1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 28 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 29 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 30 * PSMI 1.5 extensions are supported in Solaris Nevada. 31 * PSMI 1.6 extensions are supported in Solaris Nevada. 32 */ 33 #define PSMI_1_6 34 35 #include <sys/processor.h> 36 #include <sys/time.h> 37 #include <sys/psm.h> 38 #include <sys/smp_impldefs.h> 39 #include <sys/cram.h> 40 #include <sys/acpi/acpi.h> 41 #include <sys/acpica.h> 42 #include <sys/psm_common.h> 43 #include <sys/apic.h> 44 #include <sys/pit.h> 45 #include <sys/ddi.h> 46 #include <sys/sunddi.h> 47 #include <sys/ddi_impldefs.h> 48 #include <sys/pci.h> 49 #include <sys/promif.h> 50 #include <sys/x86_archext.h> 51 #include <sys/cpc_impl.h> 52 #include <sys/uadmin.h> 53 #include <sys/panic.h> 54 #include <sys/debug.h> 55 #include <sys/archsystm.h> 56 #include <sys/trap.h> 57 #include <sys/machsystm.h> 58 #include <sys/cpuvar.h> 59 #include <sys/rm_platter.h> 60 #include <sys/privregs.h> 61 #include <sys/cyclic.h> 62 #include <sys/note.h> 63 #include <sys/pci_intr_lib.h> 64 #include <sys/sunndi.h> 65 66 67 /* 68 * Local Function Prototypes 69 */ 70 static int apic_handle_defconf(); 71 static int apic_parse_mpct(caddr_t mpct, int bypass); 72 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size); 73 static int apic_checksum(caddr_t bptr, int len); 74 static int apic_find_bus_type(char *bus); 75 static int apic_find_bus(int busid); 76 static int apic_find_bus_id(int bustype); 77 static struct apic_io_intr *apic_find_io_intr(int irqno); 78 static int apic_find_free_irq(int start, int end); 79 static void apic_mark_vector(uchar_t oldvector, uchar_t newvector); 80 static void apic_xlate_vector_free_timeout_handler(void *arg); 81 static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu, 82 int new_bind_cpu, int apicindex, int intin_no, int which_irq, 83 struct ioapic_reprogram_data *drep); 84 static void apic_record_rdt_entry(apic_irq_t *irqptr, int irq); 85 static struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid); 86 static int apic_find_intin(uchar_t ioapic, uchar_t intin); 87 static int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, 88 int child_ipin, struct apic_io_intr **intrp); 89 static int apic_setup_irq_table(dev_info_t *dip, int irqno, 90 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp, 91 int type); 92 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp); 93 static void apic_try_deferred_reprogram(int ipl, int vect); 94 static void delete_defer_repro_ent(int which_irq); 95 static void apic_ioapic_wait_pending_clear(int ioapicindex, 96 int intin_no); 97 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr); 98 static int apic_acpi_enter_apicmode(void); 99 100 int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */ 101 102 /* ACPI SCI interrupt configuration; -1 if SCI not used */ 103 int apic_sci_vect = -1; 104 iflag_t apic_sci_flags; 105 106 /* 107 * psm name pointer 108 */ 109 static char *psm_name; 110 111 /* ACPI support routines */ 112 static int acpi_probe(char *); 113 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 114 int *pci_irqp, iflag_t *intr_flagp); 115 116 static int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 117 int ipin, int *pci_irqp, iflag_t *intr_flagp); 118 static uchar_t acpi_find_ioapic(int irq); 119 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2); 120 121 /* 122 * number of bits per byte, from <sys/param.h> 123 */ 124 #define UCHAR_MAX ((1 << NBBY) - 1) 125 126 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */ 127 int apic_max_reps_clear_pending = 1000; 128 129 /* The irq # is implicit in the array index: */ 130 struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1]; 131 /* 132 * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info 133 * is indexed by IRQ number, NOT by vector number. 134 */ 135 136 int apic_intr_policy = INTR_ROUND_ROBIN_WITH_AFFINITY; 137 138 int apic_next_bind_cpu = 1; /* For round robin assignment */ 139 /* start with cpu 1 */ 140 141 /* 142 * If enabled, the distribution works as follows: 143 * On every interrupt entry, the current ipl for the CPU is set in cpu_info 144 * and the irq corresponding to the ipl is also set in the aci_current array. 145 * interrupt exit and setspl (due to soft interrupts) will cause the current 146 * ipl to be be changed. This is cache friendly as these frequently used 147 * paths write into a per cpu structure. 148 * 149 * Sampling is done by checking the structures for all CPUs and incrementing 150 * the busy field of the irq (if any) executing on each CPU and the busy field 151 * of the corresponding CPU. 152 * In periodic mode this is done on every clock interrupt. 153 * In one-shot mode, this is done thru a cyclic with an interval of 154 * apic_redistribute_sample_interval (default 10 milli sec). 155 * 156 * Every apic_sample_factor_redistribution times we sample, we do computations 157 * to decide which interrupt needs to be migrated (see comments 158 * before apic_intr_redistribute(). 159 */ 160 161 /* 162 * Following 3 variables start as % and can be patched or set using an 163 * API to be defined in future. They will be scaled to 164 * sample_factor_redistribution which is in turn set to hertz+1 (in periodic 165 * mode), or 101 in one-shot mode to stagger it away from one sec processing 166 */ 167 168 int apic_int_busy_mark = 60; 169 int apic_int_free_mark = 20; 170 int apic_diff_for_redistribution = 10; 171 172 /* sampling interval for interrupt redistribution for dynamic migration */ 173 int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */ 174 175 /* 176 * number of times we sample before deciding to redistribute interrupts 177 * for dynamic migration 178 */ 179 int apic_sample_factor_redistribution = 101; 180 181 /* timeout for xlate_vector, mark_vector */ 182 int apic_revector_timeout = 16 * 10000; /* 160 millisec */ 183 184 int apic_redist_cpu_skip = 0; 185 int apic_num_imbalance = 0; 186 int apic_num_rebind = 0; 187 188 int apic_nproc = 0; 189 size_t apic_cpus_size = 0; 190 int apic_defconf = 0; 191 int apic_irq_translate = 0; 192 int apic_spec_rev = 0; 193 int apic_imcrp = 0; 194 195 int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */ 196 int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */ 197 198 /* 199 * For interrupt link devices, if apic_unconditional_srs is set, an irq resource 200 * will be assigned (via _SRS). If it is not set, use the current 201 * irq setting (via _CRS), but only if that irq is in the set of possible 202 * irqs (returned by _PRS) for the device. 203 */ 204 int apic_unconditional_srs = 1; 205 206 /* 207 * For interrupt link devices, if apic_prefer_crs is set when we are 208 * assigning an IRQ resource to a device, prefer the current IRQ setting 209 * over other possible irq settings under same conditions. 210 */ 211 212 int apic_prefer_crs = 1; 213 214 uchar_t apic_io_id[MAX_IO_APIC]; 215 volatile uint32_t *apicioadr[MAX_IO_APIC]; 216 static uchar_t apic_io_ver[MAX_IO_APIC]; 217 static uchar_t apic_io_vectbase[MAX_IO_APIC]; 218 static uchar_t apic_io_vectend[MAX_IO_APIC]; 219 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1]; 220 uint32_t apic_physaddr[MAX_IO_APIC]; 221 222 static boolean_t ioapic_mask_workaround[MAX_IO_APIC]; 223 224 /* 225 * First available slot to be used as IRQ index into the apic_irq_table 226 * for those interrupts (like MSI/X) that don't have a physical IRQ. 227 */ 228 int apic_first_avail_irq = APIC_FIRST_FREE_IRQ; 229 230 /* 231 * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound 232 * and bound elements of cpus_info and the temp_cpu element of irq_struct 233 */ 234 lock_t apic_ioapic_lock; 235 236 /* 237 * apic_defer_reprogram_lock ensures that only one processor is handling 238 * deferred interrupt programming at *_intr_exit time. 239 */ 240 static lock_t apic_defer_reprogram_lock; 241 242 /* 243 * The current number of deferred reprogrammings outstanding 244 */ 245 uint_t apic_reprogram_outstanding = 0; 246 247 #ifdef DEBUG 248 /* 249 * Counters that keep track of deferred reprogramming stats 250 */ 251 uint_t apic_intr_deferrals = 0; 252 uint_t apic_intr_deliver_timeouts = 0; 253 uint_t apic_last_ditch_reprogram_failures = 0; 254 uint_t apic_deferred_setup_failures = 0; 255 uint_t apic_defer_repro_total_retries = 0; 256 uint_t apic_defer_repro_successes = 0; 257 uint_t apic_deferred_spurious_enters = 0; 258 #endif 259 260 static int apic_io_max = 0; /* no. of i/o apics enabled */ 261 262 static struct apic_io_intr *apic_io_intrp = 0; 263 static struct apic_bus *apic_busp; 264 265 uchar_t apic_vector_to_irq[APIC_MAX_VECTOR+1]; 266 uchar_t apic_resv_vector[MAXIPL+1]; 267 268 char apic_level_intr[APIC_MAX_VECTOR+1]; 269 270 static uint32_t eisa_level_intr_mask = 0; 271 /* At least MSB will be set if EISA bus */ 272 273 static int apic_pci_bus_total = 0; 274 static uchar_t apic_single_pci_busid = 0; 275 276 /* 277 * airq_mutex protects additions to the apic_irq_table - the first 278 * pointer and any airq_nexts off of that one. It also protects 279 * apic_max_device_irq & apic_min_device_irq. It also guarantees 280 * that share_id is unique as new ids are generated only when new 281 * irq_t structs are linked in. Once linked in the structs are never 282 * deleted. temp_cpu & mps_intr_index field indicate if it is programmed 283 * or allocated. Note that there is a slight gap between allocating in 284 * apic_introp_xlate and programming in addspl. 285 */ 286 kmutex_t airq_mutex; 287 apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1]; 288 int apic_max_device_irq = 0; 289 int apic_min_device_irq = APIC_MAX_VECTOR; 290 291 /* 292 * Following declarations are for revectoring; used when ISRs at different 293 * IPLs share an irq. 294 */ 295 static lock_t apic_revector_lock; 296 int apic_revector_pending = 0; 297 static uchar_t *apic_oldvec_to_newvec; 298 static uchar_t *apic_newvec_to_oldvec; 299 300 typedef struct prs_irq_list_ent { 301 int list_prio; 302 int32_t irq; 303 iflag_t intrflags; 304 acpi_prs_private_t prsprv; 305 struct prs_irq_list_ent *next; 306 } prs_irq_list_t; 307 308 309 /* 310 * ACPI variables 311 */ 312 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */ 313 int apic_enable_acpi = 0; 314 315 /* ACPI Multiple APIC Description Table ptr */ 316 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL; 317 318 /* ACPI Interrupt Source Override Structure ptr */ 319 static ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL; 320 static int acpi_iso_cnt = 0; 321 322 /* ACPI Non-maskable Interrupt Sources ptr */ 323 static ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL; 324 static int acpi_nmi_scnt = 0; 325 static ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL; 326 static int acpi_nmi_ccnt = 0; 327 328 /* 329 * The following added to identify a software poweroff method if available. 330 */ 331 332 static struct { 333 int poweroff_method; 334 char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */ 335 char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */ 336 } apic_mps_ids[] = { 337 { APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */ 338 { APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */ 339 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */ 340 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */ 341 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */ 342 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */ 343 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */ 344 }; 345 346 int apic_poweroff_method = APIC_POWEROFF_NONE; 347 348 /* 349 * Auto-configuration routines 350 */ 351 352 /* 353 * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here 354 * May work with 1.1 - but not guaranteed. 355 * According to the MP Spec, the MP floating pointer structure 356 * will be searched in the order described below: 357 * 1. In the first kilobyte of Extended BIOS Data Area (EBDA) 358 * 2. Within the last kilobyte of system base memory 359 * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh 360 * Once we find the right signature with proper checksum, we call 361 * either handle_defconf or parse_mpct to get all info necessary for 362 * subsequent operations. 363 */ 364 int 365 apic_probe_common(char *modname) 366 { 367 uint32_t mpct_addr, ebda_start = 0, base_mem_end; 368 caddr_t biosdatap; 369 caddr_t mpct; 370 caddr_t fptr; 371 int i, mpct_size, mapsize, retval = PSM_FAILURE; 372 ushort_t ebda_seg, base_mem_size; 373 struct apic_mpfps_hdr *fpsp; 374 struct apic_mp_cnf_hdr *hdrp; 375 int bypass_cpu_and_ioapics_in_mptables; 376 int acpi_user_options; 377 378 if (apic_forceload < 0) 379 return (retval); 380 381 /* 382 * Remember who we are 383 */ 384 psm_name = modname; 385 386 /* Allow override for MADT-only mode */ 387 acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0, 388 "acpi-user-options", 0); 389 apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0); 390 391 /* Allow apic_use_acpi to override MADT-only mode */ 392 if (!apic_use_acpi) 393 apic_use_acpi_madt_only = 0; 394 395 retval = acpi_probe(modname); 396 397 /* 398 * mapin the bios data area 40:0 399 * 40:13h - two-byte location reports the base memory size 400 * 40:0Eh - two-byte location for the exact starting address of 401 * the EBDA segment for EISA 402 */ 403 biosdatap = psm_map_phys(0x400, 0x20, PROT_READ); 404 if (!biosdatap) 405 return (retval); 406 fpsp = (struct apic_mpfps_hdr *)NULL; 407 mapsize = MPFPS_RAM_WIN_LEN; 408 /*LINTED: pointer cast may result in improper alignment */ 409 ebda_seg = *((ushort_t *)(biosdatap+0xe)); 410 /* check the 1k of EBDA */ 411 if (ebda_seg) { 412 ebda_start = ((uint32_t)ebda_seg) << 4; 413 fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ); 414 if (fptr) { 415 if (!(fpsp = 416 apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN))) 417 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 418 } 419 } 420 /* If not in EBDA, check the last k of system base memory */ 421 if (!fpsp) { 422 /*LINTED: pointer cast may result in improper alignment */ 423 base_mem_size = *((ushort_t *)(biosdatap + 0x13)); 424 425 if (base_mem_size > 512) 426 base_mem_end = 639 * 1024; 427 else 428 base_mem_end = 511 * 1024; 429 /* if ebda == last k of base mem, skip to check BIOS ROM */ 430 if (base_mem_end != ebda_start) { 431 432 fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN, 433 PROT_READ); 434 435 if (fptr) { 436 if (!(fpsp = apic_find_fps_sig(fptr, 437 MPFPS_RAM_WIN_LEN))) 438 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 439 } 440 } 441 } 442 psm_unmap_phys(biosdatap, 0x20); 443 444 /* If still cannot find it, check the BIOS ROM space */ 445 if (!fpsp) { 446 mapsize = MPFPS_ROM_WIN_LEN; 447 fptr = psm_map_phys(MPFPS_ROM_WIN_START, 448 MPFPS_ROM_WIN_LEN, PROT_READ); 449 if (fptr) { 450 if (!(fpsp = 451 apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) { 452 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 453 return (retval); 454 } 455 } 456 } 457 458 if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) { 459 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 460 return (retval); 461 } 462 463 apic_spec_rev = fpsp->mpfps_spec_rev; 464 if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) { 465 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 466 return (retval); 467 } 468 469 /* check IMCR is present or not */ 470 apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP; 471 472 /* check default configuration (dual CPUs) */ 473 if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) { 474 psm_unmap_phys(fptr, mapsize); 475 return (apic_handle_defconf()); 476 } 477 478 /* MP Configuration Table */ 479 mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr); 480 481 psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */ 482 483 /* 484 * Map in enough memory for the MP Configuration Table Header. 