1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 28 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 29 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 30 * PSMI 1.5 extensions are supported in Solaris Nevada. 31 * PSMI 1.6 extensions are supported in Solaris Nevada. 32 */ 33 #define PSMI_1_6 34 35 #include <sys/processor.h> 36 #include <sys/time.h> 37 #include <sys/psm.h> 38 #include <sys/smp_impldefs.h> 39 #include <sys/cram.h> 40 #include <sys/acpi/acpi.h> 41 #include <sys/acpica.h> 42 #include <sys/psm_common.h> 43 #include <sys/apic.h> 44 #include <sys/pit.h> 45 #include <sys/ddi.h> 46 #include <sys/sunddi.h> 47 #include <sys/ddi_impldefs.h> 48 #include <sys/pci.h> 49 #include <sys/promif.h> 50 #include <sys/x86_archext.h> 51 #include <sys/cpc_impl.h> 52 #include <sys/uadmin.h> 53 #include <sys/panic.h> 54 #include <sys/debug.h> 55 #include <sys/archsystm.h> 56 #include <sys/trap.h> 57 #include <sys/machsystm.h> 58 #include <sys/cpuvar.h> 59 #include <sys/rm_platter.h> 60 #include <sys/privregs.h> 61 #include <sys/cyclic.h> 62 #include <sys/note.h> 63 #include <sys/pci_intr_lib.h> 64 #include <sys/sunndi.h> 65 #if !defined(__xpv) 66 #include <sys/hpet.h> 67 #include <sys/clock.h> 68 #endif 69 70 /* 71 * Local Function Prototypes 72 */ 73 static int apic_handle_defconf(); 74 static int apic_parse_mpct(caddr_t mpct, int bypass); 75 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size); 76 static int apic_checksum(caddr_t bptr, int len); 77 static int apic_find_bus_type(char *bus); 78 static int apic_find_bus(int busid); 79 static int apic_find_bus_id(int bustype); 80 static struct apic_io_intr *apic_find_io_intr(int irqno); 81 static int apic_find_free_irq(int start, int end); 82 static void apic_mark_vector(uchar_t oldvector, uchar_t newvector); 83 static void apic_xlate_vector_free_timeout_handler(void *arg); 84 static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu, 85 int new_bind_cpu, int apicindex, int intin_no, int which_irq, 86 struct ioapic_reprogram_data *drep); 87 static void apic_record_rdt_entry(apic_irq_t *irqptr, int irq); 88 static struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid); 89 static int apic_find_intin(uchar_t ioapic, uchar_t intin); 90 static int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, 91 int child_ipin, struct apic_io_intr **intrp); 92 static int apic_setup_irq_table(dev_info_t *dip, int irqno, 93 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp, 94 int type); 95 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp); 96 static void apic_try_deferred_reprogram(int ipl, int vect); 97 static void delete_defer_repro_ent(int which_irq); 98 static void apic_ioapic_wait_pending_clear(int ioapicindex, 99 int intin_no); 100 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr); 101 static int apic_acpi_enter_apicmode(void); 102 103 int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */ 104 105 /* ACPI SCI interrupt configuration; -1 if SCI not used */ 106 int apic_sci_vect = -1; 107 iflag_t apic_sci_flags; 108 109 #if !defined(__xpv) 110 /* ACPI HPET interrupt configuration; -1 if HPET not used */ 111 int apic_hpet_vect = -1; 112 iflag_t apic_hpet_flags; 113 #endif 114 115 /* 116 * psm name pointer 117 */ 118 static char *psm_name; 119 120 /* ACPI support routines */ 121 static int acpi_probe(char *); 122 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 123 int *pci_irqp, iflag_t *intr_flagp); 124 125 static int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 126 int ipin, int *pci_irqp, iflag_t *intr_flagp); 127 static uchar_t acpi_find_ioapic(int irq); 128 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2); 129 130 /* 131 * number of bits per byte, from <sys/param.h> 132 */ 133 #define UCHAR_MAX ((1 << NBBY) - 1) 134 135 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */ 136 int apic_max_reps_clear_pending = 1000; 137 138 /* The irq # is implicit in the array index: */ 139 struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1]; 140 /* 141 * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info 142 * is indexed by IRQ number, NOT by vector number. 143 */ 144 145 int apic_intr_policy = INTR_ROUND_ROBIN; 146 147 int apic_next_bind_cpu = 1; /* For round robin assignment */ 148 /* start with cpu 1 */ 149 150 /* 151 * If enabled, the distribution works as follows: 152 * On every interrupt entry, the current ipl for the CPU is set in cpu_info 153 * and the irq corresponding to the ipl is also set in the aci_current array. 154 * interrupt exit and setspl (due to soft interrupts) will cause the current 155 * ipl to be be changed. This is cache friendly as these frequently used 156 * paths write into a per cpu structure. 157 * 158 * Sampling is done by checking the structures for all CPUs and incrementing 159 * the busy field of the irq (if any) executing on each CPU and the busy field 160 * of the corresponding CPU. 161 * In periodic mode this is done on every clock interrupt. 162 * In one-shot mode, this is done thru a cyclic with an interval of 163 * apic_redistribute_sample_interval (default 10 milli sec). 164 * 165 * Every apic_sample_factor_redistribution times we sample, we do computations 166 * to decide which interrupt needs to be migrated (see comments 167 * before apic_intr_redistribute(). 168 */ 169 170 /* 171 * Following 3 variables start as % and can be patched or set using an 172 * API to be defined in future. They will be scaled to 173 * sample_factor_redistribution which is in turn set to hertz+1 (in periodic 174 * mode), or 101 in one-shot mode to stagger it away from one sec processing 175 */ 176 177 int apic_int_busy_mark = 60; 178 int apic_int_free_mark = 20; 179 int apic_diff_for_redistribution = 10; 180 181 /* sampling interval for interrupt redistribution for dynamic migration */ 182 int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */ 183 184 /* 185 * number of times we sample before deciding to redistribute interrupts 186 * for dynamic migration 187 */ 188 int apic_sample_factor_redistribution = 101; 189 190 /* timeout for xlate_vector, mark_vector */ 191 int apic_revector_timeout = 16 * 10000; /* 160 millisec */ 192 193 int apic_redist_cpu_skip = 0; 194 int apic_num_imbalance = 0; 195 int apic_num_rebind = 0; 196 197 int apic_nproc = 0; 198 size_t apic_cpus_size = 0; 199 int apic_defconf = 0; 200 int apic_irq_translate = 0; 201 int apic_spec_rev = 0; 202 int apic_imcrp = 0; 203 204 int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */ 205 int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */ 206 207 /* 208 * For interrupt link devices, if apic_unconditional_srs is set, an irq resource 209 * will be assigned (via _SRS). If it is not set, use the current 210 * irq setting (via _CRS), but only if that irq is in the set of possible 211 * irqs (returned by _PRS) for the device. 212 */ 213 int apic_unconditional_srs = 1; 214 215 /* 216 * For interrupt link devices, if apic_prefer_crs is set when we are 217 * assigning an IRQ resource to a device, prefer the current IRQ setting 218 * over other possible irq settings under same conditions. 219 */ 220 221 int apic_prefer_crs = 1; 222 223 uchar_t apic_io_id[MAX_IO_APIC]; 224 volatile uint32_t *apicioadr[MAX_IO_APIC]; 225 static uchar_t apic_io_ver[MAX_IO_APIC]; 226 static uchar_t apic_io_vectbase[MAX_IO_APIC]; 227 static uchar_t apic_io_vectend[MAX_IO_APIC]; 228 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1]; 229 uint32_t apic_physaddr[MAX_IO_APIC]; 230 231 static boolean_t ioapic_mask_workaround[MAX_IO_APIC]; 232 233 /* 234 * First available slot to be used as IRQ index into the apic_irq_table 235 * for those interrupts (like MSI/X) that don't have a physical IRQ. 236 */ 237 int apic_first_avail_irq = APIC_FIRST_FREE_IRQ; 238 239 /* 240 * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound 241 * and bound elements of cpus_info and the temp_cpu element of irq_struct 242 */ 243 lock_t apic_ioapic_lock; 244 245 /* 246 * apic_defer_reprogram_lock ensures that only one processor is handling 247 * deferred interrupt programming at *_intr_exit time. 248 */ 249 static lock_t apic_defer_reprogram_lock; 250 251 /* 252 * The current number of deferred reprogrammings outstanding 253 */ 254 uint_t apic_reprogram_outstanding = 0; 255 256 #ifdef DEBUG 257 /* 258 * Counters that keep track of deferred reprogramming stats 259 */ 260 uint_t apic_intr_deferrals = 0; 261 uint_t apic_intr_deliver_timeouts = 0; 262 uint_t apic_last_ditch_reprogram_failures = 0; 263 uint_t apic_deferred_setup_failures = 0; 264 uint_t apic_defer_repro_total_retries = 0; 265 uint_t apic_defer_repro_successes = 0; 266 uint_t apic_deferred_spurious_enters = 0; 267 #endif 268 269 static int apic_io_max = 0; /* no. of i/o apics enabled */ 270 271 static struct apic_io_intr *apic_io_intrp = 0; 272 static struct apic_bus *apic_busp; 273 274 uchar_t apic_vector_to_irq[APIC_MAX_VECTOR+1]; 275 uchar_t apic_resv_vector[MAXIPL+1]; 276 277 char apic_level_intr[APIC_MAX_VECTOR+1]; 278 279 static uint32_t eisa_level_intr_mask = 0; 280 /* At least MSB will be set if EISA bus */ 281 282 static int apic_pci_bus_total = 0; 283 static uchar_t apic_single_pci_busid = 0; 284 285 /* 286 * airq_mutex protects additions to the apic_irq_table - the first 287 * pointer and any airq_nexts off of that one. It also protects 288 * apic_max_device_irq & apic_min_device_irq. It also guarantees 289 * that share_id is unique as new ids are generated only when new 290 * irq_t structs are linked in. Once linked in the structs are never 291 * deleted. temp_cpu & mps_intr_index field indicate if it is programmed 292 * or allocated. Note that there is a slight gap between allocating in 293 * apic_introp_xlate and programming in addspl. 294 */ 295 kmutex_t airq_mutex; 296 apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1]; 297 int apic_max_device_irq = 0; 298 int apic_min_device_irq = APIC_MAX_VECTOR; 299 300 /* 301 * Following declarations are for revectoring; used when ISRs at different 302 * IPLs share an irq. 303 */ 304 static lock_t apic_revector_lock; 305 int apic_revector_pending = 0; 306 static uchar_t *apic_oldvec_to_newvec; 307 static uchar_t *apic_newvec_to_oldvec; 308 309 typedef struct prs_irq_list_ent { 310 int list_prio; 311 int32_t irq; 312 iflag_t intrflags; 313 acpi_prs_private_t prsprv; 314 struct prs_irq_list_ent *next; 315 } prs_irq_list_t; 316 317 318 /* 319 * ACPI variables 320 */ 321 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */ 322 int apic_enable_acpi = 0; 323 324 /* ACPI Multiple APIC Description Table ptr */ 325 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL; 326 327 /* ACPI Interrupt Source Override Structure ptr */ 328 static ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL; 329 static int acpi_iso_cnt = 0; 330 331 /* ACPI Non-maskable Interrupt Sources ptr */ 332 static ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL; 333 static int acpi_nmi_scnt = 0; 334 static ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL; 335 static int acpi_nmi_ccnt = 0; 336 337 /* 338 * The following added to identify a software poweroff method if available. 339 */ 340 341 static struct { 342 int poweroff_method; 343 char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */ 344 char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */ 345 } apic_mps_ids[] = { 346 { APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */ 347 { APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */ 348 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */ 349 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */ 350 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */ 351 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */ 352 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */ 353 }; 354 355 int apic_poweroff_method = APIC_POWEROFF_NONE; 356 357 /* 358 * Auto-configuration routines 359 */ 360 361 /* 362 * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here 363 * May work with 1.1 - but not guaranteed. 364 * According to the MP Spec, the MP floating pointer structure 365 * will be searched in the order described below: 366 * 1. In the first kilobyte of Extended BIOS Data Area (EBDA) 367 * 2. Within the last kilobyte of system base memory 368 * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh 369 * Once we find the right signature with proper checksum, we call 370 * either handle_defconf or parse_mpct to get all info necessary for 371 * subsequent operations. 372 */ 373 int 374 apic_probe_common(char *modname) 375 { 376 uint32_t mpct_addr, ebda_start = 0, base_mem_end; 377 caddr_t biosdatap; 378 caddr_t mpct; 379 caddr_t fptr; 380 int i, mpct_size, mapsize, retval = PSM_FAILURE; 381 ushort_t ebda_seg, base_mem_size; 382 struct apic_mpfps_hdr *fpsp; 383 struct apic_mp_cnf_hdr *hdrp; 384 int bypass_cpu_and_ioapics_in_mptables; 385 int acpi_user_options; 386 387 if (apic_forceload < 0) 388 return (retval); 389 390 /* 391 * Remember who we are 392 */ 393 psm_name = modname; 394 395 /* Allow override for MADT-only mode */ 396 acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0, 397 "acpi-user-options", 0); 398 apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0); 399 400 /* Allow apic_use_acpi to override MADT-only mode */ 401 if (!apic_use_acpi) 402 apic_use_acpi_madt_only = 0; 403 404 retval = acpi_probe(modname); 405 406 /* 407 * mapin the bios data area 40:0 408 * 40:13h - two-byte location reports the base memory size 409 * 40:0Eh - two-byte location for the exact starting address of 410 * the EBDA segment for EISA 411 */ 412 biosdatap = psm_map_phys(0x400, 0x20, PROT_READ); 413 if (!biosdatap) 414 return (retval); 415 fpsp = (struct apic_mpfps_hdr *)NULL; 416 mapsize = MPFPS_RAM_WIN_LEN; 417 /*LINTED: pointer cast may result in improper alignment */ 418 ebda_seg = *((ushort_t *)(biosdatap+0xe)); 419 /* check the 1k of EBDA */ 420 if (ebda_seg) { 421 ebda_start = ((uint32_t)ebda_seg) << 4; 422 fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ); 423 if (fptr) { 424 if (!(fpsp = 425 apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN))) 426 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 427 } 428 } 429 /* If not in EBDA, check the last k of system base memory */ 430 if (!fpsp) { 431 /*LINTED: pointer cast may result in improper alignment */ 432 base_mem_size = *((ushort_t *)(biosdatap + 0x13)); 433 434 if (base_mem_size > 512) 435 base_mem_end = 639 * 1024; 436 else 437 base_mem_end = 511 * 1024; 438 /* if ebda == last k of base mem, skip to check BIOS ROM */ 439 if (base_mem_end != ebda_start) { 440 441 fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN, 442 PROT_READ); 443 444 if (fptr) { 445 if (!(fpsp = apic_find_fps_sig(fptr, 446 MPFPS_RAM_WIN_LEN))) 447 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 448 } 449 } 450 } 451 psm_unmap_phys(biosdatap, 0x20); 452 453 /* If still cannot find it, check the BIOS ROM space */ 454 if (!fpsp) { 455 mapsize = MPFPS_ROM_WIN_LEN; 456 fptr = psm_map_phys(MPFPS_ROM_WIN_START, 457 MPFPS_ROM_WIN_LEN, PROT_READ); 458 if (fptr) { 459 if (!(fpsp = 460 apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) { 461 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 462 return (retval); 463 } 464 } 465 } 466 467 if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) { 468 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 469 return (retval); 470 } 471 472 apic_spec_rev = fpsp->mpfps_spec_rev; 473 if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) { 474 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 475 return (retval); 476 } 477 478 /* check IMCR is present or not */ 479 apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP; 480 481 /* check default configuration (dual CPUs) */ 482 if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) { 483 psm_unmap_phys(fptr, mapsize); 484 return (apic_handle_defconf()); 485 } 486 487 /* MP Configuration Table */ 488 mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr); 489 490 psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */ 491 492 /* 493 * Map in enough memory for the MP Configuration Table Header. 