xref: /illumos-gate/usr/src/uts/i86pc/io/mp_platform_common.c (revision 46a7ef8aa64ee52c612c9b1b02ca19542a7a2e89)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
30  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
31  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
32  * PSMI 1.5 extensions are supported in Solaris Nevada.
33  */
34 #define	PSMI_1_5
35 
36 #include <sys/processor.h>
37 #include <sys/time.h>
38 #include <sys/psm.h>
39 #include <sys/smp_impldefs.h>
40 #include <sys/cram.h>
41 #include <sys/acpi/acpi.h>
42 #include <sys/acpica.h>
43 #include <sys/psm_common.h>
44 #include <sys/apic.h>
45 #include <sys/pit.h>
46 #include <sys/ddi.h>
47 #include <sys/sunddi.h>
48 #include <sys/ddi_impldefs.h>
49 #include <sys/pci.h>
50 #include <sys/promif.h>
51 #include <sys/x86_archext.h>
52 #include <sys/cpc_impl.h>
53 #include <sys/uadmin.h>
54 #include <sys/panic.h>
55 #include <sys/debug.h>
56 #include <sys/archsystm.h>
57 #include <sys/trap.h>
58 #include <sys/machsystm.h>
59 #include <sys/cpuvar.h>
60 #include <sys/rm_platter.h>
61 #include <sys/privregs.h>
62 #include <sys/cyclic.h>
63 #include <sys/note.h>
64 #include <sys/pci_intr_lib.h>
65 #include <sys/sunndi.h>
66 
67 
68 /*
69  *	Local Function Prototypes
70  */
71 static int apic_handle_defconf();
72 static int apic_parse_mpct(caddr_t mpct, int bypass);
73 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size);
74 static int apic_checksum(caddr_t bptr, int len);
75 static int apic_find_bus_type(char *bus);
76 static int apic_find_bus(int busid);
77 static int apic_find_bus_id(int bustype);
78 static struct apic_io_intr *apic_find_io_intr(int irqno);
79 static int apic_find_free_irq(int start, int end);
80 static void apic_mark_vector(uchar_t oldvector, uchar_t newvector);
81 static void apic_xlate_vector_free_timeout_handler(void *arg);
82 static void apic_reprogram_timeout_handler(void *arg);
83 static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
84     int new_bind_cpu, int apicindex, int intin_no, int which_irq,
85     struct ioapic_reprogram_data *drep);
86 static void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
87 static struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
88 static int apic_find_intin(uchar_t ioapic, uchar_t intin);
89 static int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
90     int child_ipin, struct apic_io_intr **intrp);
91 static int apic_setup_irq_table(dev_info_t *dip, int irqno,
92     struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp,
93     int type);
94 static int apic_setup_sci_irq_table(int irqno, uchar_t ipl,
95     iflag_t *intr_flagp);
96 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp);
97 static void apic_try_deferred_reprogram(int ipl, int vect);
98 static void delete_defer_repro_ent(int which_irq);
99 static void apic_ioapic_wait_pending_clear(int ioapicindex,
100     int intin_no);
101 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr);
102 
103 int apic_debug_mps_id = 0;	/* 1 - print MPS ID strings */
104 
105 /* ACPI SCI interrupt configuration; -1 if SCI not used */
106 int apic_sci_vect = -1;
107 iflag_t apic_sci_flags;
108 
109 /*
110  * psm name pointer
111  */
112 static char *psm_name;
113 
114 /* ACPI support routines */
115 static int acpi_probe(char *);
116 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
117     int *pci_irqp, iflag_t *intr_flagp);
118 
119 static int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
120     int ipin, int *pci_irqp, iflag_t *intr_flagp);
121 static uchar_t acpi_find_ioapic(int irq);
122 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2);
123 
124 
125 /*
126  * number of bits per byte, from <sys/param.h>
127  */
128 #define	UCHAR_MAX	((1 << NBBY) - 1)
129 
130 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
131 int apic_max_reps_clear_pending = 1000;
132 
133 /* The irq # is implicit in the array index: */
134 struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1];
135 /*
136  * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info
137  * is indexed by IRQ number, NOT by vector number.
138  */
139 
140 int	apic_intr_policy = INTR_ROUND_ROBIN_WITH_AFFINITY;
141 
142 int	apic_next_bind_cpu = 1; /* For round robin assignment */
143 				/* start with cpu 1 */
144 
145 /*
146  * If enabled, the distribution works as follows:
147  * On every interrupt entry, the current ipl for the CPU is set in cpu_info
148  * and the irq corresponding to the ipl is also set in the aci_current array.
149  * interrupt exit and setspl (due to soft interrupts) will cause the current
150  * ipl to be be changed. This is cache friendly as these frequently used
151  * paths write into a per cpu structure.
152  *
153  * Sampling is done by checking the structures for all CPUs and incrementing
154  * the busy field of the irq (if any) executing on each CPU and the busy field
155  * of the corresponding CPU.
156  * In periodic mode this is done on every clock interrupt.
157  * In one-shot mode, this is done thru a cyclic with an interval of
158  * apic_redistribute_sample_interval (default 10 milli sec).
159  *
160  * Every apic_sample_factor_redistribution times we sample, we do computations
161  * to decide which interrupt needs to be migrated (see comments
162  * before apic_intr_redistribute().
163  */
164 
165 /*
166  * Following 3 variables start as % and can be patched or set using an
167  * API to be defined in future. They will be scaled to
168  * sample_factor_redistribution which is in turn set to hertz+1 (in periodic
169  * mode), or 101 in one-shot mode to stagger it away from one sec processing
170  */
171 
172 int	apic_int_busy_mark = 60;
173 int	apic_int_free_mark = 20;
174 int	apic_diff_for_redistribution = 10;
175 
176 /* sampling interval for interrupt redistribution for dynamic migration */
177 int	apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */
178 
179 /*
180  * number of times we sample before deciding to redistribute interrupts
181  * for dynamic migration
182  */
183 int	apic_sample_factor_redistribution = 101;
184 
185 /* timeout for xlate_vector, mark_vector */
186 int	apic_revector_timeout = 16 * 10000; /* 160 millisec */
187 
188 int	apic_redist_cpu_skip = 0;
189 int	apic_num_imbalance = 0;
190 int	apic_num_rebind = 0;
191 
192 int	apic_nproc = 0;
193 size_t	apic_cpus_size = 0;
194 int	apic_defconf = 0;
195 int	apic_irq_translate = 0;
196 int	apic_spec_rev = 0;
197 int	apic_imcrp = 0;
198 
199 int	apic_use_acpi = 1;	/* 1 = use ACPI, 0 = don't use ACPI */
200 int	apic_use_acpi_madt_only = 0;	/* 1=ONLY use MADT from ACPI */
201 
202 /*
203  * For interrupt link devices, if apic_unconditional_srs is set, an irq resource
204  * will be assigned (via _SRS). If it is not set, use the current
205  * irq setting (via _CRS), but only if that irq is in the set of possible
206  * irqs (returned by _PRS) for the device.
207  */
208 int	apic_unconditional_srs = 1;
209 
210 /*
211  * For interrupt link devices, if apic_prefer_crs is set when we are
212  * assigning an IRQ resource to a device, prefer the current IRQ setting
213  * over other possible irq settings under same conditions.
214  */
215 
216 int	apic_prefer_crs = 1;
217 
218 uchar_t	apic_io_id[MAX_IO_APIC];
219 volatile uint32_t *apicioadr[MAX_IO_APIC];
220 static	uchar_t	apic_io_ver[MAX_IO_APIC];
221 static	uchar_t	apic_io_vectbase[MAX_IO_APIC];
222 static	uchar_t	apic_io_vectend[MAX_IO_APIC];
223 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1];
224 uint32_t apic_physaddr[MAX_IO_APIC];
225 
226 static	boolean_t ioapic_mask_workaround[MAX_IO_APIC];
227 
228 /*
229  * First available slot to be used as IRQ index into the apic_irq_table
230  * for those interrupts (like MSI/X) that don't have a physical IRQ.
231  */
232 int apic_first_avail_irq  = APIC_FIRST_FREE_IRQ;
233 
234 /*
235  * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound
236  * and bound elements of cpus_info and the temp_cpu element of irq_struct
237  */
238 lock_t	apic_ioapic_lock;
239 
240 /*
241  * apic_defer_reprogram_lock ensures that only one processor is handling
242  * deferred interrupt programming at apic_intr_exit time.
243  */
244 static	lock_t	apic_defer_reprogram_lock;
245 
246 /*
247  * The current number of deferred reprogrammings outstanding
248  */
249 uint_t	apic_reprogram_outstanding = 0;
250 
251 #ifdef DEBUG
252 /*
253  * Counters that keep track of deferred reprogramming stats
254  */
255 uint_t	apic_intr_deferrals = 0;
256 uint_t	apic_intr_deliver_timeouts = 0;
257 uint_t	apic_last_ditch_reprogram_failures = 0;
258 uint_t	apic_deferred_setup_failures = 0;
259 uint_t	apic_defer_repro_total_retries = 0;
260 uint_t	apic_defer_repro_successes = 0;
261 uint_t	apic_deferred_spurious_enters = 0;
262 #endif
263 
264 static	int	apic_io_max = 0;	/* no. of i/o apics enabled */
265 
266 static	struct apic_io_intr *apic_io_intrp = 0;
267 static	struct apic_bus	*apic_busp;
268 
269 uchar_t	apic_vector_to_irq[APIC_MAX_VECTOR+1];
270 uchar_t	apic_resv_vector[MAXIPL+1];
271 
272 char	apic_level_intr[APIC_MAX_VECTOR+1];
273 
274 static	uint32_t	eisa_level_intr_mask = 0;
275 	/* At least MSB will be set if EISA bus */
276 
277 static	int	apic_pci_bus_total = 0;
278 static	uchar_t	apic_single_pci_busid = 0;
279 
280 /*
281  * airq_mutex protects additions to the apic_irq_table - the first
282  * pointer and any airq_nexts off of that one. It also protects
283  * apic_max_device_irq & apic_min_device_irq. It also guarantees
284  * that share_id is unique as new ids are generated only when new
285  * irq_t structs are linked in. Once linked in the structs are never
286  * deleted. temp_cpu & mps_intr_index field indicate if it is programmed
287  * or allocated. Note that there is a slight gap between allocating in
288  * apic_introp_xlate and programming in addspl.
289  */
290 kmutex_t	airq_mutex;
291 apic_irq_t	*apic_irq_table[APIC_MAX_VECTOR+1];
292 int		apic_max_device_irq = 0;
293 int		apic_min_device_irq = APIC_MAX_VECTOR;
294 
295 /*
296  * Following declarations are for revectoring; used when ISRs at different
297  * IPLs share an irq.
298  */
299 static	lock_t	apic_revector_lock;
300 int	apic_revector_pending = 0;
301 static	uchar_t	*apic_oldvec_to_newvec;
302 static	uchar_t	*apic_newvec_to_oldvec;
303 
304 typedef struct prs_irq_list_ent {
305 	int			list_prio;
306 	int32_t			irq;
307 	iflag_t			intrflags;
308 	acpi_prs_private_t	prsprv;
309 	struct prs_irq_list_ent	*next;
310 } prs_irq_list_t;
311 
312 
313 /*
314  * ACPI variables
315  */
316 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */
317 int apic_enable_acpi = 0;
318 
319 /* ACPI Multiple APIC Description Table ptr */
320 static	MULTIPLE_APIC_TABLE *acpi_mapic_dtp = NULL;
321 
322 /* ACPI Interrupt Source Override Structure ptr */
323 static	MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL;
324 static	int acpi_iso_cnt = 0;
325 
326 /* ACPI Non-maskable Interrupt Sources ptr */
327 static	MADT_NMI_SOURCE *acpi_nmi_sp = NULL;
328 static	int acpi_nmi_scnt = 0;
329 static	MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL;
330 static	int acpi_nmi_ccnt = 0;
331 
332 /*
333  * The following added to identify a software poweroff method if available.
334  */
335 
336 static struct {
337 	int	poweroff_method;
338 	char	oem_id[APIC_MPS_OEM_ID_LEN + 1];	/* MAX + 1 for NULL */
339 	char	prod_id[APIC_MPS_PROD_ID_LEN + 1];	/* MAX + 1 for NULL */
340 } apic_mps_ids[] = {
341 	{ APIC_POWEROFF_VIA_RTC,	"INTEL",	"ALDER" },   /* 4300 */
342 	{ APIC_POWEROFF_VIA_RTC,	"NCR",		"AMC" },    /* 4300 */
343 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"A450NX" },  /* 4400? */
344 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AD450NX" }, /* 4400 */
345 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AC450NX" }, /* 4400R */
346 	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"S450NX" },  /* S50  */
347 	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"SC450NX" }  /* S50? */
348 };
349 
350 int	apic_poweroff_method = APIC_POWEROFF_NONE;
351 
352 /*
353  * Auto-configuration routines
354  */
355 
356 /*
357  * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here
358  * May work with 1.1 - but not guaranteed.
359  * According to the MP Spec, the MP floating pointer structure
360  * will be searched in the order described below:
361  * 1. In the first kilobyte of Extended BIOS Data Area (EBDA)
362  * 2. Within the last kilobyte of system base memory
363  * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh
364  * Once we find the right signature with proper checksum, we call
365  * either handle_defconf or parse_mpct to get all info necessary for
366  * subsequent operations.
367  */
368 int
369 apic_probe_common(char *modname)
370 {
371 	uint32_t mpct_addr, ebda_start = 0, base_mem_end;
372 	caddr_t	biosdatap;
373 	caddr_t	mpct;
374 	caddr_t	fptr;
375 	int	i, mpct_size, mapsize, retval = PSM_FAILURE;
376 	ushort_t	ebda_seg, base_mem_size;
377 	struct	apic_mpfps_hdr	*fpsp;
378 	struct	apic_mp_cnf_hdr	*hdrp;
379 	int bypass_cpu_and_ioapics_in_mptables;
380 	int acpi_user_options;
381 
382 	if (apic_forceload < 0)
383 		return (retval);
384 
385 	/*
386 	 * Remember who we are
387 	 */
388 	psm_name = modname;
389 
390 	/* Allow override for MADT-only mode */
391 	acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0,
392 	    "acpi-user-options", 0);
393 	apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0);
394 
395 	/* Allow apic_use_acpi to override MADT-only mode */
396 	if (!apic_use_acpi)
397 		apic_use_acpi_madt_only = 0;
398 
399 	retval = acpi_probe(modname);
400 
401 	/*
402 	 * mapin the bios data area 40:0
403 	 * 40:13h - two-byte location reports the base memory size
404 	 * 40:0Eh - two-byte location for the exact starting address of
405 	 *	    the EBDA segment for EISA
406 	 */
407 	biosdatap = psm_map_phys(0x400, 0x20, PROT_READ);
408 	if (!biosdatap)
409 		return (retval);
410 	fpsp = (struct apic_mpfps_hdr *)NULL;
411 	mapsize = MPFPS_RAM_WIN_LEN;
412 	/*LINTED: pointer cast may result in improper alignment */
413 	ebda_seg = *((ushort_t *)(biosdatap+0xe));
414 	/* check the 1k of EBDA */
415 	if (ebda_seg) {
416 		ebda_start = ((uint32_t)ebda_seg) << 4;
417 		fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ);
418 		if (fptr) {
419 			if (!(fpsp =
420 			    apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN)))
421 				psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
422 		}
423 	}
424 	/* If not in EBDA, check the last k of system base memory */
425 	if (!fpsp) {
426 		/*LINTED: pointer cast may result in improper alignment */
427 		base_mem_size = *((ushort_t *)(biosdatap + 0x13));
428 
429 		if (base_mem_size > 512)
430 			base_mem_end = 639 * 1024;
431 		else
432 			base_mem_end = 511 * 1024;
433 		/* if ebda == last k of base mem, skip to check BIOS ROM */
434 		if (base_mem_end != ebda_start) {
435 
436 			fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN,
437 			    PROT_READ);
438 
439 			if (fptr) {
440 				if (!(fpsp = apic_find_fps_sig(fptr,
441 				    MPFPS_RAM_WIN_LEN)))
442 					psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
443 			}
444 		}
445 	}
446 	psm_unmap_phys(biosdatap, 0x20);
447 
448 	/* If still cannot find it, check the BIOS ROM space */
449 	if (!fpsp) {
450 		mapsize = MPFPS_ROM_WIN_LEN;
451 		fptr = psm_map_phys(MPFPS_ROM_WIN_START,
452 		    MPFPS_ROM_WIN_LEN, PROT_READ);
453 		if (fptr) {
454 			if (!(fpsp =
455 			    apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) {
456 				psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
457 				return (retval);
458 			}
459 		}
460 	}
461 
462 	if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) {
463 		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
464 		return (retval);
465 	}
466 
467 	apic_spec_rev = fpsp->mpfps_spec_rev;
468 	if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) {
469 		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
470 		return (retval);
471 	}
472 
473 	/* check IMCR is present or not */
474 	apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP;
475 
476 	/* check default configuration (dual CPUs) */
477 	if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) {
478 		psm_unmap_phys(fptr, mapsize);
479 		return (apic_handle_defconf());
480 	}
481 
482 	/* MP Configuration Table */
483 	mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr);
484 
485 	psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */
486 
487 	/*
488 	 * Map in enough memory for the MP Configuration Table Header.
489 	 * Use this table to read the total length of the BIOS data and
490 	 * map in all the info
491 	 */
492 	/*LINTED: pointer cast may result in improper alignment */
493 	hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr,
494 	    sizeof (struct apic_mp_cnf_hdr), PROT_READ);
495 	if (!hdrp)
496 		return (retval);
497 
498 	/* check mp configuration table signature PCMP */
499 	if (hdrp->mpcnf_sig != 0x504d4350) {
500 		psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
501 		return (retval);
502 	}
503 	mpct_size = (int)hdrp->mpcnf_tbl_length;
504 
505 	apic_set_pwroff_method_from_mpcnfhdr(hdrp);
506 
507 	psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
508 
509 	if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) {
510 		/* This is an ACPI machine No need for further checks */
511 		return (retval);
512 	}
513 
514 	/*
515 	 * Map in the entries for this machine, ie. Processor
516 	 * Entry Tables, Bus Entry Tables, etc.
