1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 30 /* 31 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 32 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 33 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 34 * PSMI 1.5 extensions are supported in Solaris Nevada. 35 * PSMI 1.6 extensions are supported in Solaris Nevada. 36 * PSMI 1.7 extensions are supported in Solaris Nevada. 37 */ 38 #define PSMI_1_7 39 40 #include <sys/processor.h> 41 #include <sys/time.h> 42 #include <sys/psm.h> 43 #include <sys/smp_impldefs.h> 44 #include <sys/cram.h> 45 #include <sys/acpi/acpi.h> 46 #include <sys/acpica.h> 47 #include <sys/psm_common.h> 48 #include <sys/apic.h> 49 #include <sys/pit.h> 50 #include <sys/ddi.h> 51 #include <sys/sunddi.h> 52 #include <sys/ddi_impldefs.h> 53 #include <sys/pci.h> 54 #include <sys/promif.h> 55 #include <sys/x86_archext.h> 56 #include <sys/cpc_impl.h> 57 #include <sys/uadmin.h> 58 #include <sys/panic.h> 59 #include <sys/debug.h> 60 #include <sys/archsystm.h> 61 #include <sys/trap.h> 62 #include <sys/machsystm.h> 63 #include <sys/cpuvar.h> 64 #include <sys/rm_platter.h> 65 #include <sys/privregs.h> 66 #include <sys/cyclic.h> 67 #include <sys/note.h> 68 #include <sys/pci_intr_lib.h> 69 #include <sys/sunndi.h> 70 #if !defined(__xpv) 71 #include <sys/hpet.h> 72 #include <sys/clock.h> 73 #endif 74 75 /* 76 * Local Function Prototypes 77 */ 78 static int apic_handle_defconf(); 79 static int apic_parse_mpct(caddr_t mpct, int bypass); 80 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size); 81 static int apic_checksum(caddr_t bptr, int len); 82 static int apic_find_bus_type(char *bus); 83 static int apic_find_bus(int busid); 84 static int apic_find_bus_id(int bustype); 85 static struct apic_io_intr *apic_find_io_intr(int irqno); 86 static int apic_find_free_irq(int start, int end); 87 static void apic_mark_vector(uchar_t oldvector, uchar_t newvector); 88 static void apic_xlate_vector_free_timeout_handler(void *arg); 89 static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu, 90 int new_bind_cpu, int apicindex, int intin_no, int which_irq, 91 struct ioapic_reprogram_data *drep); 92 static void apic_record_rdt_entry(apic_irq_t *irqptr, int irq); 93 static struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid); 94 static int apic_find_intin(uchar_t ioapic, uchar_t intin); 95 static int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, 96 int child_ipin, struct apic_io_intr **intrp); 97 static int apic_setup_irq_table(dev_info_t *dip, int irqno, 98 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp, 99 int type); 100 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp); 101 static void apic_free_apic_cpus(void); 102 static void apic_try_deferred_reprogram(int ipl, int vect); 103 static void delete_defer_repro_ent(int which_irq); 104 static void apic_ioapic_wait_pending_clear(int ioapicindex, 105 int intin_no); 106 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr); 107 static int apic_acpi_enter_apicmode(void); 108 109 int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */ 110 111 /* ACPI SCI interrupt configuration; -1 if SCI not used */ 112 int apic_sci_vect = -1; 113 iflag_t apic_sci_flags; 114 115 #if !defined(__xpv) 116 /* ACPI HPET interrupt configuration; -1 if HPET not used */ 117 int apic_hpet_vect = -1; 118 iflag_t apic_hpet_flags; 119 #endif 120 121 /* 122 * psm name pointer 123 */ 124 static char *psm_name; 125 126 /* ACPI support routines */ 127 static int acpi_probe(char *); 128 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 129 int *pci_irqp, iflag_t *intr_flagp); 130 131 static int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 132 int ipin, int *pci_irqp, iflag_t *intr_flagp); 133 static uchar_t acpi_find_ioapic(int irq); 134 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2); 135 136 /* 137 * number of bits per byte, from <sys/param.h> 138 */ 139 #define UCHAR_MAX ((1 << NBBY) - 1) 140 141 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */ 142 int apic_max_reps_clear_pending = 1000; 143 144 /* The irq # is implicit in the array index: */ 145 struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1]; 146 /* 147 * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info 148 * is indexed by IRQ number, NOT by vector number. 149 */ 150 151 int apic_intr_policy = INTR_ROUND_ROBIN; 152 153 int apic_next_bind_cpu = 1; /* For round robin assignment */ 154 /* start with cpu 1 */ 155 156 /* 157 * If enabled, the distribution works as follows: 158 * On every interrupt entry, the current ipl for the CPU is set in cpu_info 159 * and the irq corresponding to the ipl is also set in the aci_current array. 160 * interrupt exit and setspl (due to soft interrupts) will cause the current 161 * ipl to be be changed. This is cache friendly as these frequently used 162 * paths write into a per cpu structure. 163 * 164 * Sampling is done by checking the structures for all CPUs and incrementing 165 * the busy field of the irq (if any) executing on each CPU and the busy field 166 * of the corresponding CPU. 167 * In periodic mode this is done on every clock interrupt. 168 * In one-shot mode, this is done thru a cyclic with an interval of 169 * apic_redistribute_sample_interval (default 10 milli sec). 170 * 171 * Every apic_sample_factor_redistribution times we sample, we do computations 172 * to decide which interrupt needs to be migrated (see comments 173 * before apic_intr_redistribute(). 174 */ 175 176 /* 177 * Following 3 variables start as % and can be patched or set using an 178 * API to be defined in future. They will be scaled to 179 * sample_factor_redistribution which is in turn set to hertz+1 (in periodic 180 * mode), or 101 in one-shot mode to stagger it away from one sec processing 181 */ 182 183 int apic_int_busy_mark = 60; 184 int apic_int_free_mark = 20; 185 int apic_diff_for_redistribution = 10; 186 187 /* sampling interval for interrupt redistribution for dynamic migration */ 188 int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */ 189 190 /* 191 * number of times we sample before deciding to redistribute interrupts 192 * for dynamic migration 193 */ 194 int apic_sample_factor_redistribution = 101; 195 196 /* timeout for xlate_vector, mark_vector */ 197 int apic_revector_timeout = 16 * 10000; /* 160 millisec */ 198 199 int apic_redist_cpu_skip = 0; 200 int apic_num_imbalance = 0; 201 int apic_num_rebind = 0; 202 203 /* 204 * Maximum number of APIC CPUs in the system, -1 indicates that dynamic 205 * allocation of CPU ids is disabled. 206 */ 207 int apic_max_nproc = -1; 208 int apic_nproc = 0; 209 size_t apic_cpus_size = 0; 210 int apic_defconf = 0; 211 int apic_irq_translate = 0; 212 int apic_spec_rev = 0; 213 int apic_imcrp = 0; 214 215 int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */ 216 int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */ 217 218 /* 219 * For interrupt link devices, if apic_unconditional_srs is set, an irq resource 220 * will be assigned (via _SRS). If it is not set, use the current 221 * irq setting (via _CRS), but only if that irq is in the set of possible 222 * irqs (returned by _PRS) for the device. 223 */ 224 int apic_unconditional_srs = 1; 225 226 /* 227 * For interrupt link devices, if apic_prefer_crs is set when we are 228 * assigning an IRQ resource to a device, prefer the current IRQ setting 229 * over other possible irq settings under same conditions. 230 */ 231 232 int apic_prefer_crs = 1; 233 234 uchar_t apic_io_id[MAX_IO_APIC]; 235 volatile uint32_t *apicioadr[MAX_IO_APIC]; 236 static uchar_t apic_io_ver[MAX_IO_APIC]; 237 static uchar_t apic_io_vectbase[MAX_IO_APIC]; 238 static uchar_t apic_io_vectend[MAX_IO_APIC]; 239 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1]; 240 uint32_t apic_physaddr[MAX_IO_APIC]; 241 242 static boolean_t ioapic_mask_workaround[MAX_IO_APIC]; 243 244 /* 245 * First available slot to be used as IRQ index into the apic_irq_table 246 * for those interrupts (like MSI/X) that don't have a physical IRQ. 247 */ 248 int apic_first_avail_irq = APIC_FIRST_FREE_IRQ; 249 250 /* 251 * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound 252 * and bound elements of cpus_info and the temp_cpu element of irq_struct 253 */ 254 lock_t apic_ioapic_lock; 255 256 /* 257 * apic_defer_reprogram_lock ensures that only one processor is handling 258 * deferred interrupt programming at *_intr_exit time. 259 */ 260 static lock_t apic_defer_reprogram_lock; 261 262 /* 263 * The current number of deferred reprogrammings outstanding 264 */ 265 uint_t apic_reprogram_outstanding = 0; 266 267 #ifdef DEBUG 268 /* 269 * Counters that keep track of deferred reprogramming stats 270 */ 271 uint_t apic_intr_deferrals = 0; 272 uint_t apic_intr_deliver_timeouts = 0; 273 uint_t apic_last_ditch_reprogram_failures = 0; 274 uint_t apic_deferred_setup_failures = 0; 275 uint_t apic_defer_repro_total_retries = 0; 276 uint_t apic_defer_repro_successes = 0; 277 uint_t apic_deferred_spurious_enters = 0; 278 #endif 279 280 static int apic_io_max = 0; /* no. of i/o apics enabled */ 281 282 static struct apic_io_intr *apic_io_intrp = 0; 283 static struct apic_bus *apic_busp; 284 285 uchar_t apic_vector_to_irq[APIC_MAX_VECTOR+1]; 286 uchar_t apic_resv_vector[MAXIPL+1]; 287 288 char apic_level_intr[APIC_MAX_VECTOR+1]; 289 290 static uint32_t eisa_level_intr_mask = 0; 291 /* At least MSB will be set if EISA bus */ 292 293 static int apic_pci_bus_total = 0; 294 static uchar_t apic_single_pci_busid = 0; 295 296 /* 297 * airq_mutex protects additions to the apic_irq_table - the first 298 * pointer and any airq_nexts off of that one. It also protects 299 * apic_max_device_irq & apic_min_device_irq. It also guarantees 300 * that share_id is unique as new ids are generated only when new 301 * irq_t structs are linked in. Once linked in the structs are never 302 * deleted. temp_cpu & mps_intr_index field indicate if it is programmed 303 * or allocated. Note that there is a slight gap between allocating in 304 * apic_introp_xlate and programming in addspl. 305 */ 306 kmutex_t airq_mutex; 307 apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1]; 308 int apic_max_device_irq = 0; 309 int apic_min_device_irq = APIC_MAX_VECTOR; 310 311 /* 312 * Following declarations are for revectoring; used when ISRs at different 313 * IPLs share an irq. 314 */ 315 static lock_t apic_revector_lock; 316 int apic_revector_pending = 0; 317 static uchar_t *apic_oldvec_to_newvec; 318 static uchar_t *apic_newvec_to_oldvec; 319 320 typedef struct prs_irq_list_ent { 321 int list_prio; 322 int32_t irq; 323 iflag_t intrflags; 324 acpi_prs_private_t prsprv; 325 struct prs_irq_list_ent *next; 326 } prs_irq_list_t; 327 328 329 /* 330 * ACPI variables 331 */ 332 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */ 333 int apic_enable_acpi = 0; 334 335 /* ACPI Multiple APIC Description Table ptr */ 336 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL; 337 338 /* ACPI Interrupt Source Override Structure ptr */ 339 static ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL; 340 static int acpi_iso_cnt = 0; 341 342 /* ACPI Non-maskable Interrupt Sources ptr */ 343 static ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL; 344 static int acpi_nmi_scnt = 0; 345 static ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL; 346 static int acpi_nmi_ccnt = 0; 347 348 /* 349 * The following added to identify a software poweroff method if available. 350 */ 351 352 static struct { 353 int poweroff_method; 354 char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */ 355 char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */ 356 } apic_mps_ids[] = { 357 { APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */ 358 { APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */ 359 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */ 360 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */ 361 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */ 362 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */ 363 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */ 364 }; 365 366 int apic_poweroff_method = APIC_POWEROFF_NONE; 367 368 /* 369 * Auto-configuration routines 370 */ 371 372 /* 373 * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here 374 * May work with 1.1 - but not guaranteed. 375 * According to the MP Spec, the MP floating pointer structure 376 * will be searched in the order described below: 377 * 1. In the first kilobyte of Extended BIOS Data Area (EBDA) 378 * 2. Within the last kilobyte of system base memory 379 * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh 380 * Once we find the right signature with proper checksum, we call 381 * either handle_defconf or parse_mpct to get all info necessary for 382 * subsequent operations. 383 */ 384 int 385 apic_probe_common(char *modname) 386 { 387 uint32_t mpct_addr, ebda_start = 0, base_mem_end; 388 caddr_t biosdatap; 389 caddr_t mpct; 390 caddr_t fptr; 391 int i, mpct_size, mapsize, retval = PSM_FAILURE; 392 ushort_t ebda_seg, base_mem_size; 393 struct apic_mpfps_hdr *fpsp; 394 struct apic_mp_cnf_hdr *hdrp; 395 int bypass_cpu_and_ioapics_in_mptables; 396 int acpi_user_options; 397 398 if (apic_forceload < 0) 399 return (retval); 400 401 /* 402 * Remember who we are 403 */ 404 psm_name = modname; 405 406 /* Allow override for MADT-only mode */ 407 acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0, 408 "acpi-user-options", 0); 409 apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0); 410 411 /* Allow apic_use_acpi to override MADT-only mode */ 412 if (!apic_use_acpi) 413 apic_use_acpi_madt_only = 0; 414 415 retval = acpi_probe(modname); 416 417 /* 418 * mapin the bios data area 40:0 419 * 40:13h - two-byte location reports the base memory size 420 * 40:0Eh - two-byte location for the exact starting address of 421 * the EBDA segment for EISA 422 */ 423 biosdatap = psm_map_phys(0x400, 0x20, PROT_READ); 424 if (!biosdatap) 425 return (retval); 426 fpsp = (struct apic_mpfps_hdr *)NULL; 427 mapsize = MPFPS_RAM_WIN_LEN; 428 /*LINTED: pointer cast may result in improper alignment */ 429 ebda_seg = *((ushort_t *)(biosdatap+0xe)); 430 /* check the 1k of EBDA */ 431 if (ebda_seg) { 432 ebda_start = ((uint32_t)ebda_seg) << 4; 433 fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ); 434 if (fptr) { 435 if (!(fpsp = 436 apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN))) 437 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 438 } 439 } 440 /* If not in EBDA, check the last k of system base memory */ 441 if (!fpsp) { 442 /*LINTED: pointer cast may result in improper alignment */ 443 base_mem_size = *((ushort_t *)(biosdatap + 0x13)); 444 445 if (base_mem_size > 512) 446 base_mem_end = 639 * 1024; 447 else 448 base_mem_end = 511 * 1024; 449 /* if ebda == last k of base mem, skip to check BIOS ROM */ 450 if (base_mem_end != ebda_start) { 451 452 fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN, 453 PROT_READ); 454 455 if (fptr) { 456 if (!(fpsp = apic_find_fps_sig(fptr, 457 MPFPS_RAM_WIN_LEN))) 458 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 459 } 460 } 461 } 462 psm_unmap_phys(biosdatap, 0x20); 463 464 /* If still cannot find it, check the BIOS ROM space */ 465 if (!fpsp) { 466 mapsize = MPFPS_ROM_WIN_LEN; 467 fptr = psm_map_phys(MPFPS_ROM_WIN_START, 468 MPFPS_ROM_WIN_LEN, PROT_READ); 469 if (fptr) { 470 if (!(fpsp = 471 apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) { 472 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 473 return (retval); 474 } 475 } 476 } 477 478 if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) { 479 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 480 return (retval); 481 } 482 483 apic_spec_rev = fpsp->mpfps_spec_rev; 484 if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) { 485 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 486 return (retval); 487 } 488 489 /* check IMCR is present or not */ 490 apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP; 491 492 /* check default configuration (dual CPUs) */ 493 if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) { 494 psm_unmap_phys(fptr, mapsize); 495 return (apic_handle_defconf()); 496 } 497 498 /* MP Configuration Table */ 499 mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr); 500 501 psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */ 502 503 /* 504 * Map in enough memory for the MP Configuration Table Header. 