494 * Use this table to read the total length of the BIOS data and 495 * map in all the info 496 */ 497 /*LINTED: pointer cast may result in improper alignment */ 498 hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr, 499 sizeof (struct apic_mp_cnf_hdr), PROT_READ); 500 if (!hdrp) 501 return (retval); 502 503 /* check mp configuration table signature PCMP */ 504 if (hdrp->mpcnf_sig != 0x504d4350) { 505 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 506 return (retval); 507 } 508 mpct_size = (int)hdrp->mpcnf_tbl_length; 509 510 apic_set_pwroff_method_from_mpcnfhdr(hdrp); 511 512 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 513 514 if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) { 515 /* This is an ACPI machine No need for further checks */ 516 return (retval); 517 } 518 519 /* 520 * Map in the entries for this machine, ie. Processor 521 * Entry Tables, Bus Entry Tables, etc. 522 * They are in fixed order following one another 523 */ 524 mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ); 525 if (!mpct) 526 return (retval); 527 528 if (apic_checksum(mpct, mpct_size) != 0) 529 goto apic_fail1; 530 531 532 /*LINTED: pointer cast may result in improper alignment */ 533 hdrp = (struct apic_mp_cnf_hdr *)mpct; 534 apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic, 535 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 536 if (!apicadr) 537 goto apic_fail1; 538 539 /* Parse all information in the tables */ 540 bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS); 541 if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) == 542 PSM_SUCCESS) 543 return (PSM_SUCCESS); 544 545 for (i = 0; i < apic_io_max; i++) 546 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 547 if (apic_cpus) 548 kmem_free(apic_cpus, apic_cpus_size); 549 if (apicadr) 550 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 551 apic_fail1: 552 psm_unmap_phys(mpct, mpct_size); 553 return (retval); 554 } 555 556 static void 557 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp) 558 { 559 int i; 560 561 for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0])); 562 i++) { 563 if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id, 564 strlen(apic_mps_ids[i].oem_id)) == 0) && 565 (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id, 566 strlen(apic_mps_ids[i].prod_id)) == 0)) { 567 568 apic_poweroff_method = apic_mps_ids[i].poweroff_method; 569 break; 570 } 571 } 572 573 if (apic_debug_mps_id != 0) { 574 cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'" 575 "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n", 576 psm_name, 577 hdrp->mpcnf_oem_str[0], 578 hdrp->mpcnf_oem_str[1], 579 hdrp->mpcnf_oem_str[2], 580 hdrp->mpcnf_oem_str[3], 581 hdrp->mpcnf_oem_str[4], 582 hdrp->mpcnf_oem_str[5], 583 hdrp->mpcnf_oem_str[6], 584 hdrp->mpcnf_oem_str[7], 585 hdrp->mpcnf_prod_str[0], 586 hdrp->mpcnf_prod_str[1], 587 hdrp->mpcnf_prod_str[2], 588 hdrp->mpcnf_prod_str[3], 589 hdrp->mpcnf_prod_str[4], 590 hdrp->mpcnf_prod_str[5], 591 hdrp->mpcnf_prod_str[6], 592 hdrp->mpcnf_prod_str[7], 593 hdrp->mpcnf_prod_str[8], 594 hdrp->mpcnf_prod_str[9], 595 hdrp->mpcnf_prod_str[10], 596 hdrp->mpcnf_prod_str[11]); 597 } 598 } 599 600 static int 601 acpi_probe(char *modname) 602 { 603 int i, intmax, index; 604 uint32_t id, ver; 605 int acpi_verboseflags = 0; 606 int madt_seen, madt_size; 607 ACPI_SUBTABLE_HEADER *ap; 608 ACPI_MADT_LOCAL_APIC *mpa; 609 ACPI_MADT_LOCAL_X2APIC *mpx2a; 610 ACPI_MADT_IO_APIC *mia; 611 ACPI_MADT_IO_SAPIC *misa; 612 ACPI_MADT_INTERRUPT_OVERRIDE *mio; 613 ACPI_MADT_NMI_SOURCE *mns; 614 ACPI_MADT_INTERRUPT_SOURCE *mis; 615 ACPI_MADT_LOCAL_APIC_NMI *mlan; 616 ACPI_MADT_LOCAL_X2APIC_NMI *mx2alan; 617 ACPI_MADT_LOCAL_APIC_OVERRIDE *mao; 618 int sci; 619 iflag_t sci_flags; 620 volatile uint32_t *ioapic; 621 int ioapic_ix; 622 uint32_t local_ids[NCPU]; 623 uint32_t proc_ids[NCPU]; 624 uchar_t hid; 625 int warned = 0; 626 627 if (!apic_use_acpi) 628 return (PSM_FAILURE); 629 630 if (AcpiGetTable(ACPI_SIG_MADT, 1, 631 (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) 632 return (PSM_FAILURE); 633 634 apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address, 635 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 636 if (!apicadr) 637 return (PSM_FAILURE); 638 639 /* 640 * We don't enable x2APIC when Solaris is running under xVM. 641 */ 642 #if !defined(__xpv) 643 if (apic_detect_x2apic()) { 644 apic_enable_x2apic(); 645 } 646 #endif 647 648 /* 649 * Check for directed-EOI capability in the local APIC. 650 */ 651 if (apic_directed_EOI_supported() == 1) { 652 apic_set_directed_EOI_handler(); 653 } 654 655 id = apic_reg_ops->apic_read(APIC_LID_REG); 656 local_ids[0] = (uchar_t)(id >> 24); 657 apic_nproc = index = 1; 658 CPUSET_ONLY(apic_cpumask, 0); 659 apic_io_max = 0; 660 661 ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1); 662 madt_size = acpi_mapic_dtp->Header.Length; 663 madt_seen = sizeof (*acpi_mapic_dtp); 664 665 while (madt_seen < madt_size) { 666 switch (ap->Type) { 667 case ACPI_MADT_TYPE_LOCAL_APIC: 668 mpa = (ACPI_MADT_LOCAL_APIC *) ap; 669 if (mpa->LapicFlags & ACPI_MADT_ENABLED) { 670 if (mpa->Id == local_ids[0]) { 671 proc_ids[0] = mpa->ProcessorId; 672 acpica_map_cpu(0, mpa->ProcessorId); 673 } else if (apic_nproc < NCPU && use_mp && 674 apic_nproc < boot_ncpus) { 675 local_ids[index] = mpa->Id; 676 proc_ids[index] = mpa->ProcessorId; 677 CPUSET_ADD(apic_cpumask, index); 678 acpica_map_cpu(index, mpa->ProcessorId); 679 index++; 680 apic_nproc++; 681 } else if (apic_nproc == NCPU && !warned) { 682 cmn_err(CE_WARN, "%s: CPU limit " 683 "exceeded" 684 #if !defined(__amd64) 685 " for 32-bit mode" 686 #endif 687 "; Solaris will use %d CPUs.", 688 psm_name, NCPU); 689 warned = 1; 690 } 691 } 692 break; 693 694 case ACPI_MADT_TYPE_IO_APIC: 695 mia = (ACPI_MADT_IO_APIC *) ap; 696 if (apic_io_max < MAX_IO_APIC) { 697 ioapic_ix = apic_io_max; 698 apic_io_id[apic_io_max] = mia->Id; 699 apic_io_vectbase[apic_io_max] = 700 mia->GlobalIrqBase; 701 apic_physaddr[apic_io_max] = 702 (uint32_t)mia->Address; 703 ioapic = apicioadr[apic_io_max] = 704 mapin_ioapic((uint32_t)mia->Address, 705 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 706 if (!ioapic) 707 goto cleanup; 708 ioapic_mask_workaround[apic_io_max] = 709 apic_is_ioapic_AMD_813x(mia->Address); 710 apic_io_max++; 711 } 712 break; 713 714 case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE: 715 mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap; 716 if (acpi_isop == NULL) 717 acpi_isop = mio; 718 acpi_iso_cnt++; 719 break; 720 721 case ACPI_MADT_TYPE_NMI_SOURCE: 722 /* UNIMPLEMENTED */ 723 mns = (ACPI_MADT_NMI_SOURCE *) ap; 724 if (acpi_nmi_sp == NULL) 725 acpi_nmi_sp = mns; 726 acpi_nmi_scnt++; 727 728 cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n", 729 mns->GlobalIrq, mns->IntiFlags); 730 break; 731 732 case ACPI_MADT_TYPE_LOCAL_APIC_NMI: 733 /* UNIMPLEMENTED */ 734 mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap; 735 if (acpi_nmi_cp == NULL) 736 acpi_nmi_cp = mlan; 737 acpi_nmi_ccnt++; 738 739 cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n", 740 mlan->ProcessorId, mlan->IntiFlags, 741 mlan->Lint); 742 break; 743 744 case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE: 745 /* UNIMPLEMENTED */ 746 mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap; 747 cmn_err(CE_NOTE, "!apic: address override: %lx\n", 748 (long)mao->Address); 749 break; 750 751 case ACPI_MADT_TYPE_IO_SAPIC: 752 /* UNIMPLEMENTED */ 753 misa = (ACPI_MADT_IO_SAPIC *) ap; 754 755 cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n", 756 misa->Id, misa->GlobalIrqBase, 757 (long)misa->Address); 758 break; 759 760 case ACPI_MADT_TYPE_INTERRUPT_SOURCE: 761 /* UNIMPLEMENTED */ 762 mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap; 763 764 cmn_err(CE_NOTE, 765 "!apic: irq source: %d %d %d 0x%x %d %d\n", 766 mis->Id, mis->Eid, mis->GlobalIrq, 767 mis->IntiFlags, mis->Type, 768 mis->IoSapicVector); 769 break; 770 771 case ACPI_MADT_TYPE_LOCAL_X2APIC: 772 mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap; 773 774 /* 775 * All logical processors with APIC ID values 776 * of 255 and greater will have their APIC 777 * reported through Processor X2APIC structure. 778 * All logical processors with APIC ID less than 779 * 255 will have their APIC reported through 780 * Processor Local APIC. 781 */ 782 if ((mpx2a->LapicFlags & ACPI_MADT_ENABLED) && 783 (mpx2a->LocalApicId >> 8)) { 784 if (apic_nproc < NCPU && use_mp && 785 apic_nproc < boot_ncpus) { 786 local_ids[index] = mpx2a->LocalApicId; 787 CPUSET_ADD(apic_cpumask, index); 788 acpica_map_cpu(index, mpx2a->Uid); 789 index++; 790 apic_nproc++; 791 } else if (apic_nproc == NCPU && !warned) { 792 cmn_err(CE_WARN, "%s: CPU limit " 793 "exceeded" 794 #if !defined(__amd64) 795 " for 32-bit mode" 796 #endif 797 "; Solaris will use %d CPUs.", 798 psm_name, NCPU); 799 warned = 1; 800 } 801 } 802 803 break; 804 805 case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI: 806 /* UNIMPLEMENTED */ 807 mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap; 808 if (mx2alan->Uid >> 8) 809 acpi_nmi_ccnt++; 810 811 #ifdef DEBUG 812 cmn_err(CE_NOTE, 813 "!apic: local x2apic nmi: %d 0x%x %d\n", 814 mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint); 815 #endif 816 817 break; 818 819 case ACPI_MADT_TYPE_RESERVED: 820 default: 821 break; 822 } 823 824 /* advance to next entry */ 825 madt_seen += ap->Length; 826 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length); 827 } 828 829 apic_cpus_size = apic_nproc * sizeof (*apic_cpus); 830 if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL) 831 goto cleanup; 832 833 /* 834 * ACPI doesn't provide the local apic ver, get it directly from the 835 * local apic 836 */ 837 ver = apic_reg_ops->apic_read(APIC_VERS_REG); 838 for (i = 0; i < apic_nproc; i++) { 839 apic_cpus[i].aci_local_id = local_ids[i]; 840 apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF); 841 } 842 843 for (i = 0; i < apic_io_max; i++) { 844 ioapic_ix = i; 845 846 /* 847 * need to check Sitka on the following acpi problem 848 * On the Sitka, the ioapic's apic_id field isn't reporting 849 * the actual io apic id. We have reported this problem 850 * to Intel. Until they fix the problem, we will get the 851 * actual id directly from the ioapic. 852 */ 853 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 854 hid = (uchar_t)(id >> 24); 855 856 if (hid != apic_io_id[i]) { 857 if (apic_io_id[i] == 0) 858 apic_io_id[i] = hid; 859 else { /* set ioapic id to whatever reported by ACPI */ 860 id = ((uint32_t)apic_io_id[i]) << 24; 861 ioapic_write(ioapic_ix, APIC_ID_CMD, id); 862 } 863 } 864 ver = ioapic_read(ioapic_ix, APIC_VERS_CMD); 865 apic_io_ver[i] = (uchar_t)(ver & 0xff); 866 intmax = (ver >> 16) & 0xff; 867 apic_io_vectend[i] = apic_io_vectbase[i] + intmax; 868 if (apic_first_avail_irq <= apic_io_vectend[i]) 869 apic_first_avail_irq = apic_io_vectend[i] + 1; 870 } 871 872 873 /* 874 * Process SCI configuration here 875 * An error may be returned here if 876 * acpi-user-options specifies legacy mode 877 * (no SCI, no ACPI mode) 878 */ 879 if (acpica_get_sci(&sci, &sci_flags) != AE_OK) 880 sci = -1; 881 882 /* 883 * Now call acpi_init() to generate namespaces 884 * If this fails, we don't attempt to use ACPI 885 * even if we were able to get a MADT above 886 */ 887 if (acpica_init() != AE_OK) 888 goto cleanup; 889 890 /* 891 * Call acpica_build_processor_map() now that we have 892 * ACPI namesspace access 893 */ 894 acpica_build_processor_map(); 895 896 /* 897 * Squirrel away the SCI and flags for later on 898 * in apic_picinit() when we're ready 899 */ 900 apic_sci_vect = sci; 901 apic_sci_flags = sci_flags; 902 903 if (apic_verbose & APIC_VERBOSE_IRQ_FLAG) 904 acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG; 905 906 if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG) 907 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG; 908 909 if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG) 910 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG; 911 912 if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE) 913 goto cleanup; 914 915 /* Enable ACPI APIC interrupt routing */ 916 if (apic_acpi_enter_apicmode() != PSM_FAILURE) { 917 build_reserved_irqlist((uchar_t *)apic_reserved_irqlist); 918 apic_enable_acpi = 1; 919 if (apic_sci_vect > 0) { 920 acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT); 921 } 922 if (apic_use_acpi_madt_only) { 923 cmn_err(CE_CONT, 924 "?Using ACPI for CPU/IOAPIC information ONLY\n"); 925 } 926 927 #if !defined(__xpv) 928 /* 929 * probe ACPI for hpet information here which is used later 930 * in apic_picinit(). 931 */ 932 if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) { 933 cmn_err(CE_NOTE, "!ACPI HPET table query failed\n"); 934 } 935 #endif 936 937 return (PSM_SUCCESS); 938 } 939 /* if setting APIC mode failed above, we fall through to cleanup */ 940 941 cleanup: 942 if (apicadr != NULL) { 943 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 944 apicadr = NULL; 945 } 946 apic_nproc = 0; 947 for (i = 0; i < apic_io_max; i++) { 948 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 949 apicioadr[i] = NULL; 950 } 951 apic_io_max = 0; 952 acpi_isop = NULL; 953 acpi_iso_cnt = 0; 954 acpi_nmi_sp = NULL; 955 acpi_nmi_scnt = 0; 956 acpi_nmi_cp = NULL; 957 acpi_nmi_ccnt = 0; 958 return (PSM_FAILURE); 959 } 960 961 /* 962 * Handle default configuration. Fill in reqd global variables & tables 963 * Fill all details as MP table does not give any more info 964 */ 965 static int 966 apic_handle_defconf() 967 { 968 uint_t lid; 969 970 /*LINTED: pointer cast may result in improper alignment */ 971 apicioadr[0] = mapin_ioapic(APIC_IO_ADDR, 972 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 973 /*LINTED: pointer cast may result in improper alignment */ 974 apicadr = (uint32_t *)psm_map_phys(APIC_LOCAL_ADDR, 975 APIC_LOCAL_MEMLEN, PROT_READ); 976 apic_cpus_size = 2 * sizeof (*apic_cpus); 977 apic_cpus = (apic_cpus_info_t *) 978 kmem_zalloc(apic_cpus_size, KM_NOSLEEP); 979 if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus)) 980 goto apic_handle_defconf_fail; 981 CPUSET_ONLY(apic_cpumask, 0); 982 CPUSET_ADD(apic_cpumask, 1); 983 apic_nproc = 2; 984 lid = apic_reg_ops->apic_read(APIC_LID_REG); 985 apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET); 986 /* 987 * According to the PC+MP spec 1.1, the local ids 988 * for the default configuration has to be 0 or 1 989 */ 990 if (apic_cpus[0].aci_local_id == 1) 991 apic_cpus[1].aci_local_id = 0; 992 else if (apic_cpus[0].aci_local_id == 0) 993 apic_cpus[1].aci_local_id = 1; 994 else 995 goto apic_handle_defconf_fail; 996 997 apic_io_id[0] = 2; 998 apic_io_max = 1; 999 if (apic_defconf >= 5) { 1000 apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS; 1001 apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS; 1002 apic_io_ver[0] = APIC_INTEGRATED_VERS; 1003 } else { 1004 apic_cpus[0].aci_local_ver = 0; /* 82489 DX */ 1005 apic_cpus[1].aci_local_ver = 0; 1006 apic_io_ver[0] = 0; 1007 } 1008 if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6) 1009 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1010 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1011 return (PSM_SUCCESS); 1012 1013 apic_handle_defconf_fail: 1014 if (apic_cpus) 1015 kmem_free(apic_cpus, apic_cpus_size); 1016 if (apicadr) 1017 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 1018 if (apicioadr[0]) 1019 mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN); 1020 return (PSM_FAILURE); 1021 } 1022 1023 /* Parse the entries in MP configuration table and collect info that we need */ 1024 static int 1025 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics) 1026 { 1027 struct apic_procent *procp; 1028 struct apic_bus *busp; 1029 struct apic_io_entry *ioapicp; 1030 struct apic_io_intr *intrp; 1031 int ioapic_ix; 1032 uint_t lid; 1033 uint32_t id; 1034 uchar_t hid; 1035 int warned = 0; 1036 1037 /*LINTED: pointer cast may result in improper alignment */ 1038 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1039 1040 /* No need to count cpu entries if we won't use them */ 1041 if (!bypass_cpus_and_ioapics) { 1042 1043 /* Find max # of CPUS and allocate structure accordingly */ 1044 apic_nproc = 0; 1045 CPUSET_ZERO(apic_cpumask); 1046 while (procp->proc_entry == APIC_CPU_ENTRY) { 1047 if (procp->proc_cpuflags & CPUFLAGS_EN) { 1048 if (apic_nproc < NCPU && use_mp && 1049 apic_nproc < boot_ncpus) { 1050 CPUSET_ADD(apic_cpumask, apic_nproc); 1051 apic_nproc++; 1052 } else if (apic_nproc == NCPU && !warned) { 1053 cmn_err(CE_WARN, "%s: CPU limit " 1054 "exceeded" 1055 #if !defined(__amd64) 1056 " for 32-bit mode" 1057 #endif 1058 "; Solaris will use %d CPUs.", 1059 psm_name, NCPU); 1060 warned = 1; 1061 } 1062 1063 } 1064 procp++; 1065 } 1066 apic_cpus_size = apic_nproc * sizeof (*apic_cpus); 1067 if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *) 1068 kmem_zalloc(apic_cpus_size, KM_NOSLEEP))) 1069 return (PSM_FAILURE); 1070 } 1071 1072 /*LINTED: pointer cast may result in improper alignment */ 1073 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1074 1075 /* 1076 * start with index 1 as 0 needs to be filled in with Boot CPU, but 1077 * if we're bypassing this information, it has already been filled 1078 * in by acpi_probe(), so don't overwrite it. 1079 */ 1080 if (!bypass_cpus_and_ioapics) 1081 apic_nproc = 1; 1082 1083 while (procp->proc_entry == APIC_CPU_ENTRY) { 1084 /* check whether the cpu exists or not */ 1085 if (!bypass_cpus_and_ioapics && 1086 procp->proc_cpuflags & CPUFLAGS_EN) { 1087 if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */ 1088 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1089 apic_cpus[0].aci_local_id = procp->proc_apicid; 1090 if (apic_cpus[0].aci_local_id != 1091 (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) { 1092 return (PSM_FAILURE); 1093 } 1094 apic_cpus[0].aci_local_ver = 1095 procp->proc_version; 1096 } else if (apic_nproc < NCPU && use_mp && 1097 apic_nproc < boot_ncpus) { 1098 apic_cpus[apic_nproc].aci_local_id = 1099 procp->proc_apicid; 1100 1101 apic_cpus[apic_nproc].aci_local_ver = 1102 procp->proc_version; 1103 apic_nproc++; 1104 1105 } 1106 } 1107 procp++; 1108 } 1109 1110 /* 1111 * Save start of bus entries for later use. 1112 * Get EISA level cntrl if EISA bus is present. 