485 * Use this table to read the total length of the BIOS data and 486 * map in all the info 487 */ 488 /*LINTED: pointer cast may result in improper alignment */ 489 hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr, 490 sizeof (struct apic_mp_cnf_hdr), PROT_READ); 491 if (!hdrp) 492 return (retval); 493 494 /* check mp configuration table signature PCMP */ 495 if (hdrp->mpcnf_sig != 0x504d4350) { 496 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 497 return (retval); 498 } 499 mpct_size = (int)hdrp->mpcnf_tbl_length; 500 501 apic_set_pwroff_method_from_mpcnfhdr(hdrp); 502 503 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 504 505 if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) { 506 /* This is an ACPI machine No need for further checks */ 507 return (retval); 508 } 509 510 /* 511 * Map in the entries for this machine, ie. Processor 512 * Entry Tables, Bus Entry Tables, etc. 513 * They are in fixed order following one another 514 */ 515 mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ); 516 if (!mpct) 517 return (retval); 518 519 if (apic_checksum(mpct, mpct_size) != 0) 520 goto apic_fail1; 521 522 523 /*LINTED: pointer cast may result in improper alignment */ 524 hdrp = (struct apic_mp_cnf_hdr *)mpct; 525 apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic, 526 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 527 if (!apicadr) 528 goto apic_fail1; 529 530 /* Parse all information in the tables */ 531 bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS); 532 if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) == 533 PSM_SUCCESS) 534 return (PSM_SUCCESS); 535 536 for (i = 0; i < apic_io_max; i++) 537 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 538 if (apic_cpus) 539 kmem_free(apic_cpus, apic_cpus_size); 540 if (apicadr) 541 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 542 apic_fail1: 543 psm_unmap_phys(mpct, mpct_size); 544 return (retval); 545 } 546 547 static void 548 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp) 549 { 550 int i; 551 552 for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0])); 553 i++) { 554 if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id, 555 strlen(apic_mps_ids[i].oem_id)) == 0) && 556 (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id, 557 strlen(apic_mps_ids[i].prod_id)) == 0)) { 558 559 apic_poweroff_method = apic_mps_ids[i].poweroff_method; 560 break; 561 } 562 } 563 564 if (apic_debug_mps_id != 0) { 565 cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'" 566 "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n", 567 psm_name, 568 hdrp->mpcnf_oem_str[0], 569 hdrp->mpcnf_oem_str[1], 570 hdrp->mpcnf_oem_str[2], 571 hdrp->mpcnf_oem_str[3], 572 hdrp->mpcnf_oem_str[4], 573 hdrp->mpcnf_oem_str[5], 574 hdrp->mpcnf_oem_str[6], 575 hdrp->mpcnf_oem_str[7], 576 hdrp->mpcnf_prod_str[0], 577 hdrp->mpcnf_prod_str[1], 578 hdrp->mpcnf_prod_str[2], 579 hdrp->mpcnf_prod_str[3], 580 hdrp->mpcnf_prod_str[4], 581 hdrp->mpcnf_prod_str[5], 582 hdrp->mpcnf_prod_str[6], 583 hdrp->mpcnf_prod_str[7], 584 hdrp->mpcnf_prod_str[8], 585 hdrp->mpcnf_prod_str[9], 586 hdrp->mpcnf_prod_str[10], 587 hdrp->mpcnf_prod_str[11]); 588 } 589 } 590 591 static int 592 acpi_probe(char *modname) 593 { 594 int i, intmax, index; 595 uint32_t id, ver; 596 int acpi_verboseflags = 0; 597 int madt_seen, madt_size; 598 ACPI_SUBTABLE_HEADER *ap; 599 ACPI_MADT_LOCAL_APIC *mpa; 600 ACPI_MADT_LOCAL_X2APIC *mpx2a; 601 ACPI_MADT_IO_APIC *mia; 602 ACPI_MADT_IO_SAPIC *misa; 603 ACPI_MADT_INTERRUPT_OVERRIDE *mio; 604 ACPI_MADT_NMI_SOURCE *mns; 605 ACPI_MADT_INTERRUPT_SOURCE *mis; 606 ACPI_MADT_LOCAL_APIC_NMI *mlan; 607 ACPI_MADT_LOCAL_X2APIC_NMI *mx2alan; 608 ACPI_MADT_LOCAL_APIC_OVERRIDE *mao; 609 int sci; 610 iflag_t sci_flags; 611 volatile uint32_t *ioapic; 612 int ioapic_ix; 613 uint32_t local_ids[NCPU]; 614 uint32_t proc_ids[NCPU]; 615 uchar_t hid; 616 617 if (!apic_use_acpi) 618 return (PSM_FAILURE); 619 620 if (AcpiGetTable(ACPI_SIG_MADT, 1, 621 (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) 622 return (PSM_FAILURE); 623 624 apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address, 625 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 626 if (!apicadr) 627 return (PSM_FAILURE); 628 629 /* 630 * We don't enable x2APIC when Solaris is running under xVM. 631 */ 632 #if !defined(__xpv) 633 if (apic_detect_x2apic()) { 634 apic_enable_x2apic(); 635 } 636 #endif 637 638 id = apic_reg_ops->apic_read(APIC_LID_REG); 639 local_ids[0] = (uchar_t)(id >> 24); 640 apic_nproc = index = 1; 641 CPUSET_ONLY(apic_cpumask, 0); 642 apic_io_max = 0; 643 644 ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1); 645 madt_size = acpi_mapic_dtp->Header.Length; 646 madt_seen = sizeof (*acpi_mapic_dtp); 647 648 while (madt_seen < madt_size) { 649 switch (ap->Type) { 650 case ACPI_MADT_TYPE_LOCAL_APIC: 651 mpa = (ACPI_MADT_LOCAL_APIC *) ap; 652 if (mpa->LapicFlags & ACPI_MADT_ENABLED) { 653 if (mpa->Id == local_ids[0]) { 654 proc_ids[0] = mpa->ProcessorId; 655 acpica_map_cpu(0, mpa->ProcessorId); 656 } else if (apic_nproc < NCPU && use_mp && 657 apic_nproc < boot_ncpus) { 658 local_ids[index] = mpa->Id; 659 proc_ids[index] = mpa->ProcessorId; 660 CPUSET_ADD(apic_cpumask, index); 661 acpica_map_cpu(index, mpa->ProcessorId); 662 index++; 663 apic_nproc++; 664 } else if (apic_nproc == NCPU) 665 cmn_err(CE_WARN, "%s: exceeded " 666 "maximum no. of CPUs (= %d)", 667 psm_name, NCPU); 668 } 669 break; 670 671 case ACPI_MADT_TYPE_IO_APIC: 672 mia = (ACPI_MADT_IO_APIC *) ap; 673 if (apic_io_max < MAX_IO_APIC) { 674 ioapic_ix = apic_io_max; 675 apic_io_id[apic_io_max] = mia->Id; 676 apic_io_vectbase[apic_io_max] = 677 mia->GlobalIrqBase; 678 apic_physaddr[apic_io_max] = 679 (uint32_t)mia->Address; 680 ioapic = apicioadr[apic_io_max] = 681 mapin_ioapic((uint32_t)mia->Address, 682 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 683 if (!ioapic) 684 goto cleanup; 685 ioapic_mask_workaround[apic_io_max] = 686 apic_is_ioapic_AMD_813x(mia->Address); 687 apic_io_max++; 688 } 689 break; 690 691 case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE: 692 mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap; 693 if (acpi_isop == NULL) 694 acpi_isop = mio; 695 acpi_iso_cnt++; 696 break; 697 698 case ACPI_MADT_TYPE_NMI_SOURCE: 699 /* UNIMPLEMENTED */ 700 mns = (ACPI_MADT_NMI_SOURCE *) ap; 701 if (acpi_nmi_sp == NULL) 702 acpi_nmi_sp = mns; 703 acpi_nmi_scnt++; 704 705 cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n", 706 mns->GlobalIrq, mns->IntiFlags); 707 break; 708 709 case ACPI_MADT_TYPE_LOCAL_APIC_NMI: 710 /* UNIMPLEMENTED */ 711 mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap; 712 if (acpi_nmi_cp == NULL) 713 acpi_nmi_cp = mlan; 714 acpi_nmi_ccnt++; 715 716 cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n", 717 mlan->ProcessorId, mlan->IntiFlags, 718 mlan->Lint); 719 break; 720 721 case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE: 722 /* UNIMPLEMENTED */ 723 mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap; 724 cmn_err(CE_NOTE, "!apic: address override: %lx\n", 725 (long)mao->Address); 726 break; 727 728 case ACPI_MADT_TYPE_IO_SAPIC: 729 /* UNIMPLEMENTED */ 730 misa = (ACPI_MADT_IO_SAPIC *) ap; 731 732 cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n", 733 misa->Id, misa->GlobalIrqBase, 734 (long)misa->Address); 735 break; 736 737 case ACPI_MADT_TYPE_INTERRUPT_SOURCE: 738 /* UNIMPLEMENTED */ 739 mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap; 740 741 cmn_err(CE_NOTE, 742 "!apic: irq source: %d %d %d 0x%x %d %d\n", 743 mis->Id, mis->Eid, mis->GlobalIrq, 744 mis->IntiFlags, mis->Type, 745 mis->IoSapicVector); 746 break; 747 748 case ACPI_MADT_TYPE_LOCAL_X2APIC: 749 mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap; 750 751 /* 752 * All logical processors with APIC ID values 753 * of 255 and greater will have their APIC 754 * reported through Processor X2APIC structure. 755 * All logical processors with APIC ID less than 756 * 255 will have their APIC reported through 757 * Processor Local APIC. 758 */ 759 if ((mpx2a->LapicFlags & ACPI_MADT_ENABLED) && 760 (mpx2a->LocalApicId >> 8)) { 761 if (apic_nproc < NCPU && use_mp && 762 apic_nproc < boot_ncpus) { 763 local_ids[index] = mpx2a->LocalApicId; 764 CPUSET_ADD(apic_cpumask, index); 765 acpica_map_cpu(index, mpx2a->Uid); 766 index++; 767 apic_nproc++; 768 } else if (apic_nproc == NCPU) { 769 cmn_err(CE_WARN, "%s: exceeded" 770 " maximum no. of CPUs (" 771 "=%d)", psm_name, NCPU); 772 } 773 } 774 775 break; 776 777 case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI: 778 /* UNIMPLEMENTED */ 779 mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap; 780 if (mx2alan->Uid >> 8) 781 acpi_nmi_ccnt++; 782 783 #ifdef DEBUG 784 cmn_err(CE_NOTE, 785 "!apic: local x2apic nmi: %d 0x%x %d\n", 786 mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint); 787 #endif 788 789 break; 790 791 case ACPI_MADT_TYPE_RESERVED: 792 default: 793 break; 794 } 795 796 /* advance to next entry */ 797 madt_seen += ap->Length; 798 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length); 799 } 800 801 apic_cpus_size = apic_nproc * sizeof (*apic_cpus); 802 if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL) 803 goto cleanup; 804 805 /* 806 * ACPI doesn't provide the local apic ver, get it directly from the 807 * local apic 808 */ 809 ver = apic_reg_ops->apic_read(APIC_VERS_REG); 810 for (i = 0; i < apic_nproc; i++) { 811 apic_cpus[i].aci_local_id = local_ids[i]; 812 apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF); 813 } 814 815 for (i = 0; i < apic_io_max; i++) { 816 ioapic_ix = i; 817 818 /* 819 * need to check Sitka on the following acpi problem 820 * On the Sitka, the ioapic's apic_id field isn't reporting 821 * the actual io apic id. We have reported this problem 822 * to Intel. Until they fix the problem, we will get the 823 * actual id directly from the ioapic. 824 */ 825 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 826 hid = (uchar_t)(id >> 24); 827 828 if (hid != apic_io_id[i]) { 829 if (apic_io_id[i] == 0) 830 apic_io_id[i] = hid; 831 else { /* set ioapic id to whatever reported by ACPI */ 832 id = ((uint32_t)apic_io_id[i]) << 24; 833 ioapic_write(ioapic_ix, APIC_ID_CMD, id); 834 } 835 } 836 ver = ioapic_read(ioapic_ix, APIC_VERS_CMD); 837 apic_io_ver[i] = (uchar_t)(ver & 0xff); 838 intmax = (ver >> 16) & 0xff; 839 apic_io_vectend[i] = apic_io_vectbase[i] + intmax; 840 if (apic_first_avail_irq <= apic_io_vectend[i]) 841 apic_first_avail_irq = apic_io_vectend[i] + 1; 842 } 843 844 845 /* 846 * Process SCI configuration here 847 * An error may be returned here if 848 * acpi-user-options specifies legacy mode 849 * (no SCI, no ACPI mode) 850 */ 851 if (acpica_get_sci(&sci, &sci_flags) != AE_OK) 852 sci = -1; 853 854 /* 855 * Now call acpi_init() to generate namespaces 856 * If this fails, we don't attempt to use ACPI 857 * even if we were able to get a MADT above 858 */ 859 if (acpica_init() != AE_OK) 860 goto cleanup; 861 862 /* 863 * Call acpica_build_processor_map() now that we have 864 * ACPI namesspace access 865 */ 866 acpica_build_processor_map(); 867 868 /* 869 * Squirrel away the SCI and flags for later on 870 * in apic_picinit() when we're ready 871 */ 872 apic_sci_vect = sci; 873 apic_sci_flags = sci_flags; 874 875 if (apic_verbose & APIC_VERBOSE_IRQ_FLAG) 876 acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG; 877 878 if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG) 879 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG; 880 881 if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG) 882 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG; 883 884 if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE) 885 goto cleanup; 886 887 /* Enable ACPI APIC interrupt routing */ 888 if (apic_acpi_enter_apicmode() != PSM_FAILURE) { 889 build_reserved_irqlist((uchar_t *)apic_reserved_irqlist); 890 apic_enable_acpi = 1; 891 if (apic_use_acpi_madt_only) { 892 cmn_err(CE_CONT, 893 "?Using ACPI for CPU/IOAPIC information ONLY\n"); 894 } 895 return (PSM_SUCCESS); 896 } 897 /* if setting APIC mode failed above, we fall through to cleanup */ 898 899 cleanup: 900 if (apicadr != NULL) { 901 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 902 apicadr = NULL; 903 } 904 apic_nproc = 0; 905 for (i = 0; i < apic_io_max; i++) { 906 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 907 apicioadr[i] = NULL; 908 } 909 apic_io_max = 0; 910 acpi_isop = NULL; 911 acpi_iso_cnt = 0; 912 acpi_nmi_sp = NULL; 913 acpi_nmi_scnt = 0; 914 acpi_nmi_cp = NULL; 915 acpi_nmi_ccnt = 0; 916 return (PSM_FAILURE); 917 } 918 919 /* 920 * Handle default configuration. Fill in reqd global variables & tables 921 * Fill all details as MP table does not give any more info 922 */ 923 static int 924 apic_handle_defconf() 925 { 926 uint_t lid; 927 928 /*LINTED: pointer cast may result in improper alignment */ 929 apicioadr[0] = mapin_ioapic(APIC_IO_ADDR, 930 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 931 /*LINTED: pointer cast may result in improper alignment */ 932 apicadr = (uint32_t *)psm_map_phys(APIC_LOCAL_ADDR, 933 APIC_LOCAL_MEMLEN, PROT_READ); 934 apic_cpus_size = 2 * sizeof (*apic_cpus); 935 apic_cpus = (apic_cpus_info_t *) 936 kmem_zalloc(apic_cpus_size, KM_NOSLEEP); 937 if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus)) 938 goto apic_handle_defconf_fail; 939 CPUSET_ONLY(apic_cpumask, 0); 940 CPUSET_ADD(apic_cpumask, 1); 941 apic_nproc = 2; 942 lid = apic_reg_ops->apic_read(APIC_LID_REG); 943 apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET); 944 /* 945 * According to the PC+MP spec 1.1, the local ids 946 * for the default configuration has to be 0 or 1 947 */ 948 if (apic_cpus[0].aci_local_id == 1) 949 apic_cpus[1].aci_local_id = 0; 950 else if (apic_cpus[0].aci_local_id == 0) 951 apic_cpus[1].aci_local_id = 1; 952 else 953 goto apic_handle_defconf_fail; 954 955 apic_io_id[0] = 2; 956 apic_io_max = 1; 957 if (apic_defconf >= 5) { 958 apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS; 959 apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS; 960 apic_io_ver[0] = APIC_INTEGRATED_VERS; 961 } else { 962 apic_cpus[0].aci_local_ver = 0; /* 82489 DX */ 963 apic_cpus[1].aci_local_ver = 0; 964 apic_io_ver[0] = 0; 965 } 966 if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6) 967 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 968 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 969 return (PSM_SUCCESS); 970 971 apic_handle_defconf_fail: 972 if (apic_cpus) 973 kmem_free(apic_cpus, apic_cpus_size); 974 if (apicadr) 975 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 976 if (apicioadr[0]) 977 mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN); 978 return (PSM_FAILURE); 979 } 980 981 /* Parse the entries in MP configuration table and collect info that we need */ 982 static int 983 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics) 984 { 985 struct apic_procent *procp; 986 struct apic_bus *busp; 987 struct apic_io_entry *ioapicp; 988 struct apic_io_intr *intrp; 989 int ioapic_ix; 990 uint_t lid; 991 uint32_t id; 992 uchar_t hid; 993 int warned = 0; 994 995 /*LINTED: pointer cast may result in improper alignment */ 996 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 997 998 /* No need to count cpu entries if we won't use them */ 999 if (!bypass_cpus_and_ioapics) { 1000 1001 /* Find max # of CPUS and allocate structure accordingly */ 1002 apic_nproc = 0; 1003 CPUSET_ZERO(apic_cpumask); 1004 while (procp->proc_entry == APIC_CPU_ENTRY) { 1005 if (procp->proc_cpuflags & CPUFLAGS_EN) { 1006 if (apic_nproc < NCPU && use_mp && 1007 apic_nproc < boot_ncpus) { 1008 CPUSET_ADD(apic_cpumask, apic_nproc); 1009 apic_nproc++; 1010 } else if (apic_nproc == NCPU && !warned) { 1011 cmn_err(CE_WARN, "%s: exceeded " 1012 "maximum no. of CPUs (= %d)", 1013 psm_name, NCPU); 1014 warned = 1; 1015 } 1016 1017 } 1018 procp++; 1019 } 1020 apic_cpus_size = apic_nproc * sizeof (*apic_cpus); 1021 if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *) 1022 kmem_zalloc(apic_cpus_size, KM_NOSLEEP))) 1023 return (PSM_FAILURE); 1024 } 1025 1026 /*LINTED: pointer cast may result in improper alignment */ 1027 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1028 1029 /* 1030 * start with index 1 as 0 needs to be filled in with Boot CPU, but 1031 * if we're bypassing this information, it has already been filled 1032 * in by acpi_probe(), so don't overwrite it. 1033 */ 1034 if (!bypass_cpus_and_ioapics) 1035 apic_nproc = 1; 1036 1037 while (procp->proc_entry == APIC_CPU_ENTRY) { 1038 /* check whether the cpu exists or not */ 1039 if (!bypass_cpus_and_ioapics && 1040 procp->proc_cpuflags & CPUFLAGS_EN) { 1041 if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */ 1042 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1043 apic_cpus[0].aci_local_id = procp->proc_apicid; 1044 if (apic_cpus[0].aci_local_id != 1045 (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) { 1046 return (PSM_FAILURE); 1047 } 1048 apic_cpus[0].aci_local_ver = 1049 procp->proc_version; 1050 } else if (apic_nproc < NCPU && use_mp && 1051 apic_nproc < boot_ncpus) { 1052 apic_cpus[apic_nproc].aci_local_id = 1053 procp->proc_apicid; 1054 1055 apic_cpus[apic_nproc].aci_local_ver = 1056 procp->proc_version; 1057 apic_nproc++; 1058 1059 } 1060 } 1061 procp++; 1062 } 1063 1064 /* 1065 * Save start of bus entries for later use. 1066 * Get EISA level cntrl if EISA bus is present. 