xref: /illumos-gate/usr/src/uts/i86pc/io/immu_dvma.c (revision ddb365bfc9e868ad24ccdcb0dc91af18b10df082)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Portions Copyright (c) 2010, Oracle and/or its affiliates.
23  * All rights reserved.
24  */
25 /*
26  * Copyright (c) 2009, Intel Corporation.
27  * All rights reserved.
28  */
29 /*
30  * Copyright 2012 Garrett D'Amore <garrett@damore.org>.  All rights reserved.
31  * Copyright 2017 Joyent, Inc.
32  */
33 
34 /*
35  * DVMA code
36  * This file contains Intel IOMMU code that deals with DVMA
37  * i.e. DMA remapping.
38  */
39 
40 #include <sys/sysmacros.h>
41 #include <sys/pcie.h>
42 #include <sys/pci_cfgspace.h>
43 #include <vm/hat_i86.h>
44 #include <sys/memlist.h>
45 #include <sys/acpi/acpi.h>
46 #include <sys/acpica.h>
47 #include <sys/modhash.h>
48 #include <sys/immu.h>
49 #include <sys/x86_archext.h>
50 #include <sys/archsystm.h>
51 
52 #undef	TEST
53 
54 /*
55  * Macros based on PCI spec
56  */
57 #define	IMMU_PCI_REV2CLASS(r)   ((r) >> 8)  /* classcode from revid */
58 #define	IMMU_PCI_CLASS2BASE(c)  ((c) >> 16) /* baseclass from classcode */
59 #define	IMMU_PCI_CLASS2SUB(c)   (((c) >> 8) & 0xff); /* classcode */
60 
61 #define	IMMU_CONTIG_PADDR(d, p) \
62 	((d).dck_paddr && ((d).dck_paddr + (d).dck_npages * IMMU_PAGESIZE) \
63 	    == (p))
64 
65 typedef struct dvma_arg {
66 	immu_t *dva_immu;
67 	dev_info_t *dva_rdip;
68 	dev_info_t *dva_ddip;
69 	domain_t *dva_domain;
70 	int dva_level;
71 	immu_flags_t dva_flags;
72 	list_t *dva_list;
73 	int dva_error;
74 } dvma_arg_t;
75 
76 static domain_t *domain_create(immu_t *immu, dev_info_t *ddip,
77     dev_info_t *rdip, immu_flags_t immu_flags);
78 static immu_devi_t *create_immu_devi(dev_info_t *rdip, int bus,
79     int dev, int func, immu_flags_t immu_flags);
80 static void destroy_immu_devi(immu_devi_t *immu_devi);
81 static boolean_t dvma_map(domain_t *domain, uint64_t sdvma,
82     uint64_t nvpages, immu_dcookie_t *dcookies, int dcount, dev_info_t *rdip,
83     immu_flags_t immu_flags);
84 
85 /* Extern globals */
86 extern struct memlist  *phys_install;
87 
88 /*
89  * iommulib interface functions.
90  */
91 static int immu_probe(iommulib_handle_t unitp, dev_info_t *dip);
92 static int immu_allochdl(iommulib_handle_t handle,
93     dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
94     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *dma_handlep);
95 static int immu_freehdl(iommulib_handle_t handle,
96     dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t dma_handle);
97 static int immu_bindhdl(iommulib_handle_t handle, dev_info_t *dip,
98     dev_info_t *rdip, ddi_dma_handle_t dma_handle, struct ddi_dma_req *dma_req,
99     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
100 static int immu_unbindhdl(iommulib_handle_t handle,
101     dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t dma_handle);
102 static int immu_sync(iommulib_handle_t handle, dev_info_t *dip,
103     dev_info_t *rdip, ddi_dma_handle_t dma_handle, off_t off, size_t len,
104     uint_t cachefl);
105 static int immu_win(iommulib_handle_t handle, dev_info_t *dip,
106     dev_info_t *rdip, ddi_dma_handle_t dma_handle, uint_t win,
107     off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp);
108 static int immu_mapobject(iommulib_handle_t handle, dev_info_t *dip,
109     dev_info_t *rdip, ddi_dma_handle_t dma_handle,
110     struct ddi_dma_req *dmareq, ddi_dma_obj_t *dmao);
111 static int immu_unmapobject(iommulib_handle_t handle, dev_info_t *dip,
112     dev_info_t *rdip, ddi_dma_handle_t dma_handle, ddi_dma_obj_t *dmao);
113 
114 /* static Globals */
115 
116 /*
117  * Used to setup DMA objects (memory regions)
118  * for DMA reads by IOMMU units
119  */
120 static ddi_dma_attr_t immu_dma_attr = {
121 	DMA_ATTR_V0,
122 	0U,
123 	0xffffffffffffffffULL,
124 	0xffffffffU,
125 	MMU_PAGESIZE, /* MMU page aligned */
126 	0x1,
127 	0x1,
128 	0xffffffffU,
129 	0xffffffffffffffffULL,
130 	1,
131 	4,
132 	0
133 };
134 
135 static ddi_device_acc_attr_t immu_acc_attr = {
136 	DDI_DEVICE_ATTR_V0,
137 	DDI_NEVERSWAP_ACC,
138 	DDI_STRICTORDER_ACC
139 };
140 
141 struct iommulib_ops immulib_ops = {
142 	IOMMU_OPS_VERSION,
143 	INTEL_IOMMU,
144 	"Intel IOMMU",
145 	NULL,
146 	immu_probe,
147 	immu_allochdl,
148 	immu_freehdl,
149 	immu_bindhdl,
150 	immu_unbindhdl,
151 	immu_sync,
152 	immu_win,
153 	immu_mapobject,
154 	immu_unmapobject,
155 };
156 
157 /*
158  * Fake physical address range used to set up initial prealloc mappings.
159  * This memory is never actually accessed. It is mapped read-only,
160  * and is overwritten as soon as the first DMA bind operation is
161  * performed. Since 0 is a special case, just start at the 2nd
162  * physical page.
163  */
164 
165 static immu_dcookie_t immu_precookie = { MMU_PAGESIZE, IMMU_NPREPTES };
166 
167 /* globals private to this file */
168 static kmutex_t immu_domain_lock;
169 static list_t immu_unity_domain_list;
170 static list_t immu_xlate_domain_list;
171 
172 /* structure used to store idx into each level of the page tables */
173 typedef struct xlate {
174 	int xlt_level;
175 	uint_t xlt_idx;
176 	pgtable_t *xlt_pgtable;
177 } xlate_t;
178 
179 /* 0 is reserved by Vt-d spec. Solaris reserves 1 */
180 #define	IMMU_UNITY_DID   1
181 
182 static mod_hash_t *bdf_domain_hash;
183 
184 int immu_use_alh;
185 int immu_use_tm;
186 
187 static domain_t *
188 bdf_domain_lookup(immu_devi_t *immu_devi)
189 {
190 	domain_t *domain;
191 	int16_t seg = immu_devi->imd_seg;
192 	int16_t bus = immu_devi->imd_bus;
193 	int16_t devfunc = immu_devi->imd_devfunc;
194 	uintptr_t bdf = (seg << 16 | bus << 8 | devfunc);
195 
196 	if (seg < 0 || bus < 0 || devfunc < 0) {
197 		return (NULL);
198 	}
199 
200 	domain = NULL;
201 	if (mod_hash_find(bdf_domain_hash,
202 	    (void *)bdf, (void *)&domain) == 0) {
203 		ASSERT(domain);
204 		ASSERT(domain->dom_did > 0);
205 		return (domain);
206 	} else {
207 		return (NULL);
208 	}
209 }
210 
211 static void
212 bdf_domain_insert(immu_devi_t *immu_devi, domain_t *domain)
213 {
214 	int16_t seg = immu_devi->imd_seg;
215 	int16_t bus = immu_devi->imd_bus;
216 	int16_t devfunc = immu_devi->imd_devfunc;
217 	uintptr_t bdf = (seg << 16 | bus << 8 | devfunc);
218 
219 	if (seg < 0 || bus < 0 || devfunc < 0) {
220 		return;
221 	}
222 
223 	(void) mod_hash_insert(bdf_domain_hash, (void *)bdf, (void *)domain);
224 }
225 
226 static int
227 match_lpc(dev_info_t *pdip, void *arg)
228 {
229 	immu_devi_t *immu_devi;
230 	dvma_arg_t *dvap = (dvma_arg_t *)arg;
231 
232 	if (list_is_empty(dvap->dva_list)) {
233 		return (DDI_WALK_TERMINATE);
234 	}
235 
236 	immu_devi = list_head(dvap->dva_list);
237 	for (; immu_devi; immu_devi = list_next(dvap->dva_list,
238 	    immu_devi)) {
239 		if (immu_devi->imd_dip == pdip) {
240 			dvap->dva_ddip = pdip;
241 			dvap->dva_error = DDI_SUCCESS;
242 			return (DDI_WALK_TERMINATE);
243 		}
244 	}
245 
246 	return (DDI_WALK_CONTINUE);
247 }
248 
249 static void
250 immu_devi_set_spclist(dev_info_t *dip, immu_t *immu)
251 {
252 	list_t *spclist = NULL;
253 	immu_devi_t *immu_devi;
254 
255 	immu_devi = IMMU_DEVI(dip);
256 	if (immu_devi->imd_display == B_TRUE) {
257 		spclist = &(immu->immu_dvma_gfx_list);
258 	} else if (immu_devi->imd_lpc == B_TRUE) {
259 		spclist = &(immu->immu_dvma_lpc_list);
260 	}
261 
262 	if (spclist) {
263 		mutex_enter(&(immu->immu_lock));
264 		list_insert_head(spclist, immu_devi);
265 		mutex_exit(&(immu->immu_lock));
266 	}
267 }
268 
269 /*
270  * Set the immu_devi struct in the immu_devi field of a devinfo node
271  */
272 int
273 immu_devi_set(dev_info_t *dip, immu_flags_t immu_flags)
274 {
275 	int bus, dev, func;
276 	immu_devi_t *new_imd;
277 	immu_devi_t *immu_devi;
278 
279 	immu_devi = immu_devi_get(dip);
280 	if (immu_devi != NULL) {
281 		return (DDI_SUCCESS);
282 	}
283 
284 	bus = dev = func = -1;
285 
286 	/*
287 	 * Assume a new immu_devi struct is needed
288 	 */
289 	if (!DEVI_IS_PCI(dip) || acpica_get_bdf(dip, &bus, &dev, &func) != 0) {
290 		/*
291 		 * No BDF. Set bus = -1 to indicate this.
292 		 * We still need to create a immu_devi struct
293 		 * though
294 		 */
295 		bus = -1;
296 		dev = 0;
297 		func = 0;
298 	}
299 
300 	new_imd = create_immu_devi(dip, bus, dev, func, immu_flags);
301 	if (new_imd  == NULL) {
302 		ddi_err(DER_WARN, dip, "Failed to create immu_devi "
303 		    "structure");
304 		return (DDI_FAILURE);
305 	}
306 
307 	/*
308 	 * Check if some other thread allocated a immu_devi while we
309 	 * didn't own the lock.
