412 } 1413 1414 /* 1415 * See if two irqs are compatible for sharing a vector. 1416 * Currently we only support sharing of PCI devices. 1417 */ 1418 static int 1419 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2) 1420 { 1421 uint_t level1, po1; 1422 uint_t level2, po2; 1423 1424 /* Assume active high by default */ 1425 po1 = 0; 1426 po2 = 0; 1427 1428 if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI) 1429 return (0); 1430 1431 if (iflag1.intr_el == INTR_EL_CONFORM) 1432 level1 = AV_LEVEL; 1433 else 1434 level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 1435 1436 if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) || 1437 (iflag1.intr_po == INTR_PO_CONFORM))) 1438 po1 = AV_ACTIVE_LOW; 1439 1440 if (iflag2.intr_el == INTR_EL_CONFORM) 1441 level2 = AV_LEVEL; 1442 else 1443 level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 1444 1445 if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) || 1446 (iflag2.intr_po == INTR_PO_CONFORM))) 1447 po2 = AV_ACTIVE_LOW; 1448 1449 if ((level1 == level2) && (po1 == po2)) 1450 return (1); 1451 1452 return (0); 1453 } 1454 1455 struct apic_io_intr * 1456 apic_find_io_intr_w_busid(int irqno, int busid) 1457 { 1458 struct apic_io_intr *intrp; 1459 1460 /* 1461 * It can have more than 1 entry with same source bus IRQ, 1462 * but unique with the source bus id 1463 */ 1464 intrp = apic_io_intrp; 1465 if (intrp != NULL) { 1466 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1467 if (intrp->intr_irq == irqno && 1468 intrp->intr_busid == busid && 1469 intrp->intr_type == IO_INTR_INT) 1470 return (intrp); 1471 intrp++; 1472 } 1473 } 1474 APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:" 1475 "busid %x:%x\n", irqno, busid)); 1476 return ((struct apic_io_intr *)NULL); 1477 } 1478 1479 1480 struct mps_bus_info { 1481 char *bus_name; 1482 int bus_id; 1483 } bus_info_array[] = { 1484 "ISA ", BUS_ISA, 1485 "PCI ", BUS_PCI, 1486 "EISA ", BUS_EISA, 1487 "XPRESS", BUS_XPRESS, 1488 "PCMCIA", BUS_PCMCIA, 1489 "VL ", BUS_VL, 1490 "CBUS ", BUS_CBUS, 1491 "CBUSII", BUS_CBUSII, 1492 "FUTURE", BUS_FUTURE, 1493 "INTERN", BUS_INTERN, 1494 "MBI ", BUS_MBI, 1495 "MBII ", BUS_MBII, 1496 "MPI ", BUS_MPI, 1497 "MPSA ", BUS_MPSA, 1498 "NUBUS ", BUS_NUBUS, 1499 "TC ", BUS_TC, 1500 "VME ", BUS_VME, 1501 "PCI-E ", BUS_PCIE 1502 }; 1503 1504 static int 1505 apic_find_bus_type(char *bus) 1506 { 1507 int i = 0; 1508 1509 for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++) 1510 if (strncmp(bus, bus_info_array[i].bus_name, 1511 strlen(bus_info_array[i].bus_name)) == 0) 1512 return (bus_info_array[i].bus_id); 1513 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus)); 1514 return (0); 1515 } 1516 1517 static int 1518 apic_find_bus(int busid) 1519 { 1520 struct apic_bus *busp; 1521 1522 busp = apic_busp; 1523 while (busp->bus_entry == APIC_BUS_ENTRY) { 1524 if (busp->bus_id == busid) 1525 return (apic_find_bus_type((char *)&busp->bus_str1)); 1526 busp++; 1527 } 1528 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid)); 1529 return (0); 1530 } 1531 1532 int 1533 apic_find_bus_id(int bustype) 1534 { 1535 struct apic_bus *busp; 1536 1537 busp = apic_busp; 1538 while (busp->bus_entry == APIC_BUS_ENTRY) { 1539 if (apic_find_bus_type((char *)&busp->bus_str1) == bustype) 1540 return (busp->bus_id); 1541 busp++; 1542 } 1543 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x", 1544 bustype)); 1545 return (-1); 1546 } 1547 1548 /* 1549 * Check if a particular irq need to be reserved for any io_intr 1550 */ 1551 static struct apic_io_intr * 1552 apic_find_io_intr(int irqno) 1553 { 1554 struct apic_io_intr *intrp; 1555 1556 intrp = apic_io_intrp; 1557 if (intrp != NULL) { 1558 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1559 if (intrp->intr_irq == irqno && 