xref: /illumos-gate/usr/src/uts/i86pc/io/mp_platform_common.c (revision 26f3cdf03f1adcc98f6d3d99843ee71e9229a8c0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright (c) 2010, Intel Corporation.
26  * All rights reserved.
27  */
28 
29 /*
30  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
31  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
32  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
33  * PSMI 1.5 extensions are supported in Solaris Nevada.
34  * PSMI 1.6 extensions are supported in Solaris Nevada.
35  * PSMI 1.7 extensions are supported in Solaris Nevada.
36  */
37 #define	PSMI_1_7
38 
39 #include <sys/processor.h>
40 #include <sys/time.h>
41 #include <sys/psm.h>
42 #include <sys/smp_impldefs.h>
43 #include <sys/cram.h>
44 #include <sys/acpi/acpi.h>
45 #include <sys/acpica.h>
46 #include <sys/psm_common.h>
47 #include <sys/apic.h>
48 #include <sys/apic_timer.h>
49 #include <sys/pit.h>
50 #include <sys/ddi.h>
51 #include <sys/sunddi.h>
52 #include <sys/ddi_impldefs.h>
53 #include <sys/pci.h>
54 #include <sys/promif.h>
55 #include <sys/x86_archext.h>
56 #include <sys/cpc_impl.h>
57 #include <sys/uadmin.h>
58 #include <sys/panic.h>
59 #include <sys/debug.h>
60 #include <sys/archsystm.h>
61 #include <sys/trap.h>
62 #include <sys/machsystm.h>
63 #include <sys/cpuvar.h>
64 #include <sys/rm_platter.h>
65 #include <sys/privregs.h>
66 #include <sys/cyclic.h>
67 #include <sys/note.h>
68 #include <sys/pci_intr_lib.h>
69 #include <sys/sunndi.h>
70 #if !defined(__xpv)
71 #include <sys/hpet.h>
72 #include <sys/clock.h>
73 #endif
74 
75 /*
76  *	Local Function Prototypes
77  */
78 static int apic_handle_defconf();
79 static int apic_parse_mpct(caddr_t mpct, int bypass);
80 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size);
81 static int apic_checksum(caddr_t bptr, int len);
82 static int apic_find_bus_type(char *bus);
83 static int apic_find_bus(int busid);
84 static struct apic_io_intr *apic_find_io_intr(int irqno);
85 static int apic_find_free_irq(int start, int end);
86 struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
87 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp);
88 static void apic_free_apic_cpus(void);
89 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr);
90 static int apic_acpi_enter_apicmode(void);
91 
92 int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
93     int child_ipin, struct apic_io_intr **intrp);
94 int apic_find_bus_id(int bustype);
95 int apic_find_intin(uchar_t ioapic, uchar_t intin);
96 void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
97 
98 int apic_debug_mps_id = 0;	/* 1 - print MPS ID strings */
99 
100 /* ACPI SCI interrupt configuration; -1 if SCI not used */
101 int apic_sci_vect = -1;
102 iflag_t apic_sci_flags;
103 
104 #if !defined(__xpv)
105 /* ACPI HPET interrupt configuration; -1 if HPET not used */
106 int apic_hpet_vect = -1;
107 iflag_t apic_hpet_flags;
108 #endif
109 
110 /*
111  * psm name pointer
112  */
113 char *psm_name;
114 
115 /* ACPI support routines */
116 static int acpi_probe(char *);
117 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
118     int *pci_irqp, iflag_t *intr_flagp);
119 
120 int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
121     int ipin, int *pci_irqp, iflag_t *intr_flagp);
122 uchar_t acpi_find_ioapic(int irq);
123 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2);
124 
125 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
126 int apic_max_reps_clear_pending = 1000;
127 
128 int	apic_intr_policy = INTR_ROUND_ROBIN;
129 
130 int	apic_next_bind_cpu = 1; /* For round robin assignment */
131 				/* start with cpu 1 */
132 
133 /*
134  * If enabled, the distribution works as follows:
135  * On every interrupt entry, the current ipl for the CPU is set in cpu_info
136  * and the irq corresponding to the ipl is also set in the aci_current array.
137  * interrupt exit and setspl (due to soft interrupts) will cause the current
138  * ipl to be be changed. This is cache friendly as these frequently used
139  * paths write into a per cpu structure.
140  *
141  * Sampling is done by checking the structures for all CPUs and incrementing
142  * the busy field of the irq (if any) executing on each CPU and the busy field
143  * of the corresponding CPU.
144  * In periodic mode this is done on every clock interrupt.
145  * In one-shot mode, this is done thru a cyclic with an interval of
146  * apic_redistribute_sample_interval (default 10 milli sec).
147  *
148  * Every apic_sample_factor_redistribution times we sample, we do computations
149  * to decide which interrupt needs to be migrated (see comments
150  * before apic_intr_redistribute().
151  */
152 
153 /*
154  * Following 3 variables start as % and can be patched or set using an
155  * API to be defined in future. They will be scaled to
156  * sample_factor_redistribution which is in turn set to hertz+1 (in periodic
157  * mode), or 101 in one-shot mode to stagger it away from one sec processing
158  */
159 
160 int	apic_int_busy_mark = 60;
161 int	apic_int_free_mark = 20;
162 int	apic_diff_for_redistribution = 10;
163 
164 /* sampling interval for interrupt redistribution for dynamic migration */
165 int	apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */
166 
167 /*
168  * number of times we sample before deciding to redistribute interrupts
169  * for dynamic migration
170  */
171 int	apic_sample_factor_redistribution = 101;
172 
173 int	apic_redist_cpu_skip = 0;
174 int	apic_num_imbalance = 0;
175 int	apic_num_rebind = 0;
176 
177 /*
178  * Maximum number of APIC CPUs in the system, -1 indicates that dynamic
179  * allocation of CPU ids is disabled.
180  */
181 int 	apic_max_nproc = -1;
182 int	apic_nproc = 0;
183 size_t	apic_cpus_size = 0;
184 int	apic_defconf = 0;
185 int	apic_irq_translate = 0;
186 int	apic_spec_rev = 0;
187 int	apic_imcrp = 0;
188 
189 int	apic_use_acpi = 1;	/* 1 = use ACPI, 0 = don't use ACPI */
190 int	apic_use_acpi_madt_only = 0;	/* 1=ONLY use MADT from ACPI */
191 
192 /*
193  * For interrupt link devices, if apic_unconditional_srs is set, an irq resource
194  * will be assigned (via _SRS). If it is not set, use the current
195  * irq setting (via _CRS), but only if that irq is in the set of possible
196  * irqs (returned by _PRS) for the device.
197  */
198 int	apic_unconditional_srs = 1;
199 
200 /*
201  * For interrupt link devices, if apic_prefer_crs is set when we are
202  * assigning an IRQ resource to a device, prefer the current IRQ setting
203  * over other possible irq settings under same conditions.
204  */
205 
206 int	apic_prefer_crs = 1;
207 
208 uchar_t apic_io_id[MAX_IO_APIC];
209 volatile uint32_t *apicioadr[MAX_IO_APIC];
210 uchar_t	apic_io_ver[MAX_IO_APIC];
211 uchar_t	apic_io_vectbase[MAX_IO_APIC];
212 uchar_t	apic_io_vectend[MAX_IO_APIC];
213 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1];
214 uint32_t apic_physaddr[MAX_IO_APIC];
215 
216 boolean_t ioapic_mask_workaround[MAX_IO_APIC];
217 
218 /*
219  * First available slot to be used as IRQ index into the apic_irq_table
220  * for those interrupts (like MSI/X) that don't have a physical IRQ.
221  */
222 int apic_first_avail_irq  = APIC_FIRST_FREE_IRQ;
223 
224 /*
225  * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound
226  * and bound elements of cpus_info and the temp_cpu element of irq_struct
227  */
228 lock_t	apic_ioapic_lock;
229 
230 int	apic_io_max = 0;	/* no. of i/o apics enabled */
231 
232 struct apic_io_intr *apic_io_intrp = NULL;
233 static	struct apic_bus	*apic_busp;
234 
235 uchar_t	apic_resv_vector[MAXIPL+1];
236 
237 char	apic_level_intr[APIC_MAX_VECTOR+1];
238 
239 uint32_t	eisa_level_intr_mask = 0;
240 	/* At least MSB will be set if EISA bus */
241 
242 int	apic_pci_bus_total = 0;
243 uchar_t	apic_single_pci_busid = 0;
244 
245 /*
246  * airq_mutex protects additions to the apic_irq_table - the first
247  * pointer and any airq_nexts off of that one. It also protects
248  * apic_max_device_irq & apic_min_device_irq. It also guarantees
249  * that share_id is unique as new ids are generated only when new
250  * irq_t structs are linked in. Once linked in the structs are never
251  * deleted. temp_cpu & mps_intr_index field indicate if it is programmed
252  * or allocated. Note that there is a slight gap between allocating in
253  * apic_introp_xlate and programming in addspl.
254  */
255 kmutex_t	airq_mutex;
256 apic_irq_t	*apic_irq_table[APIC_MAX_VECTOR+1];
257 int		apic_max_device_irq = 0;
258 int		apic_min_device_irq = APIC_MAX_VECTOR;
259 
260 typedef struct prs_irq_list_ent {
261 	int			list_prio;
262 	int32_t			irq;
263 	iflag_t			intrflags;
264 	acpi_prs_private_t	prsprv;
265 	struct prs_irq_list_ent	*next;
266 } prs_irq_list_t;
267 
268 
269 /*
270  * ACPI variables
271  */
272 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */
273 int apic_enable_acpi = 0;
274 
275 /* ACPI Multiple APIC Description Table ptr */
276 static	ACPI_TABLE_MADT *acpi_mapic_dtp = NULL;
277 
278 /* ACPI Interrupt Source Override Structure ptr */
279 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL;
280 int acpi_iso_cnt = 0;
281 
282 /* ACPI Non-maskable Interrupt Sources ptr */
283 static	ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL;
284 static	int acpi_nmi_scnt = 0;
285 static	ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL;
286 static	int acpi_nmi_ccnt = 0;
287 
288 /*
289  * The following added to identify a software poweroff method if available.
290  */
291 
292 static struct {
293 	int	poweroff_method;
294 	char	oem_id[APIC_MPS_OEM_ID_LEN + 1];	/* MAX + 1 for NULL */
295 	char	prod_id[APIC_MPS_PROD_ID_LEN + 1];	/* MAX + 1 for NULL */
296 } apic_mps_ids[] = {
297 	{ APIC_POWEROFF_VIA_RTC,	"INTEL",	"ALDER" },   /* 4300 */
298 	{ APIC_POWEROFF_VIA_RTC,	"NCR",		"AMC" },    /* 4300 */
299 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"A450NX" },  /* 4400? */
300 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AD450NX" }, /* 4400 */
301 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AC450NX" }, /* 4400R */
302 	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"S450NX" },  /* S50  */
303 	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"SC450NX" }  /* S50? */
304 };
305 
306 int	apic_poweroff_method = APIC_POWEROFF_NONE;
307 
308 /*
309  * Auto-configuration routines
310  */
311 
312 /*
313  * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here
314  * May work with 1.1 - but not guaranteed.