517 	 * They are in fixed order following one another
518 	 */
519 	mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ);
520 	if (!mpct)
521 		return (retval);
522 
523 	if (apic_checksum(mpct, mpct_size) != 0)
524 		goto apic_fail1;
525 
526 
527 	/*LINTED: pointer cast may result in improper alignment */
528 	hdrp = (struct apic_mp_cnf_hdr *)mpct;
529 	apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic,
530 	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
531 	if (!apicadr)
532 		goto apic_fail1;
533 
534 	/* Parse all information in the tables */
535 	bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS);
536 	if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) ==
537 	    PSM_SUCCESS)
538 		return (PSM_SUCCESS);
539 
540 	for (i = 0; i < apic_io_max; i++)
541 		mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
542 	if (apic_cpus)
543 		kmem_free(apic_cpus, apic_cpus_size);
544 	if (apicadr)
545 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
546 apic_fail1:
547 	psm_unmap_phys(mpct, mpct_size);
548 	return (retval);
549 }
550 
551 static void
552 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp)
553 {
554 	int	i;
555 
556 	for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0]));
557 	    i++) {
558 		if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id,
559 		    strlen(apic_mps_ids[i].oem_id)) == 0) &&
560 		    (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id,
561 		    strlen(apic_mps_ids[i].prod_id)) == 0)) {
562 
563 			apic_poweroff_method = apic_mps_ids[i].poweroff_method;
564 			break;
565 		}
566 	}
567 
568 	if (apic_debug_mps_id != 0) {
569 		cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'"
570 		    "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n",
571 		    psm_name,
572 		    hdrp->mpcnf_oem_str[0],
573 		    hdrp->mpcnf_oem_str[1],
574 		    hdrp->mpcnf_oem_str[2],
575 		    hdrp->mpcnf_oem_str[3],
576 		    hdrp->mpcnf_oem_str[4],
577 		    hdrp->mpcnf_oem_str[5],
578 		    hdrp->mpcnf_oem_str[6],
579 		    hdrp->mpcnf_oem_str[7],
580 		    hdrp->mpcnf_prod_str[0],
581 		    hdrp->mpcnf_prod_str[1],
582 		    hdrp->mpcnf_prod_str[2],
583 		    hdrp->mpcnf_prod_str[3],
584 		    hdrp->mpcnf_prod_str[4],
585 		    hdrp->mpcnf_prod_str[5],
586 		    hdrp->mpcnf_prod_str[6],
587 		    hdrp->mpcnf_prod_str[7],
588 		    hdrp->mpcnf_prod_str[8],
589 		    hdrp->mpcnf_prod_str[9],
590 		    hdrp->mpcnf_prod_str[10],
591 		    hdrp->mpcnf_prod_str[11]);
592 	}
593 }
594 
595 static int
596 acpi_probe(char *modname)
597 {
598 	int			i, intmax, index, rv;
599 	uint32_t		id, ver;
600 	int			acpi_verboseflags = 0;
601 	int			madt_seen, madt_size;
602 	APIC_HEADER		*ap;
603 	MADT_PROCESSOR_APIC	*mpa;
604 	MADT_IO_APIC		*mia;
605 	MADT_IO_SAPIC		*misa;
606 	MADT_INTERRUPT_OVERRIDE	*mio;
607 	MADT_NMI_SOURCE		*mns;
608 	MADT_INTERRUPT_SOURCE	*mis;
609 	MADT_LOCAL_APIC_NMI	*mlan;
610 	MADT_ADDRESS_OVERRIDE	*mao;
611 	ACPI_OBJECT_LIST 	arglist;
612 	ACPI_OBJECT		arg;
613 	int			sci;
614 	iflag_t			sci_flags;
615 	volatile uint32_t	*ioapic;
616 	int			apic_ix;
617 	char			local_ids[NCPU];
618 	char			proc_ids[NCPU];
619 	uchar_t			hid;
620 
621 	if (!apic_use_acpi)
622 		return (PSM_FAILURE);
623 
624 	if (AcpiGetFirmwareTable(APIC_SIG, 1, ACPI_LOGICAL_ADDRESSING,
625 	    (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK)
626 		return (PSM_FAILURE);
627 
628 	apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->LocalApicAddress,
629 	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
630 	if (!apicadr)
631 		return (PSM_FAILURE);
632 
633 	id = apicadr[APIC_LID_REG];
634 	local_ids[0] = (uchar_t)(id >> 24);
635 	apic_nproc = index = 1;
636 	CPUSET_ONLY(apic_cpumask, 0);
637 	apic_io_max = 0;
638 
639 	ap = (APIC_HEADER *) (acpi_mapic_dtp + 1);
640 	madt_size = acpi_mapic_dtp->Length;
641 	madt_seen = sizeof (*acpi_mapic_dtp);
642 
643 	while (madt_seen < madt_size) {
644 		switch (ap->Type) {
645 		case APIC_PROCESSOR:
646 			mpa = (MADT_PROCESSOR_APIC *) ap;
647 			if (mpa->ProcessorEnabled) {
648 				if (mpa->LocalApicId == local_ids[0]) {
649 					proc_ids[0] = mpa->ProcessorId;
650 					acpica_map_cpu(0, mpa);
651 				} else if (apic_nproc < NCPU) {
652 					local_ids[index] = mpa->LocalApicId;
653 					proc_ids[index] = mpa->ProcessorId;
654 					CPUSET_ADD(apic_cpumask, index);
655 					acpica_map_cpu(index, mpa);
656 					index++;
657 					apic_nproc++;
658 				} else
659 					cmn_err(CE_WARN, "%s: exceeded "
660 					    "maximum no. of CPUs (= %d)",
661 					    psm_name,  NCPU);
662 			}
663 			break;
664 
665 		case APIC_IO:
666 			mia = (MADT_IO_APIC *) ap;
667 			if (apic_io_max < MAX_IO_APIC) {
668 				apic_ix = apic_io_max;
669 				apic_io_id[apic_io_max] = mia->IoApicId;
670 				apic_io_vectbase[apic_io_max] =
671 				    mia->Interrupt;
672 				apic_physaddr[apic_io_max] =
673 				    (uint32_t)mia->Address;
674 				ioapic = apicioadr[apic_io_max] =
675 				    mapin_ioapic((uint32_t)mia->Address,
676 				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
677 				if (!ioapic)
678 					goto cleanup;
679 				ioapic_mask_workaround[apic_io_max] =
680 				    apic_is_ioapic_AMD_813x(mia->Address);
681 				apic_io_max++;
682 			}
683 			break;
684 
685 		case APIC_XRUPT_OVERRIDE:
686 			mio = (MADT_INTERRUPT_OVERRIDE *) ap;
687 			if (acpi_isop == NULL)
688 				acpi_isop = mio;
689 			acpi_iso_cnt++;
690 			break;
691 
692 		case APIC_NMI:
693 			/* UNIMPLEMENTED */
694 			mns = (MADT_NMI_SOURCE *) ap;
695 			if (acpi_nmi_sp == NULL)
696 				acpi_nmi_sp = mns;
697 			acpi_nmi_scnt++;
698 
699 			cmn_err(CE_NOTE, "!apic: nmi source: %d %d %d\n",
700 			    mns->Interrupt, mns->Polarity,
701 			    mns->TriggerMode);
702 			break;
703 
704 		case APIC_LOCAL_NMI:
705 			/* UNIMPLEMENTED */
706 			mlan = (MADT_LOCAL_APIC_NMI *) ap;
707 			if (acpi_nmi_cp == NULL)
708 				acpi_nmi_cp = mlan;
709 			acpi_nmi_ccnt++;
710 
711 			cmn_err(CE_NOTE, "!apic: local nmi: %d %d %d %d\n",
712 			    mlan->ProcessorId, mlan->Polarity,
713 			    mlan->TriggerMode, mlan->Lint);
714 			break;
715 
716 		case APIC_ADDRESS_OVERRIDE:
717 			/* UNIMPLEMENTED */
718 			mao = (MADT_ADDRESS_OVERRIDE *) ap;
719 			cmn_err(CE_NOTE, "!apic: address override: %lx\n",
720 			    (long)mao->Address);
721 			break;
722 
723 		case APIC_IO_SAPIC:
724 			/* UNIMPLEMENTED */
725 			misa = (MADT_IO_SAPIC *) ap;
726 
727 			cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n",
728 			    misa->IoSapicId, misa->InterruptBase,
729 			    (long)misa->Address);
730 			break;
731 
732 		case APIC_XRUPT_SOURCE:
733 			/* UNIMPLEMENTED */
734 			mis = (MADT_INTERRUPT_SOURCE *) ap;
735 
736 			cmn_err(CE_NOTE,
737 			    "!apic: irq source: %d %d %d %d %d %d %d\n",
738 			    mis->ProcessorId, mis->ProcessorEid,
739 			    mis->Interrupt, mis->Polarity,
740 			    mis->TriggerMode, mis->InterruptType,
741 			    mis->IoSapicVector);
742 			break;
743 		default:
744 			break;
745 		}
746 
747 		/* advance to next entry */
748 		madt_seen += ap->Length;
749 		ap = (APIC_HEADER *)(((char *)ap) + ap->Length);
750 	}
751 
752 	apic_cpus_size = apic_nproc * sizeof (*apic_cpus);
753 	if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL)
754 		goto cleanup;
755 
756 	/*
757 	 * ACPI doesn't provide the local apic ver, get it directly from the
758 	 * local apic
759 	 */
760 	ver = apicadr[APIC_VERS_REG];
761 	for (i = 0; i < apic_nproc; i++) {
762 		apic_cpus[i].aci_local_id = local_ids[i];
763 		apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF);
764 	}
765 	for (i = 0; i < apic_io_max; i++) {
766 		apic_ix = i;
767 
768 		/*
769 		 * need to check Sitka on the following acpi problem
770 		 * On the Sitka, the ioapic's apic_id field isn't reporting
771 		 * the actual io apic id. We have reported this problem
772 		 * to Intel. Until they fix the problem, we will get the
773 		 * actual id directly from the ioapic.
774 		 */
775 		id = ioapic_read(apic_ix, APIC_ID_CMD);
776 		hid = (uchar_t)(id >> 24);
777 
778 		if (hid != apic_io_id[i]) {
779 			if (apic_io_id[i] == 0)
780 				apic_io_id[i] = hid;
781 			else { /* set ioapic id to whatever reported by ACPI */
782 				id = ((uint32_t)apic_io_id[i]) << 24;
783 				ioapic_write(apic_ix, APIC_ID_CMD, id);
784 			}
785 		}
786 		ver = ioapic_read(apic_ix, APIC_VERS_CMD);
787 		apic_io_ver[i] = (uchar_t)(ver & 0xff);
788 		intmax = (ver >> 16) & 0xff;
789 		apic_io_vectend[i] = apic_io_vectbase[i] + intmax;
790 		if (apic_first_avail_irq <= apic_io_vectend[i])
791 			apic_first_avail_irq = apic_io_vectend[i] + 1;
792 	}
793 
794 
795 	/*
796 	 * Process SCI configuration here
797 	 * An error may be returned here if
798 	 * acpi-user-options specifies legacy mode
799 	 * (no SCI, no ACPI mode)
800 	 */
801 	if (acpica_get_sci(&sci, &sci_flags) != AE_OK)
802 		sci = -1;
803 
804 	/*
805 	 * Now call acpi_init() to generate namespaces
806 	 * If this fails, we don't attempt to use ACPI
807 	 * even if we were able to get a MADT above
808 	 */
809 	if (acpica_init() != AE_OK)
810 		goto cleanup;
811 
812 	/*
813 	 * Call acpica_build_processor_map() now that we have
814 	 * ACPI namesspace access
815 	 */
816 	acpica_build_processor_map();
817 
818 	/*
819 	 * Squirrel away the SCI and flags for later on
820 	 * in apic_picinit() when we're ready
821 	 */
822 	apic_sci_vect = sci;
823 	apic_sci_flags = sci_flags;
824 
825 	if (apic_verbose & APIC_VERBOSE_IRQ_FLAG)
826 		acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG;
827 
828 	if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG)
829 		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG;
830 
831 	if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG)
832 		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG;
833 
834 	if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE)
835 		goto cleanup;
836 
837 	/* Enable ACPI APIC interrupt routing */
838 	arglist.Count = 1;
839 	arglist.Pointer = &arg;
840 	arg.Type = ACPI_TYPE_INTEGER;
841 	arg.Integer.Value = ACPI_APIC_MODE;	/* 1 */
842 	rv = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL);
843 	if (rv == AE_OK) {
844 		build_reserved_irqlist((uchar_t *)apic_reserved_irqlist);
845 		apic_enable_acpi = 1;
846 		if (apic_use_acpi_madt_only) {
847 			cmn_err(CE_CONT,
848 			    "?Using ACPI for CPU/IOAPIC information ONLY\n");
849 		}
850 		return (PSM_SUCCESS);
851 	}
852 	/* if setting APIC mode failed above, we fall through to cleanup */
853 
854 cleanup:
855 	if (apicadr != NULL) {
856 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
857 		apicadr = NULL;
858 	}
859 	apic_nproc = 0;
860 	for (i = 0; i < apic_io_max; i++) {
861 		mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
862 		apicioadr[i] = NULL;
863 	}
864 	apic_io_max = 0;
865 	acpi_isop = NULL;
866 	acpi_iso_cnt = 0;
867 	acpi_nmi_sp = NULL;
868 	acpi_nmi_scnt = 0;
869 	acpi_nmi_cp = NULL;
870 	acpi_nmi_ccnt = 0;
871 	return (PSM_FAILURE);
872 }
873 
874 /*
875  * Handle default configuration. Fill in reqd global variables & tables
876  * Fill all details as MP table does not give any more info
877  */
878 static int
879 apic_handle_defconf()
880 {
881 	uint_t	lid;
882 
883 	/*LINTED: pointer cast may result in improper alignment */
884 	apicioadr[0] = mapin_ioapic(APIC_IO_ADDR,
885 	    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
886 	/*LINTED: pointer cast may result in improper alignment */
887 	apicadr = (uint32_t *)psm_map_phys(APIC_LOCAL_ADDR,
888 	    APIC_LOCAL_MEMLEN, PROT_READ);
889 	apic_cpus_size = 2 * sizeof (*apic_cpus);
890 	apic_cpus = (apic_cpus_info_t *)
891 	    kmem_zalloc(apic_cpus_size, KM_NOSLEEP);
892 	if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus))
893 		goto apic_handle_defconf_fail;
894 	CPUSET_ONLY(apic_cpumask, 0);
895 	CPUSET_ADD(apic_cpumask, 1);
896 	apic_nproc = 2;
897 	lid = apicadr[APIC_LID_REG];
898 	apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET);
899 	/*
900 	 * According to the PC+MP spec 1.1, the local ids
901 	 * for the default configuration has to be 0 or 1
902 	 */
903 	if (apic_cpus[0].aci_local_id == 1)
904 		apic_cpus[1].aci_local_id = 0;
905 	else if (apic_cpus[0].aci_local_id == 0)
906 		apic_cpus[1].aci_local_id = 1;
907 	else
908 		goto apic_handle_defconf_fail;
909 
910 	apic_io_id[0] = 2;
911 	apic_io_max = 1;
912 	if (apic_defconf >= 5) {
913 		apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS;
914 		apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS;
915 		apic_io_ver[0] = APIC_INTEGRATED_VERS;
916 	} else {
917 		apic_cpus[0].aci_local_ver = 0;		/* 82489 DX */
918 		apic_cpus[1].aci_local_ver = 0;
919 		apic_io_ver[0] = 0;
920 	}
921 	if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6)
922 		eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
923 		    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
924 	return (PSM_SUCCESS);
925 
926 apic_handle_defconf_fail:
927 	if (apic_cpus)
928 		kmem_free(apic_cpus, apic_cpus_size);
929 	if (apicadr)
930 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
931 	if (apicioadr[0])
932 		mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN);
933 	return (PSM_FAILURE);
934 }
935 
936 /* Parse the entries in MP configuration table and collect info that we need */
937 static int
938 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics)
939 {
940 	struct	apic_procent	*procp;
941 	struct	apic_bus	*busp;
942 	struct	apic_io_entry	*ioapicp;
943 	struct	apic_io_intr	*intrp;
944 	int			apic_ix;
945 	uint_t	lid;
946 	uint32_t	id;
947 	uchar_t hid;
948 
949 	/*LINTED: pointer cast may result in improper alignment */
950 	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
951 
952 	/* No need to count cpu entries if we won't use them */
953 	if (!bypass_cpus_and_ioapics) {
954 
955 		/* Find max # of CPUS and allocate structure accordingly */
956 		apic_nproc = 0;
957 		CPUSET_ZERO(apic_cpumask);
958 		while (procp->proc_entry == APIC_CPU_ENTRY) {
959 			if (procp->proc_cpuflags & CPUFLAGS_EN) {
960 				if (apic_nproc < NCPU)
961 					CPUSET_ADD(apic_cpumask, apic_nproc);
962 				apic_nproc++;
963 			}
964 			procp++;
965 		}
966 		if (apic_nproc > NCPU)
967 			cmn_err(CE_WARN, "%s: exceeded "
968 			    "maximum no. of CPUs (= %d)", psm_name, NCPU);
969 		apic_cpus_size = apic_nproc * sizeof (*apic_cpus);
970 		if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *)
971 		    kmem_zalloc(apic_cpus_size, KM_NOSLEEP)))
972 			return (PSM_FAILURE);
973 	}
974 
975 	/*LINTED: pointer cast may result in improper alignment */
976 	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
977 
978 	/*
979 	 * start with index 1 as 0 needs to be filled in with Boot CPU, but
980 	 * if we're bypassing this information, it has already been filled
981 	 * in by acpi_probe(), so don't overwrite it.
982 	 */
983 	if (!bypass_cpus_and_ioapics)
984 		apic_nproc = 1;
985 
986 	while (procp->proc_entry == APIC_CPU_ENTRY) {
987 		/* check whether the cpu exists or not */
988 		if (!bypass_cpus_and_ioapics &&
989 		    procp->proc_cpuflags & CPUFLAGS_EN) {
990 			if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */
991 				lid = apicadr[APIC_LID_REG];
992 				apic_cpus[0].aci_local_id = procp->proc_apicid;
993 				if (apic_cpus[0].aci_local_id !=
994 				    (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) {
995 					return (PSM_FAILURE);
996 				}
997 				apic_cpus[0].aci_local_ver =
998 				    procp->proc_version;
999 			} else {
1000 
1001 				apic_cpus[apic_nproc].aci_local_id =
1002 				    procp->proc_apicid;
1003 				apic_cpus[apic_nproc].aci_local_ver =
1004 				    procp->proc_version;
1005 				apic_nproc++;
1006 
1007 			}
1008 		}
1009 		procp++;
1010 	}
1011 
1012 	/*
1013 	 * Save start of bus entries for later use.
1014 	 * Get EISA level cntrl if EISA bus is present.