1113 * Also get the CPI bus id for single CPI bus case 1114 */ 1115 apic_busp = busp = (struct apic_bus *)procp; 1116 while (busp->bus_entry == APIC_BUS_ENTRY) { 1117 lid = apic_find_bus_type((char *)&busp->bus_str1); 1118 if (lid == BUS_EISA) { 1119 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1120 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1121 } else if (lid == BUS_PCI) { 1122 /* 1123 * apic_single_pci_busid will be used only if 1124 * apic_pic_bus_total is equal to 1 1125 */ 1126 apic_pci_bus_total++; 1127 apic_single_pci_busid = busp->bus_id; 1128 } 1129 busp++; 1130 } 1131 1132 ioapicp = (struct apic_io_entry *)busp; 1133 1134 if (!bypass_cpus_and_ioapics) 1135 apic_io_max = 0; 1136 do { 1137 if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) { 1138 if (ioapicp->io_flags & IOAPIC_FLAGS_EN) { 1139 apic_io_id[apic_io_max] = ioapicp->io_apicid; 1140 apic_io_ver[apic_io_max] = ioapicp->io_version; 1141 /*LINTED: pointer cast may result in improper alignment */ 1142 apicioadr[apic_io_max] = 1143 mapin_ioapic( 1144 (uint32_t)ioapicp->io_apic_addr, 1145 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1146 1147 if (!apicioadr[apic_io_max]) 1148 return (PSM_FAILURE); 1149 1150 ioapic_mask_workaround[apic_io_max] = 1151 apic_is_ioapic_AMD_813x( 1152 ioapicp->io_apic_addr); 1153 1154 ioapic_ix = apic_io_max; 1155 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 1156 hid = (uchar_t)(id >> 24); 1157 1158 if (hid != apic_io_id[apic_io_max]) { 1159 if (apic_io_id[apic_io_max] == 0) 1160 apic_io_id[apic_io_max] = hid; 1161 else { 1162 /* 1163 * set ioapic id to whatever 1164 * reported by MPS 1165 * 1166 * may not need to set index 1167 * again ??? 1168 * take it out and try 1169 */ 1170 1171 id = ((uint32_t) 1172 apic_io_id[apic_io_max]) << 1173 24; 1174 1175 ioapic_write(ioapic_ix, 1176 APIC_ID_CMD, id); 1177 } 1178 } 1179 apic_io_max++; 1180 } 1181 } 1182 ioapicp++; 1183 } while (ioapicp->io_entry == APIC_IO_ENTRY); 1184 1185 apic_io_intrp = (struct apic_io_intr *)ioapicp; 1186 1187 intrp = apic_io_intrp; 1188 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1189 if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) || 1190 (apic_find_bus(intrp->intr_busid) == BUS_PCI)) { 1191 apic_irq_translate = 1; 1192 break; 1193 } 1194 intrp++; 1195 } 1196 1197 return (PSM_SUCCESS); 1198 } 1199 1200 boolean_t 1201 apic_cpu_in_range(int cpu) 1202 { 1203 return ((cpu & ~IRQ_USER_BOUND) < apic_nproc); 1204 } 1205 1206 uint16_t 1207 apic_get_apic_version() 1208 { 1209 int i; 1210 uchar_t min_io_apic_ver = 0; 1211 static uint16_t version; /* Cache as value is constant */ 1212 static boolean_t found = B_FALSE; /* Accomodate zero version */ 1213 1214 if (found == B_FALSE) { 1215 found = B_TRUE; 1216 1217 /* 1218 * Don't assume all IO APICs in the system are the same. 1219 * 1220 * Set to the minimum version. 1221 */ 1222 for (i = 0; i < apic_io_max; i++) { 1223 if ((apic_io_ver[i] != 0) && 1224 ((min_io_apic_ver == 0) || 1225 (min_io_apic_ver >= apic_io_ver[i]))) 1226 min_io_apic_ver = apic_io_ver[i]; 1227 } 1228 1229 /* Assume all local APICs are of the same version. */ 1230 version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver; 1231 } 1232 return (version); 1233 } 1234 1235 static struct apic_mpfps_hdr * 1236 apic_find_fps_sig(caddr_t cptr, int len) 1237 { 1238 int i; 1239 1240 /* Look for the pattern "_MP_" */ 1241 for (i = 0; i < len; i += 16) { 1242 if ((*(cptr+i) == '_') && 1243 (*(cptr+i+1) == 'M') && 1244 (*(cptr+i+2) == 'P') && 1245 (*(cptr+i+3) == '_')) 1246 /*LINTED: pointer cast may result in improper alignment */ 1247 return ((struct apic_mpfps_hdr *)(cptr + i)); 1248 } 1249 return (NULL); 1250 } 1251 1252 static int 1253 apic_checksum(caddr_t bptr, int len) 1254 { 1255 int i; 1256 uchar_t cksum; 1257 1258 cksum = 0; 1259 for (i = 0; i < len; i++) 1260 cksum += *bptr++; 1261 return ((int)cksum); 1262 } 1263 1264 1265 /* 1266 * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable 1267 * are also set to NULL. vector->irq is set to a value which cannot map 1268 * to a real irq to show that it is free. 1269 */ 1270 void 1271 apic_init_common() 1272 { 1273 int i, j, indx; 1274 int *iptr; 1275 1276 /* 1277 * Initialize apic_ipls from apic_vectortoipl. This array is 1278 * used in apic_intr_enter to determine the IPL to use for the 1279 * corresponding vector. On some systems, due to hardware errata 1280 * and interrupt sharing, the IPL may not correspond to the IPL listed 1281 * in apic_vectortoipl (see apic_addspl and apic_delspl). 1282 */ 1283 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { 1284 indx = i * APIC_VECTOR_PER_IPL; 1285 1286 for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++) 1287 apic_ipls[indx] = apic_vectortoipl[i]; 1288 } 1289 1290 /* cpu 0 is always up (for now) */ 1291 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; 1292 1293 iptr = (int *)&apic_irq_table[0]; 1294 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 1295 apic_level_intr[i] = 0; 1296 *iptr++ = NULL; 1297 apic_vector_to_irq[i] = APIC_RESV_IRQ; 1298 1299 /* These *must* be initted to B_TRUE! */ 1300 apic_reprogram_info[i].done = B_TRUE; 1301 apic_reprogram_info[i].irqp = NULL; 1302 apic_reprogram_info[i].tries = 0; 1303 apic_reprogram_info[i].bindcpu = 0; 1304 } 1305 1306 /* 1307 * Allocate a dummy irq table entry for the reserved entry. 1308 * This takes care of the race between removing an irq and 1309 * clock detecting a CPU in that irq during interrupt load 1310 * sampling. 1311 */ 1312 apic_irq_table[APIC_RESV_IRQ] = 1313 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); 1314 1315 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL); 1316 } 1317 1318 void 1319 ioapic_init_intr(int mask_apic) 1320 { 1321 int ioapic_ix; 1322 struct intrspec ispec; 1323 apic_irq_t *irqptr; 1324 int i, j; 1325 ulong_t iflag; 1326 1327 LOCK_INIT_CLEAR(&apic_revector_lock); 1328 LOCK_INIT_CLEAR(&apic_defer_reprogram_lock); 1329 1330 /* mask interrupt vectors */ 1331 for (j = 0; j < apic_io_max && mask_apic; j++) { 1332 int intin_max; 1333 1334 ioapic_ix = j; 1335 /* Bits 23-16 define the maximum redirection entries */ 1336 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) 1337 & 0xff; 1338 for (i = 0; i <= intin_max; i++) 1339 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * i, AV_MASK); 1340 } 1341 1342 /* 1343 * Hack alert: deal with ACPI SCI interrupt chicken/egg here 1344 */ 1345 if (apic_sci_vect > 0) { 1346 /* 1347 * acpica has already done add_avintr(); we just 1348 * to finish the job by mimicing translate_irq() 1349 * 1350 * Fake up an intrspec and setup the tables 1351 */ 1352 ispec.intrspec_vec = apic_sci_vect; 1353 ispec.intrspec_pri = SCI_IPL; 1354 1355 if (apic_setup_irq_table(NULL, apic_sci_vect, NULL, 1356 &ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) { 1357 cmn_err(CE_WARN, "!apic: SCI setup failed"); 1358 return; 1359 } 1360 irqptr = apic_irq_table[apic_sci_vect]; 1361 1362 iflag = intr_clear(); 1363 lock_set(&apic_ioapic_lock); 1364 1365 /* Program I/O APIC */ 1366 (void) apic_setup_io_intr(irqptr, apic_sci_vect, B_FALSE); 1367 1368 lock_clear(&apic_ioapic_lock); 1369 intr_restore(iflag); 1370 1371 irqptr->airq_share++; 1372 } 1373 1374 #if !defined(__xpv) 1375 /* 1376 * Hack alert: deal with ACPI HPET interrupt chicken/egg here. 1377 */ 1378 if (apic_hpet_vect > 0) { 1379 /* 1380 * hpet has already done add_avintr(); we just need 1381 * to finish the job by mimicing translate_irq() 1382 * 1383 * Fake up an intrspec and setup the tables 1384 */ 1385 ispec.intrspec_vec = apic_hpet_vect; 1386 ispec.intrspec_pri = CBE_HIGH_PIL; 1387 1388 if (apic_setup_irq_table(NULL, apic_hpet_vect, NULL, 1389 &ispec, &apic_hpet_flags, DDI_INTR_TYPE_FIXED) < 0) { 1390 cmn_err(CE_WARN, "!apic: HPET setup failed"); 1391 return; 1392 } 1393 irqptr = apic_irq_table[apic_hpet_vect]; 1394 1395 iflag = intr_clear(); 1396 lock_set(&apic_ioapic_lock); 1397 1398 /* Program I/O APIC */ 1399 (void) apic_setup_io_intr(irqptr, apic_hpet_vect, B_FALSE); 1400 1401 lock_clear(&apic_ioapic_lock); 1402 intr_restore(iflag); 1403 1404 irqptr->airq_share++; 1405 } 1406 #endif /* !defined(__xpv) */ 1407 } 1408 1409 /* 1410 * Add mask bits to disable interrupt vector from happening 1411 * at or above IPL. In addition, it should remove mask bits 1412 * to enable interrupt vectors below the given IPL. 1413 * 1414 * Both add and delspl are complicated by the fact that different interrupts 1415 * may share IRQs. This can happen in two ways. 1416 * 1. The same H/W line is shared by more than 1 device 1417 * 1a. with interrupts at different IPLs 1418 * 1b. with interrupts at same IPL 1419 * 2. We ran out of vectors at a given IPL and started sharing vectors. 1420 * 1b and 2 should be handled gracefully, except for the fact some ISRs 1421 * will get called often when no interrupt is pending for the device. 1422 * For 1a, we just hope that the machine blows up with the person who 1423 * set it up that way!. In the meantime, we handle it at the higher IPL. 1424 */ 1425 /*ARGSUSED*/ 1426 int 1427 apic_addspl_common(int irqno, int ipl, int min_ipl, int max_ipl) 1428 { 1429 uchar_t vector; 1430 ulong_t iflag; 1431 apic_irq_t *irqptr, *irqheadptr; 1432 int irqindex; 1433 1434 ASSERT(max_ipl <= UCHAR_MAX); 1435 irqindex = IRQINDEX(irqno); 1436 1437 if ((irqindex == -1) || (!apic_irq_table[irqindex])) 1438 return (PSM_FAILURE); 1439 1440 mutex_enter(&airq_mutex); 1441 irqptr = irqheadptr = apic_irq_table[irqindex]; 1442 1443 DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x " 1444 "vector=0x%x\n", (void *)irqptr->airq_dip, 1445 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector)); 1446 1447 while (irqptr) { 1448 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) 1449 break; 1450 irqptr = irqptr->airq_next; 1451 } 1452 irqptr->airq_share++; 1453 1454 mutex_exit(&airq_mutex); 1455 1456 /* return if it is not hardware interrupt */ 1457 if (irqptr->airq_mps_intr_index == RESERVE_INDEX) 1458 return (PSM_SUCCESS); 1459 1460 /* Or if there are more interupts at a higher IPL */ 1461 if (ipl != max_ipl) 1462 return (PSM_SUCCESS); 1463 1464 /* 1465 * if apic_picinit() has not been called yet, just return. 1466 * At the end of apic_picinit(), we will call setup_io_intr(). 1467 */ 1468 1469 if (!apic_picinit_called) 1470 return (PSM_SUCCESS); 1471 1472 /* 1473 * Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate, 1474 * return failure. Not very elegant, but then we hope the 1475 * machine will blow up with ... 1476 */ 1477 if (irqptr->airq_ipl != max_ipl && 1478 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1479 1480 vector = apic_allocate_vector(max_ipl, irqindex, 1); 1481 if (vector == 0) { 1482 irqptr->airq_share--; 1483 return (PSM_FAILURE); 1484 } 1485 irqptr = irqheadptr; 1486 apic_mark_vector(irqptr->airq_vector, vector); 1487 while (irqptr) { 1488 irqptr->airq_vector = vector; 1489 irqptr->airq_ipl = (uchar_t)max_ipl; 1490 /* 1491 * reprogram irq being added and every one else 1492 * who is not in the UNINIT state 1493 */ 1494 if ((VIRTIRQ(irqindex, irqptr->airq_share_id) == 1495 irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) { 1496 apic_record_rdt_entry(irqptr, irqindex); 1497 1498 iflag = intr_clear(); 1499 lock_set(&apic_ioapic_lock); 1500 1501 (void) apic_setup_io_intr(irqptr, irqindex, 1502 B_FALSE); 1503 1504 lock_clear(&apic_ioapic_lock); 1505 intr_restore(iflag); 1506 } 1507 irqptr = irqptr->airq_next; 1508 } 1509 return (PSM_SUCCESS); 1510 1511 } else if (irqptr->airq_ipl != max_ipl && 1512 ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1513 /* 1514 * We cannot upgrade the vector, but we can change 1515 * the IPL that this vector induces. 1516 * 1517 * Note that we subtract APIC_BASE_VECT from the vector 1518 * here because this array is used in apic_intr_enter 1519 * (no need to add APIC_BASE_VECT in that hot code 1520 * path since we can do it in the rarely-executed path 1521 * here). 1522 */ 1523 apic_ipls[irqptr->airq_vector - APIC_BASE_VECT] = 1524 (uchar_t)max_ipl; 1525 1526 irqptr = irqheadptr; 1527 while (irqptr) { 1528 irqptr->airq_ipl = (uchar_t)max_ipl; 1529 irqptr = irqptr->airq_next; 1530 } 1531 1532 return (PSM_SUCCESS); 1533 } 1534 1535 ASSERT(irqptr); 1536 1537 iflag = intr_clear(); 1538 lock_set(&apic_ioapic_lock); 1539 1540 (void) apic_setup_io_intr(irqptr, irqindex, B_FALSE); 1541 1542 lock_clear(&apic_ioapic_lock); 1543 intr_restore(iflag); 1544 1545 return (PSM_SUCCESS); 1546 } 1547 1548 /* 1549 * Recompute mask bits for the given interrupt vector. 1550 * If there is no interrupt servicing routine for this 1551 * vector, this function should disable interrupt vector 1552 * from happening at all IPLs. If there are still 1553 * handlers using the given vector, this function should 1554 * disable the given vector from happening below the lowest 1555 * IPL of the remaining hadlers. 1556 */ 1557 /*ARGSUSED*/ 1558 int 1559 apic_delspl_common(int irqno, int ipl, int min_ipl, int max_ipl) 1560 { 1561 uchar_t vector; 1562 uint32_t bind_cpu; 1563 int intin, irqindex; 1564 int ioapic_ix; 1565 apic_irq_t *irqptr, *irqheadptr, *irqp; 1566 ulong_t iflag; 1567 1568 mutex_enter(&airq_mutex); 1569 irqindex = IRQINDEX(irqno); 1570 irqptr = irqheadptr = apic_irq_table[irqindex]; 1571 1572 DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x " 1573 "vector=0x%x\n", (void *)irqptr->airq_dip, 1574 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector)); 1575 1576 while (irqptr) { 1577 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) 1578 break; 1579 irqptr = irqptr->airq_next; 1580 } 1581 ASSERT(irqptr); 1582 1583 irqptr->airq_share--; 1584 1585 mutex_exit(&airq_mutex); 1586 1587 if (ipl < max_ipl) 1588 return (PSM_SUCCESS); 1589 1590 /* return if it is not hardware interrupt */ 1591 if (irqptr->airq_mps_intr_index == RESERVE_INDEX) 1592 return (PSM_SUCCESS); 1593 1594 if (!apic_picinit_called) { 1595 /* 1596 * Clear irq_struct. If two devices shared an intpt 1597 * line & 1 unloaded before picinit, we are hosed. But, then 1598 * we hope the machine will ... 1599 */ 1600 irqptr->airq_mps_intr_index = FREE_INDEX; 1601 irqptr->airq_temp_cpu = IRQ_UNINIT; 1602 apic_free_vector(irqptr->airq_vector); 1603 return (PSM_SUCCESS); 1604 } 1605 /* 1606 * Downgrade vector to new max_ipl if needed.If we cannot allocate, 1607 * use old IPL. Not very elegant, but then we hope ... 1608 */ 1609 if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL) && 1610 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1611 apic_irq_t *irqp; 1612 if (vector = apic_allocate_vector(max_ipl, irqno, 1)) { 1613 apic_mark_vector(irqheadptr->airq_vector, vector); 1614 irqp = irqheadptr; 1615 while (irqp) { 1616 irqp->airq_vector = vector; 1617 irqp->airq_ipl = (uchar_t)max_ipl; 1618 if (irqp->airq_temp_cpu != IRQ_UNINIT) { 1619 apic_record_rdt_entry(irqp, irqindex); 1620 1621 iflag = intr_clear(); 1622 lock_set(&apic_ioapic_lock); 1623 1624 (void) apic_setup_io_intr(irqp, 1625 irqindex, B_FALSE); 1626 1627 lock_clear(&apic_ioapic_lock); 1628 intr_restore(iflag); 1629 } 1630 irqp = irqp->airq_next; 1631 } 1632 } 1633 1634 } else if (irqptr->airq_ipl != max_ipl && 1635 max_ipl != PSM_INVALID_IPL && 1636 ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1637 1638 /* 1639 * We cannot downgrade the IPL of the vector below the vector's 1640 * hardware priority. If we did, it would be possible for a 1641 * higher-priority hardware vector to interrupt a CPU running at an IPL 1642 * lower than the hardware priority of the interrupting vector (but 1643 * higher than the soft IPL of this IRQ). When this happens, we would 1644 * then try to drop the IPL BELOW what it was (effectively dropping 1645 * below base_spl) which would be potentially catastrophic. 