1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 28 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 29 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 30 * PSMI 1.5 extensions are supported in Solaris Nevada. 31 * PSMI 1.6 extensions are supported in Solaris Nevada. 32 */ 33 #define PSMI_1_6 34 35 #include <sys/processor.h> 36 #include <sys/time.h> 37 #include <sys/psm.h> 38 #include <sys/smp_impldefs.h> 39 #include <sys/cram.h> 40 #include <sys/acpi/acpi.h> 41 #include <sys/acpica.h> 42 #include <sys/psm_common.h> 43 #include <sys/apic.h> 44 #include <sys/pit.h> 45 #include <sys/ddi.h> 46 #include <sys/sunddi.h> 47 #include <sys/ddi_impldefs.h> 48 #include <sys/pci.h> 49 #include <sys/promif.h> 50 #include <sys/x86_archext.h> 51 #include <sys/cpc_impl.h> 52 #include <sys/uadmin.h> 53 #include <sys/panic.h> 54 #include <sys/debug.h> 55 #include <sys/archsystm.h> 56 #include <sys/trap.h> 57 #include <sys/machsystm.h> 58 #include <sys/cpuvar.h> 59 #include <sys/rm_platter.h> 60 #include <sys/privregs.h> 61 #include <sys/cyclic.h> 62 #include <sys/note.h> 63 #include <sys/pci_intr_lib.h> 64 #include <sys/sunndi.h> 65 #if !defined(__xpv) 66 #include <sys/hpet.h> 67 #include <sys/clock.h> 68 #endif 69 70 /* 71 * Local Function Prototypes 72 */ 73 static int apic_handle_defconf(); 74 static int apic_parse_mpct(caddr_t mpct, int bypass); 75 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size); 76 static int apic_checksum(caddr_t bptr, int len); 77 static int apic_find_bus_type(char *bus); 78 static int apic_find_bus(int busid); 79 static int apic_find_bus_id(int bustype); 80 static struct apic_io_intr *apic_find_io_intr(int irqno); 81 static int apic_find_free_irq(int start, int end); 82 static void apic_mark_vector(uchar_t oldvector, uchar_t newvector); 83 static void apic_xlate_vector_free_timeout_handler(void *arg); 84 static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu, 85 int new_bind_cpu, int apicindex, int intin_no, int which_irq, 86 struct ioapic_reprogram_data *drep); 87 static void apic_record_rdt_entry(apic_irq_t *irqptr, int irq); 88 static struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid); 89 static int apic_find_intin(uchar_t ioapic, uchar_t intin); 90 static int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, 91 int child_ipin, struct apic_io_intr **intrp); 92 static int apic_setup_irq_table(dev_info_t *dip, int irqno, 93 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp, 94 int type); 95 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp); 96 static void apic_try_deferred_reprogram(int ipl, int vect); 97 static void delete_defer_repro_ent(int which_irq); 98 static void apic_ioapic_wait_pending_clear(int ioapicindex, 99 int intin_no); 100 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr); 101 static int apic_acpi_enter_apicmode(void); 102 103 int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */ 104 105 /* ACPI SCI interrupt configuration; -1 if SCI not used */ 106 int apic_sci_vect = -1; 107 iflag_t apic_sci_flags; 108 109 #if !defined(__xpv) 110 /* ACPI HPET interrupt configuration; -1 if HPET not used */ 111 int apic_hpet_vect = -1; 112 iflag_t apic_hpet_flags; 113 #endif 114 115 /* 116 * psm name pointer 117 */ 118 static char *psm_name; 119 120 /* ACPI support routines */ 121 static int acpi_probe(char *); 122 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 123 int *pci_irqp, iflag_t *intr_flagp); 124 125 static int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 126 int ipin, int *pci_irqp, iflag_t *intr_flagp); 127 static uchar_t acpi_find_ioapic(int irq); 128 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2); 129 130 /* 131 * number of bits per byte, from <sys/param.h> 132 */ 133 #define UCHAR_MAX ((1 << NBBY) - 1) 134 135 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */ 136 int apic_max_reps_clear_pending = 1000; 137 138 /* The irq # is implicit in the array index: */ 139 struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1]; 140 /* 141 * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info 142 * is indexed by IRQ number, NOT by vector number. 143 */ 144 145 int apic_intr_policy = INTR_ROUND_ROBIN; 146 147 int apic_next_bind_cpu = 1; /* For round robin assignment */ 148 /* start with cpu 1 */ 149 150 /* 151 * If enabled, the distribution works as follows: 152 * On every interrupt entry, the current ipl for the CPU is set in cpu_info 153 * and the irq corresponding to the ipl is also set in the aci_current array. 154 * interrupt exit and setspl (due to soft interrupts) will cause the current 155 * ipl to be be changed. This is cache friendly as these frequently used 156 * paths write into a per cpu structure. 157 * 158 * Sampling is done by checking the structures for all CPUs and incrementing 159 * the busy field of the irq (if any) executing on each CPU and the busy field 160 * of the corresponding CPU. 161 * In periodic mode this is done on every clock interrupt. 162 * In one-shot mode, this is done thru a cyclic with an interval of 163 * apic_redistribute_sample_interval (default 10 milli sec). 164 * 165 * Every apic_sample_factor_redistribution times we sample, we do computations 166 * to decide which interrupt needs to be migrated (see comments 167 * before apic_intr_redistribute(). 168 */ 169 170 /* 171 * Following 3 variables start as % and can be patched or set using an 172 * API to be defined in future. They will be scaled to 173 * sample_factor_redistribution which is in turn set to hertz+1 (in periodic 174 * mode), or 101 in one-shot mode to stagger it away from one sec processing 175 */ 176 177 int apic_int_busy_mark = 60; 178 int apic_int_free_mark = 20; 179 int apic_diff_for_redistribution = 10; 180 181 /* sampling interval for interrupt redistribution for dynamic migration */ 182 int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */ 183 184 /* 185 * number of times we sample before deciding to redistribute interrupts 186 * for dynamic migration 187 */ 188 int apic_sample_factor_redistribution = 101; 189 190 /* timeout for xlate_vector, mark_vector */ 191 int apic_revector_timeout = 16 * 10000; /* 160 millisec */ 192 193 int apic_redist_cpu_skip = 0; 194 int apic_num_imbalance = 0; 195 int apic_num_rebind = 0; 196 197 int apic_nproc = 0; 198 size_t apic_cpus_size = 0; 199 int apic_defconf = 0; 200 int apic_irq_translate = 0; 201 int apic_spec_rev = 0; 202 int apic_imcrp = 0; 203 204 int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */ 205 int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */ 206 207 /* 208 * For interrupt link devices, if apic_unconditional_srs is set, an irq resource 209 * will be assigned (via _SRS). If it is not set, use the current 210 * irq setting (via _CRS), but only if that irq is in the set of possible 211 * irqs (returned by _PRS) for the device. 212 */ 213 int apic_unconditional_srs = 1; 214 215 /* 216 * For interrupt link devices, if apic_prefer_crs is set when we are 217 * assigning an IRQ resource to a device, prefer the current IRQ setting 218 * over other possible irq settings under same conditions. 219 */ 220 221 int apic_prefer_crs = 1; 222 223 uchar_t apic_io_id[MAX_IO_APIC]; 224 volatile uint32_t *apicioadr[MAX_IO_APIC]; 225 static uchar_t apic_io_ver[MAX_IO_APIC]; 226 static uchar_t apic_io_vectbase[MAX_IO_APIC]; 227 static uchar_t apic_io_vectend[MAX_IO_APIC]; 228 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1]; 229 uint32_t apic_physaddr[MAX_IO_APIC]; 230 231 static boolean_t ioapic_mask_workaround[MAX_IO_APIC]; 232 233 /* 234 * First available slot to be used as IRQ index into the apic_irq_table 235 * for those interrupts (like MSI/X) that don't have a physical IRQ. 236 */ 237 int apic_first_avail_irq = APIC_FIRST_FREE_IRQ; 238 239 /* 240 * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound 241 * and bound elements of cpus_info and the temp_cpu element of irq_struct 242 */ 243 lock_t apic_ioapic_lock; 244 245 /* 246 * apic_defer_reprogram_lock ensures that only one processor is handling 247 * deferred interrupt programming at *_intr_exit time. 248 */ 249 static lock_t apic_defer_reprogram_lock; 250 251 /* 252 * The current number of deferred reprogrammings outstanding 253 */ 254 uint_t apic_reprogram_outstanding = 0; 255 256 #ifdef DEBUG 257 /* 258 * Counters that keep track of deferred reprogramming stats 259 */ 260 uint_t apic_intr_deferrals = 0; 261 uint_t apic_intr_deliver_timeouts = 0; 262 uint_t apic_last_ditch_reprogram_failures = 0; 263 uint_t apic_deferred_setup_failures = 0; 264 uint_t apic_defer_repro_total_retries = 0; 265 uint_t apic_defer_repro_successes = 0; 266 uint_t apic_deferred_spurious_enters = 0; 267 #endif 268 269 static int apic_io_max = 0; /* no. of i/o apics enabled */ 270 271 static struct apic_io_intr *apic_io_intrp = 0; 272 static struct apic_bus *apic_busp; 273 274 uchar_t apic_vector_to_irq[APIC_MAX_VECTOR+1]; 275 uchar_t apic_resv_vector[MAXIPL+1]; 276 277 char apic_level_intr[APIC_MAX_VECTOR+1]; 278 279 static uint32_t eisa_level_intr_mask = 0; 280 /* At least MSB will be set if EISA bus */ 281 282 static int apic_pci_bus_total = 0; 283 static uchar_t apic_single_pci_busid = 0; 284 285 /* 286 * airq_mutex protects additions to the apic_irq_table - the first 287 * pointer and any airq_nexts off of that one. It also protects 288 * apic_max_device_irq & apic_min_device_irq. It also guarantees 289 * that share_id is unique as new ids are generated only when new 290 * irq_t structs are linked in. Once linked in the structs are never 291 * deleted. temp_cpu & mps_intr_index field indicate if it is programmed 292 * or allocated. Note that there is a slight gap between allocating in 293 * apic_introp_xlate and programming in addspl. 294 */ 295 kmutex_t airq_mutex; 296 apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1]; 297 int apic_max_device_irq = 0; 298 int apic_min_device_irq = APIC_MAX_VECTOR; 299 300 /* 301 * Following declarations are for revectoring; used when ISRs at different 302 * IPLs share an irq. 303 */ 304 static lock_t apic_revector_lock; 305 int apic_revector_pending = 0; 306 static uchar_t *apic_oldvec_to_newvec; 307 static uchar_t *apic_newvec_to_oldvec; 308 309 typedef struct prs_irq_list_ent { 310 int list_prio; 311 int32_t irq; 312 iflag_t intrflags; 313 acpi_prs_private_t prsprv; 314 struct prs_irq_list_ent *next; 315 } prs_irq_list_t; 316 317 318 /* 319 * ACPI variables 320 */ 321 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */ 322 int apic_enable_acpi = 0; 323 324 /* ACPI Multiple APIC Description Table ptr */ 325 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL; 326 327 /* ACPI Interrupt Source Override Structure ptr */ 328 static ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL; 329 static int acpi_iso_cnt = 0; 330 331 /* ACPI Non-maskable Interrupt Sources ptr */ 332 static ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL; 333 static int acpi_nmi_scnt = 0; 334 static ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL; 335 static int acpi_nmi_ccnt = 0; 336 337 /* 338 * The following added to identify a software poweroff method if available. 339 */ 340 341 static struct { 342 int poweroff_method; 343 char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */ 344 char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */ 345 } apic_mps_ids[] = { 346 { APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */ 347 { APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */ 348 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */ 349 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */ 350 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */ 351 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */ 352 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */ 353 }; 354 355 int apic_poweroff_method = APIC_POWEROFF_NONE; 356 357 /* 358 * Auto-configuration routines 359 */ 360 361 /* 362 * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here 363 * May work with 1.1 - but not guaranteed. 364 * According to the MP Spec, the MP floating pointer structure 365 * will be searched in the order described below: 366 * 1. In the first kilobyte of Extended BIOS Data Area (EBDA) 367 * 2. Within the last kilobyte of system base memory 368 * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh 369 * Once we find the right signature with proper checksum, we call 370 * either handle_defconf or parse_mpct to get all info necessary for 371 * subsequent operations. 372 */ 373 int 374 apic_probe_common(char *modname) 375 { 376 uint32_t mpct_addr, ebda_start = 0, base_mem_end; 377 caddr_t biosdatap; 378 caddr_t mpct; 379 caddr_t fptr; 380 int i, mpct_size, mapsize, retval = PSM_FAILURE; 381 ushort_t ebda_seg, base_mem_size; 382 struct apic_mpfps_hdr *fpsp; 383 struct apic_mp_cnf_hdr *hdrp; 384 int bypass_cpu_and_ioapics_in_mptables; 385 int acpi_user_options; 386 387 if (apic_forceload < 0) 388 return (retval); 389 390 /* 391 * Remember who we are 392 */ 393 psm_name = modname; 394 395 /* Allow override for MADT-only mode */ 396 acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0, 397 "acpi-user-options", 0); 398 apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0); 399 400 /* Allow apic_use_acpi to override MADT-only mode */ 401 if (!apic_use_acpi) 402 apic_use_acpi_madt_only = 0; 403 404 retval = acpi_probe(modname); 405 406 /* 407 * mapin the bios data area 40:0 408 * 40:13h - two-byte location reports the base memory size 409 * 40:0Eh - two-byte location for the exact starting address of 410 * the EBDA segment for EISA 411 */ 412 biosdatap = psm_map_phys(0x400, 0x20, PROT_READ); 413 if (!biosdatap) 414 return (retval); 415 fpsp = (struct apic_mpfps_hdr *)NULL; 416 mapsize = MPFPS_RAM_WIN_LEN; 417 /*LINTED: pointer cast may result in improper alignment */ 418 ebda_seg = *((ushort_t *)(biosdatap+0xe)); 419 /* check the 1k of EBDA */ 420 if (ebda_seg) { 421 ebda_start = ((uint32_t)ebda_seg) << 4; 422 fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ); 423 if (fptr) { 424 if (!(fpsp = 425 apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN))) 426 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 427 } 428 } 429 /* If not in EBDA, check the last k of system base memory */ 430 if (!fpsp) { 431 /*LINTED: pointer cast may result in improper alignment */ 432 base_mem_size = *((ushort_t *)(biosdatap + 0x13)); 433 434 if (base_mem_size > 512) 435 base_mem_end = 639 * 1024; 436 else 437 base_mem_end = 511 * 1024; 438 /* if ebda == last k of base mem, skip to check BIOS ROM */ 439 if (base_mem_end != ebda_start) { 440 441 fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN, 442 PROT_READ); 443 444 if (fptr) { 445 if (!(fpsp = apic_find_fps_sig(fptr, 446 MPFPS_RAM_WIN_LEN))) 447 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 448 } 449 } 450 } 451 psm_unmap_phys(biosdatap, 0x20); 452 453 /* If still cannot find it, check the BIOS ROM space */ 454 if (!fpsp) { 455 mapsize = MPFPS_ROM_WIN_LEN; 456 fptr = psm_map_phys(MPFPS_ROM_WIN_START, 457 MPFPS_ROM_WIN_LEN, PROT_READ); 458 if (fptr) { 459 if (!(fpsp = 460 apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) { 461 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 462 return (retval); 463 } 464 } 465 } 466 467 if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) { 468 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 469 return (retval); 470 } 471 472 apic_spec_rev = fpsp->mpfps_spec_rev; 473 if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) { 474 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 475 return (retval); 476 } 477 478 /* check IMCR is present or not */ 479 apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP; 480 481 /* check default configuration (dual CPUs) */ 482 if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) { 483 psm_unmap_phys(fptr, mapsize); 484 return (apic_handle_defconf()); 485 } 486 487 /* MP Configuration Table */ 488 mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr); 489 490 psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */ 491 492 /* 493 * Map in enough memory for the MP Configuration Table Header. 