315  * According to the MP Spec, the MP floating pointer structure
316  * will be searched in the order described below:
317  * 1. In the first kilobyte of Extended BIOS Data Area (EBDA)
318  * 2. Within the last kilobyte of system base memory
319  * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh
320  * Once we find the right signature with proper checksum, we call
321  * either handle_defconf or parse_mpct to get all info necessary for
322  * subsequent operations.
323  */
324 int
325 apic_probe_common(char *modname)
326 {
327 	uint32_t mpct_addr, ebda_start = 0, base_mem_end;
328 	caddr_t	biosdatap;
329 	caddr_t	mpct = 0;
330 	caddr_t	fptr;
331 	int	i, mpct_size, mapsize, retval = PSM_FAILURE;
332 	ushort_t	ebda_seg, base_mem_size;
333 	struct	apic_mpfps_hdr	*fpsp;
334 	struct	apic_mp_cnf_hdr	*hdrp;
335 	int bypass_cpu_and_ioapics_in_mptables;
336 	int acpi_user_options;
337 
338 	if (apic_forceload < 0)
339 		return (retval);
340 
341 	/*
342 	 * Remember who we are
343 	 */
344 	psm_name = modname;
345 
346 	/* Allow override for MADT-only mode */
347 	acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0,
348 	    "acpi-user-options", 0);
349 	apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0);
350 
351 	/* Allow apic_use_acpi to override MADT-only mode */
352 	if (!apic_use_acpi)
353 		apic_use_acpi_madt_only = 0;
354 
355 	retval = acpi_probe(modname);
356 
357 	/*
358 	 * mapin the bios data area 40:0
359 	 * 40:13h - two-byte location reports the base memory size
360 	 * 40:0Eh - two-byte location for the exact starting address of
361 	 *	    the EBDA segment for EISA
362 	 */
363 	biosdatap = psm_map_phys(0x400, 0x20, PROT_READ);
364 	if (!biosdatap)
365 		goto apic_ret;
366 	fpsp = (struct apic_mpfps_hdr *)NULL;
367 	mapsize = MPFPS_RAM_WIN_LEN;
368 	/*LINTED: pointer cast may result in improper alignment */
369 	ebda_seg = *((ushort_t *)(biosdatap+0xe));
370 	/* check the 1k of EBDA */
371 	if (ebda_seg) {
372 		ebda_start = ((uint32_t)ebda_seg) << 4;
373 		fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ);
374 		if (fptr) {
375 			if (!(fpsp =
376 			    apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN)))
377 				psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
378 		}
379 	}
380 	/* If not in EBDA, check the last k of system base memory */
381 	if (!fpsp) {
382 		/*LINTED: pointer cast may result in improper alignment */
383 		base_mem_size = *((ushort_t *)(biosdatap + 0x13));
384 
385 		if (base_mem_size > 512)
386 			base_mem_end = 639 * 1024;
387 		else
388 			base_mem_end = 511 * 1024;
389 		/* if ebda == last k of base mem, skip to check BIOS ROM */
390 		if (base_mem_end != ebda_start) {
391 
392 			fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN,
393 			    PROT_READ);
394 
395 			if (fptr) {
396 				if (!(fpsp = apic_find_fps_sig(fptr,
397 				    MPFPS_RAM_WIN_LEN)))
398 					psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
399 			}
400 		}
401 	}
402 	psm_unmap_phys(biosdatap, 0x20);
403 
404 	/* If still cannot find it, check the BIOS ROM space */
405 	if (!fpsp) {
406 		mapsize = MPFPS_ROM_WIN_LEN;
407 		fptr = psm_map_phys(MPFPS_ROM_WIN_START,
408 		    MPFPS_ROM_WIN_LEN, PROT_READ);
409 		if (fptr) {
410 			if (!(fpsp =
411 			    apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) {
412 				psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
413 				goto apic_ret;
414 			}
415 		}
416 	}
417 
418 	if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) {
419 		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
420 		goto apic_ret;
421 	}
422 
423 	apic_spec_rev = fpsp->mpfps_spec_rev;
424 	if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) {
425 		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
426 		goto apic_ret;
427 	}
428 
429 	/* check IMCR is present or not */
430 	apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP;
431 
432 	/* check default configuration (dual CPUs) */
433 	if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) {
434 		psm_unmap_phys(fptr, mapsize);
435 		if ((retval = apic_handle_defconf()) != PSM_SUCCESS)
436 			return (retval);
437 
438 		goto apic_ret;
439 	}
440 
441 	/* MP Configuration Table */
442 	mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr);
443 
444 	psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */
445 
446 	/*
447 	 * Map in enough memory for the MP Configuration Table Header.
448 	 * Use this table to read the total length of the BIOS data and
449 	 * map in all the info
450 	 */
451 	/*LINTED: pointer cast may result in improper alignment */
452 	hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr,
453 	    sizeof (struct apic_mp_cnf_hdr), PROT_READ);
454 	if (!hdrp)
455 		goto apic_ret;
456 
457 	/* check mp configuration table signature PCMP */
458 	if (hdrp->mpcnf_sig != 0x504d4350) {
459 		psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
460 		goto apic_ret;
461 	}
462 	mpct_size = (int)hdrp->mpcnf_tbl_length;
463 
464 	apic_set_pwroff_method_from_mpcnfhdr(hdrp);
465 
466 	psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
467 
468 	if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) {
469 		/* This is an ACPI machine No need for further checks */
470 		goto apic_ret;
471 	}
472 
473 	/*
474 	 * Map in the entries for this machine, ie. Processor
475 	 * Entry Tables, Bus Entry Tables, etc.
476 	 * They are in fixed order following one another
477 	 */
478 	mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ);
479 	if (!mpct)
480 		goto apic_ret;
481 
482 	if (apic_checksum(mpct, mpct_size) != 0)
483 		goto apic_fail1;
484 
485 	/*LINTED: pointer cast may result in improper alignment */
486 	hdrp = (struct apic_mp_cnf_hdr *)mpct;
487 	apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic,
488 	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
489 	if (!apicadr)
490 		goto apic_fail1;
491 
492 	/* Parse all information in the tables */
493 	bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS);
494 	if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) ==
495 	    PSM_SUCCESS) {
496 		retval = PSM_SUCCESS;
497 		goto apic_ret;
498 	}
499 
500 apic_fail1:
501 	psm_unmap_phys(mpct, mpct_size);
502 	mpct = NULL;
503 
504 apic_ret:
505 	if (retval == PSM_SUCCESS) {
506 		extern int apic_ioapic_method_probe();
507 
508 		if ((retval = apic_ioapic_method_probe()) == PSM_SUCCESS)
509 			return (PSM_SUCCESS);
510 	}
511 
512 	for (i = 0; i < apic_io_max; i++)
513 		mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
514 	if (apic_cpus) {
515 		kmem_free(apic_cpus, apic_cpus_size);
516 		apic_cpus = NULL;
517 	}
518 	if (apicadr) {
519 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
520 		apicadr = NULL;
521 	}
522 	if (mpct)
523 		psm_unmap_phys(mpct, mpct_size);
524 
525 	return (retval);
526 }
527 
528 static void
529 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp)
530 {
531 	int	i;
532 
533 	for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0]));
534 	    i++) {
535 		if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id,
536 		    strlen(apic_mps_ids[i].oem_id)) == 0) &&
537 		    (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id,
538 		    strlen(apic_mps_ids[i].prod_id)) == 0)) {
539 
540 			apic_poweroff_method = apic_mps_ids[i].poweroff_method;
541 			break;
542 		}
543 	}
544 
545 	if (apic_debug_mps_id != 0) {
546 		cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'"
547 		    "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n",
548 		    psm_name,
549 		    hdrp->mpcnf_oem_str[0],
550 		    hdrp->mpcnf_oem_str[1],
551 		    hdrp->mpcnf_oem_str[2],
552 		    hdrp->mpcnf_oem_str[3],
553 		    hdrp->mpcnf_oem_str[4],
554 		    hdrp->mpcnf_oem_str[5],
555 		    hdrp->mpcnf_oem_str[6],
556 		    hdrp->mpcnf_oem_str[7],
557 		    hdrp->mpcnf_prod_str[0],
558 		    hdrp->mpcnf_prod_str[1],
559 		    hdrp->mpcnf_prod_str[2],
560 		    hdrp->mpcnf_prod_str[3],
561 		    hdrp->mpcnf_prod_str[4],
562 		    hdrp->mpcnf_prod_str[5],
563 		    hdrp->mpcnf_prod_str[6],
564 		    hdrp->mpcnf_prod_str[7],
565 		    hdrp->mpcnf_prod_str[8],
566 		    hdrp->mpcnf_prod_str[9],
567 		    hdrp->mpcnf_prod_str[10],
568 		    hdrp->mpcnf_prod_str[11]);
569 	}
570 }
571 
572 static void
573 apic_free_apic_cpus(void)
574 {
575 	if (apic_cpus != NULL) {
576 		kmem_free(apic_cpus, apic_cpus_size);
577 		apic_cpus = NULL;
578 		apic_cpus_size = 0;
579 	}
580 }
581 
582 static int
583 acpi_probe(char *modname)
584 {
585 	int			i, intmax, index;
586 	uint32_t		id, ver;
587 	int			acpi_verboseflags = 0;
588 	int			madt_seen, madt_size;
589 	ACPI_SUBTABLE_HEADER		*ap;
590 	ACPI_MADT_LOCAL_APIC	*mpa;
591 	ACPI_MADT_LOCAL_X2APIC	*mpx2a;
592 	ACPI_MADT_IO_APIC		*mia;
593 	ACPI_MADT_IO_SAPIC		*misa;
594 	ACPI_MADT_INTERRUPT_OVERRIDE	*mio;
595 	ACPI_MADT_NMI_SOURCE		*mns;
596 	ACPI_MADT_INTERRUPT_SOURCE	*mis;
597 	ACPI_MADT_LOCAL_APIC_NMI	*mlan;
598 	ACPI_MADT_LOCAL_X2APIC_NMI	*mx2alan;