1646 * 1647 * (e.g. Suppose the hardware vector associated with this IRQ is 0x40 1648 * (hardware IPL of 4). Further assume that the old IPL of this IRQ 1649 * was 4, but the new IPL is 1. If we forced vector 0x40 to result in 1650 * an IPL of 1, it would be possible for the processor to be executing 1651 * at IPL 3 and for an interrupt to come in on vector 0x40, interrupting 1652 * the currently-executing ISR. When apic_intr_enter consults 1653 * apic_irqs[], it will return 1, bringing the IPL of the CPU down to 1 1654 * so even though the processor was running at IPL 4, an IPL 1 1655 * interrupt will have interrupted it, which must not happen)). 1656 * 1657 * Effectively, this means that the hardware priority corresponding to 1658 * the IRQ's IPL (in apic_ipls[]) cannot be lower than the vector's 1659 * hardware priority. 1660 * 1661 * (In the above example, then, after removal of the IPL 4 device's 1662 * interrupt handler, the new IPL will continue to be 4 because the 1663 * hardware priority that IPL 1 implies is lower than the hardware 1664 * priority of the vector used.) 1665 */ 1666 /* apic_ipls is indexed by vector, starting at APIC_BASE_VECT */ 1667 const int apic_ipls_index = irqptr->airq_vector - 1668 APIC_BASE_VECT; 1669 const int vect_inherent_hwpri = irqptr->airq_vector >> 1670 APIC_IPL_SHIFT; 1671 1672 /* 1673 * If there are still devices using this IRQ, determine the 1674 * new ipl to use. 1675 */ 1676 if (irqptr->airq_share) { 1677 int vect_desired_hwpri, hwpri; 1678 1679 ASSERT(max_ipl < MAXIPL); 1680 vect_desired_hwpri = apic_ipltopri[max_ipl] >> 1681 APIC_IPL_SHIFT; 1682 1683 /* 1684 * If the desired IPL's hardware priority is lower 1685 * than that of the vector, use the hardware priority 1686 * of the vector to determine the new IPL. 1687 */ 1688 hwpri = (vect_desired_hwpri < vect_inherent_hwpri) ? 1689 vect_inherent_hwpri : vect_desired_hwpri; 1690 1691 /* 1692 * Now, to get the right index for apic_vectortoipl, 1693 * we need to subtract APIC_BASE_VECT from the 1694 * hardware-vector-equivalent (in hwpri). Since hwpri 1695 * is already shifted, we shift APIC_BASE_VECT before 1696 * doing the subtraction. 1697 */ 1698 hwpri -= (APIC_BASE_VECT >> APIC_IPL_SHIFT); 1699 1700 ASSERT(hwpri >= 0); 1701 ASSERT(hwpri < MAXIPL); 1702 max_ipl = apic_vectortoipl[hwpri]; 1703 apic_ipls[apic_ipls_index] = max_ipl; 1704 1705 irqp = irqheadptr; 1706 while (irqp) { 1707 irqp->airq_ipl = (uchar_t)max_ipl; 1708 irqp = irqp->airq_next; 1709 } 1710 } else { 1711 /* 1712 * No more devices on this IRQ, so reset this vector's 1713 * element in apic_ipls to the original IPL for this 1714 * vector 1715 */ 1716 apic_ipls[apic_ipls_index] = 1717 apic_vectortoipl[vect_inherent_hwpri]; 1718 } 1719 } 1720 1721 if (irqptr->airq_share) 1722 return (PSM_SUCCESS); 1723 1724 iflag = intr_clear(); 1725 lock_set(&apic_ioapic_lock); 1726 1727 if (irqptr->airq_mps_intr_index == MSI_INDEX) { 1728 /* 1729 * Disable the MSI vector 1730 * Make sure we only disable on the last 1731 * of the multi-MSI support 1732 */ 1733 if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) { 1734 apic_pci_msi_disable_mode(irqptr->airq_dip, 1735 DDI_INTR_TYPE_MSI); 1736 } 1737 } else if (irqptr->airq_mps_intr_index == MSIX_INDEX) { 1738 /* 1739 * Disable the MSI-X vector 1740 * needs to clear its mask and addr/data for each MSI-X 1741 */ 1742 apic_pci_msi_unconfigure(irqptr->airq_dip, DDI_INTR_TYPE_MSIX, 1743 irqptr->airq_origirq); 1744 /* 1745 * Make sure we only disable on the last MSI-X 1746 */ 1747 if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) { 1748 apic_pci_msi_disable_mode(irqptr->airq_dip, 1749 DDI_INTR_TYPE_MSIX); 1750 } 1751 } else { 1752 /* 1753 * The assumption here is that this is safe, even for 1754 * systems with IOAPICs that suffer from the hardware 1755 * erratum because all devices have been quiesced before 1756 * they unregister their interrupt handlers. If that 1757 * assumption turns out to be false, this mask operation 1758 * can induce the same erratum result we're trying to 1759 * avoid. 1760 */ 1761 ioapic_ix = irqptr->airq_ioapicindex; 1762 intin = irqptr->airq_intin_no; 1763 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin, AV_MASK); 1764 } 1765 1766 #if !defined(__xpv) 1767 apic_vt_ops->apic_intrr_free_entry(irqptr); 1768 #endif 1769 1770 if (max_ipl == PSM_INVALID_IPL) { 1771 ASSERT(irqheadptr == irqptr); 1772 bind_cpu = irqptr->airq_temp_cpu; 1773 if (((uint32_t)bind_cpu != IRQ_UNBOUND) && 1774 ((uint32_t)bind_cpu != IRQ_UNINIT)) { 1775 ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc); 1776 if (bind_cpu & IRQ_USER_BOUND) { 1777 /* If hardbound, temp_cpu == cpu */ 1778 bind_cpu &= ~IRQ_USER_BOUND; 1779 apic_cpus[bind_cpu].aci_bound--; 1780 } else 1781 apic_cpus[bind_cpu].aci_temp_bound--; 1782 } 1783 irqptr->airq_temp_cpu = IRQ_UNINIT; 1784 irqptr->airq_mps_intr_index = FREE_INDEX; 1785 lock_clear(&apic_ioapic_lock); 1786 intr_restore(iflag); 1787 apic_free_vector(irqptr->airq_vector); 1788 return (PSM_SUCCESS); 1789 } 1790 lock_clear(&apic_ioapic_lock); 1791 intr_restore(iflag); 1792 1793 mutex_enter(&airq_mutex); 1794 if ((irqptr == apic_irq_table[irqindex])) { 1795 apic_irq_t *oldirqptr; 1796 /* Move valid irq entry to the head */ 1797 irqheadptr = oldirqptr = irqptr; 1798 irqptr = irqptr->airq_next; 1799 ASSERT(irqptr); 1800 while (irqptr) { 1801 if (irqptr->airq_mps_intr_index != FREE_INDEX) 1802 break; 1803 oldirqptr = irqptr; 1804 irqptr = irqptr->airq_next; 1805 } 1806 /* remove all invalid ones from the beginning */ 1807 apic_irq_table[irqindex] = irqptr; 1808 /* 1809 * and link them back after the head. The invalid ones 1810 * begin with irqheadptr and end at oldirqptr 1811 */ 1812 oldirqptr->airq_next = irqptr->airq_next; 1813 irqptr->airq_next = irqheadptr; 1814 } 1815 mutex_exit(&airq_mutex); 1816 1817 irqptr->airq_temp_cpu = IRQ_UNINIT; 1818 irqptr->airq_mps_intr_index = FREE_INDEX; 1819 1820 return (PSM_SUCCESS); 1821 } 1822 1823 /* 1824 * apic_introp_xlate() replaces apic_translate_irq() and is 1825 * called only from apic_intr_ops(). With the new ADII framework, 1826 * the priority can no longer be retrieved through i_ddi_get_intrspec(). 1827 * It has to be passed in from the caller. 1828 */ 1829 int 1830 apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type) 1831 { 1832 char dev_type[16]; 1833 int dev_len, pci_irq, newirq, bustype, devid, busid, i; 1834 int irqno = ispec->intrspec_vec; 1835 ddi_acc_handle_t cfg_handle; 1836 uchar_t ipin; 1837 struct apic_io_intr *intrp; 1838 iflag_t intr_flag; 1839 ACPI_SUBTABLE_HEADER *hp; 1840 ACPI_MADT_INTERRUPT_OVERRIDE *isop; 1841 apic_irq_t *airqp; 1842 int parent_is_pci_or_pciex = 0; 1843 int child_is_pciex = 0; 1844 1845 DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s " 1846 "type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type, 1847 irqno)); 1848 1849 dev_len = sizeof (dev_type); 1850 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip), 1851 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type, 1852 &dev_len) == DDI_PROP_SUCCESS) { 1853 if ((strcmp(dev_type, "pci") == 0) || 1854 (strcmp(dev_type, "pciex") == 0)) 1855 parent_is_pci_or_pciex = 1; 1856 } 1857 1858 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 1859 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type, 1860 &dev_len) == DDI_PROP_SUCCESS) { 1861 if (strstr(dev_type, "pciex")) 1862 child_is_pciex = 1; 1863 } 1864 1865 1866 if (DDI_INTR_IS_MSI_OR_MSIX(type)) { 1867 if ((airqp = apic_find_irq(dip, ispec, type)) != NULL) { 1868 airqp->airq_iflag.bustype = 1869 child_is_pciex ? BUS_PCIE : BUS_PCI; 1870 return (apic_vector_to_irq[airqp->airq_vector]); 1871 } 1872 return (apic_setup_irq_table(dip, irqno, NULL, ispec, 1873 NULL, type)); 1874 } 1875 1876 bustype = 0; 1877 1878 /* check if we have already translated this irq */ 1879 mutex_enter(&airq_mutex); 1880 newirq = apic_min_device_irq; 1881 for (; newirq <= apic_max_device_irq; newirq++) { 1882 airqp = apic_irq_table[newirq]; 1883 while (airqp) { 1884 if ((airqp->airq_dip == dip) && 1885 (airqp->airq_origirq == irqno) && 1886 (airqp->airq_mps_intr_index != FREE_INDEX)) { 1887 1888 mutex_exit(&airq_mutex); 1889 return (VIRTIRQ(newirq, airqp->airq_share_id)); 1890 } 1891 airqp = airqp->airq_next; 1892 } 1893 } 1894 mutex_exit(&airq_mutex); 1895 1896 if (apic_defconf) 1897 goto defconf; 1898 1899 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) 1900 goto nonpci; 1901 1902 if (parent_is_pci_or_pciex) { 1903 /* pci device */ 1904 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0) 1905 goto nonpci; 1906 if (busid == 0 && apic_pci_bus_total == 1) 1907 busid = (int)apic_single_pci_busid; 1908 1909 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS) 1910 goto nonpci; 1911 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA; 1912 pci_config_teardown(&cfg_handle); 1913 if (apic_enable_acpi && !apic_use_acpi_madt_only) { 1914 if (apic_acpi_translate_pci_irq(dip, busid, devid, 1915 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS) 1916 goto nonpci; 1917 1918 intr_flag.bustype = child_is_pciex ? BUS_PCIE : BUS_PCI; 1919 if ((newirq = apic_setup_irq_table(dip, pci_irq, NULL, 1920 ispec, &intr_flag, type)) == -1) 1921 goto nonpci; 1922 return (newirq); 1923 } else { 1924 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3); 1925 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) 1926 == NULL) { 1927 if ((pci_irq = apic_handle_pci_pci_bridge(dip, 1928 devid, ipin, &intrp)) == -1) 1929 goto nonpci; 1930 } 1931 if ((newirq = apic_setup_irq_table(dip, pci_irq, intrp, 1932 ispec, NULL, type)) == -1) 1933 goto nonpci; 1934 return (newirq); 1935 } 1936 } else if (strcmp(dev_type, "isa") == 0) 1937 bustype = BUS_ISA; 1938 else if (strcmp(dev_type, "eisa") == 0) 1939 bustype = BUS_EISA; 1940 1941 nonpci: 1942 if (apic_enable_acpi && !apic_use_acpi_madt_only) { 1943 /* search iso entries first */ 1944 if (acpi_iso_cnt != 0) { 1945 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop; 1946 i = 0; 1947 while (i < acpi_iso_cnt) { 1948 if (hp->Type == 1949 ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) { 1950 isop = 1951 (ACPI_MADT_INTERRUPT_OVERRIDE *) hp; 1952 if (isop->Bus == 0 && 1953 isop->SourceIrq == irqno) { 1954 newirq = isop->GlobalIrq; 1955 intr_flag.intr_po = 1956 isop->IntiFlags & 1957 ACPI_MADT_POLARITY_MASK; 1958 intr_flag.intr_el = 1959 (isop->IntiFlags & 1960 ACPI_MADT_TRIGGER_MASK) 1961 >> 2; 1962 intr_flag.bustype = BUS_ISA; 1963 1964 return (apic_setup_irq_table( 1965 dip, newirq, NULL, ispec, 1966 &intr_flag, type)); 1967 1968 } 1969 i++; 1970 } 1971 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) + 1972 hp->Length); 1973 } 1974 } 1975 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH; 1976 intr_flag.intr_el = INTR_EL_EDGE; 1977 intr_flag.bustype = BUS_ISA; 1978 return (apic_setup_irq_table(dip, irqno, NULL, ispec, 1979 &intr_flag, type)); 1980 } else { 1981 if (bustype == 0) 1982 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA; 1983 for (i = 0; i < 2; i++) { 1984 if (((busid = apic_find_bus_id(bustype)) != -1) && 1985 ((intrp = apic_find_io_intr_w_busid(irqno, busid)) 1986 != NULL)) { 1987 if ((newirq = apic_setup_irq_table(dip, irqno, 1988 intrp, ispec, NULL, type)) != -1) { 1989 return (newirq); 1990 } 1991 goto defconf; 1992 } 1993 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA; 1994 } 1995 } 1996 1997 /* MPS default configuration */ 1998 defconf: 1999 newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type); 2000 if (newirq == -1) 2001 return (newirq); 2002 ASSERT(IRQINDEX(newirq) == irqno); 2003 ASSERT(apic_irq_table[irqno]); 2004 return (newirq); 2005 } 2006 2007 2008 2009 2010 2011 2012 /* 2013 * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge 2014 * needs special handling. We may need to chase up the device tree, 2015 * using the PCI-PCI Bridge specification's "rotating IPIN assumptions", 2016 * to find the IPIN at the root bus that relates to the IPIN on the 2017 * subsidiary bus (for ACPI or MP). We may, however, have an entry 2018 * in the MP table or the ACPI namespace for this device itself. 2019 * We handle both cases in the search below. 2020 */ 2021 /* this is the non-acpi version */ 2022 static int 2023 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin, 2024 struct apic_io_intr **intrp) 2025 { 2026 dev_info_t *dipp, *dip; 2027 int pci_irq; 2028 ddi_acc_handle_t cfg_handle; 2029 int bridge_devno, bridge_bus; 2030 int ipin; 2031 2032 dip = idip; 2033 2034 /*CONSTCOND*/ 2035 while (1) { 2036 if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) || 2037 (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS)) 2038 return (-1); 2039 if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) == 2040 PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle, 2041 PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) { 2042 pci_config_teardown(&cfg_handle); 2043 if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno, 2044 NULL) != 0) 2045 return (-1); 2046 /* 2047 * This is the rotating scheme documented in the 2048 * PCI-to-PCI spec. If the PCI-to-PCI bridge is 2049 * behind another PCI-to-PCI bridge, then it needs 2050 * to keep ascending until an interrupt entry is 2051 * found or the root is reached. 2052 */ 2053 ipin = (child_devno + child_ipin) % PCI_INTD; 2054 if (bridge_bus == 0 && apic_pci_bus_total == 1) 2055 bridge_bus = (int)apic_single_pci_busid; 2056 pci_irq = ((bridge_devno & 0x1f) << 2) | 2057 (ipin & 0x3); 2058 if ((*intrp = apic_find_io_intr_w_busid(pci_irq, 2059 bridge_bus)) != NULL) { 2060 return (pci_irq); 2061 } 2062 dip = dipp; 2063 child_devno = bridge_devno; 2064 child_ipin = ipin; 2065 } else { 2066 pci_config_teardown(&cfg_handle); 2067 return (-1); 2068 } 2069 } 2070 /*LINTED: function will not fall off the bottom */ 2071 } 2072 2073 2074 2075 2076 static uchar_t 2077 acpi_find_ioapic(int irq) 2078 { 2079 int i; 2080 2081 for (i = 0; i < apic_io_max; i++) { 2082 if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i]) 2083 return (i); 2084 } 2085 return (0xFF); /* shouldn't happen */ 2086 } 2087 2088 /* 2089 * See if two irqs are compatible for sharing a vector. 2090 * Currently we only support sharing of PCI devices. 