1067 * Also get the CPI bus id for single CPI bus case 1068 */ 1069 apic_busp = busp = (struct apic_bus *)procp; 1070 while (busp->bus_entry == APIC_BUS_ENTRY) { 1071 lid = apic_find_bus_type((char *)&busp->bus_str1); 1072 if (lid == BUS_EISA) { 1073 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1074 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1075 } else if (lid == BUS_PCI) { 1076 /* 1077 * apic_single_pci_busid will be used only if 1078 * apic_pic_bus_total is equal to 1 1079 */ 1080 apic_pci_bus_total++; 1081 apic_single_pci_busid = busp->bus_id; 1082 } 1083 busp++; 1084 } 1085 1086 ioapicp = (struct apic_io_entry *)busp; 1087 1088 if (!bypass_cpus_and_ioapics) 1089 apic_io_max = 0; 1090 do { 1091 if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) { 1092 if (ioapicp->io_flags & IOAPIC_FLAGS_EN) { 1093 apic_io_id[apic_io_max] = ioapicp->io_apicid; 1094 apic_io_ver[apic_io_max] = ioapicp->io_version; 1095 /*LINTED: pointer cast may result in improper alignment */ 1096 apicioadr[apic_io_max] = 1097 mapin_ioapic( 1098 (uint32_t)ioapicp->io_apic_addr, 1099 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1100 1101 if (!apicioadr[apic_io_max]) 1102 return (PSM_FAILURE); 1103 1104 ioapic_mask_workaround[apic_io_max] = 1105 apic_is_ioapic_AMD_813x( 1106 ioapicp->io_apic_addr); 1107 1108 ioapic_ix = apic_io_max; 1109 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 1110 hid = (uchar_t)(id >> 24); 1111 1112 if (hid != apic_io_id[apic_io_max]) { 1113 if (apic_io_id[apic_io_max] == 0) 1114 apic_io_id[apic_io_max] = hid; 1115 else { 1116 /* 1117 * set ioapic id to whatever 1118 * reported by MPS 1119 * 1120 * may not need to set index 1121 * again ??? 1122 * take it out and try 1123 */ 1124 1125 id = ((uint32_t) 1126 apic_io_id[apic_io_max]) << 1127 24; 1128 1129 ioapic_write(ioapic_ix, 1130 APIC_ID_CMD, id); 1131 } 1132 } 1133 apic_io_max++; 1134 } 1135 } 1136 ioapicp++; 1137 } while (ioapicp->io_entry == APIC_IO_ENTRY); 1138 1139 apic_io_intrp = (struct apic_io_intr *)ioapicp; 1140 1141 intrp = apic_io_intrp; 1142 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1143 if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) || 1144 (apic_find_bus(intrp->intr_busid) == BUS_PCI)) { 1145 apic_irq_translate = 1; 1146 break; 1147 } 1148 intrp++; 1149 } 1150 1151 return (PSM_SUCCESS); 1152 } 1153 1154 boolean_t 1155 apic_cpu_in_range(int cpu) 1156 { 1157 return ((cpu & ~IRQ_USER_BOUND) < apic_nproc); 1158 } 1159 1160 uint16_t 1161 apic_get_apic_version() 1162 { 1163 int i; 1164 uchar_t min_io_apic_ver = 0; 1165 static uint16_t version; /* Cache as value is constant */ 1166 static boolean_t found = B_FALSE; /* Accomodate zero version */ 1167 1168 if (found == B_FALSE) { 1169 found = B_TRUE; 1170 1171 /* 1172 * Don't assume all IO APICs in the system are the same. 1173 * 1174 * Set to the minimum version. 1175 */ 1176 for (i = 0; i < apic_io_max; i++) { 1177 if ((apic_io_ver[i] != 0) && 1178 ((min_io_apic_ver == 0) || 1179 (min_io_apic_ver >= apic_io_ver[i]))) 1180 min_io_apic_ver = apic_io_ver[i]; 1181 } 1182 1183 /* Assume all local APICs are of the same version. */ 1184 version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver; 1185 } 1186 return (version); 1187 } 1188 1189 static struct apic_mpfps_hdr * 1190 apic_find_fps_sig(caddr_t cptr, int len) 1191 { 1192 int i; 1193 1194 /* Look for the pattern "_MP_" */ 1195 for (i = 0; i < len; i += 16) { 1196 if ((*(cptr+i) == '_') && 1197 (*(cptr+i+1) == 'M') && 1198 (*(cptr+i+2) == 'P') && 1199 (*(cptr+i+3) == '_')) 1200 /*LINTED: pointer cast may result in improper alignment */ 1201 return ((struct apic_mpfps_hdr *)(cptr + i)); 1202 } 1203 return (NULL); 1204 } 1205 1206 static int 1207 apic_checksum(caddr_t bptr, int len) 1208 { 1209 int i; 1210 uchar_t cksum; 1211 1212 cksum = 0; 1213 for (i = 0; i < len; i++) 1214 cksum += *bptr++; 1215 return ((int)cksum); 1216 } 1217 1218 1219 /* 1220 * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable 1221 * are also set to NULL. vector->irq is set to a value which cannot map 1222 * to a real irq to show that it is free. 1223 */ 1224 void 1225 apic_init_common() 1226 { 1227 int i, j, indx; 1228 int *iptr; 1229 1230 /* 1231 * Initialize apic_ipls from apic_vectortoipl. This array is 1232 * used in apic_intr_enter to determine the IPL to use for the 1233 * corresponding vector. On some systems, due to hardware errata 1234 * and interrupt sharing, the IPL may not correspond to the IPL listed 1235 * in apic_vectortoipl (see apic_addspl and apic_delspl). 1236 */ 1237 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { 1238 indx = i * APIC_VECTOR_PER_IPL; 1239 1240 for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++) 1241 apic_ipls[indx] = apic_vectortoipl[i]; 1242 } 1243 1244 /* cpu 0 is always up (for now) */ 1245 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; 1246 1247 iptr = (int *)&apic_irq_table[0]; 1248 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 1249 apic_level_intr[i] = 0; 1250 *iptr++ = NULL; 1251 apic_vector_to_irq[i] = APIC_RESV_IRQ; 1252 1253 /* These *must* be initted to B_TRUE! */ 1254 apic_reprogram_info[i].done = B_TRUE; 1255 apic_reprogram_info[i].irqp = NULL; 1256 apic_reprogram_info[i].tries = 0; 1257 apic_reprogram_info[i].bindcpu = 0; 1258 } 1259 1260 /* 1261 * Allocate a dummy irq table entry for the reserved entry. 1262 * This takes care of the race between removing an irq and 1263 * clock detecting a CPU in that irq during interrupt load 1264 * sampling. 1265 */ 1266 apic_irq_table[APIC_RESV_IRQ] = 1267 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); 1268 1269 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL); 1270 } 1271 1272 void 1273 ioapic_init_intr(int mask_apic) 1274 { 1275 int ioapic_ix; 1276 struct intrspec ispec; 1277 apic_irq_t *irqptr; 1278 int i, j; 1279 ulong_t iflag; 1280 1281 LOCK_INIT_CLEAR(&apic_revector_lock); 1282 LOCK_INIT_CLEAR(&apic_defer_reprogram_lock); 1283 1284 /* mask interrupt vectors */ 1285 for (j = 0; j < apic_io_max && mask_apic; j++) { 1286 int intin_max; 1287 1288 ioapic_ix = j; 1289 /* Bits 23-16 define the maximum redirection entries */ 1290 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) 1291 & 0xff; 1292 for (i = 0; i <= intin_max; i++) 1293 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * i, AV_MASK); 1294 } 1295 1296 /* 1297 * Hack alert: deal with ACPI SCI interrupt chicken/egg here 1298 */ 1299 if (apic_sci_vect > 0) { 1300 /* 1301 * acpica has already done add_avintr(); we just 1302 * to finish the job by mimicing translate_irq() 1303 * 1304 * Fake up an intrspec and setup the tables 1305 */ 1306 ispec.intrspec_vec = apic_sci_vect; 1307 ispec.intrspec_pri = SCI_IPL; 1308 1309 if (apic_setup_irq_table(NULL, apic_sci_vect, NULL, 1310 &ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) { 1311 cmn_err(CE_WARN, "!apic: SCI setup failed"); 1312 return; 1313 } 1314 irqptr = apic_irq_table[apic_sci_vect]; 1315 1316 iflag = intr_clear(); 1317 lock_set(&apic_ioapic_lock); 1318 1319 /* Program I/O APIC */ 1320 (void) apic_setup_io_intr(irqptr, apic_sci_vect, B_FALSE); 1321 1322 lock_clear(&apic_ioapic_lock); 1323 intr_restore(iflag); 1324 1325 irqptr->airq_share++; 1326 } 1327 } 1328 1329 /* 1330 * Add mask bits to disable interrupt vector from happening 1331 * at or above IPL. In addition, it should remove mask bits 1332 * to enable interrupt vectors below the given IPL. 1333 * 1334 * Both add and delspl are complicated by the fact that different interrupts 1335 * may share IRQs. This can happen in two ways. 1336 * 1. The same H/W line is shared by more than 1 device 1337 * 1a. with interrupts at different IPLs 1338 * 1b. with interrupts at same IPL 1339 * 2. We ran out of vectors at a given IPL and started sharing vectors. 1340 * 1b and 2 should be handled gracefully, except for the fact some ISRs 1341 * will get called often when no interrupt is pending for the device. 1342 * For 1a, we just hope that the machine blows up with the person who 1343 * set it up that way!. In the meantime, we handle it at the higher IPL. 1344 */ 1345 /*ARGSUSED*/ 1346 int 1347 apic_addspl_common(int irqno, int ipl, int min_ipl, int max_ipl) 1348 { 1349 uchar_t vector; 1350 ulong_t iflag; 1351 apic_irq_t *irqptr, *irqheadptr; 1352 int irqindex; 1353 1354 ASSERT(max_ipl <= UCHAR_MAX); 1355 irqindex = IRQINDEX(irqno); 1356 1357 if ((irqindex == -1) || (!apic_irq_table[irqindex])) 1358 return (PSM_FAILURE); 1359 1360 mutex_enter(&airq_mutex); 1361 irqptr = irqheadptr = apic_irq_table[irqindex]; 1362 1363 DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x " 1364 "vector=0x%x\n", (void *)irqptr->airq_dip, 1365 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector)); 1366 1367 while (irqptr) { 1368 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) 1369 break; 1370 irqptr = irqptr->airq_next; 1371 } 1372 irqptr->airq_share++; 1373 1374 mutex_exit(&airq_mutex); 1375 1376 /* return if it is not hardware interrupt */ 1377 if (irqptr->airq_mps_intr_index == RESERVE_INDEX) 1378 return (PSM_SUCCESS); 1379 1380 /* Or if there are more interupts at a higher IPL */ 1381 if (ipl != max_ipl) 1382 return (PSM_SUCCESS); 1383 1384 /* 1385 * if apic_picinit() has not been called yet, just return. 1386 * At the end of apic_picinit(), we will call setup_io_intr(). 1387 */ 1388 1389 if (!apic_picinit_called) 1390 return (PSM_SUCCESS); 1391 1392 /* 1393 * Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate, 1394 * return failure. Not very elegant, but then we hope the 1395 * machine will blow up with ... 1396 */ 1397 if (irqptr->airq_ipl != max_ipl && 1398 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1399 1400 vector = apic_allocate_vector(max_ipl, irqindex, 1); 1401 if (vector == 0) { 1402 irqptr->airq_share--; 1403 return (PSM_FAILURE); 1404 } 1405 irqptr = irqheadptr; 1406 apic_mark_vector(irqptr->airq_vector, vector); 1407 while (irqptr) { 1408 irqptr->airq_vector = vector; 1409 irqptr->airq_ipl = (uchar_t)max_ipl; 1410 /* 1411 * reprogram irq being added and every one else 1412 * who is not in the UNINIT state 1413 */ 1414 if ((VIRTIRQ(irqindex, irqptr->airq_share_id) == 1415 irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) { 1416 apic_record_rdt_entry(irqptr, irqindex); 1417 1418 iflag = intr_clear(); 1419 lock_set(&apic_ioapic_lock); 1420 1421 (void) apic_setup_io_intr(irqptr, irqindex, 1422 B_FALSE); 1423 1424 lock_clear(&apic_ioapic_lock); 1425 intr_restore(iflag); 1426 } 1427 irqptr = irqptr->airq_next; 1428 } 1429 return (PSM_SUCCESS); 1430 1431 } else if (irqptr->airq_ipl != max_ipl && 1432 ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1433 /* 1434 * We cannot upgrade the vector, but we can change 1435 * the IPL that this vector induces. 1436 * 1437 * Note that we subtract APIC_BASE_VECT from the vector 1438 * here because this array is used in apic_intr_enter 1439 * (no need to add APIC_BASE_VECT in that hot code 1440 * path since we can do it in the rarely-executed path 1441 * here). 1442 */ 1443 apic_ipls[irqptr->airq_vector - APIC_BASE_VECT] = 1444 (uchar_t)max_ipl; 1445 1446 irqptr = irqheadptr; 1447 while (irqptr) { 1448 irqptr->airq_ipl = (uchar_t)max_ipl; 1449 irqptr = irqptr->airq_next; 1450 } 1451 1452 return (PSM_SUCCESS); 1453 } 1454 1455 ASSERT(irqptr); 1456 1457 iflag = intr_clear(); 1458 lock_set(&apic_ioapic_lock); 1459 1460 (void) apic_setup_io_intr(irqptr, irqindex, B_FALSE); 1461 1462 lock_clear(&apic_ioapic_lock); 1463 intr_restore(iflag); 1464 1465 return (PSM_SUCCESS); 1466 } 1467 1468 /* 1469 * Recompute mask bits for the given interrupt vector. 1470 * If there is no interrupt servicing routine for this 1471 * vector, this function should disable interrupt vector 1472 * from happening at all IPLs. If there are still 1473 * handlers using the given vector, this function should 1474 * disable the given vector from happening below the lowest 1475 * IPL of the remaining hadlers. 1476 */ 1477 /*ARGSUSED*/ 1478 int 1479 apic_delspl_common(int irqno, int ipl, int min_ipl, int max_ipl) 1480 { 1481 uchar_t vector; 1482 uint32_t bind_cpu; 1483 int intin, irqindex; 1484 int ioapic_ix; 1485 apic_irq_t *irqptr, *irqheadptr, *irqp; 1486 ulong_t iflag; 1487 1488 mutex_enter(&airq_mutex); 1489 irqindex = IRQINDEX(irqno); 1490 irqptr = irqheadptr = apic_irq_table[irqindex]; 1491 1492 DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x " 1493 "vector=0x%x\n", (void *)irqptr->airq_dip, 1494 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector)); 1495 1496 while (irqptr) { 1497 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) 1498 break; 1499 irqptr = irqptr->airq_next; 1500 } 1501 ASSERT(irqptr); 1502 1503 irqptr->airq_share--; 1504 1505 mutex_exit(&airq_mutex); 1506 1507 if (ipl < max_ipl) 1508 return (PSM_SUCCESS); 1509 1510 /* return if it is not hardware interrupt */ 1511 if (irqptr->airq_mps_intr_index == RESERVE_INDEX) 1512 return (PSM_SUCCESS); 1513 1514 if (!apic_picinit_called) { 1515 /* 1516 * Clear irq_struct. If two devices shared an intpt 1517 * line & 1 unloaded before picinit, we are hosed. But, then 1518 * we hope the machine will ... 1519 */ 1520 irqptr->airq_mps_intr_index = FREE_INDEX; 1521 irqptr->airq_temp_cpu = IRQ_UNINIT; 1522 apic_free_vector(irqptr->airq_vector); 1523 return (PSM_SUCCESS); 1524 } 1525 /* 1526 * Downgrade vector to new max_ipl if needed.If we cannot allocate, 1527 * use old IPL. Not very elegant, but then we hope ... 1528 */ 1529 if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL) && 1530 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1531 apic_irq_t *irqp; 1532 if (vector = apic_allocate_vector(max_ipl, irqno, 1)) { 1533 apic_mark_vector(irqheadptr->airq_vector, vector); 1534 irqp = irqheadptr; 1535 while (irqp) { 1536 irqp->airq_vector = vector; 1537 irqp->airq_ipl = (uchar_t)max_ipl; 1538 if (irqp->airq_temp_cpu != IRQ_UNINIT) { 1539 apic_record_rdt_entry(irqp, irqindex); 1540 1541 iflag = intr_clear(); 1542 lock_set(&apic_ioapic_lock); 1543 1544 (void) apic_setup_io_intr(irqp, 1545 irqindex, B_FALSE); 1546 1547 lock_clear(&apic_ioapic_lock); 1548 intr_restore(iflag); 1549 } 1550 irqp = irqp->airq_next; 1551 } 1552 } 1553 1554 } else if (irqptr->airq_ipl != max_ipl && 1555 max_ipl != PSM_INVALID_IPL && 1556 ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1557 1558 /* 1559 * We cannot downgrade the IPL of the vector below the vector's 1560 * hardware priority. If we did, it would be possible for a 1561 * higher-priority hardware vector to interrupt a CPU running at an IPL 1562 * lower than the hardware priority of the interrupting vector (but 1563 * higher than the soft IPL of this IRQ). When this happens, we would 1564 * then try to drop the IPL BELOW what it was (effectively dropping 1565 * below base_spl) which would be potentially catastrophic. 1566 * 1567 * (e.g. Suppose the hardware vector associated with this IRQ is 0x40 1568 * (hardware IPL of 4). Further assume that the old IPL of this IRQ 1569 * was 4, but the new IPL is 1. If we forced vector 0x40 to result in 1570 * an IPL of 1, it would be possible for the processor to be executing 1571 * at IPL 3 and for an interrupt to come in on vector 0x40, interrupting 1572 * the currently-executing ISR. When apic_intr_enter consults 1573 * apic_irqs[], it will return 1, bringing the IPL of the CPU down to 1 1574 * so even though the processor was running at IPL 4, an IPL 1 1575 * interrupt will have interrupted it, which must not happen)). 1576 * 1577 * Effectively, this means that the hardware priority corresponding to 1578 * the IRQ's IPL (in apic_ipls[]) cannot be lower than the vector's 1579 * hardware priority. 