1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2016 Nexenta Systems, Inc. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 30 /* 31 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 32 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 33 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 34 * PSMI 1.5 extensions are supported in Solaris Nevada. 35 * PSMI 1.6 extensions are supported in Solaris Nevada. 36 * PSMI 1.7 extensions are supported in Solaris Nevada. 37 */ 38 #define PSMI_1_7 39 40 #include <sys/processor.h> 41 #include <sys/time.h> 42 #include <sys/psm.h> 43 #include <sys/smp_impldefs.h> 44 #include <sys/cram.h> 45 #include <sys/acpi/acpi.h> 46 #include <sys/acpica.h> 47 #include <sys/psm_common.h> 48 #include <sys/apic.h> 49 #include <sys/apic_timer.h> 50 #include <sys/pit.h> 51 #include <sys/ddi.h> 52 #include <sys/sunddi.h> 53 #include <sys/ddi_impldefs.h> 54 #include <sys/pci.h> 55 #include <sys/promif.h> 56 #include <sys/x86_archext.h> 57 #include <sys/cpc_impl.h> 58 #include <sys/uadmin.h> 59 #include <sys/panic.h> 60 #include <sys/debug.h> 61 #include <sys/archsystm.h> 62 #include <sys/trap.h> 63 #include <sys/machsystm.h> 64 #include <sys/cpuvar.h> 65 #include <sys/rm_platter.h> 66 #include <sys/privregs.h> 67 #include <sys/cyclic.h> 68 #include <sys/note.h> 69 #include <sys/pci_intr_lib.h> 70 #include <sys/sunndi.h> 71 #if !defined(__xpv) 72 #include <sys/hpet.h> 73 #include <sys/clock.h> 74 #endif 75 76 /* 77 * Local Function Prototypes 78 */ 79 static int apic_handle_defconf(); 80 static int apic_parse_mpct(caddr_t mpct, int bypass); 81 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size); 82 static int apic_checksum(caddr_t bptr, int len); 83 static int apic_find_bus_type(char *bus); 84 static int apic_find_bus(int busid); 85 static struct apic_io_intr *apic_find_io_intr(int irqno); 86 static int apic_find_free_irq(int start, int end); 87 struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid); 88 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp); 89 static void apic_free_apic_cpus(void); 90 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr); 91 static int apic_acpi_enter_apicmode(void); 92 93 int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, 94 int child_ipin, struct apic_io_intr **intrp); 95 int apic_find_bus_id(int bustype); 96 int apic_find_intin(uchar_t ioapic, uchar_t intin); 97 void apic_record_rdt_entry(apic_irq_t *irqptr, int irq); 98 99 int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */ 100 101 /* ACPI SCI interrupt configuration; -1 if SCI not used */ 102 int apic_sci_vect = -1; 103 iflag_t apic_sci_flags; 104 105 #if !defined(__xpv) 106 /* ACPI HPET interrupt configuration; -1 if HPET not used */ 107 int apic_hpet_vect = -1; 108 iflag_t apic_hpet_flags; 109 #endif 110 111 /* 112 * psm name pointer 113 */ 114 char *psm_name; 115 116 /* ACPI support routines */ 117 static int acpi_probe(char *); 118 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 119 int *pci_irqp, iflag_t *intr_flagp); 120 121 int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 122 int ipin, int *pci_irqp, iflag_t *intr_flagp); 123 uchar_t acpi_find_ioapic(int irq); 124 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2); 125 126 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */ 127 int apic_max_reps_clear_pending = 1000; 128 129 int apic_intr_policy = INTR_ROUND_ROBIN; 130 131 int apic_next_bind_cpu = 1; /* For round robin assignment */ 132 /* start with cpu 1 */ 133 134 /* 135 * If enabled, the distribution works as follows: 136 * On every interrupt entry, the current ipl for the CPU is set in cpu_info 137 * and the irq corresponding to the ipl is also set in the aci_current array. 138 * interrupt exit and setspl (due to soft interrupts) will cause the current 139 * ipl to be be changed. This is cache friendly as these frequently used 140 * paths write into a per cpu structure. 141 * 142 * Sampling is done by checking the structures for all CPUs and incrementing 143 * the busy field of the irq (if any) executing on each CPU and the busy field 144 * of the corresponding CPU. 145 * In periodic mode this is done on every clock interrupt. 146 * In one-shot mode, this is done thru a cyclic with an interval of 147 * apic_redistribute_sample_interval (default 10 milli sec). 148 * 149 * Every apic_sample_factor_redistribution times we sample, we do computations 150 * to decide which interrupt needs to be migrated (see comments 151 * before apic_intr_redistribute(). 152 */ 153 154 /* 155 * Following 3 variables start as % and can be patched or set using an 156 * API to be defined in future. They will be scaled to 157 * sample_factor_redistribution which is in turn set to hertz+1 (in periodic 158 * mode), or 101 in one-shot mode to stagger it away from one sec processing 159 */ 160 161 int apic_int_busy_mark = 60; 162 int apic_int_free_mark = 20; 163 int apic_diff_for_redistribution = 10; 164 165 /* sampling interval for interrupt redistribution for dynamic migration */ 166 int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */ 167 168 /* 169 * number of times we sample before deciding to redistribute interrupts 170 * for dynamic migration 171 */ 172 int apic_sample_factor_redistribution = 101; 173 174 int apic_redist_cpu_skip = 0; 175 int apic_num_imbalance = 0; 176 int apic_num_rebind = 0; 177 178 /* 179 * Maximum number of APIC CPUs in the system, -1 indicates that dynamic 180 * allocation of CPU ids is disabled. 181 */ 182 int apic_max_nproc = -1; 183 int apic_nproc = 0; 184 size_t apic_cpus_size = 0; 185 int apic_defconf = 0; 186 int apic_irq_translate = 0; 187 int apic_spec_rev = 0; 188 int apic_imcrp = 0; 189 190 int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */ 191 int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */ 192 193 /* 194 * For interrupt link devices, if apic_unconditional_srs is set, an irq resource 195 * will be assigned (via _SRS). If it is not set, use the current 196 * irq setting (via _CRS), but only if that irq is in the set of possible 197 * irqs (returned by _PRS) for the device. 198 */ 199 int apic_unconditional_srs = 1; 200 201 /* 202 * For interrupt link devices, if apic_prefer_crs is set when we are 203 * assigning an IRQ resource to a device, prefer the current IRQ setting 204 * over other possible irq settings under same conditions. 205 */ 206 207 int apic_prefer_crs = 1; 208 209 uchar_t apic_io_id[MAX_IO_APIC]; 210 volatile uint32_t *apicioadr[MAX_IO_APIC]; 211 uchar_t apic_io_ver[MAX_IO_APIC]; 212 uchar_t apic_io_vectbase[MAX_IO_APIC]; 213 uchar_t apic_io_vectend[MAX_IO_APIC]; 214 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1]; 215 uint32_t apic_physaddr[MAX_IO_APIC]; 216 217 boolean_t ioapic_mask_workaround[MAX_IO_APIC]; 218 219 /* 220 * First available slot to be used as IRQ index into the apic_irq_table 221 * for those interrupts (like MSI/X) that don't have a physical IRQ. 222 */ 223 int apic_first_avail_irq = APIC_FIRST_FREE_IRQ; 224 225 /* 226 * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound 227 * and bound elements of cpus_info and the temp_cpu element of irq_struct 228 */ 229 lock_t apic_ioapic_lock; 230 231 int apic_io_max = 0; /* no. of i/o apics enabled */ 232 233 struct apic_io_intr *apic_io_intrp = NULL; 234 static struct apic_bus *apic_busp; 235 236 uchar_t apic_resv_vector[MAXIPL+1]; 237 238 char apic_level_intr[APIC_MAX_VECTOR+1]; 239 240 uint32_t eisa_level_intr_mask = 0; 241 /* At least MSB will be set if EISA bus */ 242 243 int apic_pci_bus_total = 0; 244 uchar_t apic_single_pci_busid = 0; 245 246 /* 247 * airq_mutex protects additions to the apic_irq_table - the first 248 * pointer and any airq_nexts off of that one. It also protects 249 * apic_max_device_irq & apic_min_device_irq. It also guarantees 250 * that share_id is unique as new ids are generated only when new 251 * irq_t structs are linked in. Once linked in the structs are never 252 * deleted. temp_cpu & mps_intr_index field indicate if it is programmed 253 * or allocated. Note that there is a slight gap between allocating in 254 * apic_introp_xlate and programming in addspl. 255 */ 256 kmutex_t airq_mutex; 257 apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1]; 258 int apic_max_device_irq = 0; 259 int apic_min_device_irq = APIC_MAX_VECTOR; 260 261 typedef struct prs_irq_list_ent { 262 int list_prio; 263 int32_t irq; 264 iflag_t intrflags; 265 acpi_prs_private_t prsprv; 266 struct prs_irq_list_ent *next; 267 } prs_irq_list_t; 268 269 270 /* 271 * ACPI variables 272 */ 273 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */ 274 int apic_enable_acpi = 0; 275 276 /* ACPI Multiple APIC Description Table ptr */ 277 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL; 278 279 /* ACPI Interrupt Source Override Structure ptr */ 280 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL; 281 int acpi_iso_cnt = 0; 282 283 /* ACPI Non-maskable Interrupt Sources ptr */ 284 static ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL; 285 static int acpi_nmi_scnt = 0; 286 static ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL; 287 static int acpi_nmi_ccnt = 0; 288 289 /* 290 * The following added to identify a software poweroff method if available. 