494 * Use this table to read the total length of the BIOS data and 495 * map in all the info 496 */ 497 /*LINTED: pointer cast may result in improper alignment */ 498 hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr, 499 sizeof (struct apic_mp_cnf_hdr), PROT_READ); 500 if (!hdrp) 501 return (retval); 502 503 /* check mp configuration table signature PCMP */ 504 if (hdrp->mpcnf_sig != 0x504d4350) { 505 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 506 return (retval); 507 } 508 mpct_size = (int)hdrp->mpcnf_tbl_length; 509 510 apic_set_pwroff_method_from_mpcnfhdr(hdrp); 511 512 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 513 514 if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) { 515 /* This is an ACPI machine No need for further checks */ 516 return (retval); 517 } 518 519 /* 520 * Map in the entries for this machine, ie. Processor 521 * Entry Tables, Bus Entry Tables, etc. 522 * They are in fixed order following one another 523 */ 524 mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ); 525 if (!mpct) 526 return (retval); 527 528 if (apic_checksum(mpct, mpct_size) != 0) 529 goto apic_fail1; 530 531 532 /*LINTED: pointer cast may result in improper alignment */ 533 hdrp = (struct apic_mp_cnf_hdr *)mpct; 534 apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic, 535 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 536 if (!apicadr) 537 goto apic_fail1; 538 539 /* Parse all information in the tables */ 540 bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS); 541 if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) == 542 PSM_SUCCESS) 543 return (PSM_SUCCESS); 544 545 for (i = 0; i < apic_io_max; i++) 546 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 547 if (apic_cpus) 548 kmem_free(apic_cpus, apic_cpus_size); 549 if (apicadr) 550 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 551 apic_fail1: 552 psm_unmap_phys(mpct, mpct_size); 553 return (retval); 554 } 555 556 static void 557 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp) 558 { 559 int i; 560 561 for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0])); 562 i++) { 563 if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id, 564 strlen(apic_mps_ids[i].oem_id)) == 0) && 565 (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id, 566 strlen(apic_mps_ids[i].prod_id)) == 0)) { 567 568 apic_poweroff_method = apic_mps_ids[i].poweroff_method; 569 break; 570 } 571 } 572 573 if (apic_debug_mps_id != 0) { 574 cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'" 575 "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n", 576 psm_name, 577 hdrp->mpcnf_oem_str[0], 578 hdrp->mpcnf_oem_str[1], 579 hdrp->mpcnf_oem_str[2], 580 hdrp->mpcnf_oem_str[3], 581 hdrp->mpcnf_oem_str[4], 582 hdrp->mpcnf_oem_str[5], 583 hdrp->mpcnf_oem_str[6], 584 hdrp->mpcnf_oem_str[7], 585 hdrp->mpcnf_prod_str[0], 586 hdrp->mpcnf_prod_str[1], 587 hdrp->mpcnf_prod_str[2], 588 hdrp->mpcnf_prod_str[3], 589 hdrp->mpcnf_prod_str[4], 590 hdrp->mpcnf_prod_str[5], 591 hdrp->mpcnf_prod_str[6], 592 hdrp->mpcnf_prod_str[7], 593 hdrp->mpcnf_prod_str[8], 594 hdrp->mpcnf_prod_str[9], 595 hdrp->mpcnf_prod_str[10], 596 hdrp->mpcnf_prod_str[11]); 597 } 598 } 599 600 static int 601 acpi_probe(char *modname) 602 { 603 int i, intmax, index; 604 uint32_t id, ver; 605 int acpi_verboseflags = 0; 606 int madt_seen, madt_size; 607 ACPI_SUBTABLE_HEADER *ap; 608 ACPI_MADT_LOCAL_APIC *mpa; 609 ACPI_MADT_LOCAL_X2APIC *mpx2a; 610 ACPI_MADT_IO_APIC *mia; 611 ACPI_MADT_IO_SAPIC *misa; 612 ACPI_MADT_INTERRUPT_OVERRIDE *mio; 613 ACPI_MADT_NMI_SOURCE *mns; 614 ACPI_MADT_INTERRUPT_SOURCE *mis; 615 ACPI_MADT_LOCAL_APIC_NMI *mlan; 616 ACPI_MADT_LOCAL_X2APIC_NMI *mx2alan; 617 ACPI_MADT_LOCAL_APIC_OVERRIDE *mao; 618 int sci; 619 iflag_t sci_flags; 620 volatile uint32_t *ioapic; 621 int ioapic_ix; 622 uint32_t local_ids[NCPU]; 623 uint32_t proc_ids[NCPU]; 624 uchar_t hid; 625 int warned = 0; 626 627 if (!apic_use_acpi) 628 return (PSM_FAILURE); 629 630 if (AcpiGetTable(ACPI_SIG_MADT, 1, 631 (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) 632 return (PSM_FAILURE); 633 634 apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address, 635 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 636 if (!apicadr) 637 return (PSM_FAILURE); 638 639 /* 640 * We don't enable x2APIC when Solaris is running under xVM. 641 */ 642 #if !defined(__xpv) 643 if (apic_detect_x2apic()) { 644 apic_enable_x2apic(); 645 } 646 #endif 647 648 id = apic_reg_ops->apic_read(APIC_LID_REG); 649 local_ids[0] = (uchar_t)(id >> 24); 650 apic_nproc = index = 1; 651 CPUSET_ONLY(apic_cpumask, 0); 652 apic_io_max = 0; 653 654 ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1); 655 madt_size = acpi_mapic_dtp->Header.Length; 656 madt_seen = sizeof (*acpi_mapic_dtp); 657 658 while (madt_seen < madt_size) { 659 switch (ap->Type) { 660 case ACPI_MADT_TYPE_LOCAL_APIC: 661 mpa = (ACPI_MADT_LOCAL_APIC *) ap; 662 if (mpa->LapicFlags & ACPI_MADT_ENABLED) { 663 if (mpa->Id == local_ids[0]) { 664 proc_ids[0] = mpa->ProcessorId; 665 acpica_map_cpu(0, mpa->ProcessorId); 666 } else if (apic_nproc < NCPU && use_mp && 667 apic_nproc < boot_ncpus) { 668 local_ids[index] = mpa->Id; 669 proc_ids[index] = mpa->ProcessorId; 670 CPUSET_ADD(apic_cpumask, index); 671 acpica_map_cpu(index, mpa->ProcessorId); 672 index++; 673 apic_nproc++; 674 } else if (apic_nproc == NCPU && !warned) { 675 cmn_err(CE_WARN, "%s: CPU limit " 676 "exceeded" 677 #if !defined(__amd64) 678 " for 32-bit mode" 679 #endif 680 "; Solaris will use %d CPUs.", 681 psm_name, NCPU); 682 warned = 1; 683 } 684 } 685 break; 686 687 case ACPI_MADT_TYPE_IO_APIC: 688 mia = (ACPI_MADT_IO_APIC *) ap; 689 if (apic_io_max < MAX_IO_APIC) { 690 ioapic_ix = apic_io_max; 691 apic_io_id[apic_io_max] = mia->Id; 692 apic_io_vectbase[apic_io_max] = 693 mia->GlobalIrqBase; 694 apic_physaddr[apic_io_max] = 695 (uint32_t)mia->Address; 696 ioapic = apicioadr[apic_io_max] = 697 mapin_ioapic((uint32_t)mia->Address, 698 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 699 if (!ioapic) 700 goto cleanup; 701 ioapic_mask_workaround[apic_io_max] = 702 apic_is_ioapic_AMD_813x(mia->Address); 703 apic_io_max++; 704 } 705 break; 706 707 case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE: 708 mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap; 709 if (acpi_isop == NULL) 710 acpi_isop = mio; 711 acpi_iso_cnt++; 712 break; 713 714 case ACPI_MADT_TYPE_NMI_SOURCE: 715 /* UNIMPLEMENTED */ 716 mns = (ACPI_MADT_NMI_SOURCE *) ap; 717 if (acpi_nmi_sp == NULL) 718 acpi_nmi_sp = mns; 719 acpi_nmi_scnt++; 720 721 cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n", 722 mns->GlobalIrq, mns->IntiFlags); 723 break; 724 725 case ACPI_MADT_TYPE_LOCAL_APIC_NMI: 726 /* UNIMPLEMENTED */ 727 mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap; 728 if (acpi_nmi_cp == NULL) 729 acpi_nmi_cp = mlan; 730 acpi_nmi_ccnt++; 731 732 cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n", 733 mlan->ProcessorId, mlan->IntiFlags, 734 mlan->Lint); 735 break; 736 737 case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE: 738 /* UNIMPLEMENTED */ 739 mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap; 740 cmn_err(CE_NOTE, "!apic: address override: %lx\n", 741 (long)mao->Address); 742 break; 743 744 case ACPI_MADT_TYPE_IO_SAPIC: 745 /* UNIMPLEMENTED */ 746 misa = (ACPI_MADT_IO_SAPIC *) ap; 747 748 cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n", 749 misa->Id, misa->GlobalIrqBase, 750 (long)misa->Address); 751 break; 752 753 case ACPI_MADT_TYPE_INTERRUPT_SOURCE: 754 /* UNIMPLEMENTED */ 755 mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap; 756 757 cmn_err(CE_NOTE, 758 "!apic: irq source: %d %d %d 0x%x %d %d\n", 759 mis->Id, mis->Eid, mis->GlobalIrq, 760 mis->IntiFlags, mis->Type, 761 mis->IoSapicVector); 762 break; 763 764 case ACPI_MADT_TYPE_LOCAL_X2APIC: 765 mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap; 766 767 /* 768 * All logical processors with APIC ID values 769 * of 255 and greater will have their APIC 770 * reported through Processor X2APIC structure. 771 * All logical processors with APIC ID less than 772 * 255 will have their APIC reported through 773 * Processor Local APIC. 774 */ 775 if ((mpx2a->LapicFlags & ACPI_MADT_ENABLED) && 776 (mpx2a->LocalApicId >> 8)) { 777 if (apic_nproc < NCPU && use_mp && 778 apic_nproc < boot_ncpus) { 779 local_ids[index] = mpx2a->LocalApicId; 780 CPUSET_ADD(apic_cpumask, index); 781 acpica_map_cpu(index, mpx2a->Uid); 782 index++; 783 apic_nproc++; 784 } else if (apic_nproc == NCPU && !warned) { 785 cmn_err(CE_WARN, "%s: CPU limit " 786 "exceeded" 787 #if !defined(__amd64) 788 " for 32-bit mode" 789 #endif 790 "; Solaris will use %d CPUs.", 791 psm_name, NCPU); 792 warned = 1; 793 } 794 } 795 796 break; 797 798 case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI: 799 /* UNIMPLEMENTED */ 800 mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap; 801 if (mx2alan->Uid >> 8) 802 acpi_nmi_ccnt++; 803 804 #ifdef DEBUG 805 cmn_err(CE_NOTE, 806 "!apic: local x2apic nmi: %d 0x%x %d\n", 807 mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint); 808 #endif 809 810 break; 811 812 case ACPI_MADT_TYPE_RESERVED: 813 default: 814 break; 815 } 816 817 /* advance to next entry */ 818 madt_seen += ap->Length; 819 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length); 820 } 821 822 apic_cpus_size = apic_nproc * sizeof (*apic_cpus); 823 if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL) 824 goto cleanup; 825 826 /* 827 * ACPI doesn't provide the local apic ver, get it directly from the 828 * local apic 829 */ 830 ver = apic_reg_ops->apic_read(APIC_VERS_REG); 831 for (i = 0; i < apic_nproc; i++) { 832 apic_cpus[i].aci_local_id = local_ids[i]; 833 apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF); 834 } 835 836 for (i = 0; i < apic_io_max; i++) { 837 ioapic_ix = i; 838 839 /* 840 * need to check Sitka on the following acpi problem 841 * On the Sitka, the ioapic's apic_id field isn't reporting 842 * the actual io apic id. We have reported this problem 843 * to Intel. Until they fix the problem, we will get the 844 * actual id directly from the ioapic. 845 */ 846 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 847 hid = (uchar_t)(id >> 24); 848 849 if (hid != apic_io_id[i]) { 850 if (apic_io_id[i] == 0) 851 apic_io_id[i] = hid; 852 else { /* set ioapic id to whatever reported by ACPI */ 853 id = ((uint32_t)apic_io_id[i]) << 24; 854 ioapic_write(ioapic_ix, APIC_ID_CMD, id); 855 } 856 } 857 ver = ioapic_read(ioapic_ix, APIC_VERS_CMD); 858 apic_io_ver[i] = (uchar_t)(ver & 0xff); 859 intmax = (ver >> 16) & 0xff; 860 apic_io_vectend[i] = apic_io_vectbase[i] + intmax; 861 if (apic_first_avail_irq <= apic_io_vectend[i]) 862 apic_first_avail_irq = apic_io_vectend[i] + 1; 863 } 864 865 866 /* 867 * Process SCI configuration here 868 * An error may be returned here if 869 * acpi-user-options specifies legacy mode 870 * (no SCI, no ACPI mode) 871 */ 872 if (acpica_get_sci(&sci, &sci_flags) != AE_OK) 873 sci = -1; 874 875 /* 876 * Now call acpi_init() to generate namespaces 877 * If this fails, we don't attempt to use ACPI 878 * even if we were able to get a MADT above 879 */ 880 if (acpica_init() != AE_OK) 881 goto cleanup; 882 883 /* 884 * Call acpica_build_processor_map() now that we have 885 * ACPI namesspace access 886 */ 887 acpica_build_processor_map(); 888 889 /* 890 * Squirrel away the SCI and flags for later on 891 * in apic_picinit() when we're ready 892 */ 893 apic_sci_vect = sci; 894 apic_sci_flags = sci_flags; 895 896 if (apic_verbose & APIC_VERBOSE_IRQ_FLAG) 897 acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG; 898 899 if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG) 900 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG; 901 902 if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG) 903 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG; 904 905 if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE) 906 goto cleanup; 907 908 /* Enable ACPI APIC interrupt routing */ 909 if (apic_acpi_enter_apicmode() != PSM_FAILURE) { 910 build_reserved_irqlist((uchar_t *)apic_reserved_irqlist); 911 apic_enable_acpi = 1; 912 if (apic_use_acpi_madt_only) { 913 cmn_err(CE_CONT, 914 "?Using ACPI for CPU/IOAPIC information ONLY\n"); 915 } 916 917 #if !defined(__xpv) 918 /* 919 * probe ACPI for hpet information here which is used later 920 * in apic_picinit(). 921 */ 922 if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) { 923 cmn_err(CE_NOTE, "!ACPI HPET table query failed\n"); 924 } 925 #endif 926 927 return (PSM_SUCCESS); 928 } 929 /* if setting APIC mode failed above, we fall through to cleanup */ 930 931 cleanup: 932 if (apicadr != NULL) { 933 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 934 apicadr = NULL; 935 } 936 apic_nproc = 0; 937 for (i = 0; i < apic_io_max; i++) { 938 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 939 apicioadr[i] = NULL; 940 } 941 apic_io_max = 0; 942 acpi_isop = NULL; 943 acpi_iso_cnt = 0; 944 acpi_nmi_sp = NULL; 945 acpi_nmi_scnt = 0; 946 acpi_nmi_cp = NULL; 947 acpi_nmi_ccnt = 0; 948 return (PSM_FAILURE); 949 } 950 951 /* 952 * Handle default configuration. Fill in reqd global variables & tables 953 * Fill all details as MP table does not give any more info 954 */ 955 static int 956 apic_handle_defconf() 957 { 958 uint_t lid; 959 960 /*LINTED: pointer cast may result in improper alignment */ 961 apicioadr[0] = mapin_ioapic(APIC_IO_ADDR, 962 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 963 /*LINTED: pointer cast may result in improper alignment */ 964 apicadr = (uint32_t *)psm_map_phys(APIC_LOCAL_ADDR, 965 APIC_LOCAL_MEMLEN, PROT_READ); 966 apic_cpus_size = 2 * sizeof (*apic_cpus); 967 apic_cpus = (apic_cpus_info_t *) 968 kmem_zalloc(apic_cpus_size, KM_NOSLEEP); 969 if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus)) 970 goto apic_handle_defconf_fail; 971 CPUSET_ONLY(apic_cpumask, 0); 972 CPUSET_ADD(apic_cpumask, 1); 973 apic_nproc = 2; 974 lid = apic_reg_ops->apic_read(APIC_LID_REG); 975 apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET); 976 /* 977 * According to the PC+MP spec 1.1, the local ids 978 * for the default configuration has to be 0 or 1 979 */ 980 if (apic_cpus[0].aci_local_id == 1) 981 apic_cpus[1].aci_local_id = 0; 982 else if (apic_cpus[0].aci_local_id == 0) 983 apic_cpus[1].aci_local_id = 1; 984 else 985 goto apic_handle_defconf_fail; 986 987 apic_io_id[0] = 2; 988 apic_io_max = 1; 989 if (apic_defconf >= 5) { 990 apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS; 991 apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS; 992 apic_io_ver[0] = APIC_INTEGRATED_VERS; 993 } else { 994 apic_cpus[0].aci_local_ver = 0; /* 82489 DX */ 995 apic_cpus[1].aci_local_ver = 0; 996 apic_io_ver[0] = 0; 997 } 998 if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6) 999 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1000 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1001 return (PSM_SUCCESS); 1002 1003 apic_handle_defconf_fail: 1004 if (apic_cpus) 1005 kmem_free(apic_cpus, apic_cpus_size); 1006 if (apicadr) 1007 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 1008 if (apicioadr[0]) 1009 mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN); 1010 return (PSM_FAILURE); 1011 } 1012 1013 /* Parse the entries in MP configuration table and collect info that we need */ 1014 static int 1015 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics) 1016 { 1017 struct apic_procent *procp; 1018 struct apic_bus *busp; 1019 struct apic_io_entry *ioapicp; 1020 struct apic_io_intr *intrp; 1021 int ioapic_ix; 1022 uint_t lid; 1023 uint32_t id; 1024 uchar_t hid; 1025 int warned = 0; 1026 1027 /*LINTED: pointer cast may result in improper alignment */ 1028 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1029 1030 /* No need to count cpu entries if we won't use them */ 1031 if (!bypass_cpus_and_ioapics) { 1032 1033 /* Find max # of CPUS and allocate structure accordingly */ 1034 apic_nproc = 0; 1035 CPUSET_ZERO(apic_cpumask); 1036 while (procp->proc_entry == APIC_CPU_ENTRY) { 1037 if (procp->proc_cpuflags & CPUFLAGS_EN) { 1038 if (apic_nproc < NCPU && use_mp && 1039 apic_nproc < boot_ncpus) { 1040 CPUSET_ADD(apic_cpumask, apic_nproc); 1041 apic_nproc++; 1042 } else if (apic_nproc == NCPU && !warned) { 1043 cmn_err(CE_WARN, "%s: CPU limit " 1044 "exceeded" 1045 #if !defined(__amd64) 1046 " for 32-bit mode" 1047 #endif 1048 "; Solaris will use %d CPUs.", 1049 psm_name, NCPU); 1050 warned = 1; 1051 } 1052 1053 } 1054 procp++; 1055 } 1056 apic_cpus_size = apic_nproc * sizeof (*apic_cpus); 1057 if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *) 1058 kmem_zalloc(apic_cpus_size, KM_NOSLEEP))) 1059 return (PSM_FAILURE); 1060 } 1061 1062 /*LINTED: pointer cast may result in improper alignment */ 1063 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1064 1065 /* 1066 * start with index 1 as 0 needs to be filled in with Boot CPU, but 1067 * if we're bypassing this information, it has already been filled 1068 * in by acpi_probe(), so don't overwrite it. 1069 */ 1070 if (!bypass_cpus_and_ioapics) 1071 apic_nproc = 1; 1072 1073 while (procp->proc_entry == APIC_CPU_ENTRY) { 1074 /* check whether the cpu exists or not */ 1075 if (!bypass_cpus_and_ioapics && 1076 procp->proc_cpuflags & CPUFLAGS_EN) { 1077 if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */ 1078 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1079 apic_cpus[0].aci_local_id = procp->proc_apicid; 1080 if (apic_cpus[0].aci_local_id != 1081 (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) { 1082 return (PSM_FAILURE); 1083 } 1084 apic_cpus[0].aci_local_ver = 1085 procp->proc_version; 1086 } else if (apic_nproc < NCPU && use_mp && 1087 apic_nproc < boot_ncpus) { 1088 apic_cpus[apic_nproc].aci_local_id = 1089 procp->proc_apicid; 1090 1091 apic_cpus[apic_nproc].aci_local_ver = 1092 procp->proc_version; 1093 apic_nproc++; 1094 1095 } 1096 } 1097 procp++; 1098 } 1099 1100 /* 1101 * Save start of bus entries for later use. 1102 * Get EISA level cntrl if EISA bus is present. 