2091 */ 2092 static int 2093 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2) 2094 { 2095 uint_t level1, po1; 2096 uint_t level2, po2; 2097 2098 /* Assume active high by default */ 2099 po1 = 0; 2100 po2 = 0; 2101 2102 if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI) 2103 return (0); 2104 2105 if (iflag1.intr_el == INTR_EL_CONFORM) 2106 level1 = AV_LEVEL; 2107 else 2108 level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 2109 2110 if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) || 2111 (iflag1.intr_po == INTR_PO_CONFORM))) 2112 po1 = AV_ACTIVE_LOW; 2113 2114 if (iflag2.intr_el == INTR_EL_CONFORM) 2115 level2 = AV_LEVEL; 2116 else 2117 level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 2118 2119 if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) || 2120 (iflag2.intr_po == INTR_PO_CONFORM))) 2121 po2 = AV_ACTIVE_LOW; 2122 2123 if ((level1 == level2) && (po1 == po2)) 2124 return (1); 2125 2126 return (0); 2127 } 2128 2129 /* 2130 * Attempt to share vector with someone else 2131 */ 2132 static int 2133 apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl, 2134 uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp) 2135 { 2136 #ifdef DEBUG 2137 apic_irq_t *tmpirqp = NULL; 2138 #endif /* DEBUG */ 2139 apic_irq_t *irqptr, dummyirq; 2140 int newirq, chosen_irq = -1, share = 127; 2141 int lowest, highest, i; 2142 uchar_t share_id; 2143 2144 DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x " 2145 "intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl)); 2146 2147 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; 2148 lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL; 2149 2150 if (highest < lowest) /* Both ipl and ipl-1 map to same pri */ 2151 lowest -= APIC_VECTOR_PER_IPL; 2152 dummyirq.airq_mps_intr_index = intr_index; 2153 dummyirq.airq_ioapicindex = ioapicindex; 2154 dummyirq.airq_intin_no = ipin; 2155 if (intr_flagp) 2156 dummyirq.airq_iflag = *intr_flagp; 2157 apic_record_rdt_entry(&dummyirq, irqno); 2158 for (i = lowest; i <= highest; i++) { 2159 newirq = apic_vector_to_irq[i]; 2160 if (newirq == APIC_RESV_IRQ) 2161 continue; 2162 irqptr = apic_irq_table[newirq]; 2163 2164 if ((dummyirq.airq_rdt_entry & 0xFF00) != 2165 (irqptr->airq_rdt_entry & 0xFF00)) 2166 /* not compatible */ 2167 continue; 2168 2169 if (irqptr->airq_share < share) { 2170 share = irqptr->airq_share; 2171 chosen_irq = newirq; 2172 } 2173 } 2174 if (chosen_irq != -1) { 2175 /* 2176 * Assign a share id which is free or which is larger 2177 * than the largest one. 2178 */ 2179 share_id = 1; 2180 mutex_enter(&airq_mutex); 2181 irqptr = apic_irq_table[chosen_irq]; 2182 while (irqptr) { 2183 if (irqptr->airq_mps_intr_index == FREE_INDEX) { 2184 share_id = irqptr->airq_share_id; 2185 break; 2186 } 2187 if (share_id <= irqptr->airq_share_id) 2188 share_id = irqptr->airq_share_id + 1; 2189 #ifdef DEBUG 2190 tmpirqp = irqptr; 2191 #endif /* DEBUG */ 2192 irqptr = irqptr->airq_next; 2193 } 2194 if (!irqptr) { 2195 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); 2196 irqptr->airq_temp_cpu = IRQ_UNINIT; 2197 irqptr->airq_next = 2198 apic_irq_table[chosen_irq]->airq_next; 2199 apic_irq_table[chosen_irq]->airq_next = irqptr; 2200 #ifdef DEBUG 2201 tmpirqp = apic_irq_table[chosen_irq]; 2202 #endif /* DEBUG */ 2203 } 2204 irqptr->airq_mps_intr_index = intr_index; 2205 irqptr->airq_ioapicindex = ioapicindex; 2206 irqptr->airq_intin_no = ipin; 2207 if (intr_flagp) 2208 irqptr->airq_iflag = *intr_flagp; 2209 irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector; 2210 irqptr->airq_share_id = share_id; 2211 apic_record_rdt_entry(irqptr, irqno); 2212 *irqptrp = irqptr; 2213 #ifdef DEBUG 2214 /* shuffle the pointers to test apic_delspl path */ 2215 if (tmpirqp) { 2216 tmpirqp->airq_next = irqptr->airq_next; 2217 irqptr->airq_next = apic_irq_table[chosen_irq]; 2218 apic_irq_table[chosen_irq] = irqptr; 2219 } 2220 #endif /* DEBUG */ 2221 mutex_exit(&airq_mutex); 2222 return (VIRTIRQ(chosen_irq, share_id)); 2223 } 2224 return (-1); 2225 } 2226 2227 /* 2228 * 2229 */ 2230 static int 2231 apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp, 2232 struct intrspec *ispec, iflag_t *intr_flagp, int type) 2233 { 2234 int origirq = ispec->intrspec_vec; 2235 uchar_t ipl = ispec->intrspec_pri; 2236 int newirq, intr_index; 2237 uchar_t ipin, ioapic, ioapicindex, vector; 2238 apic_irq_t *irqptr; 2239 major_t major; 2240 dev_info_t *sdip; 2241 2242 DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d " 2243 "irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq)); 2244 2245 ASSERT(ispec != NULL); 2246 2247 major = (dip != NULL) ? ddi_driver_major(dip) : 0; 2248 2249 if (DDI_INTR_IS_MSI_OR_MSIX(type)) { 2250 /* MSI/X doesn't need to setup ioapic stuffs */ 2251 ioapicindex = 0xff; 2252 ioapic = 0xff; 2253 ipin = (uchar_t)0xff; 2254 intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX : 2255 MSIX_INDEX; 2256 mutex_enter(&airq_mutex); 2257 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == -1) { 2258 mutex_exit(&airq_mutex); 2259 /* need an irq for MSI/X to index into autovect[] */ 2260 cmn_err(CE_WARN, "No interrupt irq: %s instance %d", 2261 ddi_get_name(dip), ddi_get_instance(dip)); 2262 return (-1); 2263 } 2264 mutex_exit(&airq_mutex); 2265 2266 } else if (intrp != NULL) { 2267 intr_index = (int)(intrp - apic_io_intrp); 2268 ioapic = intrp->intr_destid; 2269 ipin = intrp->intr_destintin; 2270 /* Find ioapicindex. If destid was ALL, we will exit with 0. */ 2271 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--) 2272 if (apic_io_id[ioapicindex] == ioapic) 2273 break; 2274 ASSERT((ioapic == apic_io_id[ioapicindex]) || 2275 (ioapic == INTR_ALL_APIC)); 2276 2277 /* check whether this intin# has been used by another irqno */ 2278 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) { 2279 return (newirq); 2280 } 2281 2282 } else if (intr_flagp != NULL) { 2283 /* ACPI case */ 2284 intr_index = ACPI_INDEX; 2285 ioapicindex = acpi_find_ioapic(irqno); 2286 ASSERT(ioapicindex != 0xFF); 2287 ioapic = apic_io_id[ioapicindex]; 2288 ipin = irqno - apic_io_vectbase[ioapicindex]; 2289 if (apic_irq_table[irqno] && 2290 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) { 2291 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin && 2292 apic_irq_table[irqno]->airq_ioapicindex == 2293 ioapicindex); 2294 return (irqno); 2295 } 2296 2297 } else { 2298 /* default configuration */ 2299 ioapicindex = 0; 2300 ioapic = apic_io_id[ioapicindex]; 2301 ipin = (uchar_t)irqno; 2302 intr_index = DEFAULT_INDEX; 2303 } 2304 2305 if (ispec == NULL) { 2306 APIC_VERBOSE_IOAPIC((CE_WARN, "No intrspec for irqno = %x\n", 2307 irqno)); 2308 } else if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) { 2309 if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index, 2310 ipl, ioapicindex, ipin, &irqptr)) != -1) { 2311 irqptr->airq_ipl = ipl; 2312 irqptr->airq_origirq = (uchar_t)origirq; 2313 irqptr->airq_dip = dip; 2314 irqptr->airq_major = major; 2315 sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip; 2316 /* This is OK to do really */ 2317 if (sdip == NULL) { 2318 cmn_err(CE_WARN, "Sharing vectors: %s" 2319 " instance %d and SCI", 2320 ddi_get_name(dip), ddi_get_instance(dip)); 2321 } else { 2322 cmn_err(CE_WARN, "Sharing vectors: %s" 2323 " instance %d and %s instance %d", 2324 ddi_get_name(sdip), ddi_get_instance(sdip), 2325 ddi_get_name(dip), ddi_get_instance(dip)); 2326 } 2327 return (newirq); 2328 } 2329 /* try high priority allocation now that share has failed */ 2330 if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) { 2331 cmn_err(CE_WARN, "No interrupt vector: %s instance %d", 2332 ddi_get_name(dip), ddi_get_instance(dip)); 2333 return (-1); 2334 } 2335 } 2336 2337 mutex_enter(&airq_mutex); 2338 if (apic_irq_table[irqno] == NULL) { 2339 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); 2340 irqptr->airq_temp_cpu = IRQ_UNINIT; 2341 apic_irq_table[irqno] = irqptr; 2342 } else { 2343 irqptr = apic_irq_table[irqno]; 2344 if (irqptr->airq_mps_intr_index != FREE_INDEX) { 2345 /* 2346 * The slot is used by another irqno, so allocate 2347 * a free irqno for this interrupt 2348 */ 2349 newirq = apic_allocate_irq(apic_first_avail_irq); 2350 if (newirq == -1) { 2351 mutex_exit(&airq_mutex); 2352 return (-1); 2353 } 2354 irqno = newirq; 2355 irqptr = apic_irq_table[irqno]; 2356 if (irqptr == NULL) { 2357 irqptr = kmem_zalloc(sizeof (apic_irq_t), 2358 KM_SLEEP); 2359 irqptr->airq_temp_cpu = IRQ_UNINIT; 2360 apic_irq_table[irqno] = irqptr; 2361 } 2362 vector = apic_modify_vector(vector, newirq); 2363 } 2364 } 2365 apic_max_device_irq = max(irqno, apic_max_device_irq); 2366 apic_min_device_irq = min(irqno, apic_min_device_irq); 2367 mutex_exit(&airq_mutex); 2368 irqptr->airq_ioapicindex = ioapicindex; 2369 irqptr->airq_intin_no = ipin; 2370 irqptr->airq_ipl = ipl; 2371 irqptr->airq_vector = vector; 2372 irqptr->airq_origirq = (uchar_t)origirq; 2373 irqptr->airq_share_id = 0; 2374 irqptr->airq_mps_intr_index = (short)intr_index; 2375 irqptr->airq_dip = dip; 2376 irqptr->airq_major = major; 2377 irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin); 2378 if (intr_flagp) 2379 irqptr->airq_iflag = *intr_flagp; 2380 2381 if (!DDI_INTR_IS_MSI_OR_MSIX(type)) { 2382 /* setup I/O APIC entry for non-MSI/X interrupts */ 2383 apic_record_rdt_entry(irqptr, irqno); 2384 } 2385 return (irqno); 2386 } 2387 2388 /* 2389 * return the cpu to which this intr should be bound. 2390 * Check properties or any other mechanism to see if user wants it 2391 * bound to a specific CPU. If so, return the cpu id with high bit set. 2392 * If not, use the policy to choose a cpu and return the id. 2393 */ 2394 uint32_t 2395 apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin) 2396 { 2397 int instance, instno, prop_len, bind_cpu, count; 2398 uint_t i, rc; 2399 uint32_t cpu; 2400 major_t major; 2401 char *name, *drv_name, *prop_val, *cptr; 2402 char prop_name[32]; 2403 2404 2405 if (apic_intr_policy == INTR_LOWEST_PRIORITY) 2406 return (IRQ_UNBOUND); 2407 2408 if (apic_nproc == 1) 2409 return (0); 2410 2411 drv_name = NULL; 2412 rc = DDI_PROP_NOT_FOUND; 2413 major = (major_t)-1; 2414 if (dip != NULL) { 2415 name = ddi_get_name(dip); 2416 major = ddi_name_to_major(name); 2417 drv_name = ddi_major_to_name(major); 2418 instance = ddi_get_instance(dip); 2419 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) { 2420 i = apic_min_device_irq; 2421 for (; i <= apic_max_device_irq; i++) { 2422 2423 if ((i == irq) || (apic_irq_table[i] == NULL) || 2424 (apic_irq_table[i]->airq_mps_intr_index 2425 == FREE_INDEX)) 2426 continue; 2427 2428 if ((apic_irq_table[i]->airq_major == major) && 2429 (!(apic_irq_table[i]->airq_cpu & 2430 IRQ_USER_BOUND))) { 2431 2432 cpu = apic_irq_table[i]->airq_cpu; 2433 2434 cmn_err(CE_CONT, 2435 "!%s: %s (%s) instance #%d " 2436 "irq 0x%x vector 0x%x ioapic 0x%x " 2437 "intin 0x%x is bound to cpu %d\n", 2438 psm_name, 2439 name, drv_name, instance, irq, 2440 apic_irq_table[irq]->airq_vector, 2441 ioapicid, intin, cpu); 2442 return (cpu); 2443 } 2444 } 2445 } 2446 /* 2447 * search for "drvname"_intpt_bind_cpus property first, the 2448 * syntax of the property should be "a[,b,c,...]" where 2449 * instance 0 binds to cpu a, instance 1 binds to cpu b, 2450 * instance 3 binds to cpu c... 2451 * ddi_getlongprop() will search /option first, then / 2452 * if "drvname"_intpt_bind_cpus doesn't exist, then find 2453 * intpt_bind_cpus property. The syntax is the same, and 2454 * it applies to all the devices if its "drvname" specific 2455 * property doesn't exist 2456 */ 2457 (void) strcpy(prop_name, drv_name); 2458 (void) strcat(prop_name, "_intpt_bind_cpus"); 2459 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name, 2460 (caddr_t)&prop_val, &prop_len); 2461 if (rc != DDI_PROP_SUCCESS) { 2462 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, 2463 "intpt_bind_cpus", (caddr_t)&prop_val, &prop_len); 2464 } 2465 } 2466 if (rc == DDI_PROP_SUCCESS) { 2467 for (i = count = 0; i < (prop_len - 1); i++) 2468 if (prop_val[i] == ',') 2469 count++; 2470 if (prop_val[i-1] != ',') 2471 count++; 2472 /* 2473 * if somehow the binding instances defined in the 2474 * property are not enough for this instno., then 2475 * reuse the pattern for the next instance until 2476 * it reaches the requested instno 2477 */ 2478 instno = instance % count; 2479 i = 0; 2480 cptr = prop_val; 2481 while (i < instno) 2482 if (*cptr++ == ',') 2483 i++; 2484 bind_cpu = stoi(&cptr); 2485 kmem_free(prop_val, prop_len); 2486 /* if specific cpu is bogus, then default to cpu 0 */ 2487 if (bind_cpu >= apic_nproc) { 2488 cmn_err(CE_WARN, "%s: %s=%s: CPU %d not present", 2489 psm_name, prop_name, prop_val, bind_cpu); 2490 bind_cpu = 0; 2491 } else { 2492 /* indicate that we are bound at user request */ 2493 bind_cpu |= IRQ_USER_BOUND; 2494 } 2495 /* 2496 * no need to check apic_cpus[].aci_status, if specific cpu is 2497 * not up, then post_cpu_start will handle it. 2498 */ 2499 } else { 2500 bind_cpu = apic_next_bind_cpu++; 2501 if (bind_cpu >= apic_nproc) { 2502 apic_next_bind_cpu = 1; 2503 bind_cpu = 0; 2504 } 2505 } 2506 if (drv_name != NULL) 2507 cmn_err(CE_CONT, "!%s: %s (%s) instance %d irq 0x%x " 2508 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n", 2509 psm_name, name, drv_name, instance, irq, 2510 apic_irq_table[irq]->airq_vector, ioapicid, intin, 2511 bind_cpu & ~IRQ_USER_BOUND); 2512 else 2513 cmn_err(CE_CONT, "!%s: irq 0x%x " 2514 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n", 2515 psm_name, irq, apic_irq_table[irq]->airq_vector, ioapicid, 2516 intin, bind_cpu & ~IRQ_USER_BOUND); 2517 2518 return ((uint32_t)bind_cpu); 2519 } 2520 2521 static struct apic_io_intr * 2522 apic_find_io_intr_w_busid(int irqno, int busid) 2523 { 2524 struct apic_io_intr *intrp; 2525 2526 /* 2527 * It can have more than 1 entry with same source bus IRQ, 2528 * but unique with the source bus id 2529 */ 2530 intrp = apic_io_intrp; 2531 if (intrp != NULL) { 2532 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 2533 if (intrp->intr_irq == irqno && 2534 intrp->intr_busid == busid && 2535 intrp->intr_type == IO_INTR_INT) 2536 return (intrp); 2537 intrp++; 2538 } 2539 } 2540 APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:" 2541 "busid %x:%x\n", irqno, busid)); 2542 return ((struct apic_io_intr *)NULL); 2543 } 2544 2545 2546 struct mps_bus_info { 2547 char *bus_name; 2548 int bus_id; 2549 } bus_info_array[] = { 2550 "ISA ", BUS_ISA, 2551 "PCI ", BUS_PCI, 2552 "EISA ", BUS_EISA, 2553 "XPRESS", BUS_XPRESS, 2554 "PCMCIA", BUS_PCMCIA, 2555 "VL ", BUS_VL, 2556 "CBUS ", BUS_CBUS, 2557 "CBUSII", BUS_CBUSII, 2558 "FUTURE", BUS_FUTURE, 2559 "INTERN", BUS_INTERN, 2560 "MBI ", BUS_MBI, 2561 "MBII ", BUS_MBII, 2562 "MPI ", BUS_MPI, 2563 "MPSA ", BUS_MPSA, 2564 "NUBUS ", BUS_NUBUS, 2565 "TC ", BUS_TC, 2566 "VME ", BUS_VME, 2567 "PCI-E ", BUS_PCIE 2568 }; 2569 2570 static int 2571 apic_find_bus_type(char *bus) 2572 { 2573 int i = 0; 2574 2575 for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++) 2576 if (strncmp(bus, bus_info_array[i].bus_name, 2577 strlen(bus_info_array[i].bus_name)) == 0) 2578 return (bus_info_array[i].bus_id); 2579 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus)); 2580 return (0); 2581 } 2582 2583 static int 2584 apic_find_bus(int busid) 2585 { 2586 struct apic_bus *busp; 2587 2588 busp = apic_busp; 2589 while (busp->bus_entry == APIC_BUS_ENTRY) { 2590 if (busp->bus_id == busid) 2591 return (apic_find_bus_type((char *)&busp->bus_str1)); 2592 busp++; 2593 } 2594 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid)); 2595 return (0); 2596 } 2597 2598 static int 2599 apic_find_bus_id(int bustype) 2600 { 2601 struct apic_bus *busp; 2602 2603 busp = apic_busp; 2604 while (busp->bus_entry == APIC_BUS_ENTRY) { 2605 if (apic_find_bus_type((char *)&busp->bus_str1) == bustype) 2606 return (busp->bus_id); 2607 busp++; 2608 } 2609 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x", 2610 bustype)); 2611 return (-1); 2612 } 2613 2614 /* 2615 * Check if a particular irq need to be reserved for any io_intr 2616 */ 2617 static struct apic_io_intr * 2618 apic_find_io_intr(int irqno) 2619 { 2620 struct apic_io_intr *intrp; 2621 2622 intrp = apic_io_intrp; 2623 if (intrp != NULL) { 2624 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 2625 if (intrp->intr_irq == irqno && 2626 intrp->intr_type == IO_INTR_INT) 2627 return (intrp); 2628 intrp++; 2629 } 2630 } 2631 return ((struct apic_io_intr *)NULL); 2632 } 2633 2634 /* 2635 * Check if the given ioapicindex intin combination has already been assigned 2636 * an irq. If so return irqno. Else -1 2637 */ 2638 static int 2639 apic_find_intin(uchar_t ioapic, uchar_t intin) 2640 { 2641 apic_irq_t *irqptr; 2642 int i; 2643 2644 /* find ioapic and intin in the apic_irq_table[] and return the index */ 2645 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 2646 irqptr = apic_irq_table[i]; 2647 while (irqptr) { 2648 if ((irqptr->airq_mps_intr_index >= 0) && 2649 (irqptr->airq_intin_no == intin) && 2650 (irqptr->airq_ioapicindex == ioapic)) { 2651 APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq " 2652 "entry for ioapic:intin %x:%x " 2653 "shared interrupts ?", ioapic, intin)); 2654 return (i); 2655 } 2656 irqptr = irqptr->airq_next; 2657 } 2658 } 2659 return (-1); 2660 } 2661 2662 int 2663 apic_allocate_irq(int irq) 2664 { 2665 int freeirq, i; 2666 2667 if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1) 2668 if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ, 2669 (irq - 1))) == -1) { 2670 /* 2671 * if BIOS really defines every single irq in the mps 2672 * table, then don't worry about conflicting with 2673 * them, just use any free slot in apic_irq_table 2674 */ 2675 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 2676 if ((apic_irq_table[i] == NULL) || 2677 apic_irq_table[i]->airq_mps_intr_index == 2678 FREE_INDEX) { 2679 freeirq = i; 2680 break; 2681 } 2682 } 2683 if (freeirq == -1) { 2684 /* This shouldn't happen, but just in case */ 2685 cmn_err(CE_WARN, "%s: NO available IRQ", psm_name); 2686 return (-1); 2687 } 2688 } 2689 if (apic_irq_table[freeirq] == NULL) { 2690 apic_irq_table[freeirq] = 2691 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); 2692 if (apic_irq_table[freeirq] == NULL) { 2693 cmn_err(CE_WARN, "%s: NO memory to allocate IRQ", 2694 psm_name); 2695 return (-1); 2696 } 2697 apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX; 2698 } 2699 return (freeirq); 2700 } 2701 2702 static int 2703 apic_find_free_irq(int start, int end) 2704 { 2705 int i; 2706 2707 for (i = start; i <= end; i++) 2708 /* Check if any I/O entry needs this IRQ */ 2709 if (apic_find_io_intr(i) == NULL) { 2710 /* Then see if it is free */ 2711 if ((apic_irq_table[i] == NULL) || 2712 (apic_irq_table[i]->airq_mps_intr_index == 2713 FREE_INDEX)) { 2714 return (i); 2715 } 2716 } 2717 return (-1); 2718 } 2719 2720 2721 /* 2722 * Mark vector as being in the process of being deleted. Interrupts 2723 * may still come in on some CPU. The moment an interrupt comes with 2724 * the new vector, we know we can free the old one. Called only from 2725 * addspl and delspl with interrupts disabled. Because an interrupt 2726 * can be shared, but no interrupt from either device may come in, 2727 * we also use a timeout mechanism, which we arbitrarily set to 2728 * apic_revector_timeout microseconds. 