1580 * 1581 * (In the above example, then, after removal of the IPL 4 device's 1582 * interrupt handler, the new IPL will continue to be 4 because the 1583 * hardware priority that IPL 1 implies is lower than the hardware 1584 * priority of the vector used.) 1585 */ 1586 /* apic_ipls is indexed by vector, starting at APIC_BASE_VECT */ 1587 const int apic_ipls_index = irqptr->airq_vector - 1588 APIC_BASE_VECT; 1589 const int vect_inherent_hwpri = irqptr->airq_vector >> 1590 APIC_IPL_SHIFT; 1591 1592 /* 1593 * If there are still devices using this IRQ, determine the 1594 * new ipl to use. 1595 */ 1596 if (irqptr->airq_share) { 1597 int vect_desired_hwpri, hwpri; 1598 1599 ASSERT(max_ipl < MAXIPL); 1600 vect_desired_hwpri = apic_ipltopri[max_ipl] >> 1601 APIC_IPL_SHIFT; 1602 1603 /* 1604 * If the desired IPL's hardware priority is lower 1605 * than that of the vector, use the hardware priority 1606 * of the vector to determine the new IPL. 1607 */ 1608 hwpri = (vect_desired_hwpri < vect_inherent_hwpri) ? 1609 vect_inherent_hwpri : vect_desired_hwpri; 1610 1611 /* 1612 * Now, to get the right index for apic_vectortoipl, 1613 * we need to subtract APIC_BASE_VECT from the 1614 * hardware-vector-equivalent (in hwpri). Since hwpri 1615 * is already shifted, we shift APIC_BASE_VECT before 1616 * doing the subtraction. 1617 */ 1618 hwpri -= (APIC_BASE_VECT >> APIC_IPL_SHIFT); 1619 1620 ASSERT(hwpri >= 0); 1621 ASSERT(hwpri < MAXIPL); 1622 max_ipl = apic_vectortoipl[hwpri]; 1623 apic_ipls[apic_ipls_index] = max_ipl; 1624 1625 irqp = irqheadptr; 1626 while (irqp) { 1627 irqp->airq_ipl = (uchar_t)max_ipl; 1628 irqp = irqp->airq_next; 1629 } 1630 } else { 1631 /* 1632 * No more devices on this IRQ, so reset this vector's 1633 * element in apic_ipls to the original IPL for this 1634 * vector 1635 */ 1636 apic_ipls[apic_ipls_index] = 1637 apic_vectortoipl[vect_inherent_hwpri]; 1638 } 1639 } 1640 1641 if (irqptr->airq_share) 1642 return (PSM_SUCCESS); 1643 1644 iflag = intr_clear(); 1645 lock_set(&apic_ioapic_lock); 1646 1647 if (irqptr->airq_mps_intr_index == MSI_INDEX) { 1648 /* 1649 * Disable the MSI vector 1650 * Make sure we only disable on the last 1651 * of the multi-MSI support 1652 */ 1653 if (i_ddi_intr_get_current_nintrs(irqptr->airq_dip) == 1) { 1654 apic_pci_msi_unconfigure(irqptr->airq_dip, 1655 DDI_INTR_TYPE_MSI, irqptr->airq_ioapicindex); 1656 1657 apic_pci_msi_disable_mode(irqptr->airq_dip, 1658 DDI_INTR_TYPE_MSI); 1659 } 1660 } else if (irqptr->airq_mps_intr_index == MSIX_INDEX) { 1661 /* 1662 * Disable the MSI-X vector 1663 * needs to clear its mask and addr/data for each MSI-X 1664 */ 1665 apic_pci_msi_unconfigure(irqptr->airq_dip, DDI_INTR_TYPE_MSIX, 1666 irqptr->airq_origirq); 1667 /* 1668 * Make sure we only disable on the last MSI-X 1669 */ 1670 if (i_ddi_intr_get_current_nintrs(irqptr->airq_dip) == 1) { 1671 apic_pci_msi_disable_mode(irqptr->airq_dip, 1672 DDI_INTR_TYPE_MSIX); 1673 } 1674 } else { 1675 /* 1676 * The assumption here is that this is safe, even for 1677 * systems with IOAPICs that suffer from the hardware 1678 * erratum because all devices have been quiesced before 1679 * they unregister their interrupt handlers. If that 1680 * assumption turns out to be false, this mask operation 1681 * can induce the same erratum result we're trying to 1682 * avoid. 1683 */ 1684 ioapic_ix = irqptr->airq_ioapicindex; 1685 intin = irqptr->airq_intin_no; 1686 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin, AV_MASK); 1687 } 1688 1689 #if !defined(__xpv) 1690 apic_vt_ops->apic_intrr_free_entry(irqptr); 1691 #endif 1692 1693 if (max_ipl == PSM_INVALID_IPL) { 1694 ASSERT(irqheadptr == irqptr); 1695 bind_cpu = irqptr->airq_temp_cpu; 1696 if (((uint32_t)bind_cpu != IRQ_UNBOUND) && 1697 ((uint32_t)bind_cpu != IRQ_UNINIT)) { 1698 ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc); 1699 if (bind_cpu & IRQ_USER_BOUND) { 1700 /* If hardbound, temp_cpu == cpu */ 1701 bind_cpu &= ~IRQ_USER_BOUND; 1702 apic_cpus[bind_cpu].aci_bound--; 1703 } else 1704 apic_cpus[bind_cpu].aci_temp_bound--; 1705 } 1706 irqptr->airq_temp_cpu = IRQ_UNINIT; 1707 irqptr->airq_mps_intr_index = FREE_INDEX; 1708 lock_clear(&apic_ioapic_lock); 1709 intr_restore(iflag); 1710 apic_free_vector(irqptr->airq_vector); 1711 return (PSM_SUCCESS); 1712 } 1713 lock_clear(&apic_ioapic_lock); 1714 intr_restore(iflag); 1715 1716 mutex_enter(&airq_mutex); 1717 if ((irqptr == apic_irq_table[irqindex])) { 1718 apic_irq_t *oldirqptr; 1719 /* Move valid irq entry to the head */ 1720 irqheadptr = oldirqptr = irqptr; 1721 irqptr = irqptr->airq_next; 1722 ASSERT(irqptr); 1723 while (irqptr) { 1724 if (irqptr->airq_mps_intr_index != FREE_INDEX) 1725 break; 1726 oldirqptr = irqptr; 1727 irqptr = irqptr->airq_next; 1728 } 1729 /* remove all invalid ones from the beginning */ 1730 apic_irq_table[irqindex] = irqptr; 1731 /* 1732 * and link them back after the head. The invalid ones 1733 * begin with irqheadptr and end at oldirqptr 1734 */ 1735 oldirqptr->airq_next = irqptr->airq_next; 1736 irqptr->airq_next = irqheadptr; 1737 } 1738 mutex_exit(&airq_mutex); 1739 1740 irqptr->airq_temp_cpu = IRQ_UNINIT; 1741 irqptr->airq_mps_intr_index = FREE_INDEX; 1742 1743 return (PSM_SUCCESS); 1744 } 1745 1746 /* 1747 * apic_introp_xlate() replaces apic_translate_irq() and is 1748 * called only from apic_intr_ops(). With the new ADII framework, 1749 * the priority can no longer be retrieved through i_ddi_get_intrspec(). 1750 * It has to be passed in from the caller. 1751 */ 1752 int 1753 apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type) 1754 { 1755 char dev_type[16]; 1756 int dev_len, pci_irq, newirq, bustype, devid, busid, i; 1757 int irqno = ispec->intrspec_vec; 1758 ddi_acc_handle_t cfg_handle; 1759 uchar_t ipin; 1760 struct apic_io_intr *intrp; 1761 iflag_t intr_flag; 1762 ACPI_SUBTABLE_HEADER *hp; 1763 ACPI_MADT_INTERRUPT_OVERRIDE *isop; 1764 apic_irq_t *airqp; 1765 int parent_is_pci_or_pciex = 0; 1766 int child_is_pciex = 0; 1767 1768 DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s " 1769 "type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type, 1770 irqno)); 1771 1772 dev_len = sizeof (dev_type); 1773 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip), 1774 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type, 1775 &dev_len) == DDI_PROP_SUCCESS) { 1776 if ((strcmp(dev_type, "pci") == 0) || 1777 (strcmp(dev_type, "pciex") == 0)) 1778 parent_is_pci_or_pciex = 1; 1779 } 1780 1781 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 1782 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type, 1783 &dev_len) == DDI_PROP_SUCCESS) { 1784 if (strstr(dev_type, "pciex")) 1785 child_is_pciex = 1; 1786 } 1787 1788 1789 if (DDI_INTR_IS_MSI_OR_MSIX(type)) { 1790 if ((airqp = apic_find_irq(dip, ispec, type)) != NULL) { 1791 airqp->airq_iflag.bustype = 1792 child_is_pciex ? BUS_PCIE : BUS_PCI; 1793 return (apic_vector_to_irq[airqp->airq_vector]); 1794 } 1795 return (apic_setup_irq_table(dip, irqno, NULL, ispec, 1796 NULL, type)); 1797 } 1798 1799 bustype = 0; 1800 1801 /* check if we have already translated this irq */ 1802 mutex_enter(&airq_mutex); 1803 newirq = apic_min_device_irq; 1804 for (; newirq <= apic_max_device_irq; newirq++) { 1805 airqp = apic_irq_table[newirq]; 1806 while (airqp) { 1807 if ((airqp->airq_dip == dip) && 1808 (airqp->airq_origirq == irqno) && 1809 (airqp->airq_mps_intr_index != FREE_INDEX)) { 1810 1811 mutex_exit(&airq_mutex); 1812 return (VIRTIRQ(newirq, airqp->airq_share_id)); 1813 } 1814 airqp = airqp->airq_next; 1815 } 1816 } 1817 mutex_exit(&airq_mutex); 1818 1819 if (apic_defconf) 1820 goto defconf; 1821 1822 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) 1823 goto nonpci; 1824 1825 if (parent_is_pci_or_pciex) { 1826 /* pci device */ 1827 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0) 1828 goto nonpci; 1829 if (busid == 0 && apic_pci_bus_total == 1) 1830 busid = (int)apic_single_pci_busid; 1831 1832 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS) 1833 goto nonpci; 1834 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA; 1835 pci_config_teardown(&cfg_handle); 1836 if (apic_enable_acpi && !apic_use_acpi_madt_only) { 1837 if (apic_acpi_translate_pci_irq(dip, busid, devid, 1838 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS) 1839 goto nonpci; 1840 1841 intr_flag.bustype = child_is_pciex ? BUS_PCIE : BUS_PCI; 1842 if ((newirq = apic_setup_irq_table(dip, pci_irq, NULL, 1843 ispec, &intr_flag, type)) == -1) 1844 goto nonpci; 1845 return (newirq); 1846 } else { 1847 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3); 1848 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) 1849 == NULL) { 1850 if ((pci_irq = apic_handle_pci_pci_bridge(dip, 1851 devid, ipin, &intrp)) == -1) 1852 goto nonpci; 1853 } 1854 if ((newirq = apic_setup_irq_table(dip, pci_irq, intrp, 1855 ispec, NULL, type)) == -1) 1856 goto nonpci; 1857 return (newirq); 1858 } 1859 } else if (strcmp(dev_type, "isa") == 0) 1860 bustype = BUS_ISA; 1861 else if (strcmp(dev_type, "eisa") == 0) 1862 bustype = BUS_EISA; 1863 1864 nonpci: 1865 if (apic_enable_acpi && !apic_use_acpi_madt_only) { 1866 /* search iso entries first */ 1867 if (acpi_iso_cnt != 0) { 1868 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop; 1869 i = 0; 1870 while (i < acpi_iso_cnt) { 1871 if (hp->Type == 1872 ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) { 1873 isop = 1874 (ACPI_MADT_INTERRUPT_OVERRIDE *) hp; 1875 if (isop->Bus == 0 && 1876 isop->SourceIrq == irqno) { 1877 newirq = isop->GlobalIrq; 1878 intr_flag.intr_po = 1879 isop->IntiFlags & 1880 ACPI_MADT_POLARITY_MASK; 1881 intr_flag.intr_el = 1882 (isop->IntiFlags & 1883 ACPI_MADT_TRIGGER_MASK) 1884 >> 2; 1885 intr_flag.bustype = BUS_ISA; 1886 1887 return (apic_setup_irq_table( 1888 dip, newirq, NULL, ispec, 1889 &intr_flag, type)); 1890 1891 } 1892 i++; 1893 } 1894 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) + 1895 hp->Length); 1896 } 1897 } 1898 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH; 1899 intr_flag.intr_el = INTR_EL_EDGE; 1900 intr_flag.bustype = BUS_ISA; 1901 return (apic_setup_irq_table(dip, irqno, NULL, ispec, 1902 &intr_flag, type)); 1903 } else { 1904 if (bustype == 0) 1905 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA; 1906 for (i = 0; i < 2; i++) { 1907 if (((busid = apic_find_bus_id(bustype)) != -1) && 1908 ((intrp = apic_find_io_intr_w_busid(irqno, busid)) 1909 != NULL)) { 1910 if ((newirq = apic_setup_irq_table(dip, irqno, 1911 intrp, ispec, NULL, type)) != -1) { 1912 return (newirq); 1913 } 1914 goto defconf; 1915 } 1916 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA; 1917 } 1918 } 1919 1920 /* MPS default configuration */ 1921 defconf: 1922 newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type); 1923 if (newirq == -1) 1924 return (newirq); 1925 ASSERT(IRQINDEX(newirq) == irqno); 1926 ASSERT(apic_irq_table[irqno]); 1927 return (newirq); 1928 } 1929 1930 1931 1932 1933 1934 1935 /* 1936 * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge 1937 * needs special handling. We may need to chase up the device tree, 1938 * using the PCI-PCI Bridge specification's "rotating IPIN assumptions", 1939 * to find the IPIN at the root bus that relates to the IPIN on the 1940 * subsidiary bus (for ACPI or MP). We may, however, have an entry 1941 * in the MP table or the ACPI namespace for this device itself. 1942 * We handle both cases in the search below. 1943 */ 1944 /* this is the non-acpi version */ 1945 static int 1946 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin, 1947 struct apic_io_intr **intrp) 1948 { 1949 dev_info_t *dipp, *dip; 1950 int pci_irq; 1951 ddi_acc_handle_t cfg_handle; 1952 int bridge_devno, bridge_bus; 1953 int ipin; 1954 1955 dip = idip; 1956 1957 /*CONSTCOND*/ 1958 while (1) { 1959 if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) || 1960 (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS)) 1961 return (-1); 1962 if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) == 1963 PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle, 1964 PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) { 1965 pci_config_teardown(&cfg_handle); 1966 if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno, 1967 NULL) != 0) 1968 return (-1); 1969 /* 1970 * This is the rotating scheme documented in the 1971 * PCI-to-PCI spec. If the PCI-to-PCI bridge is 1972 * behind another PCI-to-PCI bridge, then it needs 1973 * to keep ascending until an interrupt entry is 1974 * found or the root is reached. 1975 */ 1976 ipin = (child_devno + child_ipin) % PCI_INTD; 1977 if (bridge_bus == 0 && apic_pci_bus_total == 1) 1978 bridge_bus = (int)apic_single_pci_busid; 1979 pci_irq = ((bridge_devno & 0x1f) << 2) | 1980 (ipin & 0x3); 1981 if ((*intrp = apic_find_io_intr_w_busid(pci_irq, 1982 bridge_bus)) != NULL) { 1983 return (pci_irq); 1984 } 1985 dip = dipp; 1986 child_devno = bridge_devno; 1987 child_ipin = ipin; 1988 } else { 1989 pci_config_teardown(&cfg_handle); 1990 return (-1); 1991 } 1992 } 1993 /*LINTED: function will not fall off the bottom */ 1994 } 1995 1996 1997 1998 1999 static uchar_t 2000 acpi_find_ioapic(int irq) 2001 { 2002 int i; 2003 2004 for (i = 0; i < apic_io_max; i++) { 2005 if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i]) 2006 return (i); 2007 } 2008 return (0xFF); /* shouldn't happen */ 2009 } 2010 2011 /* 2012 * See if two irqs are compatible for sharing a vector. 2013 * Currently we only support sharing of PCI devices. 2014 */ 2015 static int 2016 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2) 2017 { 2018 uint_t level1, po1; 2019 uint_t level2, po2; 2020 2021 /* Assume active high by default */ 2022 po1 = 0; 2023 po2 = 0; 2024 2025 if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI) 2026 return (0); 2027 2028 if (iflag1.intr_el == INTR_EL_CONFORM) 2029 level1 = AV_LEVEL; 2030 else 2031 level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 2032 2033 if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) || 2034 (iflag1.intr_po == INTR_PO_CONFORM))) 2035 po1 = AV_ACTIVE_LOW; 2036 2037 if (iflag2.intr_el == INTR_EL_CONFORM) 2038 level2 = AV_LEVEL; 2039 else 2040 level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 2041 2042 if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) || 2043 (iflag2.intr_po == INTR_PO_CONFORM))) 2044 po2 = AV_ACTIVE_LOW; 2045 2046 if ((level1 == level2) && (po1 == po2)) 2047 return (1); 2048 2049 return (0); 2050 } 2051 2052 /* 2053 * Attempt to share vector with someone else 2054 */ 2055 static int 2056 apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl, 2057 uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp) 2058 { 2059 #ifdef DEBUG 2060 apic_irq_t *tmpirqp = NULL; 2061 #endif /* DEBUG */ 2062 apic_irq_t *irqptr, dummyirq; 2063 int newirq, chosen_irq = -1, share = 127; 2064 int lowest, highest, i; 2065 uchar_t share_id; 2066 2067 DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x " 2068 "intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl)); 2069 2070 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; 2071 lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL; 2072 2073 if (highest < lowest) /* Both ipl and ipl-1 map to same pri */ 2074 lowest -= APIC_VECTOR_PER_IPL; 2075 dummyirq.airq_mps_intr_index = intr_index; 2076 dummyirq.airq_ioapicindex = ioapicindex; 2077 dummyirq.airq_intin_no = ipin; 2078 if (intr_flagp) 2079 dummyirq.airq_iflag = *intr_flagp; 2080 apic_record_rdt_entry(&dummyirq, irqno); 2081 for (i = lowest; i <= highest; i++) { 2082 newirq = apic_vector_to_irq[i]; 2083 if (newirq == APIC_RESV_IRQ) 2084 continue; 2085 irqptr = apic_irq_table[newirq]; 2086 2087 if ((dummyirq.airq_rdt_entry & 0xFF00) != 2088 (irqptr->airq_rdt_entry & 0xFF00)) 2089 /* not compatible */ 2090 continue; 2091 2092 if (irqptr->airq_share < share) { 2093 share = irqptr->airq_share; 2094 chosen_irq = newirq; 2095 } 2096 } 2097 if (chosen_irq != -1) { 2098 /* 2099 * Assign a share id which is free or which is larger 2100 * than the largest one. 2101 */ 2102 share_id = 1; 2103 mutex_enter(&airq_mutex); 2104 irqptr = apic_irq_table[chosen_irq]; 2105 while (irqptr) { 2106 if (irqptr->airq_mps_intr_index == FREE_INDEX) { 2107 share_id = irqptr->airq_share_id; 2108 break; 2109 } 2110 if (share_id <= irqptr->airq_share_id) 2111 share_id = irqptr->airq_share_id + 1; 2112 #ifdef DEBUG 2113 tmpirqp = irqptr; 2114 #endif /* DEBUG */ 2115 irqptr = irqptr->airq_next; 2116 } 2117 if (!irqptr) { 2118 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); 2119 irqptr->airq_temp_cpu = IRQ_UNINIT; 2120 irqptr->airq_next = 2121 apic_irq_table[chosen_irq]->airq_next; 2122 