505 * Use this table to read the total length of the BIOS data and 506 * map in all the info 507 */ 508 /*LINTED: pointer cast may result in improper alignment */ 509 hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr, 510 sizeof (struct apic_mp_cnf_hdr), PROT_READ); 511 if (!hdrp) 512 return (retval); 513 514 /* check mp configuration table signature PCMP */ 515 if (hdrp->mpcnf_sig != 0x504d4350) { 516 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 517 return (retval); 518 } 519 mpct_size = (int)hdrp->mpcnf_tbl_length; 520 521 apic_set_pwroff_method_from_mpcnfhdr(hdrp); 522 523 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 524 525 if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) { 526 /* This is an ACPI machine No need for further checks */ 527 return (retval); 528 } 529 530 /* 531 * Map in the entries for this machine, ie. Processor 532 * Entry Tables, Bus Entry Tables, etc. 533 * They are in fixed order following one another 534 */ 535 mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ); 536 if (!mpct) 537 return (retval); 538 539 if (apic_checksum(mpct, mpct_size) != 0) 540 goto apic_fail1; 541 542 543 /*LINTED: pointer cast may result in improper alignment */ 544 hdrp = (struct apic_mp_cnf_hdr *)mpct; 545 apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic, 546 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 547 if (!apicadr) 548 goto apic_fail1; 549 550 /* Parse all information in the tables */ 551 bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS); 552 if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) == 553 PSM_SUCCESS) 554 return (PSM_SUCCESS); 555 556 for (i = 0; i < apic_io_max; i++) 557 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 558 if (apic_cpus) 559 kmem_free(apic_cpus, apic_cpus_size); 560 if (apicadr) 561 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 562 apic_fail1: 563 psm_unmap_phys(mpct, mpct_size); 564 return (retval); 565 } 566 567 static void 568 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp) 569 { 570 int i; 571 572 for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0])); 573 i++) { 574 if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id, 575 strlen(apic_mps_ids[i].oem_id)) == 0) && 576 (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id, 577 strlen(apic_mps_ids[i].prod_id)) == 0)) { 578 579 apic_poweroff_method = apic_mps_ids[i].poweroff_method; 580 break; 581 } 582 } 583 584 if (apic_debug_mps_id != 0) { 585 cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'" 586 "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n", 587 psm_name, 588 hdrp->mpcnf_oem_str[0], 589 hdrp->mpcnf_oem_str[1], 590 hdrp->mpcnf_oem_str[2], 591 hdrp->mpcnf_oem_str[3], 592 hdrp->mpcnf_oem_str[4], 593 hdrp->mpcnf_oem_str[5], 594 hdrp->mpcnf_oem_str[6], 595 hdrp->mpcnf_oem_str[7], 596 hdrp->mpcnf_prod_str[0], 597 hdrp->mpcnf_prod_str[1], 598 hdrp->mpcnf_prod_str[2], 599 hdrp->mpcnf_prod_str[3], 600 hdrp->mpcnf_prod_str[4], 601 hdrp->mpcnf_prod_str[5], 602 hdrp->mpcnf_prod_str[6], 603 hdrp->mpcnf_prod_str[7], 604 hdrp->mpcnf_prod_str[8], 605 hdrp->mpcnf_prod_str[9], 606 hdrp->mpcnf_prod_str[10], 607 hdrp->mpcnf_prod_str[11]); 608 } 609 } 610 611 static void 612 apic_free_apic_cpus(void) 613 { 614 if (apic_cpus != NULL) { 615 kmem_free(apic_cpus, apic_cpus_size); 616 apic_cpus = NULL; 617 apic_cpus_size = 0; 618 } 619 } 620 621 static int 622 acpi_probe(char *modname) 623 { 624 int i, intmax, index; 625 uint32_t id, ver; 626 int acpi_verboseflags = 0; 627 int madt_seen, madt_size; 628 ACPI_SUBTABLE_HEADER *ap; 629 ACPI_MADT_LOCAL_APIC *mpa; 630 ACPI_MADT_LOCAL_X2APIC *mpx2a; 631 ACPI_MADT_IO_APIC *mia; 632 ACPI_MADT_IO_SAPIC *misa; 633 ACPI_MADT_INTERRUPT_OVERRIDE *mio; 634 ACPI_MADT_NMI_SOURCE *mns; 635 ACPI_MADT_INTERRUPT_SOURCE *mis; 636 ACPI_MADT_LOCAL_APIC_NMI *mlan; 637 ACPI_MADT_LOCAL_X2APIC_NMI *mx2alan; 638 ACPI_MADT_LOCAL_APIC_OVERRIDE *mao; 639 int sci; 640 iflag_t sci_flags; 641 volatile uint32_t *ioapic; 642 int ioapic_ix; 643 uint32_t local_ids[NCPU]; 644 uint32_t proc_ids[NCPU]; 645 uchar_t hid; 646 int warned = 0; 647 648 if (!apic_use_acpi) 649 return (PSM_FAILURE); 650 651 if (AcpiGetTable(ACPI_SIG_MADT, 1, 652 (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) 653 return (PSM_FAILURE); 654 655 apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address, 656 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 657 if (!apicadr) 658 return (PSM_FAILURE); 659 660 id = apic_reg_ops->apic_read(APIC_LID_REG); 661 local_ids[0] = (uchar_t)(id >> 24); 662 apic_nproc = index = 1; 663 apic_io_max = 0; 664 665 ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1); 666 madt_size = acpi_mapic_dtp->Header.Length; 667 madt_seen = sizeof (*acpi_mapic_dtp); 668 669 while (madt_seen < madt_size) { 670 switch (ap->Type) { 671 case ACPI_MADT_TYPE_LOCAL_APIC: 672 mpa = (ACPI_MADT_LOCAL_APIC *) ap; 673 if (mpa->LapicFlags & ACPI_MADT_ENABLED) { 674 if (mpa->Id == local_ids[0]) { 675 ASSERT(index == 1); 676 proc_ids[0] = mpa->ProcessorId; 677 } else if (apic_nproc < NCPU && use_mp && 678 apic_nproc < boot_ncpus) { 679 local_ids[index] = mpa->Id; 680 proc_ids[index] = mpa->ProcessorId; 681 index++; 682 apic_nproc++; 683 } else if (apic_nproc == NCPU && !warned) { 684 cmn_err(CE_WARN, "%s: CPU limit " 685 "exceeded" 686 #if !defined(__amd64) 687 " for 32-bit mode" 688 #endif 689 "; Solaris will use %d CPUs.", 690 psm_name, NCPU); 691 warned = 1; 692 } 693 } 694 break; 695 696 case ACPI_MADT_TYPE_IO_APIC: 697 mia = (ACPI_MADT_IO_APIC *) ap; 698 if (apic_io_max < MAX_IO_APIC) { 699 ioapic_ix = apic_io_max; 700 apic_io_id[apic_io_max] = mia->Id; 701 apic_io_vectbase[apic_io_max] = 702 mia->GlobalIrqBase; 703 apic_physaddr[apic_io_max] = 704 (uint32_t)mia->Address; 705 ioapic = apicioadr[apic_io_max] = 706 mapin_ioapic((uint32_t)mia->Address, 707 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 708 if (!ioapic) 709 goto cleanup; 710 ioapic_mask_workaround[apic_io_max] = 711 apic_is_ioapic_AMD_813x(mia->Address); 712 apic_io_max++; 713 } 714 break; 715 716 case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE: 717 mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap; 718 if (acpi_isop == NULL) 719 acpi_isop = mio; 720 acpi_iso_cnt++; 721 break; 722 723 case ACPI_MADT_TYPE_NMI_SOURCE: 724 /* UNIMPLEMENTED */ 725 mns = (ACPI_MADT_NMI_SOURCE *) ap; 726 if (acpi_nmi_sp == NULL) 727 acpi_nmi_sp = mns; 728 acpi_nmi_scnt++; 729 730 cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n", 731 mns->GlobalIrq, mns->IntiFlags); 732 break; 733 734 case ACPI_MADT_TYPE_LOCAL_APIC_NMI: 735 /* UNIMPLEMENTED */ 736 mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap; 737 if (acpi_nmi_cp == NULL) 738 acpi_nmi_cp = mlan; 739 acpi_nmi_ccnt++; 740 741 cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n", 742 mlan->ProcessorId, mlan->IntiFlags, 743 mlan->Lint); 744 break; 745 746 case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE: 747 /* UNIMPLEMENTED */ 748 mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap; 749 cmn_err(CE_NOTE, "!apic: address override: %lx\n", 750 (long)mao->Address); 751 break; 752 753 case ACPI_MADT_TYPE_IO_SAPIC: 754 /* UNIMPLEMENTED */ 755 misa = (ACPI_MADT_IO_SAPIC *) ap; 756 757 cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n", 758 misa->Id, misa->GlobalIrqBase, 759 (long)misa->Address); 760 break; 761 762 case ACPI_MADT_TYPE_INTERRUPT_SOURCE: 763 /* UNIMPLEMENTED */ 764 mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap; 765 766 cmn_err(CE_NOTE, 767 "!apic: irq source: %d %d %d 0x%x %d %d\n", 768 mis->Id, mis->Eid, mis->GlobalIrq, 769 mis->IntiFlags, mis->Type, 770 mis->IoSapicVector); 771 break; 772 773 case ACPI_MADT_TYPE_LOCAL_X2APIC: 774 mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap; 775 776 /* 777 * All logical processors with APIC ID values 778 * of 255 and greater will have their APIC 779 * reported through Processor X2APIC structure. 780 * All logical processors with APIC ID less than 781 * 255 will have their APIC reported through 782 * Processor Local APIC. 783 */ 784 if ((mpx2a->LapicFlags & ACPI_MADT_ENABLED) && 785 (mpx2a->LocalApicId >> 8)) { 786 if (apic_nproc < NCPU && use_mp && 787 apic_nproc < boot_ncpus) { 788 local_ids[index] = mpx2a->LocalApicId; 789 proc_ids[index] = mpa->ProcessorId; 790 index++; 791 apic_nproc++; 792 } else if (apic_nproc == NCPU && !warned) { 793 cmn_err(CE_WARN, "%s: CPU limit " 794 "exceeded" 795 #if !defined(__amd64) 796 " for 32-bit mode" 797 #endif 798 "; Solaris will use %d CPUs.", 799 psm_name, NCPU); 800 warned = 1; 801 } 802 } 803 804 break; 805 806 case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI: 807 /* UNIMPLEMENTED */ 808 mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap; 809 if (mx2alan->Uid >> 8) 810 acpi_nmi_ccnt++; 811 812 #ifdef DEBUG 813 cmn_err(CE_NOTE, 814 "!apic: local x2apic nmi: %d 0x%x %d\n", 815 mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint); 816 #endif 817 818 break; 819 820 case ACPI_MADT_TYPE_RESERVED: 821 default: 822 break; 823 } 824 825 /* advance to next entry */ 826 madt_seen += ap->Length; 827 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length); 828 } 829 830 /* 831 * allocate enough space for possible hot-adding of CPUs. 832 * max_ncpus may be less than apic_nproc if it's set by user. 833 */ 834 if (plat_dr_support_cpu()) { 835 apic_max_nproc = max_ncpus; 836 } 837 apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus); 838 if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL) 839 goto cleanup; 840 841 /* 842 * ACPI doesn't provide the local apic ver, get it directly from the 843 * local apic 844 */ 845 ver = apic_reg_ops->apic_read(APIC_VERS_REG); 846 for (i = 0; i < apic_nproc; i++) { 847 apic_cpus[i].aci_local_id = local_ids[i]; 848 apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF); 849 apic_cpus[i].aci_processor_id = proc_ids[i]; 850 /* Only build mapping info for CPUs present at boot. */ 851 if (i < boot_ncpus) 852 (void) acpica_map_cpu(i, proc_ids[i]); 853 } 854 855 /* 856 * To support CPU dynamic reconfiguration, the apic CPU info structure 857 * for each possible CPU will be pre-allocated at boot time. 858 * The state for each apic CPU info structure will be assigned according 859 * to the following rules: 860 * Rule 1: 861 * Slot index range: [0, min(apic_nproc, boot_ncpus)) 862 * State flags: 0 863 * Note: cpu exists and will be configured/enabled at boot time 864 * Rule 2: 865 * Slot index range: [boot_ncpus, apic_nproc) 866 * State flags: APIC_CPU_FREE | APIC_CPU_DIRTY 867 * Note: cpu exists but won't be configured/enabled at boot time 868 * Rule 3: 869 * Slot index range: [apic_nproc, boot_ncpus) 870 * State flags: APIC_CPU_FREE 871 * Note: cpu doesn't exist at boot time 872 * Rule 4: 873 * Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus) 874 * State flags: APIC_CPU_FREE 875 * Note: cpu doesn't exist at boot time 876 */ 877 CPUSET_ZERO(apic_cpumask); 878 for (i = 0; i < min(boot_ncpus, apic_nproc); i++) { 879 CPUSET_ADD(apic_cpumask, i); 880 apic_cpus[i].aci_status = 0; 881 } 882 for (i = boot_ncpus; i < apic_nproc; i++) { 883 apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY; 884 } 885 for (i = apic_nproc; i < boot_ncpus; i++) { 886 apic_cpus[i].aci_status = APIC_CPU_FREE; 887 } 888 for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) { 889 apic_cpus[i].aci_status = APIC_CPU_FREE; 890 } 891 892 for (i = 0; i < apic_io_max; i++) { 893 ioapic_ix = i; 894 895 /* 896 * need to check Sitka on the following acpi problem 897 * On the Sitka, the ioapic's apic_id field isn't reporting 898 * the actual io apic id. We have reported this problem 899 * to Intel. Until they fix the problem, we will get the 900 * actual id directly from the ioapic. 901 */ 902 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 903 hid = (uchar_t)(id >> 24); 904 905 if (hid != apic_io_id[i]) { 906 if (apic_io_id[i] == 0) 907 apic_io_id[i] = hid; 908 else { /* set ioapic id to whatever reported by ACPI */ 909 id = ((uint32_t)apic_io_id[i]) << 24; 910 ioapic_write(ioapic_ix, APIC_ID_CMD, id); 911 } 912 } 913 ver = ioapic_read(ioapic_ix, APIC_VERS_CMD); 914 apic_io_ver[i] = (uchar_t)(ver & 0xff); 915 intmax = (ver >> 16) & 0xff; 916 apic_io_vectend[i] = apic_io_vectbase[i] + intmax; 917 if (apic_first_avail_irq <= apic_io_vectend[i]) 918 apic_first_avail_irq = apic_io_vectend[i] + 1; 919 } 920 921 922 /* 923 * Process SCI configuration here 924 * An error may be returned here if 925 * acpi-user-options specifies legacy mode 926 * (no SCI, no ACPI mode) 927 */ 928 if (acpica_get_sci(&sci, &sci_flags) != AE_OK) 929 sci = -1; 930 931 /* 932 * Now call acpi_init() to generate namespaces 933 * If this fails, we don't attempt to use ACPI 934 * even if we were able to get a MADT above 935 */ 936 if (acpica_init() != AE_OK) 937 goto cleanup; 938 939 /* 940 * Call acpica_build_processor_map() now that we have 941 * ACPI namesspace access 942 */ 943 (void) acpica_build_processor_map(); 944 945 /* 946 * Squirrel away the SCI and flags for later on 947 * in apic_picinit() when we're ready 948 */ 949 apic_sci_vect = sci; 950 apic_sci_flags = sci_flags; 951 952 if (apic_verbose & APIC_VERBOSE_IRQ_FLAG) 953 acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG; 954 955 if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG) 956 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG; 957 958 if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG) 959 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG; 960 961 if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE) 962 goto cleanup; 963 964 /* Enable ACPI APIC interrupt routing */ 965 if (apic_acpi_enter_apicmode() != PSM_FAILURE) { 966 build_reserved_irqlist((uchar_t *)apic_reserved_irqlist); 967 apic_enable_acpi = 1; 968 if (apic_sci_vect > 0) { 969 acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT); 970 } 971 if (apic_use_acpi_madt_only) { 972 cmn_err(CE_CONT, 973 "?Using ACPI for CPU/IOAPIC information ONLY\n"); 974 } 975 976 #if !defined(__xpv) 977 /* 978 * probe ACPI for hpet information here which is used later 979 * in apic_picinit(). 980 */ 981 if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) { 982 cmn_err(CE_NOTE, "!ACPI HPET table query failed\n"); 983 } 984 #endif 985 986 return (PSM_SUCCESS); 987 } 988 /* if setting APIC mode failed above, we fall through to cleanup */ 989 990 cleanup: 991 apic_free_apic_cpus(); 992 if (apicadr != NULL) { 993 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 994 apicadr = NULL; 995 } 996 apic_max_nproc = -1; 997 apic_nproc = 0; 998 for (i = 0; i < apic_io_max; i++) { 999 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 1000 apicioadr[i] = NULL; 1001 } 1002 apic_io_max = 0; 1003 acpi_isop = NULL; 1004 acpi_iso_cnt = 0; 1005 acpi_nmi_sp = NULL; 1006 acpi_nmi_scnt = 0; 1007 acpi_nmi_cp = NULL; 1008 acpi_nmi_ccnt = 0; 1009 return (PSM_FAILURE); 1010 } 1011 1012 /* 1013 * Handle default configuration. Fill in reqd global variables & tables 1014 * Fill all details as MP table does not give any more info 1015 */ 1016 static int 1017 apic_handle_defconf() 1018 { 1019 uint_t lid; 1020 1021 /* Failed to probe ACPI MADT tables, disable CPU DR. */ 1022 apic_max_nproc = -1; 1023 apic_free_apic_cpus(); 1024 plat_dr_disable_cpu(); 1025 1026 /*LINTED: pointer cast may result in improper alignment */ 1027 apicioadr[0] = mapin_ioapic(APIC_IO_ADDR, 1028 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1029 /*LINTED: pointer cast may result in improper alignment */ 1030 apicadr = (uint32_t *)psm_map_phys(APIC_LOCAL_ADDR, 1031 APIC_LOCAL_MEMLEN, PROT_READ); 1032 apic_cpus_size = 2 * sizeof (*apic_cpus); 1033 apic_cpus = (apic_cpus_info_t *) 1034 kmem_zalloc(apic_cpus_size, KM_NOSLEEP); 1035 if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus)) 1036 goto apic_handle_defconf_fail; 1037 CPUSET_ONLY(apic_cpumask, 0); 1038 CPUSET_ADD(apic_cpumask, 1); 1039 apic_nproc = 2; 1040 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1041 apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET); 1042 /* 1043 * According to the PC+MP spec 1.1, the local ids 1044 * for the default configuration has to be 0 or 1 1045 */ 1046 if (apic_cpus[0].aci_local_id == 1) 1047 apic_cpus[1].aci_local_id = 0; 1048 else if (apic_cpus[0].aci_local_id == 0) 1049 apic_cpus[1].aci_local_id = 1; 1050 else 1051 goto apic_handle_defconf_fail; 1052 1053 apic_io_id[0] = 2; 1054 apic_io_max = 1; 1055 if (apic_defconf >= 5) { 1056 apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS; 1057 apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS; 1058 apic_io_ver[0] = APIC_INTEGRATED_VERS; 1059 } else { 1060 apic_cpus[0].aci_local_ver = 0; /* 82489 DX */ 1061 apic_cpus[1].aci_local_ver = 0; 1062 apic_io_ver[0] = 0; 1063 } 1064 if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6) 1065 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1066 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1067 return (PSM_SUCCESS); 1068 1069 apic_handle_defconf_fail: 1070 apic_free_apic_cpus(); 1071 if (apicadr) 1072 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 1073 if (apicioadr[0]) 1074 mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN); 1075 return (PSM_FAILURE); 1076 } 1077 1078 /* Parse the entries in MP configuration table and collect info that we need */ 1079 static int 1080 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics) 1081 { 1082 struct apic_procent *procp; 1083 struct apic_bus *busp; 1084 struct apic_io_entry *ioapicp; 1085 struct apic_io_intr *intrp; 1086 int ioapic_ix; 1087 uint_t lid; 1088 uint32_t id; 1089 uchar_t hid; 1090 int warned = 0; 1091 1092 /*LINTED: pointer cast may result in improper alignment */ 1093 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1094 1095 /* No need to count cpu entries if we won't use them */ 1096 if (!bypass_cpus_and_ioapics) { 1097 1098 /* Find max # of CPUS and allocate structure accordingly */ 1099 apic_nproc = 0; 1100 CPUSET_ZERO(apic_cpumask); 1101 while (procp->proc_entry == APIC_CPU_ENTRY) { 1102 if (procp->proc_cpuflags & CPUFLAGS_EN) { 1103 if (apic_nproc < NCPU && use_mp && 1104 apic_nproc < boot_ncpus) { 1105 CPUSET_ADD(apic_cpumask, apic_nproc); 1106 apic_nproc++; 1107 } else if (apic_nproc == NCPU && !warned) { 1108 cmn_err(CE_WARN, "%s: CPU limit " 1109 "exceeded" 1110 #if !defined(__amd64) 1111 " for 32-bit mode" 1112 #endif 1113 "; Solaris will use %d CPUs.", 1114 psm_name, NCPU); 1115 warned = 1; 1116 } 1117 1118 } 1119 procp++; 1120 } 1121 apic_cpus_size = apic_nproc * sizeof (*apic_cpus); 1122 if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *) 1123 kmem_zalloc(apic_cpus_size, KM_NOSLEEP))) 1124 return (PSM_FAILURE); 1125 } 1126 1127 /*LINTED: pointer cast may result in improper alignment */ 1128 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1129 1130 /* 1131 * start with index 1 as 0 needs to be filled in with Boot CPU, but 1132 * if we're bypassing this information, it has already been filled 1133 * in by acpi_probe(), so don't overwrite it. 1134 */ 1135 if (!bypass_cpus_and_ioapics) 1136 apic_nproc = 1; 1137 1138 while (procp->proc_entry == APIC_CPU_ENTRY) { 1139 /* check whether the cpu exists or not */ 1140 if (!bypass_cpus_and_ioapics && 1141 procp->proc_cpuflags & CPUFLAGS_EN) { 1142 if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */ 1143 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1144 apic_cpus[0].aci_local_id = procp->proc_apicid; 1145 if (apic_cpus[0].aci_local_id != 1146 (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) { 1147 return (PSM_FAILURE); 1148 } 1149 apic_cpus[0].aci_local_ver = 1150 procp->proc_version; 1151 } else if (apic_nproc < NCPU && use_mp && 1152 apic_nproc < boot_ncpus) { 1153 apic_cpus[apic_nproc].aci_local_id = 1154 procp->proc_apicid; 1155 1156 apic_cpus[apic_nproc].aci_local_ver = 1157 procp->proc_version; 1158 apic_nproc++; 1159 1160 } 1161 } 1162 procp++; 1163 } 1164 1165 /* 1166 * Save start of bus entries for later use. 1167 * Get EISA level cntrl if EISA bus is present. 