1015 	 * Also get the CPI bus id for single CPI bus case
1016 	 */
1017 	apic_busp = busp = (struct apic_bus *)procp;
1018 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1019 		lid = apic_find_bus_type((char *)&busp->bus_str1);
1020 		if (lid	== BUS_EISA) {
1021 			eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1022 			    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1023 		} else if (lid == BUS_PCI) {
1024 			/*
1025 			 * apic_single_pci_busid will be used only if
1026 			 * apic_pic_bus_total is equal to 1
1027 			 */
1028 			apic_pci_bus_total++;
1029 			apic_single_pci_busid = busp->bus_id;
1030 		}
1031 		busp++;
1032 	}
1033 
1034 	ioapicp = (struct apic_io_entry *)busp;
1035 
1036 	if (!bypass_cpus_and_ioapics)
1037 		apic_io_max = 0;
1038 	do {
1039 		if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) {
1040 			if (ioapicp->io_flags & IOAPIC_FLAGS_EN) {
1041 				apic_io_id[apic_io_max] = ioapicp->io_apicid;
1042 				apic_io_ver[apic_io_max] = ioapicp->io_version;
1043 		/*LINTED: pointer cast may result in improper alignment */
1044 				apicioadr[apic_io_max] =
1045 				    mapin_ioapic(
1046 				    (uint32_t)ioapicp->io_apic_addr,
1047 				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1048 
1049 				if (!apicioadr[apic_io_max])
1050 					return (PSM_FAILURE);
1051 
1052 				ioapic_mask_workaround[apic_io_max] =
1053 				    apic_is_ioapic_AMD_813x(
1054 				    ioapicp->io_apic_addr);
1055 
1056 				apic_ix = apic_io_max;
1057 				id = ioapic_read(apic_ix, APIC_ID_CMD);
1058 				hid = (uchar_t)(id >> 24);
1059 
1060 				if (hid != apic_io_id[apic_io_max]) {
1061 					if (apic_io_id[apic_io_max] == 0)
1062 						apic_io_id[apic_io_max] = hid;
1063 					else {
1064 						/*
1065 						 * set ioapic id to whatever
1066 						 * reported by MPS
1067 						 *
1068 						 * may not need to set index
1069 						 * again ???
1070 						 * take it out and try
1071 						 */
1072 
1073 						id = ((uint32_t)
1074 						    apic_io_id[apic_io_max]) <<
1075 						    24;
1076 
1077 						ioapic_write(apic_ix,
1078 						    APIC_ID_CMD, id);
1079 					}
1080 				}
1081 				apic_io_max++;
1082 			}
1083 		}
1084 		ioapicp++;
1085 	} while (ioapicp->io_entry == APIC_IO_ENTRY);
1086 
1087 	apic_io_intrp = (struct apic_io_intr *)ioapicp;
1088 
1089 	intrp = apic_io_intrp;
1090 	while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1091 		if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) ||
1092 		    (apic_find_bus(intrp->intr_busid) == BUS_PCI)) {
1093 			apic_irq_translate = 1;
1094 			break;
1095 		}
1096 		intrp++;
1097 	}
1098 
1099 	return (PSM_SUCCESS);
1100 }
1101 
1102 boolean_t
1103 apic_cpu_in_range(int cpu)
1104 {
1105 	return ((cpu & ~IRQ_USER_BOUND) < apic_nproc);
1106 }
1107 
1108 uint16_t
1109 apic_get_apic_version()
1110 {
1111 	int i;
1112 	uchar_t min_io_apic_ver = 0;
1113 	static uint16_t version;		/* Cache as value is constant */
1114 	static boolean_t found = B_FALSE;	/* Accomodate zero version */
1115 
1116 	if (found == B_FALSE) {
1117 		found = B_TRUE;
1118 
1119 		/*
1120 		 * Don't assume all IO APICs in the system are the same.
1121 		 *
1122 		 * Set to the minimum version.
1123 		 */
1124 		for (i = 0; i < apic_io_max; i++) {
1125 			if ((apic_io_ver[i] != 0) &&
1126 			    ((min_io_apic_ver == 0) ||
1127 			    (min_io_apic_ver >= apic_io_ver[i])))
1128 				min_io_apic_ver = apic_io_ver[i];
1129 		}
1130 
1131 		/* Assume all local APICs are of the same version. */
1132 		version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver;
1133 	}
1134 	return (version);
1135 }
1136 
1137 static struct apic_mpfps_hdr *
1138 apic_find_fps_sig(caddr_t cptr, int len)
1139 {
1140 	int	i;
1141 
1142 	/* Look for the pattern "_MP_" */
1143 	for (i = 0; i < len; i += 16) {
1144 		if ((*(cptr+i) == '_') &&
1145 		    (*(cptr+i+1) == 'M') &&
1146 		    (*(cptr+i+2) == 'P') &&
1147 		    (*(cptr+i+3) == '_'))
1148 		    /*LINTED: pointer cast may result in improper alignment */
1149 			return ((struct apic_mpfps_hdr *)(cptr + i));
1150 	}
1151 	return (NULL);
1152 }
1153 
1154 static int
1155 apic_checksum(caddr_t bptr, int len)
1156 {
1157 	int	i;
1158 	uchar_t	cksum;
1159 
1160 	cksum = 0;
1161 	for (i = 0; i < len; i++)
1162 		cksum += *bptr++;
1163 	return ((int)cksum);
1164 }
1165 
1166 
1167 /*
1168  * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable
1169  * are also set to NULL. vector->irq is set to a value which cannot map
1170  * to a real irq to show that it is free.
1171  */
1172 void
1173 apic_init_common()
1174 {
1175 	int	i, j, indx;
1176 	int	*iptr;
1177 
1178 	/*
1179 	 * Initialize apic_ipls from apic_vectortoipl.  This array is
1180 	 * used in apic_intr_enter to determine the IPL to use for the
1181 	 * corresponding vector.  On some systems, due to hardware errata
1182 	 * and interrupt sharing, the IPL may not correspond to the IPL listed
1183 	 * in apic_vectortoipl (see apic_addspl and apic_delspl).
1184 	 */
1185 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
1186 		indx = i * APIC_VECTOR_PER_IPL;
1187 
1188 		for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++)
1189 			apic_ipls[indx] = apic_vectortoipl[i];
1190 	}
1191 
1192 	/* cpu 0 is always up (for now) */
1193 	apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
1194 
1195 	iptr = (int *)&apic_irq_table[0];
1196 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
1197 		apic_level_intr[i] = 0;
1198 		*iptr++ = NULL;
1199 		apic_vector_to_irq[i] = APIC_RESV_IRQ;
1200 
1201 		/* These *must* be initted to B_TRUE! */
1202 		apic_reprogram_info[i].done = B_TRUE;
1203 		apic_reprogram_info[i].irqp = NULL;
1204 		apic_reprogram_info[i].tries = 0;
1205 		apic_reprogram_info[i].bindcpu = 0;
1206 	}
1207 
1208 	/*
1209 	 * Allocate a dummy irq table entry for the reserved entry.
1210 	 * This takes care of the race between removing an irq and
1211 	 * clock detecting a CPU in that irq during interrupt load
1212 	 * sampling.
1213 	 */
1214 	apic_irq_table[APIC_RESV_IRQ] =
1215 	    kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
1216 
1217 	mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
1218 }
1219 
1220 void
1221 ioapic_init_intr(int mask_apic)
1222 {
1223 	int apic_ix;
1224 	struct intrspec ispec;
1225 	apic_irq_t *irqptr;
1226 	int i, j;
1227 	ulong_t iflag;
1228 
1229 	LOCK_INIT_CLEAR(&apic_revector_lock);
1230 	LOCK_INIT_CLEAR(&apic_defer_reprogram_lock);
1231 
1232 	/* mask interrupt vectors */
1233 	for (j = 0; j < apic_io_max && mask_apic; j++) {
1234 		int intin_max;
1235 
1236 		apic_ix = j;
1237 		/* Bits 23-16 define the maximum redirection entries */
1238 		intin_max = (ioapic_read(apic_ix, APIC_VERS_CMD) >> 16) & 0xff;
1239 		for (i = 0; i < intin_max; i++)
1240 			ioapic_write(apic_ix, APIC_RDT_CMD + 2 * i, AV_MASK);
1241 	}
1242 
1243 	/*
1244 	 * Hack alert: deal with ACPI SCI interrupt chicken/egg here
1245 	 */
1246 	if (apic_sci_vect > 0) {
1247 		/*
1248 		 * acpica has already done add_avintr(); we just
1249 		 * to finish the job by mimicing translate_irq()
1250 		 *
1251 		 * Fake up an intrspec and setup the tables
1252 		 */
1253 		ispec.intrspec_vec = apic_sci_vect;
1254 		ispec.intrspec_pri = SCI_IPL;
1255 
1256 		if (apic_setup_irq_table(NULL, apic_sci_vect, NULL,
1257 		    &ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) {
1258 			cmn_err(CE_WARN, "!apic: SCI setup failed");
1259 			return;
1260 		}
1261 		irqptr = apic_irq_table[apic_sci_vect];
1262 
1263 		iflag = intr_clear();
1264 		lock_set(&apic_ioapic_lock);
1265 
1266 		/* Program I/O APIC */
1267 		(void) apic_setup_io_intr(irqptr, apic_sci_vect, B_FALSE);
1268 
1269 		lock_clear(&apic_ioapic_lock);
1270 		intr_restore(iflag);
1271 
1272 		irqptr->airq_share++;
1273 	}
1274 }
1275 
1276 /*
1277  * Add mask bits to disable interrupt vector from happening
1278  * at or above IPL. In addition, it should remove mask bits
1279  * to enable interrupt vectors below the given IPL.
1280  *
1281  * Both add and delspl are complicated by the fact that different interrupts
1282  * may share IRQs. This can happen in two ways.
1283  * 1. The same H/W line is shared by more than 1 device
1284  * 1a. with interrupts at different IPLs
1285  * 1b. with interrupts at same IPL
1286  * 2. We ran out of vectors at a given IPL and started sharing vectors.
1287  * 1b and 2 should be handled gracefully, except for the fact some ISRs
1288  * will get called often when no interrupt is pending for the device.
1289  * For 1a, we just hope that the machine blows up with the person who
1290  * set it up that way!. In the meantime, we handle it at the higher IPL.
1291  */
1292 /*ARGSUSED*/
1293 int
1294 apic_addspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
1295 {
1296 	uchar_t vector;
1297 	ulong_t iflag;
1298 	apic_irq_t *irqptr, *irqheadptr;
1299 	int irqindex;
1300 
1301 	ASSERT(max_ipl <= UCHAR_MAX);
1302 	irqindex = IRQINDEX(irqno);
1303 
1304 	if ((irqindex == -1) || (!apic_irq_table[irqindex]))
1305 		return (PSM_FAILURE);
1306 
1307 	mutex_enter(&airq_mutex);
1308 	irqptr = irqheadptr = apic_irq_table[irqindex];
1309 
1310 	DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x "
1311 	    "vector=0x%x\n", (void *)irqptr->airq_dip,
1312 	    irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
1313 
1314 	while (irqptr) {
1315 		if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
1316 			break;
1317 		irqptr = irqptr->airq_next;
1318 	}
1319 	irqptr->airq_share++;
1320 
1321 	mutex_exit(&airq_mutex);
1322 
1323 	/* return if it is not hardware interrupt */
1324 	if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
1325 		return (PSM_SUCCESS);
1326 
1327 	/* Or if there are more interupts at a higher IPL */
1328 	if (ipl != max_ipl)
1329 		return (PSM_SUCCESS);
1330 
1331 	/*
1332 	 * if apic_picinit() has not been called yet, just return.
1333 	 * At the end of apic_picinit(), we will call setup_io_intr().
1334 	 */
1335 
1336 	if (!apic_flag)
1337 		return (PSM_SUCCESS);
1338 
1339 	/*
1340 	 * Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate,
1341 	 * return failure. Not very elegant, but then we hope the
1342 	 * machine will blow up with ...
1343 	 */
1344 	if (irqptr->airq_ipl != max_ipl &&
1345 	    !ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
1346 
1347 		vector = apic_allocate_vector(max_ipl, irqindex, 1);
1348 		if (vector == 0) {
1349 			irqptr->airq_share--;
1350 			return (PSM_FAILURE);
1351 		}
1352 		irqptr = irqheadptr;
1353 		apic_mark_vector(irqptr->airq_vector, vector);
1354 		while (irqptr) {
1355 			irqptr->airq_vector = vector;
1356 			irqptr->airq_ipl = (uchar_t)max_ipl;
1357 			/*
1358 			 * reprogram irq being added and every one else
1359 			 * who is not in the UNINIT state
1360 			 */
1361 			if ((VIRTIRQ(irqindex, irqptr->airq_share_id) ==
1362 			    irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) {
1363 				apic_record_rdt_entry(irqptr, irqindex);
1364 
1365 				iflag = intr_clear();
1366 				lock_set(&apic_ioapic_lock);
1367 
1368 				(void) apic_setup_io_intr(irqptr, irqindex,
1369 				    B_FALSE);
1370 
1371 				lock_clear(&apic_ioapic_lock);
1372 				intr_restore(iflag);
1373 			}
1374 			irqptr = irqptr->airq_next;
1375 		}
1376 		return (PSM_SUCCESS);
1377 
1378 	} else if (irqptr->airq_ipl != max_ipl &&
1379 	    ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
1380 		/*
1381 		 * We cannot upgrade the vector, but we can change
1382 		 * the IPL that this vector induces.
1383 		 *
1384 		 * Note that we subtract APIC_BASE_VECT from the vector
1385 		 * here because this array is used in apic_intr_enter
1386 		 * (no need to add APIC_BASE_VECT in that hot code
1387 		 * path since we can do it in the rarely-executed path
1388 		 * here).
1389 		 */
1390 		apic_ipls[irqptr->airq_vector - APIC_BASE_VECT] =
1391 		    (uchar_t)max_ipl;
1392 
1393 		irqptr = irqheadptr;
1394 		while (irqptr) {
1395 			irqptr->airq_ipl = (uchar_t)max_ipl;
1396 			irqptr = irqptr->airq_next;
1397 		}
1398 
1399 		return (PSM_SUCCESS);
1400 	}
1401 
1402 	ASSERT(irqptr);
1403 
1404 	iflag = intr_clear();
1405 	lock_set(&apic_ioapic_lock);
1406 
1407 	(void) apic_setup_io_intr(irqptr, irqindex, B_FALSE);
1408 
1409 	lock_clear(&apic_ioapic_lock);
1410 	intr_restore(iflag);
1411 
1412 	return (PSM_SUCCESS);
1413 }
1414 
1415 /*
1416  * Recompute mask bits for the given interrupt vector.
1417  * If there is no interrupt servicing routine for this
1418  * vector, this function should disable interrupt vector
1419  * from happening at all IPLs. If there are still
1420  * handlers using the given vector, this function should
1421  * disable the given vector from happening below the lowest
1422  * IPL of the remaining hadlers.
1423  */
1424 /*ARGSUSED*/
1425 int
1426 apic_delspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
1427 {
1428 	uchar_t vector, bind_cpu;
1429 	int intin, irqindex;
1430 	int apic_ix;
1431 	apic_irq_t	*irqptr, *irqheadptr, *irqp;
1432 	ulong_t iflag;
1433 
1434 	mutex_enter(&airq_mutex);
1435 	irqindex = IRQINDEX(irqno);
1436 	irqptr = irqheadptr = apic_irq_table[irqindex];
1437 
1438 	DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x "
1439 	    "vector=0x%x\n", (void *)irqptr->airq_dip,
1440 	    irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
1441 
1442 	while (irqptr) {
1443 		if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
1444 			break;
1445 		irqptr = irqptr->airq_next;
1446 	}
1447 	ASSERT(irqptr);
1448 
1449 	irqptr->airq_share--;
1450 
1451 	mutex_exit(&airq_mutex);
1452 
1453 	if (ipl < max_ipl)
1454 		return (PSM_SUCCESS);
1455 
1456 	/* return if it is not hardware interrupt */
1457 	if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
1458 		return (PSM_SUCCESS);
1459 
1460 	if (!apic_flag) {
1461 		/*
1462 		 * Clear irq_struct. If two devices shared an intpt
1463 		 * line & 1 unloaded before picinit, we are hosed. But, then
1464 		 * we hope the machine will ...
1465 		 */
1466 		irqptr->airq_mps_intr_index = FREE_INDEX;
1467 		irqptr->airq_temp_cpu = IRQ_UNINIT;
1468 		apic_free_vector(irqptr->airq_vector);
1469 		return (PSM_SUCCESS);
1470 	}
1471 	/*
1472 	 * Downgrade vector to new max_ipl if needed.If we cannot allocate,
1473 	 * use old IPL. Not very elegant, but then we hope ...
1474 	 */
1475 	if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL) &&
1476 	    !ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
1477 		apic_irq_t	*irqp;
1478 		if (vector = apic_allocate_vector(max_ipl, irqno, 1)) {
1479 			apic_mark_vector(irqheadptr->airq_vector, vector);
1480 			irqp = irqheadptr;
1481 			while (irqp) {
1482 				irqp->airq_vector = vector;
1483 				irqp->airq_ipl = (uchar_t)max_ipl;
1484 				if (irqp->airq_temp_cpu != IRQ_UNINIT) {
1485 					apic_record_rdt_entry(irqp, irqindex);
1486 
1487 					iflag = intr_clear();
1488 					lock_set(&apic_ioapic_lock);
1489 
1490 					(void) apic_setup_io_intr(irqp,
1491 					    irqindex, B_FALSE);
1492 
1493 					lock_clear(&apic_ioapic_lock);
1494 					intr_restore(iflag);
1495 				}
1496 				irqp = irqp->airq_next;
1497 			}
1498 		}
1499 
1500 	} else if (irqptr->airq_ipl != max_ipl &&
1501 	    max_ipl != PSM_INVALID_IPL &&
1502 	    ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
1503 
1504 	/*
1505 	 * We cannot downgrade the IPL of the vector below the vector's
1506 	 * hardware priority. If we did, it would be possible for a
1507 	 * higher-priority hardware vector to interrupt a CPU running at an IPL
1508 	 * lower than the hardware priority of the interrupting vector (but
1509 	 * higher than the soft IPL of this IRQ). When this happens, we would
1510 	 * then try to drop the IPL BELOW what it was (effectively dropping
1511 	 * below base_spl) which would be potentially catastrophic.
1512 	 *
1513 	 * (e.g. Suppose the hardware vector associated with this IRQ is 0x40
1514 	 * (hardware IPL of 4).  Further assume that the old IPL of this IRQ
1515 	 * was 4, but the new IPL is 1.  If we forced vector 0x40 to result in
1516 	 * an IPL of 1, it would be possible for the processor to be executing
1517 	 * at IPL 3 and for an interrupt to come in on vector 0x40, interrupting
1518 	 * the currently-executing ISR.  When apic_intr_enter consults
1519 	 * apic_irqs[], it will return 1, bringing the IPL of the CPU down to 1
1520 	 * so even though the processor was running at IPL 4, an IPL 1
1521 	 * interrupt will have interrupted it, which must not happen)).