1103 * Also get the CPI bus id for single CPI bus case 1104 */ 1105 apic_busp = busp = (struct apic_bus *)procp; 1106 while (busp->bus_entry == APIC_BUS_ENTRY) { 1107 lid = apic_find_bus_type((char *)&busp->bus_str1); 1108 if (lid == BUS_EISA) { 1109 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1110 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1111 } else if (lid == BUS_PCI) { 1112 /* 1113 * apic_single_pci_busid will be used only if 1114 * apic_pic_bus_total is equal to 1 1115 */ 1116 apic_pci_bus_total++; 1117 apic_single_pci_busid = busp->bus_id; 1118 } 1119 busp++; 1120 } 1121 1122 ioapicp = (struct apic_io_entry *)busp; 1123 1124 if (!bypass_cpus_and_ioapics) 1125 apic_io_max = 0; 1126 do { 1127 if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) { 1128 if (ioapicp->io_flags & IOAPIC_FLAGS_EN) { 1129 apic_io_id[apic_io_max] = ioapicp->io_apicid; 1130 apic_io_ver[apic_io_max] = ioapicp->io_version; 1131 /*LINTED: pointer cast may result in improper alignment */ 1132 apicioadr[apic_io_max] = 1133 mapin_ioapic( 1134 (uint32_t)ioapicp->io_apic_addr, 1135 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1136 1137 if (!apicioadr[apic_io_max]) 1138 return (PSM_FAILURE); 1139 1140 ioapic_mask_workaround[apic_io_max] = 1141 apic_is_ioapic_AMD_813x( 1142 ioapicp->io_apic_addr); 1143 1144 ioapic_ix = apic_io_max; 1145 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 1146 hid = (uchar_t)(id >> 24); 1147 1148 if (hid != apic_io_id[apic_io_max]) { 1149 if (apic_io_id[apic_io_max] == 0) 1150 apic_io_id[apic_io_max] = hid; 1151 else { 1152 /* 1153 * set ioapic id to whatever 1154 * reported by MPS 1155 * 1156 * may not need to set index 1157 * again ??? 1158 * take it out and try 1159 */ 1160 1161 id = ((uint32_t) 1162 apic_io_id[apic_io_max]) << 1163 24; 1164 1165 ioapic_write(ioapic_ix, 1166 APIC_ID_CMD, id); 1167 } 1168 } 1169 apic_io_max++; 1170 } 1171 } 1172 ioapicp++; 1173 } while (ioapicp->io_entry == APIC_IO_ENTRY); 1174 1175 apic_io_intrp = (struct apic_io_intr *)ioapicp; 1176 1177 intrp = apic_io_intrp; 1178 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1179 if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) || 1180 (apic_find_bus(intrp->intr_busid) == BUS_PCI)) { 1181 apic_irq_translate = 1; 1182 break; 1183 } 1184 intrp++; 1185 } 1186 1187 return (PSM_SUCCESS); 1188 } 1189 1190 boolean_t 1191 apic_cpu_in_range(int cpu) 1192 { 1193 return ((cpu & ~IRQ_USER_BOUND) < apic_nproc); 1194 } 1195 1196 uint16_t 1197 apic_get_apic_version() 1198 { 1199 int i; 1200 uchar_t min_io_apic_ver = 0; 1201 static uint16_t version; /* Cache as value is constant */ 1202 static boolean_t found = B_FALSE; /* Accomodate zero version */ 1203 1204 if (found == B_FALSE) { 1205 found = B_TRUE; 1206 1207 /* 1208 * Don't assume all IO APICs in the system are the same. 1209 * 1210 * Set to the minimum version. 1211 */ 1212 for (i = 0; i < apic_io_max; i++) { 1213 if ((apic_io_ver[i] != 0) && 1214 ((min_io_apic_ver == 0) || 1215 (min_io_apic_ver >= apic_io_ver[i]))) 1216 min_io_apic_ver = apic_io_ver[i]; 1217 } 1218 1219 /* Assume all local APICs are of the same version. */ 1220 version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver; 1221 } 1222 return (version); 1223 } 1224 1225 static struct apic_mpfps_hdr * 1226 apic_find_fps_sig(caddr_t cptr, int len) 1227 { 1228 int i; 1229 1230 /* Look for the pattern "_MP_" */ 1231 for (i = 0; i < len; i += 16) { 1232 if ((*(cptr+i) == '_') && 1233 (*(cptr+i+1) == 'M') && 1234 (*(cptr+i+2) == 'P') && 1235 (*(cptr+i+3) == '_')) 1236 /*LINTED: pointer cast may result in improper alignment */ 1237 return ((struct apic_mpfps_hdr *)(cptr + i)); 1238 } 1239 return (NULL); 1240 } 1241 1242 static int 1243 apic_checksum(caddr_t bptr, int len) 1244 { 1245 int i; 1246 uchar_t cksum; 1247 1248 cksum = 0; 1249 for (i = 0; i < len; i++) 1250 cksum += *bptr++; 1251 return ((int)cksum); 1252 } 1253 1254 1255 /* 1256 * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable 1257 * are also set to NULL. vector->irq is set to a value which cannot map 1258 * to a real irq to show that it is free. 1259 */ 1260 void 1261 apic_init_common() 1262 { 1263 int i, j, indx; 1264 int *iptr; 1265 1266 /* 1267 * Initialize apic_ipls from apic_vectortoipl. This array is 1268 * used in apic_intr_enter to determine the IPL to use for the 1269 * corresponding vector. On some systems, due to hardware errata 1270 * and interrupt sharing, the IPL may not correspond to the IPL listed 1271 * in apic_vectortoipl (see apic_addspl and apic_delspl). 1272 */ 1273 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { 1274 indx = i * APIC_VECTOR_PER_IPL; 1275 1276 for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++) 1277 apic_ipls[indx] = apic_vectortoipl[i]; 1278 } 1279 1280 /* cpu 0 is always up (for now) */ 1281 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; 1282 1283 iptr = (int *)&apic_irq_table[0]; 1284 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 1285 apic_level_intr[i] = 0; 1286 *iptr++ = NULL; 1287 apic_vector_to_irq[i] = APIC_RESV_IRQ; 1288 1289 /* These *must* be initted to B_TRUE! */ 1290 apic_reprogram_info[i].done = B_TRUE; 1291 apic_reprogram_info[i].irqp = NULL; 1292 apic_reprogram_info[i].tries = 0; 1293 apic_reprogram_info[i].bindcpu = 0; 1294 } 1295 1296 /* 1297 * Allocate a dummy irq table entry for the reserved entry. 1298 * This takes care of the race between removing an irq and 1299 * clock detecting a CPU in that irq during interrupt load 1300 * sampling. 1301 */ 1302 apic_irq_table[APIC_RESV_IRQ] = 1303 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); 1304 1305 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL); 1306 } 1307 1308 void 1309 ioapic_init_intr(int mask_apic) 1310 { 1311 int ioapic_ix; 1312 struct intrspec ispec; 1313 apic_irq_t *irqptr; 1314 int i, j; 1315 ulong_t iflag; 1316 1317 LOCK_INIT_CLEAR(&apic_revector_lock); 1318 LOCK_INIT_CLEAR(&apic_defer_reprogram_lock); 1319 1320 /* mask interrupt vectors */ 1321 for (j = 0; j < apic_io_max && mask_apic; j++) { 1322 int intin_max; 1323 1324 ioapic_ix = j; 1325 /* Bits 23-16 define the maximum redirection entries */ 1326 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) 1327 & 0xff; 1328 for (i = 0; i <= intin_max; i++) 1329 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * i, AV_MASK); 1330 } 1331 1332 /* 1333 * Hack alert: deal with ACPI SCI interrupt chicken/egg here 1334 */ 1335 if (apic_sci_vect > 0) { 1336 /* 1337 * acpica has already done add_avintr(); we just 1338 * to finish the job by mimicing translate_irq() 1339 * 1340 * Fake up an intrspec and setup the tables 1341 */ 1342 ispec.intrspec_vec = apic_sci_vect; 1343 ispec.intrspec_pri = SCI_IPL; 1344 1345 if (apic_setup_irq_table(NULL, apic_sci_vect, NULL, 1346 &ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) { 1347 cmn_err(CE_WARN, "!apic: SCI setup failed"); 1348 return; 1349 } 1350 irqptr = apic_irq_table[apic_sci_vect]; 1351 1352 iflag = intr_clear(); 1353 lock_set(&apic_ioapic_lock); 1354 1355 /* Program I/O APIC */ 1356 (void) apic_setup_io_intr(irqptr, apic_sci_vect, B_FALSE); 1357 1358 lock_clear(&apic_ioapic_lock); 1359 intr_restore(iflag); 1360 1361 irqptr->airq_share++; 1362 } 1363 1364 #if !defined(__xpv) 1365 /* 1366 * Hack alert: deal with ACPI HPET interrupt chicken/egg here. 1367 */ 1368 if (apic_hpet_vect > 0) { 1369 /* 1370 * hpet has already done add_avintr(); we just need 1371 * to finish the job by mimicing translate_irq() 1372 * 1373 * Fake up an intrspec and setup the tables 1374 */ 1375 ispec.intrspec_vec = apic_hpet_vect; 1376 ispec.intrspec_pri = CBE_HIGH_PIL; 1377 1378 if (apic_setup_irq_table(NULL, apic_hpet_vect, NULL, 1379 &ispec, &apic_hpet_flags, DDI_INTR_TYPE_FIXED) < 0) { 1380 cmn_err(CE_WARN, "!apic: HPET setup failed"); 1381 return; 1382 } 1383 irqptr = apic_irq_table[apic_hpet_vect]; 1384 1385 iflag = intr_clear(); 1386 lock_set(&apic_ioapic_lock); 1387 1388 /* Program I/O APIC */ 1389 (void) apic_setup_io_intr(irqptr, apic_hpet_vect, B_FALSE); 1390 1391 lock_clear(&apic_ioapic_lock); 1392 intr_restore(iflag); 1393 1394 irqptr->airq_share++; 1395 } 1396 #endif /* !defined(__xpv) */ 1397 } 1398 1399 /* 1400 * Add mask bits to disable interrupt vector from happening 1401 * at or above IPL. In addition, it should remove mask bits 1402 * to enable interrupt vectors below the given IPL. 1403 * 1404 * Both add and delspl are complicated by the fact that different interrupts 1405 * may share IRQs. This can happen in two ways. 1406 * 1. The same H/W line is shared by more than 1 device 1407 * 1a. with interrupts at different IPLs 1408 * 1b. with interrupts at same IPL 1409 * 2. We ran out of vectors at a given IPL and started sharing vectors. 1410 * 1b and 2 should be handled gracefully, except for the fact some ISRs 1411 * will get called often when no interrupt is pending for the device. 1412 * For 1a, we just hope that the machine blows up with the person who 1413 * set it up that way!. In the meantime, we handle it at the higher IPL. 1414 */ 1415 /*ARGSUSED*/ 1416 int 1417 apic_addspl_common(int irqno, int ipl, int min_ipl, int max_ipl) 1418 { 1419 uchar_t vector; 1420 ulong_t iflag; 1421 apic_irq_t *irqptr, *irqheadptr; 1422 int irqindex; 1423 1424 ASSERT(max_ipl <= UCHAR_MAX); 1425 irqindex = IRQINDEX(irqno); 1426 1427 if ((irqindex == -1) || (!apic_irq_table[irqindex])) 1428 return (PSM_FAILURE); 1429 1430 mutex_enter(&airq_mutex); 1431 irqptr = irqheadptr = apic_irq_table[irqindex]; 1432 1433 DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x " 1434 "vector=0x%x\n", (void *)irqptr->airq_dip, 1435 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector)); 1436 1437 while (irqptr) { 1438 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) 1439 break; 1440 irqptr = irqptr->airq_next; 1441 } 1442 irqptr->airq_share++; 1443 1444 mutex_exit(&airq_mutex); 1445 1446 /* return if it is not hardware interrupt */ 1447 if (irqptr->airq_mps_intr_index == RESERVE_INDEX) 1448 return (PSM_SUCCESS); 1449 1450 /* Or if there are more interupts at a higher IPL */ 1451 if (ipl != max_ipl) 1452 return (PSM_SUCCESS); 1453 1454 /* 1455 * if apic_picinit() has not been called yet, just return. 1456 * At the end of apic_picinit(), we will call setup_io_intr(). 1457 */ 1458 1459 if (!apic_picinit_called) 1460 return (PSM_SUCCESS); 1461 1462 /* 1463 * Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate, 1464 * return failure. Not very elegant, but then we hope the 1465 * machine will blow up with ... 1466 */ 1467 if (irqptr->airq_ipl != max_ipl && 1468 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1469 1470 vector = apic_allocate_vector(max_ipl, irqindex, 1); 1471 if (vector == 0) { 1472 irqptr->airq_share--; 1473 return (PSM_FAILURE); 1474 } 1475 irqptr = irqheadptr; 1476 apic_mark_vector(irqptr->airq_vector, vector); 1477 while (irqptr) { 1478 irqptr->airq_vector = vector; 1479 irqptr->airq_ipl = (uchar_t)max_ipl; 1480 /* 1481 * reprogram irq being added and every one else 1482 * who is not in the UNINIT state 1483 */ 1484 if ((VIRTIRQ(irqindex, irqptr->airq_share_id) == 1485 irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) { 1486 apic_record_rdt_entry(irqptr, irqindex); 1487 1488 iflag = intr_clear(); 1489 lock_set(&apic_ioapic_lock); 1490 1491 (void) apic_setup_io_intr(irqptr, irqindex, 1492 B_FALSE); 1493 1494 lock_clear(&apic_ioapic_lock); 1495 intr_restore(iflag); 1496 } 1497 irqptr = irqptr->airq_next; 1498 } 1499 return (PSM_SUCCESS); 1500 1501 } else if (irqptr->airq_ipl != max_ipl && 1502 ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1503 /* 1504 * We cannot upgrade the vector, but we can change 1505 * the IPL that this vector induces. 1506 * 1507 * Note that we subtract APIC_BASE_VECT from the vector 1508 * here because this array is used in apic_intr_enter 1509 * (no need to add APIC_BASE_VECT in that hot code 1510 * path since we can do it in the rarely-executed path 1511 * here). 1512 */ 1513 apic_ipls[irqptr->airq_vector - APIC_BASE_VECT] = 1514 (uchar_t)max_ipl; 1515 1516 irqptr = irqheadptr; 1517 while (irqptr) { 1518 irqptr->airq_ipl = (uchar_t)max_ipl; 1519 irqptr = irqptr->airq_next; 1520 } 1521 1522 return (PSM_SUCCESS); 1523 } 1524 1525 ASSERT(irqptr); 1526 1527 iflag = intr_clear(); 1528 lock_set(&apic_ioapic_lock); 1529 1530 (void) apic_setup_io_intr(irqptr, irqindex, B_FALSE); 1531 1532 lock_clear(&apic_ioapic_lock); 1533 intr_restore(iflag); 1534 1535 return (PSM_SUCCESS); 1536 } 1537 1538 /* 1539 * Recompute mask bits for the given interrupt vector. 1540 * If there is no interrupt servicing routine for this 1541 * vector, this function should disable interrupt vector 1542 * from happening at all IPLs. If there are still 1543 * handlers using the given vector, this function should 1544 * disable the given vector from happening below the lowest 1545 * IPL of the remaining hadlers. 1546 */ 1547 /*ARGSUSED*/ 1548 int 1549 apic_delspl_common(int irqno, int ipl, int min_ipl, int max_ipl) 1550 { 1551 uchar_t vector; 1552 uint32_t bind_cpu; 1553 int intin, irqindex; 1554 int ioapic_ix; 1555 apic_irq_t *irqptr, *irqheadptr, *irqp; 1556 ulong_t iflag; 1557 1558 mutex_enter(&airq_mutex); 1559 irqindex = IRQINDEX(irqno); 1560 irqptr = irqheadptr = apic_irq_table[irqindex]; 1561 1562 DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x " 1563 "vector=0x%x\n", (void *)irqptr->airq_dip, 1564 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector)); 1565 1566 while (irqptr) { 1567 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) 1568 break; 1569 irqptr = irqptr->airq_next; 1570 } 1571 ASSERT(irqptr); 1572 1573 irqptr->airq_share--; 1574 1575 mutex_exit(&airq_mutex); 1576 1577 if (ipl < max_ipl) 1578 return (PSM_SUCCESS); 1579 1580 /* return if it is not hardware interrupt */ 1581 if (irqptr->airq_mps_intr_index == RESERVE_INDEX) 1582 return (PSM_SUCCESS); 1583 1584 if (!apic_picinit_called) { 1585 /* 1586 * Clear irq_struct. If two devices shared an intpt 1587 * line & 1 unloaded before picinit, we are hosed. But, then 1588 * we hope the machine will ... 1589 */ 1590 irqptr->airq_mps_intr_index = FREE_INDEX; 1591 irqptr->airq_temp_cpu = IRQ_UNINIT; 1592 apic_free_vector(irqptr->airq_vector); 1593 return (PSM_SUCCESS); 1594 } 1595 /* 1596 * Downgrade vector to new max_ipl if needed.If we cannot allocate, 1597 * use old IPL. Not very elegant, but then we hope ... 1598 */ 1599 if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL) && 1600 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1601 apic_irq_t *irqp; 1602 if (vector = apic_allocate_vector(max_ipl, irqno, 1)) { 1603 apic_mark_vector(irqheadptr->airq_vector, vector); 1604 irqp = irqheadptr; 1605 while (irqp) { 1606 irqp->airq_vector = vector; 1607 irqp->airq_ipl = (uchar_t)max_ipl; 1608 if (irqp->airq_temp_cpu != IRQ_UNINIT) { 1609 apic_record_rdt_entry(irqp, irqindex); 1610 1611 iflag = intr_clear(); 1612 lock_set(&apic_ioapic_lock); 1613 1614 (void) apic_setup_io_intr(irqp, 1615 irqindex, B_FALSE); 1616 1617 lock_clear(&apic_ioapic_lock); 1618 intr_restore(iflag); 1619 } 1620 irqp = irqp->airq_next; 1621 } 1622 } 1623 1624 } else if (irqptr->airq_ipl != max_ipl && 1625 max_ipl != PSM_INVALID_IPL && 1626 ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1627 1628 /* 1629 * We cannot downgrade the IPL of the vector below the vector's 1630 * hardware priority. If we did, it would be possible for a 1631 * higher-priority hardware vector to interrupt a CPU running at an IPL 1632 * lower than the hardware priority of the interrupting vector (but 1633 * higher than the soft IPL of this IRQ). When this happens, we would 1634 * then try to drop the IPL BELOW what it was (effectively dropping 1635 * below base_spl) which would be potentially catastrophic. 