291 */ 292 293 static struct { 294 int poweroff_method; 295 char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */ 296 char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */ 297 } apic_mps_ids[] = { 298 { APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */ 299 { APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */ 300 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */ 301 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */ 302 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */ 303 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */ 304 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */ 305 }; 306 307 int apic_poweroff_method = APIC_POWEROFF_NONE; 308 309 /* 310 * Auto-configuration routines 311 */ 312 313 /* 314 * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here 315 * May work with 1.1 - but not guaranteed. 316 * According to the MP Spec, the MP floating pointer structure 317 * will be searched in the order described below: 318 * 1. In the first kilobyte of Extended BIOS Data Area (EBDA) 319 * 2. Within the last kilobyte of system base memory 320 * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh 321 * Once we find the right signature with proper checksum, we call 322 * either handle_defconf or parse_mpct to get all info necessary for 323 * subsequent operations. 324 */ 325 int 326 apic_probe_common(char *modname) 327 { 328 uint32_t mpct_addr, ebda_start = 0, base_mem_end; 329 caddr_t biosdatap; 330 caddr_t mpct = 0; 331 caddr_t fptr; 332 int i, mpct_size, mapsize, retval = PSM_FAILURE; 333 ushort_t ebda_seg, base_mem_size; 334 struct apic_mpfps_hdr *fpsp; 335 struct apic_mp_cnf_hdr *hdrp; 336 int bypass_cpu_and_ioapics_in_mptables; 337 int acpi_user_options; 338 339 if (apic_forceload < 0) 340 return (retval); 341 342 /* 343 * Remember who we are 344 */ 345 psm_name = modname; 346 347 /* Allow override for MADT-only mode */ 348 acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0, 349 "acpi-user-options", 0); 350 apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0); 351 352 /* Allow apic_use_acpi to override MADT-only mode */ 353 if (!apic_use_acpi) 354 apic_use_acpi_madt_only = 0; 355 356 retval = acpi_probe(modname); 357 358 /* 359 * mapin the bios data area 40:0 360 * 40:13h - two-byte location reports the base memory size 361 * 40:0Eh - two-byte location for the exact starting address of 362 * the EBDA segment for EISA 363 */ 364 biosdatap = psm_map_phys(0x400, 0x20, PROT_READ); 365 if (!biosdatap) 366 goto apic_ret; 367 fpsp = (struct apic_mpfps_hdr *)NULL; 368 mapsize = MPFPS_RAM_WIN_LEN; 369 /*LINTED: pointer cast may result in improper alignment */ 370 ebda_seg = *((ushort_t *)(biosdatap+0xe)); 371 /* check the 1k of EBDA */ 372 if (ebda_seg) { 373 ebda_start = ((uint32_t)ebda_seg) << 4; 374 fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ); 375 if (fptr) { 376 if (!(fpsp = 377 apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN))) 378 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 379 } 380 } 381 /* If not in EBDA, check the last k of system base memory */ 382 if (!fpsp) { 383 /*LINTED: pointer cast may result in improper alignment */ 384 base_mem_size = *((ushort_t *)(biosdatap + 0x13)); 385 386 if (base_mem_size > 512) 387 base_mem_end = 639 * 1024; 388 else 389 base_mem_end = 511 * 1024; 390 /* if ebda == last k of base mem, skip to check BIOS ROM */ 391 if (base_mem_end != ebda_start) { 392 393 fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN, 394 PROT_READ); 395 396 if (fptr) { 397 if (!(fpsp = apic_find_fps_sig(fptr, 398 MPFPS_RAM_WIN_LEN))) 399 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 400 } 401 } 402 } 403 psm_unmap_phys(biosdatap, 0x20); 404 405 /* If still cannot find it, check the BIOS ROM space */ 406 if (!fpsp) { 407 mapsize = MPFPS_ROM_WIN_LEN; 408 fptr = psm_map_phys(MPFPS_ROM_WIN_START, 409 MPFPS_ROM_WIN_LEN, PROT_READ); 410 if (fptr) { 411 if (!(fpsp = 412 apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) { 413 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 414 goto apic_ret; 415 } 416 } 417 } 418 419 if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) { 420 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 421 goto apic_ret; 422 } 423 424 apic_spec_rev = fpsp->mpfps_spec_rev; 425 if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) { 426 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 427 goto apic_ret; 428 } 429 430 /* check IMCR is present or not */ 431 apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP; 432 433 /* check default configuration (dual CPUs) */ 434 if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) { 435 psm_unmap_phys(fptr, mapsize); 436 if ((retval = apic_handle_defconf()) != PSM_SUCCESS) 437 return (retval); 438 439 goto apic_ret; 440 } 441 442 /* MP Configuration Table */ 443 mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr); 444 445 psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */ 446 447 /* 448 * Map in enough memory for the MP Configuration Table Header. 449 * Use this table to read the total length of the BIOS data and 450 * map in all the info 451 */ 452 /*LINTED: pointer cast may result in improper alignment */ 453 hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr, 454 sizeof (struct apic_mp_cnf_hdr), PROT_READ); 455 if (!hdrp) 456 goto apic_ret; 457 458 /* check mp configuration table signature PCMP */ 459 if (hdrp->mpcnf_sig != 0x504d4350) { 460 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 461 goto apic_ret; 462 } 463 mpct_size = (int)hdrp->mpcnf_tbl_length; 464 465 apic_set_pwroff_method_from_mpcnfhdr(hdrp); 466 467 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 468 469 if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) { 470 /* This is an ACPI machine No need for further checks */ 471 goto apic_ret; 472 } 473 474 /* 475 * Map in the entries for this machine, ie. Processor 476 * Entry Tables, Bus Entry Tables, etc. 477 * They are in fixed order following one another 478 */ 479 mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ); 480 if (!mpct) 481 goto apic_ret; 482 483 if (apic_checksum(mpct, mpct_size) != 0) 484 goto apic_fail1; 485 486 /*LINTED: pointer cast may result in improper alignment */ 487 hdrp = (struct apic_mp_cnf_hdr *)mpct; 488 apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic, 489 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 490 if (!apicadr) 491 goto apic_fail1; 492 493 /* Parse all information in the tables */ 494 bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS); 495 if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) == 496 PSM_SUCCESS) { 497 retval = PSM_SUCCESS; 498 goto apic_ret; 499 } 500 501 apic_fail1: 502 psm_unmap_phys(mpct, mpct_size); 503 mpct = NULL; 504 505 apic_ret: 506 if (retval == PSM_SUCCESS) { 507 extern int apic_ioapic_method_probe(); 508 509 if ((retval = apic_ioapic_method_probe()) == PSM_SUCCESS) 510 return (PSM_SUCCESS); 511 } 512 513 for (i = 0; i < apic_io_max; i++) 514 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 515 if (apic_cpus) { 516 kmem_free(apic_cpus, apic_cpus_size); 517 apic_cpus = NULL; 518 } 519 if (apicadr) { 520 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 521 apicadr = NULL; 522 } 523 if (mpct) 524 psm_unmap_phys(mpct, mpct_size); 525 526 return (retval); 527 } 528 529 static void 530 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp) 531 { 532 int i; 533 534 for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0])); 535 i++) { 536 if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id, 537 strlen(apic_mps_ids[i].oem_id)) == 0) && 538 (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id, 539 strlen(apic_mps_ids[i].prod_id)) == 0)) { 540 541 apic_poweroff_method = apic_mps_ids[i].poweroff_method; 542 break; 543 } 544 } 545 546 if (apic_debug_mps_id != 0) { 547 cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'" 548 "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n", 549 psm_name, 550 hdrp->mpcnf_oem_str[0], 551 hdrp->mpcnf_oem_str[1], 552 hdrp->mpcnf_oem_str[2], 553 hdrp->mpcnf_oem_str[3], 554 hdrp->mpcnf_oem_str[4], 555 hdrp->mpcnf_oem_str[5], 556 hdrp->mpcnf_oem_str[6], 557 hdrp->mpcnf_oem_str[7], 558 hdrp->mpcnf_prod_str[0], 559 hdrp->mpcnf_prod_str[1], 560 hdrp->mpcnf_prod_str[2], 561 hdrp->mpcnf_prod_str[3], 562 hdrp->mpcnf_prod_str[4], 563 hdrp->mpcnf_prod_str[5], 564 hdrp->mpcnf_prod_str[6], 565 hdrp->mpcnf_prod_str[7], 566 hdrp->mpcnf_prod_str[8], 567 hdrp->mpcnf_prod_str[9], 568 hdrp->mpcnf_prod_str[10], 569 hdrp->mpcnf_prod_str[11]); 570 } 571 } 572 573 static void 574 apic_free_apic_cpus(void) 575 { 576 if (apic_cpus != NULL) { 577 kmem_free(apic_cpus, apic_cpus_size); 578 apic_cpus = NULL; 579 apic_cpus_size = 0; 580 } 581 } 582 583 static int 584 acpi_probe(char *modname) 585 { 586 int i, intmax, index; 587 uint32_t id, ver; 588 int acpi_verboseflags = 0; 589 int madt_seen, madt_size; 