1522 	 *
1523 	 * Effectively, this means that the hardware priority corresponding to
1524 	 * the IRQ's IPL (in apic_ipls[]) cannot be lower than the vector's
1525 	 * hardware priority.
1526 	 *
1527 	 * (In the above example, then, after removal of the IPL 4 device's
1528 	 * interrupt handler, the new IPL will continue to be 4 because the
1529 	 * hardware priority that IPL 1 implies is lower than the hardware
1530 	 * priority of the vector used.)
1531 	 */
1532 		/* apic_ipls is indexed by vector, starting at APIC_BASE_VECT */
1533 		const int apic_ipls_index = irqptr->airq_vector -
1534 		    APIC_BASE_VECT;
1535 		const int vect_inherent_hwpri = irqptr->airq_vector >>
1536 		    APIC_IPL_SHIFT;
1537 
1538 		/*
1539 		 * If there are still devices using this IRQ, determine the
1540 		 * new ipl to use.
1541 		 */
1542 		if (irqptr->airq_share) {
1543 			int vect_desired_hwpri, hwpri;
1544 
1545 			ASSERT(max_ipl < MAXIPL);
1546 			vect_desired_hwpri = apic_ipltopri[max_ipl] >>
1547 			    APIC_IPL_SHIFT;
1548 
1549 			/*
1550 			 * If the desired IPL's hardware priority is lower
1551 			 * than that of the vector, use the hardware priority
1552 			 * of the vector to determine the new IPL.
1553 			 */
1554 			hwpri = (vect_desired_hwpri < vect_inherent_hwpri) ?
1555 			    vect_inherent_hwpri : vect_desired_hwpri;
1556 
1557 			/*
1558 			 * Now, to get the right index for apic_vectortoipl,
1559 			 * we need to subtract APIC_BASE_VECT from the
1560 			 * hardware-vector-equivalent (in hwpri).  Since hwpri
1561 			 * is already shifted, we shift APIC_BASE_VECT before
1562 			 * doing the subtraction.
1563 			 */
1564 			hwpri -= (APIC_BASE_VECT >> APIC_IPL_SHIFT);
1565 
1566 			ASSERT(hwpri >= 0);
1567 			ASSERT(hwpri < MAXIPL);
1568 			max_ipl = apic_vectortoipl[hwpri];
1569 			apic_ipls[apic_ipls_index] = max_ipl;
1570 
1571 			irqp = irqheadptr;
1572 			while (irqp) {
1573 				irqp->airq_ipl = (uchar_t)max_ipl;
1574 				irqp = irqp->airq_next;
1575 			}
1576 		} else {
1577 			/*
1578 			 * No more devices on this IRQ, so reset this vector's
1579 			 * element in apic_ipls to the original IPL for this
1580 			 * vector
1581 			 */
1582 			apic_ipls[apic_ipls_index] =
1583 			    apic_vectortoipl[vect_inherent_hwpri];
1584 		}
1585 	}
1586 
1587 	if (irqptr->airq_share)
1588 		return (PSM_SUCCESS);
1589 
1590 	iflag = intr_clear();
1591 	lock_set(&apic_ioapic_lock);
1592 
1593 	if (irqptr->airq_mps_intr_index == MSI_INDEX) {
1594 		/*
1595 		 * Disable the MSI vector
1596 		 * Make sure we only disable on the last
1597 		 * of the multi-MSI support
1598 		 */
1599 		if (i_ddi_intr_get_current_nintrs(irqptr->airq_dip) == 1) {
1600 			apic_pci_msi_unconfigure(irqptr->airq_dip,
1601 			    DDI_INTR_TYPE_MSI, irqptr->airq_ioapicindex);
1602 
1603 			apic_pci_msi_disable_mode(irqptr->airq_dip,
1604 			    DDI_INTR_TYPE_MSI);
1605 		}
1606 	} else if (irqptr->airq_mps_intr_index == MSIX_INDEX) {
1607 		/*
1608 		 * Disable the MSI-X vector
1609 		 * needs to clear its mask and addr/data for each MSI-X
1610 		 */
1611 		apic_pci_msi_unconfigure(irqptr->airq_dip, DDI_INTR_TYPE_MSIX,
1612 		    irqptr->airq_origirq);
1613 		/*
1614 		 * Make sure we only disable on the last MSI-X
1615 		 */
1616 		if (i_ddi_intr_get_current_nintrs(irqptr->airq_dip) == 1) {
1617 			apic_pci_msi_disable_mode(irqptr->airq_dip,
1618 			    DDI_INTR_TYPE_MSIX);
1619 		}
1620 	} else {
1621 		/*
1622 		 * The assumption here is that this is safe, even for
1623 		 * systems with IOAPICs that suffer from the hardware
1624 		 * erratum because all devices have been quiesced before
1625 		 * they unregister their interrupt handlers.  If that
1626 		 * assumption turns out to be false, this mask operation
1627 		 * can induce the same erratum result we're trying to
1628 		 * avoid.
1629 		 */
1630 		apic_ix = irqptr->airq_ioapicindex;
1631 		intin = irqptr->airq_intin_no;
1632 		ioapic_write(apic_ix, APIC_RDT_CMD + 2 * intin, AV_MASK);
1633 	}
1634 
1635 	if (max_ipl == PSM_INVALID_IPL) {
1636 		ASSERT(irqheadptr == irqptr);
1637 		bind_cpu = irqptr->airq_temp_cpu;
1638 		if (((uchar_t)bind_cpu != IRQ_UNBOUND) &&
1639 		    ((uchar_t)bind_cpu != IRQ_UNINIT)) {
1640 			ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc);
1641 			if (bind_cpu & IRQ_USER_BOUND) {
1642 				/* If hardbound, temp_cpu == cpu */
1643 				bind_cpu &= ~IRQ_USER_BOUND;
1644 				apic_cpus[bind_cpu].aci_bound--;
1645 			} else
1646 				apic_cpus[bind_cpu].aci_temp_bound--;
1647 		}
1648 		irqptr->airq_temp_cpu = IRQ_UNINIT;
1649 		irqptr->airq_mps_intr_index = FREE_INDEX;
1650 		lock_clear(&apic_ioapic_lock);
1651 		intr_restore(iflag);
1652 		apic_free_vector(irqptr->airq_vector);
1653 		return (PSM_SUCCESS);
1654 	}
1655 	lock_clear(&apic_ioapic_lock);
1656 	intr_restore(iflag);
1657 
1658 	mutex_enter(&airq_mutex);
1659 	if ((irqptr == apic_irq_table[irqindex])) {
1660 		apic_irq_t	*oldirqptr;
1661 		/* Move valid irq entry to the head */
1662 		irqheadptr = oldirqptr = irqptr;
1663 		irqptr = irqptr->airq_next;
1664 		ASSERT(irqptr);
1665 		while (irqptr) {
1666 			if (irqptr->airq_mps_intr_index != FREE_INDEX)
1667 				break;
1668 			oldirqptr = irqptr;
1669 			irqptr = irqptr->airq_next;
1670 		}
1671 		/* remove all invalid ones from the beginning */
1672 		apic_irq_table[irqindex] = irqptr;
1673 		/*
1674 		 * and link them back after the head. The invalid ones
1675 		 * begin with irqheadptr and end at oldirqptr
1676 		 */
1677 		oldirqptr->airq_next = irqptr->airq_next;
1678 		irqptr->airq_next = irqheadptr;
1679 	}
1680 	mutex_exit(&airq_mutex);
1681 
1682 	irqptr->airq_temp_cpu = IRQ_UNINIT;
1683 	irqptr->airq_mps_intr_index = FREE_INDEX;
1684 
1685 	return (PSM_SUCCESS);
1686 }
1687 
1688 /*
1689  * apic_introp_xlate() replaces apic_translate_irq() and is
1690  * called only from apic_intr_ops().  With the new ADII framework,
1691  * the priority can no longer be retrieved through i_ddi_get_intrspec().
1692  * It has to be passed in from the caller.
1693  */
1694 int
1695 apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type)
1696 {
1697 	char dev_type[16];
1698 	int dev_len, pci_irq, newirq, bustype, devid, busid, i;
1699 	int irqno = ispec->intrspec_vec;
1700 	ddi_acc_handle_t cfg_handle;
1701 	uchar_t ipin;
1702 	struct apic_io_intr *intrp;
1703 	iflag_t intr_flag;
1704 	APIC_HEADER	*hp;
1705 	MADT_INTERRUPT_OVERRIDE	*isop;
1706 	apic_irq_t *airqp;
1707 	int parent_is_pci_or_pciex = 0;
1708 	int child_is_pciex = 0;
1709 
1710 	DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s "
1711 	    "type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type,
1712 	    irqno));
1713 
1714 	dev_len = sizeof (dev_type);
1715 	if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
1716 	    DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
1717 	    &dev_len) == DDI_PROP_SUCCESS) {
1718 		if ((strcmp(dev_type, "pci") == 0) ||
1719 		    (strcmp(dev_type, "pciex") == 0))
1720 			parent_is_pci_or_pciex = 1;
1721 	}
1722 
1723 	if (parent_is_pci_or_pciex && ddi_prop_get_int(DDI_DEV_T_ANY, dip,
1724 	    DDI_PROP_DONTPASS, "pcie-capid-pointer", PCI_CAP_NEXT_PTR_NULL) !=
1725 	    PCI_CAP_NEXT_PTR_NULL) {
1726 		child_is_pciex = 1;
1727 	}
1728 
1729 	if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
1730 		if ((airqp = apic_find_irq(dip, ispec, type)) != NULL) {
1731 			airqp->airq_iflag.bustype =
1732 			    child_is_pciex ? BUS_PCIE : BUS_PCI;
1733 			return (apic_vector_to_irq[airqp->airq_vector]);
1734 		}
1735 		return (apic_setup_irq_table(dip, irqno, NULL, ispec,
1736 		    NULL, type));
1737 	}
1738 
1739 	bustype = 0;
1740 
1741 	/* check if we have already translated this irq */
1742 	mutex_enter(&airq_mutex);
1743 	newirq = apic_min_device_irq;
1744 	for (; newirq <= apic_max_device_irq; newirq++) {
1745 		airqp = apic_irq_table[newirq];
1746 		while (airqp) {
1747 			if ((airqp->airq_dip == dip) &&
1748 			    (airqp->airq_origirq == irqno) &&
1749 			    (airqp->airq_mps_intr_index != FREE_INDEX)) {
1750 
1751 				mutex_exit(&airq_mutex);
1752 				return (VIRTIRQ(newirq, airqp->airq_share_id));
1753 			}
1754 			airqp = airqp->airq_next;
1755 		}
1756 	}
1757 	mutex_exit(&airq_mutex);
1758 
1759 	if (apic_defconf)
1760 		goto defconf;
1761 
1762 	if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi))
1763 		goto nonpci;
1764 
1765 	if (parent_is_pci_or_pciex) {
1766 		/* pci device */
1767 		if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
1768 			goto nonpci;
1769 		if (busid == 0 && apic_pci_bus_total == 1)
1770 			busid = (int)apic_single_pci_busid;
1771 
1772 		if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
1773 			goto nonpci;
1774 		ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
1775 		pci_config_teardown(&cfg_handle);
1776 		if (apic_enable_acpi && !apic_use_acpi_madt_only) {
1777 			if (apic_acpi_translate_pci_irq(dip, busid, devid,
1778 			    ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
1779 				goto nonpci;
1780 
1781 			intr_flag.bustype = child_is_pciex ? BUS_PCIE : BUS_PCI;
1782 			if ((newirq = apic_setup_irq_table(dip, pci_irq, NULL,
1783 			    ispec, &intr_flag, type)) == -1)
1784 				goto nonpci;
1785 			return (newirq);
1786 		} else {
1787 			pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
1788 			if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid))
1789 			    == NULL) {
1790 				if ((pci_irq = apic_handle_pci_pci_bridge(dip,
1791 				    devid, ipin, &intrp)) == -1)
1792 					goto nonpci;
1793 			}
1794 			if ((newirq = apic_setup_irq_table(dip, pci_irq, intrp,
1795 			    ispec, NULL, type)) == -1)
1796 				goto nonpci;
1797 			return (newirq);
1798 		}
1799 	} else if (strcmp(dev_type, "isa") == 0)
1800 		bustype = BUS_ISA;
1801 	else if (strcmp(dev_type, "eisa") == 0)
1802 		bustype = BUS_EISA;
1803 
1804 nonpci:
1805 	if (apic_enable_acpi && !apic_use_acpi_madt_only) {
1806 		/* search iso entries first */
1807 		if (acpi_iso_cnt != 0) {
1808 			hp = (APIC_HEADER *)acpi_isop;
1809 			i = 0;
1810 			while (i < acpi_iso_cnt) {
1811 				if (hp->Type == APIC_XRUPT_OVERRIDE) {
1812 					isop = (MADT_INTERRUPT_OVERRIDE *)hp;
1813 					if (isop->Bus == 0 &&
1814 					    isop->Source == irqno) {
1815 						newirq = isop->Interrupt;
1816 						intr_flag.intr_po =
1817 						    isop->Polarity;
1818 						intr_flag.intr_el =
1819 						    isop->TriggerMode;
1820 						intr_flag.bustype = BUS_ISA;
1821 
1822 						return (apic_setup_irq_table(
1823 						    dip, newirq, NULL, ispec,
1824 						    &intr_flag, type));
1825 
1826 					}
1827 					i++;
1828 				}
1829 				hp = (APIC_HEADER *)(((char *)hp) +
1830 				    hp->Length);
1831 			}
1832 		}
1833 		intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
1834 		intr_flag.intr_el = INTR_EL_EDGE;
1835 		intr_flag.bustype = BUS_ISA;
1836 		return (apic_setup_irq_table(dip, irqno, NULL, ispec,
1837 		    &intr_flag, type));
1838 	} else {
1839 		if (bustype == 0)
1840 			bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
1841 		for (i = 0; i < 2; i++) {
1842 			if (((busid = apic_find_bus_id(bustype)) != -1) &&
1843 			    ((intrp = apic_find_io_intr_w_busid(irqno, busid))
1844 			    != NULL)) {
1845 				if ((newirq = apic_setup_irq_table(dip, irqno,
1846 				    intrp, ispec, NULL, type)) != -1) {
1847 					return (newirq);
1848 				}
1849 				goto defconf;
1850 			}
1851 			bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
1852 		}
1853 	}
1854 
1855 /* MPS default configuration */
1856 defconf:
1857 	newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type);
1858 	if (newirq == -1)
1859 		return (newirq);
1860 	ASSERT(IRQINDEX(newirq) == irqno);
1861 	ASSERT(apic_irq_table[irqno]);
1862 	return (newirq);
1863 }
1864 
1865 
1866 
1867 
1868 
1869 
1870 /*
1871  * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge
1872  * needs special handling.  We may need to chase up the device tree,
1873  * using the PCI-PCI Bridge specification's "rotating IPIN assumptions",
1874  * to find the IPIN at the root bus that relates to the IPIN on the
1875  * subsidiary bus (for ACPI or MP).  We may, however, have an entry
1876  * in the MP table or the ACPI namespace for this device itself.
1877  * We handle both cases in the search below.
1878  */
1879 /* this is the non-acpi version */
1880 static int
1881 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin,
1882 			struct apic_io_intr **intrp)
1883 {
1884 	dev_info_t *dipp, *dip;
1885 	int pci_irq;
1886 	ddi_acc_handle_t cfg_handle;
1887 	int bridge_devno, bridge_bus;
1888 	int ipin;
1889 
1890 	dip = idip;
1891 
1892 	/*CONSTCOND*/
1893 	while (1) {
1894 		if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) ||
1895 		    (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS))
1896 			return (-1);
1897 		if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) ==
1898 		    PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle,
1899 		    PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) {
1900 			pci_config_teardown(&cfg_handle);
1901 			if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno,
1902 			    NULL) != 0)
1903 				return (-1);
1904 			/*
1905 			 * This is the rotating scheme documented in the
1906 			 * PCI-to-PCI spec.  If the PCI-to-PCI bridge is
1907 			 * behind another PCI-to-PCI bridge, then it needs
1908 			 * to keep ascending until an interrupt entry is
1909 			 * found or the root is reached.
1910 			 */
1911 			ipin = (child_devno + child_ipin) % PCI_INTD;
1912 				if (bridge_bus == 0 && apic_pci_bus_total == 1)
1913 					bridge_bus = (int)apic_single_pci_busid;
1914 				pci_irq = ((bridge_devno & 0x1f) << 2) |
1915 				    (ipin & 0x3);
1916 				if ((*intrp = apic_find_io_intr_w_busid(pci_irq,
1917 				    bridge_bus)) != NULL) {
1918 					return (pci_irq);
1919 				}
1920 			dip = dipp;
1921 			child_devno = bridge_devno;
1922 			child_ipin = ipin;
1923 		} else {
1924 			pci_config_teardown(&cfg_handle);
1925 			return (-1);
1926 		}
1927 	}
1928 	/*LINTED: function will not fall off the bottom */
1929 }
1930 
1931 
1932 
1933 
1934 static uchar_t
1935 acpi_find_ioapic(int irq)
1936 {
1937 	int i;
1938 
1939 	for (i = 0; i < apic_io_max; i++) {
1940 		if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i])
1941 			return (i);
1942 	}
1943 	return (0xFF);	/* shouldn't happen */
1944 }
1945 
1946 /*
1947  * See if two irqs are compatible for sharing a vector.
1948  * Currently we only support sharing of PCI devices.