1636 * 1637 * (e.g. Suppose the hardware vector associated with this IRQ is 0x40 1638 * (hardware IPL of 4). Further assume that the old IPL of this IRQ 1639 * was 4, but the new IPL is 1. If we forced vector 0x40 to result in 1640 * an IPL of 1, it would be possible for the processor to be executing 1641 * at IPL 3 and for an interrupt to come in on vector 0x40, interrupting 1642 * the currently-executing ISR. When apic_intr_enter consults 1643 * apic_irqs[], it will return 1, bringing the IPL of the CPU down to 1 1644 * so even though the processor was running at IPL 4, an IPL 1 1645 * interrupt will have interrupted it, which must not happen)). 1646 * 1647 * Effectively, this means that the hardware priority corresponding to 1648 * the IRQ's IPL (in apic_ipls[]) cannot be lower than the vector's 1649 * hardware priority. 1650 * 1651 * (In the above example, then, after removal of the IPL 4 device's 1652 * interrupt handler, the new IPL will continue to be 4 because the 1653 * hardware priority that IPL 1 implies is lower than the hardware 1654 * priority of the vector used.) 1655 */ 1656 /* apic_ipls is indexed by vector, starting at APIC_BASE_VECT */ 1657 const int apic_ipls_index = irqptr->airq_vector - 1658 APIC_BASE_VECT; 1659 const int vect_inherent_hwpri = irqptr->airq_vector >> 1660 APIC_IPL_SHIFT; 1661 1662 /* 1663 * If there are still devices using this IRQ, determine the 1664 * new ipl to use. 1665 */ 1666 if (irqptr->airq_share) { 1667 int vect_desired_hwpri, hwpri; 1668 1669 ASSERT(max_ipl < MAXIPL); 1670 vect_desired_hwpri = apic_ipltopri[max_ipl] >> 1671 APIC_IPL_SHIFT; 1672 1673 /* 1674 * If the desired IPL's hardware priority is lower 1675 * than that of the vector, use the hardware priority 1676 * of the vector to determine the new IPL. 1677 */ 1678 hwpri = (vect_desired_hwpri < vect_inherent_hwpri) ? 1679 vect_inherent_hwpri : vect_desired_hwpri; 1680 1681 /* 1682 * Now, to get the right index for apic_vectortoipl, 1683 * we need to subtract APIC_BASE_VECT from the 1684 * hardware-vector-equivalent (in hwpri). Since hwpri 1685 * is already shifted, we shift APIC_BASE_VECT before 1686 * doing the subtraction. 1687 */ 1688 hwpri -= (APIC_BASE_VECT >> APIC_IPL_SHIFT); 1689 1690 ASSERT(hwpri >= 0); 1691 ASSERT(hwpri < MAXIPL); 1692 max_ipl = apic_vectortoipl[hwpri]; 1693 apic_ipls[apic_ipls_index] = max_ipl; 1694 1695 irqp = irqheadptr; 1696 while (irqp) { 1697 irqp->airq_ipl = (uchar_t)max_ipl; 1698 irqp = irqp->airq_next; 1699 } 1700 } else { 1701 /* 1702 * No more devices on this IRQ, so reset this vector's 1703 * element in apic_ipls to the original IPL for this 1704 * vector 1705 */ 1706 apic_ipls[apic_ipls_index] = 1707 apic_vectortoipl[vect_inherent_hwpri]; 1708 } 1709 } 1710 1711 if (irqptr->airq_share) 1712 return (PSM_SUCCESS); 1713 1714 iflag = intr_clear(); 1715 lock_set(&apic_ioapic_lock); 1716 1717 if (irqptr->airq_mps_intr_index == MSI_INDEX) { 1718 /* 1719 * Disable the MSI vector 1720 * Make sure we only disable on the last 1721 * of the multi-MSI support 1722 */ 1723 if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) { 1724 apic_pci_msi_disable_mode(irqptr->airq_dip, 1725 DDI_INTR_TYPE_MSI); 1726 } 1727 } else if (irqptr->airq_mps_intr_index == MSIX_INDEX) { 1728 /* 1729 * Disable the MSI-X vector 1730 * needs to clear its mask and addr/data for each MSI-X 1731 */ 1732 apic_pci_msi_unconfigure(irqptr->airq_dip, DDI_INTR_TYPE_MSIX, 1733 irqptr->airq_origirq); 1734 /* 1735 * Make sure we only disable on the last MSI-X 1736 */ 1737 if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) { 1738 apic_pci_msi_disable_mode(irqptr->airq_dip, 1739 DDI_INTR_TYPE_MSIX); 1740 } 1741 } else { 1742 /* 1743 * The assumption here is that this is safe, even for 1744 * systems with IOAPICs that suffer from the hardware 1745 * erratum because all devices have been quiesced before 1746 * they unregister their interrupt handlers. If that 1747 * assumption turns out to be false, this mask operation 1748 * can induce the same erratum result we're trying to 1749 * avoid. 1750 */ 1751 ioapic_ix = irqptr->airq_ioapicindex; 1752 intin = irqptr->airq_intin_no; 1753 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin, AV_MASK); 1754 } 1755 1756 #if !defined(__xpv) 1757 apic_vt_ops->apic_intrr_free_entry(irqptr); 1758 #endif 1759 1760 if (max_ipl == PSM_INVALID_IPL) { 1761 ASSERT(irqheadptr == irqptr); 1762 bind_cpu = irqptr->airq_temp_cpu; 1763 if (((uint32_t)bind_cpu != IRQ_UNBOUND) && 1764 ((uint32_t)bind_cpu != IRQ_UNINIT)) { 1765 ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc); 1766 if (bind_cpu & IRQ_USER_BOUND) { 1767 /* If hardbound, temp_cpu == cpu */ 1768 bind_cpu &= ~IRQ_USER_BOUND; 1769 apic_cpus[bind_cpu].aci_bound--; 1770 } else 1771 apic_cpus[bind_cpu].aci_temp_bound--; 1772 } 1773 irqptr->airq_temp_cpu = IRQ_UNINIT; 1774 irqptr->airq_mps_intr_index = FREE_INDEX; 1775 lock_clear(&apic_ioapic_lock); 1776 intr_restore(iflag); 1777 apic_free_vector(irqptr->airq_vector); 1778 return (PSM_SUCCESS); 1779 } 1780 lock_clear(&apic_ioapic_lock); 1781 intr_restore(iflag); 1782 1783 mutex_enter(&airq_mutex); 1784 if ((irqptr == apic_irq_table[irqindex])) { 1785 apic_irq_t *oldirqptr; 1786 /* Move valid irq entry to the head */ 1787 irqheadptr = oldirqptr = irqptr; 1788 irqptr = irqptr->airq_next; 1789 ASSERT(irqptr); 1790 while (irqptr) { 1791 if (irqptr->airq_mps_intr_index != FREE_INDEX) 1792 break; 1793 oldirqptr = irqptr; 1794 irqptr = irqptr->airq_next; 1795 } 1796 /* remove all invalid ones from the beginning */ 1797 apic_irq_table[irqindex] = irqptr; 1798 /* 1799 * and link them back after the head. The invalid ones 1800 * begin with irqheadptr and end at oldirqptr 1801 */ 1802 oldirqptr->airq_next = irqptr->airq_next; 1803 irqptr->airq_next = irqheadptr; 1804 } 1805 mutex_exit(&airq_mutex); 1806 1807 irqptr->airq_temp_cpu = IRQ_UNINIT; 1808 irqptr->airq_mps_intr_index = FREE_INDEX; 1809 1810 return (PSM_SUCCESS); 1811 } 1812 1813 /* 1814 * apic_introp_xlate() replaces apic_translate_irq() and is 1815 * called only from apic_intr_ops(). With the new ADII framework, 1816 * the priority can no longer be retrieved through i_ddi_get_intrspec(). 1817 * It has to be passed in from the caller. 1818 */ 1819 int 1820 apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type) 1821 { 1822 char dev_type[16]; 1823 int dev_len, pci_irq, newirq, bustype, devid, busid, i; 1824 int irqno = ispec->intrspec_vec; 1825 ddi_acc_handle_t cfg_handle; 1826 uchar_t ipin; 1827 struct apic_io_intr *intrp; 1828 iflag_t intr_flag; 1829 ACPI_SUBTABLE_HEADER *hp; 1830 ACPI_MADT_INTERRUPT_OVERRIDE *isop; 1831 apic_irq_t *airqp; 1832 int parent_is_pci_or_pciex = 0; 1833 int child_is_pciex = 0; 1834 1835 DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s " 1836 "type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type, 1837 irqno)); 1838 1839 dev_len = sizeof (dev_type); 1840 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip), 1841 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type, 1842 &dev_len) == DDI_PROP_SUCCESS) { 1843 if ((strcmp(dev_type, "pci") == 0) || 1844 (strcmp(dev_type, "pciex") == 0)) 1845 parent_is_pci_or_pciex = 1; 1846 } 1847 1848 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 1849 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type, 1850 &dev_len) == DDI_PROP_SUCCESS) { 1851 if (strstr(dev_type, "pciex")) 1852 child_is_pciex = 1; 1853 } 1854 1855 1856 if (DDI_INTR_IS_MSI_OR_MSIX(type)) { 1857 if ((airqp = apic_find_irq(dip, ispec, type)) != NULL) { 1858 airqp->airq_iflag.bustype = 1859 child_is_pciex ? BUS_PCIE : BUS_PCI; 1860 return (apic_vector_to_irq[airqp->airq_vector]); 1861 } 1862 return (apic_setup_irq_table(dip, irqno, NULL, ispec, 1863 NULL, type)); 1864 } 1865 1866 bustype = 0; 1867 1868 /* check if we have already translated this irq */ 1869 mutex_enter(&airq_mutex); 1870 newirq = apic_min_device_irq; 1871 for (; newirq <= apic_max_device_irq; newirq++) { 1872 airqp = apic_irq_table[newirq]; 1873 while (airqp) { 1874 if ((airqp->airq_dip == dip) && 1875 (airqp->airq_origirq == irqno) && 1876 (airqp->airq_mps_intr_index != FREE_INDEX)) { 1877 1878 mutex_exit(&airq_mutex); 1879 return (VIRTIRQ(newirq, airqp->airq_share_id)); 1880 } 1881 airqp = airqp->airq_next; 1882 } 1883 } 1884 mutex_exit(&airq_mutex); 1885 1886 if (apic_defconf) 1887 goto defconf; 1888 1889 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) 1890 goto nonpci; 1891 1892 if (parent_is_pci_or_pciex) { 1893 /* pci device */ 1894 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0) 1895 goto nonpci; 1896 if (busid == 0 && apic_pci_bus_total == 1) 1897 busid = (int)apic_single_pci_busid; 1898 1899 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS) 1900 goto nonpci; 1901 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA; 1902 pci_config_teardown(&cfg_handle); 1903 if (apic_enable_acpi && !apic_use_acpi_madt_only) { 1904 if (apic_acpi_translate_pci_irq(dip, busid, devid, 1905 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS) 1906 goto nonpci; 1907 1908 intr_flag.bustype = child_is_pciex ? BUS_PCIE : BUS_PCI; 1909 if ((newirq = apic_setup_irq_table(dip, pci_irq, NULL, 1910 ispec, &intr_flag, type)) == -1) 1911 goto nonpci; 1912 return (newirq); 1913 } else { 1914 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3); 1915 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) 1916 == NULL) { 1917 if ((pci_irq = apic_handle_pci_pci_bridge(dip, 1918 devid, ipin, &intrp)) == -1) 1919 goto nonpci; 1920 } 1921 if ((newirq = apic_setup_irq_table(dip, pci_irq, intrp, 1922 ispec, NULL, type)) == -1) 1923 goto nonpci; 1924 return (newirq); 1925 } 1926 } else if (strcmp(dev_type, "isa") == 0) 1927 bustype = BUS_ISA; 1928 else if (strcmp(dev_type, "eisa") == 0) 1929 bustype = BUS_EISA; 1930 1931 nonpci: 1932 if (apic_enable_acpi && !apic_use_acpi_madt_only) { 1933 /* search iso entries first */ 1934 if (acpi_iso_cnt != 0) { 1935 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop; 1936 i = 0; 1937 while (i < acpi_iso_cnt) { 1938 if (hp->Type == 1939 ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) { 1940 isop = 1941 (ACPI_MADT_INTERRUPT_OVERRIDE *) hp; 1942 if (isop->Bus == 0 && 1943 isop->SourceIrq == irqno) { 1944 newirq = isop->GlobalIrq; 1945 intr_flag.intr_po = 1946 isop->IntiFlags & 1947 ACPI_MADT_POLARITY_MASK; 1948 intr_flag.intr_el = 1949 (isop->IntiFlags & 1950 ACPI_MADT_TRIGGER_MASK) 1951 >> 2; 1952 intr_flag.bustype = BUS_ISA; 1953 1954 return (apic_setup_irq_table( 1955 dip, newirq, NULL, ispec, 1956 &intr_flag, type)); 1957 1958 } 1959 i++; 1960 } 1961 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) + 1962 hp->Length); 1963 } 1964 } 1965 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH; 1966 intr_flag.intr_el = INTR_EL_EDGE; 1967 intr_flag.bustype = BUS_ISA; 1968 return (apic_setup_irq_table(dip, irqno, NULL, ispec, 1969 &intr_flag, type)); 1970 } else { 1971 if (bustype == 0) 1972 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA; 1973 for (i = 0; i < 2; i++) { 1974 if (((busid = apic_find_bus_id(bustype)) != -1) && 1975 ((intrp = apic_find_io_intr_w_busid(irqno, busid)) 1976 != NULL)) { 1977 if ((newirq = apic_setup_irq_table(dip, irqno, 1978 intrp, ispec, NULL, type)) != -1) { 1979 return (newirq); 1980 } 1981 goto defconf; 1982 } 1983 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA; 1984 } 1985 } 1986 1987 /* MPS default configuration */ 1988 defconf: 1989 newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type); 1990 if (newirq == -1) 1991 return (newirq); 1992 ASSERT(IRQINDEX(newirq) == irqno); 1993 ASSERT(apic_irq_table[irqno]); 1994 return (newirq); 1995 } 1996 1997 1998 1999 2000 2001 2002 /* 2003 * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge 2004 * needs special handling. We may need to chase up the device tree, 2005 * using the PCI-PCI Bridge specification's "rotating IPIN assumptions", 2006 * to find the IPIN at the root bus that relates to the IPIN on the 2007 * subsidiary bus (for ACPI or MP). We may, however, have an entry 2008 * in the MP table or the ACPI namespace for this device itself. 2009 * We handle both cases in the search below. 2010 */ 2011 /* this is the non-acpi version */ 2012 static int 2013 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin, 2014 struct apic_io_intr **intrp) 2015 { 2016 dev_info_t *dipp, *dip; 2017 int pci_irq; 2018 ddi_acc_handle_t cfg_handle; 2019 int bridge_devno, bridge_bus; 2020 int ipin; 2021 2022 dip = idip; 2023 2024 /*CONSTCOND*/ 2025 while (1) { 2026 if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) || 2027 (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS)) 2028 return (-1); 2029 if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) == 2030 PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle, 2031 PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) { 2032 pci_config_teardown(&cfg_handle); 2033 if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno, 2034 NULL) != 0) 2035 return (-1); 2036 /* 2037 * This is the rotating scheme documented in the 2038 * PCI-to-PCI spec. If the PCI-to-PCI bridge is 2039 * behind another PCI-to-PCI bridge, then it needs 2040 * to keep ascending until an interrupt entry is 2041 * found or the root is reached. 2042 */ 2043 ipin = (child_devno + child_ipin) % PCI_INTD; 2044 if (bridge_bus == 0 && apic_pci_bus_total == 1) 2045 bridge_bus = (int)apic_single_pci_busid; 2046 pci_irq = ((bridge_devno & 0x1f) << 2) | 2047 (ipin & 0x3); 2048 if ((*intrp = apic_find_io_intr_w_busid(pci_irq, 2049 bridge_bus)) != NULL) { 2050 return (pci_irq); 2051 } 2052 dip = dipp; 2053 child_devno = bridge_devno; 2054 child_ipin = ipin; 2055 } else { 2056 pci_config_teardown(&cfg_handle); 2057 return (-1); 2058 } 2059 } 2060 /*LINTED: function will not fall off the bottom */ 2061 } 2062 2063 2064 2065 2066 static uchar_t 2067 acpi_find_ioapic(int irq) 2068 { 2069 int i; 2070 2071 for (i = 0; i < apic_io_max; i++) { 2072 if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i]) 2073 return (i); 2074 } 2075 return (0xFF); /* shouldn't happen */ 2076 } 2077 2078 /* 2079 * See if two irqs are compatible for sharing a vector. 2080 * Currently we only support sharing of PCI devices. 