590 ACPI_SUBTABLE_HEADER *ap; 591 ACPI_MADT_LOCAL_APIC *mpa; 592 ACPI_MADT_LOCAL_X2APIC *mpx2a; 593 ACPI_MADT_IO_APIC *mia; 594 ACPI_MADT_IO_SAPIC *misa; 595 ACPI_MADT_INTERRUPT_OVERRIDE *mio; 596 ACPI_MADT_NMI_SOURCE *mns; 597 ACPI_MADT_INTERRUPT_SOURCE *mis; 598 ACPI_MADT_LOCAL_APIC_NMI *mlan; 599 ACPI_MADT_LOCAL_X2APIC_NMI *mx2alan; 600 ACPI_MADT_LOCAL_APIC_OVERRIDE *mao; 601 int sci; 602 iflag_t sci_flags; 603 volatile uint32_t *ioapic; 604 int ioapic_ix; 605 uint32_t *local_ids; 606 uint32_t *proc_ids; 607 uchar_t hid; 608 int warned = 0; 609 610 if (!apic_use_acpi) 611 return (PSM_FAILURE); 612 613 if (AcpiGetTable(ACPI_SIG_MADT, 1, 614 (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) 615 return (PSM_FAILURE); 616 617 apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address, 618 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 619 if (!apicadr) 620 return (PSM_FAILURE); 621 622 if ((local_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t), 623 KM_NOSLEEP)) == NULL) 624 return (PSM_FAILURE); 625 626 if ((proc_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t), 627 KM_NOSLEEP)) == NULL) { 628 kmem_free(local_ids, NCPU * sizeof (uint32_t)); 629 return (PSM_FAILURE); 630 } 631 632 id = apic_reg_ops->apic_read(APIC_LID_REG); 633 local_ids[0] = (uchar_t)(id >> 24); 634 apic_nproc = index = 1; 635 apic_io_max = 0; 636 637 ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1); 638 madt_size = acpi_mapic_dtp->Header.Length; 639 madt_seen = sizeof (*acpi_mapic_dtp); 640 641 while (madt_seen < madt_size) { 642 switch (ap->Type) { 643 case ACPI_MADT_TYPE_LOCAL_APIC: 644 mpa = (ACPI_MADT_LOCAL_APIC *) ap; 645 if (mpa->LapicFlags & ACPI_MADT_ENABLED) { 646 if (mpa->Id == local_ids[0]) { 647 ASSERT(index == 1); 648 proc_ids[0] = mpa->ProcessorId; 649 } else if (apic_nproc < NCPU && use_mp && 650 apic_nproc < boot_ncpus) { 651 local_ids[index] = mpa->Id; 652 proc_ids[index] = mpa->ProcessorId; 653 index++; 654 apic_nproc++; 655 } else if (apic_nproc == NCPU && !warned) { 656 cmn_err(CE_WARN, "%s: CPU limit " 657 "exceeded" 658 #if !defined(__amd64) 659 " for 32-bit mode" 660 #endif 661 "; Solaris will use %d CPUs.", 662 psm_name, NCPU); 663 warned = 1; 664 } 665 } 666 break; 667 668 case ACPI_MADT_TYPE_IO_APIC: 669 mia = (ACPI_MADT_IO_APIC *) ap; 670 if (apic_io_max < MAX_IO_APIC) { 671 ioapic_ix = apic_io_max; 672 apic_io_id[apic_io_max] = mia->Id; 673 apic_io_vectbase[apic_io_max] = 674 mia->GlobalIrqBase; 675 apic_physaddr[apic_io_max] = 676 (uint32_t)mia->Address; 677 ioapic = apicioadr[apic_io_max] = 678 mapin_ioapic((uint32_t)mia->Address, 679 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 680 if (!ioapic) 681 goto cleanup; 682 ioapic_mask_workaround[apic_io_max] = 683 apic_is_ioapic_AMD_813x(mia->Address); 684 apic_io_max++; 685 } 686 break; 687 688 case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE: 689 mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap; 690 if (acpi_isop == NULL) 691 acpi_isop = mio; 692 acpi_iso_cnt++; 693 break; 694 695 case ACPI_MADT_TYPE_NMI_SOURCE: 696 /* UNIMPLEMENTED */ 697 mns = (ACPI_MADT_NMI_SOURCE *) ap; 698 if (acpi_nmi_sp == NULL) 699 acpi_nmi_sp = mns; 700 acpi_nmi_scnt++; 701 702 cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n", 703 mns->GlobalIrq, mns->IntiFlags); 704 break; 705 706 case ACPI_MADT_TYPE_LOCAL_APIC_NMI: 707 /* UNIMPLEMENTED */ 708 mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap; 709 if (acpi_nmi_cp == NULL) 710 acpi_nmi_cp = mlan; 711 acpi_nmi_ccnt++; 712 713 cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n", 714 mlan->ProcessorId, mlan->IntiFlags, 715 mlan->Lint); 716 break; 717 718 case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE: 719 /* UNIMPLEMENTED */ 720 mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap; 721 cmn_err(CE_NOTE, "!apic: address override: %lx\n", 722 (long)mao->Address); 723 break; 724 725 case ACPI_MADT_TYPE_IO_SAPIC: 726 /* UNIMPLEMENTED */ 727 misa = (ACPI_MADT_IO_SAPIC *) ap; 728 729 cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n", 730 misa->Id, misa->GlobalIrqBase, 731 (long)misa->Address); 732 break; 733 734 case ACPI_MADT_TYPE_INTERRUPT_SOURCE: 735 /* UNIMPLEMENTED */ 736 mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap; 737 738 cmn_err(CE_NOTE, 739 "!apic: irq source: %d %d %d 0x%x %d %d\n", 740 mis->Id, mis->Eid, mis->GlobalIrq, 741 mis->IntiFlags, mis->Type, 742 mis->IoSapicVector); 743 break; 744 745 case ACPI_MADT_TYPE_LOCAL_X2APIC: 746 mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap; 747 748 /* 749 * All logical processors with APIC ID values 750 * of 255 and greater will have their APIC 751 * reported through Processor X2APIC structure. 752 * All logical processors with APIC ID less than 753 * 255 will have their APIC reported through 754 * Processor Local APIC. 755 * 756 * Some systems apparently don't care and report all 757 * processors through Processor X2APIC structures. We 758 * warn about that but don't ignore those CPUs. 759 */ 760 if (mpx2a->LocalApicId < 255) { 761 cmn_err(CE_WARN, "!%s: ignoring invalid entry " 762 "in MADT: CPU %d has X2APIC Id %d (< 255)", 763 psm_name, mpx2a->Uid, mpx2a->LocalApicId); 764 } 765 if (mpx2a->LapicFlags & ACPI_MADT_ENABLED) { 766 if (mpx2a->LocalApicId == local_ids[0]) { 767 ASSERT(index == 1); 768 proc_ids[0] = mpx2a->Uid; 769 } else if (apic_nproc < NCPU && use_mp && 770 apic_nproc < boot_ncpus) { 771 local_ids[index] = mpx2a->LocalApicId; 772 proc_ids[index] = mpx2a->Uid; 773 index++; 774 apic_nproc++; 775 } else if (apic_nproc == NCPU && !warned) { 776 cmn_err(CE_WARN, "%s: CPU limit " 777 "exceeded" 778 #if !defined(__amd64) 779 " for 32-bit mode" 780 #endif 781 "; Solaris will use %d CPUs.", 782 psm_name, NCPU); 783 warned = 1; 784 } 785 } 786 787 break; 788 789 case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI: 790 /* UNIMPLEMENTED */ 791 mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap; 792 if (mx2alan->Uid >> 8) 793 acpi_nmi_ccnt++; 794 795 #ifdef DEBUG 796 cmn_err(CE_NOTE, 797 "!apic: local x2apic nmi: %d 0x%x %d\n", 798 mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint); 799 #endif 800 801 break; 802 803 case ACPI_MADT_TYPE_RESERVED: 804 default: 805 break; 806 } 807 808 /* advance to next entry */ 809 madt_seen += ap->Length; 810 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length); 811 } 812 813 /* 814 * allocate enough space for possible hot-adding of CPUs. 815 * max_ncpus may be less than apic_nproc if it's set by user. 816 */ 817 if (plat_dr_support_cpu()) { 818 apic_max_nproc = max_ncpus; 819 } 820 apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus); 821 if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL) 822 goto cleanup; 823 824 /* 825 * ACPI doesn't provide the local apic ver, get it directly from the 826 * local apic 827 */ 828 ver = apic_reg_ops->apic_read(APIC_VERS_REG); 829 for (i = 0; i < apic_nproc; i++) { 830 apic_cpus[i].aci_local_id = local_ids[i]; 831 apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF); 832 apic_cpus[i].aci_processor_id = proc_ids[i]; 833 /* Only build mapping info for CPUs present at boot. */ 834 if (i < boot_ncpus) 835 (void) acpica_map_cpu(i, proc_ids[i]); 836 } 837 838 /* 839 * To support CPU dynamic reconfiguration, the apic CPU info structure 840 * for each possible CPU will be pre-allocated at boot time. 841 * The state for each apic CPU info structure will be assigned according 842 * to the following rules: 843 * Rule 1: 844 * Slot index range: [0, min(apic_nproc, boot_ncpus)) 845 * State flags: 0 846 * Note: cpu exists and will be configured/enabled at boot time 847 * Rule 2: 848 * Slot index range: [boot_ncpus, apic_nproc) 849 * State flags: APIC_CPU_FREE | APIC_CPU_DIRTY 850 * Note: cpu exists but won't be configured/enabled at boot time 851 * Rule 3: 852 * Slot index range: [apic_nproc, boot_ncpus) 853 * State flags: APIC_CPU_FREE 854 * Note: cpu doesn't exist at boot time 855 * Rule 4: 856 * Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus) 857 * State flags: APIC_CPU_FREE 858 * Note: cpu doesn't exist at boot time 859 */ 860 CPUSET_ZERO(apic_cpumask); 861 for (i = 0; i < min(boot_ncpus, apic_nproc); i++) { 862 CPUSET_ADD(apic_cpumask, i); 863 apic_cpus[i].aci_status = 0; 864 } 865 for (i = boot_ncpus; i < apic_nproc; i++) { 866 apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY; 867 } 868 for (i = apic_nproc; i < boot_ncpus; i++) { 869 apic_cpus[i].aci_status = APIC_CPU_FREE; 870 } 871 for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) { 872 apic_cpus[i].aci_status = APIC_CPU_FREE; 873 } 874 875 for (i = 0; i < apic_io_max; i++) { 876 ioapic_ix = i; 877 878 /* 879 * need to check Sitka on the following acpi problem 880 * On the Sitka, the ioapic's apic_id field isn't reporting 881 * the actual io apic id. We have reported this problem 882 * to Intel. Until they fix the problem, we will get the 883 * actual id directly from the ioapic. 