1168 * Also get the CPI bus id for single CPI bus case 1169 */ 1170 apic_busp = busp = (struct apic_bus *)procp; 1171 while (busp->bus_entry == APIC_BUS_ENTRY) { 1172 lid = apic_find_bus_type((char *)&busp->bus_str1); 1173 if (lid == BUS_EISA) { 1174 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1175 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1176 } else if (lid == BUS_PCI) { 1177 /* 1178 * apic_single_pci_busid will be used only if 1179 * apic_pic_bus_total is equal to 1 1180 */ 1181 apic_pci_bus_total++; 1182 apic_single_pci_busid = busp->bus_id; 1183 } 1184 busp++; 1185 } 1186 1187 ioapicp = (struct apic_io_entry *)busp; 1188 1189 if (!bypass_cpus_and_ioapics) 1190 apic_io_max = 0; 1191 do { 1192 if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) { 1193 if (ioapicp->io_flags & IOAPIC_FLAGS_EN) { 1194 apic_io_id[apic_io_max] = ioapicp->io_apicid; 1195 apic_io_ver[apic_io_max] = ioapicp->io_version; 1196 /*LINTED: pointer cast may result in improper alignment */ 1197 apicioadr[apic_io_max] = 1198 mapin_ioapic( 1199 (uint32_t)ioapicp->io_apic_addr, 1200 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1201 1202 if (!apicioadr[apic_io_max]) 1203 return (PSM_FAILURE); 1204 1205 ioapic_mask_workaround[apic_io_max] = 1206 apic_is_ioapic_AMD_813x( 1207 ioapicp->io_apic_addr); 1208 1209 ioapic_ix = apic_io_max; 1210 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 1211 hid = (uchar_t)(id >> 24); 1212 1213 if (hid != apic_io_id[apic_io_max]) { 1214 if (apic_io_id[apic_io_max] == 0) 1215 apic_io_id[apic_io_max] = hid; 1216 else { 1217 /* 1218 * set ioapic id to whatever 1219 * reported by MPS 1220 * 1221 * may not need to set index 1222 * again ??? 1223 * take it out and try 1224 */ 1225 1226 id = ((uint32_t) 1227 apic_io_id[apic_io_max]) << 1228 24; 1229 1230 ioapic_write(ioapic_ix, 1231 APIC_ID_CMD, id); 1232 } 1233 } 1234 apic_io_max++; 1235 } 1236 } 1237 ioapicp++; 1238 } while (ioapicp->io_entry == APIC_IO_ENTRY); 1239 1240 apic_io_intrp = (struct apic_io_intr *)ioapicp; 1241 1242 intrp = apic_io_intrp; 1243 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1244 if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) || 1245 (apic_find_bus(intrp->intr_busid) == BUS_PCI)) { 1246 apic_irq_translate = 1; 1247 break; 1248 } 1249 intrp++; 1250 } 1251 1252 return (PSM_SUCCESS); 1253 } 1254 1255 boolean_t 1256 apic_cpu_in_range(int cpu) 1257 { 1258 cpu &= ~IRQ_USER_BOUND; 1259 /* Check whether cpu id is in valid range. */ 1260 if (cpu < 0 || cpu >= apic_nproc) { 1261 return (B_FALSE); 1262 } else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) { 1263 /* 1264 * Check whether cpuid is in valid range if CPU DR is enabled. 1265 */ 1266 return (B_FALSE); 1267 } else if (!CPU_IN_SET(apic_cpumask, cpu)) { 1268 return (B_FALSE); 1269 } 1270 1271 return (B_TRUE); 1272 } 1273 1274 /* 1275 * Must be called with interrupts disabled and the apic_ioapic_lock held. 1276 */ 1277 processorid_t 1278 apic_find_next_cpu_intr(void) 1279 { 1280 int i, count; 1281 processorid_t cpuid = 0; 1282 1283 ASSERT(LOCK_HELD(&apic_ioapic_lock)); 1284 1285 /* 1286 * Find next CPU with INTR_ENABLE flag set. 1287 * Assume that there is at least one CPU with interrupts enabled. 1288 */ 1289 for (count = 0; count < apic_nproc; count++) { 1290 if (apic_next_bind_cpu >= apic_nproc) { 1291 apic_next_bind_cpu = 0; 1292 } 1293 i = apic_next_bind_cpu++; 1294 if (apic_cpu_in_range(i) && 1295 (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) { 1296 cpuid = i; 1297 break; 1298 } 1299 } 1300 ASSERT((apic_cpus[cpuid].aci_status & APIC_CPU_INTR_ENABLE) != 0); 1301 1302 return (cpuid); 1303 } 1304 1305 uint16_t 1306 apic_get_apic_version() 1307 { 1308 int i; 1309 uchar_t min_io_apic_ver = 0; 1310 static uint16_t version; /* Cache as value is constant */ 1311 static boolean_t found = B_FALSE; /* Accomodate zero version */ 1312 1313 if (found == B_FALSE) { 1314 found = B_TRUE; 1315 1316 /* 1317 * Don't assume all IO APICs in the system are the same. 1318 * 1319 * Set to the minimum version. 1320 */ 1321 for (i = 0; i < apic_io_max; i++) { 1322 if ((apic_io_ver[i] != 0) && 1323 ((min_io_apic_ver == 0) || 1324 (min_io_apic_ver >= apic_io_ver[i]))) 1325 min_io_apic_ver = apic_io_ver[i]; 1326 } 1327 1328 /* Assume all local APICs are of the same version. */ 1329 version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver; 1330 } 1331 return (version); 1332 } 1333 1334 static struct apic_mpfps_hdr * 1335 apic_find_fps_sig(caddr_t cptr, int len) 1336 { 1337 int i; 1338 1339 /* Look for the pattern "_MP_" */ 1340 for (i = 0; i < len; i += 16) { 1341 if ((*(cptr+i) == '_') && 1342 (*(cptr+i+1) == 'M') && 1343 (*(cptr+i+2) == 'P') && 1344 (*(cptr+i+3) == '_')) 1345 /*LINTED: pointer cast may result in improper alignment */ 1346 return ((struct apic_mpfps_hdr *)(cptr + i)); 1347 } 1348 return (NULL); 1349 } 1350 1351 static int 1352 apic_checksum(caddr_t bptr, int len) 1353 { 1354 int i; 1355 uchar_t cksum; 1356 1357 cksum = 0; 1358 for (i = 0; i < len; i++) 1359 cksum += *bptr++; 1360 return ((int)cksum); 1361 } 1362 1363 1364 /* 1365 * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable 1366 * are also set to NULL. vector->irq is set to a value which cannot map 1367 * to a real irq to show that it is free. 1368 */ 1369 void 1370 apic_init_common() 1371 { 1372 int i, j, indx; 1373 int *iptr; 1374 1375 /* 1376 * Initialize apic_ipls from apic_vectortoipl. This array is 1377 * used in apic_intr_enter to determine the IPL to use for the 1378 * corresponding vector. On some systems, due to hardware errata 1379 * and interrupt sharing, the IPL may not correspond to the IPL listed 1380 * in apic_vectortoipl (see apic_addspl and apic_delspl). 1381 */ 1382 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { 1383 indx = i * APIC_VECTOR_PER_IPL; 1384 1385 for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++) 1386 apic_ipls[indx] = apic_vectortoipl[i]; 1387 } 1388 1389 /* cpu 0 is always up (for now) */ 1390 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; 1391 1392 iptr = (int *)&apic_irq_table[0]; 1393 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 1394 apic_level_intr[i] = 0; 1395 *iptr++ = NULL; 1396 apic_vector_to_irq[i] = APIC_RESV_IRQ; 1397 1398 /* These *must* be initted to B_TRUE! */ 1399 apic_reprogram_info[i].done = B_TRUE; 1400 apic_reprogram_info[i].irqp = NULL; 1401 apic_reprogram_info[i].tries = 0; 1402 apic_reprogram_info[i].bindcpu = 0; 1403 } 1404 1405 /* 1406 * Allocate a dummy irq table entry for the reserved entry. 1407 * This takes care of the race between removing an irq and 1408 * clock detecting a CPU in that irq during interrupt load 1409 * sampling. 1410 */ 1411 apic_irq_table[APIC_RESV_IRQ] = 1412 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); 1413 1414 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL); 1415 } 1416 1417 void 1418 ioapic_init_intr(int mask_apic) 1419 { 1420 int ioapic_ix; 1421 struct intrspec ispec; 1422 apic_irq_t *irqptr; 1423 int i, j; 1424 ulong_t iflag; 1425 1426 LOCK_INIT_CLEAR(&apic_revector_lock); 1427 LOCK_INIT_CLEAR(&apic_defer_reprogram_lock); 1428 1429 /* mask interrupt vectors */ 1430 for (j = 0; j < apic_io_max && mask_apic; j++) { 1431 int intin_max; 1432 1433 ioapic_ix = j; 1434 /* Bits 23-16 define the maximum redirection entries */ 1435 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) 1436 & 0xff; 1437 for (i = 0; i <= intin_max; i++) 1438 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * i, AV_MASK); 1439 } 1440 1441 /* 1442 * Hack alert: deal with ACPI SCI interrupt chicken/egg here 1443 */ 1444 if (apic_sci_vect > 0) { 1445 /* 1446 * acpica has already done add_avintr(); we just 1447 * to finish the job by mimicing translate_irq() 1448 * 1449 * Fake up an intrspec and setup the tables 1450 */ 1451 ispec.intrspec_vec = apic_sci_vect; 1452 ispec.intrspec_pri = SCI_IPL; 1453 1454 if (apic_setup_irq_table(NULL, apic_sci_vect, NULL, 1455 &ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) { 1456 cmn_err(CE_WARN, "!apic: SCI setup failed"); 1457 return; 1458 } 1459 irqptr = apic_irq_table[apic_sci_vect]; 1460 1461 iflag = intr_clear(); 1462 lock_set(&apic_ioapic_lock); 1463 1464 /* Program I/O APIC */ 1465 (void) apic_setup_io_intr(irqptr, apic_sci_vect, B_FALSE); 1466 1467 lock_clear(&apic_ioapic_lock); 1468 intr_restore(iflag); 1469 1470 irqptr->airq_share++; 1471 } 1472 1473 #if !defined(__xpv) 1474 /* 1475 * Hack alert: deal with ACPI HPET interrupt chicken/egg here. 1476 */ 1477 if (apic_hpet_vect > 0) { 1478 /* 1479 * hpet has already done add_avintr(); we just need 1480 * to finish the job by mimicing translate_irq() 1481 * 1482 * Fake up an intrspec and setup the tables 1483 */ 1484 ispec.intrspec_vec = apic_hpet_vect; 1485 ispec.intrspec_pri = CBE_HIGH_PIL; 1486 1487 if (apic_setup_irq_table(NULL, apic_hpet_vect, NULL, 1488 &ispec, &apic_hpet_flags, DDI_INTR_TYPE_FIXED) < 0) { 1489 cmn_err(CE_WARN, "!apic: HPET setup failed"); 1490 return; 1491 } 1492 irqptr = apic_irq_table[apic_hpet_vect]; 1493 1494 iflag = intr_clear(); 1495 lock_set(&apic_ioapic_lock); 1496 1497 /* Program I/O APIC */ 1498 (void) apic_setup_io_intr(irqptr, apic_hpet_vect, B_FALSE); 1499 1500 lock_clear(&apic_ioapic_lock); 1501 intr_restore(iflag); 1502 1503 irqptr->airq_share++; 1504 } 1505 #endif /* !defined(__xpv) */ 1506 } 1507 1508 /* 1509 * Add mask bits to disable interrupt vector from happening 1510 * at or above IPL. In addition, it should remove mask bits 1511 * to enable interrupt vectors below the given IPL. 1512 * 1513 * Both add and delspl are complicated by the fact that different interrupts 1514 * may share IRQs. This can happen in two ways. 1515 * 1. The same H/W line is shared by more than 1 device 1516 * 1a. with interrupts at different IPLs 1517 * 1b. with interrupts at same IPL 1518 * 2. We ran out of vectors at a given IPL and started sharing vectors. 1519 * 1b and 2 should be handled gracefully, except for the fact some ISRs 1520 * will get called often when no interrupt is pending for the device. 1521 * For 1a, we just hope that the machine blows up with the person who 1522 * set it up that way!. In the meantime, we handle it at the higher IPL. 1523 */ 1524 /*ARGSUSED*/ 1525 int 1526 apic_addspl_common(int irqno, int ipl, int min_ipl, int max_ipl) 1527 { 1528 uchar_t vector; 1529 ulong_t iflag; 1530 apic_irq_t *irqptr, *irqheadptr; 1531 int irqindex; 1532 1533 ASSERT(max_ipl <= UCHAR_MAX); 1534 irqindex = IRQINDEX(irqno); 1535 1536 if ((irqindex == -1) || (!apic_irq_table[irqindex])) 1537 return (PSM_FAILURE); 1538 1539 mutex_enter(&airq_mutex); 1540 irqptr = irqheadptr = apic_irq_table[irqindex]; 1541 1542 DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x " 1543 "vector=0x%x\n", (void *)irqptr->airq_dip, 1544 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector)); 1545 1546 while (irqptr) { 1547 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) 1548 break; 1549 irqptr = irqptr->airq_next; 1550 } 1551 irqptr->airq_share++; 1552 1553 mutex_exit(&airq_mutex); 1554 1555 /* return if it is not hardware interrupt */ 1556 if (irqptr->airq_mps_intr_index == RESERVE_INDEX) 1557 return (PSM_SUCCESS); 1558 1559 /* Or if there are more interupts at a higher IPL */ 1560 if (ipl != max_ipl) 1561 return (PSM_SUCCESS); 1562 1563 /* 1564 * if apic_picinit() has not been called yet, just return. 1565 * At the end of apic_picinit(), we will call setup_io_intr(). 1566 */ 1567 1568 if (!apic_picinit_called) 1569 return (PSM_SUCCESS); 1570 1571 /* 1572 * Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate, 1573 * return failure. Not very elegant, but then we hope the 1574 * machine will blow up with ... 1575 */ 1576 if (irqptr->airq_ipl != max_ipl && 1577 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1578 1579 vector = apic_allocate_vector(max_ipl, irqindex, 1); 1580 if (vector == 0) { 1581 irqptr->airq_share--; 1582 return (PSM_FAILURE); 1583 } 1584 irqptr = irqheadptr; 1585 apic_mark_vector(irqptr->airq_vector, vector); 1586 while (irqptr) { 1587 irqptr->airq_vector = vector; 1588 irqptr->airq_ipl = (uchar_t)max_ipl; 1589 /* 1590 * reprogram irq being added and every one else 1591 * who is not in the UNINIT state 1592 */ 1593 if ((VIRTIRQ(irqindex, irqptr->airq_share_id) == 1594 irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) { 1595 apic_record_rdt_entry(irqptr, irqindex); 1596 1597 iflag = intr_clear(); 1598 lock_set(&apic_ioapic_lock); 1599 1600 (void) apic_setup_io_intr(irqptr, irqindex, 1601 B_FALSE); 1602 1603 lock_clear(&apic_ioapic_lock); 1604 intr_restore(iflag); 1605 } 1606 irqptr = irqptr->airq_next; 1607 } 1608 return (PSM_SUCCESS); 1609 1610 } else if (irqptr->airq_ipl != max_ipl && 1611 ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1612 /* 1613 * We cannot upgrade the vector, but we can change 1614 * the IPL that this vector induces. 1615 * 1616 * Note that we subtract APIC_BASE_VECT from the vector 1617 * here because this array is used in apic_intr_enter 1618 * (no need to add APIC_BASE_VECT in that hot code 1619 * path since we can do it in the rarely-executed path 1620 * here). 1621 */ 1622 apic_ipls[irqptr->airq_vector - APIC_BASE_VECT] = 1623 (uchar_t)max_ipl; 1624 1625 irqptr = irqheadptr; 1626 while (irqptr) { 1627 irqptr->airq_ipl = (uchar_t)max_ipl; 1628 irqptr = irqptr->airq_next; 1629 } 1630 1631 return (PSM_SUCCESS); 1632 } 1633 1634 ASSERT(irqptr); 1635 1636 iflag = intr_clear(); 1637 lock_set(&apic_ioapic_lock); 1638 1639 (void) apic_setup_io_intr(irqptr, irqindex, B_FALSE); 1640 1641 lock_clear(&apic_ioapic_lock); 1642 intr_restore(iflag); 1643 1644 return (PSM_SUCCESS); 1645 } 1646 1647 /* 1648 * Recompute mask bits for the given interrupt vector. 1649 * If there is no interrupt servicing routine for this 1650 * vector, this function should disable interrupt vector 1651 * from happening at all IPLs. If there are still 1652 * handlers using the given vector, this function should 1653 * disable the given vector from happening below the lowest 1654 * IPL of the remaining hadlers. 1655 */ 1656 /*ARGSUSED*/ 1657 int 1658 apic_delspl_common(int irqno, int ipl, int min_ipl, int max_ipl) 1659 { 1660 uchar_t vector; 1661 uint32_t bind_cpu; 1662 int intin, irqindex; 1663 int ioapic_ix; 1664 apic_irq_t *irqptr, *preirqptr, *irqheadptr, *irqp; 1665 ulong_t iflag; 1666 1667 mutex_enter(&airq_mutex); 1668 irqindex = IRQINDEX(irqno); 1669 irqptr = preirqptr = irqheadptr = apic_irq_table[irqindex]; 1670 1671 DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x " 1672 "vector=0x%x\n", (void *)irqptr->airq_dip, 1673 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector)); 1674 1675 while (irqptr) { 1676 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) 1677 break; 1678 preirqptr = irqptr; 1679 irqptr = irqptr->airq_next; 1680 } 1681 ASSERT(irqptr); 1682 1683 irqptr->airq_share--; 1684 1685 mutex_exit(&airq_mutex); 1686 1687 /* 1688 * If there are more interrupts at a higher IPL, we don't need 1689 * to disable anything. 