310 	 */
311 	mutex_enter(&(DEVI(dip)->devi_lock));
312 	if (IMMU_DEVI(dip) == NULL) {
313 		IMMU_DEVI_SET(dip, new_imd);
314 	} else {
315 		destroy_immu_devi(new_imd);
316 	}
317 	mutex_exit(&(DEVI(dip)->devi_lock));
318 
319 	return (DDI_SUCCESS);
320 }
321 
322 static dev_info_t *
323 get_lpc_devinfo(immu_t *immu, dev_info_t *rdip, immu_flags_t immu_flags)
324 {
325 	dvma_arg_t dvarg = {0};
326 	dvarg.dva_list = &(immu->immu_dvma_lpc_list);
327 	dvarg.dva_rdip = rdip;
328 	dvarg.dva_error = DDI_FAILURE;
329 
330 	if (immu_walk_ancestor(rdip, NULL, match_lpc,
331 	    &dvarg, NULL, immu_flags) != DDI_SUCCESS) {
332 		ddi_err(DER_MODE, rdip, "Could not walk ancestors to "
333 		    "find lpc_devinfo for ISA device");
334 		return (NULL);
335 	}
336 
337 	if (dvarg.dva_error != DDI_SUCCESS || dvarg.dva_ddip == NULL) {
338 		ddi_err(DER_MODE, rdip, "Could not find lpc_devinfo for "
339 		    "ISA device");
340 		return (NULL);
341 	}
342 
343 	return (dvarg.dva_ddip);
344 }
345 
346 static dev_info_t *
347 get_gfx_devinfo(dev_info_t *rdip)
348 {
349 	immu_t *immu;
350 	immu_devi_t *immu_devi;
351 	list_t *list_gfx;
352 
353 	/*
354 	 * The GFX device may not be on the same iommu unit as "agpgart"
355 	 * so search globally
356 	 */
357 	immu_devi = NULL;
358 	immu = list_head(&immu_list);
359 	for (; immu; immu = list_next(&immu_list, immu)) {
360 		list_gfx = &(immu->immu_dvma_gfx_list);
361 		if (!list_is_empty(list_gfx)) {
362 			immu_devi = list_head(list_gfx);
363 			break;
364 		}
365 	}
366 
367 	if (immu_devi == NULL) {
368 		ddi_err(DER_WARN, rdip, "iommu: No GFX device. "
369 		    "Cannot redirect agpgart");
370 		return (NULL);
371 	}
372 
373 	ddi_err(DER_LOG, rdip, "iommu: GFX redirect to %s",
374 	    ddi_node_name(immu_devi->imd_dip));
375 
376 	return (immu_devi->imd_dip);
377 }
378 
379 static immu_flags_t
380 dma_to_immu_flags(struct ddi_dma_req *dmareq)
381 {
382 	immu_flags_t flags = 0;
383 
384 	if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
385 		flags |= IMMU_FLAGS_SLEEP;
386 	} else {
387 		flags |= IMMU_FLAGS_NOSLEEP;
388 	}
389 
390 #ifdef BUGGY_DRIVERS
391 
392 	flags |= (IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
393 
394 #else
395 	/*
396 	 * Read and write flags need to be reversed.
397 	 * DMA_READ means read from device and write
398 	 * to memory. So DMA read means DVMA write.
399 	 */
400 	if (dmareq->dmar_flags & DDI_DMA_READ)
401 		flags |= IMMU_FLAGS_WRITE;
402 
403 	if (dmareq->dmar_flags & DDI_DMA_WRITE)
404 		flags |= IMMU_FLAGS_READ;
405 
406 	/*
407 	 * Some buggy drivers specify neither READ or WRITE
408 	 * For such drivers set both read and write permissions
409 	 */
410 	if ((dmareq->dmar_flags & (DDI_DMA_READ | DDI_DMA_WRITE)) == 0) {
411 		flags |= (IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
412 	}
413 #endif
414 
415 	return (flags);
416 }
417 
418 /*ARGSUSED*/
419 int
420 pgtable_ctor(void *buf, void *arg, int kmflag)
421 {
422 	size_t actual_size = 0;
423 	pgtable_t *pgtable;
424 	int (*dmafp)(caddr_t);
425 	caddr_t vaddr;
426 	void *next;
427 	uint_t flags;
428 	immu_t *immu = arg;
429 
430 	pgtable = (pgtable_t *)buf;
431 
432 	dmafp = (kmflag & KM_NOSLEEP) ? DDI_DMA_DONTWAIT : DDI_DMA_SLEEP;
433 
434 	next = kmem_zalloc(IMMU_PAGESIZE, kmflag);
435 	if (next == NULL) {
436 		return (-1);
437 	}
438 
439 	if (ddi_dma_alloc_handle(root_devinfo, &immu_dma_attr,
440 	    dmafp, NULL, &pgtable->hwpg_dmahdl) != DDI_SUCCESS) {
441 		kmem_free(next, IMMU_PAGESIZE);
442 		return (-1);
443 	}
444 
445 	flags = DDI_DMA_CONSISTENT;
446 	if (!immu->immu_dvma_coherent)
447 		flags |= IOMEM_DATA_UC_WR_COMBINE;
448 
449 	if (ddi_dma_mem_alloc(pgtable->hwpg_dmahdl, IMMU_PAGESIZE,
450 	    &immu_acc_attr, flags,
451 	    dmafp, NULL, &vaddr, &actual_size,
452 	    &pgtable->hwpg_memhdl) != DDI_SUCCESS) {
453 		ddi_dma_free_handle(&pgtable->hwpg_dmahdl);
454 		kmem_free(next, IMMU_PAGESIZE);
455 		return (-1);
456 	}
457 
458 	/*
459 	 * Memory allocation failure. Maybe a temporary condition
460 	 * so return error rather than panic, so we can try again
461 	 */
462 	if (actual_size < IMMU_PAGESIZE) {
463 		ddi_dma_mem_free(&pgtable->hwpg_memhdl);
464 		ddi_dma_free_handle(&pgtable->hwpg_dmahdl);
465 		kmem_free(next, IMMU_PAGESIZE);
466 		return (-1);
467 	}
468 
469 	pgtable->hwpg_paddr = pfn_to_pa(hat_getpfnum(kas.a_hat, vaddr));
470 	pgtable->hwpg_vaddr = vaddr;
471 	pgtable->swpg_next_array = next;
472 
473 	rw_init(&(pgtable->swpg_rwlock), NULL, RW_DEFAULT, NULL);
474 
475 	return (0);
476 }
477 
478 /*ARGSUSED*/
479 void
480 pgtable_dtor(void *buf, void *arg)
481 {
482 	pgtable_t *pgtable;
483 
484 	pgtable = (pgtable_t *)buf;
485 
486 	/* destroy will panic if lock is held. */
487 	rw_destroy(&(pgtable->swpg_rwlock));
488 
489 	ddi_dma_mem_free(&pgtable->hwpg_memhdl);
490 	ddi_dma_free_handle(&pgtable->hwpg_dmahdl);
491 	kmem_free(pgtable->swpg_next_array, IMMU_PAGESIZE);
492 }
493 
494 /*
495  * pgtable_alloc()
496  *	alloc a IOMMU pgtable structure.
497  *	This same struct is used for root and context tables as well.
498  *	This routine allocs the f/ollowing:
499  *	- a pgtable_t struct
500  *	- a HW page which holds PTEs/entries which is accesssed by HW
501  *        so we set up DMA for this page
502  *	- a SW page which is only for our bookeeping
503  *        (for example to  hold pointers to the next level pgtable).
504  *        So a simple kmem_alloc suffices
505  */
506 static pgtable_t *
507 pgtable_alloc(immu_t *immu, immu_flags_t immu_flags)
508 {
509 	pgtable_t *pgtable;
510 	int kmflags;
511 
512 	kmflags = (immu_flags & IMMU_FLAGS_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
513 
514 	pgtable = kmem_cache_alloc(immu->immu_pgtable_cache, kmflags);
515 	if (pgtable == NULL) {
516 		return (NULL);
517 	}
518 	return (pgtable);
519 }
520 
521 static void
522 pgtable_zero(pgtable_t *pgtable)
523 {
524 	bzero(pgtable->hwpg_vaddr, IMMU_PAGESIZE);
525 	bzero(pgtable->swpg_next_array, IMMU_PAGESIZE);
526 }
527 
528 static void
529 pgtable_free(immu_t *immu, pgtable_t *pgtable)
530 {
531 	kmem_cache_free(immu->immu_pgtable_cache, pgtable);
532 }
533 
534 /*
535  * Function to identify a display device from the PCI class code
536  */
537 static boolean_t
538 device_is_display(uint_t classcode)
539 {
540 	static uint_t disp_classes[] = {
541 		0x000100,
542 		0x030000,
543 		0x030001
544 	};
545 	int i, nclasses = sizeof (disp_classes) / sizeof (uint_t);
546 
547 	for (i = 0; i < nclasses; i++) {
548 		if (classcode == disp_classes[i])
549 			return (B_TRUE);
550 	}
551 	return (B_FALSE);
552 }
553 
554 /*
555  * Function that determines if device is PCIEX and/or PCIEX bridge
556  */
557 static boolean_t
558 device_is_pciex(
559 	uchar_t bus, uchar_t dev, uchar_t func, boolean_t *is_pcib)
560 {
561 	ushort_t cap;
562 	ushort_t capsp;
563 	ushort_t cap_count = PCI_CAP_MAX_PTR;
564 	ushort_t status;
565 	boolean_t is_pciex = B_FALSE;
566 
567 	*is_pcib = B_FALSE;
568 
569 	status = pci_getw_func(bus, dev, func, PCI_CONF_STAT);
570 	if (!(status & PCI_STAT_CAP))
571 		return (B_FALSE);
572 
573 	capsp = pci_getb_func(bus, dev, func, PCI_CONF_CAP_PTR);
574 	while (cap_count-- && capsp >= PCI_CAP_PTR_OFF) {
575 		capsp &= PCI_CAP_PTR_MASK;
576 		cap = pci_getb_func(bus, dev, func, capsp);
577 
578 		if (cap == PCI_CAP_ID_PCI_E) {
579 			status = pci_getw_func(bus, dev, func, capsp + 2);
580 			/*
581 			 * See section 7.8.2 of PCI-Express Base Spec v1.0a
582 			 * for Device/Port Type.
583 			 * PCIE_PCIECAP_DEV_TYPE_PCIE2PCI implies that the
584 			 * device is a PCIE2PCI bridge
585 			 */
586 			*is_pcib =
587 			    ((status & PCIE_PCIECAP_DEV_TYPE_MASK) ==
588 			    PCIE_PCIECAP_DEV_TYPE_PCIE2PCI) ? B_TRUE : B_FALSE;
589 			is_pciex = B_TRUE;
590 		}
591 
592 		capsp = (*pci_getb_func)(bus, dev, func,
593 		    capsp + PCI_CAP_NEXT_PTR);
594 	}
595 
596 	return (is_pciex);
597 }
598 
599 static boolean_t
600 device_use_premap(uint_t classcode)
601 {
602 	if (IMMU_PCI_CLASS2BASE(classcode) == PCI_CLASS_NET)
603 		return (B_TRUE);
604 	return (B_FALSE);
605 }
606 
607 
608 /*
609  * immu_dvma_get_immu()
610  *   get the immu unit structure for a dev_info node
611  */
612 immu_t *
613 immu_dvma_get_immu(dev_info_t *dip, immu_flags_t immu_flags)
614 {
615 	immu_devi_t *immu_devi;
616 	immu_t *immu;
617 
618 	/*
619 	 * check if immu unit was already found earlier.