1949  */
1950 static int
1951 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2)
1952 {
1953 	uint_t	level1, po1;
1954 	uint_t	level2, po2;
1955 
1956 	/* Assume active high by default */
1957 	po1 = 0;
1958 	po2 = 0;
1959 
1960 	if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI)
1961 		return (0);
1962 
1963 	if (iflag1.intr_el == INTR_EL_CONFORM)
1964 		level1 = AV_LEVEL;
1965 	else
1966 		level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1967 
1968 	if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) ||
1969 	    (iflag1.intr_po == INTR_PO_CONFORM)))
1970 		po1 = AV_ACTIVE_LOW;
1971 
1972 	if (iflag2.intr_el == INTR_EL_CONFORM)
1973 		level2 = AV_LEVEL;
1974 	else
1975 		level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1976 
1977 	if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) ||
1978 	    (iflag2.intr_po == INTR_PO_CONFORM)))
1979 		po2 = AV_ACTIVE_LOW;
1980 
1981 	if ((level1 == level2) && (po1 == po2))
1982 		return (1);
1983 
1984 	return (0);
1985 }
1986 
1987 /*
1988  * Attempt to share vector with someone else
1989  */
1990 static int
1991 apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl,
1992 	uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp)
1993 {
1994 #ifdef DEBUG
1995 	apic_irq_t *tmpirqp = NULL;
1996 #endif /* DEBUG */
1997 	apic_irq_t *irqptr, dummyirq;
1998 	int	newirq, chosen_irq = -1, share = 127;
1999 	int	lowest, highest, i;
2000 	uchar_t	share_id;
2001 
2002 	DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x "
2003 	    "intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl));
2004 
2005 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
2006 	lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL;
2007 
2008 	if (highest < lowest) /* Both ipl and ipl-1 map to same pri */
2009 		lowest -= APIC_VECTOR_PER_IPL;
2010 	dummyirq.airq_mps_intr_index = intr_index;
2011 	dummyirq.airq_ioapicindex = ioapicindex;
2012 	dummyirq.airq_intin_no = ipin;
2013 	if (intr_flagp)
2014 		dummyirq.airq_iflag = *intr_flagp;
2015 	apic_record_rdt_entry(&dummyirq, irqno);
2016 	for (i = lowest; i <= highest; i++) {
2017 		newirq = apic_vector_to_irq[i];
2018 		if (newirq == APIC_RESV_IRQ)
2019 			continue;
2020 		irqptr = apic_irq_table[newirq];
2021 
2022 		if ((dummyirq.airq_rdt_entry & 0xFF00) !=
2023 		    (irqptr->airq_rdt_entry & 0xFF00))
2024 			/* not compatible */
2025 			continue;
2026 
2027 		if (irqptr->airq_share < share) {
2028 			share = irqptr->airq_share;
2029 			chosen_irq = newirq;
2030 		}
2031 	}
2032 	if (chosen_irq != -1) {
2033 		/*
2034 		 * Assign a share id which is free or which is larger
2035 		 * than the largest one.
2036 		 */
2037 		share_id = 1;
2038 		mutex_enter(&airq_mutex);
2039 		irqptr = apic_irq_table[chosen_irq];
2040 		while (irqptr) {
2041 			if (irqptr->airq_mps_intr_index == FREE_INDEX) {
2042 				share_id = irqptr->airq_share_id;
2043 				break;
2044 			}
2045 			if (share_id <= irqptr->airq_share_id)
2046 				share_id = irqptr->airq_share_id + 1;
2047 #ifdef DEBUG
2048 			tmpirqp = irqptr;
2049 #endif /* DEBUG */
2050 			irqptr = irqptr->airq_next;
2051 		}
2052 		if (!irqptr) {
2053 			irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
2054 			irqptr->airq_temp_cpu = IRQ_UNINIT;
2055 			irqptr->airq_next =
2056 			    apic_irq_table[chosen_irq]->airq_next;
2057 			apic_irq_table[chosen_irq]->airq_next = irqptr;
2058 #ifdef	DEBUG
2059 			tmpirqp = apic_irq_table[chosen_irq];
2060 #endif /* DEBUG */
2061 		}
2062 		irqptr->airq_mps_intr_index = intr_index;
2063 		irqptr->airq_ioapicindex = ioapicindex;
2064 		irqptr->airq_intin_no = ipin;
2065 		if (intr_flagp)
2066 			irqptr->airq_iflag = *intr_flagp;
2067 		irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector;
2068 		irqptr->airq_share_id = share_id;
2069 		apic_record_rdt_entry(irqptr, irqno);
2070 		*irqptrp = irqptr;
2071 #ifdef	DEBUG
2072 		/* shuffle the pointers to test apic_delspl path */
2073 		if (tmpirqp) {
2074 			tmpirqp->airq_next = irqptr->airq_next;
2075 			irqptr->airq_next = apic_irq_table[chosen_irq];
2076 			apic_irq_table[chosen_irq] = irqptr;
2077 		}
2078 #endif /* DEBUG */
2079 		mutex_exit(&airq_mutex);
2080 		return (VIRTIRQ(chosen_irq, share_id));
2081 	}
2082 	return (-1);
2083 }
2084 
2085 /*
2086  *
2087  */
2088 static int
2089 apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp,
2090     struct intrspec *ispec, iflag_t *intr_flagp, int type)
2091 {
2092 	int origirq = ispec->intrspec_vec;
2093 	uchar_t ipl = ispec->intrspec_pri;
2094 	int	newirq, intr_index;
2095 	uchar_t	ipin, ioapic, ioapicindex, vector;
2096 	apic_irq_t *irqptr;
2097 	major_t	major;
2098 	dev_info_t	*sdip;
2099 
2100 	DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d "
2101 	    "irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq));
2102 
2103 	ASSERT(ispec != NULL);
2104 
2105 	major =  (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0;
2106 
2107 	if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
2108 		/* MSI/X doesn't need to setup ioapic stuffs */
2109 		ioapicindex = 0xff;
2110 		ioapic = 0xff;
2111 		ipin = (uchar_t)0xff;
2112 		intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX :
2113 		    MSIX_INDEX;
2114 		mutex_enter(&airq_mutex);
2115 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == -1) {
2116 			mutex_exit(&airq_mutex);
2117 			/* need an irq for MSI/X to index into autovect[] */
2118 			cmn_err(CE_WARN, "No interrupt irq: %s instance %d",
2119 			    ddi_get_name(dip), ddi_get_instance(dip));
2120 			return (-1);
2121 		}
2122 		mutex_exit(&airq_mutex);
2123 
2124 	} else if (intrp != NULL) {
2125 		intr_index = (int)(intrp - apic_io_intrp);
2126 		ioapic = intrp->intr_destid;
2127 		ipin = intrp->intr_destintin;
2128 		/* Find ioapicindex. If destid was ALL, we will exit with 0. */
2129 		for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
2130 			if (apic_io_id[ioapicindex] == ioapic)
2131 				break;
2132 		ASSERT((ioapic == apic_io_id[ioapicindex]) ||
2133 		    (ioapic == INTR_ALL_APIC));
2134 
2135 		/* check whether this intin# has been used by another irqno */
2136 		if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) {
2137 			return (newirq);
2138 		}
2139 
2140 	} else if (intr_flagp != NULL) {
2141 		/* ACPI case */
2142 		intr_index = ACPI_INDEX;
2143 		ioapicindex = acpi_find_ioapic(irqno);
2144 		ASSERT(ioapicindex != 0xFF);
2145 		ioapic = apic_io_id[ioapicindex];
2146 		ipin = irqno - apic_io_vectbase[ioapicindex];
2147 		if (apic_irq_table[irqno] &&
2148 		    apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
2149 			ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
2150 			    apic_irq_table[irqno]->airq_ioapicindex ==
2151 			    ioapicindex);
2152 			return (irqno);
2153 		}
2154 
2155 	} else {
2156 		/* default configuration */
2157 		ioapicindex = 0;
2158 		ioapic = apic_io_id[ioapicindex];
2159 		ipin = (uchar_t)irqno;
2160 		intr_index = DEFAULT_INDEX;
2161 	}
2162 
2163 	if (ispec == NULL) {
2164 		APIC_VERBOSE_IOAPIC((CE_WARN, "No intrspec for irqno = %x\n",
2165 		    irqno));
2166 	} else if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) {
2167 		if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index,
2168 		    ipl, ioapicindex, ipin, &irqptr)) != -1) {
2169 			irqptr->airq_ipl = ipl;
2170 			irqptr->airq_origirq = (uchar_t)origirq;
2171 			irqptr->airq_dip = dip;
2172 			irqptr->airq_major = major;
2173 			sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip;
2174 			/* This is OK to do really */
2175 			if (sdip == NULL) {
2176 				cmn_err(CE_WARN, "Sharing vectors: %s"
2177 				    " instance %d and SCI",
2178 				    ddi_get_name(dip), ddi_get_instance(dip));
2179 			} else {
2180 				cmn_err(CE_WARN, "Sharing vectors: %s"
2181 				    " instance %d and %s instance %d",
2182 				    ddi_get_name(sdip), ddi_get_instance(sdip),
2183 				    ddi_get_name(dip), ddi_get_instance(dip));
2184 			}
2185 			return (newirq);
2186 		}
2187 		/* try high priority allocation now  that share has failed */
2188 		if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) {
2189 			cmn_err(CE_WARN, "No interrupt vector: %s instance %d",
2190 			    ddi_get_name(dip), ddi_get_instance(dip));
2191 			return (-1);
2192 		}
2193 	}
2194 
2195 	mutex_enter(&airq_mutex);
2196 	if (apic_irq_table[irqno] == NULL) {
2197 		irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
2198 		irqptr->airq_temp_cpu = IRQ_UNINIT;
2199 		apic_irq_table[irqno] = irqptr;
2200 	} else {
2201 		irqptr = apic_irq_table[irqno];
2202 		if (irqptr->airq_mps_intr_index != FREE_INDEX) {
2203 			/*
2204 			 * The slot is used by another irqno, so allocate
2205 			 * a free irqno for this interrupt
2206 			 */
2207 			newirq = apic_allocate_irq(apic_first_avail_irq);
2208 			if (newirq == -1) {
2209 				mutex_exit(&airq_mutex);
2210 				return (-1);
2211 			}
2212 			irqno = newirq;
2213 			irqptr = apic_irq_table[irqno];
2214 			if (irqptr == NULL) {
2215 				irqptr = kmem_zalloc(sizeof (apic_irq_t),
2216 				    KM_SLEEP);
2217 				irqptr->airq_temp_cpu = IRQ_UNINIT;
2218 				apic_irq_table[irqno] = irqptr;
2219 			}
2220 			vector = apic_modify_vector(vector, newirq);
2221 		}
2222 	}
2223 	apic_max_device_irq = max(irqno, apic_max_device_irq);
2224 	apic_min_device_irq = min(irqno, apic_min_device_irq);
2225 	mutex_exit(&airq_mutex);
2226 	irqptr->airq_ioapicindex = ioapicindex;
2227 	irqptr->airq_intin_no = ipin;
2228 	irqptr->airq_ipl = ipl;
2229 	irqptr->airq_vector = vector;
2230 	irqptr->airq_origirq = (uchar_t)origirq;
2231 	irqptr->airq_share_id = 0;
2232 	irqptr->airq_mps_intr_index = (short)intr_index;
2233 	irqptr->airq_dip = dip;
2234 	irqptr->airq_major = major;
2235 	irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin);
2236 	if (intr_flagp)
2237 		irqptr->airq_iflag = *intr_flagp;
2238 
2239 	if (!DDI_INTR_IS_MSI_OR_MSIX(type)) {
2240 		/* setup I/O APIC entry for non-MSI/X interrupts */
2241 		apic_record_rdt_entry(irqptr, irqno);
2242 	}
2243 	return (irqno);
2244 }
2245 
2246 /*
2247  * return the cpu to which this intr should be bound.
2248  * Check properties or any other mechanism to see if user wants it
2249  * bound to a specific CPU. If so, return the cpu id with high bit set.
2250  * If not, use the policy to choose a cpu and return the id.
2251  */
2252 uchar_t
2253 apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin)
2254 {
2255 	int	instance, instno, prop_len, bind_cpu, count;
2256 	uint_t	i, rc;
2257 	uchar_t	cpu;
2258 	major_t	major;
2259 	char	*name, *drv_name, *prop_val, *cptr;
2260 	char	prop_name[32];
2261 
2262 
2263 	if (apic_intr_policy == INTR_LOWEST_PRIORITY)
2264 		return (IRQ_UNBOUND);
2265 
2266 	drv_name = NULL;
2267 	rc = DDI_PROP_NOT_FOUND;
2268 	major = (major_t)-1;
2269 	if (dip != NULL) {
2270 		name = ddi_get_name(dip);
2271 		major = ddi_name_to_major(name);
2272 		drv_name = ddi_major_to_name(major);
2273 		instance = ddi_get_instance(dip);
2274 		if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
2275 			i = apic_min_device_irq;
2276 			for (; i <= apic_max_device_irq; i++) {
2277 
2278 				if ((i == irq) || (apic_irq_table[i] == NULL) ||
2279 				    (apic_irq_table[i]->airq_mps_intr_index
2280 				    == FREE_INDEX))
2281 					continue;
2282 
2283 				if ((apic_irq_table[i]->airq_major == major) &&
2284 				    (!(apic_irq_table[i]->airq_cpu &
2285 				    IRQ_USER_BOUND))) {
2286 
2287 					cpu = apic_irq_table[i]->airq_cpu;
2288 
2289 					cmn_err(CE_CONT,
2290 					    "!%s: %s (%s) instance #%d "
2291 					    "vector 0x%x ioapic 0x%x "
2292 					    "intin 0x%x is bound to cpu %d\n",
2293 					    psm_name,
2294 					    name, drv_name, instance, irq,
2295 					    ioapicid, intin, cpu);
2296 					return (cpu);
2297 				}
2298 			}
2299 		}
2300 		/*
2301 		 * search for "drvname"_intpt_bind_cpus property first, the
2302 		 * syntax of the property should be "a[,b,c,...]" where
2303 		 * instance 0 binds to cpu a, instance 1 binds to cpu b,
2304 		 * instance 3 binds to cpu c...
2305 		 * ddi_getlongprop() will search /option first, then /
2306 		 * if "drvname"_intpt_bind_cpus doesn't exist, then find
2307 		 * intpt_bind_cpus property.  The syntax is the same, and
2308 		 * it applies to all the devices if its "drvname" specific
2309 		 * property doesn't exist
2310 		 */
2311 		(void) strcpy(prop_name, drv_name);
2312 		(void) strcat(prop_name, "_intpt_bind_cpus");
2313 		rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name,
2314 		    (caddr_t)&prop_val, &prop_len);
2315 		if (rc != DDI_PROP_SUCCESS) {
2316 			rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0,
2317 			    "intpt_bind_cpus", (caddr_t)&prop_val, &prop_len);
2318 		}
2319 	}
2320 	if (rc == DDI_PROP_SUCCESS) {
2321 		for (i = count = 0; i < (prop_len - 1); i++)
2322 			if (prop_val[i] == ',')
2323 				count++;
2324 		if (prop_val[i-1] != ',')
2325 			count++;
2326 		/*
2327 		 * if somehow the binding instances defined in the
2328 		 * property are not enough for this instno., then
2329 		 * reuse the pattern for the next instance until
2330 		 * it reaches the requested instno
2331 		 */
2332 		instno = instance % count;
2333 		i = 0;
2334 		cptr = prop_val;
2335 		while (i < instno)
2336 			if (*cptr++ == ',')
2337 				i++;
2338 		bind_cpu = stoi(&cptr);
2339 		kmem_free(prop_val, prop_len);
2340 		/* if specific cpu is bogus, then default to cpu 0 */
2341 		if (bind_cpu >= apic_nproc) {
2342 			cmn_err(CE_WARN, "%s: %s=%s: CPU %d not present",
2343 			    psm_name, prop_name, prop_val, bind_cpu);
2344 			bind_cpu = 0;
2345 		} else {
2346 			/* indicate that we are bound at user request */
2347 			bind_cpu |= IRQ_USER_BOUND;
2348 		}
2349 		/*
2350 		 * no need to check apic_cpus[].aci_status, if specific cpu is
2351 		 * not up, then post_cpu_start will handle it.