884 */ 885 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 886 hid = (uchar_t)(id >> 24); 887 888 if (hid != apic_io_id[i]) { 889 if (apic_io_id[i] == 0) 890 apic_io_id[i] = hid; 891 else { /* set ioapic id to whatever reported by ACPI */ 892 id = ((uint32_t)apic_io_id[i]) << 24; 893 ioapic_write(ioapic_ix, APIC_ID_CMD, id); 894 } 895 } 896 ver = ioapic_read(ioapic_ix, APIC_VERS_CMD); 897 apic_io_ver[i] = (uchar_t)(ver & 0xff); 898 intmax = (ver >> 16) & 0xff; 899 apic_io_vectend[i] = apic_io_vectbase[i] + intmax; 900 if (apic_first_avail_irq <= apic_io_vectend[i]) 901 apic_first_avail_irq = apic_io_vectend[i] + 1; 902 } 903 904 905 /* 906 * Process SCI configuration here 907 * An error may be returned here if 908 * acpi-user-options specifies legacy mode 909 * (no SCI, no ACPI mode) 910 */ 911 if (acpica_get_sci(&sci, &sci_flags) != AE_OK) 912 sci = -1; 913 914 /* 915 * Now call acpi_init() to generate namespaces 916 * If this fails, we don't attempt to use ACPI 917 * even if we were able to get a MADT above 918 */ 919 if (acpica_init() != AE_OK) 920 goto cleanup; 921 922 /* 923 * Call acpica_build_processor_map() now that we have 924 * ACPI namesspace access 925 */ 926 (void) acpica_build_processor_map(); 927 928 /* 929 * Squirrel away the SCI and flags for later on 930 * in apic_picinit() when we're ready 931 */ 932 apic_sci_vect = sci; 933 apic_sci_flags = sci_flags; 934 935 if (apic_verbose & APIC_VERBOSE_IRQ_FLAG) 936 acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG; 937 938 if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG) 939 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG; 940 941 if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG) 942 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG; 943 944 if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE) 945 goto cleanup; 946 947 /* Enable ACPI APIC interrupt routing */ 948 if (apic_acpi_enter_apicmode() != PSM_FAILURE) { 949 build_reserved_irqlist((uchar_t *)apic_reserved_irqlist); 950 apic_enable_acpi = 1; 951 if (apic_sci_vect > 0) { 952 acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT); 953 } 954 if (apic_use_acpi_madt_only) { 955 cmn_err(CE_CONT, 956 "?Using ACPI for CPU/IOAPIC information ONLY\n"); 957 } 958 959 #if !defined(__xpv) 960 /* 961 * probe ACPI for hpet information here which is used later 962 * in apic_picinit(). 963 */ 964 if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) { 965 cmn_err(CE_NOTE, "!ACPI HPET table query failed\n"); 966 } 967 #endif 968 969 kmem_free(local_ids, NCPU * sizeof (uint32_t)); 970 kmem_free(proc_ids, NCPU * sizeof (uint32_t)); 971 return (PSM_SUCCESS); 972 } 973 /* if setting APIC mode failed above, we fall through to cleanup */ 974 975 cleanup: 976 apic_free_apic_cpus(); 977 if (apicadr != NULL) { 978 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 979 apicadr = NULL; 980 } 981 apic_max_nproc = -1; 982 apic_nproc = 0; 983 for (i = 0; i < apic_io_max; i++) { 984 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 985 apicioadr[i] = NULL; 986 } 987 apic_io_max = 0; 988 acpi_isop = NULL; 989 acpi_iso_cnt = 0; 990 acpi_nmi_sp = NULL; 991 acpi_nmi_scnt = 0; 992 acpi_nmi_cp = NULL; 993 acpi_nmi_ccnt = 0; 994 kmem_free(local_ids, NCPU * sizeof (uint32_t)); 995 kmem_free(proc_ids, NCPU * sizeof (uint32_t)); 996 return (PSM_FAILURE); 997 } 998 999 /* 1000 * Handle default configuration. Fill in reqd global variables & tables 1001 * Fill all details as MP table does not give any more info 1002 */ 1003 static int 1004 apic_handle_defconf() 1005 { 1006 uint_t lid; 1007 1008 /* Failed to probe ACPI MADT tables, disable CPU DR. */ 1009 apic_max_nproc = -1; 1010 apic_free_apic_cpus(); 1011 plat_dr_disable_cpu(); 1012 1013 apicioadr[0] = (void *)mapin_ioapic(APIC_IO_ADDR, 1014 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1015 apicadr = (void *)psm_map_phys(APIC_LOCAL_ADDR, 1016 APIC_LOCAL_MEMLEN, PROT_READ); 1017 apic_cpus_size = 2 * sizeof (*apic_cpus); 1018 apic_cpus = (apic_cpus_info_t *) 1019 kmem_zalloc(apic_cpus_size, KM_NOSLEEP); 1020 if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus)) 1021 goto apic_handle_defconf_fail; 1022 CPUSET_ONLY(apic_cpumask, 0); 1023 CPUSET_ADD(apic_cpumask, 1); 1024 apic_nproc = 2; 1025 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1026 apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET); 1027 /* 1028 * According to the PC+MP spec 1.1, the local ids 1029 * for the default configuration has to be 0 or 1 1030 */ 1031 if (apic_cpus[0].aci_local_id == 1) 1032 apic_cpus[1].aci_local_id = 0; 1033 else if (apic_cpus[0].aci_local_id == 0) 1034 apic_cpus[1].aci_local_id = 1; 1035 else 1036 goto apic_handle_defconf_fail; 1037 1038 apic_io_id[0] = 2; 1039 apic_io_max = 1; 1040 if (apic_defconf >= 5) { 1041 apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS; 1042 apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS; 1043 apic_io_ver[0] = APIC_INTEGRATED_VERS; 1044 } else { 1045 apic_cpus[0].aci_local_ver = 0; /* 82489 DX */ 1046 apic_cpus[1].aci_local_ver = 0; 1047 apic_io_ver[0] = 0; 1048 } 1049 if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6) 1050 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1051 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1052 return (PSM_SUCCESS); 1053 1054 apic_handle_defconf_fail: 1055 if (apicadr) 1056 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 1057 if (apicioadr[0]) 1058 mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN); 1059 return (PSM_FAILURE); 1060 } 1061 1062 /* Parse the entries in MP configuration table and collect info that we need */ 1063 static int 1064 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics) 1065 { 1066 struct apic_procent *procp; 1067 struct apic_bus *busp; 1068 struct apic_io_entry *ioapicp; 1069 struct apic_io_intr *intrp; 1070 int ioapic_ix; 1071 uint_t lid; 1072 uint32_t id; 1073 uchar_t hid; 1074 int warned = 0; 1075 1076 /*LINTED: pointer cast may result in improper alignment */ 1077 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1078 1079 /* No need to count cpu entries if we won't use them */ 1080 if (!bypass_cpus_and_ioapics) { 1081 1082 /* Find max # of CPUS and allocate structure accordingly */ 1083 apic_nproc = 0; 1084 CPUSET_ZERO(apic_cpumask); 1085 while (procp->proc_entry == APIC_CPU_ENTRY) { 1086 if (procp->proc_cpuflags & CPUFLAGS_EN) { 1087 if (apic_nproc < NCPU && use_mp && 1088 apic_nproc < boot_ncpus) { 1089 CPUSET_ADD(apic_cpumask, apic_nproc); 1090 apic_nproc++; 1091 } else if (apic_nproc == NCPU && !warned) { 1092 cmn_err(CE_WARN, "%s: CPU limit " 1093 "exceeded" 1094 #if !defined(__amd64) 1095 " for 32-bit mode" 1096 #endif 1097 "; Solaris will use %d CPUs.", 1098 psm_name, NCPU); 1099 warned = 1; 1100 } 1101 1102 } 1103 procp++; 1104 } 1105 apic_cpus_size = apic_nproc * sizeof (*apic_cpus); 1106 if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *) 1107 kmem_zalloc(apic_cpus_size, KM_NOSLEEP))) 1108 return (PSM_FAILURE); 1109 } 1110 1111 /*LINTED: pointer cast may result in improper alignment */ 1112 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1113 1114 /* 1115 * start with index 1 as 0 needs to be filled in with Boot CPU, but 1116 * if we're bypassing this information, it has already been filled 1117 * in by acpi_probe(), so don't overwrite it. 1118 */ 1119 if (!bypass_cpus_and_ioapics) 1120 apic_nproc = 1; 1121 1122 while (procp->proc_entry == APIC_CPU_ENTRY) { 1123 /* check whether the cpu exists or not */ 1124 if (!bypass_cpus_and_ioapics && 1125 procp->proc_cpuflags & CPUFLAGS_EN) { 1126 if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */ 1127 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1128 apic_cpus[0].aci_local_id = procp->proc_apicid; 1129 if (apic_cpus[0].aci_local_id != 1130 (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) { 1131 return (PSM_FAILURE); 1132 } 1133 apic_cpus[0].aci_local_ver = 1134 procp->proc_version; 1135 } else if (apic_nproc < NCPU && use_mp && 1136 apic_nproc < boot_ncpus) { 1137 apic_cpus[apic_nproc].aci_local_id = 1138 procp->proc_apicid; 1139 1140 apic_cpus[apic_nproc].aci_local_ver = 1141 procp->proc_version; 1142 apic_nproc++; 1143 1144 } 1145 } 1146 procp++; 1147 } 1148 1149 /* 1150 * Save start of bus entries for later use. 1151 * Get EISA level cntrl if EISA bus is present. 1152 * Also get the CPI bus id for single CPI bus case 1153 */ 1154 apic_busp = busp = (struct apic_bus *)procp; 1155 while (busp->bus_entry == APIC_BUS_ENTRY) { 1156 lid = apic_find_bus_type((char *)&busp->bus_str1); 1157 if (lid == BUS_EISA) { 1158 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1159 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1160 } else if (lid == BUS_PCI) { 1161 /* 1162 * apic_single_pci_busid will be used only if 1163 * apic_pic_bus_total is equal to 1 1164 */ 1165 apic_pci_bus_total++; 1166 apic_single_pci_busid = busp->bus_id; 1167 } 1168 busp++; 1169 } 1170 1171 ioapicp = (struct apic_io_entry *)busp; 1172 1173 if (!bypass_cpus_and_ioapics) 1174 apic_io_max = 0; 1175 do { 1176 if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) { 1177 if (ioapicp->io_flags & IOAPIC_FLAGS_EN) { 1178 apic_io_id[apic_io_max] = ioapicp->io_apicid; 1179 apic_io_ver[apic_io_max] = ioapicp->io_version; 1180 apicioadr[apic_io_max] = 1181 (void *)mapin_ioapic( 1182 (uint32_t)ioapicp->io_apic_addr, 1183 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1184 1185 if (!apicioadr[apic_io_max]) 1186 return (PSM_FAILURE); 1187 1188 ioapic_mask_workaround[apic_io_max] = 1189 apic_is_ioapic_AMD_813x( 1190 ioapicp->io_apic_addr); 1191 1192 ioapic_ix = apic_io_max; 1193 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 1194 hid = (uchar_t)(id >> 24); 1195 1196 if (hid != apic_io_id[apic_io_max]) { 1197 if (apic_io_id[apic_io_max] == 0) 1198 apic_io_id[apic_io_max] = hid; 1199 else { 1200 /* 1201 * set ioapic id to whatever 1202 * reported by MPS 1203 * 1204 * may not need to set index 1205 * again ??? 