apic_irq_table[chosen_irq]->airq_next = irqptr; 2123 #ifdef DEBUG 2124 tmpirqp = apic_irq_table[chosen_irq]; 2125 #endif /* DEBUG */ 2126 } 2127 irqptr->airq_mps_intr_index = intr_index; 2128 irqptr->airq_ioapicindex = ioapicindex; 2129 irqptr->airq_intin_no = ipin; 2130 if (intr_flagp) 2131 irqptr->airq_iflag = *intr_flagp; 2132 irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector; 2133 irqptr->airq_share_id = share_id; 2134 apic_record_rdt_entry(irqptr, irqno); 2135 *irqptrp = irqptr; 2136 #ifdef DEBUG 2137 /* shuffle the pointers to test apic_delspl path */ 2138 if (tmpirqp) { 2139 tmpirqp->airq_next = irqptr->airq_next; 2140 irqptr->airq_next = apic_irq_table[chosen_irq]; 2141 apic_irq_table[chosen_irq] = irqptr; 2142 } 2143 #endif /* DEBUG */ 2144 mutex_exit(&airq_mutex); 2145 return (VIRTIRQ(chosen_irq, share_id)); 2146 } 2147 return (-1); 2148 } 2149 2150 /* 2151 * 2152 */ 2153 static int 2154 apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp, 2155 struct intrspec *ispec, iflag_t *intr_flagp, int type) 2156 { 2157 int origirq = ispec->intrspec_vec; 2158 uchar_t ipl = ispec->intrspec_pri; 2159 int newirq, intr_index; 2160 uchar_t ipin, ioapic, ioapicindex, vector; 2161 apic_irq_t *irqptr; 2162 major_t major; 2163 dev_info_t *sdip; 2164 2165 DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d " 2166 "irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq)); 2167 2168 ASSERT(ispec != NULL); 2169 2170 major = (dip != NULL) ? ddi_driver_major(dip) : 0; 2171 2172 if (DDI_INTR_IS_MSI_OR_MSIX(type)) { 2173 /* MSI/X doesn't need to setup ioapic stuffs */ 2174 ioapicindex = 0xff; 2175 ioapic = 0xff; 2176 ipin = (uchar_t)0xff; 2177 intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX : 2178 MSIX_INDEX; 2179 mutex_enter(&airq_mutex); 2180 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == -1) { 2181 mutex_exit(&airq_mutex); 2182 /* need an irq for MSI/X to index into autovect[] */ 2183 cmn_err(CE_WARN, "No interrupt irq: %s instance %d", 2184 ddi_get_name(dip), ddi_get_instance(dip)); 2185 return (-1); 2186 } 2187 mutex_exit(&airq_mutex); 2188 2189 } else if (intrp != NULL) { 2190 intr_index = (int)(intrp - apic_io_intrp); 2191 ioapic = intrp->intr_destid; 2192 ipin = intrp->intr_destintin; 2193 /* Find ioapicindex. If destid was ALL, we will exit with 0. */ 2194 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--) 2195 if (apic_io_id[ioapicindex] == ioapic) 2196 break; 2197 ASSERT((ioapic == apic_io_id[ioapicindex]) || 2198 (ioapic == INTR_ALL_APIC)); 2199 2200 /* check whether this intin# has been used by another irqno */ 2201 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) { 2202 return (newirq); 2203 } 2204 2205 } else if (intr_flagp != NULL) { 2206 /* ACPI case */ 2207 intr_index = ACPI_INDEX; 2208 ioapicindex = acpi_find_ioapic(irqno); 2209 ASSERT(ioapicindex != 0xFF); 2210 ioapic = apic_io_id[ioapicindex]; 2211 ipin = irqno - apic_io_vectbase[ioapicindex]; 2212 if (apic_irq_table[irqno] && 2213 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) { 2214 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin && 2215 apic_irq_table[irqno]->airq_ioapicindex == 2216 ioapicindex); 2217 return (irqno); 2218 } 2219 2220 } else { 2221 /* default configuration */ 2222 ioapicindex = 0; 2223 ioapic = apic_io_id[ioapicindex]; 2224 ipin = (uchar_t)irqno; 2225 intr_index = DEFAULT_INDEX; 2226 } 2227 2228 if (ispec == NULL) { 2229 APIC_VERBOSE_IOAPIC((CE_WARN, "No intrspec for irqno = %x\n", 2230 irqno)); 2231 } else if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) { 2232 if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index, 2233 ipl, ioapicindex, ipin, &irqptr)) != -1) { 2234 irqptr->airq_ipl = ipl; 2235 irqptr->airq_origirq = (uchar_t)origirq; 2236 irqptr->airq_dip = dip; 2237 irqptr->airq_major = major; 2238 sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip; 2239 /* This is OK to do really */ 2240 if (sdip == NULL) { 2241 cmn_err(CE_WARN, "Sharing vectors: %s" 2242 " instance %d and SCI", 2243 ddi_get_name(dip), ddi_get_instance(dip)); 2244 } else { 2245 cmn_err(CE_WARN, "Sharing vectors: %s" 2246 " instance %d and %s instance %d", 2247 ddi_get_name(sdip), ddi_get_instance(sdip), 2248 ddi_get_name(dip), ddi_get_instance(dip)); 2249 } 2250 return (newirq); 2251 } 2252 /* try high priority allocation now that share has failed */ 2253 if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) { 2254 cmn_err(CE_WARN, "No interrupt vector: %s instance %d", 2255 ddi_get_name(dip), ddi_get_instance(dip)); 2256 return (-1); 2257 } 2258 } 2259 2260 mutex_enter(&airq_mutex); 2261 if (apic_irq_table[irqno] == NULL) { 2262 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); 2263 irqptr->airq_temp_cpu = IRQ_UNINIT; 2264 apic_irq_table[irqno] = irqptr; 2265 } else { 2266 irqptr = apic_irq_table[irqno]; 2267 if (irqptr->airq_mps_intr_index != FREE_INDEX) { 2268 /* 2269 * The slot is used by another irqno, so allocate 2270 * a free irqno for this interrupt 2271 */ 2272 newirq = apic_allocate_irq(apic_first_avail_irq); 2273 if (newirq == -1) { 2274 mutex_exit(&airq_mutex); 2275 return (-1); 2276 } 2277 irqno = newirq; 2278 irqptr = apic_irq_table[irqno]; 2279 if (irqptr == NULL) { 2280 irqptr = kmem_zalloc(sizeof (apic_irq_t), 2281 KM_SLEEP); 2282 irqptr->airq_temp_cpu = IRQ_UNINIT; 2283 apic_irq_table[irqno] = irqptr; 2284 } 2285 vector = apic_modify_vector(vector, newirq); 2286 } 2287 } 2288 apic_max_device_irq = max(irqno, apic_max_device_irq); 2289 apic_min_device_irq = min(irqno, apic_min_device_irq); 2290 mutex_exit(&airq_mutex); 2291 irqptr->airq_ioapicindex = ioapicindex; 2292 irqptr->airq_intin_no = ipin; 2293 irqptr->airq_ipl = ipl; 2294 irqptr->airq_vector = vector; 2295 irqptr->airq_origirq = (uchar_t)origirq; 2296 irqptr->airq_share_id = 0; 2297 irqptr->airq_mps_intr_index = (short)intr_index; 2298 irqptr->airq_dip = dip; 2299 irqptr->airq_major = major; 2300 irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin); 2301 if (intr_flagp) 2302 irqptr->airq_iflag = *intr_flagp; 2303 2304 if (!DDI_INTR_IS_MSI_OR_MSIX(type)) { 2305 /* setup I/O APIC entry for non-MSI/X interrupts */ 2306 apic_record_rdt_entry(irqptr, irqno); 2307 } 2308 return (irqno); 2309 } 2310 2311 /* 2312 * return the cpu to which this intr should be bound. 2313 * Check properties or any other mechanism to see if user wants it 2314 * bound to a specific CPU. If so, return the cpu id with high bit set. 2315 * If not, use the policy to choose a cpu and return the id. 2316 */ 2317 uint32_t 2318 apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin) 2319 { 2320 int instance, instno, prop_len, bind_cpu, count; 2321 uint_t i, rc; 2322 uint32_t cpu; 2323 major_t major; 2324 char *name, *drv_name, *prop_val, *cptr; 2325 char prop_name[32]; 2326 2327 2328 if (apic_intr_policy == INTR_LOWEST_PRIORITY) 2329 return (IRQ_UNBOUND); 2330 2331 if (apic_nproc == 1) 2332 return (0); 2333 2334 drv_name = NULL; 2335 rc = DDI_PROP_NOT_FOUND; 2336 major = (major_t)-1; 2337 if (dip != NULL) { 2338 name = ddi_get_name(dip); 2339 major = ddi_name_to_major(name); 2340 drv_name = ddi_major_to_name(major); 2341 instance = ddi_get_instance(dip); 2342 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) { 2343 i = apic_min_device_irq; 2344 for (; i <= apic_max_device_irq; i++) { 2345 2346 if ((i == irq) || (apic_irq_table[i] == NULL) || 2347 (apic_irq_table[i]->airq_mps_intr_index 2348 == FREE_INDEX)) 2349 continue; 2350 2351 if ((apic_irq_table[i]->airq_major == major) && 2352 (!(apic_irq_table[i]->airq_cpu & 2353 IRQ_USER_BOUND))) { 2354 2355 cpu = apic_irq_table[i]->airq_cpu; 2356 2357 cmn_err(CE_CONT, 2358 "!%s: %s (%s) instance #%d " 2359 "vector 0x%x ioapic 0x%x " 2360 "intin 0x%x is bound to cpu %d\n", 2361 psm_name, 2362 name, drv_name, instance, irq, 2363 ioapicid, intin, cpu); 2364 return (cpu); 2365 } 2366 } 2367 } 2368 /* 2369 * search for "drvname"_intpt_bind_cpus property first, the 2370 * syntax of the property should be "a[,b,c,...]" where 2371 * instance 0 binds to cpu a, instance 1 binds to cpu b, 2372 * instance 3 binds to cpu c... 2373 * ddi_getlongprop() will search /option first, then / 2374 * if "drvname"_intpt_bind_cpus doesn't exist, then find 2375 * intpt_bind_cpus property. The syntax is the same, and 2376 * it applies to all the devices if its "drvname" specific 2377 * property doesn't exist 2378 */ 2379 (void) strcpy(prop_name, drv_name); 2380 (void) strcat(prop_name, "_intpt_bind_cpus"); 2381 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name, 2382 (caddr_t)&prop_val, &prop_len); 2383 if (rc != DDI_PROP_SUCCESS) { 2384 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, 2385 "intpt_bind_cpus", (caddr_t)&prop_val, &prop_len); 2386 } 2387 } 2388 if (rc == DDI_PROP_SUCCESS) { 2389 for (i = count = 0; i < (prop_len - 1); i++) 2390 if (prop_val[i] == ',') 2391 count++; 2392 if (prop_val[i-1] != ',') 2393 count++; 2394 /* 2395 * if somehow the binding instances defined in the 2396 * property are not enough for this instno., then 2397 * reuse the pattern for the next instance until 2398 * it reaches the requested instno 2399 */ 2400 instno = instance % count; 2401 i = 0; 2402 cptr = prop_val; 2403 while (i < instno) 2404 if (*cptr++ == ',') 2405 i++; 2406 bind_cpu = stoi(&cptr); 2407 kmem_free(prop_val, prop_len); 2408 /* if specific cpu is bogus, then default to cpu 0 */ 2409 if (bind_cpu >= apic_nproc) { 2410 cmn_err(CE_WARN, "%s: %s=%s: CPU %d not present", 2411 psm_name, prop_name, prop_val, bind_cpu); 2412 bind_cpu = 0; 2413 } else { 2414 /* indicate that we are bound at user request */ 2415 bind_cpu |= IRQ_USER_BOUND; 2416 } 2417 /* 2418 * no need to check apic_cpus[].aci_status, if specific cpu is 2419 * not up, then post_cpu_start will handle it. 2420 */ 2421 } else { 2422 bind_cpu = apic_next_bind_cpu++; 2423 if (bind_cpu >= apic_nproc) { 2424 apic_next_bind_cpu = 1; 2425 bind_cpu = 0; 2426 } 2427 } 2428 if (drv_name != NULL) 2429 cmn_err(CE_CONT, "!%s: %s (%s) instance %d " 2430 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n", 2431 psm_name, name, drv_name, instance, 2432 irq, ioapicid, intin, bind_cpu & ~IRQ_USER_BOUND); 2433 else 2434 cmn_err(CE_CONT, "!%s: " 2435 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n", 2436 psm_name, irq, ioapicid, intin, bind_cpu & ~IRQ_USER_BOUND); 2437 2438 return ((uint32_t)bind_cpu); 2439 } 2440 2441 static struct apic_io_intr * 2442 apic_find_io_intr_w_busid(int irqno, int busid) 2443 { 2444 struct apic_io_intr *intrp; 2445 2446 /* 2447 * It can have more than 1 entry with same source bus IRQ, 2448 * but unique with the source bus id 2449 */ 2450 intrp = apic_io_intrp; 2451 if (intrp != NULL) { 2452 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 2453 if (intrp->intr_irq == irqno && 2454 intrp->intr_busid == busid && 2455 intrp->intr_type == IO_INTR_INT) 2456 return (intrp); 2457 intrp++; 2458 } 2459 } 2460 APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:" 2461 "busid %x:%x\n", irqno, busid)); 2462 return ((struct apic_io_intr *)NULL); 2463 } 2464 2465 2466 struct mps_bus_info { 2467 char *bus_name; 2468 int bus_id; 2469 } bus_info_array[] = { 2470 "ISA ", BUS_ISA, 2471 "PCI ", BUS_PCI, 2472 "EISA ", BUS_EISA, 2473 "XPRESS", BUS_XPRESS, 2474 "PCMCIA", BUS_PCMCIA, 2475 "VL ", BUS_VL, 2476 "CBUS ", BUS_CBUS, 2477 "CBUSII", BUS_CBUSII, 2478 "FUTURE", BUS_FUTURE, 2479 "INTERN", BUS_INTERN, 2480 "MBI ", BUS_MBI, 2481 "MBII ", BUS_MBII, 2482 "MPI ", BUS_MPI, 2483 "MPSA ", BUS_MPSA, 2484 "NUBUS ", BUS_NUBUS, 2485 "TC ", BUS_TC, 2486 "VME ", BUS_VME, 2487 "PCI-E ", BUS_PCIE 2488 }; 2489 2490 static int 2491 apic_find_bus_type(char *bus) 2492 { 2493 int i = 0; 2494 2495 for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++) 2496 if (strncmp(bus, bus_info_array[i].bus_name, 2497 strlen(bus_info_array[i].bus_name)) == 0) 2498 return (bus_info_array[i].bus_id); 2499 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus)); 2500 return (0); 2501 } 2502 2503 static int 2504 apic_find_bus(int busid) 2505 { 2506 struct apic_bus *busp; 2507 2508 busp = apic_busp; 2509 while (busp->bus_entry == APIC_BUS_ENTRY) { 2510 if (busp->bus_id == busid) 2511 return (apic_find_bus_type((char *)&busp->bus_str1)); 2512 busp++; 2513 } 2514 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid)); 2515 return (0); 2516 } 2517 2518 static int 2519 apic_find_bus_id(int bustype) 2520 { 2521 struct apic_bus *busp; 2522 2523 busp = apic_busp; 2524 while (busp->bus_entry == APIC_BUS_ENTRY) { 2525 if (apic_find_bus_type((char *)&busp->bus_str1) == bustype) 2526 return (busp->bus_id); 2527 busp++; 2528 } 2529 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x", 2530 bustype)); 2531 return (-1); 2532 } 2533 2534 /* 2535 * Check if a particular irq need to be reserved for any io_intr 2536 */ 2537 static struct apic_io_intr * 2538 apic_find_io_intr(int irqno) 2539 { 2540 struct apic_io_intr *intrp; 2541 2542 intrp = apic_io_intrp; 2543 if (intrp != NULL) { 2544 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 2545 if (intrp->intr_irq == irqno && 2546 intrp->intr_type == IO_INTR_INT) 2547 return (intrp); 2548 intrp++; 2549 } 2550 } 2551 return ((struct apic_io_intr *)NULL); 2552 } 2553 2554 /* 2555 * Check if the given ioapicindex intin combination has already been assigned 2556 * an irq. If so return irqno. Else -1 2557 */ 2558 static int 2559 apic_find_intin(uchar_t ioapic, uchar_t intin) 2560 { 2561 apic_irq_t *irqptr; 2562 int i; 2563 2564 /* find ioapic and intin in the apic_irq_table[] and return the index */ 2565 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 2566 irqptr = apic_irq_table[i]; 2567 while (irqptr) { 2568 if ((irqptr->airq_mps_intr_index >= 0) && 2569 (irqptr->airq_intin_no == intin) && 2570 (irqptr->airq_ioapicindex == ioapic)) { 2571 APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq " 2572 "entry for ioapic:intin %x:%x " 2573 "shared interrupts ?", ioapic, intin)); 2574 return (i); 2575 } 2576 irqptr = irqptr->airq_next; 2577 } 2578 } 2579 return (-1); 2580 } 2581 2582 int 2583 apic_allocate_irq(int irq) 2584 { 2585 int freeirq, i; 2586 2587 if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1) 2588 if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ, 2589 (irq - 1))) == -1) { 2590 /* 2591 * if BIOS really defines every single irq in the mps 2592 * table, then don't worry about conflicting with 2593 * them, just use any free slot in apic_irq_table 2594 */ 2595 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 2596 if ((apic_irq_table[i] == NULL) || 2597 apic_irq_table[i]->airq_mps_intr_index == 2598 FREE_INDEX) { 2599 freeirq = i; 2600 break; 2601 } 2602 } 2603 if (freeirq == -1) { 2604 /* This shouldn't happen, but just in case */ 2605 cmn_err(CE_WARN, "%s: NO available IRQ", psm_name); 2606 return (-1); 2607 } 2608 } 2609 if (apic_irq_table[freeirq] == NULL) { 2610 apic_irq_table[freeirq] = 2611 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); 2612 if (apic_irq_table[freeirq] == NULL) { 2613 cmn_err(CE_WARN, "%s: NO memory to allocate IRQ", 2614 psm_name); 2615 return (-1); 2616 } 2617 apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX; 2618 } 2619 return (freeirq); 2620 } 2621 2622 static int 2623 apic_find_free_irq(int start, int end) 2624 { 2625 int i; 2626 2627 for (i = start; i <= end; i++) 2628 /* Check if any I/O entry needs this IRQ */ 2629 if (apic_find_io_intr(i) == NULL) { 2630 /* Then see if it is free */ 2631 if ((apic_irq_table[i] == NULL) || 2632 (apic_irq_table[i]->airq_mps_intr_index == 2633 FREE_INDEX)) { 2634 return (i); 2635 } 2636 } 2637 return (-1); 2638 } 2639 2640 2641 /* 2642 * Mark vector as being in the process of being deleted. Interrupts 2643 * may still come in on some CPU. The moment an interrupt comes with 2644 * the new vector, we know we can free the old one. Called only from 2645 * addspl and delspl with interrupts disabled. Because an interrupt 2646 * can be shared, but no interrupt from either device may come in, 2647 * we also use a timeout mechanism, which we arbitrarily set to 2648 * apic_revector_timeout microseconds. 2649 */ 2650 static void 2651 apic_mark_vector(uchar_t oldvector, uchar_t newvector) 2652 { 2653 ulong_t iflag; 2654 2655 iflag = intr_clear(); 2656 lock_set(&apic_revector_lock); 2657 if (!apic_oldvec_to_newvec) { 2658 apic_oldvec_to_newvec = 2659 kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2, 2660 KM_NOSLEEP); 2661 2662 if (!apic_oldvec_to_newvec) { 2663 /* 2664 * This failure is not catastrophic. 