1560 intrp->intr_type == IO_INTR_INT) 1561 return (intrp); 1562 intrp++; 1563 } 1564 } 1565 return ((struct apic_io_intr *)NULL); 1566 } 1567 1568 /* 1569 * Check if the given ioapicindex intin combination has already been assigned 1570 * an irq. If so return irqno. Else -1 1571 */ 1572 int 1573 apic_find_intin(uchar_t ioapic, uchar_t intin) 1574 { 1575 apic_irq_t *irqptr; 1576 int i; 1577 1578 /* find ioapic and intin in the apic_irq_table[] and return the index */ 1579 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 1580 irqptr = apic_irq_table[i]; 1581 while (irqptr) { 1582 if ((irqptr->airq_mps_intr_index >= 0) && 1583 (irqptr->airq_intin_no == intin) && 1584 (irqptr->airq_ioapicindex == ioapic)) { 1585 APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq " 1586 "entry for ioapic:intin %x:%x " 1587 "shared interrupts ?", ioapic, intin)); 1588 return (i); 1589 } 1590 irqptr = irqptr->airq_next; 1591 } 1592 } 1593 return (-1); 1594 } 1595 1596 int 1597 apic_allocate_irq(int irq) 1598 { 1599 int freeirq, i; 1600 1601 if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1) 1602 if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ, 1603 (irq - 1))) == -1) { 1604 /* 1605 * if BIOS really defines every single irq in the mps 1606 * table, then don't worry about conflicting with 1607 * them, just use any free slot in apic_irq_table 1608 */ 1609 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 1610 if ((apic_irq_table[i] == NULL) || 1611 apic_irq_table[i]->airq_mps_intr_index == 1612 FREE_INDEX) { 1613 freeirq = i; 1614 break; 1615 } 1616 } 1617 if (freeirq == -1) { 1618 /* This shouldn't happen, but just in case */ 1619 cmn_err(CE_WARN, "%s: NO available IRQ", psm_name); 1620 return (-1); 1621 } 1622 } 1623 if (apic_irq_table[freeirq] == NULL) { 1624 apic_irq_table[freeirq] = 1625 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); 1626 if (apic_irq_table[freeirq] == NULL) { 1627 cmn_err(CE_WARN, "%s: NO memory to allocate IRQ", 1628 psm_name); 1629 return (-1); 1630 } 1631 apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT; 1632 apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX; 1633 } 1634 return (freeirq); 1635 } 1636 1637 static int 1638 apic_find_free_irq(int start, int end) 1639 { 1640 int i; 1641 1642 for (i = start; i <= end; i++) 1643 /* Check if any I/O entry needs this IRQ */ 1644 if (apic_find_io_intr(i) == NULL) { 1645 /* Then see if it is free */ 1646 if ((apic_irq_table[i] == NULL) || 1647 (apic_irq_table[i]->airq_mps_intr_index == 1648 FREE_INDEX)) { 1649 return (i); 1650 } 1651 } 1652 return (-1); 1653 } 1654 1655 /* 1656 * compute the polarity, trigger mode and vector for programming into 1657 * the I/O apic and record in airq_rdt_entry. 1658 */ 1659 void 1660 apic_record_rdt_entry(apic_irq_t *irqptr, int irq) 1661 { 1662 int ioapicindex, bus_type, vector; 1663 short intr_index; 1664 uint_t level, po, io_po; 1665 struct apic_io_intr *iointrp; 1666 1667 intr_index = irqptr->airq_mps_intr_index; 1668 DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d " 1669 "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq, 1670 (void *)irqptr->airq_dip, irqptr->airq_vector)); 1671 1672 if (intr_index == RESERVE_INDEX) { 1673 apic_error |= APIC_ERR_INVALID_INDEX; 1674 return; 1675 } else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) { 1676 return; 1677 } 1678 1679 vector = irqptr->airq_vector; 1680 ioapicindex = irqptr->airq_ioapicindex; 1681 /* Assume edge triggered by default */ 1682 level = 0; 1683 /* Assume active high by default */ 1684 po = 0; 1685 1686 if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) { 1687 ASSERT(irq < 16); 1688 if (eisa_level_intr_mask & (1 << irq)) 1689 level = AV_LEVEL; 1690 if (intr_index == FREE_INDEX && apic_defconf == 0) 1691 apic_error |= APIC_ERR_INVALID_INDEX; 1692 } else if (intr_index == ACPI_INDEX) { 1693 bus_type = irqptr->airq_iflag.bustype; 1694 if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) { 1695 if (bus_type == BUS_PCI) 1696 level = AV_LEVEL; 1697 } else 1698 level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ? 