2729 */ 2730 static void 2731 apic_mark_vector(uchar_t oldvector, uchar_t newvector) 2732 { 2733 ulong_t iflag; 2734 2735 iflag = intr_clear(); 2736 lock_set(&apic_revector_lock); 2737 if (!apic_oldvec_to_newvec) { 2738 apic_oldvec_to_newvec = 2739 kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2, 2740 KM_NOSLEEP); 2741 2742 if (!apic_oldvec_to_newvec) { 2743 /* 2744 * This failure is not catastrophic. 2745 * But, the oldvec will never be freed. 2746 */ 2747 apic_error |= APIC_ERR_MARK_VECTOR_FAIL; 2748 lock_clear(&apic_revector_lock); 2749 intr_restore(iflag); 2750 return; 2751 } 2752 apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR]; 2753 } 2754 2755 /* See if we already did this for drivers which do double addintrs */ 2756 if (apic_oldvec_to_newvec[oldvector] != newvector) { 2757 apic_oldvec_to_newvec[oldvector] = newvector; 2758 apic_newvec_to_oldvec[newvector] = oldvector; 2759 apic_revector_pending++; 2760 } 2761 lock_clear(&apic_revector_lock); 2762 intr_restore(iflag); 2763 (void) timeout(apic_xlate_vector_free_timeout_handler, 2764 (void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout)); 2765 } 2766 2767 /* 2768 * xlate_vector is called from intr_enter if revector_pending is set. 2769 * It will xlate it if needed and mark the old vector as free. 2770 */ 2771 uchar_t 2772 apic_xlate_vector(uchar_t vector) 2773 { 2774 uchar_t newvector, oldvector = 0; 2775 2776 lock_set(&apic_revector_lock); 2777 /* Do we really need to do this ? */ 2778 if (!apic_revector_pending) { 2779 lock_clear(&apic_revector_lock); 2780 return (vector); 2781 } 2782 if ((newvector = apic_oldvec_to_newvec[vector]) != 0) 2783 oldvector = vector; 2784 else { 2785 /* 2786 * The incoming vector is new . See if a stale entry is 2787 * remaining 2788 */ 2789 if ((oldvector = apic_newvec_to_oldvec[vector]) != 0) 2790 newvector = vector; 2791 } 2792 2793 if (oldvector) { 2794 apic_revector_pending--; 2795 apic_oldvec_to_newvec[oldvector] = 0; 2796 apic_newvec_to_oldvec[newvector] = 0; 2797 apic_free_vector(oldvector); 2798 lock_clear(&apic_revector_lock); 2799 /* There could have been more than one reprogramming! */ 2800 return (apic_xlate_vector(newvector)); 2801 } 2802 lock_clear(&apic_revector_lock); 2803 return (vector); 2804 } 2805 2806 void 2807 apic_xlate_vector_free_timeout_handler(void *arg) 2808 { 2809 ulong_t iflag; 2810 uchar_t oldvector, newvector; 2811 2812 oldvector = (uchar_t)(uintptr_t)arg; 2813 iflag = intr_clear(); 2814 lock_set(&apic_revector_lock); 2815 if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) { 2816 apic_free_vector(oldvector); 2817 apic_oldvec_to_newvec[oldvector] = 0; 2818 apic_newvec_to_oldvec[newvector] = 0; 2819 apic_revector_pending--; 2820 } 2821 2822 lock_clear(&apic_revector_lock); 2823 intr_restore(iflag); 2824 } 2825 2826 2827 /* 2828 * compute the polarity, trigger mode and vector for programming into 2829 * the I/O apic and record in airq_rdt_entry. 2830 */ 2831 static void 2832 apic_record_rdt_entry(apic_irq_t *irqptr, int irq) 2833 { 2834 int ioapicindex, bus_type, vector; 2835 short intr_index; 2836 uint_t level, po, io_po; 2837 struct apic_io_intr *iointrp; 2838 2839 intr_index = irqptr->airq_mps_intr_index; 2840 DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d " 2841 "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq, 2842 (void *)irqptr->airq_dip, irqptr->airq_vector)); 2843 2844 if (intr_index == RESERVE_INDEX) { 2845 apic_error |= APIC_ERR_INVALID_INDEX; 2846 return; 2847 } else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) { 2848 return; 2849 } 2850 2851 vector = irqptr->airq_vector; 2852 ioapicindex = irqptr->airq_ioapicindex; 2853 /* Assume edge triggered by default */ 2854 level = 0; 2855 /* Assume active high by default */ 2856 po = 0; 2857 2858 if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) { 2859 ASSERT(irq < 16); 2860 if (eisa_level_intr_mask & (1 << irq)) 2861 level = AV_LEVEL; 2862 if (intr_index == FREE_INDEX && apic_defconf == 0) 2863 apic_error |= APIC_ERR_INVALID_INDEX; 2864 } else if (intr_index == ACPI_INDEX) { 2865 bus_type = irqptr->airq_iflag.bustype; 2866 if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) { 2867 if (bus_type == BUS_PCI) 2868 level = AV_LEVEL; 2869 } else 2870 level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ? 2871 AV_LEVEL : 0; 2872 if (level && 2873 ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) || 2874 (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM && 2875 bus_type == BUS_PCI))) 2876 po = AV_ACTIVE_LOW; 2877 } else { 2878 iointrp = apic_io_intrp + intr_index; 2879 bus_type = apic_find_bus(iointrp->intr_busid); 2880 if (iointrp->intr_el == INTR_EL_CONFORM) { 2881 if ((irq < 16) && (eisa_level_intr_mask & (1 << irq))) 2882 level = AV_LEVEL; 2883 else if (bus_type == BUS_PCI) 2884 level = AV_LEVEL; 2885 } else 2886 level = (iointrp->intr_el == INTR_EL_LEVEL) ? 2887 AV_LEVEL : 0; 2888 if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) || 2889 (iointrp->intr_po == INTR_PO_CONFORM && 2890 bus_type == BUS_PCI))) 2891 po = AV_ACTIVE_LOW; 2892 } 2893 if (level) 2894 apic_level_intr[irq] = 1; 2895 /* 2896 * The 82489DX External APIC cannot do active low polarity interrupts. 2897 */ 2898 if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX)) 2899 io_po = po; 2900 else 2901 io_po = 0; 2902 2903 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) 2904 printf("setio: ioapic=%x intin=%x level=%x po=%x vector=%x\n", 2905 ioapicindex, irqptr->airq_intin_no, level, io_po, vector); 2906 2907 irqptr->airq_rdt_entry = level|io_po|vector; 2908 } 2909 2910 /* 2911 * Bind interrupt corresponding to irq_ptr to bind_cpu. 2912 * Must be called with interrupts disabled and apic_ioapic_lock held 2913 */ 2914 int 2915 apic_rebind(apic_irq_t *irq_ptr, int bind_cpu, 2916 struct ioapic_reprogram_data *drep) 2917 { 2918 int ioapicindex, intin_no; 2919 uint32_t airq_temp_cpu; 2920 apic_cpus_info_t *cpu_infop; 2921 uint32_t rdt_entry; 2922 int which_irq; 2923 ioapic_rdt_t irdt; 2924 2925 which_irq = apic_vector_to_irq[irq_ptr->airq_vector]; 2926 2927 intin_no = irq_ptr->airq_intin_no; 2928 ioapicindex = irq_ptr->airq_ioapicindex; 2929 airq_temp_cpu = irq_ptr->airq_temp_cpu; 2930 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) { 2931 if (airq_temp_cpu & IRQ_USER_BOUND) 2932 /* Mask off high bit so it can be used as array index */ 2933 airq_temp_cpu &= ~IRQ_USER_BOUND; 2934 2935 ASSERT(airq_temp_cpu < apic_nproc); 2936 } 2937 2938 /* 2939 * Can't bind to a CPU that's not accepting interrupts: 2940 */ 2941 cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND]; 2942 if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE)) 2943 return (1); 2944 2945 /* 2946 * If we are about to change the interrupt vector for this interrupt, 2947 * and this interrupt is level-triggered, attached to an IOAPIC, 2948 * has been delivered to a CPU and that CPU has not handled it 2949 * yet, we cannot reprogram the IOAPIC now. 2950 */ 2951 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) { 2952 2953 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, 2954 intin_no); 2955 2956 if ((irq_ptr->airq_vector != RDT_VECTOR(rdt_entry)) && 2957 apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu, 2958 bind_cpu, ioapicindex, intin_no, which_irq, drep) != 0) { 2959 2960 return (0); 2961 } 2962 2963 /* 2964 * NOTE: We do not unmask the RDT here, as an interrupt MAY 2965 * still come in before we have a chance to reprogram it below. 2966 * The reprogramming below will simultaneously change and 2967 * unmask the RDT entry. 2968 */ 2969 2970 if ((uint32_t)bind_cpu == IRQ_UNBOUND) { 2971 irdt.ir_lo = AV_LDEST | AV_LOPRI | 2972 irq_ptr->airq_rdt_entry; 2973 #if !defined(__xpv) 2974 irdt.ir_hi = AV_TOALL >> APIC_ID_BIT_OFFSET; 2975 2976 apic_vt_ops->apic_intrr_alloc_entry(irq_ptr); 2977 apic_vt_ops->apic_intrr_map_entry( 2978 irq_ptr, (void *)&irdt); 2979 apic_vt_ops->apic_intrr_record_rdt(irq_ptr, &irdt); 2980 2981 /* Write the RDT entry -- no specific CPU binding */ 2982 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 2983 irdt.ir_hi | AV_TOALL); 2984 #else 2985 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 2986 AV_TOALL); 2987 #endif 2988 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != 2989 IRQ_UNBOUND) 2990 apic_cpus[airq_temp_cpu].aci_temp_bound--; 2991 2992 /* 2993 * Write the vector, trigger, and polarity portion of 2994 * the RDT 2995 */ 2996 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no, 2997 irdt.ir_lo); 2998 2999 irq_ptr->airq_temp_cpu = IRQ_UNBOUND; 3000 return (0); 3001 } 3002 } 3003 3004 if (bind_cpu & IRQ_USER_BOUND) { 3005 cpu_infop->aci_bound++; 3006 } else { 3007 cpu_infop->aci_temp_bound++; 3008 } 3009 ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc); 3010 3011 if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) { 3012 apic_cpus[airq_temp_cpu].aci_temp_bound--; 3013 } 3014 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) { 3015 3016 irdt.ir_lo = AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry; 3017 irdt.ir_hi = cpu_infop->aci_local_id; 3018 3019 #if !defined(__xpv) 3020 apic_vt_ops->apic_intrr_alloc_entry(irq_ptr); 3021 apic_vt_ops->apic_intrr_map_entry(irq_ptr, (void *)&irdt); 3022 apic_vt_ops->apic_intrr_record_rdt(irq_ptr, &irdt); 3023 3024 /* Write the RDT entry -- bind to a specific CPU: */ 3025 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 3026 irdt.ir_hi); 3027 #else 3028 /* Write the RDT entry -- bind to a specific CPU: */ 3029 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 3030 irdt.ir_hi << APIC_ID_BIT_OFFSET); 3031 #endif 3032 /* Write the vector, trigger, and polarity portion of the RDT */ 3033 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no, 3034 irdt.ir_lo); 3035 3036 } else { 3037 int type = (irq_ptr->airq_mps_intr_index == MSI_INDEX) ? 3038 DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX; 3039 if (type == DDI_INTR_TYPE_MSI) { 3040 if (irq_ptr->airq_ioapicindex == 3041 irq_ptr->airq_origirq) { 3042 /* first one */ 3043 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call " 3044 "apic_pci_msi_enable_vector\n")); 3045 apic_pci_msi_enable_vector(irq_ptr, 3046 type, which_irq, irq_ptr->airq_vector, 3047 irq_ptr->airq_intin_no, 3048 cpu_infop->aci_local_id); 3049 } 3050 if ((irq_ptr->airq_ioapicindex + 3051 irq_ptr->airq_intin_no - 1) == 3052 irq_ptr->airq_origirq) { /* last one */ 3053 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call " 3054 "apic_pci_msi_enable_mode\n")); 3055 apic_pci_msi_enable_mode(irq_ptr->airq_dip, 3056 type, which_irq); 3057 } 3058 } else { /* MSI-X */ 3059 apic_pci_msi_enable_vector(irq_ptr, type, 3060 irq_ptr->airq_origirq, irq_ptr->airq_vector, 1, 3061 cpu_infop->aci_local_id); 3062 apic_pci_msi_enable_mode(irq_ptr->airq_dip, type, 3063 irq_ptr->airq_origirq); 3064 } 3065 } 3066 irq_ptr->airq_temp_cpu = (uint32_t)bind_cpu; 3067 apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND)); 3068 return (0); 3069 } 3070 3071 static void 3072 apic_last_ditch_clear_remote_irr(int ioapic_ix, int intin_no) 3073 { 3074 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) 3075 & AV_REMOTE_IRR) != 0) { 3076 /* 3077 * Trying to clear the bit through normal 3078 * channels has failed. So as a last-ditch 3079 * effort, try to set the trigger mode to 3080 * edge, then to level. This has been 3081 * observed to work on many systems. 3082 */ 3083 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3084 intin_no, 3085 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3086 intin_no) & ~AV_LEVEL); 3087 3088 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3089 intin_no, 3090 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3091 intin_no) | AV_LEVEL); 3092 3093 /* 3094 * If the bit's STILL set, this interrupt may 3095 * be hosed. 3096 */ 3097 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3098 intin_no) & AV_REMOTE_IRR) != 0) { 3099 3100 prom_printf("%s: Remote IRR still " 3101 "not clear for IOAPIC %d intin %d.\n" 3102 "\tInterrupts to this pin may cease " 3103 "functioning.\n", psm_name, ioapic_ix, 3104 intin_no); 3105 #ifdef DEBUG 3106 apic_last_ditch_reprogram_failures++; 3107 #endif 3108 } 3109 } 3110 } 3111 3112 /* 3113 * This function is protected by apic_ioapic_lock coupled with the 3114 * fact that interrupts are disabled. 3115 */ 3116 static void 3117 delete_defer_repro_ent(int which_irq) 3118 { 3119 ASSERT(which_irq >= 0); 3120 ASSERT(which_irq <= 255); 3121 3122 if (apic_reprogram_info[which_irq].done) 3123 return; 3124 3125 apic_reprogram_info[which_irq].done = B_TRUE; 3126 3127 #ifdef DEBUG 3128 apic_defer_repro_total_retries += 3129 apic_reprogram_info[which_irq].tries; 3130 3131 apic_defer_repro_successes++; 3132 #endif 3133 3134 if (--apic_reprogram_outstanding == 0) { 3135 3136 setlvlx = psm_intr_exit_fn(); 3137 } 3138 } 3139 3140 3141 /* 3142 * Interrupts must be disabled during this function to prevent 3143 * self-deadlock. Interrupts are disabled because this function 3144 * is called from apic_check_stuck_interrupt(), which is called 3145 * from apic_rebind(), which requires its caller to disable interrupts. 3146 */ 3147 static void 3148 add_defer_repro_ent(apic_irq_t *irq_ptr, int which_irq, int new_bind_cpu) 3149 { 3150 ASSERT(which_irq >= 0); 3151 ASSERT(which_irq <= 255); 3152 3153 /* 3154 * On the off-chance that there's already a deferred 3155 * reprogramming on this irq, check, and if so, just update the 3156 * CPU and irq pointer to which the interrupt is targeted, then return. 3157 */ 3158 if (!apic_reprogram_info[which_irq].done) { 3159 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu; 3160 apic_reprogram_info[which_irq].irqp = irq_ptr; 3161 return; 3162 } 3163 3164 apic_reprogram_info[which_irq].irqp = irq_ptr; 3165 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu; 3166 apic_reprogram_info[which_irq].tries = 0; 3167 /* 3168 * This must be the last thing set, since we're not 3169 * grabbing any locks, apic_try_deferred_reprogram() will 3170 * make its decision about using this entry iff done 3171 * is false. 3172 */ 3173 apic_reprogram_info[which_irq].done = B_FALSE; 3174 3175 /* 3176 * If there were previously no deferred reprogrammings, change 3177 * setlvlx to call apic_try_deferred_reprogram() 3178 */ 3179 if (++apic_reprogram_outstanding == 1) { 3180 3181 setlvlx = apic_try_deferred_reprogram; 3182 } 3183 } 3184 3185 static void 3186 apic_try_deferred_reprogram(int prev_ipl, int irq) 3187 { 3188 int reproirq; 3189 ulong_t iflag; 3190 struct ioapic_reprogram_data *drep; 3191 3192 (*psm_intr_exit_fn())(prev_ipl, irq); 3193 3194 if (!lock_try(&apic_defer_reprogram_lock)) { 3195 return; 3196 } 3197 3198 /* 3199 * Acquire the apic_ioapic_lock so that any other operations that 3200 * may affect the apic_reprogram_info state are serialized. 3201 * It's still possible for the last deferred reprogramming to clear 3202 * between the time we entered this function and the time we get to 3203 * the for loop below. In that case, *setlvlx will have been set 3204 * back to *_intr_exit and drep will be NULL. (There's no way to 3205 * stop that from happening -- we would need to grab a lock before 3206 * calling *setlvlx, which is neither realistic nor prudent). 3207 */ 3208 iflag = intr_clear(); 3209 lock_set(&apic_ioapic_lock); 3210 3211 /* 3212 * For each deferred RDT entry, try to reprogram it now. Note that 3213 * there is no lock acquisition to read apic_reprogram_info because 3214 * '.done' is set only after the other fields in the structure are set. 3215 */ 3216 3217 drep = NULL; 3218 for (reproirq = 0; reproirq <= APIC_MAX_VECTOR; reproirq++) { 3219 if (apic_reprogram_info[reproirq].done == B_FALSE) { 3220 drep = &apic_reprogram_info[reproirq]; 3221 break; 3222 } 3223 } 3224 3225 /* 3226 * Either we found a deferred action to perform, or 3227 * we entered this function spuriously, after *setlvlx 3228 * was restored to point to *_intr_exit. Any other 3229 * permutation is invalid. 3230 */ 3231 ASSERT(drep != NULL || *setlvlx == psm_intr_exit_fn()); 3232 3233 /* 3234 * Though we can't really do anything about errors 3235 * at this point, keep track of them for reporting. 3236 * Note that it is very possible for apic_setup_io_intr 3237 * to re-register this very timeout if the Remote IRR bit 3238 * has not yet cleared. 