599 	ACPI_MADT_LOCAL_APIC_OVERRIDE	*mao;
600 	int			sci;
601 	iflag_t			sci_flags;
602 	volatile uint32_t	*ioapic;
603 	int			ioapic_ix;
604 	uint32_t		*local_ids;
605 	uint32_t		*proc_ids;
606 	uchar_t			hid;
607 	int			warned = 0;
608 
609 	if (!apic_use_acpi)
610 		return (PSM_FAILURE);
611 
612 	if (AcpiGetTable(ACPI_SIG_MADT, 1,
613 	    (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK)
614 		return (PSM_FAILURE);
615 
616 	apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address,
617 	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
618 	if (!apicadr)
619 		return (PSM_FAILURE);
620 
621 	if ((local_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
622 	    KM_NOSLEEP)) == NULL)
623 		return (PSM_FAILURE);
624 
625 	if ((proc_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
626 	    KM_NOSLEEP)) == NULL) {
627 		kmem_free(local_ids, NCPU * sizeof (uint32_t));
628 		return (PSM_FAILURE);
629 	}
630 
631 	id = apic_reg_ops->apic_read(APIC_LID_REG);
632 	local_ids[0] = (uchar_t)(id >> 24);
633 	apic_nproc = index = 1;
634 	apic_io_max = 0;
635 
636 	ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1);
637 	madt_size = acpi_mapic_dtp->Header.Length;
638 	madt_seen = sizeof (*acpi_mapic_dtp);
639 
640 	while (madt_seen < madt_size) {
641 		switch (ap->Type) {
642 		case ACPI_MADT_TYPE_LOCAL_APIC:
643 			mpa = (ACPI_MADT_LOCAL_APIC *) ap;
644 			if (mpa->LapicFlags & ACPI_MADT_ENABLED) {
645 				if (mpa->Id == local_ids[0]) {
646 					ASSERT(index == 1);
647 					proc_ids[0] = mpa->ProcessorId;
648 				} else if (apic_nproc < NCPU && use_mp &&
649 				    apic_nproc < boot_ncpus) {
650 					local_ids[index] = mpa->Id;
651 					proc_ids[index] = mpa->ProcessorId;
652 					index++;
653 					apic_nproc++;
654 				} else if (apic_nproc == NCPU && !warned) {
655 					cmn_err(CE_WARN, "%s: CPU limit "
656 					    "exceeded"
657 #if !defined(__amd64)
658 					    " for 32-bit mode"
659 #endif
660 					    "; Solaris will use %d CPUs.",
661 					    psm_name,  NCPU);
662 					warned = 1;
663 				}
664 			}
665 			break;
666 
667 		case ACPI_MADT_TYPE_IO_APIC:
668 			mia = (ACPI_MADT_IO_APIC *) ap;
669 			if (apic_io_max < MAX_IO_APIC) {
670 				ioapic_ix = apic_io_max;
671 				apic_io_id[apic_io_max] = mia->Id;
672 				apic_io_vectbase[apic_io_max] =
673 				    mia->GlobalIrqBase;
674 				apic_physaddr[apic_io_max] =
675 				    (uint32_t)mia->Address;
676 				ioapic = apicioadr[apic_io_max] =
677 				    mapin_ioapic((uint32_t)mia->Address,
678 				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
679 				if (!ioapic)
680 					goto cleanup;
681 				ioapic_mask_workaround[apic_io_max] =
682 				    apic_is_ioapic_AMD_813x(mia->Address);
683 				apic_io_max++;
684 			}
685 			break;
686 
687 		case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:
688 			mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap;
689 			if (acpi_isop == NULL)
690 				acpi_isop = mio;
691 			acpi_iso_cnt++;
692 			break;
693 
694 		case ACPI_MADT_TYPE_NMI_SOURCE:
695 			/* UNIMPLEMENTED */
696 			mns = (ACPI_MADT_NMI_SOURCE *) ap;
697 			if (acpi_nmi_sp == NULL)
698 				acpi_nmi_sp = mns;
699 			acpi_nmi_scnt++;
700 
701 			cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n",
702 			    mns->GlobalIrq, mns->IntiFlags);
703 			break;
704 
705 		case ACPI_MADT_TYPE_LOCAL_APIC_NMI:
706 			/* UNIMPLEMENTED */
707 			mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap;
708 			if (acpi_nmi_cp == NULL)
709 				acpi_nmi_cp = mlan;
710 			acpi_nmi_ccnt++;
711 
712 			cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n",
713 			    mlan->ProcessorId, mlan->IntiFlags,
714 			    mlan->Lint);
715 			break;
716 
717 		case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:
718 			/* UNIMPLEMENTED */
719 			mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap;
720 			cmn_err(CE_NOTE, "!apic: address override: %lx\n",
721 			    (long)mao->Address);
722 			break;
723 
724 		case ACPI_MADT_TYPE_IO_SAPIC:
725 			/* UNIMPLEMENTED */
726 			misa = (ACPI_MADT_IO_SAPIC *) ap;
727 
728 			cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n",
729 			    misa->Id, misa->GlobalIrqBase,
730 			    (long)misa->Address);
731 			break;
732 
733 		case ACPI_MADT_TYPE_INTERRUPT_SOURCE:
734 			/* UNIMPLEMENTED */
735 			mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap;
736 
737 			cmn_err(CE_NOTE,
738 			    "!apic: irq source: %d %d %d 0x%x %d %d\n",
739 			    mis->Id, mis->Eid, mis->GlobalIrq,
740 			    mis->IntiFlags, mis->Type,
741 			    mis->IoSapicVector);
742 			break;
743 
744 		case ACPI_MADT_TYPE_LOCAL_X2APIC:
745 			mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap;
746 
747 			/*
748 			 * All logical processors with APIC ID values
749 			 * of 255 and greater will have their APIC
750 			 * reported through Processor X2APIC structure.
751 			 * All logical processors with APIC ID less than
752 			 * 255 will have their APIC reported through
753 			 * Processor Local APIC.
754 			 */
755 			if ((mpx2a->LapicFlags & ACPI_MADT_ENABLED) &&
756 			    (mpx2a->LocalApicId >> 8)) {
757 				if (apic_nproc < NCPU && use_mp &&
758 				    apic_nproc < boot_ncpus) {
759 					local_ids[index] = mpx2a->LocalApicId;
760 					proc_ids[index] = mpa->ProcessorId;
761 					index++;
762 					apic_nproc++;
763 				} else if (apic_nproc == NCPU && !warned) {
764 					cmn_err(CE_WARN, "%s: CPU limit "
765 					    "exceeded"
766 #if !defined(__amd64)
767 					    " for 32-bit mode"
768 #endif
769 					    "; Solaris will use %d CPUs.",
770 					    psm_name,  NCPU);
771 					warned = 1;
772 				}
773 			}
774 
775 			break;
776 
777 		case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:
778 			/* UNIMPLEMENTED */
779 			mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap;
780 			if (mx2alan->Uid >> 8)
781 				acpi_nmi_ccnt++;
782 
783 #ifdef	DEBUG
784 			cmn_err(CE_NOTE,
785 			    "!apic: local x2apic nmi: %d 0x%x %d\n",
786 			    mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint);
787 #endif
788 
789 			break;
790 
791 		case ACPI_MADT_TYPE_RESERVED:
792 		default:
793 			break;
794 		}
795 
796 		/* advance to next entry */
797 		madt_seen += ap->Length;
798 		ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length);
799 	}
800 
801 	/*
802 	 * allocate enough space for possible hot-adding of CPUs.
803 	 * max_ncpus may be less than apic_nproc if it's set by user.
804 	 */
805 	if (plat_dr_support_cpu()) {
806 		apic_max_nproc = max_ncpus;
807 	}
808 	apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus);
809 	if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL)
810 		goto cleanup;
811 
812 	/*
813 	 * ACPI doesn't provide the local apic ver, get it directly from the
814 	 * local apic
815 	 */
816 	ver = apic_reg_ops->apic_read(APIC_VERS_REG);
817 	for (i = 0; i < apic_nproc; i++) {
818 		apic_cpus[i].aci_local_id = local_ids[i];
819 		apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF);
820 		apic_cpus[i].aci_processor_id = proc_ids[i];
821 		/* Only build mapping info for CPUs present at boot. */
822 		if (i < boot_ncpus)
823 			(void) acpica_map_cpu(i, proc_ids[i]);
824 	}
825 
826 	/*
827 	 * To support CPU dynamic reconfiguration, the apic CPU info structure
828 	 * for each possible CPU will be pre-allocated at boot time.
829 	 * The state for each apic CPU info structure will be assigned according
830 	 * to the following rules:
831 	 * Rule 1:
832 	 * 	Slot index range: [0, min(apic_nproc, boot_ncpus))
833 	 *	State flags: 0
834 	 *	Note: cpu exists and will be configured/enabled at boot time
835 	 * Rule 2:
836 	 * 	Slot index range: [boot_ncpus, apic_nproc)
837 	 *	State flags: APIC_CPU_FREE | APIC_CPU_DIRTY
838 	 *	Note: cpu exists but won't be configured/enabled at boot time
839 	 * Rule 3:
840 	 * 	Slot index range: [apic_nproc, boot_ncpus)
841 	 *	State flags: APIC_CPU_FREE
842 	 *	Note: cpu doesn't exist at boot time
843 	 * Rule 4:
844 	 * 	Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus)
845 	 *	State flags: APIC_CPU_FREE
846 	 *	Note: cpu doesn't exist at boot time
847 	 */
848 	CPUSET_ZERO(apic_cpumask);
849 	for (i = 0; i < min(boot_ncpus, apic_nproc); i++) {
850 		CPUSET_ADD(apic_cpumask, i);
851 		apic_cpus[i].aci_status = 0;
852 	}
853 	for (i = boot_ncpus; i < apic_nproc; i++) {
854 		apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY;
855 	}
856 	for (i = apic_nproc; i < boot_ncpus; i++) {
857 		apic_cpus[i].aci_status = APIC_CPU_FREE;
858 	}
859 	for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) {
860 		apic_cpus[i].aci_status = APIC_CPU_FREE;
861 	}
862 
863 	for (i = 0; i < apic_io_max; i++) {
864 		ioapic_ix = i;
865 
866 		/*
867 		 * need to check Sitka on the following acpi problem
868 		 * On the Sitka, the ioapic's apic_id field isn't reporting
869 		 * the actual io apic id. We have reported this problem
870 		 * to Intel. Until they fix the problem, we will get the
871 		 * actual id directly from the ioapic.