620 	 * If yes, then it will be stashed in immu_devi struct.
621 	 */
622 	immu_devi = immu_devi_get(dip);
623 	if (immu_devi == NULL) {
624 		if (immu_devi_set(dip, immu_flags) != DDI_SUCCESS) {
625 			/*
626 			 * May fail because of low memory. Return error rather
627 			 * than panic as we want driver to rey again later
628 			 */
629 			ddi_err(DER_PANIC, dip, "immu_dvma_get_immu: "
630 			    "No immu_devi structure");
631 			/*NOTREACHED*/
632 		}
633 		immu_devi = immu_devi_get(dip);
634 	}
635 
636 	mutex_enter(&(DEVI(dip)->devi_lock));
637 	if (immu_devi->imd_immu) {
638 		immu = immu_devi->imd_immu;
639 		mutex_exit(&(DEVI(dip)->devi_lock));
640 		return (immu);
641 	}
642 	mutex_exit(&(DEVI(dip)->devi_lock));
643 
644 	immu = immu_dmar_get_immu(dip);
645 	if (immu == NULL) {
646 		ddi_err(DER_PANIC, dip, "immu_dvma_get_immu: "
647 		    "Cannot find immu_t for device");
648 		/*NOTREACHED*/
649 	}
650 
651 	/*
652 	 * Check if some other thread found immu
653 	 * while lock was not held
654 	 */
655 	immu_devi = immu_devi_get(dip);
656 	/* immu_devi should be present as we found it earlier */
657 	if (immu_devi == NULL) {
658 		ddi_err(DER_PANIC, dip,
659 		    "immu_dvma_get_immu: No immu_devi structure");
660 		/*NOTREACHED*/
661 	}
662 
663 	mutex_enter(&(DEVI(dip)->devi_lock));
664 	if (immu_devi->imd_immu == NULL) {
665 		/* nobody else set it, so we should do it */
666 		immu_devi->imd_immu = immu;
667 		immu_devi_set_spclist(dip, immu);
668 	} else {
669 		/*
670 		 * if some other thread got immu before
671 		 * us, it should get the same results
672 		 */
673 		if (immu_devi->imd_immu != immu) {
674 			ddi_err(DER_PANIC, dip, "Multiple "
675 			    "immu units found for device. Expected (%p), "
676 			    "actual (%p)", (void *)immu,
677 			    (void *)immu_devi->imd_immu);
678 			mutex_exit(&(DEVI(dip)->devi_lock));
679 			/*NOTREACHED*/
680 		}
681 	}
682 	mutex_exit(&(DEVI(dip)->devi_lock));
683 
684 	return (immu);
685 }
686 
687 
688 /* ############################# IMMU_DEVI code ############################ */
689 
690 /*
691  * Allocate a immu_devi structure and initialize it
692  */
693 static immu_devi_t *
694 create_immu_devi(dev_info_t *rdip, int bus, int dev, int func,
695     immu_flags_t immu_flags)
696 {
697 	uchar_t baseclass, subclass;
698 	uint_t classcode, revclass;
699 	immu_devi_t *immu_devi;
700 	boolean_t pciex = B_FALSE;
701 	int kmflags;
702 	boolean_t is_pcib = B_FALSE;
703 
704 	/* bus ==  -1 indicate non-PCI device (no BDF) */
705 	ASSERT(bus == -1 || bus >= 0);
706 	ASSERT(dev >= 0);
707 	ASSERT(func >= 0);
708 
709 	kmflags = (immu_flags & IMMU_FLAGS_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
710 	immu_devi = kmem_zalloc(sizeof (immu_devi_t), kmflags);
711 	if (immu_devi == NULL) {
712 		ddi_err(DER_WARN, rdip, "Failed to allocate memory for "
713 		    "Intel IOMMU immu_devi structure");
714 		return (NULL);
715 	}
716 	immu_devi->imd_dip = rdip;
717 	immu_devi->imd_seg = 0; /* Currently seg can only be 0 */
718 	immu_devi->imd_bus = bus;
719 	immu_devi->imd_pcib_type = IMMU_PCIB_BAD;
720 
721 	if (bus == -1) {
722 		immu_devi->imd_pcib_type = IMMU_PCIB_NOBDF;
723 		return (immu_devi);
724 	}
725 
726 	immu_devi->imd_devfunc = IMMU_PCI_DEVFUNC(dev, func);
727 	immu_devi->imd_sec = 0;
728 	immu_devi->imd_sub = 0;
729 
730 	revclass = pci_getl_func(bus, dev, func, PCI_CONF_REVID);
731 
732 	classcode = IMMU_PCI_REV2CLASS(revclass);
733 	baseclass = IMMU_PCI_CLASS2BASE(classcode);
734 	subclass = IMMU_PCI_CLASS2SUB(classcode);
735 
736 	if (baseclass == PCI_CLASS_BRIDGE && subclass == PCI_BRIDGE_PCI) {
737 
738 		immu_devi->imd_sec = pci_getb_func(bus, dev, func,
739 		    PCI_BCNF_SECBUS);
740 		immu_devi->imd_sub = pci_getb_func(bus, dev, func,
741 		    PCI_BCNF_SUBBUS);
742 
743 		pciex = device_is_pciex(bus, dev, func, &is_pcib);
744 		if (pciex  == B_TRUE && is_pcib == B_TRUE) {
745 			immu_devi->imd_pcib_type = IMMU_PCIB_PCIE_PCI;
746 		} else if (pciex == B_TRUE) {
747 			immu_devi->imd_pcib_type = IMMU_PCIB_PCIE_PCIE;
748 		} else {
749 			immu_devi->imd_pcib_type = IMMU_PCIB_PCI_PCI;
750 		}
751 	} else {
752 		immu_devi->imd_pcib_type = IMMU_PCIB_ENDPOINT;
753 	}
754 
755 	/* check for certain special devices */
756 	immu_devi->imd_display = device_is_display(classcode);
757 	immu_devi->imd_lpc = ((baseclass == PCI_CLASS_BRIDGE) &&
758 	    (subclass == PCI_BRIDGE_ISA)) ? B_TRUE : B_FALSE;
759 	immu_devi->imd_use_premap = device_use_premap(classcode);
760 
761 	immu_devi->imd_domain = NULL;
762 
763 	immu_devi->imd_dvma_flags = immu_global_dvma_flags;
764 
765 	return (immu_devi);
766 }
767 
768 static void
769 destroy_immu_devi(immu_devi_t *immu_devi)
770 {
771 	kmem_free(immu_devi, sizeof (immu_devi_t));
772 }
773 
774 static domain_t *
775 immu_devi_domain(dev_info_t *rdip, dev_info_t **ddipp)
776 {
777 	immu_devi_t *immu_devi;
778 	domain_t *domain;
779 	dev_info_t *ddip;
780 
781 	*ddipp = NULL;
782 
783 	immu_devi = immu_devi_get(rdip);
784 	if (immu_devi == NULL) {
785 		return (NULL);
786 	}
787 
788 	mutex_enter(&(DEVI(rdip)->devi_lock));
789 	domain = immu_devi->imd_domain;
790 	ddip = immu_devi->imd_ddip;
791 	mutex_exit(&(DEVI(rdip)->devi_lock));
792 
793 	if (domain)
794 		*ddipp = ddip;
795 
796 	return (domain);
797 
798 }
799 
800 /* ############################# END IMMU_DEVI code ######################## */
801 /* ############################# DOMAIN code ############################### */
802 
803 /*
804  * This routine always succeeds
805  */
806 static int
807 did_alloc(immu_t *immu, dev_info_t *rdip,
808     dev_info_t *ddip, immu_flags_t immu_flags)
809 {
810 	int did;
811 
812 	did = (uintptr_t)vmem_alloc(immu->immu_did_arena, 1,
813 	    (immu_flags & IMMU_FLAGS_NOSLEEP) ? VM_NOSLEEP : VM_SLEEP);
814 
815 	if (did == 0) {
816 		ddi_err(DER_WARN, rdip, "device domain-id alloc error"
817 		    " domain-device: %s%d. immu unit is %s. Using "
818 		    "unity domain with domain-id (%d)",
819 		    ddi_driver_name(ddip), ddi_get_instance(ddip),
820 		    immu->immu_name, immu->immu_unity_domain->dom_did);
821 		did = immu->immu_unity_domain->dom_did;
822 	}
823 
824 	return (did);
825 }
826 
827 static int
828 get_branch_domain(dev_info_t *pdip, void *arg)
829 {
830 	immu_devi_t *immu_devi;
831 	domain_t *domain;
832 	dev_info_t *ddip;
833 	immu_t *immu;
834 	dvma_arg_t *dvp = (dvma_arg_t *)arg;
835 
836 	/*
837 	 * The field dvp->dva_rdip is a work-in-progress
838 	 * and gets updated as we walk up the ancestor
839 	 * tree. The final ddip is set only when we reach
840 	 * the top of the tree. So the dvp->dva_ddip field cannot
841 	 * be relied on until we reach the top of the field.
842 	 */
843 
844 	/* immu_devi may not be set. */
845 	immu_devi = immu_devi_get(pdip);
846 	if (immu_devi == NULL) {
847 		if (immu_devi_set(pdip, dvp->dva_flags) != DDI_SUCCESS) {
848 			dvp->dva_error = DDI_FAILURE;
849 			return (DDI_WALK_TERMINATE);
850 		}
851 	}
852 
853 	immu_devi = immu_devi_get(pdip);
854 	immu = immu_devi->imd_immu;
855 	if (immu == NULL)
856 		immu = immu_dvma_get_immu(pdip, dvp->dva_flags);
857 
858 	/*
859 	 * If we encounter a PCIE_PCIE bridge *ANCESTOR* we need to
860 	 * terminate the walk (since the device under the PCIE bridge
861 	 * is a PCIE device and has an independent entry in the
862 	 * root/context table)
863 	 */
864 	if (dvp->dva_rdip != pdip &&
865 	    immu_devi->imd_pcib_type == IMMU_PCIB_PCIE_PCIE) {
866 		return (DDI_WALK_TERMINATE);
867 	}
868 
869 	/*
870 	 * In order to be a domain-dim, it must be a PCI device i.e.
871 	 * must have valid BDF. This also eliminates the root complex.