1690 */ 1691 if (ipl < max_ipl) 1692 return (PSM_SUCCESS); 1693 1694 /* return if it is not hardware interrupt */ 1695 if (irqptr->airq_mps_intr_index == RESERVE_INDEX) 1696 return (PSM_SUCCESS); 1697 1698 if (!apic_picinit_called) { 1699 /* 1700 * Clear irq_struct. If two devices shared an intpt 1701 * line & 1 unloaded before picinit, we are hosed. But, then 1702 * we hope the machine will survive. 1703 */ 1704 irqptr->airq_mps_intr_index = FREE_INDEX; 1705 irqptr->airq_temp_cpu = IRQ_UNINIT; 1706 apic_free_vector(irqptr->airq_vector); 1707 return (PSM_SUCCESS); 1708 } 1709 /* 1710 * Downgrade vector to new max_ipl if needed. If we cannot allocate, 1711 * use old IPL. Not very elegant, but it should work. 1712 */ 1713 if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL) && 1714 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1715 apic_irq_t *irqp; 1716 if (vector = apic_allocate_vector(max_ipl, irqno, 1)) { 1717 apic_mark_vector(irqheadptr->airq_vector, vector); 1718 irqp = irqheadptr; 1719 while (irqp) { 1720 irqp->airq_vector = vector; 1721 irqp->airq_ipl = (uchar_t)max_ipl; 1722 if (irqp->airq_temp_cpu != IRQ_UNINIT) { 1723 apic_record_rdt_entry(irqp, irqindex); 1724 1725 iflag = intr_clear(); 1726 lock_set(&apic_ioapic_lock); 1727 1728 (void) apic_setup_io_intr(irqp, 1729 irqindex, B_FALSE); 1730 1731 lock_clear(&apic_ioapic_lock); 1732 intr_restore(iflag); 1733 } 1734 irqp = irqp->airq_next; 1735 } 1736 } 1737 1738 } else if (irqptr->airq_ipl != max_ipl && 1739 max_ipl != PSM_INVALID_IPL && 1740 ioapic_mask_workaround[irqptr->airq_ioapicindex]) { 1741 1742 /* 1743 * We cannot downgrade the IPL of the vector below the vector's 1744 * hardware priority. If we did, it would be possible for a 1745 * higher-priority hardware vector to interrupt a CPU running at an IPL 1746 * lower than the hardware priority of the interrupting vector (but 1747 * higher than the soft IPL of this IRQ). When this happens, we would 1748 * then try to drop the IPL BELOW what it was (effectively dropping 1749 * below base_spl) which would be potentially catastrophic. 1750 * 1751 * (e.g. Suppose the hardware vector associated with this IRQ is 0x40 1752 * (hardware IPL of 4). Further assume that the old IPL of this IRQ 1753 * was 4, but the new IPL is 1. If we forced vector 0x40 to result in 1754 * an IPL of 1, it would be possible for the processor to be executing 1755 * at IPL 3 and for an interrupt to come in on vector 0x40, interrupting 1756 * the currently-executing ISR. When apic_intr_enter consults 1757 * apic_irqs[], it will return 1, bringing the IPL of the CPU down to 1 1758 * so even though the processor was running at IPL 4, an IPL 1 1759 * interrupt will have interrupted it, which must not happen)). 1760 * 1761 * Effectively, this means that the hardware priority corresponding to 1762 * the IRQ's IPL (in apic_ipls[]) cannot be lower than the vector's 1763 * hardware priority. 1764 * 1765 * (In the above example, then, after removal of the IPL 4 device's 1766 * interrupt handler, the new IPL will continue to be 4 because the 1767 * hardware priority that IPL 1 implies is lower than the hardware 1768 * priority of the vector used.) 1769 */ 1770 /* apic_ipls is indexed by vector, starting at APIC_BASE_VECT */ 1771 const int apic_ipls_index = irqptr->airq_vector - 1772 APIC_BASE_VECT; 1773 const int vect_inherent_hwpri = irqptr->airq_vector >> 1774 APIC_IPL_SHIFT; 1775 1776 /* 1777 * If there are still devices using this IRQ, determine the 1778 * new ipl to use. 1779 */ 1780 if (irqptr->airq_share) { 1781 int vect_desired_hwpri, hwpri; 1782 1783 ASSERT(max_ipl < MAXIPL); 1784 vect_desired_hwpri = apic_ipltopri[max_ipl] >> 1785 APIC_IPL_SHIFT; 1786 1787 /* 1788 * If the desired IPL's hardware priority is lower 1789 * than that of the vector, use the hardware priority 1790 * of the vector to determine the new IPL. 1791 */ 1792 hwpri = (vect_desired_hwpri < vect_inherent_hwpri) ? 1793 vect_inherent_hwpri : vect_desired_hwpri; 1794 1795 /* 1796 * Now, to get the right index for apic_vectortoipl, 1797 * we need to subtract APIC_BASE_VECT from the 1798 * hardware-vector-equivalent (in hwpri). Since hwpri 1799 * is already shifted, we shift APIC_BASE_VECT before 1800 * doing the subtraction. 1801 */ 1802 hwpri -= (APIC_BASE_VECT >> APIC_IPL_SHIFT); 1803 1804 ASSERT(hwpri >= 0); 1805 ASSERT(hwpri < MAXIPL); 1806 max_ipl = apic_vectortoipl[hwpri]; 1807 apic_ipls[apic_ipls_index] = max_ipl; 1808 1809 irqp = irqheadptr; 1810 while (irqp) { 1811 irqp->airq_ipl = (uchar_t)max_ipl; 1812 irqp = irqp->airq_next; 1813 } 1814 } else { 1815 /* 1816 * No more devices on this IRQ, so reset this vector's 1817 * element in apic_ipls to the original IPL for this 1818 * vector 1819 */ 1820 apic_ipls[apic_ipls_index] = 1821 apic_vectortoipl[vect_inherent_hwpri]; 1822 } 1823 } 1824 1825 /* 1826 * If there are still active interrupts, we are done. 1827 */ 1828 if (irqptr->airq_share) 1829 return (PSM_SUCCESS); 1830 1831 iflag = intr_clear(); 1832 lock_set(&apic_ioapic_lock); 1833 1834 if (irqptr->airq_mps_intr_index == MSI_INDEX) { 1835 /* 1836 * Disable the MSI vector 1837 * Make sure we only disable on the last 1838 * of the multi-MSI support 1839 */ 1840 if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) { 1841 apic_pci_msi_disable_mode(irqptr->airq_dip, 1842 DDI_INTR_TYPE_MSI); 1843 } 1844 } else if (irqptr->airq_mps_intr_index == MSIX_INDEX) { 1845 /* 1846 * Disable the MSI-X vector 1847 * needs to clear its mask and addr/data for each MSI-X 1848 */ 1849 apic_pci_msi_unconfigure(irqptr->airq_dip, DDI_INTR_TYPE_MSIX, 1850 irqptr->airq_origirq); 1851 /* 1852 * Make sure we only disable on the last MSI-X 1853 */ 1854 if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) { 1855 apic_pci_msi_disable_mode(irqptr->airq_dip, 1856 DDI_INTR_TYPE_MSIX); 1857 } 1858 } else { 1859 /* 1860 * The assumption here is that this is safe, even for 1861 * systems with IOAPICs that suffer from the hardware 1862 * erratum because all devices have been quiesced before 1863 * they unregister their interrupt handlers. If that 1864 * assumption turns out to be false, this mask operation 1865 * can induce the same erratum result we're trying to 1866 * avoid. 1867 */ 1868 ioapic_ix = irqptr->airq_ioapicindex; 1869 intin = irqptr->airq_intin_no; 1870 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin, AV_MASK); 1871 } 1872 1873 #if !defined(__xpv) 1874 apic_vt_ops->apic_intrmap_free_entry(irqptr); 1875 #endif 1876 1877 /* 1878 * This irq entry is the only one in the chain. 1879 */ 1880 if (irqheadptr->airq_next == NULL) { 1881 ASSERT(irqheadptr == irqptr); 1882 bind_cpu = irqptr->airq_temp_cpu; 1883 if (((uint32_t)bind_cpu != IRQ_UNBOUND) && 1884 ((uint32_t)bind_cpu != IRQ_UNINIT)) { 1885 ASSERT(apic_cpu_in_range(bind_cpu)); 1886 if (bind_cpu & IRQ_USER_BOUND) { 1887 /* If hardbound, temp_cpu == cpu */ 1888 bind_cpu &= ~IRQ_USER_BOUND; 1889 apic_cpus[bind_cpu].aci_bound--; 1890 } else 1891 apic_cpus[bind_cpu].aci_temp_bound--; 1892 } 1893 irqptr->airq_temp_cpu = IRQ_UNINIT; 1894 irqptr->airq_mps_intr_index = FREE_INDEX; 1895 lock_clear(&apic_ioapic_lock); 1896 intr_restore(iflag); 1897 apic_free_vector(irqptr->airq_vector); 1898 return (PSM_SUCCESS); 1899 } 1900 1901 /* 1902 * If we get here, we are sharing the vector and there are more than 1903 * one active irq entries in the chain. 1904 */ 1905 lock_clear(&apic_ioapic_lock); 1906 intr_restore(iflag); 1907 1908 mutex_enter(&airq_mutex); 1909 /* Remove the irq entry from the chain */ 1910 if (irqptr == irqheadptr) { /* The irq entry is at the head */ 1911 apic_irq_table[irqindex] = irqptr->airq_next; 1912 } else { 1913 preirqptr->airq_next = irqptr->airq_next; 1914 } 1915 /* Free the irq entry */ 1916 kmem_free(irqptr, sizeof (apic_irq_t)); 1917 mutex_exit(&airq_mutex); 1918 1919 return (PSM_SUCCESS); 1920 } 1921 1922 /* 1923 * apic_introp_xlate() replaces apic_translate_irq() and is 1924 * called only from apic_intr_ops(). With the new ADII framework, 1925 * the priority can no longer be retrieved through i_ddi_get_intrspec(). 1926 * It has to be passed in from the caller. 1927 * 1928 * Return value: 1929 * Success: irqno for the given device 1930 * Failure: -1 1931 */ 1932 int 1933 apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type) 1934 { 1935 char dev_type[16]; 1936 int dev_len, pci_irq, newirq, bustype, devid, busid, i; 1937 int irqno = ispec->intrspec_vec; 1938 ddi_acc_handle_t cfg_handle; 1939 uchar_t ipin; 1940 struct apic_io_intr *intrp; 1941 iflag_t intr_flag; 1942 ACPI_SUBTABLE_HEADER *hp; 1943 ACPI_MADT_INTERRUPT_OVERRIDE *isop; 1944 apic_irq_t *airqp; 1945 int parent_is_pci_or_pciex = 0; 1946 int child_is_pciex = 0; 1947 1948 DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s " 1949 "type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type, 1950 irqno)); 1951 1952 dev_len = sizeof (dev_type); 1953 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip), 1954 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type, 1955 &dev_len) == DDI_PROP_SUCCESS) { 1956 if ((strcmp(dev_type, "pci") == 0) || 1957 (strcmp(dev_type, "pciex") == 0)) 1958 parent_is_pci_or_pciex = 1; 1959 } 1960 1961 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 1962 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type, 1963 &dev_len) == DDI_PROP_SUCCESS) { 1964 if (strstr(dev_type, "pciex")) 1965 child_is_pciex = 1; 1966 } 1967 1968 1969 if (DDI_INTR_IS_MSI_OR_MSIX(type)) { 1970 if ((airqp = apic_find_irq(dip, ispec, type)) != NULL) { 1971 airqp->airq_iflag.bustype = 1972 child_is_pciex ? BUS_PCIE : BUS_PCI; 1973 return (apic_vector_to_irq[airqp->airq_vector]); 1974 } 1975 return (apic_setup_irq_table(dip, irqno, NULL, ispec, 1976 NULL, type)); 1977 } 1978 1979 bustype = 0; 1980 1981 /* check if we have already translated this irq */ 1982 mutex_enter(&airq_mutex); 1983 newirq = apic_min_device_irq; 1984 for (; newirq <= apic_max_device_irq; newirq++) { 1985 airqp = apic_irq_table[newirq]; 1986 while (airqp) { 1987 if ((airqp->airq_dip == dip) && 1988 (airqp->airq_origirq == irqno) && 1989 (airqp->airq_mps_intr_index != FREE_INDEX)) { 1990 1991 mutex_exit(&airq_mutex); 1992 return (VIRTIRQ(newirq, airqp->airq_share_id)); 1993 } 1994 airqp = airqp->airq_next; 1995 } 1996 } 1997 mutex_exit(&airq_mutex); 1998 1999 if (apic_defconf) 2000 goto defconf; 2001 2002 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) 2003 goto nonpci; 2004 2005 if (parent_is_pci_or_pciex) { 2006 /* pci device */ 2007 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0) 2008 goto nonpci; 2009 if (busid == 0 && apic_pci_bus_total == 1) 2010 busid = (int)apic_single_pci_busid; 2011 2012 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS) 2013 return (-1); 2014 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA; 2015 pci_config_teardown(&cfg_handle); 2016 if (apic_enable_acpi && !apic_use_acpi_madt_only) { 2017 if (apic_acpi_translate_pci_irq(dip, busid, devid, 2018 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS) 2019 return (-1); 2020 2021 intr_flag.bustype = child_is_pciex ? BUS_PCIE : BUS_PCI; 2022 return (apic_setup_irq_table(dip, pci_irq, NULL, ispec, 2023 &intr_flag, type)); 2024 } else { 2025 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3); 2026 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) 2027 == NULL) { 2028 if ((pci_irq = apic_handle_pci_pci_bridge(dip, 2029 devid, ipin, &intrp)) == -1) 2030 return (-1); 2031 } 2032 return (apic_setup_irq_table(dip, pci_irq, intrp, ispec, 2033 NULL, type)); 2034 } 2035 } else if (strcmp(dev_type, "isa") == 0) 2036 bustype = BUS_ISA; 2037 else if (strcmp(dev_type, "eisa") == 0) 2038 bustype = BUS_EISA; 2039 2040 nonpci: 2041 if (apic_enable_acpi && !apic_use_acpi_madt_only) { 2042 /* search iso entries first */ 2043 if (acpi_iso_cnt != 0) { 2044 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop; 2045 i = 0; 2046 while (i < acpi_iso_cnt) { 2047 if (hp->Type == 2048 ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) { 2049 isop = 2050 (ACPI_MADT_INTERRUPT_OVERRIDE *) hp; 2051 if (isop->Bus == 0 && 2052 isop->SourceIrq == irqno) { 2053 newirq = isop->GlobalIrq; 2054 intr_flag.intr_po = 2055 isop->IntiFlags & 2056 ACPI_MADT_POLARITY_MASK; 2057 intr_flag.intr_el = 2058 (isop->IntiFlags & 2059 ACPI_MADT_TRIGGER_MASK) 2060 >> 2; 2061 intr_flag.bustype = BUS_ISA; 2062 2063 return (apic_setup_irq_table( 2064 dip, newirq, NULL, ispec, 2065 &intr_flag, type)); 2066 2067 } 2068 i++; 2069 } 2070 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) + 2071 hp->Length); 2072 } 2073 } 2074 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH; 2075 intr_flag.intr_el = INTR_EL_EDGE; 2076 intr_flag.bustype = BUS_ISA; 2077 return (apic_setup_irq_table(dip, irqno, NULL, ispec, 2078 &intr_flag, type)); 2079 } else { 2080 if (bustype == 0) 2081 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA; 2082 for (i = 0; i < 2; i++) { 2083 if (((busid = apic_find_bus_id(bustype)) != -1) && 2084 ((intrp = apic_find_io_intr_w_busid(irqno, busid)) 2085 != NULL)) { 2086 if ((newirq = apic_setup_irq_table(dip, irqno, 2087 intrp, ispec, NULL, type)) != -1) { 2088 return (newirq); 2089 } 2090 goto defconf; 2091 } 2092 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA; 2093 } 2094 } 2095 2096 /* MPS default configuration */ 2097 defconf: 2098 newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type); 2099 if (newirq == -1) 2100 return (-1); 2101 ASSERT(IRQINDEX(newirq) == irqno); 2102 ASSERT(apic_irq_table[irqno]); 2103 return (newirq); 2104 } 2105 2106 2107 2108 2109 2110 2111 /* 2112 * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge 2113 * needs special handling. We may need to chase up the device tree, 2114 * using the PCI-PCI Bridge specification's "rotating IPIN assumptions", 2115 * to find the IPIN at the root bus that relates to the IPIN on the 2116 * subsidiary bus (for ACPI or MP). We may, however, have an entry 2117 * in the MP table or the ACPI namespace for this device itself. 2118 * We handle both cases in the search below. 2119 */ 2120 /* this is the non-acpi version */ 2121 static int 2122 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin, 2123 struct apic_io_intr **intrp) 2124 { 2125 dev_info_t *dipp, *dip; 2126 int pci_irq; 2127 ddi_acc_handle_t cfg_handle; 2128 int bridge_devno, bridge_bus; 2129 int ipin; 2130 2131 dip = idip; 2132 2133 /*CONSTCOND*/ 2134 while (1) { 2135 if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) || 2136 (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS)) 2137 return (-1); 2138 if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) == 2139 PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle, 2140 PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) { 2141 pci_config_teardown(&cfg_handle); 2142 if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno, 2143 NULL) != 0) 2144 return (-1); 2145 /* 2146 * This is the rotating scheme documented in the 2147 * PCI-to-PCI spec. If the PCI-to-PCI bridge is 2148 * behind another PCI-to-PCI bridge, then it needs 2149 * to keep ascending until an interrupt entry is 2150 * found or the root is reached. 2151 */ 2152 ipin = (child_devno + child_ipin) % PCI_INTD; 2153 if (bridge_bus == 0 && apic_pci_bus_total == 1) 2154 bridge_bus = (int)apic_single_pci_busid; 2155 pci_irq = ((bridge_devno & 0x1f) << 2) | 2156 (ipin & 0x3); 2157 if ((*intrp = apic_find_io_intr_w_busid(pci_irq, 2158 bridge_bus)) != NULL) { 2159 return (pci_irq); 2160 } 2161 dip = dipp; 2162 child_devno = bridge_devno; 2163 child_ipin = ipin; 2164 } else { 2165 pci_config_teardown(&cfg_handle); 2166 return (-1); 2167 } 2168 } 2169 /*LINTED: function will not fall off the bottom */ 2170 } 2171 2172 2173 2174 2175 static uchar_t 2176 acpi_find_ioapic(int irq) 2177 { 2178 int i; 2179 2180 for (i = 0; i < apic_io_max; i++) { 2181 if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i]) 2182 return (i); 2183 } 2184 return (0xFF); /* shouldn't happen */ 2185 } 2186 2187 /* 2188 * See if two irqs are compatible for sharing a vector. 2189 * Currently we only support sharing of PCI devices. 