872 		 */
873 		id = ioapic_read(ioapic_ix, APIC_ID_CMD);
874 		hid = (uchar_t)(id >> 24);
875 
876 		if (hid != apic_io_id[i]) {
877 			if (apic_io_id[i] == 0)
878 				apic_io_id[i] = hid;
879 			else { /* set ioapic id to whatever reported by ACPI */
880 				id = ((uint32_t)apic_io_id[i]) << 24;
881 				ioapic_write(ioapic_ix, APIC_ID_CMD, id);
882 			}
883 		}
884 		ver = ioapic_read(ioapic_ix, APIC_VERS_CMD);
885 		apic_io_ver[i] = (uchar_t)(ver & 0xff);
886 		intmax = (ver >> 16) & 0xff;
887 		apic_io_vectend[i] = apic_io_vectbase[i] + intmax;
888 		if (apic_first_avail_irq <= apic_io_vectend[i])
889 			apic_first_avail_irq = apic_io_vectend[i] + 1;
890 	}
891 
892 
893 	/*
894 	 * Process SCI configuration here
895 	 * An error may be returned here if
896 	 * acpi-user-options specifies legacy mode
897 	 * (no SCI, no ACPI mode)
898 	 */
899 	if (acpica_get_sci(&sci, &sci_flags) != AE_OK)
900 		sci = -1;
901 
902 	/*
903 	 * Now call acpi_init() to generate namespaces
904 	 * If this fails, we don't attempt to use ACPI
905 	 * even if we were able to get a MADT above
906 	 */
907 	if (acpica_init() != AE_OK)
908 		goto cleanup;
909 
910 	/*
911 	 * Call acpica_build_processor_map() now that we have
912 	 * ACPI namesspace access
913 	 */
914 	(void) acpica_build_processor_map();
915 
916 	/*
917 	 * Squirrel away the SCI and flags for later on
918 	 * in apic_picinit() when we're ready
919 	 */
920 	apic_sci_vect = sci;
921 	apic_sci_flags = sci_flags;
922 
923 	if (apic_verbose & APIC_VERBOSE_IRQ_FLAG)
924 		acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG;
925 
926 	if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG)
927 		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG;
928 
929 	if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG)
930 		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG;
931 
932 	if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE)
933 		goto cleanup;
934 
935 	/* Enable ACPI APIC interrupt routing */
936 	if (apic_acpi_enter_apicmode() != PSM_FAILURE) {
937 		build_reserved_irqlist((uchar_t *)apic_reserved_irqlist);
938 		apic_enable_acpi = 1;
939 		if (apic_sci_vect > 0) {
940 			acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT);
941 		}
942 		if (apic_use_acpi_madt_only) {
943 			cmn_err(CE_CONT,
944 			    "?Using ACPI for CPU/IOAPIC information ONLY\n");
945 		}
946 
947 #if !defined(__xpv)
948 		/*
949 		 * probe ACPI for hpet information here which is used later
950 		 * in apic_picinit().
951 		 */
952 		if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) {
953 			cmn_err(CE_NOTE, "!ACPI HPET table query failed\n");
954 		}
955 #endif
956 
957 		kmem_free(local_ids, NCPU * sizeof (uint32_t));
958 		kmem_free(proc_ids, NCPU * sizeof (uint32_t));
959 		return (PSM_SUCCESS);
960 	}
961 	/* if setting APIC mode failed above, we fall through to cleanup */
962 
963 cleanup:
964 	apic_free_apic_cpus();
965 	if (apicadr != NULL) {
966 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
967 		apicadr = NULL;
968 	}
969 	apic_max_nproc = -1;
970 	apic_nproc = 0;
971 	for (i = 0; i < apic_io_max; i++) {
972 		mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
973 		apicioadr[i] = NULL;
974 	}
975 	apic_io_max = 0;
976 	acpi_isop = NULL;
977 	acpi_iso_cnt = 0;
978 	acpi_nmi_sp = NULL;
979 	acpi_nmi_scnt = 0;
980 	acpi_nmi_cp = NULL;
981 	acpi_nmi_ccnt = 0;
982 	kmem_free(local_ids, NCPU * sizeof (uint32_t));
983 	kmem_free(proc_ids, NCPU * sizeof (uint32_t));
984 	return (PSM_FAILURE);
985 }
986 
987 /*
988  * Handle default configuration. Fill in reqd global variables & tables
989  * Fill all details as MP table does not give any more info
990  */
991 static int
992 apic_handle_defconf()
993 {
994 	uint_t	lid;
995 
996 	/* Failed to probe ACPI MADT tables, disable CPU DR. */
997 	apic_max_nproc = -1;
998 	apic_free_apic_cpus();
999 	plat_dr_disable_cpu();
1000 
1001 	apicioadr[0] = (void *)mapin_ioapic(APIC_IO_ADDR,
1002 	    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1003 	apicadr = (void *)psm_map_phys(APIC_LOCAL_ADDR,
1004 	    APIC_LOCAL_MEMLEN, PROT_READ);
1005 	apic_cpus_size = 2 * sizeof (*apic_cpus);
1006 	apic_cpus = (apic_cpus_info_t *)
1007 	    kmem_zalloc(apic_cpus_size, KM_NOSLEEP);
1008 	if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus))
1009 		goto apic_handle_defconf_fail;
1010 	CPUSET_ONLY(apic_cpumask, 0);
1011 	CPUSET_ADD(apic_cpumask, 1);
1012 	apic_nproc = 2;
1013 	lid = apic_reg_ops->apic_read(APIC_LID_REG);
1014 	apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET);
1015 	/*
1016 	 * According to the PC+MP spec 1.1, the local ids
1017 	 * for the default configuration has to be 0 or 1
1018 	 */
1019 	if (apic_cpus[0].aci_local_id == 1)
1020 		apic_cpus[1].aci_local_id = 0;
1021 	else if (apic_cpus[0].aci_local_id == 0)
1022 		apic_cpus[1].aci_local_id = 1;
1023 	else
1024 		goto apic_handle_defconf_fail;
1025 
1026 	apic_io_id[0] = 2;
1027 	apic_io_max = 1;
1028 	if (apic_defconf >= 5) {
1029 		apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS;
1030 		apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS;
1031 		apic_io_ver[0] = APIC_INTEGRATED_VERS;
1032 	} else {
1033 		apic_cpus[0].aci_local_ver = 0;		/* 82489 DX */
1034 		apic_cpus[1].aci_local_ver = 0;
1035 		apic_io_ver[0] = 0;
1036 	}
1037 	if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6)
1038 		eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1039 		    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1040 	return (PSM_SUCCESS);
1041 
1042 apic_handle_defconf_fail:
1043 	if (apicadr)
1044 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
1045 	if (apicioadr[0])
1046 		mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN);
1047 	return (PSM_FAILURE);
1048 }
1049 
1050 /* Parse the entries in MP configuration table and collect info that we need */
1051 static int
1052 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics)
1053 {
1054 	struct	apic_procent	*procp;
1055 	struct	apic_bus	*busp;
1056 	struct	apic_io_entry	*ioapicp;
1057 	struct	apic_io_intr	*intrp;
1058 	int			ioapic_ix;
1059 	uint_t	lid;
1060 	uint32_t	id;
1061 	uchar_t hid;
1062 	int	warned = 0;
1063 
1064 	/*LINTED: pointer cast may result in improper alignment */
1065 	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1066 
1067 	/* No need to count cpu entries if we won't use them */
1068 	if (!bypass_cpus_and_ioapics) {
1069 
1070 		/* Find max # of CPUS and allocate structure accordingly */
1071 		apic_nproc = 0;
1072 		CPUSET_ZERO(apic_cpumask);
1073 		while (procp->proc_entry == APIC_CPU_ENTRY) {
1074 			if (procp->proc_cpuflags & CPUFLAGS_EN) {
1075 				if (apic_nproc < NCPU && use_mp &&
1076 				    apic_nproc < boot_ncpus) {
1077 					CPUSET_ADD(apic_cpumask, apic_nproc);
1078 					apic_nproc++;
1079 				} else if (apic_nproc == NCPU && !warned) {
1080 					cmn_err(CE_WARN, "%s: CPU limit "
1081 					    "exceeded"
1082 #if !defined(__amd64)
1083 					    " for 32-bit mode"
1084 #endif
1085 					    "; Solaris will use %d CPUs.",
1086 					    psm_name,  NCPU);
1087 					warned = 1;
1088 				}
1089 
1090 			}
1091 			procp++;
1092 		}
1093 		apic_cpus_size = apic_nproc * sizeof (*apic_cpus);
1094 		if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *)
1095 		    kmem_zalloc(apic_cpus_size, KM_NOSLEEP)))
1096 			return (PSM_FAILURE);
1097 	}
1098 
1099 	/*LINTED: pointer cast may result in improper alignment */
1100 	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1101 
1102 	/*
1103 	 * start with index 1 as 0 needs to be filled in with Boot CPU, but
1104 	 * if we're bypassing this information, it has already been filled
1105 	 * in by acpi_probe(), so don't overwrite it.
1106 	 */
1107 	if (!bypass_cpus_and_ioapics)
1108 		apic_nproc = 1;
1109 
1110 	while (procp->proc_entry == APIC_CPU_ENTRY) {
1111 		/* check whether the cpu exists or not */
1112 		if (!bypass_cpus_and_ioapics &&
1113 		    procp->proc_cpuflags & CPUFLAGS_EN) {
1114 			if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */
1115 				lid = apic_reg_ops->apic_read(APIC_LID_REG);
1116 				apic_cpus[0].aci_local_id = procp->proc_apicid;
1117 				if (apic_cpus[0].aci_local_id !=
1118 				    (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) {
1119 					return (PSM_FAILURE);
1120 				}
1121 				apic_cpus[0].aci_local_ver =
1122 				    procp->proc_version;
1123 			} else if (apic_nproc < NCPU && use_mp &&
1124 			    apic_nproc < boot_ncpus) {
1125 				apic_cpus[apic_nproc].aci_local_id =
1126 				    procp->proc_apicid;
1127 
1128 				apic_cpus[apic_nproc].aci_local_ver =
1129 				    procp->proc_version;
1130 				apic_nproc++;
1131 
1132 			}
1133 		}
1134 		procp++;
1135 	}
1136 
1137 	/*
1138 	 * Save start of bus entries for later use.
1139 	 * Get EISA level cntrl if EISA bus is present.