1206 * take it out and try 1207 */ 1208 1209 id = ((uint32_t) 1210 apic_io_id[apic_io_max]) << 1211 24; 1212 1213 ioapic_write(ioapic_ix, 1214 APIC_ID_CMD, id); 1215 } 1216 } 1217 apic_io_max++; 1218 } 1219 } 1220 ioapicp++; 1221 } while (ioapicp->io_entry == APIC_IO_ENTRY); 1222 1223 apic_io_intrp = (struct apic_io_intr *)ioapicp; 1224 1225 intrp = apic_io_intrp; 1226 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1227 if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) || 1228 (apic_find_bus(intrp->intr_busid) == BUS_PCI)) { 1229 apic_irq_translate = 1; 1230 break; 1231 } 1232 intrp++; 1233 } 1234 1235 return (PSM_SUCCESS); 1236 } 1237 1238 boolean_t 1239 apic_cpu_in_range(int cpu) 1240 { 1241 cpu &= ~IRQ_USER_BOUND; 1242 /* Check whether cpu id is in valid range. */ 1243 if (cpu < 0 || cpu >= apic_nproc) { 1244 return (B_FALSE); 1245 } else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) { 1246 /* 1247 * Check whether cpuid is in valid range if CPU DR is enabled. 1248 */ 1249 return (B_FALSE); 1250 } else if (!CPU_IN_SET(apic_cpumask, cpu)) { 1251 return (B_FALSE); 1252 } 1253 1254 return (B_TRUE); 1255 } 1256 1257 processorid_t 1258 apic_get_next_bind_cpu(void) 1259 { 1260 int i, count; 1261 processorid_t cpuid = 0; 1262 1263 for (count = 0; count < apic_nproc; count++) { 1264 if (apic_next_bind_cpu >= apic_nproc) { 1265 apic_next_bind_cpu = 0; 1266 } 1267 i = apic_next_bind_cpu++; 1268 if (apic_cpu_in_range(i)) { 1269 cpuid = i; 1270 break; 1271 } 1272 } 1273 1274 return (cpuid); 1275 } 1276 1277 uint16_t 1278 apic_get_apic_version() 1279 { 1280 int i; 1281 uchar_t min_io_apic_ver = 0; 1282 static uint16_t version; /* Cache as value is constant */ 1283 static boolean_t found = B_FALSE; /* Accomodate zero version */ 1284 1285 if (found == B_FALSE) { 1286 found = B_TRUE; 1287 1288 /* 1289 * Don't assume all IO APICs in the system are the same. 1290 * 1291 * Set to the minimum version. 1292 */ 1293 for (i = 0; i < apic_io_max; i++) { 1294 if ((apic_io_ver[i] != 0) && 1295 ((min_io_apic_ver == 0) || 1296 (min_io_apic_ver >= apic_io_ver[i]))) 1297 min_io_apic_ver = apic_io_ver[i]; 1298 } 1299 1300 /* Assume all local APICs are of the same version. */ 1301 version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver; 1302 } 1303 return (version); 1304 } 1305 1306 static struct apic_mpfps_hdr * 1307 apic_find_fps_sig(caddr_t cptr, int len) 1308 { 1309 int i; 1310 1311 /* Look for the pattern "_MP_" */ 1312 for (i = 0; i < len; i += 16) { 1313 if ((*(cptr+i) == '_') && 1314 (*(cptr+i+1) == 'M') && 1315 (*(cptr+i+2) == 'P') && 1316 (*(cptr+i+3) == '_')) 1317 /*LINTED: pointer cast may result in improper alignment */ 1318 return ((struct apic_mpfps_hdr *)(cptr + i)); 1319 } 1320 return (NULL); 1321 } 1322 1323 static int 1324 apic_checksum(caddr_t bptr, int len) 1325 { 1326 int i; 1327 uchar_t cksum; 1328 1329 cksum = 0; 1330 for (i = 0; i < len; i++) 1331 cksum += *bptr++; 1332 return ((int)cksum); 1333 } 1334 1335 /* 1336 * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge 1337 * needs special handling. We may need to chase up the device tree, 1338 * using the PCI-PCI Bridge specification's "rotating IPIN assumptions", 1339 * to find the IPIN at the root bus that relates to the IPIN on the 1340 * subsidiary bus (for ACPI or MP). We may, however, have an entry 1341 * in the MP table or the ACPI namespace for this device itself. 1342 * We handle both cases in the search below. 1343 */ 1344 /* this is the non-acpi version */ 1345 int 1346 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin, 1347 struct apic_io_intr **intrp) 1348 { 1349 dev_info_t *dipp, *dip; 1350 int pci_irq; 1351 ddi_acc_handle_t cfg_handle; 1352 int bridge_devno, bridge_bus; 1353 int ipin; 1354 1355 dip = idip; 1356 1357 /*CONSTCOND*/ 1358 while (1) { 1359 if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) || 1360 (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS)) 1361 return (-1); 1362 if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) == 1363 PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle, 1364 PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) { 1365 pci_config_teardown(&cfg_handle); 1366 if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno, 1367 NULL) != 0) 1368 return (-1); 1369 /* 1370 * This is the rotating scheme documented in the 1371 * PCI-to-PCI spec. If the PCI-to-PCI bridge is 1372 * behind another PCI-to-PCI bridge, then it needs 1373 * to keep ascending until an interrupt entry is 1374 * found or the root is reached. 1375 */ 1376 ipin = (child_devno + child_ipin) % PCI_INTD; 1377 if (bridge_bus == 0 && apic_pci_bus_total == 1) 1378 bridge_bus = (int)apic_single_pci_busid; 1379 pci_irq = ((bridge_devno & 0x1f) << 2) | 1380 (ipin & 0x3); 1381 if ((*intrp = apic_find_io_intr_w_busid(pci_irq, 1382 bridge_bus)) != NULL) { 1383 return (pci_irq); 1384 } 1385 dip = dipp; 1386 child_devno = bridge_devno; 1387 child_ipin = ipin; 1388 } else { 1389 pci_config_teardown(&cfg_handle); 1390 return (-1); 1391 } 1392 } 1393 /*LINTED: function will not fall off the bottom */ 1394 } 1395 1396 uchar_t 1397 acpi_find_ioapic(int irq) 1398 { 1399 int i; 1400 1401 for (i = 0; i < apic_io_max; i++) { 1402 if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i]) 1403 return ((uchar_t)i); 1404 } 1405 return (0xFF); /* shouldn't happen */ 1406 } 1407 1408 /* 1409 * See if two irqs are compatible for sharing a vector. 1410 * Currently we only support sharing of PCI devices. 1411 */ 1412 static int 1413 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2) 1414 { 1415 uint_t level1, po1; 1416 uint_t level2, po2; 1417 1418 /* Assume active high by default */ 1419 po1 = 0; 1420 po2 = 0; 1421 1422 if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI) 1423 return (0); 1424 1425 if (iflag1.intr_el == INTR_EL_CONFORM) 1426 level1 = AV_LEVEL; 1427 else 1428 level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 1429 1430 if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) || 1431 (iflag1.intr_po == INTR_PO_CONFORM))) 1432 po1 = AV_ACTIVE_LOW; 1433 1434 if (iflag2.intr_el == INTR_EL_CONFORM) 1435 level2 = AV_LEVEL; 1436 else 1437 level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 1438 1439 if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) || 1440 (iflag2.intr_po == INTR_PO_CONFORM))) 1441 po2 = AV_ACTIVE_LOW; 1442 1443 if ((level1 == level2) && (po1 == po2)) 1444 return (1); 1445 1446 return (0); 1447 } 1448 1449 struct apic_io_intr * 1450 apic_find_io_intr_w_busid(int irqno, int busid) 1451 { 1452 struct apic_io_intr *intrp; 1453 1454 /* 1455 * It can have more than 1 entry with same source bus IRQ, 1456 * but unique with the source bus id 1457 */ 1458 intrp = apic_io_intrp; 1459 if (intrp != NULL) { 1460 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1461 if (intrp->intr_irq == irqno && 1462 intrp->intr_busid == busid && 1463 intrp->intr_type == IO_INTR_INT) 1464 return (intrp); 1465 intrp++; 1466 } 1467 } 1468 APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:" 1469 "busid %x:%x\n", irqno, busid)); 1470 return ((struct apic_io_intr *)NULL); 1471 } 1472 1473 1474 struct mps_bus_info { 1475 char *bus_name; 1476 int bus_id; 1477 } bus_info_array[] = { 1478 "ISA ", BUS_ISA, 1479 "PCI ", BUS_PCI, 1480 "EISA ", BUS_EISA, 1481 "XPRESS", BUS_XPRESS, 1482 "PCMCIA", BUS_PCMCIA, 1483 "VL ", BUS_VL, 1484 "CBUS ", BUS_CBUS, 1485 "CBUSII", BUS_CBUSII, 1486 "FUTURE", BUS_FUTURE, 1487 "INTERN", BUS_INTERN, 1488 "MBI ", BUS_MBI, 1489 "MBII ", BUS_MBII, 1490 "MPI ", BUS_MPI, 1491 "MPSA ", BUS_MPSA, 1492 "NUBUS ", BUS_NUBUS, 1493 "TC ", BUS_TC, 1494 "VME ", BUS_VME, 1495 "PCI-E ", BUS_PCIE 1496 }; 1497 1498 static int 1499 apic_find_bus_type(char *bus) 1500 { 1501 int i = 0; 1502 1503 for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++) 1504 if (strncmp(bus, bus_info_array[i].bus_name, 1505 strlen(bus_info_array[i].bus_name)) == 0) 1506 return (bus_info_array[i].bus_id); 1507 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus)); 1508 return (0); 1509 } 1510 1511 static int 1512 apic_find_bus(int busid) 1513 { 1514 struct apic_bus *busp; 1515 1516 busp = apic_busp; 1517 while (busp->bus_entry == APIC_BUS_ENTRY) { 1518 if (busp->bus_id == busid) 1519 return (apic_find_bus_type((char *)&busp->bus_str1)); 1520 busp++; 1521 } 1522 