2352 		 */
2353 	} else {
2354 		bind_cpu = apic_next_bind_cpu++;
2355 		if (bind_cpu >= apic_nproc) {
2356 			apic_next_bind_cpu = 1;
2357 			bind_cpu = 0;
2358 		}
2359 	}
2360 	if (drv_name != NULL)
2361 		cmn_err(CE_CONT, "!%s: %s (%s) instance %d "
2362 		    "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
2363 		    psm_name, name, drv_name, instance,
2364 		    irq, ioapicid, intin, bind_cpu & ~IRQ_USER_BOUND);
2365 	else
2366 		cmn_err(CE_CONT, "!%s: "
2367 		    "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
2368 		    psm_name, irq, ioapicid, intin, bind_cpu & ~IRQ_USER_BOUND);
2369 
2370 	return ((uchar_t)bind_cpu);
2371 }
2372 
2373 static struct apic_io_intr *
2374 apic_find_io_intr_w_busid(int irqno, int busid)
2375 {
2376 	struct	apic_io_intr	*intrp;
2377 
2378 	/*
2379 	 * It can have more than 1 entry with same source bus IRQ,
2380 	 * but unique with the source bus id
2381 	 */
2382 	intrp = apic_io_intrp;
2383 	if (intrp != NULL) {
2384 		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
2385 			if (intrp->intr_irq == irqno &&
2386 			    intrp->intr_busid == busid &&
2387 			    intrp->intr_type == IO_INTR_INT)
2388 				return (intrp);
2389 			intrp++;
2390 		}
2391 	}
2392 	APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:"
2393 	    "busid %x:%x\n", irqno, busid));
2394 	return ((struct apic_io_intr *)NULL);
2395 }
2396 
2397 
2398 struct mps_bus_info {
2399 	char	*bus_name;
2400 	int	bus_id;
2401 } bus_info_array[] = {
2402 	"ISA ", BUS_ISA,
2403 	"PCI ", BUS_PCI,
2404 	"EISA ", BUS_EISA,
2405 	"XPRESS", BUS_XPRESS,
2406 	"PCMCIA", BUS_PCMCIA,
2407 	"VL ", BUS_VL,
2408 	"CBUS ", BUS_CBUS,
2409 	"CBUSII", BUS_CBUSII,
2410 	"FUTURE", BUS_FUTURE,
2411 	"INTERN", BUS_INTERN,
2412 	"MBI ", BUS_MBI,
2413 	"MBII ", BUS_MBII,
2414 	"MPI ", BUS_MPI,
2415 	"MPSA ", BUS_MPSA,
2416 	"NUBUS ", BUS_NUBUS,
2417 	"TC ", BUS_TC,
2418 	"VME ", BUS_VME,
2419 	"PCI-E ", BUS_PCIE
2420 };
2421 
2422 static int
2423 apic_find_bus_type(char *bus)
2424 {
2425 	int	i = 0;
2426 
2427 	for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++)
2428 		if (strncmp(bus, bus_info_array[i].bus_name,
2429 		    strlen(bus_info_array[i].bus_name)) == 0)
2430 			return (bus_info_array[i].bus_id);
2431 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus));
2432 	return (0);
2433 }
2434 
2435 static int
2436 apic_find_bus(int busid)
2437 {
2438 	struct	apic_bus	*busp;
2439 
2440 	busp = apic_busp;
2441 	while (busp->bus_entry == APIC_BUS_ENTRY) {
2442 		if (busp->bus_id == busid)
2443 			return (apic_find_bus_type((char *)&busp->bus_str1));
2444 		busp++;
2445 	}
2446 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid));
2447 	return (0);
2448 }
2449 
2450 static int
2451 apic_find_bus_id(int bustype)
2452 {
2453 	struct	apic_bus	*busp;
2454 
2455 	busp = apic_busp;
2456 	while (busp->bus_entry == APIC_BUS_ENTRY) {
2457 		if (apic_find_bus_type((char *)&busp->bus_str1) == bustype)
2458 			return (busp->bus_id);
2459 		busp++;
2460 	}
2461 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x",
2462 	    bustype));
2463 	return (-1);
2464 }
2465 
2466 /*
2467  * Check if a particular irq need to be reserved for any io_intr
2468  */
2469 static struct apic_io_intr *
2470 apic_find_io_intr(int irqno)
2471 {
2472 	struct	apic_io_intr	*intrp;
2473 
2474 	intrp = apic_io_intrp;
2475 	if (intrp != NULL) {
2476 		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
2477 			if (intrp->intr_irq == irqno &&
2478 			    intrp->intr_type == IO_INTR_INT)
2479 				return (intrp);
2480 			intrp++;
2481 		}
2482 	}
2483 	return ((struct apic_io_intr *)NULL);
2484 }
2485 
2486 /*
2487  * Check if the given ioapicindex intin combination has already been assigned
2488  * an irq. If so return irqno. Else -1
2489  */
2490 static int
2491 apic_find_intin(uchar_t ioapic, uchar_t intin)
2492 {
2493 	apic_irq_t *irqptr;
2494 	int	i;
2495 
2496 	/* find ioapic and intin in the apic_irq_table[] and return the index */
2497 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
2498 		irqptr = apic_irq_table[i];
2499 		while (irqptr) {
2500 			if ((irqptr->airq_mps_intr_index >= 0) &&
2501 			    (irqptr->airq_intin_no == intin) &&
2502 			    (irqptr->airq_ioapicindex == ioapic)) {
2503 				APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq "
2504 				    "entry for ioapic:intin %x:%x "
2505 				    "shared interrupts ?", ioapic, intin));
2506 				return (i);
2507 			}
2508 			irqptr = irqptr->airq_next;
2509 		}
2510 	}
2511 	return (-1);
2512 }
2513 
2514 int
2515 apic_allocate_irq(int irq)
2516 {
2517 	int	freeirq, i;
2518 
2519 	if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1)
2520 		if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ,
2521 		    (irq - 1))) == -1) {
2522 			/*
2523 			 * if BIOS really defines every single irq in the mps
2524 			 * table, then don't worry about conflicting with
2525 			 * them, just use any free slot in apic_irq_table
2526 			 */
2527 			for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
2528 				if ((apic_irq_table[i] == NULL) ||
2529 				    apic_irq_table[i]->airq_mps_intr_index ==
2530 				    FREE_INDEX) {
2531 				freeirq = i;
2532 				break;
2533 			}
2534 		}
2535 		if (freeirq == -1) {
2536 			/* This shouldn't happen, but just in case */
2537 			cmn_err(CE_WARN, "%s: NO available IRQ", psm_name);
2538 			return (-1);
2539 		}
2540 	}
2541 	if (apic_irq_table[freeirq] == NULL) {
2542 		apic_irq_table[freeirq] =
2543 		    kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
2544 		if (apic_irq_table[freeirq] == NULL) {
2545 			cmn_err(CE_WARN, "%s: NO memory to allocate IRQ",
2546 			    psm_name);
2547 			return (-1);
2548 		}
2549 		apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX;
2550 	}
2551 	return (freeirq);
2552 }
2553 
2554 static int
2555 apic_find_free_irq(int start, int end)
2556 {
2557 	int	i;
2558 
2559 	for (i = start; i <= end; i++)
2560 		/* Check if any I/O entry needs this IRQ */
2561 		if (apic_find_io_intr(i) == NULL) {
2562 			/* Then see if it is free */
2563 			if ((apic_irq_table[i] == NULL) ||
2564 			    (apic_irq_table[i]->airq_mps_intr_index ==
2565 			    FREE_INDEX)) {
2566 				return (i);
2567 			}
2568 		}
2569 	return (-1);
2570 }
2571 
2572 
2573 /*
2574  * Mark vector as being in the process of being deleted. Interrupts
2575  * may still come in on some CPU. The moment an interrupt comes with
2576  * the new vector, we know we can free the old one. Called only from
2577  * addspl and delspl with interrupts disabled. Because an interrupt
2578  * can be shared, but no interrupt from either device may come in,
2579  * we also use a timeout mechanism, which we arbitrarily set to
2580  * apic_revector_timeout microseconds.
2581  */
2582 static void
2583 apic_mark_vector(uchar_t oldvector, uchar_t newvector)
2584 {
2585 	ulong_t iflag;
2586 
2587 	iflag = intr_clear();
2588 	lock_set(&apic_revector_lock);
2589 	if (!apic_oldvec_to_newvec) {
2590 		apic_oldvec_to_newvec =
2591 		    kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2,
2592 		    KM_NOSLEEP);
2593 
2594 		if (!apic_oldvec_to_newvec) {
2595 			/*
2596 			 * This failure is not catastrophic.
2597 			 * But, the oldvec will never be freed.
2598 			 */
2599 			apic_error |= APIC_ERR_MARK_VECTOR_FAIL;
2600 			lock_clear(&apic_revector_lock);
2601 			intr_restore(iflag);
2602 			return;
2603 		}
2604 		apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR];
2605 	}
2606 
2607 	/* See if we already did this for drivers which do double addintrs */
2608 	if (apic_oldvec_to_newvec[oldvector] != newvector) {
2609 		apic_oldvec_to_newvec[oldvector] = newvector;
2610 		apic_newvec_to_oldvec[newvector] = oldvector;
2611 		apic_revector_pending++;
2612 	}
2613 	lock_clear(&apic_revector_lock);
2614 	intr_restore(iflag);
2615 	(void) timeout(apic_xlate_vector_free_timeout_handler,
2616 	    (void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout));
2617 }
2618 
2619 /*
2620  * xlate_vector is called from intr_enter if revector_pending is set.
2621  * It will xlate it if needed and mark the old vector as free.
2622  */
2623 uchar_t
2624 apic_xlate_vector(uchar_t vector)
2625 {
2626 	uchar_t	newvector, oldvector = 0;
2627 
2628 	lock_set(&apic_revector_lock);
2629 	/* Do we really need to do this ? */
2630 	if (!apic_revector_pending) {
2631 		lock_clear(&apic_revector_lock);
2632 		return (vector);
2633 	}
2634 	if ((newvector = apic_oldvec_to_newvec[vector]) != 0)
2635 		oldvector = vector;
2636 	else {
2637 		/*
2638 		 * The incoming vector is new . See if a stale entry is
2639 		 * remaining
2640 		 */
2641 		if ((oldvector = apic_newvec_to_oldvec[vector]) != 0)
2642 			newvector = vector;
2643 	}
2644 
2645 	if (oldvector) {
2646 		apic_revector_pending--;
2647 		apic_oldvec_to_newvec[oldvector] = 0;
2648 		apic_newvec_to_oldvec[newvector] = 0;
2649 		apic_free_vector(oldvector);
2650 		lock_clear(&apic_revector_lock);
2651 		/* There could have been more than one reprogramming! */
2652 		return (apic_xlate_vector(newvector));
2653 	}
2654 	lock_clear(&apic_revector_lock);
2655 	return (vector);
2656 }
2657 
2658 void
2659 apic_xlate_vector_free_timeout_handler(void *arg)
2660 {
2661 	ulong_t iflag;
2662 	uchar_t oldvector, newvector;
2663 
2664 	oldvector = (uchar_t)(uintptr_t)arg;
2665 	iflag = intr_clear();
2666 	lock_set(&apic_revector_lock);
2667 	if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) {
2668 		apic_free_vector(oldvector);
2669 		apic_oldvec_to_newvec[oldvector] = 0;
2670 		apic_newvec_to_oldvec[newvector] = 0;
2671 		apic_revector_pending--;
2672 	}
2673 
2674 	lock_clear(&apic_revector_lock);
2675 	intr_restore(iflag);
2676 }
2677 
2678 
2679 /*
2680  * compute the polarity, trigger mode and vector for programming into
2681  * the I/O apic and record in airq_rdt_entry.
2682  */
2683 static void
2684 apic_record_rdt_entry(apic_irq_t *irqptr, int irq)
2685 {
2686 	int	ioapicindex, bus_type, vector;
2687 	short	intr_index;
2688 	uint_t	level, po, io_po;
2689 	struct apic_io_intr *iointrp;
2690 
2691 	intr_index = irqptr->airq_mps_intr_index;
2692 	DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d "
2693 	    "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq,
2694 	    (void *)irqptr->airq_dip, irqptr->airq_vector));
2695 
2696 	if (intr_index == RESERVE_INDEX) {
2697 		apic_error |= APIC_ERR_INVALID_INDEX;
2698 		return;
2699 	} else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) {
2700 		return;
2701 	}
2702 
2703 	vector = irqptr->airq_vector;
2704 	ioapicindex = irqptr->airq_ioapicindex;
2705 	/* Assume edge triggered by default */
2706 	level = 0;
2707 	/* Assume active high by default */
2708 	po = 0;
2709 
2710 	if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) {
2711 		ASSERT(irq < 16);
2712 		if (eisa_level_intr_mask & (1 << irq))
2713 			level = AV_LEVEL;
2714 		if (intr_index == FREE_INDEX && apic_defconf == 0)
2715 			apic_error |= APIC_ERR_INVALID_INDEX;
2716 	} else if (intr_index == ACPI_INDEX) {
2717 		bus_type = irqptr->airq_iflag.bustype;
2718 		if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) {
2719 			if (bus_type == BUS_PCI)
2720 				level = AV_LEVEL;
2721 		} else
2722 			level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ?
2723 			    AV_LEVEL : 0;
2724 		if (level &&
2725 		    ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) ||
2726 		    (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM &&
2727 		    bus_type == BUS_PCI)))
2728 			po = AV_ACTIVE_LOW;
2729 	} else {
2730 		iointrp = apic_io_intrp + intr_index;
2731 		bus_type = apic_find_bus(iointrp->intr_busid);
2732 		if (iointrp->intr_el == INTR_EL_CONFORM) {
2733 			if ((irq < 16) && (eisa_level_intr_mask & (1 << irq)))
2734 				level = AV_LEVEL;
2735 			else if (bus_type == BUS_PCI)
2736 				level = AV_LEVEL;
2737 		} else
2738 			level = (iointrp->intr_el == INTR_EL_LEVEL) ?
2739 			    AV_LEVEL : 0;
2740 		if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) ||
2741 		    (iointrp->intr_po == INTR_PO_CONFORM &&
2742 		    bus_type == BUS_PCI)))
2743 			po = AV_ACTIVE_LOW;
2744 	}
2745 	if (level)
2746 		apic_level_intr[irq] = 1;
2747 	/*
2748 	 * The 82489DX External APIC cannot do active low polarity interrupts.
2749 	 */
2750 	if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX))
2751 		io_po = po;
2752 	else
2753 		io_po = 0;
2754 
2755 	if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG)
2756 		printf("setio: ioapic=%x intin=%x level=%x po=%x vector=%x\n",
2757 		    ioapicindex, irqptr->airq_intin_no, level, io_po, vector);
2758 
2759 	irqptr->airq_rdt_entry = level|io_po|vector;
2760 }
2761 
2762 /*
2763  * Bind interrupt corresponding to irq_ptr to bind_cpu.
2764  * Must be called with interrupts disabled and apic_ioapic_lock held
2765  */
2766 int
2767 apic_rebind(apic_irq_t *irq_ptr, int bind_cpu,
2768     struct ioapic_reprogram_data *drep)
2769 {
2770 	int			ioapicindex, intin_no;
2771 	uchar_t			airq_temp_cpu;
2772 	apic_cpus_info_t	*cpu_infop;
2773 	uint32_t		rdt_entry;
2774 	int			which_irq;
2775 
2776 	which_irq = apic_vector_to_irq[irq_ptr->airq_vector];
2777 
2778 	intin_no = irq_ptr->airq_intin_no;
2779 	ioapicindex = irq_ptr->airq_ioapicindex;
2780 	airq_temp_cpu = irq_ptr->airq_temp_cpu;
2781 	if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) {
2782 		if (airq_temp_cpu & IRQ_USER_BOUND)
2783 			/* Mask off high bit so it can be used as array index */
2784 			airq_temp_cpu &= ~IRQ_USER_BOUND;
2785 
2786 		ASSERT(airq_temp_cpu < apic_nproc);
2787 	}
2788 
2789 	/*
2790 	 * Can't bind to a CPU that's not accepting interrupts:
2791 	 */
2792 	cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND];
2793 	if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE))
2794 		return (1);
2795 
2796 	/*
2797 	 * If we are about to change the interrupt vector for this interrupt,
2798 	 * and this interrupt is level-triggered, attached to an IOAPIC,
2799 	 * has been delivered to a CPU and that CPU has not handled it
2800 	 * yet, we cannot reprogram the IOAPIC now.
2801 	 */
2802 	if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
2803 
2804 		rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex,
2805 		    intin_no);
2806 
2807 		if ((irq_ptr->airq_vector != RDT_VECTOR(rdt_entry)) &&
2808 		    apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu,
2809 		    bind_cpu, ioapicindex, intin_no, which_irq, drep) != 0) {
2810 
2811 			return (0);
2812 		}
2813 
2814 		/*
2815 		 * NOTE: We do not unmask the RDT here, as an interrupt MAY
2816 		 * still come in before we have a chance to reprogram it below.
2817 		 * The reprogramming below will simultaneously change and
2818 		 * unmask the RDT entry.
2819 		 */
2820 
2821 		if ((uchar_t)bind_cpu == IRQ_UNBOUND) {
2822 			rdt_entry = AV_LDEST | AV_LOPRI |
2823 			    irq_ptr->airq_rdt_entry;
2824 
2825 			/* Write the RDT entry -- no specific CPU binding */
2826 			WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
2827 			    AV_TOALL);
2828 
2829 			if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu !=
2830 			    IRQ_UNBOUND)
2831 				apic_cpus[airq_temp_cpu].aci_temp_bound--;
2832 
2833 			/*
2834 			 * Write the vector, trigger, and polarity portion of
2835 			 * the RDT
2836 			 */
2837 			WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
2838 			    rdt_entry);
2839 
2840 			irq_ptr->airq_temp_cpu = IRQ_UNBOUND;
2841 			return (0);
2842 		}
2843 	}
2844 
2845 	if (bind_cpu & IRQ_USER_BOUND) {
2846 		cpu_infop->aci_bound++;
2847 	} else {
2848 		cpu_infop->aci_temp_bound++;
2849 	}
2850 	ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc);
2851 	if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
2852 		/* Write the RDT entry -- bind to a specific CPU: */
2853 		WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
2854 		    cpu_infop->aci_local_id << APIC_ID_BIT_OFFSET);
2855 	}
2856 	if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) {
2857 		apic_cpus[airq_temp_cpu].aci_temp_bound--;
2858 	}
2859 	if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
2860 
2861 		rdt_entry = AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry;
2862 
2863 		/* Write the vector, trigger, and polarity portion of the RDT */
2864 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
2865 		    rdt_entry);
2866 
2867 	} else {
2868 		int type = (irq_ptr->airq_mps_intr_index == MSI_INDEX) ?
2869 		    DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX;
2870 		if (type == DDI_INTR_TYPE_MSI) {
2871 			if (irq_ptr->airq_ioapicindex ==
2872 			    irq_ptr->airq_origirq) {
2873 				/* first one */
2874 				DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
2875 				    "apic_pci_msi_enable_vector\n"));
2876 				apic_pci_msi_enable_vector(irq_ptr->airq_dip,
2877 				    type, which_irq, irq_ptr->airq_vector,
2878 				    irq_ptr->airq_intin_no,
2879 				    cpu_infop->aci_local_id);
2880 			}
2881 			if ((irq_ptr->airq_ioapicindex +
2882 			    irq_ptr->airq_intin_no - 1) ==
2883 			    irq_ptr->airq_origirq) { /* last one */
2884 				DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
2885 				    "apic_pci_msi_enable_mode\n"));
2886 				apic_pci_msi_enable_mode(irq_ptr->airq_dip,
2887 				    type, which_irq);
2888 			}
2889 		} else { /* MSI-X */
2890 			apic_pci_msi_enable_vector(irq_ptr->airq_dip, type,
2891 			    irq_ptr->airq_origirq, irq_ptr->airq_vector, 1,
2892 			    cpu_infop->aci_local_id);
2893 			apic_pci_msi_enable_mode(irq_ptr->airq_dip, type,
2894 			    irq_ptr->airq_origirq);
2895 		}
2896 	}
2897 	irq_ptr->airq_temp_cpu = (uchar_t)bind_cpu;
2898 	apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND));
2899 	return (0);
2900 }
2901 
2902 static void
2903 apic_last_ditch_clear_remote_irr(int ioapic_ix, int intin_no)
2904 {
2905 	if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no)
2906 	    & AV_REMOTE_IRR) != 0) {
2907 		/*
2908 		 * Trying to clear the bit through normal
2909 		 * channels has failed.  So as a last-ditch
2910 		 * effort, try to set the trigger mode to
2911 		 * edge, then to level.  This has been
2912 		 * observed to work on many systems.
2913 		 */
2914 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2915 		    intin_no,
2916 		    READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2917 		    intin_no) & ~AV_LEVEL);
2918 
2919 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2920 		    intin_no,
2921 		    READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2922 		    intin_no) | AV_LEVEL);
2923 
2924 		/*
2925 		 * If the bit's STILL set, this interrupt may
2926 		 * be hosed.
2927 		 */
2928 		if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2929 		    intin_no) & AV_REMOTE_IRR) != 0) {
2930 
2931 			prom_printf("%s: Remote IRR still "
2932 			    "not clear for IOAPIC %d intin %d.\n"
2933 			    "\tInterrupts to this pin may cease "
2934 			    "functioning.\n", psm_name, ioapic_ix,
2935 			    intin_no);
2936 #ifdef DEBUG
2937 			apic_last_ditch_reprogram_failures++;
2938 #endif
2939 		}
2940 	}
2941 }
2942 
2943 /*
2944  * This function is protected by apic_ioapic_lock coupled with the
2945  * fact that interrupts are disabled.
2946  */
2947 static void
2948 delete_defer_repro_ent(int which_irq)
2949 {
2950 	ASSERT(which_irq >= 0);
2951 	ASSERT(which_irq <= 255);
2952 
2953 	if (apic_reprogram_info[which_irq].done)
2954 		return;
2955 
2956 	apic_reprogram_info[which_irq].done = B_TRUE;
2957 
2958 #ifdef DEBUG
2959 	apic_defer_repro_total_retries +=
2960 	    apic_reprogram_info[which_irq].tries;
2961 
2962 	apic_defer_repro_successes++;
2963 #endif
2964 
2965 	if (--apic_reprogram_outstanding == 0) {
2966 
2967 		setlvlx = apic_intr_exit;
2968 	}
2969 }
2970 
2971 
2972 /*
2973  * Interrupts must be disabled during this function to prevent
2974  * self-deadlock.  Interrupts are disabled because this function
2975  * is called from apic_check_stuck_interrupt(), which is called
2976  * from apic_rebind(), which requires its caller to disable interrupts.