1140 	 * Also get the CPI bus id for single CPI bus case
1141 	 */
1142 	apic_busp = busp = (struct apic_bus *)procp;
1143 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1144 		lid = apic_find_bus_type((char *)&busp->bus_str1);
1145 		if (lid	== BUS_EISA) {
1146 			eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1147 			    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1148 		} else if (lid == BUS_PCI) {
1149 			/*
1150 			 * apic_single_pci_busid will be used only if
1151 			 * apic_pic_bus_total is equal to 1
1152 			 */
1153 			apic_pci_bus_total++;
1154 			apic_single_pci_busid = busp->bus_id;
1155 		}
1156 		busp++;
1157 	}
1158 
1159 	ioapicp = (struct apic_io_entry *)busp;
1160 
1161 	if (!bypass_cpus_and_ioapics)
1162 		apic_io_max = 0;
1163 	do {
1164 		if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) {
1165 			if (ioapicp->io_flags & IOAPIC_FLAGS_EN) {
1166 				apic_io_id[apic_io_max] = ioapicp->io_apicid;
1167 				apic_io_ver[apic_io_max] = ioapicp->io_version;
1168 				apicioadr[apic_io_max] =
1169 				    (void *)mapin_ioapic(
1170 				    (uint32_t)ioapicp->io_apic_addr,
1171 				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1172 
1173 				if (!apicioadr[apic_io_max])
1174 					return (PSM_FAILURE);
1175 
1176 				ioapic_mask_workaround[apic_io_max] =
1177 				    apic_is_ioapic_AMD_813x(
1178 				    ioapicp->io_apic_addr);
1179 
1180 				ioapic_ix = apic_io_max;
1181 				id = ioapic_read(ioapic_ix, APIC_ID_CMD);
1182 				hid = (uchar_t)(id >> 24);
1183 
1184 				if (hid != apic_io_id[apic_io_max]) {
1185 					if (apic_io_id[apic_io_max] == 0)
1186 						apic_io_id[apic_io_max] = hid;
1187 					else {
1188 						/*
1189 						 * set ioapic id to whatever
1190 						 * reported by MPS
1191 						 *
1192 						 * may not need to set index
1193 						 * again ???
1194 						 * take it out and try
1195 						 */
1196 
1197 						id = ((uint32_t)
1198 						    apic_io_id[apic_io_max]) <<
1199 						    24;
1200 
1201 						ioapic_write(ioapic_ix,
1202 						    APIC_ID_CMD, id);
1203 					}
1204 				}
1205 				apic_io_max++;
1206 			}
1207 		}
1208 		ioapicp++;
1209 	} while (ioapicp->io_entry == APIC_IO_ENTRY);
1210 
1211 	apic_io_intrp = (struct apic_io_intr *)ioapicp;
1212 
1213 	intrp = apic_io_intrp;
1214 	while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1215 		if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) ||
1216 		    (apic_find_bus(intrp->intr_busid) == BUS_PCI)) {
1217 			apic_irq_translate = 1;
1218 			break;
1219 		}
1220 		intrp++;
1221 	}
1222 
1223 	return (PSM_SUCCESS);
1224 }
1225 
1226 boolean_t
1227 apic_cpu_in_range(int cpu)
1228 {
1229 	cpu &= ~IRQ_USER_BOUND;
1230 	/* Check whether cpu id is in valid range. */
1231 	if (cpu < 0 || cpu >= apic_nproc) {
1232 		return (B_FALSE);
1233 	} else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) {
1234 		/*
1235 		 * Check whether cpuid is in valid range if CPU DR is enabled.
1236 		 */
1237 		return (B_FALSE);
1238 	} else if (!CPU_IN_SET(apic_cpumask, cpu)) {
1239 		return (B_FALSE);
1240 	}
1241 
1242 	return (B_TRUE);
1243 }
1244 
1245 processorid_t
1246 apic_get_next_bind_cpu(void)
1247 {
1248 	int i, count;
1249 	processorid_t cpuid = 0;
1250 
1251 	for (count = 0; count < apic_nproc; count++) {
1252 		if (apic_next_bind_cpu >= apic_nproc) {
1253 			apic_next_bind_cpu = 0;
1254 		}
1255 		i = apic_next_bind_cpu++;
1256 		if (apic_cpu_in_range(i)) {
1257 			cpuid = i;
1258 			break;
1259 		}
1260 	}
1261 
1262 	return (cpuid);
1263 }
1264 
1265 uint16_t
1266 apic_get_apic_version()
1267 {
1268 	int i;
1269 	uchar_t min_io_apic_ver = 0;
1270 	static uint16_t version;		/* Cache as value is constant */
1271 	static boolean_t found = B_FALSE;	/* Accomodate zero version */
1272 
1273 	if (found == B_FALSE) {
1274 		found = B_TRUE;
1275 
1276 		/*
1277 		 * Don't assume all IO APICs in the system are the same.
1278 		 *
1279 		 * Set to the minimum version.
1280 		 */
1281 		for (i = 0; i < apic_io_max; i++) {
1282 			if ((apic_io_ver[i] != 0) &&
1283 			    ((min_io_apic_ver == 0) ||
1284 			    (min_io_apic_ver >= apic_io_ver[i])))
1285 				min_io_apic_ver = apic_io_ver[i];
1286 		}
1287 
1288 		/* Assume all local APICs are of the same version. */
1289 		version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver;
1290 	}
1291 	return (version);
1292 }
1293 
1294 static struct apic_mpfps_hdr *
1295 apic_find_fps_sig(caddr_t cptr, int len)
1296 {
1297 	int	i;
1298 
1299 	/* Look for the pattern "_MP_" */
1300 	for (i = 0; i < len; i += 16) {
1301 		if ((*(cptr+i) == '_') &&
1302 		    (*(cptr+i+1) == 'M') &&
1303 		    (*(cptr+i+2) == 'P') &&
1304 		    (*(cptr+i+3) == '_'))
1305 		    /*LINTED: pointer cast may result in improper alignment */
1306 			return ((struct apic_mpfps_hdr *)(cptr + i));
1307 	}
1308 	return (NULL);
1309 }
1310 
1311 static int
1312 apic_checksum(caddr_t bptr, int len)
1313 {
1314 	int	i;
1315 	uchar_t	cksum;
1316 
1317 	cksum = 0;
1318 	for (i = 0; i < len; i++)
1319 		cksum += *bptr++;
1320 	return ((int)cksum);
1321 }
1322 
1323 /*
1324  * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge
1325  * needs special handling.  We may need to chase up the device tree,
1326  * using the PCI-PCI Bridge specification's "rotating IPIN assumptions",
1327  * to find the IPIN at the root bus that relates to the IPIN on the
1328  * subsidiary bus (for ACPI or MP).  We may, however, have an entry
1329  * in the MP table or the ACPI namespace for this device itself.
1330  * We handle both cases in the search below.
1331  */
1332 /* this is the non-acpi version */
1333 int
1334 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin,
1335 			struct apic_io_intr **intrp)
1336 {
1337 	dev_info_t *dipp, *dip;
1338 	int pci_irq;
1339 	ddi_acc_handle_t cfg_handle;
1340 	int bridge_devno, bridge_bus;
1341 	int ipin;
1342 
1343 	dip = idip;
1344 
1345 	/*CONSTCOND*/
1346 	while (1) {
1347 		if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) ||
1348 		    (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS))
1349 			return (-1);
1350 		if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) ==
1351 		    PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle,
1352 		    PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) {
1353 			pci_config_teardown(&cfg_handle);
1354 			if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno,
1355 			    NULL) != 0)
1356 				return (-1);
1357 			/*
1358 			 * This is the rotating scheme documented in the
1359 			 * PCI-to-PCI spec.  If the PCI-to-PCI bridge is
1360 			 * behind another PCI-to-PCI bridge, then it needs
1361 			 * to keep ascending until an interrupt entry is
1362 			 * found or the root is reached.
1363 			 */
1364 			ipin = (child_devno + child_ipin) % PCI_INTD;
1365 				if (bridge_bus == 0 && apic_pci_bus_total == 1)
1366 					bridge_bus = (int)apic_single_pci_busid;
1367 				pci_irq = ((bridge_devno & 0x1f) << 2) |
1368 				    (ipin & 0x3);
1369 				if ((*intrp = apic_find_io_intr_w_busid(pci_irq,
1370 				    bridge_bus)) != NULL) {
1371 					return (pci_irq);
1372 				}
1373 			dip = dipp;
1374 			child_devno = bridge_devno;
1375 			child_ipin = ipin;
1376 		} else {
1377 			pci_config_teardown(&cfg_handle);
1378 			return (-1);
1379 		}
1380 	}
1381 	/*LINTED: function will not fall off the bottom */
1382 }
1383 
1384 uchar_t
1385 acpi_find_ioapic(int irq)
1386 {
1387 	int i;
1388 
1389 	for (i = 0; i < apic_io_max; i++) {
1390 		if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i])
1391 			return ((uchar_t)i);
1392 	}
1393 	return (0xFF);	/* shouldn't happen */
1394 }
1395 
1396 /*
1397  * See if two irqs are compatible for sharing a vector.
1398  * Currently we only support sharing of PCI devices.