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid)); 1523 return (0); 1524 } 1525 1526 int 1527 apic_find_bus_id(int bustype) 1528 { 1529 struct apic_bus *busp; 1530 1531 busp = apic_busp; 1532 while (busp->bus_entry == APIC_BUS_ENTRY) { 1533 if (apic_find_bus_type((char *)&busp->bus_str1) == bustype) 1534 return (busp->bus_id); 1535 busp++; 1536 } 1537 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x", 1538 bustype)); 1539 return (-1); 1540 } 1541 1542 /* 1543 * Check if a particular irq need to be reserved for any io_intr 1544 */ 1545 static struct apic_io_intr * 1546 apic_find_io_intr(int irqno) 1547 { 1548 struct apic_io_intr *intrp; 1549 1550 intrp = apic_io_intrp; 1551 if (intrp != NULL) { 1552 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1553 if (intrp->intr_irq == irqno && 1554 intrp->intr_type == IO_INTR_INT) 1555 return (intrp); 1556 intrp++; 1557 } 1558 } 1559 return ((struct apic_io_intr *)NULL); 1560 } 1561 1562 /* 1563 * Check if the given ioapicindex intin combination has already been assigned 1564 * an irq. If so return irqno. Else -1 1565 */ 1566 int 1567 apic_find_intin(uchar_t ioapic, uchar_t intin) 1568 { 1569 apic_irq_t *irqptr; 1570 int i; 1571 1572 /* find ioapic and intin in the apic_irq_table[] and return the index */ 1573 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 1574 irqptr = apic_irq_table[i]; 1575 while (irqptr) { 1576 if ((irqptr->airq_mps_intr_index >= 0) && 1577 (irqptr->airq_intin_no == intin) && 1578 (irqptr->airq_ioapicindex == ioapic)) { 1579 APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq " 1580 "entry for ioapic:intin %x:%x " 1581 "shared interrupts ?", ioapic, intin)); 1582 return (i); 1583 } 1584 irqptr = irqptr->airq_next; 1585 } 1586 } 1587 return (-1); 1588 } 1589 1590 int 1591 apic_allocate_irq(int irq) 1592 { 1593 int freeirq, i; 1594 1595 if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1) 1596 if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ, 1597 (irq - 1))) == -1) { 1598 /* 1599 * if BIOS really defines every single irq in the mps 1600 * table, then don't worry about conflicting with 1601 * them, just use any free slot in apic_irq_table 1602 */ 1603 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 1604 if ((apic_irq_table[i] == NULL) || 1605 apic_irq_table[i]->airq_mps_intr_index == 1606 FREE_INDEX) { 1607 freeirq = i; 1608 break; 1609 } 1610 } 1611 if (freeirq == -1) { 1612 /* This shouldn't happen, but just in case */ 1613 cmn_err(CE_WARN, "%s: NO available IRQ", psm_name); 1614 return (-1); 1615 } 1616 } 1617 if (apic_irq_table[freeirq] == NULL) { 1618 apic_irq_table[freeirq] = 1619 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); 1620 if (apic_irq_table[freeirq] == NULL) { 1621 cmn_err(CE_WARN, "%s: NO memory to allocate IRQ", 1622 psm_name); 1623 return (-1); 1624 } 1625 apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT; 1626 apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX; 1627 } 1628 return (freeirq); 1629 } 1630 1631 static int 1632 apic_find_free_irq(int start, int end) 1633 { 1634 int i; 1635 1636 for (i = start; i <= end; i++) 1637 /* Check if any I/O entry needs this IRQ */ 1638 if (apic_find_io_intr(i) == NULL) { 1639 /* Then see if it is free */ 1640 if ((apic_irq_table[i] == NULL) || 1641 (apic_irq_table[i]->airq_mps_intr_index == 1642 FREE_INDEX)) { 1643 return (i); 1644 } 1645 } 1646 return (-1); 1647 } 1648 1649 /* 1650 * compute the polarity, trigger mode and vector for programming into 1651 * the I/O apic and record in airq_rdt_entry. 1652 */ 1653 void 1654 apic_record_rdt_entry(apic_irq_t *irqptr, int irq) 1655 { 1656 int ioapicindex, bus_type, vector; 1657 short intr_index; 1658 uint_t level, po, io_po; 1659 struct apic_io_intr *iointrp; 1660 1661 intr_index = irqptr->airq_mps_intr_index; 1662 DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d " 1663 "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq, 1664 (void *)irqptr->airq_dip, irqptr->airq_vector)); 1665 1666 if (intr_index == RESERVE_INDEX) { 1667 apic_error |= APIC_ERR_INVALID_INDEX; 1668 return; 1669 } else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) { 1670 return; 1671 } 1672 1673 vector = irqptr->airq_vector; 1674 ioapicindex = irqptr->airq_ioapicindex; 1675 /* Assume edge triggered by default */ 1676 level = 0; 1677 /* Assume active high by default */ 1678 po = 0; 1679 1680 if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) { 1681 ASSERT(irq < 16); 1682 if (eisa_level_intr_mask & (1 << irq)) 1683 level = AV_LEVEL; 1684 if (intr_index == FREE_INDEX && apic_defconf == 0) 1685 apic_error |= APIC_ERR_INVALID_INDEX; 1686 } else if (intr_index == ACPI_INDEX) { 1687 bus_type = irqptr->airq_iflag.bustype; 1688 if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) { 1689 if (bus_type == BUS_PCI) 1690 level = AV_LEVEL; 1691 } else 1692 level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ? 1693 AV_LEVEL : 0; 1694 if (level && 1695 ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) || 1696 (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM && 1697 bus_type == BUS_PCI))) 1698 po = AV_ACTIVE_LOW; 1699 } else { 1700 iointrp = apic_io_intrp + intr_index; 1701 bus_type = apic_find_bus(iointrp->intr_busid); 1702 if (iointrp->intr_el == INTR_EL_CONFORM) { 1703 if ((irq < 16) && (eisa_level_intr_mask & (1 << irq))) 1704 level = AV_LEVEL; 1705 else if (bus_type == BUS_PCI) 1706 level = AV_LEVEL; 1707 } else 1708 level = (iointrp->intr_el == INTR_EL_LEVEL) ? 1709 AV_LEVEL : 0; 1710 if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) || 1711 (iointrp->intr_po == INTR_PO_CONFORM && 1712 bus_type == BUS_PCI))) 1713 po = AV_ACTIVE_LOW; 1714 } 1715 if (level) 1716 apic_level_intr[irq] = 1; 1717 /* 1718 * The 82489DX External APIC cannot do active low polarity interrupts. 1719 */ 1720 if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX)) 1721 io_po = po; 1722 else 1723 io_po = 0; 1724 1725 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) 1726 prom_printf("setio: ioapic=0x%x intin=0x%x level=0x%x po=0x%x " 1727 "vector=0x%x cpu=0x%x\n\n", ioapicindex, 1728 irqptr->airq_intin_no, level, io_po, vector, 1729 irqptr->airq_cpu); 1730 1731 irqptr->airq_rdt_entry = level|io_po|vector; 1732 } 1733 1734 int 1735 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 1736 int ipin, int *pci_irqp, iflag_t *intr_flagp) 1737 { 1738 1739 int status; 1740 acpi_psm_lnk_t acpipsmlnk; 1741 1742 if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp, 1743 intr_flagp)) == ACPI_PSM_SUCCESS) { 1744 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d " 1745 "from cache for device %s, instance #%d\n", psm_name, 1746 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 1747 return (status); 1748 } 1749 1750 bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t)); 1751 1752 if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp, 1753 &acpipsmlnk)) == ACPI_PSM_FAILURE) { 1754 APIC_VERBOSE_IRQ((CE_WARN, "%s: " 1755 " acpi_translate_pci_irq failed for device %s, instance" 1756 " #%d", psm_name, ddi_get_name(dip), 1757 ddi_get_instance(dip))); 1758 return (status); 1759 } 1760 1761 if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) { 1762 status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp, 1763 intr_flagp); 1764 if (status != ACPI_PSM_SUCCESS) { 1765 status = acpi_get_current_irq_resource(&acpipsmlnk, 1766 pci_irqp, intr_flagp); 1767 } 1768 } 1769 1770 if (status == ACPI_PSM_SUCCESS) { 1771 acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp, 1772 intr_flagp, &acpipsmlnk); 1773 1774 APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] " 1775 "new irq %d for device %s, instance #%d\n", psm_name, 1776 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 1777 } 1778 1779 return (status); 1780 } 1781 1782 /* 1783 * Adds an entry to the irq list passed in, and returns the new list. 1784 * Entries are added in priority order (lower numerical priorities are 1785 * placed closer to the head of the list) 1786 */ 1787 static prs_irq_list_t * 1788 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq, 1789 iflag_t *iflagp, acpi_prs_private_t *prsprvp) 1790 { 1791 struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp; 1792 1793 newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP); 1794 1795 newent->list_prio = priority; 1796 newent->irq = irq; 1797 newent->intrflags = *iflagp; 1798 newent->prsprv = *prsprvp; 1799 /* ->next is NULL from kmem_zalloc */ 1800 1801 /* 1802 * New list -- return the new entry as the list. 1803 */ 1804 if (listp == NULL) 1805 return (newent); 1806 1807 /* 1808 * Save original list pointer for return (since we're not modifying 1809 * the head) 1810 */ 1811 origlistp = listp; 1812 1813 /* 1814 * Insertion sort, with entries with identical keys stored AFTER 1815 * existing entries (the less-than-or-equal test of priority does 1816 * this for us). 