3239 */ 3240 3241 #ifdef DEBUG 3242 if (drep != NULL) { 3243 if (apic_setup_io_intr(drep, reproirq, B_TRUE) != 0) { 3244 apic_deferred_setup_failures++; 3245 } 3246 } else { 3247 apic_deferred_spurious_enters++; 3248 } 3249 #else 3250 if (drep != NULL) 3251 (void) apic_setup_io_intr(drep, reproirq, B_TRUE); 3252 #endif 3253 3254 lock_clear(&apic_ioapic_lock); 3255 intr_restore(iflag); 3256 3257 lock_clear(&apic_defer_reprogram_lock); 3258 } 3259 3260 static void 3261 apic_ioapic_wait_pending_clear(int ioapic_ix, int intin_no) 3262 { 3263 int waited; 3264 3265 /* 3266 * Wait for the delivery pending bit to clear. 3267 */ 3268 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & 3269 (AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) { 3270 3271 /* 3272 * If we're still waiting on the delivery of this interrupt, 3273 * continue to wait here until it is delivered (this should be 3274 * a very small amount of time, but include a timeout just in 3275 * case). 3276 */ 3277 for (waited = 0; waited < apic_max_reps_clear_pending; 3278 waited++) { 3279 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3280 intin_no) & AV_PENDING) == 0) { 3281 break; 3282 } 3283 } 3284 } 3285 } 3286 3287 3288 /* 3289 * Checks to see if the IOAPIC interrupt entry specified has its Remote IRR 3290 * bit set. Calls functions that modify the function that setlvlx points to, 3291 * so that the reprogramming can be retried very shortly. 3292 * 3293 * This function will mask the RDT entry if the interrupt is level-triggered. 3294 * (The caller is responsible for unmasking the RDT entry.) 3295 * 3296 * Returns non-zero if the caller should defer IOAPIC reprogramming. 3297 */ 3298 static int 3299 apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu, 3300 int new_bind_cpu, int ioapic_ix, int intin_no, int which_irq, 3301 struct ioapic_reprogram_data *drep) 3302 { 3303 int32_t rdt_entry; 3304 int waited; 3305 int reps = 0; 3306 3307 /* 3308 * Wait for the delivery pending bit to clear. 3309 */ 3310 do { 3311 ++reps; 3312 3313 apic_ioapic_wait_pending_clear(ioapic_ix, intin_no); 3314 3315 /* 3316 * Mask the RDT entry, but only if it's a level-triggered 3317 * interrupt 3318 */ 3319 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3320 intin_no); 3321 if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) { 3322 3323 /* Mask it */ 3324 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, 3325 AV_MASK | rdt_entry); 3326 } 3327 3328 if ((rdt_entry & AV_LEVEL) == AV_LEVEL) { 3329 /* 3330 * If there was a race and an interrupt was injected 3331 * just before we masked, check for that case here. 3332 * Then, unmask the RDT entry and try again. If we're 3333 * on our last try, don't unmask (because we want the 3334 * RDT entry to remain masked for the rest of the 3335 * function). 3336 */ 3337 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3338 intin_no); 3339 if ((rdt_entry & AV_PENDING) && 3340 (reps < apic_max_reps_clear_pending)) { 3341 /* Unmask it */ 3342 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3343 intin_no, rdt_entry & ~AV_MASK); 3344 } 3345 } 3346 3347 } while ((rdt_entry & AV_PENDING) && 3348 (reps < apic_max_reps_clear_pending)); 3349 3350 #ifdef DEBUG 3351 if (rdt_entry & AV_PENDING) 3352 apic_intr_deliver_timeouts++; 3353 #endif 3354 3355 /* 3356 * If the remote IRR bit is set, then the interrupt has been sent 3357 * to a CPU for processing. We have no choice but to wait for 3358 * that CPU to process the interrupt, at which point the remote IRR 3359 * bit will be cleared. 3360 */ 3361 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & 3362 (AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) { 3363 3364 /* 3365 * If the CPU that this RDT is bound to is NOT the current 3366 * CPU, wait until that CPU handles the interrupt and ACKs 3367 * it. If this interrupt is not bound to any CPU (that is, 3368 * if it's bound to the logical destination of "anyone"), it 3369 * may have been delivered to the current CPU so handle that 3370 * case by deferring the reprogramming (below). 3371 */ 3372 if ((old_bind_cpu != IRQ_UNBOUND) && 3373 (old_bind_cpu != IRQ_UNINIT) && 3374 (old_bind_cpu != psm_get_cpu_id())) { 3375 for (waited = 0; waited < apic_max_reps_clear_pending; 3376 waited++) { 3377 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3378 intin_no) & AV_REMOTE_IRR) == 0) { 3379 3380 delete_defer_repro_ent(which_irq); 3381 3382 /* Remote IRR has cleared! */ 3383 return (0); 3384 } 3385 } 3386 } 3387 3388 /* 3389 * If we waited and the Remote IRR bit is still not cleared, 3390 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS 3391 * times for this interrupt, try the last-ditch workaround: 3392 */ 3393 if (drep && drep->tries >= APIC_REPROGRAM_MAX_TRIES) { 3394 3395 apic_last_ditch_clear_remote_irr(ioapic_ix, intin_no); 3396 3397 /* Mark this one as reprogrammed: */ 3398 delete_defer_repro_ent(which_irq); 3399 3400 return (0); 3401 } else { 3402 #ifdef DEBUG 3403 apic_intr_deferrals++; 3404 #endif 3405 3406 /* 3407 * If waiting for the Remote IRR bit (above) didn't 3408 * allow it to clear, defer the reprogramming. 3409 * Add a new deferred-programming entry if the 3410 * caller passed a NULL one (and update the existing one 3411 * in case anything changed). 3412 */ 3413 add_defer_repro_ent(irq_ptr, which_irq, new_bind_cpu); 3414 if (drep) 3415 drep->tries++; 3416 3417 /* Inform caller to defer IOAPIC programming: */ 3418 return (1); 3419 } 3420 3421 } 3422 3423 /* Remote IRR is clear */ 3424 delete_defer_repro_ent(which_irq); 3425 3426 return (0); 3427 } 3428 3429 /* 3430 * Called to migrate all interrupts at an irq to another cpu. 3431 * Must be called with interrupts disabled and apic_ioapic_lock held 3432 */ 3433 int 3434 apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu) 3435 { 3436 apic_irq_t *irqptr = irq_ptr; 3437 int retval = 0; 3438 3439 while (irqptr) { 3440 if (irqptr->airq_temp_cpu != IRQ_UNINIT) 3441 retval |= apic_rebind(irqptr, bind_cpu, NULL); 3442 irqptr = irqptr->airq_next; 3443 } 3444 3445 return (retval); 3446 } 3447 3448 /* 3449 * apic_intr_redistribute does all the messy computations for identifying 3450 * which interrupt to move to which CPU. Currently we do just one interrupt 3451 * at a time. This reduces the time we spent doing all this within clock 3452 * interrupt. When it is done in idle, we could do more than 1. 3453 * First we find the most busy and the most free CPU (time in ISR only) 3454 * skipping those CPUs that has been identified as being ineligible (cpu_skip) 3455 * Then we look for IRQs which are closest to the difference between the 3456 * most busy CPU and the average ISR load. We try to find one whose load 3457 * is less than difference.If none exists, then we chose one larger than the 3458 * difference, provided it does not make the most idle CPU worse than the 3459 * most busy one. In the end, we clear all the busy fields for CPUs. For 3460 * IRQs, they are cleared as they are scanned. 3461 */ 3462 void 3463 apic_intr_redistribute() 3464 { 3465 int busiest_cpu, most_free_cpu; 3466 int cpu_free, cpu_busy, max_busy, min_busy; 3467 int min_free, diff; 3468 int average_busy, cpus_online; 3469 int i, busy; 3470 ulong_t iflag; 3471 apic_cpus_info_t *cpu_infop; 3472 apic_irq_t *min_busy_irq = NULL; 3473 apic_irq_t *max_busy_irq = NULL; 3474 3475 busiest_cpu = most_free_cpu = -1; 3476 cpu_free = cpu_busy = max_busy = average_busy = 0; 3477 min_free = apic_sample_factor_redistribution; 3478 cpus_online = 0; 3479 /* 3480 * Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu 3481 * without ioapic_lock. That is OK as we are just doing statistical 3482 * sampling anyway and any inaccuracy now will get corrected next time 3483 * The call to rebind which actually changes things will make sure 3484 * we are consistent. 3485 */ 3486 for (i = 0; i < apic_nproc; i++) { 3487 if (!(apic_redist_cpu_skip & (1 << i)) && 3488 (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) { 3489 3490 cpu_infop = &apic_cpus[i]; 3491 /* 3492 * If no unbound interrupts or only 1 total on this 3493 * CPU, skip 3494 */ 3495 if (!cpu_infop->aci_temp_bound || 3496 (cpu_infop->aci_bound + cpu_infop->aci_temp_bound) 3497 == 1) { 3498 apic_redist_cpu_skip |= 1 << i; 3499 continue; 3500 } 3501 3502 busy = cpu_infop->aci_busy; 3503 average_busy += busy; 3504 cpus_online++; 3505 if (max_busy < busy) { 3506 max_busy = busy; 3507 busiest_cpu = i; 3508 } 3509 if (min_free > busy) { 3510 min_free = busy; 3511 most_free_cpu = i; 3512 } 3513 if (busy > apic_int_busy_mark) { 3514 cpu_busy |= 1 << i; 3515 } else { 3516 if (busy < apic_int_free_mark) 3517 cpu_free |= 1 << i; 3518 } 3519 } 3520 } 3521 if ((cpu_busy && cpu_free) || 3522 (max_busy >= (min_free + apic_diff_for_redistribution))) { 3523 3524 apic_num_imbalance++; 3525 #ifdef DEBUG 3526 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { 3527 prom_printf( 3528 "redistribute busy=%x free=%x max=%x min=%x", 3529 cpu_busy, cpu_free, max_busy, min_free); 3530 } 3531 #endif /* DEBUG */ 3532 3533 3534 average_busy /= cpus_online; 3535 3536 diff = max_busy - average_busy; 3537 min_busy = max_busy; /* start with the max possible value */ 3538 max_busy = 0; 3539 min_busy_irq = max_busy_irq = NULL; 3540 i = apic_min_device_irq; 3541 for (; i <= apic_max_device_irq; i++) { 3542 apic_irq_t *irq_ptr; 3543 /* Change to linked list per CPU ? */ 3544 if ((irq_ptr = apic_irq_table[i]) == NULL) 3545 continue; 3546 /* Check for irq_busy & decide which one to move */ 3547 /* Also zero them for next round */ 3548 if ((irq_ptr->airq_temp_cpu == busiest_cpu) && 3549 irq_ptr->airq_busy) { 3550 if (irq_ptr->airq_busy < diff) { 3551 /* 3552 * Check for least busy CPU, 3553 * best fit or what ? 3554 */ 3555 if (max_busy < irq_ptr->airq_busy) { 3556 /* 3557 * Most busy within the 3558 * required differential 3559 */ 3560 max_busy = irq_ptr->airq_busy; 3561 max_busy_irq = irq_ptr; 3562 } 3563 } else { 3564 if (min_busy > irq_ptr->airq_busy) { 3565 /* 3566 * least busy, but more than 3567 * the reqd diff 3568 */ 3569 if (min_busy < 3570 (diff + average_busy - 3571 min_free)) { 3572 /* 3573 * Making sure new cpu 3574 * will not end up 3575 * worse 3576 */ 3577 min_busy = 3578 irq_ptr->airq_busy; 3579 3580 min_busy_irq = irq_ptr; 3581 } 3582 } 3583 } 3584 } 3585 irq_ptr->airq_busy = 0; 3586 } 3587 3588 if (max_busy_irq != NULL) { 3589 #ifdef DEBUG 3590 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { 3591 prom_printf("rebinding %x to %x", 3592 max_busy_irq->airq_vector, most_free_cpu); 3593 } 3594 #endif /* DEBUG */ 3595 iflag = intr_clear(); 3596 if (lock_try(&apic_ioapic_lock)) { 3597 if (apic_rebind_all(max_busy_irq, 3598 most_free_cpu) == 0) { 3599 /* Make change permenant */ 3600 max_busy_irq->airq_cpu = 3601 (uint32_t)most_free_cpu; 3602 } 3603 lock_clear(&apic_ioapic_lock); 3604 } 3605 intr_restore(iflag); 3606 3607 } else if (min_busy_irq != NULL) { 3608 #ifdef DEBUG 3609 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { 3610 prom_printf("rebinding %x to %x", 3611 min_busy_irq->airq_vector, most_free_cpu); 3612 } 3613 #endif /* DEBUG */ 3614 3615 iflag = intr_clear(); 3616 if (lock_try(&apic_ioapic_lock)) { 3617 if (apic_rebind_all(min_busy_irq, 3618 most_free_cpu) == 0) { 3619 /* Make change permenant */ 3620 min_busy_irq->airq_cpu = 3621 (uint32_t)most_free_cpu; 3622 } 3623 lock_clear(&apic_ioapic_lock); 3624 } 3625 intr_restore(iflag); 3626 3627 } else { 3628 if (cpu_busy != (1 << busiest_cpu)) { 3629 apic_redist_cpu_skip |= 1 << busiest_cpu; 3630 /* 3631 * We leave cpu_skip set so that next time we 3632 * can choose another cpu 3633 */ 3634 } 3635 } 3636 apic_num_rebind++; 3637 } else { 3638 /* 3639 * found nothing. Could be that we skipped over valid CPUs 3640 * or we have balanced everything. If we had a variable 3641 * ticks_for_redistribution, it could be increased here. 3642 * apic_int_busy, int_free etc would also need to be 3643 * changed. 3644 */ 3645 if (apic_redist_cpu_skip) 3646 apic_redist_cpu_skip = 0; 3647 } 3648 for (i = 0; i < apic_nproc; i++) { 3649 apic_cpus[i].aci_busy = 0; 3650 } 3651 } 3652 3653 void 3654 apic_cleanup_busy() 3655 { 3656 int i; 3657 apic_irq_t *irq_ptr; 3658 3659 for (i = 0; i < apic_nproc; i++) { 3660 apic_cpus[i].aci_busy = 0; 3661 } 3662 3663 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 3664 if ((irq_ptr = apic_irq_table[i]) != NULL) 3665 irq_ptr->airq_busy = 0; 3666 } 3667 } 3668 3669 3670 static int 3671 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 3672 int ipin, int *pci_irqp, iflag_t *intr_flagp) 3673 { 3674 3675 int status; 3676 acpi_psm_lnk_t acpipsmlnk; 3677 3678 if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp, 3679 intr_flagp)) == ACPI_PSM_SUCCESS) { 3680 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d " 3681 "from cache for device %s, instance #%d\n", psm_name, 3682 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 3683 return (status); 3684 } 3685 3686 bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t)); 3687 3688 if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp, 3689 &acpipsmlnk)) == ACPI_PSM_FAILURE) { 3690 APIC_VERBOSE_IRQ((CE_WARN, "%s: " 3691 " acpi_translate_pci_irq failed for device %s, instance" 3692 " #%d", psm_name, ddi_get_name(dip), 3693 ddi_get_instance(dip))); 3694 return (status); 3695 } 3696 3697 if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) { 3698 status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp, 3699 intr_flagp); 3700 if (status != ACPI_PSM_SUCCESS) { 3701 status = acpi_get_current_irq_resource(&acpipsmlnk, 3702 pci_irqp, intr_flagp); 3703 } 3704 } 3705 3706 if (status == ACPI_PSM_SUCCESS) { 3707 acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp, 3708 intr_flagp, &acpipsmlnk); 3709 3710 APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] " 3711 "new irq %d for device %s, instance #%d\n", psm_name, 3712 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 3713 } 3714 3715 return (status); 3716 } 3717 3718 /* 3719 * Adds an entry to the irq list passed in, and returns the new list. 3720 * Entries are added in priority order (lower numerical priorities are 3721 * placed closer to the head of the list) 3722 */ 3723 static prs_irq_list_t * 3724 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq, 3725 iflag_t *iflagp, acpi_prs_private_t *prsprvp) 3726 { 3727 struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp; 3728 3729 newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP); 3730 3731 newent->list_prio = priority; 3732 newent->irq = irq; 3733 newent->intrflags = *iflagp; 3734 newent->prsprv = *prsprvp; 3735 /* ->next is NULL from kmem_zalloc */ 3736 3737 /* 3738 * New list -- return the new entry as the list. 3739 */ 3740 if (listp == NULL) 3741 return (newent); 3742 3743 /* 3744 * Save original list pointer for return (since we're not modifying 3745 * the head) 3746 */ 3747 origlistp = listp; 3748 3749 /* 3750 * Insertion sort, with entries with identical keys stored AFTER 3751 * existing entries (the less-than-or-equal test of priority does 3752 * this for us). 3753 */ 3754 while (listp != NULL && listp->list_prio <= priority) { 3755 prevp = listp; 3756 listp = listp->next; 3757 } 3758 3759 newent->next = listp; 3760 3761 if (prevp == NULL) { /* Add at head of list (newent is the new head) */ 3762 return (newent); 3763 } else { 3764 prevp->next = newent; 3765 return (origlistp); 3766 } 3767 } 3768 3769 /* 3770 * Frees the list passed in, deallocating all memory and leaving *listpp 3771 * set to NULL. 3772 */ 3773 static void 3774 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp) 3775 { 3776 struct prs_irq_list_ent *nextp; 3777 3778 ASSERT(listpp != NULL); 3779 3780 while (*listpp != NULL) { 3781 nextp = (*listpp)->next; 3782 kmem_free(*listpp, sizeof (struct prs_irq_list_ent)); 3783 *listpp = nextp; 3784 } 3785 } 3786 3787 /* 3788 * apic_choose_irqs_from_prs returns a list of irqs selected from the list of 3789 * irqs returned by the link device's _PRS method. The irqs are chosen 3790 * to minimize contention in situations where the interrupt link device 3791 * can be programmed to steer interrupts to different interrupt controller 3792 * inputs (some of which may already be in use). The list is sorted in order 3793 * of irqs to use, with the highest priority given to interrupt controller 3794 * inputs that are not shared. When an interrupt controller input 3795 * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the 3796 * returned list in the order that minimizes sharing (thereby ensuring lowest 3797 * possible latency from interrupt trigger time to ISR execution time). 