2081 */ 2082 static int 2083 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2) 2084 { 2085 uint_t level1, po1; 2086 uint_t level2, po2; 2087 2088 /* Assume active high by default */ 2089 po1 = 0; 2090 po2 = 0; 2091 2092 if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI) 2093 return (0); 2094 2095 if (iflag1.intr_el == INTR_EL_CONFORM) 2096 level1 = AV_LEVEL; 2097 else 2098 level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 2099 2100 if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) || 2101 (iflag1.intr_po == INTR_PO_CONFORM))) 2102 po1 = AV_ACTIVE_LOW; 2103 2104 if (iflag2.intr_el == INTR_EL_CONFORM) 2105 level2 = AV_LEVEL; 2106 else 2107 level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 2108 2109 if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) || 2110 (iflag2.intr_po == INTR_PO_CONFORM))) 2111 po2 = AV_ACTIVE_LOW; 2112 2113 if ((level1 == level2) && (po1 == po2)) 2114 return (1); 2115 2116 return (0); 2117 } 2118 2119 /* 2120 * Attempt to share vector with someone else 2121 */ 2122 static int 2123 apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl, 2124 uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp) 2125 { 2126 #ifdef DEBUG 2127 apic_irq_t *tmpirqp = NULL; 2128 #endif /* DEBUG */ 2129 apic_irq_t *irqptr, dummyirq; 2130 int newirq, chosen_irq = -1, share = 127; 2131 int lowest, highest, i; 2132 uchar_t share_id; 2133 2134 DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x " 2135 "intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl)); 2136 2137 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; 2138 lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL; 2139 2140 if (highest < lowest) /* Both ipl and ipl-1 map to same pri */ 2141 lowest -= APIC_VECTOR_PER_IPL; 2142 dummyirq.airq_mps_intr_index = intr_index; 2143 dummyirq.airq_ioapicindex = ioapicindex; 2144 dummyirq.airq_intin_no = ipin; 2145 if (intr_flagp) 2146 dummyirq.airq_iflag = *intr_flagp; 2147 apic_record_rdt_entry(&dummyirq, irqno); 2148 for (i = lowest; i <= highest; i++) { 2149 newirq = apic_vector_to_irq[i]; 2150 if (newirq == APIC_RESV_IRQ) 2151 continue; 2152 irqptr = apic_irq_table[newirq]; 2153 2154 if ((dummyirq.airq_rdt_entry & 0xFF00) != 2155 (irqptr->airq_rdt_entry & 0xFF00)) 2156 /* not compatible */ 2157 continue; 2158 2159 if (irqptr->airq_share < share) { 2160 share = irqptr->airq_share; 2161 chosen_irq = newirq; 2162 } 2163 } 2164 if (chosen_irq != -1) { 2165 /* 2166 * Assign a share id which is free or which is larger 2167 * than the largest one. 2168 */ 2169 share_id = 1; 2170 mutex_enter(&airq_mutex); 2171 irqptr = apic_irq_table[chosen_irq]; 2172 while (irqptr) { 2173 if (irqptr->airq_mps_intr_index == FREE_INDEX) { 2174 share_id = irqptr->airq_share_id; 2175 break; 2176 } 2177 if (share_id <= irqptr->airq_share_id) 2178 share_id = irqptr->airq_share_id + 1; 2179 #ifdef DEBUG 2180 tmpirqp = irqptr; 2181 #endif /* DEBUG */ 2182 irqptr = irqptr->airq_next; 2183 } 2184 if (!irqptr) { 2185 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); 2186 irqptr->airq_temp_cpu = IRQ_UNINIT; 2187 irqptr->airq_next = 2188 apic_irq_table[chosen_irq]->airq_next; 2189 apic_irq_table[chosen_irq]->airq_next = irqptr; 2190 #ifdef DEBUG 2191 tmpirqp = apic_irq_table[chosen_irq]; 2192 #endif /* DEBUG */ 2193 } 2194 irqptr->airq_mps_intr_index = intr_index; 2195 irqptr->airq_ioapicindex = ioapicindex; 2196 irqptr->airq_intin_no = ipin; 2197 if (intr_flagp) 2198 irqptr->airq_iflag = *intr_flagp; 2199 irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector; 2200 irqptr->airq_share_id = share_id; 2201 apic_record_rdt_entry(irqptr, irqno); 2202 *irqptrp = irqptr; 2203 #ifdef DEBUG 2204 /* shuffle the pointers to test apic_delspl path */ 2205 if (tmpirqp) { 2206 tmpirqp->airq_next = irqptr->airq_next; 2207 irqptr->airq_next = apic_irq_table[chosen_irq]; 2208 apic_irq_table[chosen_irq] = irqptr; 2209 } 2210 #endif /* DEBUG */ 2211 mutex_exit(&airq_mutex); 2212 return (VIRTIRQ(chosen_irq, share_id)); 2213 } 2214 return (-1); 2215 } 2216 2217 /* 2218 * 2219 */ 2220 static int 2221 apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp, 2222 struct intrspec *ispec, iflag_t *intr_flagp, int type) 2223 { 2224 int origirq = ispec->intrspec_vec; 2225 uchar_t ipl = ispec->intrspec_pri; 2226 int newirq, intr_index; 2227 uchar_t ipin, ioapic, ioapicindex, vector; 2228 apic_irq_t *irqptr; 2229 major_t major; 2230 dev_info_t *sdip; 2231 2232 DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d " 2233 "irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq)); 2234 2235 ASSERT(ispec != NULL); 2236 2237 major = (dip != NULL) ? ddi_driver_major(dip) : 0; 2238 2239 if (DDI_INTR_IS_MSI_OR_MSIX(type)) { 2240 /* MSI/X doesn't need to setup ioapic stuffs */ 2241 ioapicindex = 0xff; 2242 ioapic = 0xff; 2243 ipin = (uchar_t)0xff; 2244 intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX : 2245 MSIX_INDEX; 2246 mutex_enter(&airq_mutex); 2247 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == -1) { 2248 mutex_exit(&airq_mutex); 2249 /* need an irq for MSI/X to index into autovect[] */ 2250 cmn_err(CE_WARN, "No interrupt irq: %s instance %d", 2251 ddi_get_name(dip), ddi_get_instance(dip)); 2252 return (-1); 2253 } 2254 mutex_exit(&airq_mutex); 2255 2256 } else if (intrp != NULL) { 2257 intr_index = (int)(intrp - apic_io_intrp); 2258 ioapic = intrp->intr_destid; 2259 ipin = intrp->intr_destintin; 2260 /* Find ioapicindex. If destid was ALL, we will exit with 0. */ 2261 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--) 2262 if (apic_io_id[ioapicindex] == ioapic) 2263 break; 2264 ASSERT((ioapic == apic_io_id[ioapicindex]) || 2265 (ioapic == INTR_ALL_APIC)); 2266 2267 /* check whether this intin# has been used by another irqno */ 2268 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) { 2269 return (newirq); 2270 } 2271 2272 } else if (intr_flagp != NULL) { 2273 /* ACPI case */ 2274 intr_index = ACPI_INDEX; 2275 ioapicindex = acpi_find_ioapic(irqno); 2276 ASSERT(ioapicindex != 0xFF); 2277 ioapic = apic_io_id[ioapicindex]; 2278 ipin = irqno - apic_io_vectbase[ioapicindex]; 2279 if (apic_irq_table[irqno] && 2280 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) { 2281 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin && 2282 apic_irq_table[irqno]->airq_ioapicindex == 2283 ioapicindex); 2284 return (irqno); 2285 } 2286 2287 } else { 2288 /* default configuration */ 2289 ioapicindex = 0; 2290 ioapic = apic_io_id[ioapicindex]; 2291 ipin = (uchar_t)irqno; 2292 intr_index = DEFAULT_INDEX; 2293 } 2294 2295 if (ispec == NULL) { 2296 APIC_VERBOSE_IOAPIC((CE_WARN, "No intrspec for irqno = %x\n", 2297 irqno)); 2298 } else if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) { 2299 if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index, 2300 ipl, ioapicindex, ipin, &irqptr)) != -1) { 2301 irqptr->airq_ipl = ipl; 2302 irqptr->airq_origirq = (uchar_t)origirq; 2303 irqptr->airq_dip = dip; 2304 irqptr->airq_major = major; 2305 sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip; 2306 /* This is OK to do really */ 2307 if (sdip == NULL) { 2308 cmn_err(CE_WARN, "Sharing vectors: %s" 2309 " instance %d and SCI", 2310 ddi_get_name(dip), ddi_get_instance(dip)); 2311 } else { 2312 cmn_err(CE_WARN, "Sharing vectors: %s" 2313 " instance %d and %s instance %d", 2314 ddi_get_name(sdip), ddi_get_instance(sdip), 2315 ddi_get_name(dip), ddi_get_instance(dip)); 2316 } 2317 return (newirq); 2318 } 2319 /* try high priority allocation now that share has failed */ 2320 if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) { 2321 cmn_err(CE_WARN, "No interrupt vector: %s instance %d", 2322 ddi_get_name(dip), ddi_get_instance(dip)); 2323 return (-1); 2324 } 2325 } 2326 2327 mutex_enter(&airq_mutex); 2328 if (apic_irq_table[irqno] == NULL) { 2329 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); 2330 irqptr->airq_temp_cpu = IRQ_UNINIT; 2331 apic_irq_table[irqno] = irqptr; 2332 } else { 2333 irqptr = apic_irq_table[irqno]; 2334 if (irqptr->airq_mps_intr_index != FREE_INDEX) { 2335 /* 2336 * The slot is used by another irqno, so allocate 2337 * a free irqno for this interrupt 2338 */ 2339 newirq = apic_allocate_irq(apic_first_avail_irq); 2340 if (newirq == -1) { 2341 mutex_exit(&airq_mutex); 2342 return (-1); 2343 } 2344 irqno = newirq; 2345 irqptr = apic_irq_table[irqno]; 2346 if (irqptr == NULL) { 2347 irqptr = kmem_zalloc(sizeof (apic_irq_t), 2348 KM_SLEEP); 2349 irqptr->airq_temp_cpu = IRQ_UNINIT; 2350 apic_irq_table[irqno] = irqptr; 2351 } 2352 vector = apic_modify_vector(vector, newirq); 2353 } 2354 } 2355 apic_max_device_irq = max(irqno, apic_max_device_irq); 2356 apic_min_device_irq = min(irqno, apic_min_device_irq); 2357 mutex_exit(&airq_mutex); 2358 irqptr->airq_ioapicindex = ioapicindex; 2359 irqptr->airq_intin_no = ipin; 2360 irqptr->airq_ipl = ipl; 2361 irqptr->airq_vector = vector; 2362 irqptr->airq_origirq = (uchar_t)origirq; 2363 irqptr->airq_share_id = 0; 2364 irqptr->airq_mps_intr_index = (short)intr_index; 2365 irqptr->airq_dip = dip; 2366 irqptr->airq_major = major; 2367 irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin); 2368 if (intr_flagp) 2369 irqptr->airq_iflag = *intr_flagp; 2370 2371 if (!DDI_INTR_IS_MSI_OR_MSIX(type)) { 2372 /* setup I/O APIC entry for non-MSI/X interrupts */ 2373 apic_record_rdt_entry(irqptr, irqno); 2374 } 2375 return (irqno); 2376 } 2377 2378 /* 2379 * return the cpu to which this intr should be bound. 2380 * Check properties or any other mechanism to see if user wants it 2381 * bound to a specific CPU. If so, return the cpu id with high bit set. 2382 * If not, use the policy to choose a cpu and return the id. 2383 */ 2384 uint32_t 2385 apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin) 2386 { 2387 int instance, instno, prop_len, bind_cpu, count; 2388 uint_t i, rc; 2389 uint32_t cpu; 2390 major_t major; 2391 char *name, *drv_name, *prop_val, *cptr; 2392 char prop_name[32]; 2393 2394 2395 if (apic_intr_policy == INTR_LOWEST_PRIORITY) 2396 return (IRQ_UNBOUND); 2397 2398 if (apic_nproc == 1) 2399 return (0); 2400 2401 drv_name = NULL; 2402 rc = DDI_PROP_NOT_FOUND; 2403 major = (major_t)-1; 2404 if (dip != NULL) { 2405 name = ddi_get_name(dip); 2406 major = ddi_name_to_major(name); 2407 drv_name = ddi_major_to_name(major); 2408 instance = ddi_get_instance(dip); 2409 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) { 2410 i = apic_min_device_irq; 2411 for (; i <= apic_max_device_irq; i++) { 2412 2413 if ((i == irq) || (apic_irq_table[i] == NULL) || 2414 (apic_irq_table[i]->airq_mps_intr_index 2415 == FREE_INDEX)) 2416 continue; 2417 2418 if ((apic_irq_table[i]->airq_major == major) && 2419 (!(apic_irq_table[i]->airq_cpu & 2420 IRQ_USER_BOUND))) { 2421 2422 cpu = apic_irq_table[i]->airq_cpu; 2423 2424 cmn_err(CE_CONT, 2425 "!%s: %s (%s) instance #%d " 2426 "irq 0x%x vector 0x%x ioapic 0x%x " 2427 "intin 0x%x is bound to cpu %d\n", 2428 psm_name, 2429 name, drv_name, instance, irq, 2430 apic_irq_table[irq]->airq_vector, 2431 ioapicid, intin, cpu); 2432 return (cpu); 2433 } 2434 } 2435 } 2436 /* 2437 * search for "drvname"_intpt_bind_cpus property first, the 2438 * syntax of the property should be "a[,b,c,...]" where 2439 * instance 0 binds to cpu a, instance 1 binds to cpu b, 2440 * instance 3 binds to cpu c... 2441 * ddi_getlongprop() will search /option first, then / 2442 * if "drvname"_intpt_bind_cpus doesn't exist, then find 2443 * intpt_bind_cpus property. The syntax is the same, and 2444 * it applies to all the devices if its "drvname" specific 2445 * property doesn't exist 2446 */ 2447 (void) strcpy(prop_name, drv_name); 2448 (void) strcat(prop_name, "_intpt_bind_cpus"); 2449 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name, 2450 (caddr_t)&prop_val, &prop_len); 2451 if (rc != DDI_PROP_SUCCESS) { 2452 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, 2453 "intpt_bind_cpus", (caddr_t)&prop_val, &prop_len); 2454 } 2455 } 2456 if (rc == DDI_PROP_SUCCESS) { 2457 for (i = count = 0; i < (prop_len - 1); i++) 2458 if (prop_val[i] == ',') 2459 count++; 2460 if (prop_val[i-1] != ',') 2461 count++; 2462 /* 2463 * if somehow the binding instances defined in the 2464 * property are not enough for this instno., then 2465 * reuse the pattern for the next instance until 2466 * it reaches the requested instno 2467 */ 2468 instno = instance % count; 2469 i = 0; 2470 cptr = prop_val; 2471 while (i < instno) 2472 if (*cptr++ == ',') 2473 i++; 2474 bind_cpu = stoi(&cptr); 2475 kmem_free(prop_val, prop_len); 2476 /* if specific cpu is bogus, then default to cpu 0 */ 2477 if (bind_cpu >= apic_nproc) { 2478 cmn_err(CE_WARN, "%s: %s=%s: CPU %d not present", 2479 psm_name, prop_name, prop_val, bind_cpu); 2480 bind_cpu = 0; 2481 } else { 2482 /* indicate that we are bound at user request */ 2483 bind_cpu |= IRQ_USER_BOUND; 2484 } 2485 /* 2486 * no need to check apic_cpus[].aci_status, if specific cpu is 2487 * not up, then post_cpu_start will handle it. 2488 */ 2489 } else { 2490 bind_cpu = apic_next_bind_cpu++; 2491 if (bind_cpu >= apic_nproc) { 2492 apic_next_bind_cpu = 1; 2493 bind_cpu = 0; 2494 } 2495 } 2496 if (drv_name != NULL) 2497 cmn_err(CE_CONT, "!%s: %s (%s) instance %d irq 0x%x " 2498 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n", 2499 psm_name, name, drv_name, instance, irq, 2500 apic_irq_table[irq]->airq_vector, ioapicid, intin, 2501 bind_cpu & ~IRQ_USER_BOUND); 2502 else 2503 cmn_err(CE_CONT, "!%s: irq 0x%x " 2504 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n", 2505 psm_name, irq, apic_irq_table[irq]->airq_vector, ioapicid, 2506 intin, bind_cpu & ~IRQ_USER_BOUND); 2507 2508 return ((uint32_t)bind_cpu); 2509 } 2510 2511 static struct apic_io_intr * 2512 apic_find_io_intr_w_busid(int irqno, int busid) 2513 { 2514 struct apic_io_intr *intrp; 2515 2516 /* 2517 * It can have more than 1 entry with same source bus IRQ, 2518 * but unique with the source bus id 2519 */ 2520 intrp = apic_io_intrp; 2521 if (intrp != NULL) { 2522 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 2523 if (intrp->intr_irq == irqno && 2524 intrp->intr_busid == busid && 2525 intrp->intr_type == IO_INTR_INT) 2526 return (intrp); 2527 intrp++; 2528 } 2529 } 2530 APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:" 2531 "busid %x:%x\n", irqno, busid)); 2532 return ((struct apic_io_intr *)NULL); 2533 } 2534 2535 2536 struct mps_bus_info { 2537 char *bus_name; 2538 int bus_id; 2539 } bus_info_array[] = { 2540 "ISA ", BUS_ISA, 2541 "PCI ", BUS_PCI, 2542 "EISA ", BUS_EISA, 2543 "XPRESS", BUS_XPRESS, 2544 "PCMCIA", BUS_PCMCIA, 2545 "VL ", BUS_VL, 2546 "CBUS ", BUS_CBUS, 2547 "CBUSII", BUS_CBUSII, 2548 "FUTURE", BUS_FUTURE, 2549 "INTERN", BUS_INTERN, 2550 "MBI ", BUS_MBI, 2551 "MBII ", BUS_MBII, 2552 "MPI ", BUS_MPI, 2553 "MPSA ", BUS_MPSA, 2554 "NUBUS ", BUS_NUBUS, 2555 "TC ", BUS_TC, 2556 "VME ", BUS_VME, 2557 "PCI-E ", BUS_PCIE 2558 }; 2559 2560 static int 2561 apic_find_bus_type(char *bus) 2562 { 2563 int i = 0; 2564 2565 for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++) 2566 if (strncmp(bus, bus_info_array[i].bus_name, 2567 strlen(bus_info_array[i].bus_name)) == 0) 2568 return (bus_info_array[i].bus_id); 2569 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus)); 2570 return (0); 2571 } 2572 2573 static int 2574 apic_find_bus(int busid) 2575 { 2576 struct apic_bus *busp; 2577 2578 busp = apic_busp; 2579 while (busp->bus_entry == APIC_BUS_ENTRY) { 2580 if (busp->bus_id == busid) 2581 return (apic_find_bus_type((char *)&busp->bus_str1)); 2582 busp++; 2583 } 2584 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid)); 2585 return (0); 2586 } 2587 2588 static int 2589 apic_find_bus_id(int bustype) 2590 { 2591 struct apic_bus *busp; 2592 2593 busp = apic_busp; 2594 while (busp->bus_entry == APIC_BUS_ENTRY) { 2595 if (apic_find_bus_type((char *)&busp->bus_str1) == bustype) 2596 return (busp->bus_id); 2597 busp++; 2598 } 2599 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x", 2600 bustype)); 2601 return (-1); 2602 } 2603 2604 /* 2605 * Check if a particular irq need to be reserved for any io_intr 2606 */ 2607 static struct apic_io_intr * 2608 apic_find_io_intr(int irqno) 2609 { 2610 struct apic_io_intr *intrp; 2611 2612 intrp = apic_io_intrp; 2613 if (intrp != NULL) { 2614 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 2615 if (intrp->intr_irq == irqno && 2616 intrp->intr_type == IO_INTR_INT) 2617 return (intrp); 2618 intrp++; 2619 } 2620 } 2621 return ((struct apic_io_intr *)NULL); 2622 } 2623 2624 /* 2625 * Check if the given ioapicindex intin combination has already been assigned 2626 * an irq. If so return irqno. Else -1 2627 */ 2628 static int 2629 apic_find_intin(uchar_t ioapic, uchar_t intin) 2630 { 2631 apic_irq_t *irqptr; 2632 int i; 2633 2634 /* find ioapic and intin in the apic_irq_table[] and return the index */ 2635 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 2636 irqptr = apic_irq_table[i]; 2637 while (irqptr) { 2638 if ((irqptr->airq_mps_intr_index >= 0) && 2639 (irqptr->airq_intin_no == intin) && 2640 (irqptr->airq_ioapicindex == ioapic)) { 2641 APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq " 2642 "entry for ioapic:intin %x:%x " 2643 "shared interrupts ?", ioapic, intin)); 2644 return (i); 2645 } 2646 irqptr = irqptr->airq_next; 2647 } 2648 } 2649 return (-1); 2650 } 2651 2652 int 2653 apic_allocate_irq(int irq) 2654 { 2655 int freeirq, i; 2656 2657 if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1) 2658 if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ, 2659 (irq - 1))) == -1) { 2660 /* 2661 * if BIOS really defines every single irq in the mps 2662 * table, then don't worry about conflicting with 2663 * them, just use any free slot in apic_irq_table 2664 */ 2665 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 2666 if ((apic_irq_table[i] == NULL) || 2667 apic_irq_table[i]->airq_mps_intr_index == 2668 FREE_INDEX) { 2669 freeirq = i; 2670 break; 2671 } 2672 } 2673 if (freeirq == -1) { 2674 /* This shouldn't happen, but just in case */ 2675 cmn_err(CE_WARN, "%s: NO available IRQ", psm_name); 2676 return (-1); 2677 } 2678 } 2679 if (apic_irq_table[freeirq] == NULL) { 2680 apic_irq_table[freeirq] = 2681 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); 2682 if (apic_irq_table[freeirq] == NULL) { 2683 cmn_err(CE_WARN, "%s: NO memory to allocate IRQ", 2684 psm_name); 2685 return (-1); 2686 } 2687 apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX; 2688 } 2689 return (freeirq); 2690 } 2691 2692 static int 2693 apic_find_free_irq(int start, int end) 2694 { 2695 int i; 2696 2697 for (i = start; i <= end; i++) 2698 /* Check if any I/O entry needs this IRQ */ 2699 if (apic_find_io_intr(i) == NULL) { 2700 /* Then see if it is free */ 2701 if ((apic_irq_table[i] == NULL) || 2702 (apic_irq_table[i]->airq_mps_intr_index == 2703 FREE_INDEX)) { 2704 return (i); 2705 } 2706 } 2707 return (-1); 2708 } 2709 2710 2711 /* 2712 * Mark vector as being in the process of being deleted. Interrupts 2713 * may still come in on some CPU. The moment an interrupt comes with 2714 * the new vector, we know we can free the old one. Called only from 2715 * addspl and delspl with interrupts disabled. Because an interrupt 2716 * can be shared, but no interrupt from either device may come in, 2717 * we also use a timeout mechanism, which we arbitrarily set to 2718 * apic_revector_timeout microseconds. 