2665 * But, the oldvec will never be freed. 2666 */ 2667 apic_error |= APIC_ERR_MARK_VECTOR_FAIL; 2668 lock_clear(&apic_revector_lock); 2669 intr_restore(iflag); 2670 return; 2671 } 2672 apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR]; 2673 } 2674 2675 /* See if we already did this for drivers which do double addintrs */ 2676 if (apic_oldvec_to_newvec[oldvector] != newvector) { 2677 apic_oldvec_to_newvec[oldvector] = newvector; 2678 apic_newvec_to_oldvec[newvector] = oldvector; 2679 apic_revector_pending++; 2680 } 2681 lock_clear(&apic_revector_lock); 2682 intr_restore(iflag); 2683 (void) timeout(apic_xlate_vector_free_timeout_handler, 2684 (void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout)); 2685 } 2686 2687 /* 2688 * xlate_vector is called from intr_enter if revector_pending is set. 2689 * It will xlate it if needed and mark the old vector as free. 2690 */ 2691 uchar_t 2692 apic_xlate_vector(uchar_t vector) 2693 { 2694 uchar_t newvector, oldvector = 0; 2695 2696 lock_set(&apic_revector_lock); 2697 /* Do we really need to do this ? */ 2698 if (!apic_revector_pending) { 2699 lock_clear(&apic_revector_lock); 2700 return (vector); 2701 } 2702 if ((newvector = apic_oldvec_to_newvec[vector]) != 0) 2703 oldvector = vector; 2704 else { 2705 /* 2706 * The incoming vector is new . See if a stale entry is 2707 * remaining 2708 */ 2709 if ((oldvector = apic_newvec_to_oldvec[vector]) != 0) 2710 newvector = vector; 2711 } 2712 2713 if (oldvector) { 2714 apic_revector_pending--; 2715 apic_oldvec_to_newvec[oldvector] = 0; 2716 apic_newvec_to_oldvec[newvector] = 0; 2717 apic_free_vector(oldvector); 2718 lock_clear(&apic_revector_lock); 2719 /* There could have been more than one reprogramming! */ 2720 return (apic_xlate_vector(newvector)); 2721 } 2722 lock_clear(&apic_revector_lock); 2723 return (vector); 2724 } 2725 2726 void 2727 apic_xlate_vector_free_timeout_handler(void *arg) 2728 { 2729 ulong_t iflag; 2730 uchar_t oldvector, newvector; 2731 2732 oldvector = (uchar_t)(uintptr_t)arg; 2733 iflag = intr_clear(); 2734 lock_set(&apic_revector_lock); 2735 if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) { 2736 apic_free_vector(oldvector); 2737 apic_oldvec_to_newvec[oldvector] = 0; 2738 apic_newvec_to_oldvec[newvector] = 0; 2739 apic_revector_pending--; 2740 } 2741 2742 lock_clear(&apic_revector_lock); 2743 intr_restore(iflag); 2744 } 2745 2746 2747 /* 2748 * compute the polarity, trigger mode and vector for programming into 2749 * the I/O apic and record in airq_rdt_entry. 2750 */ 2751 static void 2752 apic_record_rdt_entry(apic_irq_t *irqptr, int irq) 2753 { 2754 int ioapicindex, bus_type, vector; 2755 short intr_index; 2756 uint_t level, po, io_po; 2757 struct apic_io_intr *iointrp; 2758 2759 intr_index = irqptr->airq_mps_intr_index; 2760 DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d " 2761 "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq, 2762 (void *)irqptr->airq_dip, irqptr->airq_vector)); 2763 2764 if (intr_index == RESERVE_INDEX) { 2765 apic_error |= APIC_ERR_INVALID_INDEX; 2766 return; 2767 } else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) { 2768 return; 2769 } 2770 2771 vector = irqptr->airq_vector; 2772 ioapicindex = irqptr->airq_ioapicindex; 2773 /* Assume edge triggered by default */ 2774 level = 0; 2775 /* Assume active high by default */ 2776 po = 0; 2777 2778 if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) { 2779 ASSERT(irq < 16); 2780 if (eisa_level_intr_mask & (1 << irq)) 2781 level = AV_LEVEL; 2782 if (intr_index == FREE_INDEX && apic_defconf == 0) 2783 apic_error |= APIC_ERR_INVALID_INDEX; 2784 } else if (intr_index == ACPI_INDEX) { 2785 bus_type = irqptr->airq_iflag.bustype; 2786 if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) { 2787 if (bus_type == BUS_PCI) 2788 level = AV_LEVEL; 2789 } else 2790 level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ? 2791 AV_LEVEL : 0; 2792 if (level && 2793 ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) || 2794 (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM && 2795 bus_type == BUS_PCI))) 2796 po = AV_ACTIVE_LOW; 2797 } else { 2798 iointrp = apic_io_intrp + intr_index; 2799 bus_type = apic_find_bus(iointrp->intr_busid); 2800 if (iointrp->intr_el == INTR_EL_CONFORM) { 2801 if ((irq < 16) && (eisa_level_intr_mask & (1 << irq))) 2802 level = AV_LEVEL; 2803 else if (bus_type == BUS_PCI) 2804 level = AV_LEVEL; 2805 } else 2806 level = (iointrp->intr_el == INTR_EL_LEVEL) ? 2807 AV_LEVEL : 0; 2808 if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) || 2809 (iointrp->intr_po == INTR_PO_CONFORM && 2810 bus_type == BUS_PCI))) 2811 po = AV_ACTIVE_LOW; 2812 } 2813 if (level) 2814 apic_level_intr[irq] = 1; 2815 /* 2816 * The 82489DX External APIC cannot do active low polarity interrupts. 2817 */ 2818 if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX)) 2819 io_po = po; 2820 else 2821 io_po = 0; 2822 2823 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) 2824 printf("setio: ioapic=%x intin=%x level=%x po=%x vector=%x\n", 2825 ioapicindex, irqptr->airq_intin_no, level, io_po, vector); 2826 2827 irqptr->airq_rdt_entry = level|io_po|vector; 2828 } 2829 2830 /* 2831 * Bind interrupt corresponding to irq_ptr to bind_cpu. 2832 * Must be called with interrupts disabled and apic_ioapic_lock held 2833 */ 2834 int 2835 apic_rebind(apic_irq_t *irq_ptr, int bind_cpu, 2836 struct ioapic_reprogram_data *drep) 2837 { 2838 int ioapicindex, intin_no; 2839 uint32_t airq_temp_cpu; 2840 apic_cpus_info_t *cpu_infop; 2841 uint32_t rdt_entry; 2842 int which_irq; 2843 ioapic_rdt_t irdt; 2844 2845 which_irq = apic_vector_to_irq[irq_ptr->airq_vector]; 2846 2847 intin_no = irq_ptr->airq_intin_no; 2848 ioapicindex = irq_ptr->airq_ioapicindex; 2849 airq_temp_cpu = irq_ptr->airq_temp_cpu; 2850 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) { 2851 if (airq_temp_cpu & IRQ_USER_BOUND) 2852 /* Mask off high bit so it can be used as array index */ 2853 airq_temp_cpu &= ~IRQ_USER_BOUND; 2854 2855 ASSERT(airq_temp_cpu < apic_nproc); 2856 } 2857 2858 /* 2859 * Can't bind to a CPU that's not accepting interrupts: 2860 */ 2861 cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND]; 2862 if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE)) 2863 return (1); 2864 2865 /* 2866 * If we are about to change the interrupt vector for this interrupt, 2867 * and this interrupt is level-triggered, attached to an IOAPIC, 2868 * has been delivered to a CPU and that CPU has not handled it 2869 * yet, we cannot reprogram the IOAPIC now. 2870 */ 2871 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) { 2872 2873 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, 2874 intin_no); 2875 2876 if ((irq_ptr->airq_vector != RDT_VECTOR(rdt_entry)) && 2877 apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu, 2878 bind_cpu, ioapicindex, intin_no, which_irq, drep) != 0) { 2879 2880 return (0); 2881 } 2882 2883 /* 2884 * NOTE: We do not unmask the RDT here, as an interrupt MAY 2885 * still come in before we have a chance to reprogram it below. 2886 * The reprogramming below will simultaneously change and 2887 * unmask the RDT entry. 2888 */ 2889 2890 if ((uint32_t)bind_cpu == IRQ_UNBOUND) { 2891 irdt.ir_lo = AV_LDEST | AV_LOPRI | 2892 irq_ptr->airq_rdt_entry; 2893 #if !defined(__xpv) 2894 irdt.ir_hi = AV_TOALL >> APIC_ID_BIT_OFFSET; 2895 2896 apic_vt_ops->apic_intrr_alloc_entry(irq_ptr); 2897 apic_vt_ops->apic_intrr_map_entry( 2898 irq_ptr, (void *)&irdt); 2899 apic_vt_ops->apic_intrr_record_rdt(irq_ptr, &irdt); 2900 2901 /* Write the RDT entry -- no specific CPU binding */ 2902 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 2903 irdt.ir_hi | AV_TOALL); 2904 #else 2905 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 2906 AV_TOALL); 2907 #endif 2908 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != 2909 IRQ_UNBOUND) 2910 apic_cpus[airq_temp_cpu].aci_temp_bound--; 2911 2912 /* 2913 * Write the vector, trigger, and polarity portion of 2914 * the RDT 2915 */ 2916 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no, 2917 irdt.ir_lo); 2918 2919 irq_ptr->airq_temp_cpu = IRQ_UNBOUND; 2920 return (0); 2921 } 2922 } 2923 2924 if (bind_cpu & IRQ_USER_BOUND) { 2925 cpu_infop->aci_bound++; 2926 } else { 2927 cpu_infop->aci_temp_bound++; 2928 } 2929 ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc); 2930 2931 if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) { 2932 apic_cpus[airq_temp_cpu].aci_temp_bound--; 2933 } 2934 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) { 2935 2936 irdt.ir_lo = AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry; 2937 irdt.ir_hi = cpu_infop->aci_local_id; 2938 2939 #if !defined(__xpv) 2940 apic_vt_ops->apic_intrr_alloc_entry(irq_ptr); 2941 apic_vt_ops->apic_intrr_map_entry(irq_ptr, (void *)&irdt); 2942 apic_vt_ops->apic_intrr_record_rdt(irq_ptr, &irdt); 2943 2944 /* Write the RDT entry -- bind to a specific CPU: */ 2945 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 2946 irdt.ir_hi); 2947 #else 2948 /* Write the RDT entry -- bind to a specific CPU: */ 2949 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 2950 irdt.ir_hi << APIC_ID_BIT_OFFSET); 2951 #endif 2952 /* Write the vector, trigger, and polarity portion of the RDT */ 2953 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no, 2954 irdt.ir_lo); 2955 2956 } else { 2957 int type = (irq_ptr->airq_mps_intr_index == MSI_INDEX) ? 2958 DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX; 2959 if (type == DDI_INTR_TYPE_MSI) { 2960 if (irq_ptr->airq_ioapicindex == 2961 irq_ptr->airq_origirq) { 2962 /* first one */ 2963 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call " 2964 "apic_pci_msi_enable_vector\n")); 2965 apic_pci_msi_enable_vector(irq_ptr, 2966 type, which_irq, irq_ptr->airq_vector, 2967 irq_ptr->airq_intin_no, 2968 cpu_infop->aci_local_id); 2969 } 2970 if ((irq_ptr->airq_ioapicindex + 2971 irq_ptr->airq_intin_no - 1) == 2972 irq_ptr->airq_origirq) { /* last one */ 2973 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call " 2974 "apic_pci_msi_enable_mode\n")); 2975 apic_pci_msi_enable_mode(irq_ptr->airq_dip, 2976 type, which_irq); 2977 } 2978 } else { /* MSI-X */ 2979 apic_pci_msi_enable_vector(irq_ptr, type, 2980 irq_ptr->airq_origirq, irq_ptr->airq_vector, 1, 2981 cpu_infop->aci_local_id); 2982 apic_pci_msi_enable_mode(irq_ptr->airq_dip, type, 2983 irq_ptr->airq_origirq); 2984 } 2985 } 2986 irq_ptr->airq_temp_cpu = (uint32_t)bind_cpu; 2987 apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND)); 2988 return (0); 2989 } 2990 2991 static void 2992 apic_last_ditch_clear_remote_irr(int ioapic_ix, int intin_no) 2993 { 2994 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) 2995 & AV_REMOTE_IRR) != 0) { 2996 /* 2997 * Trying to clear the bit through normal 2998 * channels has failed. So as a last-ditch 2999 * effort, try to set the trigger mode to 3000 * edge, then to level. This has been 3001 * observed to work on many systems. 3002 */ 3003 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3004 intin_no, 3005 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3006 intin_no) & ~AV_LEVEL); 3007 3008 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3009 intin_no, 3010 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3011 intin_no) | AV_LEVEL); 3012 3013 /* 3014 * If the bit's STILL set, this interrupt may 3015 * be hosed. 3016 */ 3017 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3018 intin_no) & AV_REMOTE_IRR) != 0) { 3019 3020 prom_printf("%s: Remote IRR still " 3021 "not clear for IOAPIC %d intin %d.\n" 3022 "\tInterrupts to this pin may cease " 3023 "functioning.\n", psm_name, ioapic_ix, 3024 intin_no); 3025 #ifdef DEBUG 3026 apic_last_ditch_reprogram_failures++; 3027 #endif 3028 } 3029 } 3030 } 3031 3032 /* 3033 * This function is protected by apic_ioapic_lock coupled with the 3034 * fact that interrupts are disabled. 3035 */ 3036 static void 3037 delete_defer_repro_ent(int which_irq) 3038 { 3039 ASSERT(which_irq >= 0); 3040 ASSERT(which_irq <= 255); 3041 3042 if (apic_reprogram_info[which_irq].done) 3043 return; 3044 3045 apic_reprogram_info[which_irq].done = B_TRUE; 3046 3047 #ifdef DEBUG 3048 apic_defer_repro_total_retries += 3049 apic_reprogram_info[which_irq].tries; 3050 3051 apic_defer_repro_successes++; 3052 #endif 3053 3054 if (--apic_reprogram_outstanding == 0) { 3055 3056 setlvlx = psm_intr_exit_fn(); 3057 } 3058 } 3059 3060 3061 /* 3062 * Interrupts must be disabled during this function to prevent 3063 * self-deadlock. Interrupts are disabled because this function 3064 * is called from apic_check_stuck_interrupt(), which is called 3065 * from apic_rebind(), which requires its caller to disable interrupts. 3066 */ 3067 static void 3068 add_defer_repro_ent(apic_irq_t *irq_ptr, int which_irq, int new_bind_cpu) 3069 { 3070 ASSERT(which_irq >= 0); 3071 ASSERT(which_irq <= 255); 3072 3073 /* 3074 * On the off-chance that there's already a deferred 3075 * reprogramming on this irq, check, and if so, just update the 3076 * CPU and irq pointer to which the interrupt is targeted, then return. 3077 */ 3078 if (!apic_reprogram_info[which_irq].done) { 3079 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu; 3080 apic_reprogram_info[which_irq].irqp = irq_ptr; 3081 return; 3082 } 3083 3084 apic_reprogram_info[which_irq].irqp = irq_ptr; 3085 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu; 3086 apic_reprogram_info[which_irq].tries = 0; 3087 /* 3088 * This must be the last thing set, since we're not 3089 * grabbing any locks, apic_try_deferred_reprogram() will 3090 * make its decision about using this entry iff done 3091 * is false. 3092 */ 3093 apic_reprogram_info[which_irq].done = B_FALSE; 3094 3095 /* 3096 * If there were previously no deferred reprogrammings, change 3097 * setlvlx to call apic_try_deferred_reprogram() 3098 */ 3099 if (++apic_reprogram_outstanding == 1) { 3100 3101 setlvlx = apic_try_deferred_reprogram; 3102 } 3103 } 3104 3105 static void 3106 apic_try_deferred_reprogram(int prev_ipl, int irq) 3107 { 3108 int reproirq; 3109 ulong_t iflag; 3110 struct ioapic_reprogram_data *drep; 3111 3112 (*psm_intr_exit_fn())(prev_ipl, irq); 3113 3114 if (!lock_try(&apic_defer_reprogram_lock)) { 3115 return; 3116 } 3117 3118 /* 3119 * Acquire the apic_ioapic_lock so that any other operations that 3120 * may affect the apic_reprogram_info state are serialized. 3121 * It's still possible for the last deferred reprogramming to clear 3122 * between the time we entered this function and the time we get to 3123 * the for loop below. In that case, *setlvlx will have been set 3124 * back to *_intr_exit and drep will be NULL. (There's no way to 3125 * stop that from happening -- we would need to grab a lock before 3126 * calling *setlvlx, which is neither realistic nor prudent). 3127 */ 3128 iflag = intr_clear(); 3129 lock_set(&apic_ioapic_lock); 3130 3131 /* 3132 * For each deferred RDT entry, try to reprogram it now. Note that 3133 * there is no lock acquisition to read apic_reprogram_info because 3134 * '.done' is set only after the other fields in the structure are set. 3135 */ 3136 3137 drep = NULL; 3138 for (reproirq = 0; reproirq <= APIC_MAX_VECTOR; reproirq++) { 3139 if (apic_reprogram_info[reproirq].done == B_FALSE) { 3140 drep = &apic_reprogram_info[reproirq]; 3141 break; 3142 } 3143 } 3144 3145 /* 3146 * Either we found a deferred action to perform, or 3147 * we entered this function spuriously, after *setlvlx 3148 * was restored to point to *_intr_exit. Any other 3149 * permutation is invalid. 3150 */ 3151 ASSERT(drep != NULL || *setlvlx == psm_intr_exit_fn()); 3152 3153 /* 3154 * Though we can't really do anything about errors 3155 * at this point, keep track of them for reporting. 3156 * Note that it is very possible for apic_setup_io_intr 3157 * to re-register this very timeout if the Remote IRR bit 3158 * has not yet cleared. 3159 */ 3160 3161 #ifdef DEBUG 3162 if (drep != NULL) { 3163 if (apic_setup_io_intr(drep, reproirq, B_TRUE) != 0) { 3164 apic_deferred_setup_failures++; 3165 } 3166 } else { 3167 apic_deferred_spurious_enters++; 3168 } 3169 #else 3170 if (drep != NULL) 3171 (void) apic_setup_io_intr(drep, reproirq, B_TRUE); 3172 #endif 3173 3174 lock_clear(&apic_ioapic_lock); 3175 intr_restore(iflag); 3176 3177 lock_clear(&apic_defer_reprogram_lock); 3178 } 3179 3180 static void 3181 apic_ioapic_wait_pending_clear(int ioapic_ix, int intin_no) 3182 { 3183 int waited; 3184 3185 /* 3186 * Wait for the delivery pending bit to clear. 