2190 */ 2191 static int 2192 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2) 2193 { 2194 uint_t level1, po1; 2195 uint_t level2, po2; 2196 2197 /* Assume active high by default */ 2198 po1 = 0; 2199 po2 = 0; 2200 2201 if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI) 2202 return (0); 2203 2204 if (iflag1.intr_el == INTR_EL_CONFORM) 2205 level1 = AV_LEVEL; 2206 else 2207 level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 2208 2209 if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) || 2210 (iflag1.intr_po == INTR_PO_CONFORM))) 2211 po1 = AV_ACTIVE_LOW; 2212 2213 if (iflag2.intr_el == INTR_EL_CONFORM) 2214 level2 = AV_LEVEL; 2215 else 2216 level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 2217 2218 if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) || 2219 (iflag2.intr_po == INTR_PO_CONFORM))) 2220 po2 = AV_ACTIVE_LOW; 2221 2222 if ((level1 == level2) && (po1 == po2)) 2223 return (1); 2224 2225 return (0); 2226 } 2227 2228 /* 2229 * Attempt to share vector with someone else 2230 */ 2231 static int 2232 apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl, 2233 uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp) 2234 { 2235 #ifdef DEBUG 2236 apic_irq_t *tmpirqp = NULL; 2237 #endif /* DEBUG */ 2238 apic_irq_t *irqptr, dummyirq; 2239 int newirq, chosen_irq = -1, share = 127; 2240 int lowest, highest, i; 2241 uchar_t share_id; 2242 2243 DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x " 2244 "intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl)); 2245 2246 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; 2247 lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL; 2248 2249 if (highest < lowest) /* Both ipl and ipl-1 map to same pri */ 2250 lowest -= APIC_VECTOR_PER_IPL; 2251 dummyirq.airq_mps_intr_index = intr_index; 2252 dummyirq.airq_ioapicindex = ioapicindex; 2253 dummyirq.airq_intin_no = ipin; 2254 if (intr_flagp) 2255 dummyirq.airq_iflag = *intr_flagp; 2256 apic_record_rdt_entry(&dummyirq, irqno); 2257 for (i = lowest; i <= highest; i++) { 2258 newirq = apic_vector_to_irq[i]; 2259 if (newirq == APIC_RESV_IRQ) 2260 continue; 2261 irqptr = apic_irq_table[newirq]; 2262 2263 if ((dummyirq.airq_rdt_entry & 0xFF00) != 2264 (irqptr->airq_rdt_entry & 0xFF00)) 2265 /* not compatible */ 2266 continue; 2267 2268 if (irqptr->airq_share < share) { 2269 share = irqptr->airq_share; 2270 chosen_irq = newirq; 2271 } 2272 } 2273 if (chosen_irq != -1) { 2274 /* 2275 * Assign a share id which is free or which is larger 2276 * than the largest one. 2277 */ 2278 share_id = 1; 2279 mutex_enter(&airq_mutex); 2280 irqptr = apic_irq_table[chosen_irq]; 2281 while (irqptr) { 2282 if (irqptr->airq_mps_intr_index == FREE_INDEX) { 2283 share_id = irqptr->airq_share_id; 2284 break; 2285 } 2286 if (share_id <= irqptr->airq_share_id) 2287 share_id = irqptr->airq_share_id + 1; 2288 #ifdef DEBUG 2289 tmpirqp = irqptr; 2290 #endif /* DEBUG */ 2291 irqptr = irqptr->airq_next; 2292 } 2293 if (!irqptr) { 2294 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); 2295 irqptr->airq_temp_cpu = IRQ_UNINIT; 2296 irqptr->airq_next = 2297 apic_irq_table[chosen_irq]->airq_next; 2298 apic_irq_table[chosen_irq]->airq_next = irqptr; 2299 #ifdef DEBUG 2300 tmpirqp = apic_irq_table[chosen_irq]; 2301 #endif /* DEBUG */ 2302 } 2303 irqptr->airq_mps_intr_index = intr_index; 2304 irqptr->airq_ioapicindex = ioapicindex; 2305 irqptr->airq_intin_no = ipin; 2306 if (intr_flagp) 2307 irqptr->airq_iflag = *intr_flagp; 2308 irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector; 2309 irqptr->airq_share_id = share_id; 2310 apic_record_rdt_entry(irqptr, irqno); 2311 *irqptrp = irqptr; 2312 #ifdef DEBUG 2313 /* shuffle the pointers to test apic_delspl path */ 2314 if (tmpirqp) { 2315 tmpirqp->airq_next = irqptr->airq_next; 2316 irqptr->airq_next = apic_irq_table[chosen_irq]; 2317 apic_irq_table[chosen_irq] = irqptr; 2318 } 2319 #endif /* DEBUG */ 2320 mutex_exit(&airq_mutex); 2321 return (VIRTIRQ(chosen_irq, share_id)); 2322 } 2323 return (-1); 2324 } 2325 2326 /* 2327 * Allocate/Initialize the apic_irq_table[] entry for given irqno. If the entry 2328 * is used already, we will try to allocate a new irqno. 2329 * 2330 * Return value: 2331 * Success: irqno 2332 * Failure: -1 2333 */ 2334 static int 2335 apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp, 2336 struct intrspec *ispec, iflag_t *intr_flagp, int type) 2337 { 2338 int origirq = ispec->intrspec_vec; 2339 uchar_t ipl = ispec->intrspec_pri; 2340 int newirq, intr_index; 2341 uchar_t ipin, ioapic, ioapicindex, vector; 2342 apic_irq_t *irqptr; 2343 major_t major; 2344 dev_info_t *sdip; 2345 2346 DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d " 2347 "irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq)); 2348 2349 ASSERT(ispec != NULL); 2350 2351 major = (dip != NULL) ? ddi_driver_major(dip) : 0; 2352 2353 if (DDI_INTR_IS_MSI_OR_MSIX(type)) { 2354 /* MSI/X doesn't need to setup ioapic stuffs */ 2355 ioapicindex = 0xff; 2356 ioapic = 0xff; 2357 ipin = (uchar_t)0xff; 2358 intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX : 2359 MSIX_INDEX; 2360 mutex_enter(&airq_mutex); 2361 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == -1) { 2362 mutex_exit(&airq_mutex); 2363 /* need an irq for MSI/X to index into autovect[] */ 2364 cmn_err(CE_WARN, "No interrupt irq: %s instance %d", 2365 ddi_get_name(dip), ddi_get_instance(dip)); 2366 return (-1); 2367 } 2368 mutex_exit(&airq_mutex); 2369 2370 } else if (intrp != NULL) { 2371 intr_index = (int)(intrp - apic_io_intrp); 2372 ioapic = intrp->intr_destid; 2373 ipin = intrp->intr_destintin; 2374 /* Find ioapicindex. If destid was ALL, we will exit with 0. */ 2375 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--) 2376 if (apic_io_id[ioapicindex] == ioapic) 2377 break; 2378 ASSERT((ioapic == apic_io_id[ioapicindex]) || 2379 (ioapic == INTR_ALL_APIC)); 2380 2381 /* check whether this intin# has been used by another irqno */ 2382 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) { 2383 return (newirq); 2384 } 2385 2386 } else if (intr_flagp != NULL) { 2387 /* ACPI case */ 2388 intr_index = ACPI_INDEX; 2389 ioapicindex = acpi_find_ioapic(irqno); 2390 ASSERT(ioapicindex != 0xFF); 2391 ioapic = apic_io_id[ioapicindex]; 2392 ipin = irqno - apic_io_vectbase[ioapicindex]; 2393 if (apic_irq_table[irqno] && 2394 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) { 2395 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin && 2396 apic_irq_table[irqno]->airq_ioapicindex == 2397 ioapicindex); 2398 return (irqno); 2399 } 2400 2401 } else { 2402 /* default configuration */ 2403 ioapicindex = 0; 2404 ioapic = apic_io_id[ioapicindex]; 2405 ipin = (uchar_t)irqno; 2406 intr_index = DEFAULT_INDEX; 2407 } 2408 2409 if (ispec == NULL) { 2410 APIC_VERBOSE_IOAPIC((CE_WARN, "No intrspec for irqno = %x\n", 2411 irqno)); 2412 } else if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) { 2413 if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index, 2414 ipl, ioapicindex, ipin, &irqptr)) != -1) { 2415 irqptr->airq_ipl = ipl; 2416 irqptr->airq_origirq = (uchar_t)origirq; 2417 irqptr->airq_dip = dip; 2418 irqptr->airq_major = major; 2419 sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip; 2420 /* This is OK to do really */ 2421 if (sdip == NULL) { 2422 cmn_err(CE_WARN, "Sharing vectors: %s" 2423 " instance %d and SCI", 2424 ddi_get_name(dip), ddi_get_instance(dip)); 2425 } else { 2426 cmn_err(CE_WARN, "Sharing vectors: %s" 2427 " instance %d and %s instance %d", 2428 ddi_get_name(sdip), ddi_get_instance(sdip), 2429 ddi_get_name(dip), ddi_get_instance(dip)); 2430 } 2431 return (newirq); 2432 } 2433 /* try high priority allocation now that share has failed */ 2434 if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) { 2435 cmn_err(CE_WARN, "No interrupt vector: %s instance %d", 2436 ddi_get_name(dip), ddi_get_instance(dip)); 2437 return (-1); 2438 } 2439 } 2440 2441 mutex_enter(&airq_mutex); 2442 if (apic_irq_table[irqno] == NULL) { 2443 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); 2444 irqptr->airq_temp_cpu = IRQ_UNINIT; 2445 apic_irq_table[irqno] = irqptr; 2446 } else { 2447 irqptr = apic_irq_table[irqno]; 2448 if (irqptr->airq_mps_intr_index != FREE_INDEX) { 2449 /* 2450 * The slot is used by another irqno, so allocate 2451 * a free irqno for this interrupt 2452 */ 2453 newirq = apic_allocate_irq(apic_first_avail_irq); 2454 if (newirq == -1) { 2455 mutex_exit(&airq_mutex); 2456 return (-1); 2457 } 2458 irqno = newirq; 2459 irqptr = apic_irq_table[irqno]; 2460 if (irqptr == NULL) { 2461 irqptr = kmem_zalloc(sizeof (apic_irq_t), 2462 KM_SLEEP); 2463 irqptr->airq_temp_cpu = IRQ_UNINIT; 2464 apic_irq_table[irqno] = irqptr; 2465 } 2466 vector = apic_modify_vector(vector, newirq); 2467 } 2468 } 2469 apic_max_device_irq = max(irqno, apic_max_device_irq); 2470 apic_min_device_irq = min(irqno, apic_min_device_irq); 2471 mutex_exit(&airq_mutex); 2472 irqptr->airq_ioapicindex = ioapicindex; 2473 irqptr->airq_intin_no = ipin; 2474 irqptr->airq_ipl = ipl; 2475 irqptr->airq_vector = vector; 2476 irqptr->airq_origirq = (uchar_t)origirq; 2477 irqptr->airq_share_id = 0; 2478 irqptr->airq_mps_intr_index = (short)intr_index; 2479 irqptr->airq_dip = dip; 2480 irqptr->airq_major = major; 2481 irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin); 2482 if (intr_flagp) 2483 irqptr->airq_iflag = *intr_flagp; 2484 2485 if (!DDI_INTR_IS_MSI_OR_MSIX(type)) { 2486 /* setup I/O APIC entry for non-MSI/X interrupts */ 2487 apic_record_rdt_entry(irqptr, irqno); 2488 } 2489 return (irqno); 2490 } 2491 2492 /* 2493 * return the cpu to which this intr should be bound. 2494 * Check properties or any other mechanism to see if user wants it 2495 * bound to a specific CPU. If so, return the cpu id with high bit set. 2496 * If not, use the policy to choose a cpu and return the id. 2497 */ 2498 uint32_t 2499 apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin) 2500 { 2501 int instance, instno, prop_len, bind_cpu, count; 2502 uint_t i, rc; 2503 uint32_t cpu; 2504 major_t major; 2505 char *name, *drv_name, *prop_val, *cptr; 2506 char prop_name[32]; 2507 ulong_t iflag; 2508 2509 2510 if (apic_intr_policy == INTR_LOWEST_PRIORITY) 2511 return (IRQ_UNBOUND); 2512 2513 if (apic_nproc == 1) 2514 return (0); 2515 2516 drv_name = NULL; 2517 rc = DDI_PROP_NOT_FOUND; 2518 major = (major_t)-1; 2519 if (dip != NULL) { 2520 name = ddi_get_name(dip); 2521 major = ddi_name_to_major(name); 2522 drv_name = ddi_major_to_name(major); 2523 instance = ddi_get_instance(dip); 2524 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) { 2525 i = apic_min_device_irq; 2526 for (; i <= apic_max_device_irq; i++) { 2527 2528 if ((i == irq) || (apic_irq_table[i] == NULL) || 2529 (apic_irq_table[i]->airq_mps_intr_index 2530 == FREE_INDEX)) 2531 continue; 2532 2533 if ((apic_irq_table[i]->airq_major == major) && 2534 (!(apic_irq_table[i]->airq_cpu & 2535 IRQ_USER_BOUND))) { 2536 2537 cpu = apic_irq_table[i]->airq_cpu; 2538 2539 cmn_err(CE_CONT, 2540 "!%s: %s (%s) instance #%d " 2541 "irq 0x%x vector 0x%x ioapic 0x%x " 2542 "intin 0x%x is bound to cpu %d\n", 2543 psm_name, 2544 name, drv_name, instance, irq, 2545 apic_irq_table[irq]->airq_vector, 2546 ioapicid, intin, cpu); 2547 return (cpu); 2548 } 2549 } 2550 } 2551 /* 2552 * search for "drvname"_intpt_bind_cpus property first, the 2553 * syntax of the property should be "a[,b,c,...]" where 2554 * instance 0 binds to cpu a, instance 1 binds to cpu b, 2555 * instance 3 binds to cpu c... 2556 * ddi_getlongprop() will search /option first, then / 2557 * if "drvname"_intpt_bind_cpus doesn't exist, then find 2558 * intpt_bind_cpus property. The syntax is the same, and 2559 * it applies to all the devices if its "drvname" specific 2560 * property doesn't exist 2561 */ 2562 (void) strcpy(prop_name, drv_name); 2563 (void) strcat(prop_name, "_intpt_bind_cpus"); 2564 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name, 2565 (caddr_t)&prop_val, &prop_len); 2566 if (rc != DDI_PROP_SUCCESS) { 2567 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, 2568 "intpt_bind_cpus", (caddr_t)&prop_val, &prop_len); 2569 } 2570 } 2571 if (rc == DDI_PROP_SUCCESS) { 2572 for (i = count = 0; i < (prop_len - 1); i++) 2573 if (prop_val[i] == ',') 2574 count++; 2575 if (prop_val[i-1] != ',') 2576 count++; 2577 /* 2578 * if somehow the binding instances defined in the 2579 * property are not enough for this instno., then 2580 * reuse the pattern for the next instance until 2581 * it reaches the requested instno 2582 */ 2583 instno = instance % count; 2584 i = 0; 2585 cptr = prop_val; 2586 while (i < instno) 2587 if (*cptr++ == ',') 2588 i++; 2589 bind_cpu = stoi(&cptr); 2590 kmem_free(prop_val, prop_len); 2591 /* if specific CPU is bogus, then default to next cpu */ 2592 if (!apic_cpu_in_range(bind_cpu)) { 2593 cmn_err(CE_WARN, "%s: %s=%s: CPU %d not present", 2594 psm_name, prop_name, prop_val, bind_cpu); 2595 rc = DDI_PROP_NOT_FOUND; 2596 } else { 2597 /* indicate that we are bound at user request */ 2598 bind_cpu |= IRQ_USER_BOUND; 2599 } 2600 /* 2601 * no need to check apic_cpus[].aci_status, if specific CPU is 2602 * not up, then post_cpu_start will handle it. 2603 */ 2604 } 2605 if (rc != DDI_PROP_SUCCESS) { 2606 iflag = intr_clear(); 2607 lock_set(&apic_ioapic_lock); 2608 bind_cpu = apic_find_next_cpu_intr(); 2609 lock_clear(&apic_ioapic_lock); 2610 intr_restore(iflag); 2611 } 2612 2613 if (drv_name != NULL) 2614 cmn_err(CE_CONT, "!%s: %s (%s) instance %d irq 0x%x " 2615 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n", 2616 psm_name, name, drv_name, instance, irq, 2617 apic_irq_table[irq]->airq_vector, ioapicid, intin, 2618 bind_cpu & ~IRQ_USER_BOUND); 2619 else 2620 cmn_err(CE_CONT, "!%s: irq 0x%x " 2621 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n", 2622 psm_name, irq, apic_irq_table[irq]->airq_vector, ioapicid, 2623 intin, bind_cpu & ~IRQ_USER_BOUND); 2624 2625 return ((uint32_t)bind_cpu); 2626 } 2627 2628 static struct apic_io_intr * 2629 apic_find_io_intr_w_busid(int irqno, int busid) 2630 { 2631 struct apic_io_intr *intrp; 2632 2633 /* 2634 * It can have more than 1 entry with same source bus IRQ, 2635 * but unique with the source bus id 2636 */ 2637 intrp = apic_io_intrp; 2638 if (intrp != NULL) { 2639 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 2640 if (intrp->intr_irq == irqno && 2641 intrp->intr_busid == busid && 2642 intrp->intr_type == IO_INTR_INT) 2643 return (intrp); 2644 intrp++; 2645 } 2646 } 2647 APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:" 2648 "busid %x:%x\n", irqno, busid)); 2649 return ((struct apic_io_intr *)NULL); 2650 } 2651 2652 2653 struct mps_bus_info { 2654 char *bus_name; 2655 int bus_id; 2656 } bus_info_array[] = { 2657 "ISA ", BUS_ISA, 2658 "PCI ", BUS_PCI, 2659 "EISA ", BUS_EISA, 2660 "XPRESS", BUS_XPRESS, 2661 "PCMCIA", BUS_PCMCIA, 2662 "VL ", BUS_VL, 2663 "CBUS ", BUS_CBUS, 2664 "CBUSII", BUS_CBUSII, 2665 "FUTURE", BUS_FUTURE, 2666 "INTERN", BUS_INTERN, 2667 "MBI ", BUS_MBI, 2668 "MBII ", BUS_MBII, 2669 "MPI ", BUS_MPI, 2670 "MPSA ", BUS_MPSA, 2671 "NUBUS ", BUS_NUBUS, 2672 "TC ", BUS_TC, 2673 "VME ", BUS_VME, 2674 "PCI-E ", BUS_PCIE 2675 }; 2676 2677 static int 2678 apic_find_bus_type(char *bus) 2679 { 2680 int i = 0; 2681 2682 for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++) 2683 if (strncmp(bus, bus_info_array[i].bus_name, 2684 strlen(bus_info_array[i].bus_name)) == 0) 2685 return (bus_info_array[i].bus_id); 2686 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus)); 2687 return (0); 2688 } 2689 2690 static int 2691 apic_find_bus(int busid) 2692 { 2693 struct apic_bus *busp; 2694 2695 busp = apic_busp; 2696 while (busp->bus_entry == APIC_BUS_ENTRY) { 2697 if (busp->bus_id == busid) 2698 return (apic_find_bus_type((char *)&busp->bus_str1)); 2699 busp++; 2700 } 2701 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid)); 2702 return (0); 2703 } 2704 2705 static int 2706 apic_find_bus_id(int bustype) 2707 { 2708 struct apic_bus *busp; 2709 2710 busp = apic_busp; 2711 while (busp->bus_entry == APIC_BUS_ENTRY) { 2712 if (apic_find_bus_type((char *)&busp->bus_str1) == bustype) 2713 return (busp->bus_id); 2714 busp++; 2715 } 2716 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x", 2717 bustype)); 2718 return (-1); 2719 } 2720 2721 /* 2722 * Check if a particular irq need to be reserved for any io_intr 2723 */ 2724 static struct apic_io_intr * 2725 apic_find_io_intr(int irqno) 2726 { 2727 struct apic_io_intr *intrp; 2728 2729 intrp = apic_io_intrp; 2730 if (intrp != NULL) { 2731 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 2732 if (intrp->intr_irq == irqno && 2733 intrp->intr_type == IO_INTR_INT) 2734 return (intrp); 2735 intrp++; 2736 } 2737 } 2738 return ((struct apic_io_intr *)NULL); 2739 } 2740 2741 /* 2742 * Check if the given ioapicindex intin combination has already been assigned 2743 * an irq. If so return irqno. Else -1 2744 */ 2745 static int 2746 apic_find_intin(uchar_t ioapic, uchar_t intin) 2747 { 2748 apic_irq_t *irqptr; 2749 int i; 2750 2751 /* find ioapic and intin in the apic_irq_table[] and return the index */ 2752 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 2753 irqptr = apic_irq_table[i]; 2754 while (irqptr) { 2755 if ((irqptr->airq_mps_intr_index >= 0) && 2756 (irqptr->airq_intin_no == intin) && 2757 (irqptr->airq_ioapicindex == ioapic)) { 2758 APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq " 2759 "entry for ioapic:intin %x:%x " 2760 "shared interrupts ?", ioapic, intin)); 2761 return (i); 2762 } 2763 irqptr = irqptr->airq_next; 2764 } 2765 } 2766 return (-1); 2767 } 2768 2769 int 2770 apic_allocate_irq(int irq) 2771 { 2772 int freeirq, i; 2773 2774 if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1) 2775 if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ, 2776 (irq - 1))) == -1) { 2777 /* 2778 * if BIOS really defines every single irq in the mps 2779 * table, then don't worry about conflicting with 2780 * them, just use any free slot in apic_irq_table 2781 */ 2782 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 2783 if ((apic_irq_table[i] == NULL) || 2784 apic_irq_table[i]->airq_mps_intr_index == 2785 FREE_INDEX) { 2786 freeirq = i; 2787 break; 2788 } 2789 } 2790 if (freeirq == -1) { 2791 /* This shouldn't happen, but just in case */ 2792 cmn_err(CE_WARN, "%s: NO available IRQ", psm_name); 2793 return (-1); 2794 } 2795 } 2796 if (apic_irq_table[freeirq] == NULL) { 2797 apic_irq_table[freeirq] = 2798 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); 2799 if (apic_irq_table[freeirq] == NULL) { 2800 cmn_err(CE_WARN, "%s: NO memory to allocate IRQ", 2801 psm_name); 2802 return (-1); 2803 } 2804 apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT; 2805 apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX; 2806 } 2807 return (freeirq); 2808 } 2809 2810 static int 2811 apic_find_free_irq(int start, int end) 2812 { 2813 int i; 2814 2815 for (i = start; i <= end; i++) 2816 /* Check if any I/O entry needs this IRQ */ 2817 if (apic_find_io_intr(i) == NULL) { 2818 /* Then see if it is free */ 2819 if ((apic_irq_table[i] == NULL) || 2820 (apic_irq_table[i]->airq_mps_intr_index == 2821 FREE_INDEX)) { 2822 return (i); 2823 } 2824 } 2825 return (-1); 2826 } 2827 2828 2829 /* 2830 * Mark vector as being in the process of being deleted. Interrupts 2831 * may still come in on some CPU. The moment an interrupt comes with 2832 * the new vector, we know we can free the old one. Called only from 2833 * addspl and delspl with interrupts disabled. Because an interrupt 2834 * can be shared, but no interrupt from either device may come in, 2835 * we also use a timeout mechanism, which we arbitrarily set to 2836 * apic_revector_timeout microseconds. 