2719 */ 2720 static void 2721 apic_mark_vector(uchar_t oldvector, uchar_t newvector) 2722 { 2723 ulong_t iflag; 2724 2725 iflag = intr_clear(); 2726 lock_set(&apic_revector_lock); 2727 if (!apic_oldvec_to_newvec) { 2728 apic_oldvec_to_newvec = 2729 kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2, 2730 KM_NOSLEEP); 2731 2732 if (!apic_oldvec_to_newvec) { 2733 /* 2734 * This failure is not catastrophic. 2735 * But, the oldvec will never be freed. 2736 */ 2737 apic_error |= APIC_ERR_MARK_VECTOR_FAIL; 2738 lock_clear(&apic_revector_lock); 2739 intr_restore(iflag); 2740 return; 2741 } 2742 apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR]; 2743 } 2744 2745 /* See if we already did this for drivers which do double addintrs */ 2746 if (apic_oldvec_to_newvec[oldvector] != newvector) { 2747 apic_oldvec_to_newvec[oldvector] = newvector; 2748 apic_newvec_to_oldvec[newvector] = oldvector; 2749 apic_revector_pending++; 2750 } 2751 lock_clear(&apic_revector_lock); 2752 intr_restore(iflag); 2753 (void) timeout(apic_xlate_vector_free_timeout_handler, 2754 (void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout)); 2755 } 2756 2757 /* 2758 * xlate_vector is called from intr_enter if revector_pending is set. 2759 * It will xlate it if needed and mark the old vector as free. 2760 */ 2761 uchar_t 2762 apic_xlate_vector(uchar_t vector) 2763 { 2764 uchar_t newvector, oldvector = 0; 2765 2766 lock_set(&apic_revector_lock); 2767 /* Do we really need to do this ? */ 2768 if (!apic_revector_pending) { 2769 lock_clear(&apic_revector_lock); 2770 return (vector); 2771 } 2772 if ((newvector = apic_oldvec_to_newvec[vector]) != 0) 2773 oldvector = vector; 2774 else { 2775 /* 2776 * The incoming vector is new . See if a stale entry is 2777 * remaining 2778 */ 2779 if ((oldvector = apic_newvec_to_oldvec[vector]) != 0) 2780 newvector = vector; 2781 } 2782 2783 if (oldvector) { 2784 apic_revector_pending--; 2785 apic_oldvec_to_newvec[oldvector] = 0; 2786 apic_newvec_to_oldvec[newvector] = 0; 2787 apic_free_vector(oldvector); 2788 lock_clear(&apic_revector_lock); 2789 /* There could have been more than one reprogramming! */ 2790 return (apic_xlate_vector(newvector)); 2791 } 2792 lock_clear(&apic_revector_lock); 2793 return (vector); 2794 } 2795 2796 void 2797 apic_xlate_vector_free_timeout_handler(void *arg) 2798 { 2799 ulong_t iflag; 2800 uchar_t oldvector, newvector; 2801 2802 oldvector = (uchar_t)(uintptr_t)arg; 2803 iflag = intr_clear(); 2804 lock_set(&apic_revector_lock); 2805 if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) { 2806 apic_free_vector(oldvector); 2807 apic_oldvec_to_newvec[oldvector] = 0; 2808 apic_newvec_to_oldvec[newvector] = 0; 2809 apic_revector_pending--; 2810 } 2811 2812 lock_clear(&apic_revector_lock); 2813 intr_restore(iflag); 2814 } 2815 2816 2817 /* 2818 * compute the polarity, trigger mode and vector for programming into 2819 * the I/O apic and record in airq_rdt_entry. 2820 */ 2821 static void 2822 apic_record_rdt_entry(apic_irq_t *irqptr, int irq) 2823 { 2824 int ioapicindex, bus_type, vector; 2825 short intr_index; 2826 uint_t level, po, io_po; 2827 struct apic_io_intr *iointrp; 2828 2829 intr_index = irqptr->airq_mps_intr_index; 2830 DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d " 2831 "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq, 2832 (void *)irqptr->airq_dip, irqptr->airq_vector)); 2833 2834 if (intr_index == RESERVE_INDEX) { 2835 apic_error |= APIC_ERR_INVALID_INDEX; 2836 return; 2837 } else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) { 2838 return; 2839 } 2840 2841 vector = irqptr->airq_vector; 2842 ioapicindex = irqptr->airq_ioapicindex; 2843 /* Assume edge triggered by default */ 2844 level = 0; 2845 /* Assume active high by default */ 2846 po = 0; 2847 2848 if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) { 2849 ASSERT(irq < 16); 2850 if (eisa_level_intr_mask & (1 << irq)) 2851 level = AV_LEVEL; 2852 if (intr_index == FREE_INDEX && apic_defconf == 0) 2853 apic_error |= APIC_ERR_INVALID_INDEX; 2854 } else if (intr_index == ACPI_INDEX) { 2855 bus_type = irqptr->airq_iflag.bustype; 2856 if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) { 2857 if (bus_type == BUS_PCI) 2858 level = AV_LEVEL; 2859 } else 2860 level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ? 2861 AV_LEVEL : 0; 2862 if (level && 2863 ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) || 2864 (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM && 2865 bus_type == BUS_PCI))) 2866 po = AV_ACTIVE_LOW; 2867 } else { 2868 iointrp = apic_io_intrp + intr_index; 2869 bus_type = apic_find_bus(iointrp->intr_busid); 2870 if (iointrp->intr_el == INTR_EL_CONFORM) { 2871 if ((irq < 16) && (eisa_level_intr_mask & (1 << irq))) 2872 level = AV_LEVEL; 2873 else if (bus_type == BUS_PCI) 2874 level = AV_LEVEL; 2875 } else 2876 level = (iointrp->intr_el == INTR_EL_LEVEL) ? 2877 AV_LEVEL : 0; 2878 if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) || 2879 (iointrp->intr_po == INTR_PO_CONFORM && 2880 bus_type == BUS_PCI))) 2881 po = AV_ACTIVE_LOW; 2882 } 2883 if (level) 2884 apic_level_intr[irq] = 1; 2885 /* 2886 * The 82489DX External APIC cannot do active low polarity interrupts. 2887 */ 2888 if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX)) 2889 io_po = po; 2890 else 2891 io_po = 0; 2892 2893 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) 2894 printf("setio: ioapic=%x intin=%x level=%x po=%x vector=%x\n", 2895 ioapicindex, irqptr->airq_intin_no, level, io_po, vector); 2896 2897 irqptr->airq_rdt_entry = level|io_po|vector; 2898 } 2899 2900 /* 2901 * Bind interrupt corresponding to irq_ptr to bind_cpu. 2902 * Must be called with interrupts disabled and apic_ioapic_lock held 2903 */ 2904 int 2905 apic_rebind(apic_irq_t *irq_ptr, int bind_cpu, 2906 struct ioapic_reprogram_data *drep) 2907 { 2908 int ioapicindex, intin_no; 2909 uint32_t airq_temp_cpu; 2910 apic_cpus_info_t *cpu_infop; 2911 uint32_t rdt_entry; 2912 int which_irq; 2913 ioapic_rdt_t irdt; 2914 2915 which_irq = apic_vector_to_irq[irq_ptr->airq_vector]; 2916 2917 intin_no = irq_ptr->airq_intin_no; 2918 ioapicindex = irq_ptr->airq_ioapicindex; 2919 airq_temp_cpu = irq_ptr->airq_temp_cpu; 2920 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) { 2921 if (airq_temp_cpu & IRQ_USER_BOUND) 2922 /* Mask off high bit so it can be used as array index */ 2923 airq_temp_cpu &= ~IRQ_USER_BOUND; 2924 2925 ASSERT(airq_temp_cpu < apic_nproc); 2926 } 2927 2928 /* 2929 * Can't bind to a CPU that's not accepting interrupts: 2930 */ 2931 cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND]; 2932 if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE)) 2933 return (1); 2934 2935 /* 2936 * If we are about to change the interrupt vector for this interrupt, 2937 * and this interrupt is level-triggered, attached to an IOAPIC, 2938 * has been delivered to a CPU and that CPU has not handled it 2939 * yet, we cannot reprogram the IOAPIC now. 2940 */ 2941 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) { 2942 2943 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, 2944 intin_no); 2945 2946 if ((irq_ptr->airq_vector != RDT_VECTOR(rdt_entry)) && 2947 apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu, 2948 bind_cpu, ioapicindex, intin_no, which_irq, drep) != 0) { 2949 2950 return (0); 2951 } 2952 2953 /* 2954 * NOTE: We do not unmask the RDT here, as an interrupt MAY 2955 * still come in before we have a chance to reprogram it below. 2956 * The reprogramming below will simultaneously change and 2957 * unmask the RDT entry. 2958 */ 2959 2960 if ((uint32_t)bind_cpu == IRQ_UNBOUND) { 2961 irdt.ir_lo = AV_LDEST | AV_LOPRI | 2962 irq_ptr->airq_rdt_entry; 2963 #if !defined(__xpv) 2964 irdt.ir_hi = AV_TOALL >> APIC_ID_BIT_OFFSET; 2965 2966 apic_vt_ops->apic_intrr_alloc_entry(irq_ptr); 2967 apic_vt_ops->apic_intrr_map_entry( 2968 irq_ptr, (void *)&irdt); 2969 apic_vt_ops->apic_intrr_record_rdt(irq_ptr, &irdt); 2970 2971 /* Write the RDT entry -- no specific CPU binding */ 2972 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 2973 irdt.ir_hi | AV_TOALL); 2974 #else 2975 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 2976 AV_TOALL); 2977 #endif 2978 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != 2979 IRQ_UNBOUND) 2980 apic_cpus[airq_temp_cpu].aci_temp_bound--; 2981 2982 /* 2983 * Write the vector, trigger, and polarity portion of 2984 * the RDT 2985 */ 2986 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no, 2987 irdt.ir_lo); 2988 2989 irq_ptr->airq_temp_cpu = IRQ_UNBOUND; 2990 return (0); 2991 } 2992 } 2993 2994 if (bind_cpu & IRQ_USER_BOUND) { 2995 cpu_infop->aci_bound++; 2996 } else { 2997 cpu_infop->aci_temp_bound++; 2998 } 2999 ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc); 3000 3001 if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) { 3002 apic_cpus[airq_temp_cpu].aci_temp_bound--; 3003 } 3004 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) { 3005 3006 irdt.ir_lo = AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry; 3007 irdt.ir_hi = cpu_infop->aci_local_id; 3008 3009 #if !defined(__xpv) 3010 apic_vt_ops->apic_intrr_alloc_entry(irq_ptr); 3011 apic_vt_ops->apic_intrr_map_entry(irq_ptr, (void *)&irdt); 3012 apic_vt_ops->apic_intrr_record_rdt(irq_ptr, &irdt); 3013 3014 /* Write the RDT entry -- bind to a specific CPU: */ 3015 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 3016 irdt.ir_hi); 3017 #else 3018 /* Write the RDT entry -- bind to a specific CPU: */ 3019 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 3020 irdt.ir_hi << APIC_ID_BIT_OFFSET); 3021 #endif 3022 /* Write the vector, trigger, and polarity portion of the RDT */ 3023 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no, 3024 irdt.ir_lo); 3025 3026 } else { 3027 int type = (irq_ptr->airq_mps_intr_index == MSI_INDEX) ? 3028 DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX; 3029 if (type == DDI_INTR_TYPE_MSI) { 3030 if (irq_ptr->airq_ioapicindex == 3031 irq_ptr->airq_origirq) { 3032 /* first one */ 3033 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call " 3034 "apic_pci_msi_enable_vector\n")); 3035 apic_pci_msi_enable_vector(irq_ptr, 3036 type, which_irq, irq_ptr->airq_vector, 3037 irq_ptr->airq_intin_no, 3038 cpu_infop->aci_local_id); 3039 } 3040 if ((irq_ptr->airq_ioapicindex + 3041 irq_ptr->airq_intin_no - 1) == 3042 irq_ptr->airq_origirq) { /* last one */ 3043 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call " 3044 "apic_pci_msi_enable_mode\n")); 3045 apic_pci_msi_enable_mode(irq_ptr->airq_dip, 3046 type, which_irq); 3047 } 3048 } else { /* MSI-X */ 3049 apic_pci_msi_enable_vector(irq_ptr, type, 3050 irq_ptr->airq_origirq, irq_ptr->airq_vector, 1, 3051 cpu_infop->aci_local_id); 3052 apic_pci_msi_enable_mode(irq_ptr->airq_dip, type, 3053 irq_ptr->airq_origirq); 3054 } 3055 } 3056 irq_ptr->airq_temp_cpu = (uint32_t)bind_cpu; 3057 apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND)); 3058 return (0); 3059 } 3060 3061 static void 3062 apic_last_ditch_clear_remote_irr(int ioapic_ix, int intin_no) 3063 { 3064 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) 3065 & AV_REMOTE_IRR) != 0) { 3066 /* 3067 * Trying to clear the bit through normal 3068 * channels has failed. So as a last-ditch 3069 * effort, try to set the trigger mode to 3070 * edge, then to level. This has been 3071 * observed to work on many systems. 3072 */ 3073 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3074 intin_no, 3075 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3076 intin_no) & ~AV_LEVEL); 3077 3078 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3079 intin_no, 3080 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3081 intin_no) | AV_LEVEL); 3082 3083 /* 3084 * If the bit's STILL set, this interrupt may 3085 * be hosed. 3086 */ 3087 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3088 intin_no) & AV_REMOTE_IRR) != 0) { 3089 3090 prom_printf("%s: Remote IRR still " 3091 "not clear for IOAPIC %d intin %d.\n" 3092 "\tInterrupts to this pin may cease " 3093 "functioning.\n", psm_name, ioapic_ix, 3094 intin_no); 3095 #ifdef DEBUG 3096 apic_last_ditch_reprogram_failures++; 3097 #endif 3098 } 3099 } 3100 } 3101 3102 /* 3103 * This function is protected by apic_ioapic_lock coupled with the 3104 * fact that interrupts are disabled. 3105 */ 3106 static void 3107 delete_defer_repro_ent(int which_irq) 3108 { 3109 ASSERT(which_irq >= 0); 3110 ASSERT(which_irq <= 255); 3111 3112 if (apic_reprogram_info[which_irq].done) 3113 return; 3114 3115 apic_reprogram_info[which_irq].done = B_TRUE; 3116 3117 #ifdef DEBUG 3118 apic_defer_repro_total_retries += 3119 apic_reprogram_info[which_irq].tries; 3120 3121 apic_defer_repro_successes++; 3122 #endif 3123 3124 if (--apic_reprogram_outstanding == 0) { 3125 3126 setlvlx = psm_intr_exit_fn(); 3127 } 3128 } 3129 3130 3131 /* 3132 * Interrupts must be disabled during this function to prevent 3133 * self-deadlock. Interrupts are disabled because this function 3134 * is called from apic_check_stuck_interrupt(), which is called 3135 * from apic_rebind(), which requires its caller to disable interrupts. 3136 */ 3137 static void 3138 add_defer_repro_ent(apic_irq_t *irq_ptr, int which_irq, int new_bind_cpu) 3139 { 3140 ASSERT(which_irq >= 0); 3141 ASSERT(which_irq <= 255); 3142 3143 /* 3144 * On the off-chance that there's already a deferred 3145 * reprogramming on this irq, check, and if so, just update the 3146 * CPU and irq pointer to which the interrupt is targeted, then return. 3147 */ 3148 if (!apic_reprogram_info[which_irq].done) { 3149 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu; 3150 apic_reprogram_info[which_irq].irqp = irq_ptr; 3151 return; 3152 } 3153 3154 apic_reprogram_info[which_irq].irqp = irq_ptr; 3155 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu; 3156 apic_reprogram_info[which_irq].tries = 0; 3157 /* 3158 * This must be the last thing set, since we're not 3159 * grabbing any locks, apic_try_deferred_reprogram() will 3160 * make its decision about using this entry iff done 3161 * is false. 3162 */ 3163 apic_reprogram_info[which_irq].done = B_FALSE; 3164 3165 /* 3166 * If there were previously no deferred reprogrammings, change 3167 * setlvlx to call apic_try_deferred_reprogram() 3168 */ 3169 if (++apic_reprogram_outstanding == 1) { 3170 3171 setlvlx = apic_try_deferred_reprogram; 3172 } 3173 } 3174 3175 static void 3176 apic_try_deferred_reprogram(int prev_ipl, int irq) 3177 { 3178 int reproirq; 3179 ulong_t iflag; 3180 struct ioapic_reprogram_data *drep; 3181 3182 (*psm_intr_exit_fn())(prev_ipl, irq); 3183 3184 if (!lock_try(&apic_defer_reprogram_lock)) { 3185 return; 3186 } 3187 3188 /* 3189 * Acquire the apic_ioapic_lock so that any other operations that 3190 * may affect the apic_reprogram_info state are serialized. 3191 * It's still possible for the last deferred reprogramming to clear 3192 * between the time we entered this function and the time we get to 3193 * the for loop below. In that case, *setlvlx will have been set 3194 * back to *_intr_exit and drep will be NULL. (There's no way to 3195 * stop that from happening -- we would need to grab a lock before 3196 * calling *setlvlx, which is neither realistic nor prudent). 3197 */ 3198 iflag = intr_clear(); 3199 lock_set(&apic_ioapic_lock); 3200 3201 /* 3202 * For each deferred RDT entry, try to reprogram it now. Note that 3203 * there is no lock acquisition to read apic_reprogram_info because 3204 * '.done' is set only after the other fields in the structure are set. 3205 */ 3206 3207 drep = NULL; 3208 for (reproirq = 0; reproirq <= APIC_MAX_VECTOR; reproirq++) { 3209 if (apic_reprogram_info[reproirq].done == B_FALSE) { 3210 drep = &apic_reprogram_info[reproirq]; 3211 break; 3212 } 3213 } 3214 3215 /* 3216 * Either we found a deferred action to perform, or 3217 * we entered this function spuriously, after *setlvlx 3218 * was restored to point to *_intr_exit. Any other 3219 * permutation is invalid. 3220 */ 3221 ASSERT(drep != NULL || *setlvlx == psm_intr_exit_fn()); 3222 3223 /* 3224 * Though we can't really do anything about errors 3225 * at this point, keep track of them for reporting. 3226 * Note that it is very possible for apic_setup_io_intr 3227 * to re-register this very timeout if the Remote IRR bit 3228 * has not yet cleared. 