1399  */
1400 static int
1401 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2)
1402 {
1403 	uint_t	level1, po1;
1404 	uint_t	level2, po2;
1405 
1406 	/* Assume active high by default */
1407 	po1 = 0;
1408 	po2 = 0;
1409 
1410 	if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI)
1411 		return (0);
1412 
1413 	if (iflag1.intr_el == INTR_EL_CONFORM)
1414 		level1 = AV_LEVEL;
1415 	else
1416 		level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1417 
1418 	if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) ||
1419 	    (iflag1.intr_po == INTR_PO_CONFORM)))
1420 		po1 = AV_ACTIVE_LOW;
1421 
1422 	if (iflag2.intr_el == INTR_EL_CONFORM)
1423 		level2 = AV_LEVEL;
1424 	else
1425 		level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1426 
1427 	if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) ||
1428 	    (iflag2.intr_po == INTR_PO_CONFORM)))
1429 		po2 = AV_ACTIVE_LOW;
1430 
1431 	if ((level1 == level2) && (po1 == po2))
1432 		return (1);
1433 
1434 	return (0);
1435 }
1436 
1437 struct apic_io_intr *
1438 apic_find_io_intr_w_busid(int irqno, int busid)
1439 {
1440 	struct	apic_io_intr	*intrp;
1441 
1442 	/*
1443 	 * It can have more than 1 entry with same source bus IRQ,
1444 	 * but unique with the source bus id
1445 	 */
1446 	intrp = apic_io_intrp;
1447 	if (intrp != NULL) {
1448 		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1449 			if (intrp->intr_irq == irqno &&
1450 			    intrp->intr_busid == busid &&
1451 			    intrp->intr_type == IO_INTR_INT)
1452 				return (intrp);
1453 			intrp++;
1454 		}
1455 	}
1456 	APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:"
1457 	    "busid %x:%x\n", irqno, busid));
1458 	return ((struct apic_io_intr *)NULL);
1459 }
1460 
1461 
1462 struct mps_bus_info {
1463 	char	*bus_name;
1464 	int	bus_id;
1465 } bus_info_array[] = {
1466 	"ISA ", BUS_ISA,
1467 	"PCI ", BUS_PCI,
1468 	"EISA ", BUS_EISA,
1469 	"XPRESS", BUS_XPRESS,
1470 	"PCMCIA", BUS_PCMCIA,
1471 	"VL ", BUS_VL,
1472 	"CBUS ", BUS_CBUS,
1473 	"CBUSII", BUS_CBUSII,
1474 	"FUTURE", BUS_FUTURE,
1475 	"INTERN", BUS_INTERN,
1476 	"MBI ", BUS_MBI,
1477 	"MBII ", BUS_MBII,
1478 	"MPI ", BUS_MPI,
1479 	"MPSA ", BUS_MPSA,
1480 	"NUBUS ", BUS_NUBUS,
1481 	"TC ", BUS_TC,
1482 	"VME ", BUS_VME,
1483 	"PCI-E ", BUS_PCIE
1484 };
1485 
1486 static int
1487 apic_find_bus_type(char *bus)
1488 {
1489 	int	i = 0;
1490 
1491 	for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++)
1492 		if (strncmp(bus, bus_info_array[i].bus_name,
1493 		    strlen(bus_info_array[i].bus_name)) == 0)
1494 			return (bus_info_array[i].bus_id);
1495 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus));
1496 	return (0);
1497 }
1498 
1499 static int
1500 apic_find_bus(int busid)
1501 {
1502 	struct	apic_bus	*busp;
1503 
1504 	busp = apic_busp;
1505 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1506 		if (busp->bus_id == busid)
1507 			return (apic_find_bus_type((char *)&busp->bus_str1));
1508 		busp++;
1509 	}
1510 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid));
1511 	return (0);
1512 }
1513 
1514 int
1515 apic_find_bus_id(int bustype)
1516 {
1517 	struct	apic_bus	*busp;
1518 
1519 	busp = apic_busp;
1520 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1521 		if (apic_find_bus_type((char *)&busp->bus_str1) == bustype)
1522 			return (busp->bus_id);
1523 		busp++;
1524 	}
1525 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x",
1526 	    bustype));
1527 	return (-1);
1528 }
1529 
1530 /*
1531  * Check if a particular irq need to be reserved for any io_intr
1532  */
1533 static struct apic_io_intr *
1534 apic_find_io_intr(int irqno)
1535 {
1536 	struct	apic_io_intr	*intrp;
1537 
1538 	intrp = apic_io_intrp;
1539 	if (intrp != NULL) {
1540 		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1541 			if (intrp->intr_irq == irqno &&
1542 			    intrp->intr_type == IO_INTR_INT)
1543 				return (intrp);
1544 			intrp++;
1545 		}
1546 	}
1547 	return ((struct apic_io_intr *)NULL);
1548 }
1549 
1550 /*
1551  * Check if the given ioapicindex intin combination has already been assigned
1552  * an irq. If so return irqno. Else -1
1553  */
1554 int
1555 apic_find_intin(uchar_t ioapic, uchar_t intin)
1556 {
1557 	apic_irq_t *irqptr;
1558 	int	i;
1559 
1560 	/* find ioapic and intin in the apic_irq_table[] and return the index */
1561 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
1562 		irqptr = apic_irq_table[i];
1563 		while (irqptr) {
1564 			if ((irqptr->airq_mps_intr_index >= 0) &&
1565 			    (irqptr->airq_intin_no == intin) &&
1566 			    (irqptr->airq_ioapicindex == ioapic)) {
1567 				APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq "
1568 				    "entry for ioapic:intin %x:%x "
1569 				    "shared interrupts ?", ioapic, intin));
1570 				return (i);
1571 			}
1572 			irqptr = irqptr->airq_next;
1573 		}
1574 	}
1575 	return (-1);
1576 }
1577 
1578 int
1579 apic_allocate_irq(int irq)
1580 {
1581 	int	freeirq, i;
1582 
1583 	if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1)
1584 		if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ,
1585 		    (irq - 1))) == -1) {
1586 			/*
1587 			 * if BIOS really defines every single irq in the mps
1588 			 * table, then don't worry about conflicting with
1589 			 * them, just use any free slot in apic_irq_table
1590 			 */
1591 			for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
1592 				if ((apic_irq_table[i] == NULL) ||
1593 				    apic_irq_table[i]->airq_mps_intr_index ==
1594 				    FREE_INDEX) {
1595 				freeirq = i;
1596 				break;
1597 			}
1598 		}
1599 		if (freeirq == -1) {
1600 			/* This shouldn't happen, but just in case */
1601 			cmn_err(CE_WARN, "%s: NO available IRQ", psm_name);
1602 			return (-1);
1603 		}
1604 	}
1605 	if (apic_irq_table[freeirq] == NULL) {
1606 		apic_irq_table[freeirq] =
1607 		    kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
1608 		if (apic_irq_table[freeirq] == NULL) {
1609 			cmn_err(CE_WARN, "%s: NO memory to allocate IRQ",
1610 			    psm_name);
1611 			return (-1);
1612 		}
1613 		apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT;
1614 		apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX;
1615 	}
1616 	return (freeirq);
1617 }
1618 
1619 static int
1620 apic_find_free_irq(int start, int end)
1621 {
1622 	int	i;
1623 
1624 	for (i = start; i <= end; i++)
1625 		/* Check if any I/O entry needs this IRQ */
1626 		if (apic_find_io_intr(i) == NULL) {
1627 			/* Then see if it is free */
1628 			if ((apic_irq_table[i] == NULL) ||
1629 			    (apic_irq_table[i]->airq_mps_intr_index ==
1630 			    FREE_INDEX)) {
1631 				return (i);
1632 			}
1633 		}
1634 	return (-1);
1635 }
1636 
1637 /*
1638  * compute the polarity, trigger mode and vector for programming into
1639  * the I/O apic and record in airq_rdt_entry.
1640  */
1641 void
1642 apic_record_rdt_entry(apic_irq_t *irqptr, int irq)
1643 {
1644 	int	ioapicindex, bus_type, vector;
1645 	short	intr_index;
1646 	uint_t	level, po, io_po;
1647 	struct apic_io_intr *iointrp;
1648 
1649 	intr_index = irqptr->airq_mps_intr_index;
1650 	DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d "
1651 	    "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq,
1652 	    (void *)irqptr->airq_dip, irqptr->airq_vector));
1653 
1654 	if (intr_index == RESERVE_INDEX) {
1655 		apic_error |= APIC_ERR_INVALID_INDEX;
1656 		return;
1657 	} else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) {
1658 		return;
1659 	}
1660 
1661 	vector = irqptr->airq_vector;
1662 	ioapicindex = irqptr->airq_ioapicindex;
1663 	/* Assume edge triggered by default */
1664 	level = 0;
1665 	/* Assume active high by default */
1666 	po = 0;
1667 
1668 	if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) {
1669 		ASSERT(irq < 16);
1670 		if (eisa_level_intr_mask & (1 << irq))
1671 			level = AV_LEVEL;
1672 		if (intr_index == FREE_INDEX && apic_defconf == 0)
1673 			apic_error |= APIC_ERR_INVALID_INDEX;
1674 	} else if (intr_index == ACPI_INDEX) {
1675 		bus_type = irqptr->airq_iflag.bustype;
1676 		if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) {
1677 			if (bus_type == BUS_PCI)
1678 				level = AV_LEVEL;
1679 		} else
1680 			level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ?
1681 			    AV_LEVEL : 0;
1682 		if (level &&
1683 		    ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) ||
1684 		    (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM &&
1685 		    bus_type == BUS_PCI)))
1686 			po = AV_ACTIVE_LOW;
1687 	} else {
1688 		iointrp = apic_io_intrp + intr_index;
1689 		bus_type = apic_find_bus(iointrp->intr_busid);
1690 		if (iointrp->intr_el == INTR_EL_CONFORM) {
1691 			if ((irq < 16) && (eisa_level_intr_mask & (1 << irq)))
1692 				level = AV_LEVEL;
1693 			else if (bus_type == BUS_PCI)
1694 				level = AV_LEVEL;
1695 		} else
1696 			level = (iointrp->intr_el == INTR_EL_LEVEL) ?
1697 			    AV_LEVEL : 0;
1698 		if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) ||
1699 		    (iointrp->intr_po == INTR_PO_CONFORM &&
1700 		    bus_type == BUS_PCI)))
1701 			po = AV_ACTIVE_LOW;
1702 	}
1703 	if (level)
1704 		apic_level_intr[irq] = 1;
1705 	/*
1706 	 * The 82489DX External APIC cannot do active low polarity interrupts.
1707 	 */
1708 	if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX))
1709 		io_po = po;
1710 	else
1711 		io_po = 0;
1712 
1713 	if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG)
1714 		prom_printf("setio: ioapic=0x%x intin=0x%x level=0x%x po=0x%x "
1715 		    "vector=0x%x cpu=0x%x\n\n", ioapicindex,
1716 		    irqptr->airq_intin_no, level, io_po, vector,
1717 		    irqptr->airq_cpu);
1718 
1719 	irqptr->airq_rdt_entry = level|io_po|vector;
1720 }
1721 
1722 int
1723 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
1724     int ipin, int *pci_irqp, iflag_t *intr_flagp)
1725 {
1726 
1727 	int status;
1728 	acpi_psm_lnk_t acpipsmlnk;
1729 
1730 	if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp,
1731 	    intr_flagp)) == ACPI_PSM_SUCCESS) {
1732 		APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d "
1733 		    "from cache for device %s, instance #%d\n", psm_name,
1734 		    *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1735 		return (status);
1736 	}
1737 
1738 	bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t));
1739 
1740 	if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp,
1741 	    &acpipsmlnk)) == ACPI_PSM_FAILURE) {
1742 		APIC_VERBOSE_IRQ((CE_WARN, "%s: "
1743 		    " acpi_translate_pci_irq failed for device %s, instance"
1744 		    " #%d", psm_name, ddi_get_name(dip),
1745 		    ddi_get_instance(dip)));
1746 		return (status);
1747 	}
1748 
1749 	if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) {
1750 		status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp,
1751 		    intr_flagp);
1752 		if (status != ACPI_PSM_SUCCESS) {
1753 			status = acpi_get_current_irq_resource(&acpipsmlnk,
1754 			    pci_irqp, intr_flagp);
1755 		}
1756 	}
1757 
1758 	if (status == ACPI_PSM_SUCCESS) {
1759 		acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp,
1760 		    intr_flagp, &acpipsmlnk);
1761 
1762 		APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] "
1763 		    "new irq %d for device %s, instance #%d\n", psm_name,
1764 		    *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1765 	}
1766 
1767 	return (status);
1768 }
1769 
1770 /*
1771  * Adds an entry to the irq list passed in, and returns the new list.
1772  * Entries are added in priority order (lower numerical priorities are
1773  * placed closer to the head of the list)
1774  */
1775 static prs_irq_list_t *
1776 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq,
1777     iflag_t *iflagp, acpi_prs_private_t *prsprvp)
1778 {
1779 	struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp;
1780 
1781 	newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP);
1782 
1783 	newent->list_prio = priority;
1784 	newent->irq = irq;
1785 	newent->intrflags = *iflagp;
1786 	newent->prsprv = *prsprvp;
1787 	/* ->next is NULL from kmem_zalloc */
1788 
1789 	/*
1790 	 * New list -- return the new entry as the list.