2837 */ 2838 static void 2839 apic_mark_vector(uchar_t oldvector, uchar_t newvector) 2840 { 2841 ulong_t iflag; 2842 2843 iflag = intr_clear(); 2844 lock_set(&apic_revector_lock); 2845 if (!apic_oldvec_to_newvec) { 2846 apic_oldvec_to_newvec = 2847 kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2, 2848 KM_NOSLEEP); 2849 2850 if (!apic_oldvec_to_newvec) { 2851 /* 2852 * This failure is not catastrophic. 2853 * But, the oldvec will never be freed. 2854 */ 2855 apic_error |= APIC_ERR_MARK_VECTOR_FAIL; 2856 lock_clear(&apic_revector_lock); 2857 intr_restore(iflag); 2858 return; 2859 } 2860 apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR]; 2861 } 2862 2863 /* See if we already did this for drivers which do double addintrs */ 2864 if (apic_oldvec_to_newvec[oldvector] != newvector) { 2865 apic_oldvec_to_newvec[oldvector] = newvector; 2866 apic_newvec_to_oldvec[newvector] = oldvector; 2867 apic_revector_pending++; 2868 } 2869 lock_clear(&apic_revector_lock); 2870 intr_restore(iflag); 2871 (void) timeout(apic_xlate_vector_free_timeout_handler, 2872 (void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout)); 2873 } 2874 2875 /* 2876 * xlate_vector is called from intr_enter if revector_pending is set. 2877 * It will xlate it if needed and mark the old vector as free. 2878 */ 2879 uchar_t 2880 apic_xlate_vector(uchar_t vector) 2881 { 2882 uchar_t newvector, oldvector = 0; 2883 2884 lock_set(&apic_revector_lock); 2885 /* Do we really need to do this ? */ 2886 if (!apic_revector_pending) { 2887 lock_clear(&apic_revector_lock); 2888 return (vector); 2889 } 2890 if ((newvector = apic_oldvec_to_newvec[vector]) != 0) 2891 oldvector = vector; 2892 else { 2893 /* 2894 * The incoming vector is new . See if a stale entry is 2895 * remaining 2896 */ 2897 if ((oldvector = apic_newvec_to_oldvec[vector]) != 0) 2898 newvector = vector; 2899 } 2900 2901 if (oldvector) { 2902 apic_revector_pending--; 2903 apic_oldvec_to_newvec[oldvector] = 0; 2904 apic_newvec_to_oldvec[newvector] = 0; 2905 apic_free_vector(oldvector); 2906 lock_clear(&apic_revector_lock); 2907 /* There could have been more than one reprogramming! */ 2908 return (apic_xlate_vector(newvector)); 2909 } 2910 lock_clear(&apic_revector_lock); 2911 return (vector); 2912 } 2913 2914 void 2915 apic_xlate_vector_free_timeout_handler(void *arg) 2916 { 2917 ulong_t iflag; 2918 uchar_t oldvector, newvector; 2919 2920 oldvector = (uchar_t)(uintptr_t)arg; 2921 iflag = intr_clear(); 2922 lock_set(&apic_revector_lock); 2923 if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) { 2924 apic_free_vector(oldvector); 2925 apic_oldvec_to_newvec[oldvector] = 0; 2926 apic_newvec_to_oldvec[newvector] = 0; 2927 apic_revector_pending--; 2928 } 2929 2930 lock_clear(&apic_revector_lock); 2931 intr_restore(iflag); 2932 } 2933 2934 2935 /* 2936 * compute the polarity, trigger mode and vector for programming into 2937 * the I/O apic and record in airq_rdt_entry. 2938 */ 2939 static void 2940 apic_record_rdt_entry(apic_irq_t *irqptr, int irq) 2941 { 2942 int ioapicindex, bus_type, vector; 2943 short intr_index; 2944 uint_t level, po, io_po; 2945 struct apic_io_intr *iointrp; 2946 2947 intr_index = irqptr->airq_mps_intr_index; 2948 DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d " 2949 "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq, 2950 (void *)irqptr->airq_dip, irqptr->airq_vector)); 2951 2952 if (intr_index == RESERVE_INDEX) { 2953 apic_error |= APIC_ERR_INVALID_INDEX; 2954 return; 2955 } else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) { 2956 return; 2957 } 2958 2959 vector = irqptr->airq_vector; 2960 ioapicindex = irqptr->airq_ioapicindex; 2961 /* Assume edge triggered by default */ 2962 level = 0; 2963 /* Assume active high by default */ 2964 po = 0; 2965 2966 if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) { 2967 ASSERT(irq < 16); 2968 if (eisa_level_intr_mask & (1 << irq)) 2969 level = AV_LEVEL; 2970 if (intr_index == FREE_INDEX && apic_defconf == 0) 2971 apic_error |= APIC_ERR_INVALID_INDEX; 2972 } else if (intr_index == ACPI_INDEX) { 2973 bus_type = irqptr->airq_iflag.bustype; 2974 if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) { 2975 if (bus_type == BUS_PCI) 2976 level = AV_LEVEL; 2977 } else 2978 level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ? 2979 AV_LEVEL : 0; 2980 if (level && 2981 ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) || 2982 (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM && 2983 bus_type == BUS_PCI))) 2984 po = AV_ACTIVE_LOW; 2985 } else { 2986 iointrp = apic_io_intrp + intr_index; 2987 bus_type = apic_find_bus(iointrp->intr_busid); 2988 if (iointrp->intr_el == INTR_EL_CONFORM) { 2989 if ((irq < 16) && (eisa_level_intr_mask & (1 << irq))) 2990 level = AV_LEVEL; 2991 else if (bus_type == BUS_PCI) 2992 level = AV_LEVEL; 2993 } else 2994 level = (iointrp->intr_el == INTR_EL_LEVEL) ? 2995 AV_LEVEL : 0; 2996 if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) || 2997 (iointrp->intr_po == INTR_PO_CONFORM && 2998 bus_type == BUS_PCI))) 2999 po = AV_ACTIVE_LOW; 3000 } 3001 if (level) 3002 apic_level_intr[irq] = 1; 3003 /* 3004 * The 82489DX External APIC cannot do active low polarity interrupts. 3005 */ 3006 if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX)) 3007 io_po = po; 3008 else 3009 io_po = 0; 3010 3011 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) 3012 printf("setio: ioapic=%x intin=%x level=%x po=%x vector=%x\n", 3013 ioapicindex, irqptr->airq_intin_no, level, io_po, vector); 3014 3015 irqptr->airq_rdt_entry = level|io_po|vector; 3016 } 3017 3018 /* 3019 * Bind interrupt corresponding to irq_ptr to bind_cpu. 3020 * Must be called with interrupts disabled and apic_ioapic_lock held 3021 */ 3022 int 3023 apic_rebind(apic_irq_t *irq_ptr, int bind_cpu, 3024 struct ioapic_reprogram_data *drep) 3025 { 3026 int ioapicindex, intin_no; 3027 uint32_t airq_temp_cpu; 3028 apic_cpus_info_t *cpu_infop; 3029 uint32_t rdt_entry; 3030 int which_irq; 3031 ioapic_rdt_t irdt; 3032 3033 which_irq = apic_vector_to_irq[irq_ptr->airq_vector]; 3034 3035 intin_no = irq_ptr->airq_intin_no; 3036 ioapicindex = irq_ptr->airq_ioapicindex; 3037 airq_temp_cpu = irq_ptr->airq_temp_cpu; 3038 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) { 3039 if (airq_temp_cpu & IRQ_USER_BOUND) 3040 /* Mask off high bit so it can be used as array index */ 3041 airq_temp_cpu &= ~IRQ_USER_BOUND; 3042 3043 ASSERT(apic_cpu_in_range(airq_temp_cpu)); 3044 } 3045 3046 /* 3047 * Can't bind to a CPU that's not accepting interrupts: 3048 */ 3049 cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND]; 3050 if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE)) 3051 return (1); 3052 3053 /* 3054 * If we are about to change the interrupt vector for this interrupt, 3055 * and this interrupt is level-triggered, attached to an IOAPIC, 3056 * has been delivered to a CPU and that CPU has not handled it 3057 * yet, we cannot reprogram the IOAPIC now. 3058 */ 3059 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) { 3060 3061 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, 3062 intin_no); 3063 3064 if ((irq_ptr->airq_vector != RDT_VECTOR(rdt_entry)) && 3065 apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu, 3066 bind_cpu, ioapicindex, intin_no, which_irq, drep) != 0) { 3067 3068 return (0); 3069 } 3070 3071 /* 3072 * NOTE: We do not unmask the RDT here, as an interrupt MAY 3073 * still come in before we have a chance to reprogram it below. 3074 * The reprogramming below will simultaneously change and 3075 * unmask the RDT entry. 3076 */ 3077 3078 if ((uint32_t)bind_cpu == IRQ_UNBOUND) { 3079 irdt.ir_lo = AV_LDEST | AV_LOPRI | 3080 irq_ptr->airq_rdt_entry; 3081 #if !defined(__xpv) 3082 irdt.ir_hi = AV_TOALL >> APIC_ID_BIT_OFFSET; 3083 3084 apic_vt_ops->apic_intrmap_alloc_entry(irq_ptr); 3085 apic_vt_ops->apic_intrmap_map_entry( 3086 irq_ptr, (void *)&irdt); 3087 apic_vt_ops->apic_intrmap_record_rdt(irq_ptr, &irdt); 3088 3089 /* Write the RDT entry -- no specific CPU binding */ 3090 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 3091 irdt.ir_hi | AV_TOALL); 3092 #else 3093 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 3094 AV_TOALL); 3095 #endif 3096 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != 3097 IRQ_UNBOUND) 3098 apic_cpus[airq_temp_cpu].aci_temp_bound--; 3099 3100 /* 3101 * Write the vector, trigger, and polarity portion of 3102 * the RDT 3103 */ 3104 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no, 3105 irdt.ir_lo); 3106 3107 irq_ptr->airq_temp_cpu = IRQ_UNBOUND; 3108 return (0); 3109 } 3110 } 3111 3112 if (bind_cpu & IRQ_USER_BOUND) { 3113 cpu_infop->aci_bound++; 3114 } else { 3115 cpu_infop->aci_temp_bound++; 3116 } 3117 ASSERT(apic_cpu_in_range(bind_cpu)); 3118 3119 if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) { 3120 apic_cpus[airq_temp_cpu].aci_temp_bound--; 3121 } 3122 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) { 3123 3124 irdt.ir_lo = AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry; 3125 irdt.ir_hi = cpu_infop->aci_local_id; 3126 3127 #if !defined(__xpv) 3128 apic_vt_ops->apic_intrmap_alloc_entry(irq_ptr); 3129 apic_vt_ops->apic_intrmap_map_entry(irq_ptr, (void *)&irdt); 3130 apic_vt_ops->apic_intrmap_record_rdt(irq_ptr, &irdt); 3131 3132 /* Write the RDT entry -- bind to a specific CPU: */ 3133 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 3134 irdt.ir_hi); 3135 #else 3136 /* Write the RDT entry -- bind to a specific CPU: */ 3137 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, 3138 irdt.ir_hi << APIC_ID_BIT_OFFSET); 3139 #endif 3140 /* Write the vector, trigger, and polarity portion of the RDT */ 3141 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no, 3142 irdt.ir_lo); 3143 3144 } else { 3145 int type = (irq_ptr->airq_mps_intr_index == MSI_INDEX) ? 3146 DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX; 3147 if (type == DDI_INTR_TYPE_MSI) { 3148 if (irq_ptr->airq_ioapicindex == 3149 irq_ptr->airq_origirq) { 3150 /* first one */ 3151 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call " 3152 "apic_pci_msi_enable_vector\n")); 3153 apic_pci_msi_enable_vector(irq_ptr, 3154 type, which_irq, irq_ptr->airq_vector, 3155 irq_ptr->airq_intin_no, 3156 cpu_infop->aci_local_id); 3157 } 3158 if ((irq_ptr->airq_ioapicindex + 3159 irq_ptr->airq_intin_no - 1) == 3160 irq_ptr->airq_origirq) { /* last one */ 3161 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call " 3162 "apic_pci_msi_enable_mode\n")); 3163 apic_pci_msi_enable_mode(irq_ptr->airq_dip, 3164 type, which_irq); 3165 } 3166 } else { /* MSI-X */ 3167 apic_pci_msi_enable_vector(irq_ptr, type, 3168 irq_ptr->airq_origirq, irq_ptr->airq_vector, 1, 3169 cpu_infop->aci_local_id); 3170 apic_pci_msi_enable_mode(irq_ptr->airq_dip, type, 3171 irq_ptr->airq_origirq); 3172 } 3173 } 3174 irq_ptr->airq_temp_cpu = (uint32_t)bind_cpu; 3175 apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND)); 3176 return (0); 3177 } 3178 3179 static void 3180 apic_last_ditch_clear_remote_irr(int ioapic_ix, int intin_no) 3181 { 3182 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) 3183 & AV_REMOTE_IRR) != 0) { 3184 /* 3185 * Trying to clear the bit through normal 3186 * channels has failed. So as a last-ditch 3187 * effort, try to set the trigger mode to 3188 * edge, then to level. This has been 3189 * observed to work on many systems. 3190 */ 3191 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3192 intin_no, 3193 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3194 intin_no) & ~AV_LEVEL); 3195 3196 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3197 intin_no, 3198 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3199 intin_no) | AV_LEVEL); 3200 3201 /* 3202 * If the bit's STILL set, this interrupt may 3203 * be hosed. 3204 */ 3205 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3206 intin_no) & AV_REMOTE_IRR) != 0) { 3207 3208 prom_printf("%s: Remote IRR still " 3209 "not clear for IOAPIC %d intin %d.\n" 3210 "\tInterrupts to this pin may cease " 3211 "functioning.\n", psm_name, ioapic_ix, 3212 intin_no); 3213 #ifdef DEBUG 3214 apic_last_ditch_reprogram_failures++; 3215 #endif 3216 } 3217 } 3218 } 3219 3220 /* 3221 * This function is protected by apic_ioapic_lock coupled with the 3222 * fact that interrupts are disabled. 3223 */ 3224 static void 3225 delete_defer_repro_ent(int which_irq) 3226 { 3227 ASSERT(which_irq >= 0); 3228 ASSERT(which_irq <= 255); 3229 3230 if (apic_reprogram_info[which_irq].done) 3231 return; 3232 3233 apic_reprogram_info[which_irq].done = B_TRUE; 3234 3235 #ifdef DEBUG 3236 apic_defer_repro_total_retries += 3237 apic_reprogram_info[which_irq].tries; 3238 3239 apic_defer_repro_successes++; 3240 #endif 3241 3242 if (--apic_reprogram_outstanding == 0) { 3243 3244 setlvlx = psm_intr_exit_fn(); 3245 } 3246 } 3247 3248 3249 /* 3250 * Interrupts must be disabled during this function to prevent 3251 * self-deadlock. Interrupts are disabled because this function 3252 * is called from apic_check_stuck_interrupt(), which is called 3253 * from apic_rebind(), which requires its caller to disable interrupts. 3254 */ 3255 static void 3256 add_defer_repro_ent(apic_irq_t *irq_ptr, int which_irq, int new_bind_cpu) 3257 { 3258 ASSERT(which_irq >= 0); 3259 ASSERT(which_irq <= 255); 3260 3261 /* 3262 * On the off-chance that there's already a deferred 3263 * reprogramming on this irq, check, and if so, just update the 3264 * CPU and irq pointer to which the interrupt is targeted, then return. 3265 */ 3266 if (!apic_reprogram_info[which_irq].done) { 3267 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu; 3268 apic_reprogram_info[which_irq].irqp = irq_ptr; 3269 return; 3270 } 3271 3272 apic_reprogram_info[which_irq].irqp = irq_ptr; 3273 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu; 3274 apic_reprogram_info[which_irq].tries = 0; 3275 /* 3276 * This must be the last thing set, since we're not 3277 * grabbing any locks, apic_try_deferred_reprogram() will 3278 * make its decision about using this entry iff done 3279 * is false. 3280 */ 3281 apic_reprogram_info[which_irq].done = B_FALSE; 3282 3283 /* 3284 * If there were previously no deferred reprogrammings, change 3285 * setlvlx to call apic_try_deferred_reprogram() 3286 */ 3287 if (++apic_reprogram_outstanding == 1) { 3288 3289 setlvlx = apic_try_deferred_reprogram; 3290 } 3291 } 3292 3293 static void 3294 apic_try_deferred_reprogram(int prev_ipl, int irq) 3295 { 3296 int reproirq; 3297 ulong_t iflag; 3298 struct ioapic_reprogram_data *drep; 3299 3300 (*psm_intr_exit_fn())(prev_ipl, irq); 3301 3302 if (!lock_try(&apic_defer_reprogram_lock)) { 3303 return; 3304 } 3305 3306 /* 3307 * Acquire the apic_ioapic_lock so that any other operations that 3308 * may affect the apic_reprogram_info state are serialized. 3309 * It's still possible for the last deferred reprogramming to clear 3310 * between the time we entered this function and the time we get to 3311 * the for loop below. In that case, *setlvlx will have been set 3312 * back to *_intr_exit and drep will be NULL. (There's no way to 3313 * stop that from happening -- we would need to grab a lock before 3314 * calling *setlvlx, which is neither realistic nor prudent). 