1817 */ 1818 while (listp != NULL && listp->list_prio <= priority) { 1819 prevp = listp; 1820 listp = listp->next; 1821 } 1822 1823 newent->next = listp; 1824 1825 if (prevp == NULL) { /* Add at head of list (newent is the new head) */ 1826 return (newent); 1827 } else { 1828 prevp->next = newent; 1829 return (origlistp); 1830 } 1831 } 1832 1833 /* 1834 * Frees the list passed in, deallocating all memory and leaving *listpp 1835 * set to NULL. 1836 */ 1837 static void 1838 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp) 1839 { 1840 struct prs_irq_list_ent *nextp; 1841 1842 ASSERT(listpp != NULL); 1843 1844 while (*listpp != NULL) { 1845 nextp = (*listpp)->next; 1846 kmem_free(*listpp, sizeof (struct prs_irq_list_ent)); 1847 *listpp = nextp; 1848 } 1849 } 1850 1851 /* 1852 * apic_choose_irqs_from_prs returns a list of irqs selected from the list of 1853 * irqs returned by the link device's _PRS method. The irqs are chosen 1854 * to minimize contention in situations where the interrupt link device 1855 * can be programmed to steer interrupts to different interrupt controller 1856 * inputs (some of which may already be in use). The list is sorted in order 1857 * of irqs to use, with the highest priority given to interrupt controller 1858 * inputs that are not shared. When an interrupt controller input 1859 * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the 1860 * returned list in the order that minimizes sharing (thereby ensuring lowest 1861 * possible latency from interrupt trigger time to ISR execution time). 1862 */ 1863 static prs_irq_list_t * 1864 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip, 1865 int crs_irq) 1866 { 1867 int32_t irq; 1868 int i; 1869 prs_irq_list_t *prsirqlistp = NULL; 1870 iflag_t iflags; 1871 1872 while (irqlistent != NULL) { 1873 irqlistent->intr_flags.bustype = BUS_PCI; 1874 1875 for (i = 0; i < irqlistent->num_irqs; i++) { 1876 1877 irq = irqlistent->irqs[i]; 1878 1879 if (irq <= 0) { 1880 /* invalid irq number */ 1881 continue; 1882 } 1883 1884 if ((irq < 16) && (apic_reserved_irqlist[irq])) 1885 continue; 1886 1887 if ((apic_irq_table[irq] == NULL) || 1888 (apic_irq_table[irq]->airq_dip == dip)) { 1889 1890 prsirqlistp = acpi_insert_prs_irq_ent( 1891 prsirqlistp, 0 /* Highest priority */, irq, 1892 &irqlistent->intr_flags, 1893 &irqlistent->acpi_prs_prv); 1894 1895 /* 1896 * If we do not prefer the current irq from _CRS 1897 * or if we do and this irq is the same as the 1898 * current irq from _CRS, this is the one 1899 * to pick. 1900 */ 1901 if (!(apic_prefer_crs) || (irq == crs_irq)) { 1902 return (prsirqlistp); 1903 } 1904 continue; 1905 } 1906 1907 /* 1908 * Edge-triggered interrupts cannot be shared 1909 */ 1910 if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE) 1911 continue; 1912 1913 /* 1914 * To work around BIOSes that contain incorrect 1915 * interrupt polarity information in interrupt 1916 * descriptors returned by _PRS, we assume that 1917 * the polarity of the other device sharing this 1918 * interrupt controller input is compatible. 1919 * If it's not, the caller will catch it when 1920 * the caller invokes the link device's _CRS method 1921 * (after invoking its _SRS method). 1922 */ 1923 iflags = irqlistent->intr_flags; 1924 iflags.intr_po = 1925 apic_irq_table[irq]->airq_iflag.intr_po; 1926 1927 if (!acpi_intr_compatible(iflags, 1928 apic_irq_table[irq]->airq_iflag)) { 1929 APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d " 1930 "not compatible [%x:%x:%x !~ %x:%x:%x]", 1931 psm_name, irq, 1932 iflags.intr_po, 1933 iflags.intr_el, 1934 iflags.bustype, 1935 apic_irq_table[irq]->airq_iflag.intr_po, 1936 apic_irq_table[irq]->airq_iflag.intr_el, 1937 apic_irq_table[irq]->airq_iflag.bustype)); 1938 continue; 1939 } 1940 1941 /* 1942 * If we prefer the irq from _CRS, no need 1943 * to search any further (and make sure 1944 * to add this irq with the highest priority 1945 * so it's tried first). 1946 */ 1947 if (crs_irq == irq && apic_prefer_crs) { 1948 1949 return (acpi_insert_prs_irq_ent( 1950 prsirqlistp, 1951 0 /* Highest priority */, 1952 irq, &iflags, 1953 &irqlistent->acpi_prs_prv)); 1954 } 1955 1956 /* 1957 * Priority is equal to the share count (lower 1958 * share count is higher priority). Note that 1959 * the intr flags passed in here are the ones we 1960 * changed above -- if incorrect, it will be 1961 * caught by the caller's _CRS flags comparison. 1962 */ 1963 prsirqlistp = acpi_insert_prs_irq_ent( 1964 prsirqlistp, 1965 apic_irq_table[irq]->airq_share, irq, 1966 &iflags, &irqlistent->acpi_prs_prv); 1967 } 1968 1969 /* Go to the next irqlist entry */ 1970 irqlistent = irqlistent->next; 1971 } 1972 1973 return (prsirqlistp); 1974 } 1975 1976 /* 1977 * Configures the irq for the interrupt link device identified by 1978 * acpipsmlnkp. 1979 * 1980 * Gets the current and the list of possible irq settings for the 1981 * device. If apic_unconditional_srs is not set, and the current 1982 * resource setting is in the list of possible irq settings, 1983 * current irq resource setting is passed to the caller. 1984 * 1985 * Otherwise, picks an irq number from the list of possible irq 1986 * settings, and sets the irq of the device to this value. 1987 * If prefer_crs is set, among a set of irq numbers in the list that have 1988 * the least number of devices sharing the interrupt, we pick current irq 1989 * resource setting if it is a member of this set. 1990 * 1991 * Passes the irq number in the value pointed to by pci_irqp, and 1992 * polarity and sensitivity in the structure pointed to by dipintrflagp 1993 * to the caller. 1994 * 1995 * Note that if setting the irq resource failed, but successfuly obtained 1996 * the current irq resource settings, passes the current irq resources 1997 * and considers it a success. 1998 * 1999 * Returns: 2000 * ACPI_PSM_SUCCESS on success. 2001 * 2002 * ACPI_PSM_FAILURE if an error occured during the configuration or 2003 * if a suitable irq was not found for this device, or if setting the 2004 * irq resource and obtaining the current resource fails. 2005 * 2006 */ 2007 static int 2008 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 2009 int *pci_irqp, iflag_t *dipintr_flagp) 2010 { 2011 int32_t irq; 2012 int cur_irq = -1; 2013 acpi_irqlist_t *irqlistp; 2014 prs_irq_list_t *prs_irq_listp, *prs_irq_entp; 2015 boolean_t found_irq = B_FALSE; 2016 2017 dipintr_flagp->bustype = BUS_PCI; 2018 2019 if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp)) 2020 == ACPI_PSM_FAILURE) { 2021 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine " 2022 "or assign IRQ for device %s, instance #%d: The system was " 2023 "unable to get the list of potential IRQs from ACPI.", 2024 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 2025 2026 return (ACPI_PSM_FAILURE); 2027 } 2028 2029 if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 2030 dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) && 2031 (cur_irq > 0)) { 2032 /* 2033 * If an IRQ is set in CRS and that IRQ exists in the set 2034 * returned from _PRS, return that IRQ, otherwise print 2035 * a warning 2036 */ 2037 2038 if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL) 2039 == ACPI_PSM_SUCCESS) { 2040 2041 ASSERT(pci_irqp != NULL); 2042 *pci_irqp = cur_irq; 2043 acpi_free_irqlist(irqlistp); 2044 return (ACPI_PSM_SUCCESS); 2045 } 2046 2047 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the " 2048 "current irq %d for device %s, instance #%d in ACPI's " 2049 "list of possible irqs for this device. Picking one from " 2050 " the latter list.", psm_name, cur_irq, ddi_get_name(dip), 2051 ddi_get_instance(dip))); 2052 } 2053 2054 if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip, 2055 cur_irq)) == NULL) { 2056 2057 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a " 2058 "suitable irq from the list of possible irqs for device " 2059 "%s, instance #%d in ACPI's list of possible irqs", 2060 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 2061 2062 acpi_free_irqlist(irqlistp); 2063 return (ACPI_PSM_FAILURE); 2064 } 2065 2066 acpi_free_irqlist(irqlistp); 2067 2068 for (prs_irq_entp = prs_irq_listp; 2069 prs_irq_entp != NULL && found_irq == B_FALSE; 2070 prs_irq_entp = prs_irq_entp->next) { 2071 2072 acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv; 2073 irq = prs_irq_entp->irq; 2074 2075 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for " 2076 "device %s instance #%d\n", psm_name, irq, 2077 ddi_get_name(dip), ddi_get_instance(dip))); 2078 2079 if ((acpi_set_irq_resource(acpipsmlnkp, irq)) 2080 == ACPI_PSM_SUCCESS) { 2081 /* 2082 * setting irq was successful, check to make sure CRS 2083 * reflects that. If CRS does not agree with what we 2084 * set, return the irq that was set. 2085 */ 2086 2087 if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 2088 dipintr_flagp) == ACPI_PSM_SUCCESS) { 2089 2090 if (cur_irq != irq) 2091 APIC_VERBOSE_IRQ((CE_WARN, 2092 "!%s: IRQ resource set " 2093 "(irqno %d) for device %s " 2094 "instance #%d, differs from " 2095 "current setting irqno %d", 2096 psm_name, irq, ddi_get_name(dip), 2097 ddi_get_instance(dip), cur_irq)); 2098 } else { 2099 /* 2100 * On at least one system, there was a bug in 2101 * a DSDT method called by _STA, causing _STA to 2102 * indicate that the link device was disabled 2103 * (when, in fact, it was enabled). Since _SRS 2104 * succeeded, assume that _CRS is lying and use 2105 * the iflags from this _PRS interrupt choice. 