3187 */ 3188 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & 3189 (AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) { 3190 3191 /* 3192 * If we're still waiting on the delivery of this interrupt, 3193 * continue to wait here until it is delivered (this should be 3194 * a very small amount of time, but include a timeout just in 3195 * case). 3196 */ 3197 for (waited = 0; waited < apic_max_reps_clear_pending; 3198 waited++) { 3199 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3200 intin_no) & AV_PENDING) == 0) { 3201 break; 3202 } 3203 } 3204 } 3205 } 3206 3207 3208 /* 3209 * Checks to see if the IOAPIC interrupt entry specified has its Remote IRR 3210 * bit set. Calls functions that modify the function that setlvlx points to, 3211 * so that the reprogramming can be retried very shortly. 3212 * 3213 * This function will mask the RDT entry if the interrupt is level-triggered. 3214 * (The caller is responsible for unmasking the RDT entry.) 3215 * 3216 * Returns non-zero if the caller should defer IOAPIC reprogramming. 3217 */ 3218 static int 3219 apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu, 3220 int new_bind_cpu, int ioapic_ix, int intin_no, int which_irq, 3221 struct ioapic_reprogram_data *drep) 3222 { 3223 int32_t rdt_entry; 3224 int waited; 3225 int reps = 0; 3226 3227 /* 3228 * Wait for the delivery pending bit to clear. 3229 */ 3230 do { 3231 ++reps; 3232 3233 apic_ioapic_wait_pending_clear(ioapic_ix, intin_no); 3234 3235 /* 3236 * Mask the RDT entry, but only if it's a level-triggered 3237 * interrupt 3238 */ 3239 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3240 intin_no); 3241 if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) { 3242 3243 /* Mask it */ 3244 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, 3245 AV_MASK | rdt_entry); 3246 } 3247 3248 if ((rdt_entry & AV_LEVEL) == AV_LEVEL) { 3249 /* 3250 * If there was a race and an interrupt was injected 3251 * just before we masked, check for that case here. 3252 * Then, unmask the RDT entry and try again. If we're 3253 * on our last try, don't unmask (because we want the 3254 * RDT entry to remain masked for the rest of the 3255 * function). 3256 */ 3257 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3258 intin_no); 3259 if ((rdt_entry & AV_PENDING) && 3260 (reps < apic_max_reps_clear_pending)) { 3261 /* Unmask it */ 3262 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3263 intin_no, rdt_entry & ~AV_MASK); 3264 } 3265 } 3266 3267 } while ((rdt_entry & AV_PENDING) && 3268 (reps < apic_max_reps_clear_pending)); 3269 3270 #ifdef DEBUG 3271 if (rdt_entry & AV_PENDING) 3272 apic_intr_deliver_timeouts++; 3273 #endif 3274 3275 /* 3276 * If the remote IRR bit is set, then the interrupt has been sent 3277 * to a CPU for processing. We have no choice but to wait for 3278 * that CPU to process the interrupt, at which point the remote IRR 3279 * bit will be cleared. 3280 */ 3281 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & 3282 (AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) { 3283 3284 /* 3285 * If the CPU that this RDT is bound to is NOT the current 3286 * CPU, wait until that CPU handles the interrupt and ACKs 3287 * it. If this interrupt is not bound to any CPU (that is, 3288 * if it's bound to the logical destination of "anyone"), it 3289 * may have been delivered to the current CPU so handle that 3290 * case by deferring the reprogramming (below). 3291 */ 3292 if ((old_bind_cpu != IRQ_UNBOUND) && 3293 (old_bind_cpu != IRQ_UNINIT) && 3294 (old_bind_cpu != psm_get_cpu_id())) { 3295 for (waited = 0; waited < apic_max_reps_clear_pending; 3296 waited++) { 3297 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3298 intin_no) & AV_REMOTE_IRR) == 0) { 3299 3300 delete_defer_repro_ent(which_irq); 3301 3302 /* Remote IRR has cleared! */ 3303 return (0); 3304 } 3305 } 3306 } 3307 3308 /* 3309 * If we waited and the Remote IRR bit is still not cleared, 3310 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS 3311 * times for this interrupt, try the last-ditch workaround: 3312 */ 3313 if (drep && drep->tries >= APIC_REPROGRAM_MAX_TRIES) { 3314 3315 apic_last_ditch_clear_remote_irr(ioapic_ix, intin_no); 3316 3317 /* Mark this one as reprogrammed: */ 3318 delete_defer_repro_ent(which_irq); 3319 3320 return (0); 3321 } else { 3322 #ifdef DEBUG 3323 apic_intr_deferrals++; 3324 #endif 3325 3326 /* 3327 * If waiting for the Remote IRR bit (above) didn't 3328 * allow it to clear, defer the reprogramming. 3329 * Add a new deferred-programming entry if the 3330 * caller passed a NULL one (and update the existing one 3331 * in case anything changed). 3332 */ 3333 add_defer_repro_ent(irq_ptr, which_irq, new_bind_cpu); 3334 if (drep) 3335 drep->tries++; 3336 3337 /* Inform caller to defer IOAPIC programming: */ 3338 return (1); 3339 } 3340 3341 } 3342 3343 /* Remote IRR is clear */ 3344 delete_defer_repro_ent(which_irq); 3345 3346 return (0); 3347 } 3348 3349 /* 3350 * Called to migrate all interrupts at an irq to another cpu. 3351 * Must be called with interrupts disabled and apic_ioapic_lock held 3352 */ 3353 int 3354 apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu) 3355 { 3356 apic_irq_t *irqptr = irq_ptr; 3357 int retval = 0; 3358 3359 while (irqptr) { 3360 if (irqptr->airq_temp_cpu != IRQ_UNINIT) 3361 retval |= apic_rebind(irqptr, bind_cpu, NULL); 3362 irqptr = irqptr->airq_next; 3363 } 3364 3365 return (retval); 3366 } 3367 3368 /* 3369 * apic_intr_redistribute does all the messy computations for identifying 3370 * which interrupt to move to which CPU. Currently we do just one interrupt 3371 * at a time. This reduces the time we spent doing all this within clock 3372 * interrupt. When it is done in idle, we could do more than 1. 3373 * First we find the most busy and the most free CPU (time in ISR only) 3374 * skipping those CPUs that has been identified as being ineligible (cpu_skip) 3375 * Then we look for IRQs which are closest to the difference between the 3376 * most busy CPU and the average ISR load. We try to find one whose load 3377 * is less than difference.If none exists, then we chose one larger than the 3378 * difference, provided it does not make the most idle CPU worse than the 3379 * most busy one. In the end, we clear all the busy fields for CPUs. For 3380 * IRQs, they are cleared as they are scanned. 3381 */ 3382 void 3383 apic_intr_redistribute() 3384 { 3385 int busiest_cpu, most_free_cpu; 3386 int cpu_free, cpu_busy, max_busy, min_busy; 3387 int min_free, diff; 3388 int average_busy, cpus_online; 3389 int i, busy; 3390 ulong_t iflag; 3391 apic_cpus_info_t *cpu_infop; 3392 apic_irq_t *min_busy_irq = NULL; 3393 apic_irq_t *max_busy_irq = NULL; 3394 3395 busiest_cpu = most_free_cpu = -1; 3396 cpu_free = cpu_busy = max_busy = average_busy = 0; 3397 min_free = apic_sample_factor_redistribution; 3398 cpus_online = 0; 3399 /* 3400 * Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu 3401 * without ioapic_lock. That is OK as we are just doing statistical 3402 * sampling anyway and any inaccuracy now will get corrected next time 3403 * The call to rebind which actually changes things will make sure 3404 * we are consistent. 3405 */ 3406 for (i = 0; i < apic_nproc; i++) { 3407 if (!(apic_redist_cpu_skip & (1 << i)) && 3408 (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) { 3409 3410 cpu_infop = &apic_cpus[i]; 3411 /* 3412 * If no unbound interrupts or only 1 total on this 3413 * CPU, skip 3414 */ 3415 if (!cpu_infop->aci_temp_bound || 3416 (cpu_infop->aci_bound + cpu_infop->aci_temp_bound) 3417 == 1) { 3418 apic_redist_cpu_skip |= 1 << i; 3419 continue; 3420 } 3421 3422 busy = cpu_infop->aci_busy; 3423 average_busy += busy; 3424 cpus_online++; 3425 if (max_busy < busy) { 3426 max_busy = busy; 3427 busiest_cpu = i; 3428 } 3429 if (min_free > busy) { 3430 min_free = busy; 3431 most_free_cpu = i; 3432 } 3433 if (busy > apic_int_busy_mark) { 3434 cpu_busy |= 1 << i; 3435 } else { 3436 if (busy < apic_int_free_mark) 3437 cpu_free |= 1 << i; 3438 } 3439 } 3440 } 3441 if ((cpu_busy && cpu_free) || 3442 (max_busy >= (min_free + apic_diff_for_redistribution))) { 3443 3444 apic_num_imbalance++; 3445 #ifdef DEBUG 3446 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { 3447 prom_printf( 3448 "redistribute busy=%x free=%x max=%x min=%x", 3449 cpu_busy, cpu_free, max_busy, min_free); 3450 } 3451 #endif /* DEBUG */ 3452 3453 3454 average_busy /= cpus_online; 3455 3456 diff = max_busy - average_busy; 3457 min_busy = max_busy; /* start with the max possible value */ 3458 max_busy = 0; 3459 min_busy_irq = max_busy_irq = NULL; 3460 i = apic_min_device_irq; 3461 for (; i <= apic_max_device_irq; i++) { 3462 apic_irq_t *irq_ptr; 3463 /* Change to linked list per CPU ? */ 3464 if ((irq_ptr = apic_irq_table[i]) == NULL) 3465 continue; 3466 /* Check for irq_busy & decide which one to move */ 3467 /* Also zero them for next round */ 3468 if ((irq_ptr->airq_temp_cpu == busiest_cpu) && 3469 irq_ptr->airq_busy) { 3470 if (irq_ptr->airq_busy < diff) { 3471 /* 3472 * Check for least busy CPU, 3473 * best fit or what ? 3474 */ 3475 if (max_busy < irq_ptr->airq_busy) { 3476 /* 3477 * Most busy within the 3478 * required differential 3479 */ 3480 max_busy = irq_ptr->airq_busy; 3481 max_busy_irq = irq_ptr; 3482 } 3483 } else { 3484 if (min_busy > irq_ptr->airq_busy) { 3485 /* 3486 * least busy, but more than 3487 * the reqd diff 3488 */ 3489 if (min_busy < 3490 (diff + average_busy - 3491 min_free)) { 3492 /* 3493 * Making sure new cpu 3494 * will not end up 3495 * worse 3496 */ 3497 min_busy = 3498 irq_ptr->airq_busy; 3499 3500 min_busy_irq = irq_ptr; 3501 } 3502 } 3503 } 3504 } 3505 irq_ptr->airq_busy = 0; 3506 } 3507 3508 if (max_busy_irq != NULL) { 3509 #ifdef DEBUG 3510 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { 3511 prom_printf("rebinding %x to %x", 3512 max_busy_irq->airq_vector, most_free_cpu); 3513 } 3514 #endif /* DEBUG */ 3515 iflag = intr_clear(); 3516 if (lock_try(&apic_ioapic_lock)) { 3517 if (apic_rebind_all(max_busy_irq, 3518 most_free_cpu) == 0) { 3519 /* Make change permenant */ 3520 max_busy_irq->airq_cpu = 3521 (uint32_t)most_free_cpu; 3522 } 3523 lock_clear(&apic_ioapic_lock); 3524 } 3525 intr_restore(iflag); 3526 3527 } else if (min_busy_irq != NULL) { 3528 #ifdef DEBUG 3529 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { 3530 prom_printf("rebinding %x to %x", 3531 min_busy_irq->airq_vector, most_free_cpu); 3532 } 3533 #endif /* DEBUG */ 3534 3535 iflag = intr_clear(); 3536 if (lock_try(&apic_ioapic_lock)) { 3537 if (apic_rebind_all(min_busy_irq, 3538 most_free_cpu) == 0) { 3539 /* Make change permenant */ 3540 min_busy_irq->airq_cpu = 3541 (uint32_t)most_free_cpu; 3542 } 3543 lock_clear(&apic_ioapic_lock); 3544 } 3545 intr_restore(iflag); 3546 3547 } else { 3548 if (cpu_busy != (1 << busiest_cpu)) { 3549 apic_redist_cpu_skip |= 1 << busiest_cpu; 3550 /* 3551 * We leave cpu_skip set so that next time we 3552 * can choose another cpu 3553 */ 3554 } 3555 } 3556 apic_num_rebind++; 3557 } else { 3558 /* 3559 * found nothing. Could be that we skipped over valid CPUs 3560 * or we have balanced everything. If we had a variable 3561 * ticks_for_redistribution, it could be increased here. 3562 * apic_int_busy, int_free etc would also need to be 3563 * changed. 3564 */ 3565 if (apic_redist_cpu_skip) 3566 apic_redist_cpu_skip = 0; 3567 } 3568 for (i = 0; i < apic_nproc; i++) { 3569 apic_cpus[i].aci_busy = 0; 3570 } 3571 } 3572 3573 void 3574 apic_cleanup_busy() 3575 { 3576 int i; 3577 apic_irq_t *irq_ptr; 3578 3579 for (i = 0; i < apic_nproc; i++) { 3580 apic_cpus[i].aci_busy = 0; 3581 } 3582 3583 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 3584 if ((irq_ptr = apic_irq_table[i]) != NULL) 3585 irq_ptr->airq_busy = 0; 3586 } 3587 } 3588 3589 3590 static int 3591 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 3592 int ipin, int *pci_irqp, iflag_t *intr_flagp) 3593 { 3594 3595 int status; 3596 acpi_psm_lnk_t acpipsmlnk; 3597 3598 if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp, 3599 intr_flagp)) == ACPI_PSM_SUCCESS) { 3600 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d " 3601 "from cache for device %s, instance #%d\n", psm_name, 3602 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 3603 return (status); 3604 } 3605 3606 bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t)); 3607 3608 if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp, 3609 &acpipsmlnk)) == ACPI_PSM_FAILURE) { 3610 APIC_VERBOSE_IRQ((CE_WARN, "%s: " 3611 " acpi_translate_pci_irq failed for device %s, instance" 3612 " #%d", psm_name, ddi_get_name(dip), 3613 ddi_get_instance(dip))); 3614 return (status); 3615 } 3616 3617 if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) { 3618 status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp, 3619 intr_flagp); 3620 if (status != ACPI_PSM_SUCCESS) { 3621 status = acpi_get_current_irq_resource(&acpipsmlnk, 3622 pci_irqp, intr_flagp); 3623 } 3624 } 3625 3626 if (status == ACPI_PSM_SUCCESS) { 3627 acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp, 3628 intr_flagp, &acpipsmlnk); 3629 3630 APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] " 3631 "new irq %d for device %s, instance #%d\n", psm_name, 3632 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 3633 } 3634 3635 return (status); 3636 } 3637 3638 /* 3639 * Adds an entry to the irq list passed in, and returns the new list. 3640 * Entries are added in priority order (lower numerical priorities are 3641 * placed closer to the head of the list) 3642 */ 3643 static prs_irq_list_t * 3644 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq, 3645 iflag_t *iflagp, acpi_prs_private_t *prsprvp) 3646 { 3647 struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp; 3648 3649 newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP); 3650 3651 newent->list_prio = priority; 3652 newent->irq = irq; 3653 newent->intrflags = *iflagp; 3654 newent->prsprv = *prsprvp; 3655 /* ->next is NULL from kmem_zalloc */ 3656 3657 /* 3658 * New list -- return the new entry as the list. 3659 */ 3660 if (listp == NULL) 3661 return (newent); 3662 3663 /* 3664 * Save original list pointer for return (since we're not modifying 3665 * the head) 3666 */ 3667 origlistp = listp; 3668 3669 /* 3670 * Insertion sort, with entries with identical keys stored AFTER 3671 * existing entries (the less-than-or-equal test of priority does 3672 * this for us). 3673 */ 3674 while (listp != NULL && listp->list_prio <= priority) { 3675 prevp = listp; 3676 listp = listp->next; 3677 } 3678 3679 newent->next = listp; 3680 3681 if (prevp == NULL) { /* Add at head of list (newent is the new head) */ 3682 return (newent); 3683 } else { 3684 prevp->next = newent; 3685 return (origlistp); 3686 } 3687 } 3688 3689 /* 3690 * Frees the list passed in, deallocating all memory and leaving *listpp 3691 * set to NULL. 3692 */ 3693 static void 3694 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp) 3695 { 3696 struct prs_irq_list_ent *nextp; 3697 3698 ASSERT(listpp != NULL); 3699 3700 while (*listpp != NULL) { 3701 nextp = (*listpp)->next; 3702 kmem_free(*listpp, sizeof (struct prs_irq_list_ent)); 3703 *listpp = nextp; 3704 } 3705 } 3706 3707 /* 3708 * apic_choose_irqs_from_prs returns a list of irqs selected from the list of 3709 * irqs returned by the link device's _PRS method. The irqs are chosen 3710 * to minimize contention in situations where the interrupt link device 3711 * can be programmed to steer interrupts to different interrupt controller 3712 * inputs (some of which may already be in use). The list is sorted in order 3713 * of irqs to use, with the highest priority given to interrupt controller 3714 * inputs that are not shared. When an interrupt controller input 3715 * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the 3716 * returned list in the order that minimizes sharing (thereby ensuring lowest 3717 * possible latency from interrupt trigger time to ISR execution time). 