2977  */
2978 static void
2979 add_defer_repro_ent(apic_irq_t *irq_ptr, int which_irq, int new_bind_cpu)
2980 {
2981 	ASSERT(which_irq >= 0);
2982 	ASSERT(which_irq <= 255);
2983 
2984 	/*
2985 	 * On the off-chance that there's already a deferred
2986 	 * reprogramming on this irq, check, and if so, just update the
2987 	 * CPU and irq pointer to which the interrupt is targeted, then return.
2988 	 */
2989 	if (!apic_reprogram_info[which_irq].done) {
2990 		apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
2991 		apic_reprogram_info[which_irq].irqp = irq_ptr;
2992 		return;
2993 	}
2994 
2995 	apic_reprogram_info[which_irq].irqp = irq_ptr;
2996 	apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
2997 	apic_reprogram_info[which_irq].tries = 0;
2998 	/*
2999 	 * This must be the last thing set, since we're not
3000 	 * grabbing any locks, apic_try_deferred_reprogram() will
3001 	 * make its decision about using this entry iff done
3002 	 * is false.
3003 	 */
3004 	apic_reprogram_info[which_irq].done = B_FALSE;
3005 
3006 	/*
3007 	 * If there were previously no deferred reprogrammings, change
3008 	 * setlvlx to call apic_try_deferred_reprogram()
3009 	 */
3010 	if (++apic_reprogram_outstanding == 1) {
3011 
3012 		setlvlx = apic_try_deferred_reprogram;
3013 	}
3014 }
3015 
3016 static void
3017 apic_try_deferred_reprogram(int prev_ipl, int irq)
3018 {
3019 	int reproirq, iflag;
3020 	struct ioapic_reprogram_data *drep;
3021 
3022 	apic_intr_exit(prev_ipl, irq);
3023 
3024 	if (!lock_try(&apic_defer_reprogram_lock)) {
3025 		return;
3026 	}
3027 
3028 	/*
3029 	 * Acquire the apic_ioapic_lock so that any other operations that
3030 	 * may affect the apic_reprogram_info state are serialized.
3031 	 * It's still possible for the last deferred reprogramming to clear
3032 	 * between the time we entered this function and the time we get to
3033 	 * the for loop below.  In that case, *setlvlx will have been set
3034 	 * back to apic_intr_exit and drep will be NULL. (There's no way to
3035 	 * stop that from happening -- we would need to grab a lock before
3036 	 * calling *setlvlx, which is neither realistic nor prudent).
3037 	 */
3038 	iflag = intr_clear();
3039 	lock_set(&apic_ioapic_lock);
3040 
3041 	/*
3042 	 * For each deferred RDT entry, try to reprogram it now.  Note that
3043 	 * there is no lock acquisition to read apic_reprogram_info because
3044 	 * '.done' is set only after the other fields in the structure are set.
3045 	 */
3046 
3047 	drep = NULL;
3048 	for (reproirq = 0; reproirq <= APIC_MAX_VECTOR; reproirq++) {
3049 		if (apic_reprogram_info[reproirq].done == B_FALSE) {
3050 			drep = &apic_reprogram_info[reproirq];
3051 			break;
3052 		}
3053 	}
3054 
3055 	/*
3056 	 * Either we found a deferred action to perform, or
3057 	 * we entered this function spuriously, after *setlvlx
3058 	 * was restored to point to apic_intr_enter.  Any other
3059 	 * permutation is invalid.
3060 	 */
3061 	ASSERT(drep != NULL || *setlvlx == apic_intr_exit);
3062 
3063 	/*
3064 	 * Though we can't really do anything about errors
3065 	 * at this point, keep track of them for reporting.
3066 	 * Note that it is very possible for apic_setup_io_intr
3067 	 * to re-register this very timeout if the Remote IRR bit
3068 	 * has not yet cleared.
3069 	 */
3070 
3071 #ifdef DEBUG
3072 	if (drep != NULL) {
3073 		if (apic_setup_io_intr(drep, reproirq, B_TRUE) != 0) {
3074 			apic_deferred_setup_failures++;
3075 		}
3076 	} else {
3077 		apic_deferred_spurious_enters++;
3078 	}
3079 #else
3080 	if (drep != NULL)
3081 		(void) apic_setup_io_intr(drep, reproirq, B_TRUE);
3082 #endif
3083 
3084 	lock_clear(&apic_ioapic_lock);
3085 	intr_restore(iflag);
3086 
3087 	lock_clear(&apic_defer_reprogram_lock);
3088 }
3089 
3090 static void
3091 apic_ioapic_wait_pending_clear(int ioapic_ix, int intin_no)
3092 {
3093 	int waited;
3094 
3095 	/*
3096 	 * Wait for the delivery pending bit to clear.
3097 	 */
3098 	if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
3099 	    (AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) {
3100 
3101 		/*
3102 		 * If we're still waiting on the delivery of this interrupt,
3103 		 * continue to wait here until it is delivered (this should be
3104 		 * a very small amount of time, but include a timeout just in
3105 		 * case).
3106 		 */
3107 		for (waited = 0; waited < apic_max_reps_clear_pending;
3108 		    waited++) {
3109 			if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
3110 			    intin_no) & AV_PENDING) == 0) {
3111 				break;
3112 			}
3113 		}
3114 	}
3115 }
3116 
3117 
3118 /*
3119  * Checks to see if the IOAPIC interrupt entry specified has its Remote IRR
3120  * bit set.  Calls functions that modify the function that setlvlx points to,
3121  * so that the reprogramming can be retried very shortly.
3122  *
3123  * This function will mask the RDT entry if the interrupt is level-triggered.
3124  * (The caller is responsible for unmasking the RDT entry.)
3125  *
3126  * Returns non-zero if the caller should defer IOAPIC reprogramming.
3127  */
3128 static int
3129 apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
3130     int new_bind_cpu, int ioapic_ix, int intin_no, int which_irq,
3131     struct ioapic_reprogram_data *drep)
3132 {
3133 	int32_t			rdt_entry;
3134 	int			waited;
3135 	int			reps = 0;
3136 
3137 	/*
3138 	 * Wait for the delivery pending bit to clear.
3139 	 */
3140 	do {
3141 		++reps;
3142 
3143 		apic_ioapic_wait_pending_clear(ioapic_ix, intin_no);
3144 
3145 		/*
3146 		 * Mask the RDT entry, but only if it's a level-triggered
3147 		 * interrupt
3148 		 */
3149 		rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
3150 		    intin_no);
3151 		if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) {
3152 
3153 			/* Mask it */
3154 			WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no,
3155 			    AV_MASK | rdt_entry);
3156 		}
3157 
3158 		if ((rdt_entry & AV_LEVEL) == AV_LEVEL) {
3159 			/*
3160 			 * If there was a race and an interrupt was injected
3161 			 * just before we masked, check for that case here.
3162 			 * Then, unmask the RDT entry and try again.  If we're
3163 			 * on our last try, don't unmask (because we want the
3164 			 * RDT entry to remain masked for the rest of the
3165 			 * function).
3166 			 */
3167 			rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
3168 			    intin_no);
3169 			if ((rdt_entry & AV_PENDING) &&
3170 			    (reps < apic_max_reps_clear_pending)) {
3171 				/* Unmask it */
3172 				WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
3173 				    intin_no, rdt_entry & ~AV_MASK);
3174 			}
3175 		}
3176 
3177 	} while ((rdt_entry & AV_PENDING) &&
3178 	    (reps < apic_max_reps_clear_pending));
3179 
3180 #ifdef DEBUG
3181 		if (rdt_entry & AV_PENDING)
3182 			apic_intr_deliver_timeouts++;
3183 #endif
3184 
3185 	/*
3186 	 * If the remote IRR bit is set, then the interrupt has been sent
3187 	 * to a CPU for processing.  We have no choice but to wait for
3188 	 * that CPU to process the interrupt, at which point the remote IRR
3189 	 * bit will be cleared.
3190 	 */
3191 	if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
3192 	    (AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) {
3193 
3194 		/*
3195 		 * If the CPU that this RDT is bound to is NOT the current
3196 		 * CPU, wait until that CPU handles the interrupt and ACKs
3197 		 * it.  If this interrupt is not bound to any CPU (that is,
3198 		 * if it's bound to the logical destination of "anyone"), it
3199 		 * may have been delivered to the current CPU so handle that
3200 		 * case by deferring the reprogramming (below).
3201 		 */
3202 		if ((old_bind_cpu != IRQ_UNBOUND) &&
3203 		    (old_bind_cpu != IRQ_UNINIT) &&
3204 		    (old_bind_cpu != psm_get_cpu_id())) {
3205 			for (waited = 0; waited < apic_max_reps_clear_pending;
3206 			    waited++) {
3207 				if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
3208 				    intin_no) & AV_REMOTE_IRR) == 0) {
3209 
3210 					delete_defer_repro_ent(which_irq);
3211 
3212 					/* Remote IRR has cleared! */
3213 					return (0);
3214 				}
3215 			}
3216 		}
3217 
3218 		/*
3219 		 * If we waited and the Remote IRR bit is still not cleared,
3220 		 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
3221 		 * times for this interrupt, try the last-ditch workaround:
3222 		 */
3223 		if (drep && drep->tries >= APIC_REPROGRAM_MAX_TRIES) {
3224 
3225 			apic_last_ditch_clear_remote_irr(ioapic_ix, intin_no);
3226 
3227 			/* Mark this one as reprogrammed: */
3228 			delete_defer_repro_ent(which_irq);
3229 
3230 			return (0);
3231 		} else {
3232 #ifdef DEBUG
3233 			apic_intr_deferrals++;
3234 #endif
3235 
3236 			/*
3237 			 * If waiting for the Remote IRR bit (above) didn't
3238 			 * allow it to clear, defer the reprogramming.
3239 			 * Add a new deferred-programming entry if the
3240 			 * caller passed a NULL one (and update the existing one
3241 			 * in case anything changed).
3242 			 */
3243 			add_defer_repro_ent(irq_ptr, which_irq, new_bind_cpu);
3244 			if (drep)
3245 				drep->tries++;
3246 
3247 			/* Inform caller to defer IOAPIC programming: */
3248 			return (1);
3249 		}
3250 
3251 	}
3252 
3253 	/* Remote IRR is clear */
3254 	delete_defer_repro_ent(which_irq);
3255 
3256 	return (0);
3257 }
3258 
3259 /*
3260  * Called to migrate all interrupts at an irq to another cpu.
3261  * Must be called with interrupts disabled and apic_ioapic_lock held
3262  */
3263 int
3264 apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu)
3265 {
3266 	apic_irq_t	*irqptr = irq_ptr;
3267 	int		retval = 0;
3268 
3269 	while (irqptr) {
3270 		if (irqptr->airq_temp_cpu != IRQ_UNINIT)
3271 			retval |= apic_rebind(irqptr, bind_cpu, NULL);
3272 		irqptr = irqptr->airq_next;
3273 	}
3274 
3275 	return (retval);
3276 }
3277 
3278 /*
3279  * apic_intr_redistribute does all the messy computations for identifying
3280  * which interrupt to move to which CPU. Currently we do just one interrupt
3281  * at a time. This reduces the time we spent doing all this within clock
3282  * interrupt. When it is done in idle, we could do more than 1.
3283  * First we find the most busy and the most free CPU (time in ISR only)
3284  * skipping those CPUs that has been identified as being ineligible (cpu_skip)
3285  * Then we look for IRQs which are closest to the difference between the
3286  * most busy CPU and the average ISR load. We try to find one whose load
3287  * is less than difference.If none exists, then we chose one larger than the
3288  * difference, provided it does not make the most idle CPU worse than the
3289  * most busy one. In the end, we clear all the busy fields for CPUs. For
3290  * IRQs, they are cleared as they are scanned.
3291  */
3292 void
3293 apic_intr_redistribute()
3294 {
3295 	int busiest_cpu, most_free_cpu;
3296 	int cpu_free, cpu_busy, max_busy, min_busy;
3297 	int min_free, diff;
3298 	int average_busy, cpus_online;
3299 	int i, busy, iflag;
3300 	apic_cpus_info_t *cpu_infop;
3301 	apic_irq_t *min_busy_irq = NULL;
3302 	apic_irq_t *max_busy_irq = NULL;
3303 
3304 	busiest_cpu = most_free_cpu = -1;
3305 	cpu_free = cpu_busy = max_busy = average_busy = 0;
3306 	min_free = apic_sample_factor_redistribution;
3307 	cpus_online = 0;
3308 	/*
3309 	 * Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu
3310 	 * without ioapic_lock. That is OK as we are just doing statistical
3311 	 * sampling anyway and any inaccuracy now will get corrected next time
3312 	 * The call to rebind which actually changes things will make sure
3313 	 * we are consistent.
3314 	 */
3315 	for (i = 0; i < apic_nproc; i++) {
3316 		if (!(apic_redist_cpu_skip & (1 << i)) &&
3317 		    (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) {
3318 
3319 			cpu_infop = &apic_cpus[i];
3320 			/*
3321 			 * If no unbound interrupts or only 1 total on this
3322 			 * CPU, skip
3323 			 */
3324 			if (!cpu_infop->aci_temp_bound ||
3325 			    (cpu_infop->aci_bound + cpu_infop->aci_temp_bound)
3326 			    == 1) {
3327 				apic_redist_cpu_skip |= 1 << i;
3328 				continue;
3329 			}
3330 
3331 			busy = cpu_infop->aci_busy;
3332 			average_busy += busy;
3333 			cpus_online++;
3334 			if (max_busy < busy) {
3335 				max_busy = busy;
3336 				busiest_cpu = i;
3337 			}
3338 			if (min_free > busy) {
3339 				min_free = busy;
3340 				most_free_cpu = i;
3341 			}
3342 			if (busy > apic_int_busy_mark) {
3343 				cpu_busy |= 1 << i;
3344 			} else {
3345 				if (busy < apic_int_free_mark)
3346 					cpu_free |= 1 << i;
3347 			}
3348 		}
3349 	}
3350 	if ((cpu_busy && cpu_free) ||
3351 	    (max_busy >= (min_free + apic_diff_for_redistribution))) {
3352 
3353 		apic_num_imbalance++;
3354 #ifdef	DEBUG
3355 		if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
3356 			prom_printf(
3357 			    "redistribute busy=%x free=%x max=%x min=%x",
3358 			    cpu_busy, cpu_free, max_busy, min_free);
3359 		}
3360 #endif /* DEBUG */
3361 
3362 
3363 		average_busy /= cpus_online;
3364 
3365 		diff = max_busy - average_busy;
3366 		min_busy = max_busy; /* start with the max possible value */
3367 		max_busy = 0;
3368 		min_busy_irq = max_busy_irq = NULL;
3369 		i = apic_min_device_irq;
3370 		for (; i < apic_max_device_irq; i++) {
3371 			apic_irq_t *irq_ptr;
3372 			/* Change to linked list per CPU ? */
3373 			if ((irq_ptr = apic_irq_table[i]) == NULL)
3374 				continue;
3375 			/* Check for irq_busy & decide which one to move */
3376 			/* Also zero them for next round */
3377 			if ((irq_ptr->airq_temp_cpu == busiest_cpu) &&
3378 			    irq_ptr->airq_busy) {
3379 				if (irq_ptr->airq_busy < diff) {
3380 					/*
3381 					 * Check for least busy CPU,
3382 					 * best fit or what ?
3383 					 */
3384 					if (max_busy < irq_ptr->airq_busy) {
3385 						/*
3386 						 * Most busy within the
3387 						 * required differential
3388 						 */
3389 						max_busy = irq_ptr->airq_busy;
3390 						max_busy_irq = irq_ptr;
3391 					}
3392 				} else {
3393 					if (min_busy > irq_ptr->airq_busy) {
3394 						/*
3395 						 * least busy, but more than
3396 						 * the reqd diff
3397 						 */
3398 						if (min_busy <
3399 						    (diff + average_busy -
3400 						    min_free)) {
3401 							/*
3402 							 * Making sure new cpu
3403 							 * will not end up
3404 							 * worse
3405 							 */
3406 							min_busy =
3407 							    irq_ptr->airq_busy;
3408 
3409 							min_busy_irq = irq_ptr;
3410 						}
3411 					}
3412 				}
3413 			}
3414 			irq_ptr->airq_busy = 0;
3415 		}
3416 
3417 		if (max_busy_irq != NULL) {
3418 #ifdef	DEBUG
3419 			if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
3420 				prom_printf("rebinding %x to %x",
3421 				    max_busy_irq->airq_vector, most_free_cpu);
3422 			}
3423 #endif /* DEBUG */
3424 			iflag = intr_clear();
3425 			if (lock_try(&apic_ioapic_lock)) {
3426 				if (apic_rebind_all(max_busy_irq,
3427 				    most_free_cpu) == 0) {
3428 					/* Make change permenant */
3429 					max_busy_irq->airq_cpu =
3430 					    (uchar_t)most_free_cpu;
3431 				}
3432 				lock_clear(&apic_ioapic_lock);
3433 			}
3434 			intr_restore(iflag);
3435 
3436 		} else if (min_busy_irq != NULL) {
3437 #ifdef	DEBUG
3438 			if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
3439 				prom_printf("rebinding %x to %x",
3440 				    min_busy_irq->airq_vector, most_free_cpu);
3441 			}
3442 #endif /* DEBUG */
3443 
3444 			iflag = intr_clear();
3445 			if (lock_try(&apic_ioapic_lock)) {
3446 				if (apic_rebind_all(min_busy_irq,
3447 				    most_free_cpu) == 0) {
3448 					/* Make change permenant */
3449 					min_busy_irq->airq_cpu =
3450 					    (uchar_t)most_free_cpu;
3451 				}
3452 				lock_clear(&apic_ioapic_lock);
3453 			}
3454 			intr_restore(iflag);
3455 
3456 		} else {
3457 			if (cpu_busy != (1 << busiest_cpu)) {
3458 				apic_redist_cpu_skip |= 1 << busiest_cpu;
3459 				/*
3460 				 * We leave cpu_skip set so that next time we
3461 				 * can choose another cpu
3462 				 */
3463 			}
3464 		}
3465 		apic_num_rebind++;
3466 	} else {
3467 		/*
3468 		 * found nothing. Could be that we skipped over valid CPUs
3469 		 * or we have balanced everything. If we had a variable
3470 		 * ticks_for_redistribution, it could be increased here.
3471 		 * apic_int_busy, int_free etc would also need to be
3472 		 * changed.