3315 */ 3316 iflag = intr_clear(); 3317 lock_set(&apic_ioapic_lock); 3318 3319 /* 3320 * For each deferred RDT entry, try to reprogram it now. Note that 3321 * there is no lock acquisition to read apic_reprogram_info because 3322 * '.done' is set only after the other fields in the structure are set. 3323 */ 3324 3325 drep = NULL; 3326 for (reproirq = 0; reproirq <= APIC_MAX_VECTOR; reproirq++) { 3327 if (apic_reprogram_info[reproirq].done == B_FALSE) { 3328 drep = &apic_reprogram_info[reproirq]; 3329 break; 3330 } 3331 } 3332 3333 /* 3334 * Either we found a deferred action to perform, or 3335 * we entered this function spuriously, after *setlvlx 3336 * was restored to point to *_intr_exit. Any other 3337 * permutation is invalid. 3338 */ 3339 ASSERT(drep != NULL || *setlvlx == psm_intr_exit_fn()); 3340 3341 /* 3342 * Though we can't really do anything about errors 3343 * at this point, keep track of them for reporting. 3344 * Note that it is very possible for apic_setup_io_intr 3345 * to re-register this very timeout if the Remote IRR bit 3346 * has not yet cleared. 3347 */ 3348 3349 #ifdef DEBUG 3350 if (drep != NULL) { 3351 if (apic_setup_io_intr(drep, reproirq, B_TRUE) != 0) { 3352 apic_deferred_setup_failures++; 3353 } 3354 } else { 3355 apic_deferred_spurious_enters++; 3356 } 3357 #else 3358 if (drep != NULL) 3359 (void) apic_setup_io_intr(drep, reproirq, B_TRUE); 3360 #endif 3361 3362 lock_clear(&apic_ioapic_lock); 3363 intr_restore(iflag); 3364 3365 lock_clear(&apic_defer_reprogram_lock); 3366 } 3367 3368 static void 3369 apic_ioapic_wait_pending_clear(int ioapic_ix, int intin_no) 3370 { 3371 int waited; 3372 3373 /* 3374 * Wait for the delivery pending bit to clear. 3375 */ 3376 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & 3377 (AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) { 3378 3379 /* 3380 * If we're still waiting on the delivery of this interrupt, 3381 * continue to wait here until it is delivered (this should be 3382 * a very small amount of time, but include a timeout just in 3383 * case). 3384 */ 3385 for (waited = 0; waited < apic_max_reps_clear_pending; 3386 waited++) { 3387 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3388 intin_no) & AV_PENDING) == 0) { 3389 break; 3390 } 3391 } 3392 } 3393 } 3394 3395 3396 /* 3397 * Checks to see if the IOAPIC interrupt entry specified has its Remote IRR 3398 * bit set. Calls functions that modify the function that setlvlx points to, 3399 * so that the reprogramming can be retried very shortly. 3400 * 3401 * This function will mask the RDT entry if the interrupt is level-triggered. 3402 * (The caller is responsible for unmasking the RDT entry.) 3403 * 3404 * Returns non-zero if the caller should defer IOAPIC reprogramming. 3405 */ 3406 static int 3407 apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu, 3408 int new_bind_cpu, int ioapic_ix, int intin_no, int which_irq, 3409 struct ioapic_reprogram_data *drep) 3410 { 3411 int32_t rdt_entry; 3412 int waited; 3413 int reps = 0; 3414 3415 /* 3416 * Wait for the delivery pending bit to clear. 3417 */ 3418 do { 3419 ++reps; 3420 3421 apic_ioapic_wait_pending_clear(ioapic_ix, intin_no); 3422 3423 /* 3424 * Mask the RDT entry, but only if it's a level-triggered 3425 * interrupt 3426 */ 3427 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3428 intin_no); 3429 if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) { 3430 3431 /* Mask it */ 3432 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, 3433 AV_MASK | rdt_entry); 3434 } 3435 3436 if ((rdt_entry & AV_LEVEL) == AV_LEVEL) { 3437 /* 3438 * If there was a race and an interrupt was injected 3439 * just before we masked, check for that case here. 3440 * Then, unmask the RDT entry and try again. If we're 3441 * on our last try, don't unmask (because we want the 3442 * RDT entry to remain masked for the rest of the 3443 * function). 3444 */ 3445 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3446 intin_no); 3447 if ((rdt_entry & AV_PENDING) && 3448 (reps < apic_max_reps_clear_pending)) { 3449 /* Unmask it */ 3450 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3451 intin_no, rdt_entry & ~AV_MASK); 3452 } 3453 } 3454 3455 } while ((rdt_entry & AV_PENDING) && 3456 (reps < apic_max_reps_clear_pending)); 3457 3458 #ifdef DEBUG 3459 if (rdt_entry & AV_PENDING) 3460 apic_intr_deliver_timeouts++; 3461 #endif 3462 3463 /* 3464 * If the remote IRR bit is set, then the interrupt has been sent 3465 * to a CPU for processing. We have no choice but to wait for 3466 * that CPU to process the interrupt, at which point the remote IRR 3467 * bit will be cleared. 3468 */ 3469 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & 3470 (AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) { 3471 3472 /* 3473 * If the CPU that this RDT is bound to is NOT the current 3474 * CPU, wait until that CPU handles the interrupt and ACKs 3475 * it. If this interrupt is not bound to any CPU (that is, 3476 * if it's bound to the logical destination of "anyone"), it 3477 * may have been delivered to the current CPU so handle that 3478 * case by deferring the reprogramming (below). 3479 */ 3480 if ((old_bind_cpu != IRQ_UNBOUND) && 3481 (old_bind_cpu != IRQ_UNINIT) && 3482 (old_bind_cpu != psm_get_cpu_id())) { 3483 for (waited = 0; waited < apic_max_reps_clear_pending; 3484 waited++) { 3485 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 3486 intin_no) & AV_REMOTE_IRR) == 0) { 3487 3488 delete_defer_repro_ent(which_irq); 3489 3490 /* Remote IRR has cleared! */ 3491 return (0); 3492 } 3493 } 3494 } 3495 3496 /* 3497 * If we waited and the Remote IRR bit is still not cleared, 3498 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS 3499 * times for this interrupt, try the last-ditch workaround: 3500 */ 3501 if (drep && drep->tries >= APIC_REPROGRAM_MAX_TRIES) { 3502 3503 apic_last_ditch_clear_remote_irr(ioapic_ix, intin_no); 3504 3505 /* Mark this one as reprogrammed: */ 3506 delete_defer_repro_ent(which_irq); 3507 3508 return (0); 3509 } else { 3510 #ifdef DEBUG 3511 apic_intr_deferrals++; 3512 #endif 3513 3514 /* 3515 * If waiting for the Remote IRR bit (above) didn't 3516 * allow it to clear, defer the reprogramming. 3517 * Add a new deferred-programming entry if the 3518 * caller passed a NULL one (and update the existing one 3519 * in case anything changed). 3520 */ 3521 add_defer_repro_ent(irq_ptr, which_irq, new_bind_cpu); 3522 if (drep) 3523 drep->tries++; 3524 3525 /* Inform caller to defer IOAPIC programming: */ 3526 return (1); 3527 } 3528 3529 } 3530 3531 /* Remote IRR is clear */ 3532 delete_defer_repro_ent(which_irq); 3533 3534 return (0); 3535 } 3536 3537 /* 3538 * Called to migrate all interrupts at an irq to another cpu. 3539 * Must be called with interrupts disabled and apic_ioapic_lock held 3540 */ 3541 int 3542 apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu) 3543 { 3544 apic_irq_t *irqptr = irq_ptr; 3545 int retval = 0; 3546 3547 while (irqptr) { 3548 if (irqptr->airq_temp_cpu != IRQ_UNINIT) 3549 retval |= apic_rebind(irqptr, bind_cpu, NULL); 3550 irqptr = irqptr->airq_next; 3551 } 3552 3553 return (retval); 3554 } 3555 3556 /* 3557 * apic_intr_redistribute does all the messy computations for identifying 3558 * which interrupt to move to which CPU. Currently we do just one interrupt 3559 * at a time. This reduces the time we spent doing all this within clock 3560 * interrupt. When it is done in idle, we could do more than 1. 3561 * First we find the most busy and the most free CPU (time in ISR only) 3562 * skipping those CPUs that has been identified as being ineligible (cpu_skip) 3563 * Then we look for IRQs which are closest to the difference between the 3564 * most busy CPU and the average ISR load. We try to find one whose load 3565 * is less than difference.If none exists, then we chose one larger than the 3566 * difference, provided it does not make the most idle CPU worse than the 3567 * most busy one. In the end, we clear all the busy fields for CPUs. For 3568 * IRQs, they are cleared as they are scanned. 3569 */ 3570 void 3571 apic_intr_redistribute() 3572 { 3573 int busiest_cpu, most_free_cpu; 3574 int cpu_free, cpu_busy, max_busy, min_busy; 3575 int min_free, diff; 3576 int average_busy, cpus_online; 3577 int i, busy; 3578 ulong_t iflag; 3579 apic_cpus_info_t *cpu_infop; 3580 apic_irq_t *min_busy_irq = NULL; 3581 apic_irq_t *max_busy_irq = NULL; 3582 3583 busiest_cpu = most_free_cpu = -1; 3584 cpu_free = cpu_busy = max_busy = average_busy = 0; 3585 min_free = apic_sample_factor_redistribution; 3586 cpus_online = 0; 3587 /* 3588 * Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu 3589 * without ioapic_lock. That is OK as we are just doing statistical 3590 * sampling anyway and any inaccuracy now will get corrected next time 3591 * The call to rebind which actually changes things will make sure 3592 * we are consistent. 3593 */ 3594 for (i = 0; i < apic_nproc; i++) { 3595 if (apic_cpu_in_range(i) && 3596 !(apic_redist_cpu_skip & (1 << i)) && 3597 (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) { 3598 3599 cpu_infop = &apic_cpus[i]; 3600 /* 3601 * If no unbound interrupts or only 1 total on this 3602 * CPU, skip 3603 */ 3604 if (!cpu_infop->aci_temp_bound || 3605 (cpu_infop->aci_bound + cpu_infop->aci_temp_bound) 3606 == 1) { 3607 apic_redist_cpu_skip |= 1 << i; 3608 continue; 3609 } 3610 3611 busy = cpu_infop->aci_busy; 3612 average_busy += busy; 3613 cpus_online++; 3614 if (max_busy < busy) { 3615 max_busy = busy; 3616 busiest_cpu = i; 3617 } 3618 if (min_free > busy) { 3619 min_free = busy; 3620 most_free_cpu = i; 3621 } 3622 if (busy > apic_int_busy_mark) { 3623 cpu_busy |= 1 << i; 3624 } else { 3625 if (busy < apic_int_free_mark) 3626 cpu_free |= 1 << i; 3627 } 3628 } 3629 } 3630 if ((cpu_busy && cpu_free) || 3631 (max_busy >= (min_free + apic_diff_for_redistribution))) { 3632 3633 apic_num_imbalance++; 3634 #ifdef DEBUG 3635 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { 3636 prom_printf( 3637 "redistribute busy=%x free=%x max=%x min=%x", 3638 cpu_busy, cpu_free, max_busy, min_free); 3639 } 3640 #endif /* DEBUG */ 3641 3642 3643 average_busy /= cpus_online; 3644 3645 diff = max_busy - average_busy; 3646 min_busy = max_busy; /* start with the max possible value */ 3647 max_busy = 0; 3648 min_busy_irq = max_busy_irq = NULL; 3649 i = apic_min_device_irq; 3650 for (; i <= apic_max_device_irq; i++) { 3651 apic_irq_t *irq_ptr; 3652 /* Change to linked list per CPU ? */ 3653 if ((irq_ptr = apic_irq_table[i]) == NULL) 3654 continue; 3655 /* Check for irq_busy & decide which one to move */ 3656 /* Also zero them for next round */ 3657 if ((irq_ptr->airq_temp_cpu == busiest_cpu) && 3658 irq_ptr->airq_busy) { 3659 if (irq_ptr->airq_busy < diff) { 3660 /* 3661 * Check for least busy CPU, 3662 * best fit or what ? 3663 */ 3664 if (max_busy < irq_ptr->airq_busy) { 3665 /* 3666 * Most busy within the 3667 * required differential 3668 */ 3669 max_busy = irq_ptr->airq_busy; 3670 max_busy_irq = irq_ptr; 3671 } 3672 } else { 3673 if (min_busy > irq_ptr->airq_busy) { 3674 /* 3675 * least busy, but more than 3676 * the reqd diff 3677 */ 3678 if (min_busy < 3679 (diff + average_busy - 3680 min_free)) { 3681 /* 3682 * Making sure new cpu 3683 * will not end up 3684 * worse 3685 */ 3686 min_busy = 3687 irq_ptr->airq_busy; 3688 3689 min_busy_irq = irq_ptr; 3690 } 3691 } 3692 } 3693 } 3694 irq_ptr->airq_busy = 0; 3695 } 3696 3697 if (max_busy_irq != NULL) { 3698 #ifdef DEBUG 3699 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { 3700 prom_printf("rebinding %x to %x", 3701 max_busy_irq->airq_vector, most_free_cpu); 3702 } 3703 #endif /* DEBUG */ 3704 iflag = intr_clear(); 3705 if (lock_try(&apic_ioapic_lock)) { 3706 if (apic_rebind_all(max_busy_irq, 3707 most_free_cpu) == 0) { 3708 /* Make change permenant */ 3709 max_busy_irq->airq_cpu = 3710 (uint32_t)most_free_cpu; 3711 } 3712 lock_clear(&apic_ioapic_lock); 3713 } 3714 intr_restore(iflag); 3715 3716 } else if (min_busy_irq != NULL) { 3717 #ifdef DEBUG 3718 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { 3719 prom_printf("rebinding %x to %x", 3720 min_busy_irq->airq_vector, most_free_cpu); 3721 } 3722 #endif /* DEBUG */ 3723 3724 iflag = intr_clear(); 3725 if (lock_try(&apic_ioapic_lock)) { 3726 if (apic_rebind_all(min_busy_irq, 3727 most_free_cpu) == 0) { 3728 /* Make change permenant */ 3729 min_busy_irq->airq_cpu = 3730 (uint32_t)most_free_cpu; 3731 } 3732 lock_clear(&apic_ioapic_lock); 3733 } 3734 intr_restore(iflag); 3735 3736 } else { 3737 if (cpu_busy != (1 << busiest_cpu)) { 3738 apic_redist_cpu_skip |= 1 << busiest_cpu; 3739 /* 3740 * We leave cpu_skip set so that next time we 3741 * can choose another cpu 3742 */ 3743 } 3744 } 3745 apic_num_rebind++; 3746 } else { 3747 /* 3748 * found nothing. Could be that we skipped over valid CPUs 3749 * or we have balanced everything. If we had a variable 3750 * ticks_for_redistribution, it could be increased here. 3751 * apic_int_busy, int_free etc would also need to be 3752 * changed. 3753 */ 3754 if (apic_redist_cpu_skip) 3755 apic_redist_cpu_skip = 0; 3756 } 3757 for (i = 0; i < apic_nproc; i++) { 3758 if (apic_cpu_in_range(i)) { 3759 apic_cpus[i].aci_busy = 0; 3760 } 3761 } 3762 } 3763 3764 void 3765 apic_cleanup_busy() 3766 { 3767 int i; 3768 apic_irq_t *irq_ptr; 3769 3770 for (i = 0; i < apic_nproc; i++) { 3771 if (apic_cpu_in_range(i)) { 3772 apic_cpus[i].aci_busy = 0; 3773 } 3774 } 3775 3776 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 3777 if ((irq_ptr = apic_irq_table[i]) != NULL) 3778 irq_ptr->airq_busy = 0; 3779 } 3780 } 3781 3782 3783 static int 3784 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 3785 int ipin, int *pci_irqp, iflag_t *intr_flagp) 3786 { 3787 3788 int status; 3789 acpi_psm_lnk_t acpipsmlnk; 3790 3791 if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp, 3792 intr_flagp)) == ACPI_PSM_SUCCESS) { 3793 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d " 3794 "from cache for device %s, instance #%d\n", psm_name, 3795 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 3796 return (status); 3797 } 3798 3799 bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t)); 3800 3801 if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp, 3802 &acpipsmlnk)) == ACPI_PSM_FAILURE) { 3803 APIC_VERBOSE_IRQ((CE_WARN, "%s: " 3804 " acpi_translate_pci_irq failed for device %s, instance" 3805 " #%d", psm_name, ddi_get_name(dip), 3806 ddi_get_instance(dip))); 3807 return (status); 3808 } 3809 3810 if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) { 3811 status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp, 3812 intr_flagp); 3813 if (status != ACPI_PSM_SUCCESS) { 3814 status = acpi_get_current_irq_resource(&acpipsmlnk, 3815 pci_irqp, intr_flagp); 3816 } 3817 } 3818 3819 if (status == ACPI_PSM_SUCCESS) { 3820 acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp, 3821 intr_flagp, &acpipsmlnk); 3822 3823 APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] " 3824 "new irq %d for device %s, instance #%d\n", psm_name, 3825 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 3826 } 3827 3828 return (status); 3829 } 3830 3831 /* 3832 * Adds an entry to the irq list passed in, and returns the new list. 3833 * Entries are added in priority order (lower numerical priorities are 3834 * placed closer to the head of the list) 3835 */ 3836 static prs_irq_list_t * 3837 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq, 3838 iflag_t *iflagp, acpi_prs_private_t *prsprvp) 3839 { 3840 struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp; 3841 3842 newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP); 3843 3844 newent->list_prio = priority; 3845 newent->irq = irq; 3846 newent->intrflags = *iflagp; 3847 newent->prsprv = *prsprvp; 3848 /* ->next is NULL from kmem_zalloc */ 3849 3850 /* 3851 * New list -- return the new entry as the list. 3852 */ 3853 if (listp == NULL) 3854 return (newent); 3855 3856 /* 3857 * Save original list pointer for return (since we're not modifying 3858 * the head) 3859 */ 3860 origlistp = listp; 3861 3862 /* 3863 * Insertion sort, with entries with identical keys stored AFTER 3864 * existing entries (the less-than-or-equal test of priority does 3865 * this for us). 3866 */ 3867 while (listp != NULL && listp->list_prio <= priority) { 3868 prevp = listp; 3869 listp = listp->next; 3870 } 3871 3872 newent->next = listp; 3873 3874 if (prevp == NULL) { /* Add at head of list (newent is the new head) */ 3875 return (newent); 3876 } else { 3877 prevp->next = newent; 3878 return (origlistp); 3879 } 3880 } 3881 3882 /* 3883 * Frees the list passed in, deallocating all memory and leaving *listpp 3884 * set to NULL. 3885 */ 3886 static void 3887 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp) 3888 { 3889 struct prs_irq_list_ent *nextp; 3890 3891 ASSERT(listpp != NULL); 3892 3893 while (*listpp != NULL) { 3894 nextp = (*listpp)->next; 3895 kmem_free(*listpp, sizeof (struct prs_irq_list_ent)); 3896 *listpp = nextp; 3897 } 3898 } 3899 3900 /* 3901 * apic_choose_irqs_from_prs returns a list of irqs selected from the list of 3902 * irqs returned by the link device's _PRS method. The irqs are chosen 3903 * to minimize contention in situations where the interrupt link device 3904 * can be programmed to steer interrupts to different interrupt controller 3905 * inputs (some of which may already be in use). The list is sorted in order 3906 * of irqs to use, with the highest priority given to interrupt controller 3907 * inputs that are not shared. When an interrupt controller input 3908 * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the 3909 * returned list in the order that minimizes sharing (thereby ensuring lowest 3910 * possible latency from interrupt trigger time to ISR execution time). 