3718 */ 3719 static prs_irq_list_t * 3720 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip, 3721 int crs_irq) 3722 { 3723 int32_t irq; 3724 int i; 3725 prs_irq_list_t *prsirqlistp = NULL; 3726 iflag_t iflags; 3727 3728 while (irqlistent != NULL) { 3729 irqlistent->intr_flags.bustype = BUS_PCI; 3730 3731 for (i = 0; i < irqlistent->num_irqs; i++) { 3732 3733 irq = irqlistent->irqs[i]; 3734 3735 if (irq <= 0) { 3736 /* invalid irq number */ 3737 continue; 3738 } 3739 3740 if ((irq < 16) && (apic_reserved_irqlist[irq])) 3741 continue; 3742 3743 if ((apic_irq_table[irq] == NULL) || 3744 (apic_irq_table[irq]->airq_dip == dip)) { 3745 3746 prsirqlistp = acpi_insert_prs_irq_ent( 3747 prsirqlistp, 0 /* Highest priority */, irq, 3748 &irqlistent->intr_flags, 3749 &irqlistent->acpi_prs_prv); 3750 3751 /* 3752 * If we do not prefer the current irq from _CRS 3753 * or if we do and this irq is the same as the 3754 * current irq from _CRS, this is the one 3755 * to pick. 3756 */ 3757 if (!(apic_prefer_crs) || (irq == crs_irq)) { 3758 return (prsirqlistp); 3759 } 3760 continue; 3761 } 3762 3763 /* 3764 * Edge-triggered interrupts cannot be shared 3765 */ 3766 if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE) 3767 continue; 3768 3769 /* 3770 * To work around BIOSes that contain incorrect 3771 * interrupt polarity information in interrupt 3772 * descriptors returned by _PRS, we assume that 3773 * the polarity of the other device sharing this 3774 * interrupt controller input is compatible. 3775 * If it's not, the caller will catch it when 3776 * the caller invokes the link device's _CRS method 3777 * (after invoking its _SRS method). 3778 */ 3779 iflags = irqlistent->intr_flags; 3780 iflags.intr_po = 3781 apic_irq_table[irq]->airq_iflag.intr_po; 3782 3783 if (!acpi_intr_compatible(iflags, 3784 apic_irq_table[irq]->airq_iflag)) { 3785 APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d " 3786 "not compatible [%x:%x:%x !~ %x:%x:%x]", 3787 psm_name, irq, 3788 iflags.intr_po, 3789 iflags.intr_el, 3790 iflags.bustype, 3791 apic_irq_table[irq]->airq_iflag.intr_po, 3792 apic_irq_table[irq]->airq_iflag.intr_el, 3793 apic_irq_table[irq]->airq_iflag.bustype)); 3794 continue; 3795 } 3796 3797 /* 3798 * If we prefer the irq from _CRS, no need 3799 * to search any further (and make sure 3800 * to add this irq with the highest priority 3801 * so it's tried first). 3802 */ 3803 if (crs_irq == irq && apic_prefer_crs) { 3804 3805 return (acpi_insert_prs_irq_ent( 3806 prsirqlistp, 3807 0 /* Highest priority */, 3808 irq, &iflags, 3809 &irqlistent->acpi_prs_prv)); 3810 } 3811 3812 /* 3813 * Priority is equal to the share count (lower 3814 * share count is higher priority). Note that 3815 * the intr flags passed in here are the ones we 3816 * changed above -- if incorrect, it will be 3817 * caught by the caller's _CRS flags comparison. 3818 */ 3819 prsirqlistp = acpi_insert_prs_irq_ent( 3820 prsirqlistp, 3821 apic_irq_table[irq]->airq_share, irq, 3822 &iflags, &irqlistent->acpi_prs_prv); 3823 } 3824 3825 /* Go to the next irqlist entry */ 3826 irqlistent = irqlistent->next; 3827 } 3828 3829 return (prsirqlistp); 3830 } 3831 3832 /* 3833 * Configures the irq for the interrupt link device identified by 3834 * acpipsmlnkp. 3835 * 3836 * Gets the current and the list of possible irq settings for the 3837 * device. If apic_unconditional_srs is not set, and the current 3838 * resource setting is in the list of possible irq settings, 3839 * current irq resource setting is passed to the caller. 3840 * 3841 * Otherwise, picks an irq number from the list of possible irq 3842 * settings, and sets the irq of the device to this value. 3843 * If prefer_crs is set, among a set of irq numbers in the list that have 3844 * the least number of devices sharing the interrupt, we pick current irq 3845 * resource setting if it is a member of this set. 3846 * 3847 * Passes the irq number in the value pointed to by pci_irqp, and 3848 * polarity and sensitivity in the structure pointed to by dipintrflagp 3849 * to the caller. 3850 * 3851 * Note that if setting the irq resource failed, but successfuly obtained 3852 * the current irq resource settings, passes the current irq resources 3853 * and considers it a success. 3854 * 3855 * Returns: 3856 * ACPI_PSM_SUCCESS on success. 3857 * 3858 * ACPI_PSM_FAILURE if an error occured during the configuration or 3859 * if a suitable irq was not found for this device, or if setting the 3860 * irq resource and obtaining the current resource fails. 3861 * 3862 */ 3863 static int 3864 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 3865 int *pci_irqp, iflag_t *dipintr_flagp) 3866 { 3867 int32_t irq; 3868 int cur_irq = -1; 3869 acpi_irqlist_t *irqlistp; 3870 prs_irq_list_t *prs_irq_listp, *prs_irq_entp; 3871 boolean_t found_irq = B_FALSE; 3872 3873 dipintr_flagp->bustype = BUS_PCI; 3874 3875 if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp)) 3876 == ACPI_PSM_FAILURE) { 3877 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine " 3878 "or assign IRQ for device %s, instance #%d: The system was " 3879 "unable to get the list of potential IRQs from ACPI.", 3880 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 3881 3882 return (ACPI_PSM_FAILURE); 3883 } 3884 3885 if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 3886 dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) && 3887 (cur_irq > 0)) { 3888 /* 3889 * If an IRQ is set in CRS and that IRQ exists in the set 3890 * returned from _PRS, return that IRQ, otherwise print 3891 * a warning 3892 */ 3893 3894 if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL) 3895 == ACPI_PSM_SUCCESS) { 3896 3897 ASSERT(pci_irqp != NULL); 3898 *pci_irqp = cur_irq; 3899 acpi_free_irqlist(irqlistp); 3900 return (ACPI_PSM_SUCCESS); 3901 } 3902 3903 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the " 3904 "current irq %d for device %s, instance #%d in ACPI's " 3905 "list of possible irqs for this device. Picking one from " 3906 " the latter list.", psm_name, cur_irq, ddi_get_name(dip), 3907 ddi_get_instance(dip))); 3908 } 3909 3910 if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip, 3911 cur_irq)) == NULL) { 3912 3913 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a " 3914 "suitable irq from the list of possible irqs for device " 3915 "%s, instance #%d in ACPI's list of possible irqs", 3916 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 3917 3918 acpi_free_irqlist(irqlistp); 3919 return (ACPI_PSM_FAILURE); 3920 } 3921 3922 acpi_free_irqlist(irqlistp); 3923 3924 for (prs_irq_entp = prs_irq_listp; 3925 prs_irq_entp != NULL && found_irq == B_FALSE; 3926 prs_irq_entp = prs_irq_entp->next) { 3927 3928 acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv; 3929 irq = prs_irq_entp->irq; 3930 3931 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for " 3932 "device %s instance #%d\n", psm_name, irq, 3933 ddi_get_name(dip), ddi_get_instance(dip))); 3934 3935 if ((acpi_set_irq_resource(acpipsmlnkp, irq)) 3936 == ACPI_PSM_SUCCESS) { 3937 /* 3938 * setting irq was successful, check to make sure CRS 3939 * reflects that. If CRS does not agree with what we 3940 * set, return the irq that was set. 3941 */ 3942 3943 if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 3944 dipintr_flagp) == ACPI_PSM_SUCCESS) { 3945 3946 if (cur_irq != irq) 3947 APIC_VERBOSE_IRQ((CE_WARN, 3948 "!%s: IRQ resource set " 3949 "(irqno %d) for device %s " 3950 "instance #%d, differs from " 3951 "current setting irqno %d", 3952 psm_name, irq, ddi_get_name(dip), 3953 ddi_get_instance(dip), cur_irq)); 3954 } else { 3955 /* 3956 * On at least one system, there was a bug in 3957 * a DSDT method called by _STA, causing _STA to 3958 * indicate that the link device was disabled 3959 * (when, in fact, it was enabled). Since _SRS 3960 * succeeded, assume that _CRS is lying and use 3961 * the iflags from this _PRS interrupt choice. 3962 * If we're wrong about the flags, the polarity 3963 * will be incorrect and we may get an interrupt 3964 * storm, but there's not much else we can do 3965 * at this point. 3966 */ 3967 *dipintr_flagp = prs_irq_entp->intrflags; 3968 } 3969 3970 /* 3971 * Return the irq that was set, and not what _CRS 3972 * reports, since _CRS has been seen to return 3973 * different IRQs than what was passed to _SRS on some 3974 * systems (and just not return successfully on others). 3975 */ 3976 cur_irq = irq; 3977 found_irq = B_TRUE; 3978 } else { 3979 APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource " 3980 "irq %d failed for device %s instance #%d", 3981 psm_name, irq, ddi_get_name(dip), 3982 ddi_get_instance(dip))); 3983 3984 if (cur_irq == -1) { 3985 acpi_destroy_prs_irq_list(&prs_irq_listp); 3986 return (ACPI_PSM_FAILURE); 3987 } 3988 } 3989 } 3990 3991 acpi_destroy_prs_irq_list(&prs_irq_listp); 3992 3993 if (!found_irq) 3994 return (ACPI_PSM_FAILURE); 3995 3996 ASSERT(pci_irqp != NULL); 3997 *pci_irqp = cur_irq; 3998 return (ACPI_PSM_SUCCESS); 3999 } 4000 4001 void 4002 ioapic_disable_redirection() 4003 { 4004 int ioapic_ix; 4005 int intin_max; 4006 int intin_ix; 4007 4008 /* Disable the I/O APIC redirection entries */ 4009 for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) { 4010 4011 /* Bits 23-16 define the maximum redirection entries */ 4012 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) 4013 & 0xff; 4014 4015 for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) { 4016 /* 4017 * The assumption here is that this is safe, even for 4018 * systems with IOAPICs that suffer from the hardware 4019 * erratum because all devices have been quiesced before 4020 * this function is called from apic_shutdown() 4021 * (or equivalent). If that assumption turns out to be 4022 * false, this mask operation can induce the same 4023 * erratum result we're trying to avoid. 4024 */ 4025 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix, 4026 AV_MASK); 4027 } 4028 } 4029 } 4030 4031 /* 4032 * Looks for an IOAPIC with the specified physical address in the /ioapics 4033 * node in the device tree (created by the PCI enumerator). 4034 */ 4035 static boolean_t 4036 apic_is_ioapic_AMD_813x(uint32_t physaddr) 4037 { 4038 /* 4039 * Look in /ioapics, for the ioapic with 4040 * the physical address given 4041 */ 4042 dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0); 4043 dev_info_t *ioapic_child; 4044 boolean_t rv = B_FALSE; 4045 int vid, did; 4046 uint64_t ioapic_paddr; 4047 boolean_t done = B_FALSE; 4048 4049 if (ioapicsnode == NULL) 4050 return (B_FALSE); 4051 4052 /* Load first child: */ 4053 ioapic_child = ddi_get_child(ioapicsnode); 4054 while (!done && ioapic_child != 0) { /* Iterate over children */ 4055 4056 if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY, 4057 ioapic_child, DDI_PROP_DONTPASS, "reg", 0)) 4058 != 0 && physaddr == ioapic_paddr) { 4059 4060 vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child, 4061 DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0); 4062 4063 if (vid == VENID_AMD) { 4064 4065 did = ddi_prop_get_int(DDI_DEV_T_ANY, 4066 ioapic_child, DDI_PROP_DONTPASS, 4067 IOAPICS_PROP_DEVID, 0); 4068 4069 if (did == DEVID_8131_IOAPIC || 4070 did == DEVID_8132_IOAPIC) { 4071 4072 rv = B_TRUE; 4073 done = B_TRUE; 4074 } 4075 } 4076 } 4077 4078 if (!done) 4079 ioapic_child = ddi_get_next_sibling(ioapic_child); 4080 } 4081 4082 /* The ioapics node was held by ddi_find_devinfo, so release it */ 4083 ndi_rele_devi(ioapicsnode); 4084 return (rv); 4085 } 4086 4087 struct apic_state { 4088 int32_t as_task_reg; 4089 int32_t as_dest_reg; 4090 int32_t as_format_reg; 4091 int32_t as_local_timer; 4092 int32_t as_pcint_vect; 4093 int32_t as_int_vect0; 4094 int32_t as_int_vect1; 4095 int32_t as_err_vect; 4096 int32_t as_init_count; 4097 int32_t as_divide_reg; 4098 int32_t as_spur_int_reg; 4099 uint32_t as_ioapic_ids[MAX_IO_APIC]; 4100 }; 4101 4102 4103 static int 4104 apic_acpi_enter_apicmode(void) 4105 { 4106 ACPI_OBJECT_LIST arglist; 4107 ACPI_OBJECT arg; 4108 ACPI_STATUS status; 4109 4110 /* Setup parameter object */ 4111 arglist.Count = 1; 4112 arglist.Pointer = &arg; 4113 arg.Type = ACPI_TYPE_INTEGER; 4114 arg.Integer.Value = ACPI_APIC_MODE; 4115 4116 status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL); 4117 if (ACPI_FAILURE(status)) 4118 return (PSM_FAILURE); 4119 else 4120 return (PSM_SUCCESS); 4121 } 4122 4123 4124 static void 4125 apic_save_state(struct apic_state *sp) 4126 { 4127 int i; 4128 ulong_t iflag; 4129 4130 PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp)) 4131 /* 4132 * First the local APIC. 4133 */ 4134 sp->as_task_reg = apic_reg_ops->apic_get_pri(); 4135 sp->as_dest_reg = apic_reg_ops->apic_read(APIC_DEST_REG); 4136 if (apic_mode == LOCAL_APIC) 4137 sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG); 4138 sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER); 4139 sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT); 4140 sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0); 4141 sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1); 4142 sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT); 4143 sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT); 4144 sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG); 4145 sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG); 4146 4147 /* 4148 * If on the boot processor then save the IOAPICs' IDs 4149 */ 4150 if (psm_get_cpu_id() == 0) { 4151 4152 iflag = intr_clear(); 4153 lock_set(&apic_ioapic_lock); 4154 4155 for (i = 0; i < apic_io_max; i++) 4156 sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD); 4157 4158 lock_clear(&apic_ioapic_lock); 4159 intr_restore(iflag); 4160 } 4161 } 4162 4163 static void 4164 apic_restore_state(struct apic_state *sp) 4165 { 4166 int i; 4167 ulong_t iflag; 4168 4169 /* 4170 * First the local APIC. 4171 */ 4172 apic_reg_ops->apic_write_task_reg(sp->as_task_reg); 4173 if (apic_mode == LOCAL_APIC) { 4174 apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg); 4175 apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg); 4176 } 4177 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer); 4178 apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect); 4179 apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0); 4180 apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1); 4181 apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect); 4182 apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count); 4183 apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg); 4184 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg); 4185 4186 /* 4187 * the following only needs to be done once, so we do it on the 4188 * boot processor, since we know that we only have one of those 4189 */ 4190 if (psm_get_cpu_id() == 0) { 4191 4192 iflag = intr_clear(); 4193 lock_set(&apic_ioapic_lock); 4194 4195 /* Restore IOAPICs' APIC IDs */ 4196 for (i = 0; i < apic_io_max; i++) { 4197 ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]); 4198 } 4199 4200 lock_clear(&apic_ioapic_lock); 4201 intr_restore(iflag); 4202 4203 /* 4204 * Reenter APIC mode before restoring LNK devices 4205 */ 4206 (void) apic_acpi_enter_apicmode(); 4207 4208 /* 4209 * restore acpi link device mappings 4210 */ 4211 acpi_restore_link_devices(); 4212 } 4213 } 4214 4215 /* 4216 * Returns 0 on success 4217 */ 4218 int 4219 apic_state(psm_state_request_t *rp) 4220 { 4221 PMD(PMD_SX, ("apic_state ")) 4222 switch (rp->psr_cmd) { 4223 case PSM_STATE_ALLOC: 4224 rp->req.psm_state_req.psr_state = 4225 kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP); 4226 if (rp->req.psm_state_req.psr_state == NULL) 4227 return (ENOMEM); 4228 rp->req.psm_state_req.psr_state_size = 4229 sizeof (struct apic_state); 4230 PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n", 4231 rp->req.psm_state_req.psr_state, 4232 rp->req.psm_state_req.psr_state_size)) 4233 return (0); 4234 4235 case PSM_STATE_FREE: 4236 kmem_free(rp->req.psm_state_req.psr_state, 4237 rp->req.psm_state_req.psr_state_size); 4238 PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n", 4239 rp->req.psm_state_req.psr_state, 4240 rp->req.psm_state_req.psr_state_size)) 4241 return (0); 4242 4243 case PSM_STATE_SAVE: 4244 PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n", 4245 rp->req.psm_state_req.psr_state, 4246 rp->req.psm_state_req.psr_state_size)) 4247 apic_save_state(rp->req.psm_state_req.psr_state); 4248 return (0); 4249 4250 case PSM_STATE_RESTORE: 4251 apic_restore_state(rp->req.psm_state_req.psr_state); 4252 PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n", 4253 rp->req.psm_state_req.psr_state, 4254 rp->req.psm_state_req.psr_state_size)) 4255 return (0); 4256 4257 default: 4258 return (EINVAL); 4259 } 4260 } 4261