1699 AV_LEVEL : 0; 1700 if (level && 1701 ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) || 1702 (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM && 1703 bus_type == BUS_PCI))) 1704 po = AV_ACTIVE_LOW; 1705 } else { 1706 iointrp = apic_io_intrp + intr_index; 1707 bus_type = apic_find_bus(iointrp->intr_busid); 1708 if (iointrp->intr_el == INTR_EL_CONFORM) { 1709 if ((irq < 16) && (eisa_level_intr_mask & (1 << irq))) 1710 level = AV_LEVEL; 1711 else if (bus_type == BUS_PCI) 1712 level = AV_LEVEL; 1713 } else 1714 level = (iointrp->intr_el == INTR_EL_LEVEL) ? 1715 AV_LEVEL : 0; 1716 if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) || 1717 (iointrp->intr_po == INTR_PO_CONFORM && 1718 bus_type == BUS_PCI))) 1719 po = AV_ACTIVE_LOW; 1720 } 1721 if (level) 1722 apic_level_intr[irq] = 1; 1723 /* 1724 * The 82489DX External APIC cannot do active low polarity interrupts. 1725 */ 1726 if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX)) 1727 io_po = po; 1728 else 1729 io_po = 0; 1730 1731 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) 1732 prom_printf("setio: ioapic=0x%x intin=0x%x level=0x%x po=0x%x " 1733 "vector=0x%x cpu=0x%x\n\n", ioapicindex, 1734 irqptr->airq_intin_no, level, io_po, vector, 1735 irqptr->airq_cpu); 1736 1737 irqptr->airq_rdt_entry = level|io_po|vector; 1738 } 1739 1740 int 1741 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 1742 int ipin, int *pci_irqp, iflag_t *intr_flagp) 1743 { 1744 1745 int status; 1746 acpi_psm_lnk_t acpipsmlnk; 1747 1748 if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp, 1749 intr_flagp)) == ACPI_PSM_SUCCESS) { 1750 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d " 1751 "from cache for device %s, instance #%d\n", psm_name, 1752 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 1753 return (status); 1754 } 1755 1756 bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t)); 1757 1758 if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp, 1759 &acpipsmlnk)) == ACPI_PSM_FAILURE) { 1760 APIC_VERBOSE_IRQ((CE_WARN, "%s: " 1761 " acpi_translate_pci_irq failed for device %s, instance" 1762 " #%d", psm_name, ddi_get_name(dip), 1763 ddi_get_instance(dip))); 1764 return (status); 1765 } 1766 1767 if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) { 1768 status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp, 1769 intr_flagp); 1770 if (status != ACPI_PSM_SUCCESS) { 1771 status = acpi_get_current_irq_resource(&acpipsmlnk, 1772 pci_irqp, intr_flagp); 1773 } 1774 } 1775 1776 if (status == ACPI_PSM_SUCCESS) { 1777 acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp, 1778 intr_flagp, &acpipsmlnk); 1779 1780 APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] " 1781 "new irq %d for device %s, instance #%d\n", psm_name, 1782 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 1783 } 1784 1785 return (status); 1786 } 1787 1788 /* 1789 * Adds an entry to the irq list passed in, and returns the new list. 1790 * Entries are added in priority order (lower numerical priorities are 1791 * placed closer to the head of the list) 1792 */ 1793 static prs_irq_list_t * 1794 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq, 1795 iflag_t *iflagp, acpi_prs_private_t *prsprvp) 1796 { 1797 struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp; 1798 1799 newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP); 1800 1801 newent->list_prio = priority; 1802 newent->irq = irq; 1803 newent->intrflags = *iflagp; 1804 newent->prsprv = *prsprvp; 1805 /* ->next is NULL from kmem_zalloc */ 1806 1807 /* 1808 * New list -- return the new entry as the list. 1809 */ 1810 if (listp == NULL) 1811 return (newent); 1812 1813 /* 1814 * Save original list pointer for return (since we're not modifying 1815 * the head) 1816 */ 1817 origlistp = listp; 1818 1819 /* 1820 * Insertion sort, with entries with identical keys stored AFTER 1821 * existing entries (the less-than-or-equal test of priority does 1822 * this for us). 