3473 		 */
3474 		if (apic_redist_cpu_skip)
3475 			apic_redist_cpu_skip = 0;
3476 	}
3477 	for (i = 0; i < apic_nproc; i++) {
3478 		apic_cpus[i].aci_busy = 0;
3479 	}
3480 }
3481 
3482 void
3483 apic_cleanup_busy()
3484 {
3485 	int i;
3486 	apic_irq_t *irq_ptr;
3487 
3488 	for (i = 0; i < apic_nproc; i++) {
3489 		apic_cpus[i].aci_busy = 0;
3490 	}
3491 
3492 	for (i = apic_min_device_irq; i < apic_max_device_irq; i++) {
3493 		if ((irq_ptr = apic_irq_table[i]) != NULL)
3494 			irq_ptr->airq_busy = 0;
3495 	}
3496 }
3497 
3498 
3499 static int
3500 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
3501     int ipin, int *pci_irqp, iflag_t *intr_flagp)
3502 {
3503 
3504 	int status;
3505 	acpi_psm_lnk_t acpipsmlnk;
3506 
3507 	if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp,
3508 	    intr_flagp)) == ACPI_PSM_SUCCESS) {
3509 		APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d "
3510 		    "from cache for device %s, instance #%d\n", psm_name,
3511 		    *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
3512 		return (status);
3513 	}
3514 
3515 	bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t));
3516 
3517 	if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp,
3518 	    &acpipsmlnk)) == ACPI_PSM_FAILURE) {
3519 		APIC_VERBOSE_IRQ((CE_WARN, "%s: "
3520 		    " acpi_translate_pci_irq failed for device %s, instance"
3521 		    " #%d", psm_name, ddi_get_name(dip),
3522 		    ddi_get_instance(dip)));
3523 		return (status);
3524 	}
3525 
3526 	if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) {
3527 		status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp,
3528 		    intr_flagp);
3529 		if (status != ACPI_PSM_SUCCESS) {
3530 			status = acpi_get_current_irq_resource(&acpipsmlnk,
3531 			    pci_irqp, intr_flagp);
3532 		}
3533 	}
3534 
3535 	if (status == ACPI_PSM_SUCCESS) {
3536 		acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp,
3537 		    intr_flagp, &acpipsmlnk);
3538 
3539 		APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] "
3540 		    "new irq %d for device %s, instance #%d\n", psm_name,
3541 		    *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
3542 	}
3543 
3544 	return (status);
3545 }
3546 
3547 /*
3548  * Adds an entry to the irq list passed in, and returns the new list.
3549  * Entries are added in priority order (lower numerical priorities are
3550  * placed closer to the head of the list)
3551  */
3552 static prs_irq_list_t *
3553 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq,
3554     iflag_t *iflagp, acpi_prs_private_t *prsprvp)
3555 {
3556 	struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp;
3557 
3558 	newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP);
3559 
3560 	newent->list_prio = priority;
3561 	newent->irq = irq;
3562 	newent->intrflags = *iflagp;
3563 	newent->prsprv = *prsprvp;
3564 	/* ->next is NULL from kmem_zalloc */
3565 
3566 	/*
3567 	 * New list -- return the new entry as the list.
3568 	 */
3569 	if (listp == NULL)
3570 		return (newent);
3571 
3572 	/*
3573 	 * Save original list pointer for return (since we're not modifying
3574 	 * the head)
3575 	 */
3576 	origlistp = listp;
3577 
3578 	/*
3579 	 * Insertion sort, with entries with identical keys stored AFTER
3580 	 * existing entries (the less-than-or-equal test of priority does
3581 	 * this for us).
3582 	 */
3583 	while (listp != NULL && listp->list_prio <= priority) {
3584 		prevp = listp;
3585 		listp = listp->next;
3586 	}
3587 
3588 	newent->next = listp;
3589 
3590 	if (prevp == NULL) { /* Add at head of list (newent is the new head) */
3591 		return (newent);
3592 	} else {
3593 		prevp->next = newent;
3594 		return (origlistp);
3595 	}
3596 }
3597 
3598 /*
3599  * Frees the list passed in, deallocating all memory and leaving *listpp
3600  * set to NULL.
3601  */
3602 static void
3603 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp)
3604 {
3605 	struct prs_irq_list_ent *nextp;
3606 
3607 	ASSERT(listpp != NULL);
3608 
3609 	while (*listpp != NULL) {
3610 		nextp = (*listpp)->next;
3611 		kmem_free(*listpp, sizeof (struct prs_irq_list_ent));
3612 		*listpp = nextp;
3613 	}
3614 }
3615 
3616 /*
3617  * apic_choose_irqs_from_prs returns a list of irqs selected from the list of
3618  * irqs returned by the link device's _PRS method.  The irqs are chosen
3619  * to minimize contention in situations where the interrupt link device
3620  * can be programmed to steer interrupts to different interrupt controller
3621  * inputs (some of which may already be in use).  The list is sorted in order
3622  * of irqs to use, with the highest priority given to interrupt controller
3623  * inputs that are not shared.   When an interrupt controller input
3624  * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the
3625  * returned list in the order that minimizes sharing (thereby ensuring lowest
3626  * possible latency from interrupt trigger time to ISR execution time).
3627  */
3628 static prs_irq_list_t *
3629 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip,
3630     int crs_irq)
3631 {
3632 	int32_t irq;
3633 	int i;
3634 	prs_irq_list_t *prsirqlistp = NULL;
3635 	iflag_t iflags;
3636 
3637 	while (irqlistent != NULL) {
3638 		irqlistent->intr_flags.bustype = BUS_PCI;
3639 
3640 		for (i = 0; i < irqlistent->num_irqs; i++) {
3641 
3642 			irq = irqlistent->irqs[i];
3643 
3644 			if (irq <= 0) {
3645 				/* invalid irq number */
3646 				continue;
3647 			}
3648 
3649 			if ((irq < 16) && (apic_reserved_irqlist[irq]))
3650 				continue;
3651 
3652 			if ((apic_irq_table[irq] == NULL) ||
3653 			    (apic_irq_table[irq]->airq_dip == dip)) {
3654 
3655 				prsirqlistp = acpi_insert_prs_irq_ent(
3656 				    prsirqlistp, 0 /* Highest priority */, irq,
3657 				    &irqlistent->intr_flags,
3658 				    &irqlistent->acpi_prs_prv);
3659 
3660 				/*
3661 				 * If we do not prefer the current irq from _CRS
3662 				 * or if we do and this irq is the same as the
3663 				 * current irq from _CRS, this is the one
3664 				 * to pick.
3665 				 */
3666 				if (!(apic_prefer_crs) || (irq == crs_irq)) {
3667 					return (prsirqlistp);
3668 				}
3669 				continue;
3670 			}
3671 
3672 			/*
3673 			 * Edge-triggered interrupts cannot be shared
3674 			 */
3675 			if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE)
3676 				continue;
3677 
3678 			/*
3679 			 * To work around BIOSes that contain incorrect
3680 			 * interrupt polarity information in interrupt
3681 			 * descriptors returned by _PRS, we assume that
3682 			 * the polarity of the other device sharing this
3683 			 * interrupt controller input is compatible.
3684 			 * If it's not, the caller will catch it when
3685 			 * the caller invokes the link device's _CRS method
3686 			 * (after invoking its _SRS method).
3687 			 */
3688 			iflags = irqlistent->intr_flags;
3689 			iflags.intr_po =
3690 			    apic_irq_table[irq]->airq_iflag.intr_po;
3691 
3692 			if (!acpi_intr_compatible(iflags,
3693 			    apic_irq_table[irq]->airq_iflag)) {
3694 				APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d "
3695 				    "not compatible [%x:%x:%x !~ %x:%x:%x]",
3696 				    psm_name, irq,
3697 				    iflags.intr_po,
3698 				    iflags.intr_el,
3699 				    iflags.bustype,
3700 				    apic_irq_table[irq]->airq_iflag.intr_po,
3701 				    apic_irq_table[irq]->airq_iflag.intr_el,
3702 				    apic_irq_table[irq]->airq_iflag.bustype));
3703 				continue;
3704 			}
3705 
3706 			/*
3707 			 * If we prefer the irq from _CRS, no need
3708 			 * to search any further (and make sure
3709 			 * to add this irq with the highest priority
3710 			 * so it's tried first).
3711 			 */
3712 			if (crs_irq == irq && apic_prefer_crs) {
3713 
3714 				return (acpi_insert_prs_irq_ent(
3715 				    prsirqlistp,
3716 				    0 /* Highest priority */,
3717 				    irq, &iflags,
3718 				    &irqlistent->acpi_prs_prv));
3719 			}
3720 
3721 			/*
3722 			 * Priority is equal to the share count (lower
3723 			 * share count is higher priority). Note that
3724 			 * the intr flags passed in here are the ones we
3725 			 * changed above -- if incorrect, it will be
3726 			 * caught by the caller's _CRS flags comparison.
3727 			 */
3728 			prsirqlistp = acpi_insert_prs_irq_ent(
3729 			    prsirqlistp,
3730 			    apic_irq_table[irq]->airq_share, irq,
3731 			    &iflags, &irqlistent->acpi_prs_prv);
3732 		}
3733 
3734 		/* Go to the next irqlist entry */
3735 		irqlistent = irqlistent->next;
3736 	}
3737 
3738 	return (prsirqlistp);
3739 }
3740 
3741 /*
3742  * Configures the irq for the interrupt link device identified by
3743  * acpipsmlnkp.
3744  *
3745  * Gets the current and the list of possible irq settings for the
3746  * device. If apic_unconditional_srs is not set, and the current
3747  * resource setting is in the list of possible irq settings,
3748  * current irq resource setting is passed to the caller.
3749  *
3750  * Otherwise, picks an irq number from the list of possible irq
3751  * settings, and sets the irq of the device to this value.
3752  * If prefer_crs is set, among a set of irq numbers in the list that have
3753  * the least number of devices sharing the interrupt, we pick current irq
3754  * resource setting if it is a member of this set.
3755  *
3756  * Passes the irq number in the value pointed to by pci_irqp, and
3757  * polarity and sensitivity in the structure pointed to by dipintrflagp
3758  * to the caller.
3759  *
3760  * Note that if setting the irq resource failed, but successfuly obtained
3761  * the current irq resource settings, passes the current irq resources
3762  * and considers it a success.
3763  *
3764  * Returns:
3765  * ACPI_PSM_SUCCESS on success.
3766  *
3767  * ACPI_PSM_FAILURE if an error occured during the configuration or
3768  * if a suitable irq was not found for this device, or if setting the
3769  * irq resource and obtaining the current resource fails.
3770  *
3771  */
3772 static int
3773 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
3774     int *pci_irqp, iflag_t *dipintr_flagp)
3775 {
3776 	int32_t irq;
3777 	int cur_irq = -1;
3778 	acpi_irqlist_t *irqlistp;
3779 	prs_irq_list_t *prs_irq_listp, *prs_irq_entp;
3780 	boolean_t found_irq = B_FALSE;
3781 
3782 	dipintr_flagp->bustype = BUS_PCI;
3783 
3784 	if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp))
3785 	    == ACPI_PSM_FAILURE) {
3786 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine "
3787 		    "or assign IRQ for device %s, instance #%d: The system was "
3788 		    "unable to get the list of potential IRQs from ACPI.",
3789 		    psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
3790 
3791 		return (ACPI_PSM_FAILURE);
3792 	}
3793 
3794 	if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
3795 	    dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) &&
3796 	    (cur_irq > 0)) {
3797 		/*
3798 		 * If an IRQ is set in CRS and that IRQ exists in the set
3799 		 * returned from _PRS, return that IRQ, otherwise print
3800 		 * a warning
3801 		 */
3802 
3803 		if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL)
3804 		    == ACPI_PSM_SUCCESS) {
3805 
3806 			ASSERT(pci_irqp != NULL);
3807 			*pci_irqp = cur_irq;
3808 			acpi_free_irqlist(irqlistp);
3809 			return (ACPI_PSM_SUCCESS);
3810 		}
3811 
3812 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the "
3813 		    "current irq %d for device %s, instance #%d in ACPI's "
3814 		    "list of possible irqs for this device. Picking one from "
3815 		    " the latter list.", psm_name, cur_irq, ddi_get_name(dip),
3816 		    ddi_get_instance(dip)));
3817 	}
3818 
3819 	if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip,
3820 	    cur_irq)) == NULL) {
3821 
3822 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a "
3823 		    "suitable irq from the list of possible irqs for device "
3824 		    "%s, instance #%d in ACPI's list of possible irqs",
3825 		    psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
3826 
3827 		acpi_free_irqlist(irqlistp);
3828 		return (ACPI_PSM_FAILURE);
3829 	}
3830 
3831 	acpi_free_irqlist(irqlistp);
3832 
3833 	for (prs_irq_entp = prs_irq_listp;
3834 	    prs_irq_entp != NULL && found_irq == B_FALSE;
3835 	    prs_irq_entp = prs_irq_entp->next) {
3836 
3837 		acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv;
3838 		irq = prs_irq_entp->irq;
3839 
3840 		APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for "
3841 		    "device %s instance #%d\n", psm_name, irq,
3842 		    ddi_get_name(dip), ddi_get_instance(dip)));
3843 
3844 		if ((acpi_set_irq_resource(acpipsmlnkp, irq))
3845 		    == ACPI_PSM_SUCCESS) {
3846 			/*
3847 			 * setting irq was successful, check to make sure CRS
3848 			 * reflects that. If CRS does not agree with what we
3849 			 * set, return the irq that was set.
3850 			 */
3851 
3852 			if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
3853 			    dipintr_flagp) == ACPI_PSM_SUCCESS) {
3854 
3855 				if (cur_irq != irq)
3856 					APIC_VERBOSE_IRQ((CE_WARN,
3857 					    "!%s: IRQ resource set "
3858 					    "(irqno %d) for device %s "
3859 					    "instance #%d, differs from "
3860 					    "current setting irqno %d",
3861 					    psm_name, irq, ddi_get_name(dip),
3862 					    ddi_get_instance(dip), cur_irq));
3863 			} else {
3864 				/*
3865 				 * On at least one system, there was a bug in
3866 				 * a DSDT method called by _STA, causing _STA to
3867 				 * indicate that the link device was disabled
3868 				 * (when, in fact, it was enabled).  Since _SRS
3869 				 * succeeded, assume that _CRS is lying and use
3870 				 * the iflags from this _PRS interrupt choice.
3871 				 * If we're wrong about the flags, the polarity
3872 				 * will be incorrect and we may get an interrupt
3873 				 * storm, but there's not much else we can do
3874 				 * at this point.
3875 				 */
3876 				*dipintr_flagp = prs_irq_entp->intrflags;
3877 			}
3878 
3879 			/*
3880 			 * Return the irq that was set, and not what _CRS
3881 			 * reports, since _CRS has been seen to return
3882 			 * different IRQs than what was passed to _SRS on some
3883 			 * systems (and just not return successfully on others).
3884 			 */
3885 			cur_irq = irq;
3886 			found_irq = B_TRUE;
3887 		} else {
3888 			APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource "
3889 			    "irq %d failed for device %s instance #%d",
3890 			    psm_name, irq, ddi_get_name(dip),
3891 			    ddi_get_instance(dip)));
3892 
3893 			if (cur_irq == -1) {
3894 				acpi_destroy_prs_irq_list(&prs_irq_listp);
3895 				return (ACPI_PSM_FAILURE);
3896 			}
3897 		}
3898 	}
3899 
3900 	acpi_destroy_prs_irq_list(&prs_irq_listp);
3901 
3902 	if (!found_irq)
3903 		return (ACPI_PSM_FAILURE);
3904 
3905 	ASSERT(pci_irqp != NULL);
3906 	*pci_irqp = cur_irq;
3907 	return (ACPI_PSM_SUCCESS);
3908 }
3909 
3910 void
3911 ioapic_disable_redirection()
3912 {
3913 	int ioapic_ix;
3914 	int intin_max;
3915 	int intin_ix;
3916 
3917 	/* Disable the I/O APIC redirection entries */
3918 	for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) {
3919 
3920 		/* Bits 23-16 define the maximum redirection entries */
3921 		intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
3922 		    & 0xff;
3923 
3924 		for (intin_ix = 0; intin_ix < intin_max; intin_ix++) {
3925 			/*
3926 			 * The assumption here is that this is safe, even for
3927 			 * systems with IOAPICs that suffer from the hardware
3928 			 * erratum because all devices have been quiesced before
3929 			 * this function is called from apic_shutdown()
3930 			 * (or equivalent). If that assumption turns out to be
3931 			 * false, this mask operation can induce the same
3932 			 * erratum result we're trying to avoid.
3933 			 */
3934 			ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix,
3935 			    AV_MASK);
3936 		}
3937 	}
3938 }
3939 
3940 /*
3941  * Looks for an IOAPIC with the specified physical address in the /ioapics
3942  * node in the device tree (created by the PCI enumerator).
3943  */
3944 static boolean_t
3945 apic_is_ioapic_AMD_813x(uint32_t physaddr)
3946 {
3947 	/*
3948 	 * Look in /ioapics, for the ioapic with
3949 	 * the physical address given
3950 	 */
3951 	dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0);
3952 	dev_info_t *ioapic_child;
3953 	boolean_t rv = B_FALSE;
3954 	int vid, did;
3955 	uint64_t ioapic_paddr;
3956 	boolean_t done = B_FALSE;
3957 
3958 	if (ioapicsnode == NULL)
3959 		return (B_FALSE);
3960 
3961 	/* Load first child: */
3962 	ioapic_child = ddi_get_child(ioapicsnode);
3963 	while (!done && ioapic_child != 0) { /* Iterate over children */
3964 
3965 		if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY,
3966 		    ioapic_child, DDI_PROP_DONTPASS, "reg", 0))
3967 		    != 0 && physaddr == ioapic_paddr) {
3968 
3969 			vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child,
3970 			    DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0);
3971 
3972 			if (vid == VENID_AMD) {
3973 
3974 				did = ddi_prop_get_int(DDI_DEV_T_ANY,
3975 				    ioapic_child, DDI_PROP_DONTPASS,
3976 				    IOAPICS_PROP_DEVID, 0);
3977 
3978 				if (did == DEVID_8131_IOAPIC ||
3979 				    did == DEVID_8132_IOAPIC) {
3980 
3981 					rv = B_TRUE;
3982 					done = B_TRUE;
3983 				}
3984 			}
3985 		}
3986 
3987 		if (!done)
3988 			ioapic_child = ddi_get_next_sibling(ioapic_child);
3989 	}
3990 
3991 	/* The ioapics node was held by ddi_find_devinfo, so release it */
3992 	ndi_rele_devi(ioapicsnode);
3993 	return (rv);
3994 }
3995