2106 * If we're wrong about the flags, the polarity 2107 * will be incorrect and we may get an interrupt 2108 * storm, but there's not much else we can do 2109 * at this point. 2110 */ 2111 *dipintr_flagp = prs_irq_entp->intrflags; 2112 } 2113 2114 /* 2115 * Return the irq that was set, and not what _CRS 2116 * reports, since _CRS has been seen to return 2117 * different IRQs than what was passed to _SRS on some 2118 * systems (and just not return successfully on others). 2119 */ 2120 cur_irq = irq; 2121 found_irq = B_TRUE; 2122 } else { 2123 APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource " 2124 "irq %d failed for device %s instance #%d", 2125 psm_name, irq, ddi_get_name(dip), 2126 ddi_get_instance(dip))); 2127 2128 if (cur_irq == -1) { 2129 acpi_destroy_prs_irq_list(&prs_irq_listp); 2130 return (ACPI_PSM_FAILURE); 2131 } 2132 } 2133 } 2134 2135 acpi_destroy_prs_irq_list(&prs_irq_listp); 2136 2137 if (!found_irq) 2138 return (ACPI_PSM_FAILURE); 2139 2140 ASSERT(pci_irqp != NULL); 2141 *pci_irqp = cur_irq; 2142 return (ACPI_PSM_SUCCESS); 2143 } 2144 2145 void 2146 ioapic_disable_redirection() 2147 { 2148 int ioapic_ix; 2149 int intin_max; 2150 int intin_ix; 2151 2152 /* Disable the I/O APIC redirection entries */ 2153 for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) { 2154 2155 /* Bits 23-16 define the maximum redirection entries */ 2156 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) 2157 & 0xff; 2158 2159 for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) { 2160 /* 2161 * The assumption here is that this is safe, even for 2162 * systems with IOAPICs that suffer from the hardware 2163 * erratum because all devices have been quiesced before 2164 * this function is called from apic_shutdown() 2165 * (or equivalent). If that assumption turns out to be 2166 * false, this mask operation can induce the same 2167 * erratum result we're trying to avoid. 2168 */ 2169 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix, 2170 AV_MASK); 2171 } 2172 } 2173 } 2174 2175 /* 2176 * Looks for an IOAPIC with the specified physical address in the /ioapics 2177 * node in the device tree (created by the PCI enumerator). 2178 */ 2179 static boolean_t 2180 apic_is_ioapic_AMD_813x(uint32_t physaddr) 2181 { 2182 /* 2183 * Look in /ioapics, for the ioapic with 2184 * the physical address given 2185 */ 2186 dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0); 2187 dev_info_t *ioapic_child; 2188 boolean_t rv = B_FALSE; 2189 int vid, did; 2190 uint64_t ioapic_paddr; 2191 boolean_t done = B_FALSE; 2192 2193 if (ioapicsnode == NULL) 2194 return (B_FALSE); 2195 2196 /* Load first child: */ 2197 ioapic_child = ddi_get_child(ioapicsnode); 2198 while (!done && ioapic_child != 0) { /* Iterate over children */ 2199 2200 if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY, 2201 ioapic_child, DDI_PROP_DONTPASS, "reg", 0)) 2202 != 0 && physaddr == ioapic_paddr) { 2203 2204 vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child, 2205 DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0); 2206 2207 if (vid == VENID_AMD) { 2208 2209 did = ddi_prop_get_int(DDI_DEV_T_ANY, 2210 ioapic_child, DDI_PROP_DONTPASS, 2211 IOAPICS_PROP_DEVID, 0); 2212 2213 if (did == DEVID_8131_IOAPIC || 2214 did == DEVID_8132_IOAPIC) { 2215 rv = B_TRUE; 2216 done = B_TRUE; 2217 } 2218 } 2219 } 2220 2221 if (!done) 2222 ioapic_child = ddi_get_next_sibling(ioapic_child); 2223 } 2224 2225 /* The ioapics node was held by ddi_find_devinfo, so release it */ 2226 ndi_rele_devi(ioapicsnode); 2227 return (rv); 2228 } 2229 2230 struct apic_state { 2231 int32_t as_task_reg; 2232 int32_t as_dest_reg; 2233 int32_t as_format_reg; 2234 int32_t as_local_timer; 2235 int32_t as_pcint_vect; 2236 int32_t as_int_vect0; 2237 int32_t as_int_vect1; 2238 int32_t as_err_vect; 2239 int32_t as_init_count; 2240 int32_t as_divide_reg; 2241 int32_t as_spur_int_reg; 2242 uint32_t as_ioapic_ids[MAX_IO_APIC]; 2243 }; 2244 2245 2246 static int 2247 apic_acpi_enter_apicmode(void) 2248 { 2249 ACPI_OBJECT_LIST arglist; 2250 ACPI_OBJECT arg; 2251 ACPI_STATUS status; 2252 2253 /* Setup parameter object */ 2254 arglist.Count = 1; 2255 arglist.Pointer = &arg; 2256 arg.Type = ACPI_TYPE_INTEGER; 2257 arg.Integer.Value = ACPI_APIC_MODE; 2258 2259 status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL); 2260 if (ACPI_FAILURE(status)) 2261 return (PSM_FAILURE); 2262 else 2263 return (PSM_SUCCESS); 2264 } 2265 2266 2267 static void 2268 apic_save_state(struct apic_state *sp) 2269 { 2270 int i, cpuid; 2271 ulong_t iflag; 2272 2273 PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp)) 2274 /* 2275 * First the local APIC. 2276 */ 2277 sp->as_task_reg = apic_reg_ops->apic_get_pri(); 2278 sp->as_dest_reg = apic_reg_ops->apic_read(APIC_DEST_REG); 2279 if (apic_mode == LOCAL_APIC) 2280 sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG); 2281 sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER); 2282 sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT); 2283 sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0); 2284 sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1); 2285 sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT); 2286 sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT); 2287 sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG); 2288 sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG); 2289 2290 /* 2291 * If on the boot processor then save the IOAPICs' IDs 2292 */ 2293 if ((cpuid = psm_get_cpu_id()) == 0) { 2294 2295 iflag = intr_clear(); 2296 lock_set(&apic_ioapic_lock); 2297 2298 for (i = 0; i < apic_io_max; i++) 2299 sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD); 2300 2301 lock_clear(&apic_ioapic_lock); 2302 intr_restore(iflag); 2303 } 2304 2305 /* apic_state() is currently invoked only in Suspend/Resume */ 2306 apic_cpus[cpuid].aci_status |= APIC_CPU_SUSPEND; 2307 } 2308 2309 static void 2310 apic_restore_state(struct apic_state *sp) 2311 { 2312 int i; 2313 ulong_t iflag; 2314 2315 /* 2316 * First the local APIC. 2317 */ 2318 apic_reg_ops->apic_write_task_reg(sp->as_task_reg); 2319 if (apic_mode == LOCAL_APIC) { 2320 apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg); 2321 apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg); 2322 } 2323 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer); 2324 apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect); 2325 apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0); 2326 apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1); 2327 apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect); 2328 apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count); 2329 apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg); 2330 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg); 2331 2332 /* 2333 * the following only needs to be done once, so we do it on the 2334 * boot processor, since we know that we only have one of those 2335 */ 2336 if (psm_get_cpu_id() == 0) { 2337 2338 iflag = intr_clear(); 2339 lock_set(&apic_ioapic_lock); 2340 2341 /* Restore IOAPICs' APIC IDs */ 2342 for (i = 0; i < apic_io_max; i++) { 2343 ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]); 2344 } 2345 2346 lock_clear(&apic_ioapic_lock); 2347 intr_restore(iflag); 2348 2349 /* 2350 * Reenter APIC mode before restoring LNK devices 2351 */ 2352 (void) apic_acpi_enter_apicmode(); 2353 2354 /* 2355 * restore acpi link device mappings 2356 */ 2357 acpi_restore_link_devices(); 2358 } 2359 } 2360 2361 /* 2362 * Returns 0 on success 2363 */ 2364 int 2365 apic_state(psm_state_request_t *rp) 2366 { 2367 PMD(PMD_SX, ("apic_state ")) 2368 switch (rp->psr_cmd) { 2369 case PSM_STATE_ALLOC: 2370 rp->req.psm_state_req.psr_state = 2371 kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP); 2372 if (rp->req.psm_state_req.psr_state == NULL) 2373 return (ENOMEM); 2374 rp->req.psm_state_req.psr_state_size = 2375 sizeof (struct apic_state); 2376 PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n", 2377 rp->req.psm_state_req.psr_state, 2378 rp->req.psm_state_req.psr_state_size)) 2379 return (0); 2380 2381 case PSM_STATE_FREE: 2382 kmem_free(rp->req.psm_state_req.psr_state, 2383 rp->req.psm_state_req.psr_state_size); 2384 PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n", 2385 rp->req.psm_state_req.psr_state, 2386 rp->req.psm_state_req.psr_state_size)) 2387 return (0); 2388 2389 case PSM_STATE_SAVE: 2390 PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n", 2391 rp->req.psm_state_req.psr_state, 2392 rp->req.psm_state_req.psr_state_size)) 2393 apic_save_state(rp->req.psm_state_req.psr_state); 2394 return (0); 2395 2396 case PSM_STATE_RESTORE: 2397 apic_restore_state(rp->req.psm_state_req.psr_state); 2398 PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n", 2399 rp->req.psm_state_req.psr_state, 2400 rp->req.psm_state_req.psr_state_size)) 2401 return (0); 2402 2403 default: 2404 return (EINVAL); 2405 } 2406 } 2407