1823 */ 1824 while (listp != NULL && listp->list_prio <= priority) { 1825 prevp = listp; 1826 listp = listp->next; 1827 } 1828 1829 newent->next = listp; 1830 1831 if (prevp == NULL) { /* Add at head of list (newent is the new head) */ 1832 return (newent); 1833 } else { 1834 prevp->next = newent; 1835 return (origlistp); 1836 } 1837 } 1838 1839 /* 1840 * Frees the list passed in, deallocating all memory and leaving *listpp 1841 * set to NULL. 1842 */ 1843 static void 1844 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp) 1845 { 1846 struct prs_irq_list_ent *nextp; 1847 1848 ASSERT(listpp != NULL); 1849 1850 while (*listpp != NULL) { 1851 nextp = (*listpp)->next; 1852 kmem_free(*listpp, sizeof (struct prs_irq_list_ent)); 1853 *listpp = nextp; 1854 } 1855 } 1856 1857 /* 1858 * apic_choose_irqs_from_prs returns a list of irqs selected from the list of 1859 * irqs returned by the link device's _PRS method. The irqs are chosen 1860 * to minimize contention in situations where the interrupt link device 1861 * can be programmed to steer interrupts to different interrupt controller 1862 * inputs (some of which may already be in use). The list is sorted in order 1863 * of irqs to use, with the highest priority given to interrupt controller 1864 * inputs that are not shared. When an interrupt controller input 1865 * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the 1866 * returned list in the order that minimizes sharing (thereby ensuring lowest 1867 * possible latency from interrupt trigger time to ISR execution time). 1868 */ 1869 static prs_irq_list_t * 1870 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip, 1871 int crs_irq) 1872 { 1873 int32_t irq; 1874 int i; 1875 prs_irq_list_t *prsirqlistp = NULL; 1876 iflag_t iflags; 1877 1878 while (irqlistent != NULL) { 1879 irqlistent->intr_flags.bustype = BUS_PCI; 1880 1881 for (i = 0; i < irqlistent->num_irqs; i++) { 1882 1883 irq = irqlistent->irqs[i]; 1884 1885 if (irq <= 0) { 1886 /* invalid irq number */ 1887 continue; 1888 } 1889 1890 if ((irq < 16) && (apic_reserved_irqlist[irq])) 1891 continue; 1892 1893 if ((apic_irq_table[irq] == NULL) || 1894 (apic_irq_table[irq]->airq_dip == dip)) { 1895 1896 prsirqlistp = acpi_insert_prs_irq_ent( 1897 prsirqlistp, 0 /* Highest priority */, irq, 1898 &irqlistent->intr_flags, 1899 &irqlistent->acpi_prs_prv); 1900 1901 /* 1902 * If we do not prefer the current irq from _CRS 1903 * or if we do and this irq is the same as the 1904 * current irq from _CRS, this is the one 1905 * to pick. 1906 */ 1907 if (!(apic_prefer_crs) || (irq == crs_irq)) { 1908 return (prsirqlistp); 1909 } 1910 continue; 1911 } 1912 1913 /* 1914 * Edge-triggered interrupts cannot be shared 1915 */ 1916 if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE) 1917 continue; 1918 1919 /* 1920 * To work around BIOSes that contain incorrect 1921 * interrupt polarity information in interrupt 1922 * descriptors returned by _PRS, we assume that 1923 * the polarity of the other device sharing this 1924 * interrupt controller input is compatible. 1925 * If it's not, the caller will catch it when 1926 * the caller invokes the link device's _CRS method 1927 * (after invoking its _SRS method). 