872 	 */
873 	if (immu_devi->imd_pcib_type != IMMU_PCIB_BAD &&
874 	    immu_devi->imd_pcib_type != IMMU_PCIB_NOBDF) {
875 		ASSERT(immu_devi->imd_bus >= 0);
876 		ASSERT(immu_devi->imd_devfunc >= 0);
877 		dvp->dva_ddip = pdip;
878 	}
879 
880 	if (immu_devi->imd_display == B_TRUE ||
881 	    (dvp->dva_flags & IMMU_FLAGS_UNITY)) {
882 		dvp->dva_domain = immu->immu_unity_domain;
883 		/* continue walking to find ddip */
884 		return (DDI_WALK_CONTINUE);
885 	}
886 
887 	mutex_enter(&(DEVI(pdip)->devi_lock));
888 	domain = immu_devi->imd_domain;
889 	ddip = immu_devi->imd_ddip;
890 	mutex_exit(&(DEVI(pdip)->devi_lock));
891 
892 	if (domain && ddip) {
893 		/* if domain is set, it must be the same */
894 		if (dvp->dva_domain) {
895 			ASSERT(domain == dvp->dva_domain);
896 		}
897 		dvp->dva_domain = domain;
898 		dvp->dva_ddip = ddip;
899 		return (DDI_WALK_TERMINATE);
900 	}
901 
902 	/* Domain may already be set, continue walking so that ddip gets set */
903 	if (dvp->dva_domain) {
904 		return (DDI_WALK_CONTINUE);
905 	}
906 
907 	/* domain is not set in either immu_devi or dvp */
908 	domain = bdf_domain_lookup(immu_devi);
909 	if (domain == NULL) {
910 		return (DDI_WALK_CONTINUE);
911 	}
912 
913 	/* ok, the BDF hash had a domain for this BDF. */
914 
915 	/* Grab lock again to check if something else set immu_devi fields */
916 	mutex_enter(&(DEVI(pdip)->devi_lock));
917 	if (immu_devi->imd_domain != NULL) {
918 		dvp->dva_domain = domain;
919 	} else {
920 		dvp->dva_domain = domain;
921 	}
922 	mutex_exit(&(DEVI(pdip)->devi_lock));
923 
924 	/*
925 	 * walk upwards until the topmost PCI bridge is found
926 	 */
927 	return (DDI_WALK_CONTINUE);
928 
929 }
930 
931 static void
932 map_unity_domain(domain_t *domain)
933 {
934 	struct memlist *mp;
935 	uint64_t start;
936 	uint64_t npages;
937 	immu_dcookie_t dcookies[1] = {0};
938 	int dcount = 0;
939 
940 	/*
941 	 * UNITY arenas are a mirror of the physical memory
942 	 * installed on the system.
943 	 */
944 
945 #ifdef BUGGY_DRIVERS
946 	/*
947 	 * Dont skip page0. Some broken HW/FW access it.
948 	 */
949 	dcookies[0].dck_paddr = 0;
950 	dcookies[0].dck_npages = 1;
951 	dcount = 1;
952 	(void) dvma_map(domain, 0, 1, dcookies, dcount, NULL,
953 	    IMMU_FLAGS_READ | IMMU_FLAGS_WRITE | IMMU_FLAGS_PAGE1);
954 #endif
955 
956 	memlist_read_lock();
957 
958 	mp = phys_install;
959 
960 	if (mp->ml_address == 0) {
961 		/* since we already mapped page1 above */
962 		start = IMMU_PAGESIZE;
963 	} else {
964 		start = mp->ml_address;
965 	}
966 	npages = mp->ml_size/IMMU_PAGESIZE + 1;
967 
968 	dcookies[0].dck_paddr = start;
969 	dcookies[0].dck_npages = npages;
970 	dcount = 1;
971 	(void) dvma_map(domain, start, npages, dcookies,
972 	    dcount, NULL, IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
973 
974 	ddi_err(DER_LOG, domain->dom_dip, "iommu: mapping PHYS span [0x%" PRIx64
975 	    " - 0x%" PRIx64 "]", start, start + mp->ml_size);
976 
977 	mp = mp->ml_next;
978 	while (mp) {
979 		ddi_err(DER_LOG, domain->dom_dip,
980 		    "iommu: mapping PHYS span [0x%" PRIx64 " - 0x%" PRIx64 "]",
981 		    mp->ml_address, mp->ml_address + mp->ml_size);
982 
983 		start = mp->ml_address;
984 		npages = mp->ml_size/IMMU_PAGESIZE + 1;
985 
986 		dcookies[0].dck_paddr = start;
987 		dcookies[0].dck_npages = npages;
988 		dcount = 1;
989 		(void) dvma_map(domain, start, npages,
990 		    dcookies, dcount, NULL, IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
991 		mp = mp->ml_next;
992 	}
993 
994 	mp = bios_rsvd;
995 	while (mp) {
996 		ddi_err(DER_LOG, domain->dom_dip,
997 		    "iommu: mapping PHYS span [0x%" PRIx64 " - 0x%" PRIx64 "]",
998 		    mp->ml_address, mp->ml_address + mp->ml_size);
999 
1000 		start = mp->ml_address;
1001 		npages = mp->ml_size/IMMU_PAGESIZE + 1;
1002 
1003 		dcookies[0].dck_paddr = start;
1004 		dcookies[0].dck_npages = npages;
1005 		dcount = 1;
1006 		(void) dvma_map(domain, start, npages,
1007 		    dcookies, dcount, NULL, IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
1008 
1009 		mp = mp->ml_next;
1010 	}
1011 
1012 	memlist_read_unlock();
1013 }
1014 
1015 /*
1016  * create_xlate_arena()
1017  *	Create the dvma arena for a domain with translation
1018  *	mapping
1019  */
1020 static void
1021 create_xlate_arena(immu_t *immu, domain_t *domain,
1022     dev_info_t *rdip, immu_flags_t immu_flags)
1023 {
1024 	char *arena_name;
1025 	struct memlist *mp;
1026 	int vmem_flags;
1027 	uint64_t start;
1028 	uint_t mgaw;
1029 	uint64_t size;
1030 	uint64_t maxaddr;
1031 	void *vmem_ret;
1032 
1033 	arena_name = domain->dom_dvma_arena_name;
1034 
1035 	/* Note, don't do sizeof (arena_name) - it is just a pointer */
1036 	(void) snprintf(arena_name,
1037 	    sizeof (domain->dom_dvma_arena_name),
1038 	    "%s-domain-%d-xlate-DVMA-arena", immu->immu_name,
1039 	    domain->dom_did);
1040 
1041 	vmem_flags = (immu_flags & IMMU_FLAGS_NOSLEEP) ? VM_NOSLEEP : VM_SLEEP;
1042 
1043 	/* Restrict mgaddr (max guest addr) to MGAW */
1044 	mgaw = IMMU_CAP_MGAW(immu->immu_regs_cap);
1045 
1046 	/*
1047 	 * To ensure we avoid ioapic and PCI MMIO ranges we just
1048 	 * use the physical memory address range of the system as the
1049 	 * range
1050 	 */
1051 	maxaddr = ((uint64_t)1 << mgaw);
1052 
1053 	memlist_read_lock();
1054 
1055 	mp = phys_install;
1056 
1057 	if (mp->ml_address == 0)
1058 		start = MMU_PAGESIZE;
1059 	else
1060 		start = mp->ml_address;
1061 
1062 	if (start + mp->ml_size > maxaddr)
1063 		size = maxaddr - start;
1064 	else
1065 		size = mp->ml_size;
1066 
1067 	ddi_err(DER_VERB, rdip,
1068 	    "iommu: %s: Creating dvma vmem arena [0x%" PRIx64
1069 	    " - 0x%" PRIx64 "]", arena_name, start, start + size);
1070 
1071 	/*
1072 	 * We always allocate in quanta of IMMU_PAGESIZE
1073 	 */
1074 	domain->dom_dvma_arena = vmem_create(arena_name,
1075 	    (void *)(uintptr_t)start,	/* start addr */
1076 	    size,			/* size */
1077 	    IMMU_PAGESIZE,		/* quantum */
1078 	    NULL,			/* afunc */
1079 	    NULL,			/* ffunc */
1080 	    NULL,			/* source */
1081 	    0,				/* qcache_max */
1082 	    vmem_flags);
1083 
1084 	if (domain->dom_dvma_arena == NULL) {
1085 		ddi_err(DER_PANIC, rdip,
1086 		    "Failed to allocate DVMA arena(%s) "
1087 		    "for domain ID (%d)", arena_name, domain->dom_did);
1088 		/*NOTREACHED*/
1089 	}
1090 
1091 	mp = mp->ml_next;
1092 	while (mp) {
1093 
1094 		if (mp->ml_address == 0)
1095 			start = MMU_PAGESIZE;
1096 		else
1097 			start = mp->ml_address;
1098 
1099 		if (start + mp->ml_size > maxaddr)
1100 			size = maxaddr - start;
1101 		else
1102 			size = mp->ml_size;
1103 
1104 		ddi_err(DER_VERB, rdip,
1105 		    "iommu: %s: Adding dvma vmem span [0x%" PRIx64
1106 		    " - 0x%" PRIx64 "]", arena_name, start,
1107 		    start + size);
1108 
1109 		vmem_ret = vmem_add(domain->dom_dvma_arena,
1110 		    (void *)(uintptr_t)start, size,  vmem_flags);
1111 
1112 		if (vmem_ret == NULL) {
1113 			ddi_err(DER_PANIC, rdip,
1114 			    "Failed to allocate DVMA arena(%s) "
1115 			    "for domain ID (%d)",
1116 			    arena_name, domain->dom_did);
1117 			/*NOTREACHED*/
1118 		}
1119 		mp = mp->ml_next;
1120 	}
1121 	memlist_read_unlock();
1122 }
1123 
1124 /* ################################### DOMAIN CODE ######################### */
1125 
1126 /*
1127  * Set the domain and domain-dip for a dip
1128  */
1129 static void
1130 set_domain(
1131 	dev_info_t *dip,
1132 	dev_info_t *ddip,
1133 	domain_t *domain)
1134 {
1135 	immu_devi_t *immu_devi;
1136 	domain_t *fdomain;
1137 	dev_info_t *fddip;
1138 
1139 	immu_devi = immu_devi_get(dip);
1140 
1141 	mutex_enter(&(DEVI(dip)->devi_lock));
1142 	fddip = immu_devi->imd_ddip;
1143 	fdomain = immu_devi->imd_domain;
1144 
1145 	if (fddip) {
1146 		ASSERT(fddip == ddip);
1147 	} else {
1148 		immu_devi->imd_ddip = ddip;
1149 	}
1150 
1151 	if (fdomain) {
1152 		ASSERT(fdomain == domain);
1153 	} else {
1154 		immu_devi->imd_domain = domain;
1155 	}
1156 	mutex_exit(&(DEVI(dip)->devi_lock));
1157 }
1158 
1159 /*
1160  * device_domain()
1161  *	Get domain for a device. The domain may be global in which case it
1162  *	is shared between all IOMMU units. Due to potential AGAW differences
1163  *      between IOMMU units, such global domains *have to be* UNITY mapping
1164  *      domains. Alternatively, the domain may be local to a IOMMU unit.
1165  *	Local domains may be shared or immu_devi, although the
1166  *      scope of sharing
1167  *	is restricted to devices controlled by the IOMMU unit to
1168  *      which the domain
1169  *	belongs. If shared, they (currently) have to be UNITY domains. If
1170  *      immu_devi a domain may be either UNITY or translation (XLATE) domain.
1171  */
1172 static domain_t *
1173 device_domain(dev_info_t *rdip, dev_info_t **ddipp, immu_flags_t immu_flags)
1174 {
1175 	dev_info_t *ddip; /* topmost dip in domain i.e. domain owner */
1176 	immu_t *immu;
1177 	domain_t *domain;
1178 	dvma_arg_t dvarg = {0};
1179 	int level;
1180 
1181 	*ddipp = NULL;
1182 
1183 	/*
1184 	 * Check if the domain is already set. This is usually true
1185 	 * if this is not the first DVMA transaction.
1186 	 */
1187 	ddip = NULL;
1188 	domain = immu_devi_domain(rdip, &ddip);
1189 	if (domain) {
1190 		*ddipp = ddip;
1191 		return (domain);
1192 	}
1193 
1194 	immu = immu_dvma_get_immu(rdip, immu_flags);
1195 	if (immu == NULL) {
1196 		/*
1197 		 * possible that there is no IOMMU unit for this device
1198 		 * - BIOS bugs are one example.