1791 	 */
1792 	if (listp == NULL)
1793 		return (newent);
1794 
1795 	/*
1796 	 * Save original list pointer for return (since we're not modifying
1797 	 * the head)
1798 	 */
1799 	origlistp = listp;
1800 
1801 	/*
1802 	 * Insertion sort, with entries with identical keys stored AFTER
1803 	 * existing entries (the less-than-or-equal test of priority does
1804 	 * this for us).
1805 	 */
1806 	while (listp != NULL && listp->list_prio <= priority) {
1807 		prevp = listp;
1808 		listp = listp->next;
1809 	}
1810 
1811 	newent->next = listp;
1812 
1813 	if (prevp == NULL) { /* Add at head of list (newent is the new head) */
1814 		return (newent);
1815 	} else {
1816 		prevp->next = newent;
1817 		return (origlistp);
1818 	}
1819 }
1820 
1821 /*
1822  * Frees the list passed in, deallocating all memory and leaving *listpp
1823  * set to NULL.
1824  */
1825 static void
1826 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp)
1827 {
1828 	struct prs_irq_list_ent *nextp;
1829 
1830 	ASSERT(listpp != NULL);
1831 
1832 	while (*listpp != NULL) {
1833 		nextp = (*listpp)->next;
1834 		kmem_free(*listpp, sizeof (struct prs_irq_list_ent));
1835 		*listpp = nextp;
1836 	}
1837 }
1838 
1839 /*
1840  * apic_choose_irqs_from_prs returns a list of irqs selected from the list of
1841  * irqs returned by the link device's _PRS method.  The irqs are chosen
1842  * to minimize contention in situations where the interrupt link device
1843  * can be programmed to steer interrupts to different interrupt controller
1844  * inputs (some of which may already be in use).  The list is sorted in order
1845  * of irqs to use, with the highest priority given to interrupt controller
1846  * inputs that are not shared.   When an interrupt controller input
1847  * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the
1848  * returned list in the order that minimizes sharing (thereby ensuring lowest
1849  * possible latency from interrupt trigger time to ISR execution time).
1850  */
1851 static prs_irq_list_t *
1852 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip,
1853     int crs_irq)
1854 {
1855 	int32_t irq;
1856 	int i;
1857 	prs_irq_list_t *prsirqlistp = NULL;
1858 	iflag_t iflags;
1859 
1860 	while (irqlistent != NULL) {
1861 		irqlistent->intr_flags.bustype = BUS_PCI;
1862 
1863 		for (i = 0; i < irqlistent->num_irqs; i++) {
1864 
1865 			irq = irqlistent->irqs[i];
1866 
1867 			if (irq <= 0) {
1868 				/* invalid irq number */
1869 				continue;
1870 			}
1871 
1872 			if ((irq < 16) && (apic_reserved_irqlist[irq]))
1873 				continue;
1874 
1875 			if ((apic_irq_table[irq] == NULL) ||
1876 			    (apic_irq_table[irq]->airq_dip == dip)) {
1877 
1878 				prsirqlistp = acpi_insert_prs_irq_ent(
1879 				    prsirqlistp, 0 /* Highest priority */, irq,
1880 				    &irqlistent->intr_flags,
1881 				    &irqlistent->acpi_prs_prv);
1882 
1883 				/*
1884 				 * If we do not prefer the current irq from _CRS
1885 				 * or if we do and this irq is the same as the
1886 				 * current irq from _CRS, this is the one
1887 				 * to pick.
1888 				 */
1889 				if (!(apic_prefer_crs) || (irq == crs_irq)) {
1890 					return (prsirqlistp);
1891 				}
1892 				continue;
1893 			}
1894 
1895 			/*
1896 			 * Edge-triggered interrupts cannot be shared
1897 			 */
1898 			if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE)
1899 				continue;
1900 
1901 			/*
1902 			 * To work around BIOSes that contain incorrect
1903 			 * interrupt polarity information in interrupt
1904 			 * descriptors returned by _PRS, we assume that
1905 			 * the polarity of the other device sharing this
1906 			 * interrupt controller input is compatible.
1907 			 * If it's not, the caller will catch it when
1908 			 * the caller invokes the link device's _CRS method
1909 			 * (after invoking its _SRS method).
1910 			 */
1911 			iflags = irqlistent->intr_flags;
1912 			iflags.intr_po =
1913 			    apic_irq_table[irq]->airq_iflag.intr_po;
1914 
1915 			if (!acpi_intr_compatible(iflags,
1916 			    apic_irq_table[irq]->airq_iflag)) {
1917 				APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d "
1918 				    "not compatible [%x:%x:%x !~ %x:%x:%x]",
1919 				    psm_name, irq,
1920 				    iflags.intr_po,
1921 				    iflags.intr_el,
1922 				    iflags.bustype,
1923 				    apic_irq_table[irq]->airq_iflag.intr_po,
1924 				    apic_irq_table[irq]->airq_iflag.intr_el,
1925 				    apic_irq_table[irq]->airq_iflag.bustype));
1926 				continue;
1927 			}
1928 
1929 			/*
1930 			 * If we prefer the irq from _CRS, no need
1931 			 * to search any further (and make sure
1932 			 * to add this irq with the highest priority
1933 			 * so it's tried first).
1934 			 */
1935 			if (crs_irq == irq && apic_prefer_crs) {
1936 
1937 				return (acpi_insert_prs_irq_ent(
1938 				    prsirqlistp,
1939 				    0 /* Highest priority */,
1940 				    irq, &iflags,
1941 				    &irqlistent->acpi_prs_prv));
1942 			}
1943 
1944 			/*
1945 			 * Priority is equal to the share count (lower
1946 			 * share count is higher priority). Note that
1947 			 * the intr flags passed in here are the ones we
1948 			 * changed above -- if incorrect, it will be
1949 			 * caught by the caller's _CRS flags comparison.
1950 			 */
1951 			prsirqlistp = acpi_insert_prs_irq_ent(
1952 			    prsirqlistp,
1953 			    apic_irq_table[irq]->airq_share, irq,
1954 			    &iflags, &irqlistent->acpi_prs_prv);
1955 		}
1956 
1957 		/* Go to the next irqlist entry */
1958 		irqlistent = irqlistent->next;
1959 	}
1960 
1961 	return (prsirqlistp);
1962 }
1963 
1964 /*
1965  * Configures the irq for the interrupt link device identified by
1966  * acpipsmlnkp.
1967  *
1968  * Gets the current and the list of possible irq settings for the
1969  * device. If apic_unconditional_srs is not set, and the current
1970  * resource setting is in the list of possible irq settings,
1971  * current irq resource setting is passed to the caller.
1972  *
1973  * Otherwise, picks an irq number from the list of possible irq
1974  * settings, and sets the irq of the device to this value.
1975  * If prefer_crs is set, among a set of irq numbers in the list that have
1976  * the least number of devices sharing the interrupt, we pick current irq
1977  * resource setting if it is a member of this set.
1978  *
1979  * Passes the irq number in the value pointed to by pci_irqp, and
1980  * polarity and sensitivity in the structure pointed to by dipintrflagp
1981  * to the caller.
1982  *
1983  * Note that if setting the irq resource failed, but successfuly obtained
1984  * the current irq resource settings, passes the current irq resources
1985  * and considers it a success.
1986  *
1987  * Returns:
1988  * ACPI_PSM_SUCCESS on success.
1989  *
1990  * ACPI_PSM_FAILURE if an error occured during the configuration or
1991  * if a suitable irq was not found for this device, or if setting the
1992  * irq resource and obtaining the current resource fails.
1993  *
1994  */
1995 static int
1996 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
1997     int *pci_irqp, iflag_t *dipintr_flagp)
1998 {
1999 	int32_t irq;
2000 	int cur_irq = -1;
2001 	acpi_irqlist_t *irqlistp;
2002 	prs_irq_list_t *prs_irq_listp, *prs_irq_entp;
2003 	boolean_t found_irq = B_FALSE;
2004 
2005 	dipintr_flagp->bustype = BUS_PCI;
2006 
2007 	if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp))
2008 	    == ACPI_PSM_FAILURE) {
2009 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine "
2010 		    "or assign IRQ for device %s, instance #%d: The system was "
2011 		    "unable to get the list of potential IRQs from ACPI.",
2012 		    psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2013 
2014 		return (ACPI_PSM_FAILURE);
2015 	}
2016 
2017 	if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2018 	    dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) &&
2019 	    (cur_irq > 0)) {
2020 		/*
2021 		 * If an IRQ is set in CRS and that IRQ exists in the set
2022 		 * returned from _PRS, return that IRQ, otherwise print
2023 		 * a warning
2024 		 */
2025 
2026 		if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL)
2027 		    == ACPI_PSM_SUCCESS) {
2028 
2029 			ASSERT(pci_irqp != NULL);
2030 			*pci_irqp = cur_irq;
2031 			acpi_free_irqlist(irqlistp);
2032 			return (ACPI_PSM_SUCCESS);
2033 		}
2034 
2035 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the "
2036 		    "current irq %d for device %s, instance #%d in ACPI's "
2037 		    "list of possible irqs for this device. Picking one from "
2038 		    " the latter list.", psm_name, cur_irq, ddi_get_name(dip),
2039 		    ddi_get_instance(dip)));
2040 	}
2041 
2042 	if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip,
2043 	    cur_irq)) == NULL) {
2044 
2045 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a "
2046 		    "suitable irq from the list of possible irqs for device "
2047 		    "%s, instance #%d in ACPI's list of possible irqs",
2048 		    psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2049 
2050 		acpi_free_irqlist(irqlistp);
2051 		return (ACPI_PSM_FAILURE);
2052 	}
2053 
2054 	acpi_free_irqlist(irqlistp);
2055 
2056 	for (prs_irq_entp = prs_irq_listp;
2057 	    prs_irq_entp != NULL && found_irq == B_FALSE;
2058 	    prs_irq_entp = prs_irq_entp->next) {
2059 
2060 		acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv;
2061 		irq = prs_irq_entp->irq;
2062 
2063 		APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for "
2064 		    "device %s instance #%d\n", psm_name, irq,
2065 		    ddi_get_name(dip), ddi_get_instance(dip)));
2066 
2067 		if ((acpi_set_irq_resource(acpipsmlnkp, irq))
2068 		    == ACPI_PSM_SUCCESS) {
2069 			/*
2070 			 * setting irq was successful, check to make sure CRS
2071 			 * reflects that. If CRS does not agree with what we
2072 			 * set, return the irq that was set.