1928 */ 1929 iflags = irqlistent->intr_flags; 1930 iflags.intr_po = 1931 apic_irq_table[irq]->airq_iflag.intr_po; 1932 1933 if (!acpi_intr_compatible(iflags, 1934 apic_irq_table[irq]->airq_iflag)) { 1935 APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d " 1936 "not compatible [%x:%x:%x !~ %x:%x:%x]", 1937 psm_name, irq, 1938 iflags.intr_po, 1939 iflags.intr_el, 1940 iflags.bustype, 1941 apic_irq_table[irq]->airq_iflag.intr_po, 1942 apic_irq_table[irq]->airq_iflag.intr_el, 1943 apic_irq_table[irq]->airq_iflag.bustype)); 1944 continue; 1945 } 1946 1947 /* 1948 * If we prefer the irq from _CRS, no need 1949 * to search any further (and make sure 1950 * to add this irq with the highest priority 1951 * so it's tried first). 1952 */ 1953 if (crs_irq == irq && apic_prefer_crs) { 1954 1955 return (acpi_insert_prs_irq_ent( 1956 prsirqlistp, 1957 0 /* Highest priority */, 1958 irq, &iflags, 1959 &irqlistent->acpi_prs_prv)); 1960 } 1961 1962 /* 1963 * Priority is equal to the share count (lower 1964 * share count is higher priority). Note that 1965 * the intr flags passed in here are the ones we 1966 * changed above -- if incorrect, it will be 1967 * caught by the caller's _CRS flags comparison. 1968 */ 1969 prsirqlistp = acpi_insert_prs_irq_ent( 1970 prsirqlistp, 1971 apic_irq_table[irq]->airq_share, irq, 1972 &iflags, &irqlistent->acpi_prs_prv); 1973 } 1974 1975 /* Go to the next irqlist entry */ 1976 irqlistent = irqlistent->next; 1977 } 1978 1979 return (prsirqlistp); 1980 } 1981 1982 /* 1983 * Configures the irq for the interrupt link device identified by 1984 * acpipsmlnkp. 1985 * 1986 * Gets the current and the list of possible irq settings for the 1987 * device. If apic_unconditional_srs is not set, and the current 1988 * resource setting is in the list of possible irq settings, 1989 * current irq resource setting is passed to the caller. 1990 * 1991 * Otherwise, picks an irq number from the list of possible irq 1992 * settings, and sets the irq of the device to this value. 1993 * If prefer_crs is set, among a set of irq numbers in the list that have 1994 * the least number of devices sharing the interrupt, we pick current irq 1995 * resource setting if it is a member of this set. 1996 * 1997 * Passes the irq number in the value pointed to by pci_irqp, and 1998 * polarity and sensitivity in the structure pointed to by dipintrflagp 1999 * to the caller. 2000 * 2001 * Note that if setting the irq resource failed, but successfuly obtained 2002 * the current irq resource settings, passes the current irq resources 2003 * and considers it a success. 2004 * 2005 * Returns: 2006 * ACPI_PSM_SUCCESS on success. 2007 * 2008 * ACPI_PSM_FAILURE if an error occured during the configuration or 2009 * if a suitable irq was not found for this device, or if setting the 2010 * irq resource and obtaining the current resource fails. 2011 * 2012 */ 2013 static int 2014 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 2015 int *pci_irqp, iflag_t *dipintr_flagp) 2016 { 2017 int32_t irq; 2018 int cur_irq = -1; 2019 acpi_irqlist_t *irqlistp; 2020 prs_irq_list_t *prs_irq_listp, *prs_irq_entp; 2021 boolean_t found_irq = B_FALSE; 2022 2023 dipintr_flagp->bustype = BUS_PCI; 2024 2025 if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp)) 2026 == ACPI_PSM_FAILURE) { 2027 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine " 2028 "or assign IRQ for device %s, instance #%d: The system was " 2029 "unable to get the list of potential IRQs from ACPI.", 2030 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 2031 2032 return (ACPI_PSM_FAILURE); 2033 } 2034 2035 if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 2036 dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) && 2037 (cur_irq > 0)) { 2038 /* 2039 * If an IRQ is set in CRS and that IRQ exists in the set 2040 * returned from _PRS, return