1199 		 */
1200 		ddi_err(DER_WARN, rdip, "No iommu unit found for device");
1201 		return (NULL);
1202 	}
1203 
1204 	immu_flags |= immu_devi_get(rdip)->imd_dvma_flags;
1205 
1206 	dvarg.dva_rdip = rdip;
1207 	dvarg.dva_ddip = NULL;
1208 	dvarg.dva_domain = NULL;
1209 	dvarg.dva_flags = immu_flags;
1210 	level = 0;
1211 	if (immu_walk_ancestor(rdip, NULL, get_branch_domain,
1212 	    &dvarg, &level, immu_flags) != DDI_SUCCESS) {
1213 		/*
1214 		 * maybe low memory. return error,
1215 		 * so driver tries again later
1216 		 */
1217 		return (NULL);
1218 	}
1219 
1220 	/* should have walked at least 1 dip (i.e. edip) */
1221 	ASSERT(level > 0);
1222 
1223 	ddip = dvarg.dva_ddip;	/* must be present */
1224 	domain = dvarg.dva_domain;	/* may be NULL */
1225 
1226 	/*
1227 	 * We may find the domain during our ancestor walk on any one of our
1228 	 * ancestor dips, If the domain is found then the domain-dip
1229 	 * (i.e. ddip) will also be found in the same immu_devi struct.
1230 	 * The domain-dip is the highest ancestor dip which shares the
1231 	 * same domain with edip.
1232 	 * The domain may or may not be found, but the domain dip must
1233 	 * be found.
1234 	 */
1235 	if (ddip == NULL) {
1236 		ddi_err(DER_MODE, rdip, "Cannot find domain dip for device.");
1237 		return (NULL);
1238 	}
1239 
1240 	/*
1241 	 * Did we find a domain ?
1242 	 */
1243 	if (domain) {
1244 		goto found;
1245 	}
1246 
1247 	/* nope, so allocate */
1248 	domain = domain_create(immu, ddip, rdip, immu_flags);
1249 	if (domain == NULL) {
1250 		return (NULL);
1251 	}
1252 
1253 	/*FALLTHROUGH*/
1254 found:
1255 	/*
1256 	 * We know *domain *is* the right domain, so panic if
1257 	 * another domain is set for either the request-dip or
1258 	 * effective dip.
1259 	 */
1260 	set_domain(ddip, ddip, domain);
1261 	set_domain(rdip, ddip, domain);
1262 
1263 	*ddipp = ddip;
1264 	return (domain);
1265 }
1266 
1267 static void
1268 create_unity_domain(immu_t *immu)
1269 {
1270 	domain_t *domain;
1271 
1272 	/* domain created during boot and always use sleep flag */
1273 	domain = kmem_zalloc(sizeof (domain_t), KM_SLEEP);
1274 
1275 	rw_init(&(domain->dom_pgtable_rwlock), NULL, RW_DEFAULT, NULL);
1276 
1277 	domain->dom_did = IMMU_UNITY_DID;
1278 	domain->dom_maptype = IMMU_MAPTYPE_UNITY;
1279 
1280 	domain->dom_immu = immu;
1281 	immu->immu_unity_domain = domain;
1282 
1283 	/*
1284 	 * Setup the domain's initial page table
1285 	 * should never fail.
1286 	 */
1287 	domain->dom_pgtable_root = pgtable_alloc(immu, IMMU_FLAGS_SLEEP);
1288 	pgtable_zero(domain->dom_pgtable_root);
1289 
1290 	/*
1291 	 * Only map all physical memory in to the unity domain
1292 	 * if passthrough is not supported. If it is supported,
1293 	 * passthrough is set in the context entry instead.
1294 	 */
1295 	if (!IMMU_ECAP_GET_PT(immu->immu_regs_excap))
1296 		map_unity_domain(domain);
1297 
1298 
1299 	/*
1300 	 * put it on the system-wide UNITY domain list
1301 	 */
1302 	mutex_enter(&(immu_domain_lock));
1303 	list_insert_tail(&immu_unity_domain_list, domain);
1304 	mutex_exit(&(immu_domain_lock));
1305 }
1306 
1307 /*
1308  * ddip is the domain-dip - the topmost dip in a domain
1309  * rdip is the requesting-dip - the device which is
1310  * requesting DVMA setup
1311  * if domain is a non-shared domain rdip == ddip
1312  */
1313 static domain_t *
1314 domain_create(immu_t *immu, dev_info_t *ddip, dev_info_t *rdip,
1315     immu_flags_t immu_flags)
1316 {
1317 	int kmflags;
1318 	domain_t *domain;
1319 	char mod_hash_name[128];
1320 	immu_devi_t *immu_devi;
1321 	int did;
1322 	immu_dcookie_t dcookies[1] = {0};
1323 	int dcount = 0;
1324 
1325 	immu_devi = immu_devi_get(rdip);
1326 
1327 	/*
1328 	 * First allocate a domainid.
1329 	 * This routine will never fail, since if we run out
1330 	 * of domains the unity domain will be allocated.
1331 	 */
1332 	did = did_alloc(immu, rdip, ddip, immu_flags);
1333 	if (did == IMMU_UNITY_DID) {
1334 		/* domain overflow */
1335 		ASSERT(immu->immu_unity_domain);
1336 		return (immu->immu_unity_domain);
1337 	}
1338 
1339 	kmflags = (immu_flags & IMMU_FLAGS_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
1340 	domain = kmem_zalloc(sizeof (domain_t), kmflags);
1341 	if (domain == NULL) {
1342 		ddi_err(DER_PANIC, rdip, "Failed to alloc DVMA domain "
1343 		    "structure for device. IOMMU unit: %s", immu->immu_name);
1344 		/*NOTREACHED*/
1345 	}
1346 
1347 	rw_init(&(domain->dom_pgtable_rwlock), NULL, RW_DEFAULT, NULL);
1348 
1349 	(void) snprintf(mod_hash_name, sizeof (mod_hash_name),
1350 	    "immu%s-domain%d-pava-hash", immu->immu_name, did);
1351 
1352 	domain->dom_did = did;
1353 	domain->dom_immu = immu;
1354 	domain->dom_maptype = IMMU_MAPTYPE_XLATE;
1355 	domain->dom_dip = ddip;
1356 
1357 	/*
1358 	 * Create xlate DVMA arena for this domain.
1359 	 */
1360 	create_xlate_arena(immu, domain, rdip, immu_flags);
1361 
1362 	/*
1363 	 * Setup the domain's initial page table
1364 	 */
1365 	domain->dom_pgtable_root = pgtable_alloc(immu, immu_flags);
1366 	if (domain->dom_pgtable_root == NULL) {
1367 		ddi_err(DER_PANIC, rdip, "Failed to alloc root "
1368 		    "pgtable for domain (%d). IOMMU unit: %s",
1369 		    domain->dom_did, immu->immu_name);
1370 		/*NOTREACHED*/
1371 	}
1372 	pgtable_zero(domain->dom_pgtable_root);
1373 
1374 	/*
1375 	 * Since this is a immu unit-specific domain, put it on
1376 	 * the per-immu domain list.
1377 	 */
1378 	mutex_enter(&(immu->immu_lock));
1379 	list_insert_head(&immu->immu_domain_list, domain);
1380 	mutex_exit(&(immu->immu_lock));
1381 
1382 	/*
1383 	 * Also put it on the system-wide xlate domain list
1384 	 */
1385 	mutex_enter(&(immu_domain_lock));
1386 	list_insert_head(&immu_xlate_domain_list, domain);
1387 	mutex_exit(&(immu_domain_lock));
1388 
1389 	bdf_domain_insert(immu_devi, domain);
1390 
1391 #ifdef BUGGY_DRIVERS
1392 	/*
1393 	 * Map page0. Some broken HW/FW access it.
1394 	 */
1395 	dcookies[0].dck_paddr = 0;
1396 	dcookies[0].dck_npages = 1;
1397 	dcount = 1;
1398 	(void) dvma_map(domain, 0, 1, dcookies, dcount, NULL,
1399 	    IMMU_FLAGS_READ | IMMU_FLAGS_WRITE | IMMU_FLAGS_PAGE1);
1400 #endif
1401 	return (domain);
1402 }
1403 
1404 /*
1405  * Create domainid arena.
1406  * Domainid 0 is reserved by Vt-d spec and cannot be used by
1407  * system software.