3229 */ 3230 3231 #ifdef DEBUG 3232 if (drep != NULL) { 3233 if (apic_setup_io_intr(drep, reproirq, B_TRUE) != 0) { 3234 apic_deferred_setup_failures++; 3235 } 3236 } else { 3237 apic_deferred_spurious_enters++; 3238 } 3239 #else 3240 if (drep != NULL) 3241 (void) apic_setup_io_intr(drep, reproirq, B_TRUE); 3242 #endif 3243 3244 lock_clear(&apic_ioapic_lock); 3245 intr_restore(iflag); 3246 3247 lock_clear(&apic_defer_reprogram_lock); 3248 } 3249 3250 static void 3251 apic_ioapic_wait_pending_clear(int ioapic_ix, int intin_no) 3252 { 3253 int waited; 3254 3255 /* 3256 * Wait for the delivery pending bit to clear. 3257 */ 3258 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & 3259 (AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) { 3260 3261 /* 3262 * If we're still waiting on the delivery of this interrupt, 3263 * continue to wait here until it is delivered (this should be 3264 * a very small amount of time, but include a timeout just in 3265 * case). 3266 */ 3267 for (waited = 0; waited < apic_max_reps_clear_pending; 3268 waited++) { 3269 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3270 intin_no) & AV_PENDING) == 0) { 3271 break; 3272 } 3273 } 3274 } 3275 } 3276 3277 3278 /* 3279 * Checks to see if the IOAPIC interrupt entry specified has its Remote IRR 3280 * bit set. Calls functions that modify the function that setlvlx points to, 3281 * so that the reprogramming can be retried very shortly. 3282 * 3283 * This function will mask the RDT entry if the interrupt is level-triggered. 3284 * (The caller is responsible for unmasking the RDT entry.) 3285 * 3286 * Returns non-zero if the caller should defer IOAPIC reprogramming. 3287 */ 3288 static int 3289 apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu, 3290 int new_bind_cpu, int ioapic_ix, int intin_no, int which_irq, 3291 struct ioapic_reprogram_data *drep) 3292 { 3293 int32_t rdt_entry; 3294 int waited; 3295 int reps = 0; 3296 3297 /* 3298 * Wait for the delivery pending bit to clear. 3299 */ 3300 do { 3301 ++reps; 3302 3303 apic_ioapic_wait_pending_clear(ioapic_ix, intin_no); 3304 3305 /* 3306 * Mask the RDT entry, but only if it's a level-triggered 3307 * interrupt 3308 */ 3309 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3310 intin_no); 3311 if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) { 3312 3313 /* Mask it */ 3314 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, 3315 AV_MASK | rdt_entry); 3316 } 3317 3318 if ((rdt_entry & AV_LEVEL) == AV_LEVEL) { 3319 /* 3320 * If there was a race and an interrupt was injected 3321 * just before we masked, check for that case here. 3322 * Then, unmask the RDT entry and try again. If we're 3323 * on our last try, don't unmask (because we want the 3324 * RDT entry to remain masked for the rest of the 3325 * function). 3326 */ 3327 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3328 intin_no); 3329 if ((rdt_entry & AV_PENDING) && 3330 (reps < apic_max_reps_clear_pending)) { 3331 /* Unmask it */ 3332 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3333 intin_no, rdt_entry & ~AV_MASK); 3334 } 3335 } 3336 3337 } while ((rdt_entry & AV_PENDING) && 3338 (reps < apic_max_reps_clear_pending)); 3339 3340 #ifdef DEBUG 3341 if (rdt_entry & AV_PENDING) 3342 apic_intr_deliver_timeouts++; 3343 #endif 3344 3345 /* 3346 * If the remote IRR bit is set, then the interrupt has been sent 3347 * to a CPU for processing. We have no choice but to wait for 3348 * that CPU to process the interrupt, at which point the remote IRR 3349 * bit will be cleared. 3350 */ 3351 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & 3352 (AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) { 3353 3354 /* 3355 * If the CPU that this RDT is bound to is NOT the current 3356 * CPU, wait until that CPU handles the interrupt and ACKs 3357 * it. If this interrupt is not bound to any CPU (that is, 3358 * if it's bound to the logical destination of "anyone"), it 3359 * may have been delivered to the current CPU so handle that 3360 * case by deferring the reprogramming (below). 3361 */ 3362 if ((old_bind_cpu != IRQ_UNBOUND) && 3363 (old_bind_cpu != IRQ_UNINIT) && 3364 (old_bind_cpu != psm_get_cpu_id())) { 3365 for (waited = 0; waited < apic_max_reps_clear_pending; 3366 waited++) { 3367 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3368 intin_no) & AV_REMOTE_IRR) == 0) { 3369 3370 delete_defer_repro_ent(which_irq); 3371 3372 /* Remote IRR has cleared! */ 3373 return (0); 3374 } 3375 } 3376 } 3377 3378 /* 3379 * If we waited and the Remote IRR bit is still not cleared, 3380 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS 3381 * times for this interrupt, try the last-ditch workaround: 3382 */ 3383 if (drep && drep->tries >= APIC_REPROGRAM_MAX_TRIES) { 3384 3385 apic_last_ditch_clear_remote_irr(ioapic_ix, intin_no); 3386 3387 /* Mark this one as reprogrammed: */ 3388 delete_defer_repro_ent(which_irq); 3389 3390 return (0); 3391 } else { 3392 #ifdef DEBUG 3393 apic_intr_deferrals++; 3394 #endif 3395 3396 /* 3397 * If waiting for the Remote IRR bit (above) didn't 3398 * allow it to clear, defer the reprogramming. 3399 * Add a new deferred-programming entry if the 3400 * caller passed a NULL one (and update the existing one 3401 * in case anything changed). 3402 */ 3403 add_defer_repro_ent(irq_ptr, which_irq, new_bind_cpu); 3404 if (drep) 3405 drep->tries++; 3406 3407 /* Inform caller to defer IOAPIC programming: */ 3408 return (1); 3409 } 3410 3411 } 3412 3413 /* Remote IRR is clear */ 3414 delete_defer_repro_ent(which_irq); 3415 3416 return (0); 3417 } 3418 3419 /* 3420 * Called to migrate all interrupts at an irq to another cpu. 3421 * Must be called with interrupts disabled and apic_ioapic_lock held 3422 */ 3423 int 3424 apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu) 3425 { 3426 apic_irq_t *irqptr = irq_ptr; 3427 int retval = 0; 3428 3429 while (irqptr) { 3430 if (irqptr->airq_temp_cpu != IRQ_UNINIT) 3431 retval |= apic_rebind(irqptr, bind_cpu, NULL); 3432 irqptr = irqptr->airq_next; 3433 } 3434 3435 return (retval); 3436 } 3437 3438 /* 3439 * apic_intr_redistribute does all the messy computations for identifying 3440 * which interrupt to move to which CPU. Currently we do just one interrupt 3441 * at a time. This reduces the time we spent doing all this within clock 3442 * interrupt. When it is done in idle, we could do more than 1. 3443 * First we find the most busy and the most free CPU (time in ISR only) 3444 * skipping those CPUs that has been identified as being ineligible (cpu_skip) 3445 * Then we look for IRQs which are closest to the difference between the 3446 * most busy CPU and the average ISR load. We try to find one whose load 3447 * is less than difference.If none exists, then we chose one larger than the 3448 * difference, provided it does not make the most idle CPU worse than the 3449 * most busy one. In the end, we clear all the busy fields for CPUs. For 3450 * IRQs, they are cleared as they are scanned. 3451 */ 3452 void 3453 apic_intr_redistribute() 3454 { 3455 int busiest_cpu, most_free_cpu; 3456 int cpu_free, cpu_busy, max_busy, min_busy; 3457 int min_free, diff; 3458 int average_busy, cpus_online; 3459 int i, busy; 3460 ulong_t iflag; 3461 apic_cpus_info_t *cpu_infop; 3462 apic_irq_t *min_busy_irq = NULL; 3463 apic_irq_t *max_busy_irq = NULL; 3464 3465 busiest_cpu = most_free_cpu = -1; 3466 cpu_free = cpu_busy = max_busy = average_busy = 0; 3467 min_free = apic_sample_factor_redistribution; 3468 cpus_online = 0; 3469 /* 3470 * Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu 3471 * without ioapic_lock. That is OK as we are just doing statistical 3472 * sampling anyway and any inaccuracy now will get corrected next time 3473 * The call to rebind which actually changes things will make sure 3474 * we are consistent. 3475 */ 3476 for (i = 0; i < apic_nproc; i++) { 3477 if (!(apic_redist_cpu_skip & (1 << i)) && 3478 (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) { 3479 3480 cpu_infop = &apic_cpus[i]; 3481 /* 3482 * If no unbound interrupts or only 1 total on this 3483 * CPU, skip 3484 */ 3485 if (!cpu_infop->aci_temp_bound || 3486 (cpu_infop->aci_bound + cpu_infop->aci_temp_bound) 3487 == 1) { 3488 apic_redist_cpu_skip |= 1 << i; 3489 continue; 3490 } 3491 3492 busy = cpu_infop->aci_busy; 3493 average_busy += busy; 3494 cpus_online++; 3495 if (max_busy < busy) { 3496 max_busy = busy; 3497 busiest_cpu = i; 3498 } 3499 if (min_free > busy) { 3500 min_free = busy; 3501 most_free_cpu = i; 3502 } 3503 if (busy > apic_int_busy_mark) { 3504 cpu_busy |= 1 << i; 3505 } else { 3506 if (busy < apic_int_free_mark) 3507 cpu_free |= 1 << i; 3508 } 3509 } 3510 } 3511 if ((cpu_busy && cpu_free) || 3512 (max_busy >= (min_free + apic_diff_for_redistribution))) { 3513 3514 apic_num_imbalance++; 3515 #ifdef DEBUG 3516 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { 3517 prom_printf( 3518 "redistribute busy=%x free=%x max=%x min=%x", 3519 cpu_busy, cpu_free, max_busy, min_free); 3520 } 3521 #endif /* DEBUG */ 3522 3523 3524 average_busy /= cpus_online; 3525 3526 diff = max_busy - average_busy; 3527 min_busy = max_busy; /* start with the max possible value */ 3528 max_busy = 0; 3529 min_busy_irq = max_busy_irq = NULL; 3530 i = apic_min_device_irq; 3531 for (; i <= apic_max_device_irq; i++) { 3532 apic_irq_t *irq_ptr; 3533 /* Change to linked list per CPU ? */ 3534 if ((irq_ptr = apic_irq_table[i]) == NULL) 3535 continue; 3536 /* Check for irq_busy & decide which one to move */ 3537 /* Also zero them for next round */ 3538 if ((irq_ptr->airq_temp_cpu == busiest_cpu) && 3539 irq_ptr->airq_busy) { 3540 if (irq_ptr->airq_busy < diff) { 3541 /* 3542 * Check for least busy CPU, 3543 * best fit or what ? 3544 */ 3545 if (max_busy < irq_ptr->airq_busy) { 3546 /* 3547 * Most busy within the 3548 * required differential 3549 */ 3550 max_busy = irq_ptr->airq_busy; 3551 max_busy_irq = irq_ptr; 3552 } 3553 } else { 3554 if (min_busy > irq_ptr->airq_busy) { 3555 /* 3556 * least busy, but more than 3557 * the reqd diff 3558 */ 3559 if (min_busy < 3560 (diff + average_busy - 3561 min_free)) { 3562 /* 3563 * Making sure new cpu 3564 * will not end up 3565 * worse 3566 */ 3567 min_busy = 3568 irq_ptr->airq_busy; 3569 3570 min_busy_irq = irq_ptr; 3571 } 3572 } 3573 } 3574 } 3575 irq_ptr->airq_busy = 0; 3576 } 3577 3578 if (max_busy_irq != NULL) { 3579 #ifdef DEBUG 3580 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { 3581 prom_printf("rebinding %x to %x", 3582 max_busy_irq->airq_vector, most_free_cpu); 3583 } 3584 #endif /* DEBUG */ 3585 iflag = intr_clear(); 3586 if (lock_try(&apic_ioapic_lock)) { 3587 if (apic_rebind_all(max_busy_irq, 3588 most_free_cpu) == 0) { 3589 /* Make change permenant */ 3590 max_busy_irq->airq_cpu = 3591 (uint32_t)most_free_cpu; 3592 } 3593 lock_clear(&apic_ioapic_lock); 3594 } 3595 intr_restore(iflag); 3596 3597 } else if (min_busy_irq != NULL) { 3598 #ifdef DEBUG 3599 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { 3600 prom_printf("rebinding %x to %x", 3601 min_busy_irq->airq_vector, most_free_cpu); 3602 } 3603 #endif /* DEBUG */ 3604 3605 iflag = intr_clear(); 3606 if (lock_try(&apic_ioapic_lock)) { 3607 if (apic_rebind_all(min_busy_irq, 3608 most_free_cpu) == 0) { 3609 /* Make change permenant */ 3610 min_busy_irq->airq_cpu = 3611 (uint32_t)most_free_cpu; 3612 } 3613 lock_clear(&apic_ioapic_lock); 3614 } 3615 intr_restore(iflag); 3616 3617 } else { 3618 if (cpu_busy != (1 << busiest_cpu)) { 3619 apic_redist_cpu_skip |= 1 << busiest_cpu; 3620 /* 3621 * We leave cpu_skip set so that next time we 3622 * can choose another cpu 3623 */ 3624 } 3625 } 3626 apic_num_rebind++; 3627 } else { 3628 /* 3629 * found nothing. Could be that we skipped over valid CPUs 3630 * or we have balanced everything. If we had a variable 3631 * ticks_for_redistribution, it could be increased here. 3632 * apic_int_busy, int_free etc would also need to be 3633 * changed. 3634 */ 3635 if (apic_redist_cpu_skip) 3636 apic_redist_cpu_skip = 0; 3637 } 3638 for (i = 0; i < apic_nproc; i++) { 3639 apic_cpus[i].aci_busy = 0; 3640 } 3641 } 3642 3643 void 3644 apic_cleanup_busy() 3645 { 3646 int i; 3647 apic_irq_t *irq_ptr; 3648 3649 for (i = 0; i < apic_nproc; i++) { 3650 apic_cpus[i].aci_busy = 0; 3651 } 3652 3653 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 3654 if ((irq_ptr = apic_irq_table[i]) != NULL) 3655 irq_ptr->airq_busy = 0; 3656 } 3657 } 3658 3659 3660 static int 3661 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 3662 int ipin, int *pci_irqp, iflag_t *intr_flagp) 3663 { 3664 3665 int status; 3666 acpi_psm_lnk_t acpipsmlnk; 3667 3668 if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp, 3669 intr_flagp)) == ACPI_PSM_SUCCESS) { 3670 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d " 3671 "from cache for device %s, instance #%d\n", psm_name, 3672 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 3673 return (status); 3674 } 3675 3676 bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t)); 3677 3678 if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp, 3679 &acpipsmlnk)) == ACPI_PSM_FAILURE) { 3680 APIC_VERBOSE_IRQ((CE_WARN, "%s: " 3681 " acpi_translate_pci_irq failed for device %s, instance" 3682 " #%d", psm_name, ddi_get_name(dip), 3683 ddi_get_instance(dip))); 3684 return (status); 3685 } 3686 3687 if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) { 3688 status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp, 3689 intr_flagp); 3690 if (status != ACPI_PSM_SUCCESS) { 3691 status = acpi_get_current_irq_resource(&acpipsmlnk, 3692 pci_irqp, intr_flagp); 3693 } 3694 } 3695 3696 if (status == ACPI_PSM_SUCCESS) { 3697 acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp, 3698 intr_flagp, &acpipsmlnk); 3699 3700 APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] " 3701 "new irq %d for device %s, instance #%d\n", psm_name, 3702 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 3703 } 3704 3705 return (status); 3706 } 3707 3708 /* 3709 * Adds an entry to the irq list passed in, and returns the new list. 3710 * Entries are added in priority order (lower numerical priorities are 3711 * placed closer to the head of the list) 3712 */ 3713 static prs_irq_list_t * 3714 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq, 3715 iflag_t *iflagp, acpi_prs_private_t *prsprvp) 3716 { 3717 struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp; 3718 3719 newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP); 3720 3721 newent->list_prio = priority; 3722 newent->irq = irq; 3723 newent->intrflags = *iflagp; 3724 newent->prsprv = *prsprvp; 3725 /* ->next is NULL from kmem_zalloc */ 3726 3727 /* 3728 * New list -- return the new entry as the list. 3729 */ 3730 if (listp == NULL) 3731 return (newent); 3732 3733 /* 3734 * Save original list pointer for return (since we're not modifying 3735 * the head) 3736 */ 3737 origlistp = listp; 3738 3739 /* 3740 * Insertion sort, with entries with identical keys stored AFTER 3741 * existing entries (the less-than-or-equal test of priority does 3742 * this for us). 3743 */ 3744 while (listp != NULL && listp->list_prio <= priority) { 3745 prevp = listp; 3746 listp = listp->next; 3747 } 3748 3749 newent->next = listp; 3750 3751 if (prevp == NULL) { /* Add at head of list (newent is the new head) */ 3752 return (newent); 3753 } else { 3754 prevp->next = newent; 3755 return (origlistp); 3756 } 3757 } 3758 3759 /* 3760 * Frees the list passed in, deallocating all memory and leaving *listpp 3761 * set to NULL. 3762 */ 3763 static void 3764 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp) 3765 { 3766 struct prs_irq_list_ent *nextp; 3767 3768 ASSERT(listpp != NULL); 3769 3770 while (*listpp != NULL) { 3771 nextp = (*listpp)->next; 3772 kmem_free(*listpp, sizeof (struct prs_irq_list_ent)); 3773 *listpp = nextp; 3774 } 3775 } 3776 3777 /* 3778 * apic_choose_irqs_from_prs returns a list of irqs selected from the list of 3779 * irqs returned by the link device's _PRS method. The irqs are chosen 3780 * to minimize contention in situations where the interrupt link device 3781 * can be programmed to steer interrupts to different interrupt controller 3782 * inputs (some of which may already be in use). The list is sorted in order 3783 * of irqs to use, with the highest priority given to interrupt controller 3784 * inputs that are not shared. When an interrupt controller input 3785 * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the 3786 * returned list in the order that minimizes sharing (thereby ensuring lowest 3787 * possible latency from interrupt trigger time to ISR execution time). 