that IRQ, otherwise print 2041 * a warning 2042 */ 2043 2044 if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL) 2045 == ACPI_PSM_SUCCESS) { 2046 2047 ASSERT(pci_irqp != NULL); 2048 *pci_irqp = cur_irq; 2049 acpi_free_irqlist(irqlistp); 2050 return (ACPI_PSM_SUCCESS); 2051 } 2052 2053 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the " 2054 "current irq %d for device %s, instance #%d in ACPI's " 2055 "list of possible irqs for this device. Picking one from " 2056 " the latter list.", psm_name, cur_irq, ddi_get_name(dip), 2057 ddi_get_instance(dip))); 2058 } 2059 2060 if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip, 2061 cur_irq)) == NULL) { 2062 2063 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a " 2064 "suitable irq from the list of possible irqs for device " 2065 "%s, instance #%d in ACPI's list of possible irqs", 2066 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 2067 2068 acpi_free_irqlist(irqlistp); 2069 return (ACPI_PSM_FAILURE); 2070 } 2071 2072 acpi_free_irqlist(irqlistp); 2073 2074 for (prs_irq_entp = prs_irq_listp; 2075 prs_irq_entp != NULL && found_irq == B_FALSE; 2076 prs_irq_entp = prs_irq_entp->next) { 2077 2078 acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv; 2079 irq = prs_irq_entp->irq; 2080 2081 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for " 2082 "device %s instance #%d\n", psm_name, irq, 2083 ddi_get_name(dip), ddi_get_instance(dip))); 2084 2085 if ((acpi_set_irq_resource(acpipsmlnkp, irq)) 2086 == ACPI_PSM_SUCCESS) { 2087 /* 2088 * setting irq was successful, check to make sure CRS 2089 * reflects that. If CRS does not agree with what we 2090 * set, return the irq that was set. 2091 */ 2092 2093 if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 2094 dipintr_flagp) == ACPI_PSM_SUCCESS) { 2095 2096 if (cur_irq != irq) 2097 APIC_VERBOSE_IRQ((CE_WARN, 2098 "!%s: IRQ resource set " 2099 "(irqno %d) for device %s " 2100 "instance #%d, differs from " 2101 "current setting irqno %d", 2102 psm_name, irq, ddi_get_name(dip), 2103 ddi_get_instance(dip), cur_irq)); 2104 } else { 2105 /* 2106 * On at least one system, there was a bug in 2107 * a DSDT method called by _STA, causing _STA to 2108 * indicate that the link device was disabled 2109 * (when, in fact, it was enabled). Since _SRS 2110 * succeeded, assume that _CRS is lying and use 2111 * the iflags from this _PRS interrupt choice. 2112 * If we're wrong about the flags, the polarity 2113 * will be incorrect and we may get an interrupt 2114 * storm, but there's not much else we can do 2115 * at this point. 2116 */ 2117 *dipintr_flagp = prs_irq_entp->intrflags; 2118 } 2119 2120 /* 2121 * Return the irq that was set, and not what _CRS 2122 * reports, since _CRS has been seen to return 2123 * different IRQs than what was passed to _SRS on some 2124 * systems (and just not return successfully on others). 2125 */ 2126 cur_irq = irq; 2127 found_irq = B_TRUE; 2128 } else { 2129 APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource " 2130 "irq %d failed for device %s instance #%d", 2131 psm_name, irq, ddi_get_name(dip), 2132 ddi_get_instance(dip))); 2133 2134 if (cur_irq == -1) { 2135 acpi_destroy_prs_irq_list(&prs_irq_listp); 2136 return (ACPI_PSM_FAILURE); 2137 } 2138 } 2139 } 2140 2141 acpi_destroy_prs_irq_list(&prs_irq_listp); 2142 2143 if (!found_irq) 2144 return (ACPI_PSM_FAILURE); 2145 2146 ASSERT(pci_irqp != NULL); 2147 *pci_irqp = cur_irq; 2148 return (ACPI_PSM_SUCCESS); 2149 } 2150 2151 void 2152 ioapic_disable_redirection() 2153 { 2154 int ioapic_ix; 2155 int intin_max; 2156 int intin_ix; 2157 2158 /* Disable the I/O APIC redirection entries */ 2159 for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) { 2160 2161 /* Bits 23-16 define the maximum redirection entries */ 2162 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) 2163 & 0xff; 2164 2165 for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) { 2166 /* 2167 * The assumption here is that this is safe, even for 2168 * systems with IOAPICs that suffer from the hardware 2169 * erratum because all devices have been quiesced before 2170 * this function is called from apic_shutdown() 2171 * (or equivalent). If that assumption turns out to be 2172 * false, this mask operation can induce the same 2173 * erratum result we're trying to avoid. 