2073 			 */
2074 
2075 			if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2076 			    dipintr_flagp) == ACPI_PSM_SUCCESS) {
2077 
2078 				if (cur_irq != irq)
2079 					APIC_VERBOSE_IRQ((CE_WARN,
2080 					    "!%s: IRQ resource set "
2081 					    "(irqno %d) for device %s "
2082 					    "instance #%d, differs from "
2083 					    "current setting irqno %d",
2084 					    psm_name, irq, ddi_get_name(dip),
2085 					    ddi_get_instance(dip), cur_irq));
2086 			} else {
2087 				/*
2088 				 * On at least one system, there was a bug in
2089 				 * a DSDT method called by _STA, causing _STA to
2090 				 * indicate that the link device was disabled
2091 				 * (when, in fact, it was enabled).  Since _SRS
2092 				 * succeeded, assume that _CRS is lying and use
2093 				 * the iflags from this _PRS interrupt choice.
2094 				 * If we're wrong about the flags, the polarity
2095 				 * will be incorrect and we may get an interrupt
2096 				 * storm, but there's not much else we can do
2097 				 * at this point.
2098 				 */
2099 				*dipintr_flagp = prs_irq_entp->intrflags;
2100 			}
2101 
2102 			/*
2103 			 * Return the irq that was set, and not what _CRS
2104 			 * reports, since _CRS has been seen to return
2105 			 * different IRQs than what was passed to _SRS on some
2106 			 * systems (and just not return successfully on others).
2107 			 */
2108 			cur_irq = irq;
2109 			found_irq = B_TRUE;
2110 		} else {
2111 			APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource "
2112 			    "irq %d failed for device %s instance #%d",
2113 			    psm_name, irq, ddi_get_name(dip),
2114 			    ddi_get_instance(dip)));
2115 
2116 			if (cur_irq == -1) {
2117 				acpi_destroy_prs_irq_list(&prs_irq_listp);
2118 				return (ACPI_PSM_FAILURE);
2119 			}
2120 		}
2121 	}
2122 
2123 	acpi_destroy_prs_irq_list(&prs_irq_listp);
2124 
2125 	if (!found_irq)
2126 		return (ACPI_PSM_FAILURE);
2127 
2128 	ASSERT(pci_irqp != NULL);
2129 	*pci_irqp = cur_irq;
2130 	return (ACPI_PSM_SUCCESS);
2131 }
2132 
2133 void
2134 ioapic_disable_redirection()
2135 {
2136 	int ioapic_ix;
2137 	int intin_max;
2138 	int intin_ix;
2139 
2140 	/* Disable the I/O APIC redirection entries */
2141 	for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) {
2142 
2143 		/* Bits 23-16 define the maximum redirection entries */
2144 		intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
2145 		    & 0xff;
2146 
2147 		for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) {
2148 			/*
2149 			 * The assumption here is that this is safe, even for
2150 			 * systems with IOAPICs that suffer from the hardware
2151 			 * erratum because all devices have been quiesced before
2152 			 * this function is called from apic_shutdown()
2153 			 * (or equivalent). If that assumption turns out to be
2154 			 * false, this mask operation can induce the same
2155 			 * erratum result we're trying to avoid.
2156 			 */
2157 			ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix,
2158 			    AV_MASK);
2159 		}
2160 	}
2161 }
2162 
2163 /*
2164  * Looks for an IOAPIC with the specified physical address in the /ioapics
2165  * node in the device tree (created by the PCI enumerator).
2166  */
2167 static boolean_t
2168 apic_is_ioapic_AMD_813x(uint32_t physaddr)
2169 {
2170 	/*
2171 	 * Look in /ioapics, for the ioapic with
2172 	 * the physical address given
2173 	 */
2174 	dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0);
2175 	dev_info_t *ioapic_child;
2176 	boolean_t rv = B_FALSE;
2177 	int vid, did;
2178 	uint64_t ioapic_paddr;
2179 	boolean_t done = B_FALSE;
2180 
2181 	if (ioapicsnode == NULL)
2182 		return (B_FALSE);
2183 
2184 	/* Load first child: */
2185 	ioapic_child = ddi_get_child(ioapicsnode);
2186 	while (!done && ioapic_child != 0) { /* Iterate over children */
2187 
2188 		if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY,
2189 		    ioapic_child, DDI_PROP_DONTPASS, "reg", 0))
2190 		    != 0 && physaddr == ioapic_paddr) {
2191 
2192 			vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child,
2193 			    DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0);
2194 
2195 			if (vid == VENID_AMD) {
2196 
2197 				did = ddi_prop_get_int(DDI_DEV_T_ANY,
2198 				    ioapic_child, DDI_PROP_DONTPASS,
2199 				    IOAPICS_PROP_DEVID, 0);
2200 
2201 				if (did == DEVID_8131_IOAPIC ||
2202 				    did == DEVID_8132_IOAPIC) {
2203 					rv = B_TRUE;
2204 					done = B_TRUE;
2205 				}
2206 			}
2207 		}
2208 
2209 		if (!done)
2210 			ioapic_child = ddi_get_next_sibling(ioapic_child);
2211 	}
2212 
2213 	/* The ioapics node was held by ddi_find_devinfo, so release it */
2214 	ndi_rele_devi(ioapicsnode);
2215 	return (rv);
2216 }
2217 
2218 struct apic_state {
2219 	int32_t as_task_reg;
2220 	int32_t as_dest_reg;
2221 	int32_t as_format_reg;
2222 	int32_t as_local_timer;
2223 	int32_t as_pcint_vect;
2224 	int32_t as_int_vect0;
2225 	int32_t as_int_vect1;
2226 	int32_t as_err_vect;
2227 	int32_t as_init_count;
2228 	int32_t as_divide_reg;
2229 	int32_t as_spur_int_reg;
2230 	uint32_t as_ioapic_ids[MAX_IO_APIC];
2231 };
2232 
2233 
2234 static int
2235 apic_acpi_enter_apicmode(void)
2236 {
2237 	ACPI_OBJECT_LIST	arglist;
2238 	ACPI_OBJECT		arg;
2239 	ACPI_STATUS		status;
2240 
2241 	/* Setup parameter object */
2242 	arglist.Count = 1;
2243 	arglist.Pointer = &arg;
2244 	arg.Type = ACPI_TYPE_INTEGER;
2245 	arg.Integer.Value = ACPI_APIC_MODE;
2246 
2247 	status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL);
2248 	if (ACPI_FAILURE(status))
2249 		return (PSM_FAILURE);
2250 	else
2251 		return (PSM_SUCCESS);
2252 }
2253 
2254 
2255 static void
2256 apic_save_state(struct apic_state *sp)
2257 {
2258 	int	i, cpuid;
2259 	ulong_t	iflag;
2260 
2261 	PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp))
2262 	/*
2263 	 * First the local APIC.
2264 	 */
2265 	sp->as_task_reg = apic_reg_ops->apic_get_pri();
2266 	sp->as_dest_reg =  apic_reg_ops->apic_read(APIC_DEST_REG);
2267 	if (apic_mode == LOCAL_APIC)
2268 		sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG);
2269 	sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER);
2270 	sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT);
2271 	sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0);
2272 	sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1);
2273 	sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT);
2274 	sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT);
2275 	sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG);
2276 	sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG);
2277 
2278 	/*
2279 	 * If on the boot processor then save the IOAPICs' IDs
2280 	 */
2281 	if ((cpuid = psm_get_cpu_id()) == 0) {
2282 
2283 		iflag = intr_clear();
2284 		lock_set(&apic_ioapic_lock);
2285 
2286 		for (i = 0; i < apic_io_max; i++)
2287 			sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD);
2288 
2289 		lock_clear(&apic_ioapic_lock);
2290 		intr_restore(iflag);
2291 	}
2292 
2293 	/* apic_state() is currently invoked only in Suspend/Resume */
2294 	apic_cpus[cpuid].aci_status |= APIC_CPU_SUSPEND;
2295 }
2296 
2297 static void
2298 apic_restore_state(struct apic_state *sp)
2299 {
2300 	int	i;
2301 	ulong_t	iflag;
2302 
2303 	/*
2304 	 * First the local APIC.
2305 	 */
2306 	apic_reg_ops->apic_write_task_reg(sp->as_task_reg);
2307 	if (apic_mode == LOCAL_APIC) {
2308 		apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg);
2309 		apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg);
2310 	}
2311 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer);
2312 	apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect);
2313 	apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0);
2314 	apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1);
2315 	apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect);
2316 	apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count);
2317 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg);
2318 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg);
2319 
2320 	/*
2321 	 * the following only needs to be done once, so we do it on the
2322 	 * boot processor, since we know that we only have one of those
2323 	 */
2324 	if (psm_get_cpu_id() == 0) {
2325 
2326 		iflag = intr_clear();
2327 		lock_set(&apic_ioapic_lock);
2328 
2329 		/* Restore IOAPICs' APIC IDs */
2330 		for (i = 0; i < apic_io_max; i++) {
2331 			ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]);
2332 		}
2333 
2334 		lock_clear(&apic_ioapic_lock);
2335 		intr_restore(iflag);
2336 
2337 		/*
2338 		 * Reenter APIC mode before restoring LNK devices
2339 		 */
2340 		(void) apic_acpi_enter_apicmode();
2341 
2342 		/*
2343 		 * restore acpi link device mappings
2344 		 */
2345 		acpi_restore_link_devices();
2346 	}
2347 }
2348 
2349 /*
2350  * Returns 0 on success
2351  */
2352 int
2353 apic_state(psm_state_request_t *rp)
2354 {
2355 	PMD(PMD_SX, ("apic_state "))
2356 	switch (rp->psr_cmd) {
2357 	case PSM_STATE_ALLOC:
2358 		rp->req.psm_state_req.psr_state =
2359 		    kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP);
2360 		if (rp->req.psm_state_req.psr_state == NULL)
2361 			return (ENOMEM);
2362 		rp->req.psm_state_req.psr_state_size =
2363 		    sizeof (struct apic_state);
2364 		PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n",
2365 		    rp->req.psm_state_req.psr_state,
2366 		    rp->req.psm_state_req.psr_state_size))
2367 		return (0);
2368 
2369 	case PSM_STATE_FREE:
2370 		kmem_free(rp->req.psm_state_req.psr_state,
2371 		    rp->req.psm_state_req.psr_state_size);
2372 		PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n",
2373 		    rp->req.psm_state_req.psr_state,
2374 		    rp->req.psm_state_req.psr_state_size))
2375 		return (0);
2376 
2377 	case PSM_STATE_SAVE:
2378 		PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n",
2379 		    rp->req.psm_state_req.psr_state,
2380 		    rp->req.psm_state_req.psr_state_size))
2381 		apic_save_state(rp->req.psm_state_req.psr_state);
2382 		return (0);
2383 
2384 	case PSM_STATE_RESTORE:
2385 		apic_restore_state(rp->req.psm_state_req.psr_state);
2386 		PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n",
2387 		    rp->req.psm_state_req.psr_state,
2388 		    rp->req.psm_state_req.psr_state_size))
2389 		return (0);
2390 
2391 	default:
2392 		return (EINVAL);
2393 	}
2394 }
2395