3788 */ 3789 static prs_irq_list_t * 3790 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip, 3791 int crs_irq) 3792 { 3793 int32_t irq; 3794 int i; 3795 prs_irq_list_t *prsirqlistp = NULL; 3796 iflag_t iflags; 3797 3798 while (irqlistent != NULL) { 3799 irqlistent->intr_flags.bustype = BUS_PCI; 3800 3801 for (i = 0; i < irqlistent->num_irqs; i++) { 3802 3803 irq = irqlistent->irqs[i]; 3804 3805 if (irq <= 0) { 3806 /* invalid irq number */ 3807 continue; 3808 } 3809 3810 if ((irq < 16) && (apic_reserved_irqlist[irq])) 3811 continue; 3812 3813 if ((apic_irq_table[irq] == NULL) || 3814 (apic_irq_table[irq]->airq_dip == dip)) { 3815 3816 prsirqlistp = acpi_insert_prs_irq_ent( 3817 prsirqlistp, 0 /* Highest priority */, irq, 3818 &irqlistent->intr_flags, 3819 &irqlistent->acpi_prs_prv); 3820 3821 /* 3822 * If we do not prefer the current irq from _CRS 3823 * or if we do and this irq is the same as the 3824 * current irq from _CRS, this is the one 3825 * to pick. 3826 */ 3827 if (!(apic_prefer_crs) || (irq == crs_irq)) { 3828 return (prsirqlistp); 3829 } 3830 continue; 3831 } 3832 3833 /* 3834 * Edge-triggered interrupts cannot be shared 3835 */ 3836 if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE) 3837 continue; 3838 3839 /* 3840 * To work around BIOSes that contain incorrect 3841 * interrupt polarity information in interrupt 3842 * descriptors returned by _PRS, we assume that 3843 * the polarity of the other device sharing this 3844 * interrupt controller input is compatible. 3845 * If it's not, the caller will catch it when 3846 * the caller invokes the link device's _CRS method 3847 * (after invoking its _SRS method). 3848 */ 3849 iflags = irqlistent->intr_flags; 3850 iflags.intr_po = 3851 apic_irq_table[irq]->airq_iflag.intr_po; 3852 3853 if (!acpi_intr_compatible(iflags, 3854 apic_irq_table[irq]->airq_iflag)) { 3855 APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d " 3856 "not compatible [%x:%x:%x !~ %x:%x:%x]", 3857 psm_name, irq, 3858 iflags.intr_po, 3859 iflags.intr_el, 3860 iflags.bustype, 3861 apic_irq_table[irq]->airq_iflag.intr_po, 3862 apic_irq_table[irq]->airq_iflag.intr_el, 3863 apic_irq_table[irq]->airq_iflag.bustype)); 3864 continue; 3865 } 3866 3867 /* 3868 * If we prefer the irq from _CRS, no need 3869 * to search any further (and make sure 3870 * to add this irq with the highest priority 3871 * so it's tried first). 3872 */ 3873 if (crs_irq == irq && apic_prefer_crs) { 3874 3875 return (acpi_insert_prs_irq_ent( 3876 prsirqlistp, 3877 0 /* Highest priority */, 3878 irq, &iflags, 3879 &irqlistent->acpi_prs_prv)); 3880 } 3881 3882 /* 3883 * Priority is equal to the share count (lower 3884 * share count is higher priority). Note that 3885 * the intr flags passed in here are the ones we 3886 * changed above -- if incorrect, it will be 3887 * caught by the caller's _CRS flags comparison. 3888 */ 3889 prsirqlistp = acpi_insert_prs_irq_ent( 3890 prsirqlistp, 3891 apic_irq_table[irq]->airq_share, irq, 3892 &iflags, &irqlistent->acpi_prs_prv); 3893 } 3894 3895 /* Go to the next irqlist entry */ 3896 irqlistent = irqlistent->next; 3897 } 3898 3899 return (prsirqlistp); 3900 } 3901 3902 /* 3903 * Configures the irq for the interrupt link device identified by 3904 * acpipsmlnkp. 3905 * 3906 * Gets the current and the list of possible irq settings for the 3907 * device. If apic_unconditional_srs is not set, and the current 3908 * resource setting is in the list of possible irq settings, 3909 * current irq resource setting is passed to the caller. 3910 * 3911 * Otherwise, picks an irq number from the list of possible irq 3912 * settings, and sets the irq of the device to this value. 3913 * If prefer_crs is set, among a set of irq numbers in the list that have 3914 * the least number of devices sharing the interrupt, we pick current irq 3915 * resource setting if it is a member of this set. 3916 * 3917 * Passes the irq number in the value pointed to by pci_irqp, and 3918 * polarity and sensitivity in the structure pointed to by dipintrflagp 3919 * to the caller. 3920 * 3921 * Note that if setting the irq resource failed, but successfuly obtained 3922 * the current irq resource settings, passes the current irq resources 3923 * and considers it a success. 3924 * 3925 * Returns: 3926 * ACPI_PSM_SUCCESS on success. 3927 * 3928 * ACPI_PSM_FAILURE if an error occured during the configuration or 3929 * if a suitable irq was not found for this device, or if setting the 3930 * irq resource and obtaining the current resource fails. 3931 * 3932 */ 3933 static int 3934 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 3935 int *pci_irqp, iflag_t *dipintr_flagp) 3936 { 3937 int32_t irq; 3938 int cur_irq = -1; 3939 acpi_irqlist_t *irqlistp; 3940 prs_irq_list_t *prs_irq_listp, *prs_irq_entp; 3941 boolean_t found_irq = B_FALSE; 3942 3943 dipintr_flagp->bustype = BUS_PCI; 3944 3945 if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp)) 3946 == ACPI_PSM_FAILURE) { 3947 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine " 3948 "or assign IRQ for device %s, instance #%d: The system was " 3949 "unable to get the list of potential IRQs from ACPI.", 3950 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 3951 3952 return (ACPI_PSM_FAILURE); 3953 } 3954 3955 if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 3956 dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) && 3957 (cur_irq > 0)) { 3958 /* 3959 * If an IRQ is set in CRS and that IRQ exists in the set 3960 * returned from _PRS, return that IRQ, otherwise print 3961 * a warning 3962 */ 3963 3964 if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL) 3965 == ACPI_PSM_SUCCESS) { 3966 3967 ASSERT(pci_irqp != NULL); 3968 *pci_irqp = cur_irq; 3969 acpi_free_irqlist(irqlistp); 3970 return (ACPI_PSM_SUCCESS); 3971 } 3972 3973 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the " 3974 "current irq %d for device %s, instance #%d in ACPI's " 3975 "list of possible irqs for this device. Picking one from " 3976 " the latter list.", psm_name, cur_irq, ddi_get_name(dip), 3977 ddi_get_instance(dip))); 3978 } 3979 3980 if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip, 3981 cur_irq)) == NULL) { 3982 3983 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a " 3984 "suitable irq from the list of possible irqs for device " 3985 "%s, instance #%d in ACPI's list of possible irqs", 3986 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 3987 3988 acpi_free_irqlist(irqlistp); 3989 return (ACPI_PSM_FAILURE); 3990 } 3991 3992 acpi_free_irqlist(irqlistp); 3993 3994 for (prs_irq_entp = prs_irq_listp; 3995 prs_irq_entp != NULL && found_irq == B_FALSE; 3996 prs_irq_entp = prs_irq_entp->next) { 3997 3998 acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv; 3999 irq = prs_irq_entp->irq; 4000 4001 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for " 4002 "device %s instance #%d\n", psm_name, irq, 4003 ddi_get_name(dip), ddi_get_instance(dip))); 4004 4005 if ((acpi_set_irq_resource(acpipsmlnkp, irq)) 4006 == ACPI_PSM_SUCCESS) { 4007 /* 4008 * setting irq was successful, check to make sure CRS 4009 * reflects that. If CRS does not agree with what we 4010 * set, return the irq that was set. 4011 */ 4012 4013 if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 4014 dipintr_flagp) == ACPI_PSM_SUCCESS) { 4015 4016 if (cur_irq != irq) 4017 APIC_VERBOSE_IRQ((CE_WARN, 4018 "!%s: IRQ resource set " 4019 "(irqno %d) for device %s " 4020 "instance #%d, differs from " 4021 "current setting irqno %d", 4022 psm_name, irq, ddi_get_name(dip), 4023 ddi_get_instance(dip), cur_irq)); 4024 } else { 4025 /* 4026 * On at least one system, there was a bug in 4027 * a DSDT method called by _STA, causing _STA to 4028 * indicate that the link device was disabled 4029 * (when, in fact, it was enabled). Since _SRS 4030 * succeeded, assume that _CRS is lying and use 4031 * the iflags from this _PRS interrupt choice. 4032 * If we're wrong about the flags, the polarity 4033 * will be incorrect and we may get an interrupt 4034 * storm, but there's not much else we can do 4035 * at this point. 4036 */ 4037 *dipintr_flagp = prs_irq_entp->intrflags; 4038 } 4039 4040 /* 4041 * Return the irq that was set, and not what _CRS 4042 * reports, since _CRS has been seen to return 4043 * different IRQs than what was passed to _SRS on some 4044 * systems (and just not return successfully on others). 4045 */ 4046 cur_irq = irq; 4047 found_irq = B_TRUE; 4048 } else { 4049 APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource " 4050 "irq %d failed for device %s instance #%d", 4051 psm_name, irq, ddi_get_name(dip), 4052 ddi_get_instance(dip))); 4053 4054 if (cur_irq == -1) { 4055 acpi_destroy_prs_irq_list(&prs_irq_listp); 4056 return (ACPI_PSM_FAILURE); 4057 } 4058 } 4059 } 4060 4061 acpi_destroy_prs_irq_list(&prs_irq_listp); 4062 4063 if (!found_irq) 4064 return (ACPI_PSM_FAILURE); 4065 4066 ASSERT(pci_irqp != NULL); 4067 *pci_irqp = cur_irq; 4068 return (ACPI_PSM_SUCCESS); 4069 } 4070 4071 void 4072 ioapic_disable_redirection() 4073 { 4074 int ioapic_ix; 4075 int intin_max; 4076 int intin_ix; 4077 4078 /* Disable the I/O APIC redirection entries */ 4079 for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) { 4080 4081 /* Bits 23-16 define the maximum redirection entries */ 4082 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) 4083 & 0xff; 4084 4085 for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) { 4086 /* 4087 * The assumption here is that this is safe, even for 4088 * systems with IOAPICs that suffer from the hardware 4089 * erratum because all devices have been quiesced before 4090 * this function is called from apic_shutdown() 4091 * (or equivalent). If that assumption turns out to be 4092 * false, this mask operation can induce the same 4093 * erratum result we're trying to avoid. 4094 */ 4095 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix, 4096 AV_MASK); 4097 } 4098 } 4099 } 4100 4101 /* 4102 * Looks for an IOAPIC with the specified physical address in the /ioapics 4103 * node in the device tree (created by the PCI enumerator). 4104 */ 4105 static boolean_t 4106 apic_is_ioapic_AMD_813x(uint32_t physaddr) 4107 { 4108 /* 4109 * Look in /ioapics, for the ioapic with 4110 * the physical address given 4111 */ 4112 dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0); 4113 dev_info_t *ioapic_child; 4114 boolean_t rv = B_FALSE; 4115 int vid, did; 4116 uint64_t ioapic_paddr; 4117 boolean_t done = B_FALSE; 4118 4119 if (ioapicsnode == NULL) 4120 return (B_FALSE); 4121 4122 /* Load first child: */ 4123 ioapic_child = ddi_get_child(ioapicsnode); 4124 while (!done && ioapic_child != 0) { /* Iterate over children */ 4125 4126 if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY, 4127 ioapic_child, DDI_PROP_DONTPASS, "reg", 0)) 4128 != 0 && physaddr == ioapic_paddr) { 4129 4130 vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child, 4131 DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0); 4132 4133 if (vid == VENID_AMD) { 4134 4135 did = ddi_prop_get_int(DDI_DEV_T_ANY, 4136 ioapic_child, DDI_PROP_DONTPASS, 4137 IOAPICS_PROP_DEVID, 0); 4138 4139 if (did == DEVID_8131_IOAPIC || 4140 did == DEVID_8132_IOAPIC) { 4141 4142 rv = B_TRUE; 4143 done = B_TRUE; 4144 } 4145 } 4146 } 4147 4148 if (!done) 4149 ioapic_child = ddi_get_next_sibling(ioapic_child); 4150 } 4151 4152 /* The ioapics node was held by ddi_find_devinfo, so release it */ 4153 ndi_rele_devi(ioapicsnode); 4154 return (rv); 4155 } 4156 4157 struct apic_state { 4158 int32_t as_task_reg; 4159 int32_t as_dest_reg; 4160 int32_t as_format_reg; 4161 int32_t as_local_timer; 4162 int32_t as_pcint_vect; 4163 int32_t as_int_vect0; 4164 int32_t as_int_vect1; 4165 int32_t as_err_vect; 4166 int32_t as_init_count; 4167 int32_t as_divide_reg; 4168 int32_t as_spur_int_reg; 4169 uint32_t as_ioapic_ids[MAX_IO_APIC]; 4170 }; 4171 4172 4173 static int 4174 apic_acpi_enter_apicmode(void) 4175 { 4176 ACPI_OBJECT_LIST arglist; 4177 ACPI_OBJECT arg; 4178 ACPI_STATUS status; 4179 4180 /* Setup parameter object */ 4181 arglist.Count = 1; 4182 arglist.Pointer = &arg; 4183 arg.Type = ACPI_TYPE_INTEGER; 4184 arg.Integer.Value = ACPI_APIC_MODE; 4185 4186 status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL); 4187 if (ACPI_FAILURE(status)) 4188 return (PSM_FAILURE); 4189 else 4190 return (PSM_SUCCESS); 4191 } 4192 4193 4194 static void 4195 apic_save_state(struct apic_state *sp) 4196 { 4197 int i; 4198 ulong_t iflag; 4199 4200 PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp)) 4201 /* 4202 * First the local APIC. 4203 */ 4204 sp->as_task_reg = apic_reg_ops->apic_get_pri(); 4205 sp->as_dest_reg = apic_reg_ops->apic_read(APIC_DEST_REG); 4206 if (apic_mode == LOCAL_APIC) 4207 sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG); 4208 sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER); 4209 sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT); 4210 sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0); 4211 sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1); 4212 sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT); 4213 sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT); 4214 sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG); 4215 sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG); 4216 4217 /* 4218 * If on the boot processor then save the IOAPICs' IDs 4219 */ 4220 if (psm_get_cpu_id() == 0) { 4221 4222 iflag = intr_clear(); 4223 lock_set(&apic_ioapic_lock); 4224 4225 for (i = 0; i < apic_io_max; i++) 4226 sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD); 4227 4228 lock_clear(&apic_ioapic_lock); 4229 intr_restore(iflag); 4230 } 4231 } 4232 4233 static void 4234 apic_restore_state(struct apic_state *sp) 4235 { 4236 int i; 4237 ulong_t iflag; 4238 4239 /* 4240 * First the local APIC. 4241 */ 4242 apic_reg_ops->apic_write_task_reg(sp->as_task_reg); 4243 if (apic_mode == LOCAL_APIC) { 4244 apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg); 4245 apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg); 4246 } 4247 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer); 4248 apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect); 4249 apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0); 4250 apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1); 4251 apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect); 4252 apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count); 4253 apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg); 4254 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg); 4255 4256 /* 4257 * the following only needs to be done once, so we do it on the 4258 * boot processor, since we know that we only have one of those 4259 */ 4260 if (psm_get_cpu_id() == 0) { 4261 4262 iflag = intr_clear(); 4263 lock_set(&apic_ioapic_lock); 4264 4265 /* Restore IOAPICs' APIC IDs */ 4266 for (i = 0; i < apic_io_max; i++) { 4267 ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]); 4268 } 4269 4270 lock_clear(&apic_ioapic_lock); 4271 intr_restore(iflag); 4272 4273 /* 4274 * Reenter APIC mode before restoring LNK devices 4275 */ 4276 (void) apic_acpi_enter_apicmode(); 4277 4278 /* 4279 * restore acpi link device mappings 4280 */ 4281 acpi_restore_link_devices(); 4282 } 4283 } 4284 4285 /* 4286 * Returns 0 on success 4287 */ 4288 int 4289 apic_state(psm_state_request_t *rp) 4290 { 4291 PMD(PMD_SX, ("apic_state ")) 4292 switch (rp->psr_cmd) { 4293 case PSM_STATE_ALLOC: 4294 rp->req.psm_state_req.psr_state = 4295 kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP); 4296 if (rp->req.psm_state_req.psr_state == NULL) 4297 return (ENOMEM); 4298 rp->req.psm_state_req.psr_state_size = 4299 sizeof (struct apic_state); 4300 PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n", 4301 rp->req.psm_state_req.psr_state, 4302 rp->req.psm_state_req.psr_state_size)) 4303 return (0); 4304 4305 case PSM_STATE_FREE: 4306 kmem_free(rp->req.psm_state_req.psr_state, 4307 rp->req.psm_state_req.psr_state_size); 4308 PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n", 4309 rp->req.psm_state_req.psr_state, 4310 rp->req.psm_state_req.psr_state_size)) 4311 return (0); 4312 4313 case PSM_STATE_SAVE: 4314 PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n", 4315 rp->req.psm_state_req.psr_state, 4316 rp->req.psm_state_req.psr_state_size)) 4317 apic_save_state(rp->req.psm_state_req.psr_state); 4318 return (0); 4319 4320 case PSM_STATE_RESTORE: 4321 apic_restore_state(rp->req.psm_state_req.psr_state); 4322 PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n", 4323 rp->req.psm_state_req.psr_state, 4324 rp->req.psm_state_req.psr_state_size)) 4325 return (0); 4326 4327 default: 4328 return (EINVAL); 4329 } 4330 } 4331