2174 */ 2175 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix, 2176 AV_MASK); 2177 } 2178 } 2179 } 2180 2181 /* 2182 * Looks for an IOAPIC with the specified physical address in the /ioapics 2183 * node in the device tree (created by the PCI enumerator). 2184 */ 2185 static boolean_t 2186 apic_is_ioapic_AMD_813x(uint32_t physaddr) 2187 { 2188 /* 2189 * Look in /ioapics, for the ioapic with 2190 * the physical address given 2191 */ 2192 dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0); 2193 dev_info_t *ioapic_child; 2194 boolean_t rv = B_FALSE; 2195 int vid, did; 2196 uint64_t ioapic_paddr; 2197 boolean_t done = B_FALSE; 2198 2199 if (ioapicsnode == NULL) 2200 return (B_FALSE); 2201 2202 /* Load first child: */ 2203 ioapic_child = ddi_get_child(ioapicsnode); 2204 while (!done && ioapic_child != 0) { /* Iterate over children */ 2205 2206 if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY, 2207 ioapic_child, DDI_PROP_DONTPASS, "reg", 0)) 2208 != 0 && physaddr == ioapic_paddr) { 2209 2210 vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child, 2211 DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0); 2212 2213 if (vid == VENID_AMD) { 2214 2215 did = ddi_prop_get_int(DDI_DEV_T_ANY, 2216 ioapic_child, DDI_PROP_DONTPASS, 2217 IOAPICS_PROP_DEVID, 0); 2218 2219 if (did == DEVID_8131_IOAPIC || 2220 did == DEVID_8132_IOAPIC) { 2221 rv = B_TRUE; 2222 done = B_TRUE; 2223 } 2224 } 2225 } 2226 2227 if (!done) 2228 ioapic_child = ddi_get_next_sibling(ioapic_child); 2229 } 2230 2231 /* The ioapics node was held by ddi_find_devinfo, so release it */ 2232 ndi_rele_devi(ioapicsnode); 2233 return (rv); 2234 } 2235 2236 struct apic_state { 2237 int32_t as_task_reg; 2238 int32_t as_dest_reg; 2239 int32_t as_format_reg; 2240 int32_t as_local_timer; 2241 int32_t as_pcint_vect; 2242 int32_t as_int_vect0; 2243 int32_t as_int_vect1; 2244 int32_t as_err_vect; 2245 int32_t as_init_count; 2246 int32_t as_divide_reg; 2247 int32_t as_spur_int_reg; 2248 uint32_t as_ioapic_ids[MAX_IO_APIC]; 2249 }; 2250 2251 2252 static int 2253 apic_acpi_enter_apicmode(void) 2254 { 2255 ACPI_OBJECT_LIST arglist; 2256 ACPI_OBJECT arg; 2257 ACPI_STATUS status; 2258 2259 /* Setup parameter object */ 2260 arglist.Count = 1; 2261 arglist.Pointer = &arg; 2262 arg.Type = ACPI_TYPE_INTEGER; 2263 arg.Integer.Value = ACPI_APIC_MODE; 2264 2265 status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL); 2266 if (ACPI_FAILURE(status)) 2267 return (PSM_FAILURE); 2268 else 2269 return (PSM_SUCCESS); 2270 } 2271 2272 2273 static void 2274 apic_save_state(struct apic_state *sp) 2275 { 2276 int i, cpuid; 2277 ulong_t iflag; 2278 2279 PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp)) 2280 /* 2281 * First the local APIC. 2282 */ 2283 sp->as_task_reg = apic_reg_ops->apic_get_pri(); 2284 sp->as_dest_reg = apic_reg_ops->apic_read(APIC_DEST_REG); 2285 if (apic_mode == LOCAL_APIC) 2286 sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG); 2287 sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER); 2288 sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT); 2289 sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0); 2290 sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1); 2291 sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT); 2292 sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT); 2293 sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG); 2294 sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG); 2295 2296 /* 2297 * If on the boot processor then save the IOAPICs' IDs 2298 */ 2299 if ((cpuid = psm_get_cpu_id()) == 0) { 2300 2301 iflag = intr_clear(); 2302 lock_set(&apic_ioapic_lock); 2303 2304 for (i = 0; i < apic_io_max; i++) 2305 sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD); 2306 2307 lock_clear(&apic_ioapic_lock); 2308 intr_restore(iflag); 2309 } 2310 2311 /* apic_state() is currently invoked only in Suspend/Resume */ 2312 apic_cpus[cpuid].aci_status |= APIC_CPU_SUSPEND; 2313 } 2314 2315 static void 2316 apic_restore_state(struct apic_state *sp) 2317 { 2318 int i; 2319 ulong_t iflag; 2320 2321 /* 2322 * First the local APIC. 2323 */ 2324 apic_reg_ops->apic_write_task_reg(sp->as_task_reg); 2325 if (apic_mode == LOCAL_APIC) { 2326 apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg); 2327 apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg); 2328 } 2329 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer); 2330 apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect); 2331 apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0); 2332 apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1); 2333 apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect); 2334 apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count); 2335 apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg); 2336 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg); 2337 2338 /* 2339 * the following only needs to be done once, so we do it on the 2340 * boot processor, since we know that we only have one of those 2341 */ 2342 if (psm_get_cpu_id() == 0) { 2343 2344 iflag = intr_clear(); 2345 lock_set(&apic_ioapic_lock); 2346 2347 /* Restore IOAPICs' APIC IDs */ 2348 for (i = 0; i < apic_io_max; i++) { 2349 ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]); 2350 } 2351 2352 lock_clear(&apic_ioapic_lock); 2353 intr_restore(iflag); 2354 2355 /* 2356 * Reenter APIC mode before restoring LNK devices 2357 */ 2358 (void) apic_acpi_enter_apicmode(); 2359 2360 /* 2361 * restore acpi link device mappings 2362 */ 2363 acpi_restore_link_devices(); 2364 } 2365 } 2366 2367 /* 2368 * Returns 0 on success 2369 */ 2370 int 2371 apic_state(psm_state_request_t *rp) 2372 { 2373 PMD(PMD_SX, ("apic_state ")) 2374 switch (rp->psr_cmd) { 2375 case PSM_STATE_ALLOC: 2376 rp->req.psm_state_req.psr_state = 2377 kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP); 2378 if (rp->req.psm_state_req.psr_state == NULL) 2379 return (ENOMEM); 2380 rp->req.psm_state_req.psr_state_size = 2381 sizeof (struct apic_state); 2382 PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n", 2383 rp->req.psm_state_req.psr_state, 2384 rp->req.psm_state_req.psr_state_size)) 2385 return (0); 2386 2387 case PSM_STATE_FREE: 2388 kmem_free(rp->req.psm_state_req.psr_state, 2389 rp->req.psm_state_req.psr_state_size); 2390 PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n", 2391 rp->req.psm_state_req.psr_state, 2392 rp->req.psm_state_req.psr_state_size)) 2393 return (0); 2394 2395 case PSM_STATE_SAVE: 2396 PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n", 2397 rp->req.psm_state_req.psr_state, 2398 rp->req.psm_state_req.psr_state_size)) 2399 apic_save_state(rp->req.psm_state_req.psr_state); 2400 return (0); 2401 2402 case PSM_STATE_RESTORE: 2403 apic_restore_state(rp->req.psm_state_req.psr_state); 2404 PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n", 2405 rp->req.psm_state_req.psr_state, 2406 rp->req.psm_state_req.psr_state_size)) 2407 return (0); 2408 2409 default: 2410 return (EINVAL); 2411 } 2412 } 2413