3911 */ 3912 static prs_irq_list_t * 3913 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip, 3914 int crs_irq) 3915 { 3916 int32_t irq; 3917 int i; 3918 prs_irq_list_t *prsirqlistp = NULL; 3919 iflag_t iflags; 3920 3921 while (irqlistent != NULL) { 3922 irqlistent->intr_flags.bustype = BUS_PCI; 3923 3924 for (i = 0; i < irqlistent->num_irqs; i++) { 3925 3926 irq = irqlistent->irqs[i]; 3927 3928 if (irq <= 0) { 3929 /* invalid irq number */ 3930 continue; 3931 } 3932 3933 if ((irq < 16) && (apic_reserved_irqlist[irq])) 3934 continue; 3935 3936 if ((apic_irq_table[irq] == NULL) || 3937 (apic_irq_table[irq]->airq_dip == dip)) { 3938 3939 prsirqlistp = acpi_insert_prs_irq_ent( 3940 prsirqlistp, 0 /* Highest priority */, irq, 3941 &irqlistent->intr_flags, 3942 &irqlistent->acpi_prs_prv); 3943 3944 /* 3945 * If we do not prefer the current irq from _CRS 3946 * or if we do and this irq is the same as the 3947 * current irq from _CRS, this is the one 3948 * to pick. 3949 */ 3950 if (!(apic_prefer_crs) || (irq == crs_irq)) { 3951 return (prsirqlistp); 3952 } 3953 continue; 3954 } 3955 3956 /* 3957 * Edge-triggered interrupts cannot be shared 3958 */ 3959 if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE) 3960 continue; 3961 3962 /* 3963 * To work around BIOSes that contain incorrect 3964 * interrupt polarity information in interrupt 3965 * descriptors returned by _PRS, we assume that 3966 * the polarity of the other device sharing this 3967 * interrupt controller input is compatible. 3968 * If it's not, the caller will catch it when 3969 * the caller invokes the link device's _CRS method 3970 * (after invoking its _SRS method). 3971 */ 3972 iflags = irqlistent->intr_flags; 3973 iflags.intr_po = 3974 apic_irq_table[irq]->airq_iflag.intr_po; 3975 3976 if (!acpi_intr_compatible(iflags, 3977 apic_irq_table[irq]->airq_iflag)) { 3978 APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d " 3979 "not compatible [%x:%x:%x !~ %x:%x:%x]", 3980 psm_name, irq, 3981 iflags.intr_po, 3982 iflags.intr_el, 3983 iflags.bustype, 3984 apic_irq_table[irq]->airq_iflag.intr_po, 3985 apic_irq_table[irq]->airq_iflag.intr_el, 3986 apic_irq_table[irq]->airq_iflag.bustype)); 3987 continue; 3988 } 3989 3990 /* 3991 * If we prefer the irq from _CRS, no need 3992 * to search any further (and make sure 3993 * to add this irq with the highest priority 3994 * so it's tried first). 3995 */ 3996 if (crs_irq == irq && apic_prefer_crs) { 3997 3998 return (acpi_insert_prs_irq_ent( 3999 prsirqlistp, 4000 0 /* Highest priority */, 4001 irq, &iflags, 4002 &irqlistent->acpi_prs_prv)); 4003 } 4004 4005 /* 4006 * Priority is equal to the share count (lower 4007 * share count is higher priority). Note that 4008 * the intr flags passed in here are the ones we 4009 * changed above -- if incorrect, it will be 4010 * caught by the caller's _CRS flags comparison. 4011 */ 4012 prsirqlistp = acpi_insert_prs_irq_ent( 4013 prsirqlistp, 4014 apic_irq_table[irq]->airq_share, irq, 4015 &iflags, &irqlistent->acpi_prs_prv); 4016 } 4017 4018 /* Go to the next irqlist entry */ 4019 irqlistent = irqlistent->next; 4020 } 4021 4022 return (prsirqlistp); 4023 } 4024 4025 /* 4026 * Configures the irq for the interrupt link device identified by 4027 * acpipsmlnkp. 4028 * 4029 * Gets the current and the list of possible irq settings for the 4030 * device. If apic_unconditional_srs is not set, and the current 4031 * resource setting is in the list of possible irq settings, 4032 * current irq resource setting is passed to the caller. 4033 * 4034 * Otherwise, picks an irq number from the list of possible irq 4035 * settings, and sets the irq of the device to this value. 4036 * If prefer_crs is set, among a set of irq numbers in the list that have 4037 * the least number of devices sharing the interrupt, we pick current irq 4038 * resource setting if it is a member of this set. 4039 * 4040 * Passes the irq number in the value pointed to by pci_irqp, and 4041 * polarity and sensitivity in the structure pointed to by dipintrflagp 4042 * to the caller. 4043 * 4044 * Note that if setting the irq resource failed, but successfuly obtained 4045 * the current irq resource settings, passes the current irq resources 4046 * and considers it a success. 4047 * 4048 * Returns: 4049 * ACPI_PSM_SUCCESS on success. 4050 * 4051 * ACPI_PSM_FAILURE if an error occured during the configuration or 4052 * if a suitable irq was not found for this device, or if setting the 4053 * irq resource and obtaining the current resource fails. 4054 * 4055 */ 4056 static int 4057 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 4058 int *pci_irqp, iflag_t *dipintr_flagp) 4059 { 4060 int32_t irq; 4061 int cur_irq = -1; 4062 acpi_irqlist_t *irqlistp; 4063 prs_irq_list_t *prs_irq_listp, *prs_irq_entp; 4064 boolean_t found_irq = B_FALSE; 4065 4066 dipintr_flagp->bustype = BUS_PCI; 4067 4068 if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp)) 4069 == ACPI_PSM_FAILURE) { 4070 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine " 4071 "or assign IRQ for device %s, instance #%d: The system was " 4072 "unable to get the list of potential IRQs from ACPI.", 4073 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 4074 4075 return (ACPI_PSM_FAILURE); 4076 } 4077 4078 if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 4079 dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) && 4080 (cur_irq > 0)) { 4081 /* 4082 * If an IRQ is set in CRS and that IRQ exists in the set 4083 * returned from _PRS, return that IRQ, otherwise print 4084 * a warning 4085 */ 4086 4087 if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL) 4088 == ACPI_PSM_SUCCESS) { 4089 4090 ASSERT(pci_irqp != NULL); 4091 *pci_irqp = cur_irq; 4092 acpi_free_irqlist(irqlistp); 4093 return (ACPI_PSM_SUCCESS); 4094 } 4095 4096 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the " 4097 "current irq %d for device %s, instance #%d in ACPI's " 4098 "list of possible irqs for this device. Picking one from " 4099 " the latter list.", psm_name, cur_irq, ddi_get_name(dip), 4100 ddi_get_instance(dip))); 4101 } 4102 4103 if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip, 4104 cur_irq)) == NULL) { 4105 4106 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a " 4107 "suitable irq from the list of possible irqs for device " 4108 "%s, instance #%d in ACPI's list of possible irqs", 4109 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 4110 4111 acpi_free_irqlist(irqlistp); 4112 return (ACPI_PSM_FAILURE); 4113 } 4114 4115 acpi_free_irqlist(irqlistp); 4116 4117 for (prs_irq_entp = prs_irq_listp; 4118 prs_irq_entp != NULL && found_irq == B_FALSE; 4119 prs_irq_entp = prs_irq_entp->next) { 4120 4121 acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv; 4122 irq = prs_irq_entp->irq; 4123 4124 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for " 4125 "device %s instance #%d\n", psm_name, irq, 4126 ddi_get_name(dip), ddi_get_instance(dip))); 4127 4128 if ((acpi_set_irq_resource(acpipsmlnkp, irq)) 4129 == ACPI_PSM_SUCCESS) { 4130 /* 4131 * setting irq was successful, check to make sure CRS 4132 * reflects that. If CRS does not agree with what we 4133 * set, return the irq that was set. 4134 */ 4135 4136 if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 4137 dipintr_flagp) == ACPI_PSM_SUCCESS) { 4138 4139 if (cur_irq != irq) 4140 APIC_VERBOSE_IRQ((CE_WARN, 4141 "!%s: IRQ resource set " 4142 "(irqno %d) for device %s " 4143 "instance #%d, differs from " 4144 "current setting irqno %d", 4145 psm_name, irq, ddi_get_name(dip), 4146 ddi_get_instance(dip), cur_irq)); 4147 } else { 4148 /* 4149 * On at least one system, there was a bug in 4150 * a DSDT method called by _STA, causing _STA to 4151 * indicate that the link device was disabled 4152 * (when, in fact, it was enabled). Since _SRS 4153 * succeeded, assume that _CRS is lying and use 4154 * the iflags from this _PRS interrupt choice. 4155 * If we're wrong about the flags, the polarity 4156 * will be incorrect and we may get an interrupt 4157 * storm, but there's not much else we can do 4158 * at this point. 4159 */ 4160 *dipintr_flagp = prs_irq_entp->intrflags; 4161 } 4162 4163 /* 4164 * Return the irq that was set, and not what _CRS 4165 * reports, since _CRS has been seen to return 4166 * different IRQs than what was passed to _SRS on some 4167 * systems (and just not return successfully on others). 4168 */ 4169 cur_irq = irq; 4170 found_irq = B_TRUE; 4171 } else { 4172 APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource " 4173 "irq %d failed for device %s instance #%d", 4174 psm_name, irq, ddi_get_name(dip), 4175 ddi_get_instance(dip))); 4176 4177 if (cur_irq == -1) { 4178 acpi_destroy_prs_irq_list(&prs_irq_listp); 4179 return (ACPI_PSM_FAILURE); 4180 } 4181 } 4182 } 4183 4184 acpi_destroy_prs_irq_list(&prs_irq_listp); 4185 4186 if (!found_irq) 4187 return (ACPI_PSM_FAILURE); 4188 4189 ASSERT(pci_irqp != NULL); 4190 *pci_irqp = cur_irq; 4191 return (ACPI_PSM_SUCCESS); 4192 } 4193 4194 void 4195 ioapic_disable_redirection() 4196 { 4197 int ioapic_ix; 4198 int intin_max; 4199 int intin_ix; 4200 4201 /* Disable the I/O APIC redirection entries */ 4202 for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) { 4203 4204 /* Bits 23-16 define the maximum redirection entries */ 4205 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) 4206 & 0xff; 4207 4208 for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) { 4209 /* 4210 * The assumption here is that this is safe, even for 4211 * systems with IOAPICs that suffer from the hardware 4212 * erratum because all devices have been quiesced before 4213 * this function is called from apic_shutdown() 4214 * (or equivalent). If that assumption turns out to be 4215 * false, this mask operation can induce the same 4216 * erratum result we're trying to avoid. 4217 */ 4218 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix, 4219 AV_MASK); 4220 } 4221 } 4222 } 4223 4224 /* 4225 * Looks for an IOAPIC with the specified physical address in the /ioapics 4226 * node in the device tree (created by the PCI enumerator). 4227 */ 4228 static boolean_t 4229 apic_is_ioapic_AMD_813x(uint32_t physaddr) 4230 { 4231 /* 4232 * Look in /ioapics, for the ioapic with 4233 * the physical address given 4234 */ 4235 dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0); 4236 dev_info_t *ioapic_child; 4237 boolean_t rv = B_FALSE; 4238 int vid, did; 4239 uint64_t ioapic_paddr; 4240 boolean_t done = B_FALSE; 4241 4242 if (ioapicsnode == NULL) 4243 return (B_FALSE); 4244 4245 /* Load first child: */ 4246 ioapic_child = ddi_get_child(ioapicsnode); 4247 while (!done && ioapic_child != 0) { /* Iterate over children */ 4248 4249 if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY, 4250 ioapic_child, DDI_PROP_DONTPASS, "reg", 0)) 4251 != 0 && physaddr == ioapic_paddr) { 4252 4253 vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child, 4254 DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0); 4255 4256 if (vid == VENID_AMD) { 4257 4258 did = ddi_prop_get_int(DDI_DEV_T_ANY, 4259 ioapic_child, DDI_PROP_DONTPASS, 4260 IOAPICS_PROP_DEVID, 0); 4261 4262 if (did == DEVID_8131_IOAPIC || 4263 did == DEVID_8132_IOAPIC) { 4264 4265 rv = B_TRUE; 4266 done = B_TRUE; 4267 } 4268 } 4269 } 4270 4271 if (!done) 4272 ioapic_child = ddi_get_next_sibling(ioapic_child); 4273 } 4274 4275 /* The ioapics node was held by ddi_find_devinfo, so release it */ 4276 ndi_rele_devi(ioapicsnode); 4277 return (rv); 4278 } 4279 4280 struct apic_state { 4281 int32_t as_task_reg; 4282 int32_t as_dest_reg; 4283 int32_t as_format_reg; 4284 int32_t as_local_timer; 4285 int32_t as_pcint_vect; 4286 int32_t as_int_vect0; 4287 int32_t as_int_vect1; 4288 int32_t as_err_vect; 4289 int32_t as_init_count; 4290 int32_t as_divide_reg; 4291 int32_t as_spur_int_reg; 4292 uint32_t as_ioapic_ids[MAX_IO_APIC]; 4293 }; 4294 4295 4296 static int 4297 apic_acpi_enter_apicmode(void) 4298 { 4299 ACPI_OBJECT_LIST arglist; 4300 ACPI_OBJECT arg; 4301 ACPI_STATUS status; 4302 4303 /* Setup parameter object */ 4304 arglist.Count = 1; 4305 arglist.Pointer = &arg; 4306 arg.Type = ACPI_TYPE_INTEGER; 4307 arg.Integer.Value = ACPI_APIC_MODE; 4308 4309 status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL); 4310 if (ACPI_FAILURE(status)) 4311 return (PSM_FAILURE); 4312 else 4313 return (PSM_SUCCESS); 4314 } 4315 4316 4317 static void 4318 apic_save_state(struct apic_state *sp) 4319 { 4320 int i; 4321 ulong_t iflag; 4322 4323 PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp)) 4324 /* 4325 * First the local APIC. 4326 */ 4327 sp->as_task_reg = apic_reg_ops->apic_get_pri(); 4328 sp->as_dest_reg = apic_reg_ops->apic_read(APIC_DEST_REG); 4329 if (apic_mode == LOCAL_APIC) 4330 sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG); 4331 sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER); 4332 sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT); 4333 sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0); 4334 sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1); 4335 sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT); 4336 sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT); 4337 sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG); 4338 sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG); 4339 4340 /* 4341 * If on the boot processor then save the IOAPICs' IDs 4342 */ 4343 if (psm_get_cpu_id() == 0) { 4344 4345 iflag = intr_clear(); 4346 lock_set(&apic_ioapic_lock); 4347 4348 for (i = 0; i < apic_io_max; i++) 4349 sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD); 4350 4351 lock_clear(&apic_ioapic_lock); 4352 intr_restore(iflag); 4353 } 4354 } 4355 4356 static void 4357 apic_restore_state(struct apic_state *sp) 4358 { 4359 int i; 4360 ulong_t iflag; 4361 4362 /* 4363 * First the local APIC. 4364 */ 4365 apic_reg_ops->apic_write_task_reg(sp->as_task_reg); 4366 if (apic_mode == LOCAL_APIC) { 4367 apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg); 4368 apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg); 4369 } 4370 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer); 4371 apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect); 4372 apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0); 4373 apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1); 4374 apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect); 4375 apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count); 4376 apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg); 4377 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg); 4378 4379 /* 4380 * the following only needs to be done once, so we do it on the 4381 * boot processor, since we know that we only have one of those 4382 */ 4383 if (psm_get_cpu_id() == 0) { 4384 4385 iflag = intr_clear(); 4386 lock_set(&apic_ioapic_lock); 4387 4388 /* Restore IOAPICs' APIC IDs */ 4389 for (i = 0; i < apic_io_max; i++) { 4390 ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]); 4391 } 4392 4393 lock_clear(&apic_ioapic_lock); 4394 intr_restore(iflag); 4395 4396 /* 4397 * Reenter APIC mode before restoring LNK devices 4398 */ 4399 (void) apic_acpi_enter_apicmode(); 4400 4401 /* 4402 * restore acpi link device mappings 4403 */ 4404 acpi_restore_link_devices(); 4405 } 4406 } 4407 4408 /* 4409 * Returns 0 on success 4410 */ 4411 int 4412 apic_state(psm_state_request_t *rp) 4413 { 4414 PMD(PMD_SX, ("apic_state ")) 4415 switch (rp->psr_cmd) { 4416 case PSM_STATE_ALLOC: 4417 rp->req.psm_state_req.psr_state = 4418 kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP); 4419 if (rp->req.psm_state_req.psr_state == NULL) 4420 return (ENOMEM); 4421 rp->req.psm_state_req.psr_state_size = 4422 sizeof (struct apic_state); 4423 PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n", 4424 rp->req.psm_state_req.psr_state, 4425 rp->req.psm_state_req.psr_state_size)) 4426 return (0); 4427 4428 case PSM_STATE_FREE: 4429 kmem_free(rp->req.psm_state_req.psr_state, 4430 rp->req.psm_state_req.psr_state_size); 4431 PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n", 4432 rp->req.psm_state_req.psr_state, 4433 rp->req.psm_state_req.psr_state_size)) 4434 return (0); 4435 4436 case PSM_STATE_SAVE: 4437 PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n", 4438 rp->req.psm_state_req.psr_state, 4439 rp->req.psm_state_req.psr_state_size)) 4440 apic_save_state(rp->req.psm_state_req.psr_state); 4441 return (0); 4442 4443 case PSM_STATE_RESTORE: 4444 apic_restore_state(rp->req.psm_state_req.psr_state); 4445 PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n", 4446 rp->req.psm_state_req.psr_state, 4447 rp->req.psm_state_req.psr_state_size)) 4448 return (0); 4449 4450 default: 4451 return (EINVAL); 4452 } 4453 } 4454