1408  * Domainid 1 is reserved by solaris and used for *all* of the following:
1409  *	as the "uninitialized" domain - For devices not yet controlled
1410  *	by Solaris
1411  *	as the "unity" domain - For devices that will always belong
1412  *	to the unity domain
1413  *	as the "overflow" domain - Used for any new device after we
1414  *	run out of domains
1415  * All of the above domains map into a single domain with
1416  * domainid 1 and UNITY DVMA mapping
1417  * Each IMMU unity has its own unity/uninit/overflow domain
1418  */
1419 static void
1420 did_init(immu_t *immu)
1421 {
1422 	(void) snprintf(immu->immu_did_arena_name,
1423 	    sizeof (immu->immu_did_arena_name),
1424 	    "%s_domainid_arena", immu->immu_name);
1425 
1426 	ddi_err(DER_VERB, immu->immu_dip, "creating domainid arena %s",
1427 	    immu->immu_did_arena_name);
1428 
1429 	immu->immu_did_arena = vmem_create(
1430 	    immu->immu_did_arena_name,
1431 	    (void *)(uintptr_t)(IMMU_UNITY_DID + 1),   /* start addr */
1432 	    immu->immu_max_domains - IMMU_UNITY_DID,
1433 	    1,				/* quantum */
1434 	    NULL,			/* afunc */
1435 	    NULL,			/* ffunc */
1436 	    NULL,			/* source */
1437 	    0,				/* qcache_max */
1438 	    VM_SLEEP);
1439 
1440 	/* Even with SLEEP flag, vmem_create() can fail */
1441 	if (immu->immu_did_arena == NULL) {
1442 		ddi_err(DER_PANIC, NULL, "%s: Failed to create Intel "
1443 		    "IOMMU domainid allocator: %s", immu->immu_name,
1444 		    immu->immu_did_arena_name);
1445 	}
1446 }
1447 
1448 /* #########################  CONTEXT CODE ################################# */
1449 
1450 static void
1451 context_set(immu_t *immu, domain_t *domain, pgtable_t *root_table,
1452     int bus, int devfunc)
1453 {
1454 	pgtable_t *context;
1455 	pgtable_t *pgtable_root;
1456 	hw_rce_t *hw_rent;
1457 	hw_rce_t *hw_cent;
1458 	hw_rce_t *ctxp;
1459 	int sid;
1460 	krw_t rwtype;
1461 	boolean_t fill_root;
1462 	boolean_t fill_ctx;
1463 
1464 	pgtable_root = domain->dom_pgtable_root;
1465 
1466 	ctxp = (hw_rce_t *)(root_table->swpg_next_array);
1467 	context = *(pgtable_t **)(ctxp + bus);
1468 	hw_rent = (hw_rce_t *)(root_table->hwpg_vaddr) + bus;
1469 
1470 	fill_root = B_FALSE;
1471 	fill_ctx = B_FALSE;
1472 
1473 	/* Check the most common case first with reader lock */
1474 	rw_enter(&(immu->immu_ctx_rwlock), RW_READER);
1475 	rwtype = RW_READER;
1476 again:
1477 	if (ROOT_GET_P(hw_rent)) {
1478 		hw_cent = (hw_rce_t *)(context->hwpg_vaddr) + devfunc;
1479 		if (CONT_GET_AVAIL(hw_cent) == IMMU_CONT_INITED) {
1480 			rw_exit(&(immu->immu_ctx_rwlock));
1481 			return;
1482 		} else {
1483 			fill_ctx = B_TRUE;
1484 		}
1485 	} else {
1486 		fill_root = B_TRUE;
1487 		fill_ctx = B_TRUE;
1488 	}
1489 
1490 	if (rwtype == RW_READER &&
1491 	    rw_tryupgrade(&(immu->immu_ctx_rwlock)) == 0) {
1492 		rw_exit(&(immu->immu_ctx_rwlock));
1493 		rw_enter(&(immu->immu_ctx_rwlock), RW_WRITER);
1494 		rwtype = RW_WRITER;
1495 		goto again;
1496 	}
1497 	rwtype = RW_WRITER;
1498 
1499 	if (fill_root == B_TRUE) {
1500 		ROOT_SET_CONT(hw_rent, context->hwpg_paddr);
1501 		ROOT_SET_P(hw_rent);
1502 		immu_regs_cpu_flush(immu, (caddr_t)hw_rent, sizeof (hw_rce_t));
1503 	}
1504 
1505 	if (fill_ctx == B_TRUE) {
1506 		hw_cent = (hw_rce_t *)(context->hwpg_vaddr) + devfunc;
1507 		/* need to disable context entry before reprogramming it */
1508 		bzero(hw_cent, sizeof (hw_rce_t));
1509 
1510 		/* flush caches */
1511 		immu_regs_cpu_flush(immu, (caddr_t)hw_cent, sizeof (hw_rce_t));
1512 
1513 		sid = ((bus << 8) | devfunc);
1514 		immu_flush_context_fsi(immu, 0, sid, domain->dom_did,
1515 		    &immu->immu_ctx_inv_wait);
1516 
1517 		CONT_SET_AVAIL(hw_cent, IMMU_CONT_INITED);
1518 		CONT_SET_DID(hw_cent, domain->dom_did);
1519 		CONT_SET_AW(hw_cent, immu->immu_dvma_agaw);
1520 		CONT_SET_ASR(hw_cent, pgtable_root->hwpg_paddr);
1521 		if (domain->dom_did == IMMU_UNITY_DID &&
1522 		    IMMU_ECAP_GET_PT(immu->immu_regs_excap))
1523 			CONT_SET_TTYPE(hw_cent, TTYPE_PASSTHRU);
1524 		else
1525 			/*LINTED*/
1526 			CONT_SET_TTYPE(hw_cent, TTYPE_XLATE_ONLY);
1527 		CONT_SET_P(hw_cent);
1528 		if (IMMU_ECAP_GET_CH(immu->immu_regs_excap)) {
1529 			CONT_SET_EH(hw_cent);
1530 			if (immu_use_alh)
1531 				CONT_SET_ALH(hw_cent);
1532 		}
1533 		immu_regs_cpu_flush(immu, (caddr_t)hw_cent, sizeof (hw_rce_t));
1534 	}
1535 	rw_exit(&(immu->immu_ctx_rwlock));
1536 }
1537 
1538 static pgtable_t *
1539 context_create(immu_t *immu)
1540 {
1541 	int	bus;
1542 	int	devfunc;
1543 	pgtable_t *root_table;
1544 	pgtable_t *context;
1545 	pgtable_t *pgtable_root;
1546 	hw_rce_t *ctxp;
1547 	hw_rce_t *hw_rent;
1548 	hw_rce_t *hw_cent;
1549 
1550 	/* Allocate a zeroed root table (4K 256b entries) */
1551 	root_table = pgtable_alloc(immu, IMMU_FLAGS_SLEEP);
1552 	pgtable_zero(root_table);
1553 
1554 	/*
1555 	 * Setup context tables for all possible root table entries.
1556 	 * Start out with unity domains for all entries.
1557 	 */
1558 	ctxp = (hw_rce_t *)(root_table->swpg_next_array);
1559 	hw_rent = (hw_rce_t *)(root_table->hwpg_vaddr);
1560 	for (bus = 0; bus < IMMU_ROOT_NUM; bus++, ctxp++, hw_rent++) {
1561 		context = pgtable_alloc(immu, IMMU_FLAGS_SLEEP);
1562 		pgtable_zero(context);
1563 		ROOT_SET_P(hw_rent);
1564 		ROOT_SET_CONT(hw_rent, context->hwpg_paddr);
1565 		hw_cent = (hw_rce_t *)(context->hwpg_vaddr);
1566 		for (devfunc = 0; devfunc < IMMU_CONT_NUM;
1567 		    devfunc++, hw_cent++) {
1568 			pgtable_root =
1569 			    immu->immu_unity_domain->dom_pgtable_root;
1570 			CONT_SET_DID(hw_cent,
1571 			    immu->immu_unity_domain->dom_did);
1572 			CONT_SET_AW(hw_cent, immu->immu_dvma_agaw);
1573 			CONT_SET_ASR(hw_cent, pgtable_root->hwpg_paddr);
1574 			if (IMMU_ECAP_GET_PT(immu->immu_regs_excap))
1575 				CONT_SET_TTYPE(hw_cent, TTYPE_PASSTHRU);
1576 			else
1577 				/*LINTED*/
1578 				CONT_SET_TTYPE(hw_cent, TTYPE_XLATE_ONLY);
1579 			CONT_SET_AVAIL(hw_cent, IMMU_CONT_UNINITED);
1580 			CONT_SET_P(hw_cent);
1581 		}
1582 		immu_regs_cpu_flush(immu, context->hwpg_vaddr, IMMU_PAGESIZE);
1583 		*((pgtable_t **)ctxp) = context;
1584 	}
1585 
1586 	return (root_table);
1587 }
1588 
1589 /*
1590  * Called during rootnex attach, so no locks needed
1591  */
1592 static void
1593 context_init(immu_t *immu)
1594 {
1595 	rw_init(&(immu->immu_ctx_rwlock), NULL, RW_DEFAULT, NULL);
1596 
1597 	immu_init_inv_wait(&immu->immu_ctx_inv_wait, "ctxglobal", B_TRUE);
1598 
1599 	immu_regs_wbf_flush(immu);
1600 
1601 	immu->immu_ctx_root = context_create(immu);
1602 
1603 	immu_regs_set_root_table(immu);
1604 
1605 	rw_enter(&(immu->immu_ctx_rwlock), RW_WRITER);
1606 	immu_flush_context_gbl(immu, &immu->immu_ctx_inv_wait);
1607 	immu_flush_iotlb_gbl(immu, &immu->immu_ctx_inv_wait);
1608 	rw_exit(&(immu->immu_ctx_rwlock));
1609 }
1610 
1611 
1612 /*
1613  * Find top pcib
1614  */
1615 static int
1616 find_top_pcib(dev_info_t *dip, void *arg)
1617 {
1618 	immu_devi_t *immu_devi;
1619 	dev_info_t **pcibdipp = (dev_info_t **)arg;
1620 
1621 	immu_devi = immu_devi_get(dip);
1622 
1623 	if (immu_devi->imd_pcib_type == IMMU_PCIB_PCI_PCI) {
1624 		*pcibdipp = dip;
1625 	}
1626 
1627 	return (DDI_WALK_CONTINUE);
1628 }
1629 
1630 static int
1631 immu_context_update(immu_t *immu, domain_t *domain, dev_info_t *ddip,
1632     dev_info_t *rdip, immu_flags_t immu_flags)
1633 {
1634 	immu_devi_t *r_immu_devi;
1635 	immu_devi_t *d_immu_devi;
1636 	int r_bus;
1637 	int d_bus;
1638 	int r_devfunc;
1639 	int d_devfunc;
1640 	immu_pcib_t d_pcib_type;
1641 	dev_info_t *pcibdip;
1642 
1643 	if (ddip == NULL || rdip == NULL ||
1644 	    ddip == root_devinfo || rdip == root_devinfo) {
1645 		ddi_err(DER_MODE, rdip, "immu_contexts_update: domain-dip or "
1646 		    "request-dip are NULL or are root devinfo");
1647 		return (DDI_FAILURE);
1648 	}
1649 
1650 	/*
1651 	 * We need to set the context fields
1652 	 * based on what type of device rdip and ddip are.
1653 	 * To do that we need the immu_devi field.
1654 	 * Set the immu_devi field (if not already set)
1655 	 */
1656 	if (immu_devi_set(ddip, immu_flags) == DDI_FAILURE) {
1657 		ddi_err(DER_MODE, rdip,
1658 		    "immu_context_update: failed to set immu_devi for ddip");
1659 		return (DDI_FAILURE);
1660 	}
1661 
1662 	if (immu_devi_set(rdip, immu_flags) == DDI_FAILURE) {
1663 		ddi_err(DER_MODE, rdip,
1664 		    "immu_context_update: failed to set immu_devi for rdip");
1665 		return (DDI_FAILURE);
1666 	}
1667 
1668 	d_immu_devi = immu_devi_get(ddip);
1669 	r_immu_devi = immu_devi_get(rdip);
1670 
1671 	d_bus = d_immu_devi->imd_bus;
1672 	d_devfunc = d_immu_devi->imd_devfunc;
1673 	d_pcib_type = d_immu_devi->imd_pcib_type;
1674 	r_bus = r_immu_devi->imd_bus;
1675 	r_devfunc = r_immu_devi->imd_devfunc;
1676 
1677 	if (rdip == ddip) {
1678 		/* rdip is a PCIE device. set context for it only */
1679 		context_set(immu, domain, immu->immu_ctx_root, r_bus,
1680 		    r_devfunc);
1681 #ifdef BUGGY_DRIVERS
1682 	} else if (r_immu_devi == d_immu_devi) {
1683 #ifdef TEST
1684 		ddi_err(DER_WARN, rdip, "Driver bug: Devices 0x%lx and "
1685 		    "0x%lx are identical", rdip, ddip);
1686 #endif
1687 		/* rdip is a PCIE device. set context for it only */
1688 		context_set(immu, domain, immu->immu_ctx_root, r_bus,
1689 		    r_devfunc);
1690 #endif
1691 	} else if (d_pcib_type == IMMU_PCIB_PCIE_PCI) {
1692 		/*
1693 		 * ddip is a PCIE_PCI bridge. Set context for ddip's
1694 		 * secondary bus. If rdip is on ddip's secondary
1695 		 * bus, set context for rdip. Else, set context
1696 		 * for rdip's PCI bridge on ddip's secondary bus.