3798 */ 3799 static prs_irq_list_t * 3800 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip, 3801 int crs_irq) 3802 { 3803 int32_t irq; 3804 int i; 3805 prs_irq_list_t *prsirqlistp = NULL; 3806 iflag_t iflags; 3807 3808 while (irqlistent != NULL) { 3809 irqlistent->intr_flags.bustype = BUS_PCI; 3810 3811 for (i = 0; i < irqlistent->num_irqs; i++) { 3812 3813 irq = irqlistent->irqs[i]; 3814 3815 if (irq <= 0) { 3816 /* invalid irq number */ 3817 continue; 3818 } 3819 3820 if ((irq < 16) && (apic_reserved_irqlist[irq])) 3821 continue; 3822 3823 if ((apic_irq_table[irq] == NULL) || 3824 (apic_irq_table[irq]->airq_dip == dip)) { 3825 3826 prsirqlistp = acpi_insert_prs_irq_ent( 3827 prsirqlistp, 0 /* Highest priority */, irq, 3828 &irqlistent->intr_flags, 3829 &irqlistent->acpi_prs_prv); 3830 3831 /* 3832 * If we do not prefer the current irq from _CRS 3833 * or if we do and this irq is the same as the 3834 * current irq from _CRS, this is the one 3835 * to pick. 3836 */ 3837 if (!(apic_prefer_crs) || (irq == crs_irq)) { 3838 return (prsirqlistp); 3839 } 3840 continue; 3841 } 3842 3843 /* 3844 * Edge-triggered interrupts cannot be shared 3845 */ 3846 if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE) 3847 continue; 3848 3849 /* 3850 * To work around BIOSes that contain incorrect 3851 * interrupt polarity information in interrupt 3852 * descriptors returned by _PRS, we assume that 3853 * the polarity of the other device sharing this 3854 * interrupt controller input is compatible. 3855 * If it's not, the caller will catch it when 3856 * the caller invokes the link device's _CRS method 3857 * (after invoking its _SRS method). 3858 */ 3859 iflags = irqlistent->intr_flags; 3860 iflags.intr_po = 3861 apic_irq_table[irq]->airq_iflag.intr_po; 3862 3863 if (!acpi_intr_compatible(iflags, 3864 apic_irq_table[irq]->airq_iflag)) { 3865 APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d " 3866 "not compatible [%x:%x:%x !~ %x:%x:%x]", 3867 psm_name, irq, 3868 iflags.intr_po, 3869 iflags.intr_el, 3870 iflags.bustype, 3871 apic_irq_table[irq]->airq_iflag.intr_po, 3872 apic_irq_table[irq]->airq_iflag.intr_el, 3873 apic_irq_table[irq]->airq_iflag.bustype)); 3874 continue; 3875 } 3876 3877 /* 3878 * If we prefer the irq from _CRS, no need 3879 * to search any further (and make sure 3880 * to add this irq with the highest priority 3881 * so it's tried first). 3882 */ 3883 if (crs_irq == irq && apic_prefer_crs) { 3884 3885 return (acpi_insert_prs_irq_ent( 3886 prsirqlistp, 3887 0 /* Highest priority */, 3888 irq, &iflags, 3889 &irqlistent->acpi_prs_prv)); 3890 } 3891 3892 /* 3893 * Priority is equal to the share count (lower 3894 * share count is higher priority). Note that 3895 * the intr flags passed in here are the ones we 3896 * changed above -- if incorrect, it will be 3897 * caught by the caller's _CRS flags comparison. 3898 */ 3899 prsirqlistp = acpi_insert_prs_irq_ent( 3900 prsirqlistp, 3901 apic_irq_table[irq]->airq_share, irq, 3902 &iflags, &irqlistent->acpi_prs_prv); 3903 } 3904 3905 /* Go to the next irqlist entry */ 3906 irqlistent = irqlistent->next; 3907 } 3908 3909 return (prsirqlistp); 3910 } 3911 3912 /* 3913 * Configures the irq for the interrupt link device identified by 3914 * acpipsmlnkp. 3915 * 3916 * Gets the current and the list of possible irq settings for the 3917 * device. If apic_unconditional_srs is not set, and the current 3918 * resource setting is in the list of possible irq settings, 3919 * current irq resource setting is passed to the caller. 3920 * 3921 * Otherwise, picks an irq number from the list of possible irq 3922 * settings, and sets the irq of the device to this value. 3923 * If prefer_crs is set, among a set of irq numbers in the list that have 3924 * the least number of devices sharing the interrupt, we pick current irq 3925 * resource setting if it is a member of this set. 3926 * 3927 * Passes the irq number in the value pointed to by pci_irqp, and 3928 * polarity and sensitivity in the structure pointed to by dipintrflagp 3929 * to the caller. 3930 * 3931 * Note that if setting the irq resource failed, but successfuly obtained 3932 * the current irq resource settings, passes the current irq resources 3933 * and considers it a success. 3934 * 3935 * Returns: 3936 * ACPI_PSM_SUCCESS on success. 3937 * 3938 * ACPI_PSM_FAILURE if an error occured during the configuration or 3939 * if a suitable irq was not found for this device, or if setting the 3940 * irq resource and obtaining the current resource fails. 3941 * 3942 */ 3943 static int 3944 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 3945 int *pci_irqp, iflag_t *dipintr_flagp) 3946 { 3947 int32_t irq; 3948 int cur_irq = -1; 3949 acpi_irqlist_t *irqlistp; 3950 prs_irq_list_t *prs_irq_listp, *prs_irq_entp; 3951 boolean_t found_irq = B_FALSE; 3952 3953 dipintr_flagp->bustype = BUS_PCI; 3954 3955 if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp)) 3956 == ACPI_PSM_FAILURE) { 3957 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine " 3958 "or assign IRQ for device %s, instance #%d: The system was " 3959 "unable to get the list of potential IRQs from ACPI.", 3960 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 3961 3962 return (ACPI_PSM_FAILURE); 3963 } 3964 3965 if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 3966 dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) && 3967 (cur_irq > 0)) { 3968 /* 3969 * If an IRQ is set in CRS and that IRQ exists in the set 3970 * returned from _PRS, return that IRQ, otherwise print 3971 * a warning 3972 */ 3973 3974 if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL) 3975 == ACPI_PSM_SUCCESS) { 3976 3977 ASSERT(pci_irqp != NULL); 3978 *pci_irqp = cur_irq; 3979 acpi_free_irqlist(irqlistp); 3980 return (ACPI_PSM_SUCCESS); 3981 } 3982 3983 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the " 3984 "current irq %d for device %s, instance #%d in ACPI's " 3985 "list of possible irqs for this device. Picking one from " 3986 " the latter list.", psm_name, cur_irq, ddi_get_name(dip), 3987 ddi_get_instance(dip))); 3988 } 3989 3990 if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip, 3991 cur_irq)) == NULL) { 3992 3993 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a " 3994 "suitable irq from the list of possible irqs for device " 3995 "%s, instance #%d in ACPI's list of possible irqs", 3996 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 3997 3998 acpi_free_irqlist(irqlistp); 3999 return (ACPI_PSM_FAILURE); 4000 } 4001 4002 acpi_free_irqlist(irqlistp); 4003 4004 for (prs_irq_entp = prs_irq_listp; 4005 prs_irq_entp != NULL && found_irq == B_FALSE; 4006 prs_irq_entp = prs_irq_entp->next) { 4007 4008 acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv; 4009 irq = prs_irq_entp->irq; 4010 4011 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for " 4012 "device %s instance #%d\n", psm_name, irq, 4013 ddi_get_name(dip), ddi_get_instance(dip))); 4014 4015 if ((acpi_set_irq_resource(acpipsmlnkp, irq)) 4016 == ACPI_PSM_SUCCESS) { 4017 /* 4018 * setting irq was successful, check to make sure CRS 4019 * reflects that. If CRS does not agree with what we 4020 * set, return the irq that was set. 4021 */ 4022 4023 if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 4024 dipintr_flagp) == ACPI_PSM_SUCCESS) { 4025 4026 if (cur_irq != irq) 4027 APIC_VERBOSE_IRQ((CE_WARN, 4028 "!%s: IRQ resource set " 4029 "(irqno %d) for device %s " 4030 "instance #%d, differs from " 4031 "current setting irqno %d", 4032 psm_name, irq, ddi_get_name(dip), 4033 ddi_get_instance(dip), cur_irq)); 4034 } else { 4035 /* 4036 * On at least one system, there was a bug in 4037 * a DSDT method called by _STA, causing _STA to 4038 * indicate that the link device was disabled 4039 * (when, in fact, it was enabled). Since _SRS 4040 * succeeded, assume that _CRS is lying and use 4041 * the iflags from this _PRS interrupt choice. 4042 * If we're wrong about the flags, the polarity 4043 * will be incorrect and we may get an interrupt 4044 * storm, but there's not much else we can do 4045 * at this point. 4046 */ 4047 *dipintr_flagp = prs_irq_entp->intrflags; 4048 } 4049 4050 /* 4051 * Return the irq that was set, and not what _CRS 4052 * reports, since _CRS has been seen to return 4053 * different IRQs than what was passed to _SRS on some 4054 * systems (and just not return successfully on others). 4055 */ 4056 cur_irq = irq; 4057 found_irq = B_TRUE; 4058 } else { 4059 APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource " 4060 "irq %d failed for device %s instance #%d", 4061 psm_name, irq, ddi_get_name(dip), 4062 ddi_get_instance(dip))); 4063 4064 if (cur_irq == -1) { 4065 acpi_destroy_prs_irq_list(&prs_irq_listp); 4066 return (ACPI_PSM_FAILURE); 4067 } 4068 } 4069 } 4070 4071 acpi_destroy_prs_irq_list(&prs_irq_listp); 4072 4073 if (!found_irq) 4074 return (ACPI_PSM_FAILURE); 4075 4076 ASSERT(pci_irqp != NULL); 4077 *pci_irqp = cur_irq; 4078 return (ACPI_PSM_SUCCESS); 4079 } 4080 4081 void 4082 ioapic_disable_redirection() 4083 { 4084 int ioapic_ix; 4085 int intin_max; 4086 int intin_ix; 4087 4088 /* Disable the I/O APIC redirection entries */ 4089 for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) { 4090 4091 /* Bits 23-16 define the maximum redirection entries */ 4092 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) 4093 & 0xff; 4094 4095 for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) { 4096 /* 4097 * The assumption here is that this is safe, even for 4098 * systems with IOAPICs that suffer from the hardware 4099 * erratum because all devices have been quiesced before 4100 * this function is called from apic_shutdown() 4101 * (or equivalent). If that assumption turns out to be 4102 * false, this mask operation can induce the same 4103 * erratum result we're trying to avoid. 4104 */ 4105 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix, 4106 AV_MASK); 4107 } 4108 } 4109 } 4110 4111 /* 4112 * Looks for an IOAPIC with the specified physical address in the /ioapics 4113 * node in the device tree (created by the PCI enumerator). 4114 */ 4115 static boolean_t 4116 apic_is_ioapic_AMD_813x(uint32_t physaddr) 4117 { 4118 /* 4119 * Look in /ioapics, for the ioapic with 4120 * the physical address given 4121 */ 4122 dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0); 4123 dev_info_t *ioapic_child; 4124 boolean_t rv = B_FALSE; 4125 int vid, did; 4126 uint64_t ioapic_paddr; 4127 boolean_t done = B_FALSE; 4128 4129 if (ioapicsnode == NULL) 4130 return (B_FALSE); 4131 4132 /* Load first child: */ 4133 ioapic_child = ddi_get_child(ioapicsnode); 4134 while (!done && ioapic_child != 0) { /* Iterate over children */ 4135 4136 if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY, 4137 ioapic_child, DDI_PROP_DONTPASS, "reg", 0)) 4138 != 0 && physaddr == ioapic_paddr) { 4139 4140 vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child, 4141 DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0); 4142 4143 if (vid == VENID_AMD) { 4144 4145 did = ddi_prop_get_int(DDI_DEV_T_ANY, 4146 ioapic_child, DDI_PROP_DONTPASS, 4147 IOAPICS_PROP_DEVID, 0); 4148 4149 if (did == DEVID_8131_IOAPIC || 4150 did == DEVID_8132_IOAPIC) { 4151 4152 rv = B_TRUE; 4153 done = B_TRUE; 4154 } 4155 } 4156 } 4157 4158 if (!done) 4159 ioapic_child = ddi_get_next_sibling(ioapic_child); 4160 } 4161 4162 /* The ioapics node was held by ddi_find_devinfo, so release it */ 4163 ndi_rele_devi(ioapicsnode); 4164 return (rv); 4165 } 4166 4167 struct apic_state { 4168 int32_t as_task_reg; 4169 int32_t as_dest_reg; 4170 int32_t as_format_reg; 4171 int32_t as_local_timer; 4172 int32_t as_pcint_vect; 4173 int32_t as_int_vect0; 4174 int32_t as_int_vect1; 4175 int32_t as_err_vect; 4176 int32_t as_init_count; 4177 int32_t as_divide_reg; 4178 int32_t as_spur_int_reg; 4179 uint32_t as_ioapic_ids[MAX_IO_APIC]; 4180 }; 4181 4182 4183 static int 4184 apic_acpi_enter_apicmode(void) 4185 { 4186 ACPI_OBJECT_LIST arglist; 4187 ACPI_OBJECT arg; 4188 ACPI_STATUS status; 4189 4190 /* Setup parameter object */ 4191 arglist.Count = 1; 4192 arglist.Pointer = &arg; 4193 arg.Type = ACPI_TYPE_INTEGER; 4194 arg.Integer.Value = ACPI_APIC_MODE; 4195 4196 status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL); 4197 if (ACPI_FAILURE(status)) 4198 return (PSM_FAILURE); 4199 else 4200 return (PSM_SUCCESS); 4201 } 4202 4203 4204 static void 4205 apic_save_state(struct apic_state *sp) 4206 { 4207 int i; 4208 ulong_t iflag; 4209 4210 PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp)) 4211 /* 4212 * First the local APIC. 4213 */ 4214 sp->as_task_reg = apic_reg_ops->apic_get_pri(); 4215 sp->as_dest_reg = apic_reg_ops->apic_read(APIC_DEST_REG); 4216 if (apic_mode == LOCAL_APIC) 4217 sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG); 4218 sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER); 4219 sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT); 4220 sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0); 4221 sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1); 4222 sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT); 4223 sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT); 4224 sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG); 4225 sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG); 4226 4227 /* 4228 * If on the boot processor then save the IOAPICs' IDs 4229 */ 4230 if (psm_get_cpu_id() == 0) { 4231 4232 iflag = intr_clear(); 4233 lock_set(&apic_ioapic_lock); 4234 4235 for (i = 0; i < apic_io_max; i++) 4236 sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD); 4237 4238 lock_clear(&apic_ioapic_lock); 4239 intr_restore(iflag); 4240 } 4241 } 4242 4243 static void 4244 apic_restore_state(struct apic_state *sp) 4245 { 4246 int i; 4247 ulong_t iflag; 4248 4249 /* 4250 * First the local APIC. 4251 */ 4252 apic_reg_ops->apic_write_task_reg(sp->as_task_reg); 4253 if (apic_mode == LOCAL_APIC) { 4254 apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg); 4255 apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg); 4256 } 4257 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer); 4258 apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect); 4259 apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0); 4260 apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1); 4261 apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect); 4262 apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count); 4263 apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg); 4264 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg); 4265 4266 /* 4267 * the following only needs to be done once, so we do it on the 4268 * boot processor, since we know that we only have one of those 4269 */ 4270 if (psm_get_cpu_id() == 0) { 4271 4272 iflag = intr_clear(); 4273 lock_set(&apic_ioapic_lock); 4274 4275 /* Restore IOAPICs' APIC IDs */ 4276 for (i = 0; i < apic_io_max; i++) { 4277 ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]); 4278 } 4279 4280 lock_clear(&apic_ioapic_lock); 4281 intr_restore(iflag); 4282 4283 /* 4284 * Reenter APIC mode before restoring LNK devices 4285 */ 4286 (void) apic_acpi_enter_apicmode(); 4287 4288 /* 4289 * restore acpi link device mappings 4290 */ 4291 acpi_restore_link_devices(); 4292 } 4293 } 4294 4295 /* 4296 * Returns 0 on success 4297 */ 4298 int 4299 apic_state(psm_state_request_t *rp) 4300 { 4301 PMD(PMD_SX, ("apic_state ")) 4302 switch (rp->psr_cmd) { 4303 case PSM_STATE_ALLOC: 4304 rp->req.psm_state_req.psr_state = 4305 kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP); 4306 if (rp->req.psm_state_req.psr_state == NULL) 4307 return (ENOMEM); 4308 rp->req.psm_state_req.psr_state_size = 4309 sizeof (struct apic_state); 4310 PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n", 4311 rp->req.psm_state_req.psr_state, 4312 rp->req.psm_state_req.psr_state_size)) 4313 return (0); 4314 4315 case PSM_STATE_FREE: 4316 kmem_free(rp->req.psm_state_req.psr_state, 4317 rp->req.psm_state_req.psr_state_size); 4318 PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n", 4319 rp->req.psm_state_req.psr_state, 4320 rp->req.psm_state_req.psr_state_size)) 4321 return (0); 4322 4323 case PSM_STATE_SAVE: 4324 PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n", 4325 rp->req.psm_state_req.psr_state, 4326 rp->req.psm_state_req.psr_state_size)) 4327 apic_save_state(rp->req.psm_state_req.psr_state); 4328 return (0); 4329 4330 case PSM_STATE_RESTORE: 4331 apic_restore_state(rp->req.psm_state_req.psr_state); 4332 PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n", 4333 rp->req.psm_state_req.psr_state, 4334 rp->req.psm_state_req.psr_state_size)) 4335 return (0); 4336 4337 default: 4338 return (EINVAL); 4339 } 4340 } 4341