1697 		 */
1698 		context_set(immu, domain, immu->immu_ctx_root,
1699 		    d_immu_devi->imd_sec, 0);
1700 		if (d_immu_devi->imd_sec == r_bus) {
1701 			context_set(immu, domain, immu->immu_ctx_root,
1702 			    r_bus, r_devfunc);
1703 		} else {
1704 			pcibdip = NULL;
1705 			if (immu_walk_ancestor(rdip, ddip, find_top_pcib,
1706 			    &pcibdip, NULL, immu_flags) == DDI_SUCCESS &&
1707 			    pcibdip != NULL) {
1708 				r_immu_devi = immu_devi_get(pcibdip);
1709 				r_bus = r_immu_devi->imd_bus;
1710 				r_devfunc = r_immu_devi->imd_devfunc;
1711 				context_set(immu, domain, immu->immu_ctx_root,
1712 				    r_bus, r_devfunc);
1713 			} else {
1714 				ddi_err(DER_PANIC, rdip, "Failed to find PCI "
1715 				    " bridge for PCI device");
1716 				/*NOTREACHED*/
1717 			}
1718 		}
1719 	} else if (d_pcib_type == IMMU_PCIB_PCI_PCI) {
1720 		context_set(immu, domain, immu->immu_ctx_root, d_bus,
1721 		    d_devfunc);
1722 	} else if (d_pcib_type == IMMU_PCIB_ENDPOINT) {
1723 		/*
1724 		 * ddip is a PCIE device which has a non-PCI device under it
1725 		 * i.e. it is a PCI-nonPCI bridge. Example: pciicde-ata
1726 		 */
1727 		context_set(immu, domain, immu->immu_ctx_root, d_bus,
1728 		    d_devfunc);
1729 	} else {
1730 		ddi_err(DER_PANIC, rdip, "unknown device type. Cannot "
1731 		    "set iommu context.");
1732 		/*NOTREACHED*/
1733 	}
1734 
1735 	/* XXX do we need a membar_producer() here */
1736 	return (DDI_SUCCESS);
1737 }
1738 
1739 /* ##################### END CONTEXT CODE ################################## */
1740 /* ##################### MAPPING CODE ################################## */
1741 
1742 
1743 #ifdef DEBUG
1744 static boolean_t
1745 PDTE_check(immu_t *immu, hw_pdte_t pdte, pgtable_t *next, paddr_t paddr,
1746     dev_info_t *rdip, immu_flags_t immu_flags)
1747 {
1748 	/* The PDTE must be set i.e. present bit is set */
1749 	if (!PDTE_P(pdte)) {
1750 		ddi_err(DER_MODE, rdip, "No present flag");
1751 		return (B_FALSE);
1752 	}
1753 
1754 	/*
1755 	 * Just assert to check most significant system software field
1756 	 * (PDTE_SW4) as it is same as present bit and we
1757 	 * checked that above
1758 	 */
1759 	ASSERT(PDTE_SW4(pdte));
1760 
1761 	/*
1762 	 * TM field should be clear if not reserved.
1763 	 * non-leaf is always reserved
1764 	 */
1765 	if (next == NULL && immu->immu_TM_reserved == B_FALSE) {
1766 		if (PDTE_TM(pdte)) {
1767 			ddi_err(DER_MODE, rdip, "TM flag set");
1768 			return (B_FALSE);
1769 		}
1770 	}
1771 
1772 	/*
1773 	 * The SW3 field is not used and must be clear
1774 	 */
1775 	if (PDTE_SW3(pdte)) {
1776 		ddi_err(DER_MODE, rdip, "SW3 set");
1777 		return (B_FALSE);
1778 	}
1779 
1780 	/*
1781 	 * PFN (for PTE) or next level pgtable-paddr (for PDE) must be set
1782 	 */
1783 	if (next == NULL) {
1784 		ASSERT(paddr % IMMU_PAGESIZE == 0);
1785 		if (PDTE_PADDR(pdte) != paddr) {
1786 			ddi_err(DER_MODE, rdip,
1787 			    "PTE paddr mismatch: %lx != %lx",
1788 			    PDTE_PADDR(pdte), paddr);
1789 			return (B_FALSE);
1790 		}
1791 	} else {
1792 		if (PDTE_PADDR(pdte) != next->hwpg_paddr) {
1793 			ddi_err(DER_MODE, rdip,
1794 			    "PDE paddr mismatch: %lx != %lx",
1795 			    PDTE_PADDR(pdte), next->hwpg_paddr);
1796 			return (B_FALSE);
1797 		}
1798 	}
1799 
1800 	/*
1801 	 * SNP field should be clear if not reserved.
1802 	 * non-leaf is always reserved
1803 	 */
1804 	if (next == NULL && immu->immu_SNP_reserved == B_FALSE) {
1805 		if (PDTE_SNP(pdte)) {
1806 			ddi_err(DER_MODE, rdip, "SNP set");
1807 			return (B_FALSE);
1808 		}
1809 	}
1810 
1811 	/* second field available for system software should be clear */
1812 	if (PDTE_SW2(pdte)) {
1813 		ddi_err(DER_MODE, rdip, "SW2 set");
1814 		return (B_FALSE);
1815 	}
1816 
1817 	/* Super pages field should be clear */
1818 	if (PDTE_SP(pdte)) {
1819 		ddi_err(DER_MODE, rdip, "SP set");
1820 		return (B_FALSE);
1821 	}
1822 
1823 	/*
1824 	 * least significant field available for
1825 	 * system software should be clear
1826 	 */
1827 	if (PDTE_SW1(pdte)) {
1828 		ddi_err(DER_MODE, rdip, "SW1 set");
1829 		return (B_FALSE);
1830 	}
1831 
1832 	if ((immu_flags & IMMU_FLAGS_READ) && !PDTE_READ(pdte)) {
1833 		ddi_err(DER_MODE, rdip, "READ not set");
1834 		return (B_FALSE);
1835 	}
1836 
1837 	if ((immu_flags & IMMU_FLAGS_WRITE) && !PDTE_WRITE(pdte)) {
1838 		ddi_err(DER_MODE, rdip, "WRITE not set");
1839 		return (B_FALSE);
1840 	}
1841 
1842 	return (B_TRUE);
1843 }
1844 #endif
1845 
1846 /*ARGSUSED*/
1847 static void
1848 PTE_clear_all(immu_t *immu, domain_t *domain, xlate_t *xlate,
1849     uint64_t *dvma_ptr, uint64_t *npages_ptr, dev_info_t *rdip)
1850 {
1851 	uint64_t npages;
1852 	uint64_t dvma;
1853 	pgtable_t *pgtable;
1854 	hw_pdte_t *hwp;
1855 	hw_pdte_t *shwp;
1856 	int idx;
1857 
1858 	pgtable = xlate->xlt_pgtable;
1859 	idx = xlate->xlt_idx;
1860 
1861 	dvma = *dvma_ptr;
1862 	npages = *npages_ptr;
1863 
1864 	/*
1865 	 * since a caller gets a unique dvma for a physical address,
1866 	 * no other concurrent thread will be writing to the same
1867 	 * PTE even if it has the same paddr. So no locks needed.
1868 	 */
1869 	shwp = (hw_pdte_t *)(pgtable->hwpg_vaddr) + idx;
1870 
1871 	hwp = shwp;
1872 	for (; npages > 0 && idx <= IMMU_PGTABLE_MAXIDX; idx++, hwp++) {
1873 		PDTE_CLEAR_P(*hwp);
1874 		dvma += IMMU_PAGESIZE;
1875 		npages--;
1876 	}
1877 
1878 	*dvma_ptr = dvma;
1879 	*npages_ptr = npages;
1880 
1881 	xlate->xlt_idx = idx;
1882 }
1883 
1884 static void
1885 xlate_setup(uint64_t dvma, xlate_t *xlate, int nlevels)
1886 {
1887 	int level;
1888 	uint64_t offbits;
1889 
1890 	/*
1891 	 * Skip the first 12 bits which is the offset into
1892 	 * 4K PFN (phys page frame based on IMMU_PAGESIZE)
1893 	 */
1894 	offbits = dvma >> IMMU_PAGESHIFT;
1895 
1896 	/* skip to level 1 i.e. leaf PTE */
1897 	for (level = 1, xlate++; level <= nlevels; level++, xlate++) {
1898 		xlate->xlt_level = level;
1899 		xlate->xlt_idx = (offbits & IMMU_PGTABLE_LEVEL_MASK);
1900 		ASSERT(xlate->xlt_idx <= IMMU_PGTABLE_MAXIDX);
1901 		xlate->xlt_pgtable = NULL;
1902 		offbits >>= IMMU_PGTABLE_LEVEL_STRIDE;
1903 	}
1904 }
1905 
1906 /*
1907  * Read the pgtables
1908  */
1909 static boolean_t
1910 PDE_lookup(domain_t *domain, xlate_t *xlate, int nlevels)
1911 {
1912 	pgtable_t *pgtable;
1913 	pgtable_t *next;
1914 	uint_t idx;
1915 
1916 	/* start with highest level pgtable i.e. root */
1917 	xlate += nlevels;
1918 
1919 	if (xlate->xlt_pgtable == NULL) {
1920 		xlate->xlt_pgtable = domain->dom_pgtable_root;
1921 	}
1922 
1923 	for (; xlate->xlt_level > 1; xlate--) {
1924 		idx = xlate->xlt_idx;
1925 		pgtable = xlate->xlt_pgtable;
1926 
1927 		if ((xlate - 1)->xlt_pgtable) {
1928 			continue;
1929 		}
1930 
1931 		/* Lock the pgtable in read mode */
1932 		rw_enter(&(pgtable->swpg_rwlock), RW_READER);
1933 
1934 		/*
1935 		 * since we are unmapping, the pgtable should
1936 		 * already point to a leafier pgtable.
1937 		 */
1938 		next = *(pgtable->swpg_next_array + idx);
1939 		(xlate - 1)->xlt_pgtable = next;
1940 		rw_exit(&(pgtable->swpg_rwlock));
1941 		if (next == NULL)
1942 			return (B_FALSE);
1943 	}
1944 
1945 	return (B_TRUE);
1946 }
1947 
1948 static void
1949 immu_fault_walk(void *arg, void *base, size_t len)
1950 {
1951 	uint64_t dvma, start;
1952 
1953 	dvma = *(uint64_t *)arg;
1954 	start = (uint64_t)(uintptr_t)base;
1955 
1956 	if (dvma >= start && dvma < (start + len)) {
1957 		ddi_err(DER_WARN, NULL,
1958 		    "faulting DVMA address is in vmem arena "
1959 		    "(%" PRIx64 "-%" PRIx64 ")",
1960 		    start, start + len);
1961 		*(uint64_t *)arg = ~0ULL;
1962 	}
1963 }
1964 
1965 void
1966 immu_print_fault_info(uint_t sid, uint64_t dvma)
1967 {
1968 	int nlevels;
1969 	xlate_t xlate[IMMU_PGTABLE_MAX_LEVELS + 1] = {0};
1970 	xlate_t *xlatep;
1971 	hw_pdte_t pte;
1972 	domain_t *domain;
1973 	immu_t *immu;
1974 	uint64_t dvma_arg;
1975 
1976 	if (mod_hash_find(bdf_domain_hash,
1977 	    (void *)(uintptr_t)sid, (void *)&domain) != 0) {
1978 		ddi_err(DER_WARN, NULL,
1979 		    "no domain for faulting SID %08x", sid);
1980 		return;
1981 	}
1982 
1983 	immu = domain->dom_immu;
1984 
1985 	dvma_arg = dvma;
1986 	vmem_walk(domain->dom_dvma_arena, VMEM_ALLOC, immu_fault_walk,
1987 	    (void *)&dvma_arg);
1988 	if (dvma_arg != ~0ULL)
1989 		ddi_err(DER_WARN, domain->dom_dip,
1990 		    "faulting DVMA address is not in vmem arena");
1991 
1992 	nlevels = immu->immu_dvma_nlevels;
1993 	xlate_setup(dvma, xlate, nlevels);
1994 
1995 	if (!PDE_lookup(domain, xlate, nlevels)) {
1996 		ddi_err(DER_WARN, domain->dom_dip,
1997 		    "pte not found in domid %d for faulting addr %" PRIx64,
1998 		    domain->dom_did, dvma);
1999 		return;
2000 	}
2001 
2002 	xlatep = &xlate[1];
2003 	pte = *((hw_pdte_t *)
2004 	    (xlatep->xlt_pgtable->hwpg_vaddr) + xlatep->xlt_idx);
2005 
2006 	ddi_err(DER_WARN, domain->dom_dip,
2007 	    "domid %d pte: %" PRIx64 "(paddr %" PRIx64 ")", domain->dom_did,
2008 	    (unsigned long long)pte, (unsigned long long)PDTE_PADDR(pte));
2009 }
2010 
2011 /*ARGSUSED*/
2012 static void
2013 PTE_set_one(immu_t *immu, hw_pdte_t *hwp, paddr_t paddr,
2014     dev_info_t *rdip, immu_flags_t immu_flags)
2015 {
2016 	hw_pdte_t pte;
2017 
2018 #ifndef DEBUG
2019 	pte = immu->immu_ptemask;
2020 	PDTE_SET_PADDR(pte, paddr);
2021 #else
2022 	pte = *hwp;
2023 
2024 	if (PDTE_P(pte)) {
2025 		if (PDTE_PADDR(pte) != paddr) {
2026 			ddi_err(DER_MODE, rdip, "PTE paddr %lx != paddr %lx",
2027 			    PDTE_PADDR(pte), paddr);
2028 		}
2029 #ifdef BUGGY_DRIVERS
2030 		return;
2031 #else
2032 		goto out;
2033 #endif
2034 	}
2035 
2036 	/* clear TM field if not reserved */
2037 	if (immu->immu_TM_reserved == B_FALSE) {
2038 		PDTE_CLEAR_TM(pte);
2039 	}
2040 
2041 	/* Clear 3rd field for system software  - not used */
2042 	PDTE_CLEAR_SW3(pte);
2043 
2044 	/* Set paddr */
2045 	ASSERT(paddr % IMMU_PAGESIZE == 0);
2046 	PDTE_CLEAR_PADDR(pte);
2047 	PDTE_SET_PADDR(pte, paddr);
2048 
2049 	/*  clear SNP field if not reserved. */
2050 	if (immu->immu_SNP_reserved == B_FALSE) {
2051 		PDTE_CLEAR_SNP(pte);
2052 	}
2053 
2054 	/* Clear SW2 field available for software */
2055 	PDTE_CLEAR_SW2(pte);
2056 
2057 
2058 	/* SP is don't care for PTEs. Clear it for cleanliness */
2059 	PDTE_CLEAR_SP(pte);
2060 
2061 	/* Clear SW1 field available for software */
2062 	PDTE_CLEAR_SW1(pte);
2063 
2064 	/*
2065 	 * Now that we are done writing the PTE
2066 	 * set the "present" flag. Note this present
2067 	 * flag is a bit in the PDE/PTE that the
2068 	 * spec says is available for system software.
2069 	 * This is an implementation detail of Solaris
2070 	 * bare-metal Intel IOMMU.
2071 	 * The present field in a PDE/PTE is not defined
2072 	 * by the Vt-d spec
2073 	 */
2074 
2075 	PDTE_SET_P(pte);
2076 
2077 	pte |= immu->immu_ptemask;
2078 
2079 out:
2080 #endif /* DEBUG */
2081 #ifdef BUGGY_DRIVERS
2082 	PDTE_SET_READ(pte);
2083 	PDTE_SET_WRITE(pte);
2084 #else
2085 	if (immu_flags & IMMU_FLAGS_READ)
2086 		PDTE_SET_READ(pte);
2087 	if (immu_flags & IMMU_FLAGS_WRITE)
2088 		PDTE_SET_WRITE(pte);
2089 #endif /* BUGGY_DRIVERS */
2090 
2091 	*hwp = pte;
2092 }
2093 
2094 /*ARGSUSED*/
2095 static void
2096 PTE_set_all(immu_t *immu, domain_t *domain, xlate_t *xlate,
2097     uint64_t *dvma_ptr, uint64_t *nvpages_ptr, immu_dcookie_t *dcookies,
2098     int dcount, dev_info_t *rdip, immu_flags_t immu_flags)
2099 {
2100 	paddr_t paddr;
2101 	uint64_t nvpages;
2102 	uint64_t nppages;
2103 	uint64_t dvma;
2104 	pgtable_t *pgtable;
2105 	hw_pdte_t *hwp;
2106 	hw_pdte_t *shwp;
2107 	int idx, nset;
2108 	int j;
2109 
2110 	pgtable = xlate->xlt_pgtable;
2111 	idx = xlate->xlt_idx;
2112 
2113 	dvma = *dvma_ptr;
2114 	nvpages = *nvpages_ptr;
2115 
2116 	/*
2117 	 * since a caller gets a unique dvma for a physical address,
2118 	 * no other concurrent thread will be writing to the same
2119 	 * PTE even if it has the same paddr. So no locks needed.
2120 	 */
2121 	shwp = (hw_pdte_t *)(pgtable->hwpg_vaddr) + idx;
2122 
2123 	hwp = shwp;
2124 	for (j = dcount - 1; j >= 0; j--) {
2125 		if (nvpages <= dcookies[j].dck_npages)
2126 			break;
2127 		nvpages -= dcookies[j].dck_npages;
2128 	}
2129 
2130 	VERIFY(j >= 0);
2131 	nppages = nvpages;
2132 	paddr = dcookies[j].dck_paddr +
2133 	    (dcookies[j].dck_npages - nppages) * IMMU_PAGESIZE;
2134 
2135 	nvpages = *nvpages_ptr;
2136 	nset = 0;
2137 	for (; nvpages > 0 && idx <= IMMU_PGTABLE_MAXIDX; idx++, hwp++) {
2138 		PTE_set_one(immu, hwp, paddr, rdip, immu_flags);
2139 		nset++;
2140 
2141 		ASSERT(PDTE_check(immu, *hwp, NULL, paddr, rdip, immu_flags)
2142 		    == B_TRUE);
2143 		nppages--;
2144 		nvpages--;
2145 		paddr += IMMU_PAGESIZE;
2146 		dvma += IMMU_PAGESIZE;
2147 
2148 		if (nppages == 0) {
2149 			j++;
2150 		}
2151 
2152 		if (j == dcount)
2153 			break;
2154 
2155 		if (nppages == 0) {
2156 			nppages = dcookies[j].dck_npages;
2157 			paddr = dcookies[j].dck_paddr;
2158 		}
2159 	}
2160 
2161 	if (nvpages) {
2162 		*dvma_ptr = dvma;
2163 		*nvpages_ptr = nvpages;
2164 	} else {
2165 		*dvma_ptr = 0;
2166 		*nvpages_ptr = 0;
2167 	}
2168 
2169 	xlate->xlt_idx = idx;
2170 }
2171 
2172 /*ARGSUSED*/
2173 static void
2174 PDE_set_one(immu_t *immu, hw_pdte_t *hwp, pgtable_t *next,
2175     dev_info_t *rdip, immu_flags_t immu_flags)
2176 {
2177 	hw_pdte_t pde;
2178 
2179 	pde = *hwp;
2180 
2181 	/* if PDE is already set, make sure it is correct */
2182 	if (PDTE_P(pde)) {
2183 		ASSERT(PDTE_PADDR(pde) == next->hwpg_paddr);
2184 #ifdef BUGGY_DRIVERS
2185 		return;
2186 #else
2187 		goto out;
2188 #endif
2189 	}
2190 
2191 	/* Dont touch SW4, it is the present bit */
2192 
2193 	/* don't touch TM field it is reserved for PDEs */
2194 
2195 	/* 3rd field available for system software is not used */
2196 	PDTE_CLEAR_SW3(pde);
2197 
2198 	/* Set next level pgtable-paddr for PDE */
2199 	PDTE_CLEAR_PADDR(pde);
2200 	PDTE_SET_PADDR(pde, next->hwpg_paddr);
2201 
2202 	/* don't touch SNP field it is reserved for PDEs */
2203 
2204 	/* Clear second field available for system software */
2205 	PDTE_CLEAR_SW2(pde);
2206 
2207 	/* No super pages for PDEs */
2208 	PDTE_CLEAR_SP(pde);
2209 
2210 	/* Clear SW1 for software */
2211 	PDTE_CLEAR_SW1(pde);
2212 
2213 	/*
2214 	 * Now that we are done writing the PDE
2215 	 * set the "present" flag. Note this present
2216 	 * flag is a bit in the PDE/PTE that the
2217 	 * spec says is available for system software.
2218 	 * This is an implementation detail of Solaris
2219 	 * base-metal Intel IOMMU.
2220 	 * The present field in a PDE/PTE is not defined
2221 	 * by the Vt-d spec
2222 	 */
2223 
2224 out:
2225 #ifdef  BUGGY_DRIVERS
2226 	PDTE_SET_READ(pde);
2227 	PDTE_SET_WRITE(pde);
2228 #else
2229 	if (immu_flags & IMMU_FLAGS_READ)
2230 		PDTE_SET_READ(pde);
2231 	if (immu_flags & IMMU_FLAGS_WRITE)
2232 		PDTE_SET_WRITE(pde);
2233 #endif
2234 
2235 	PDTE_SET_P(pde);
2236 
2237 	*hwp = pde;
2238 }
2239 
2240 /*
2241  * Used to set PDEs
2242  */
2243 static boolean_t
2244 PDE_set_all(immu_t *immu, domain_t *domain, xlate_t *xlate, int nlevels,
2245     dev_info_t *rdip, immu_flags_t immu_flags)
2246 {
2247 	pgtable_t *pgtable;
2248 	pgtable_t *new;
2249 	pgtable_t *next;
2250 	hw_pdte_t *hwp;
2251 	int level;
2252 	uint_t idx;
2253 	krw_t rwtype;
2254 	boolean_t set = B_FALSE;
2255 
2256 	/* start with highest level pgtable i.e. root */
2257 	xlate += nlevels;
2258 
2259 	new = NULL;
2260 	xlate->xlt_pgtable = domain->dom_pgtable_root;
2261 	for (level = nlevels; level > 1; level--, xlate--) {
2262 		idx = xlate->xlt_idx;
2263 		pgtable = xlate->xlt_pgtable;
2264 
2265 		/* Lock the pgtable in READ mode first */
2266 		rw_enter(&(pgtable->swpg_rwlock), RW_READER);
2267 		rwtype = RW_READER;
2268 again:
2269 		hwp = (hw_pdte_t *)(pgtable->hwpg_vaddr) + idx;
2270 		next = (pgtable->swpg_next_array)[idx];
2271 
2272 		/*
2273 		 * check if leafier level already has a pgtable
2274 		 * if yes, verify
2275 		 */
2276 		if (next == NULL) {
2277 			if (new == NULL) {
2278 
2279 				IMMU_DPROBE2(immu__pdp__alloc, dev_info_t *,
2280 				    rdip, int, level);
2281 
2282 				new = pgtable_alloc(immu, immu_flags);
2283 				if (new == NULL) {
2284 					ddi_err(DER_PANIC, rdip,
2285 					    "pgtable alloc err");
2286 				}
2287 				pgtable_zero(new);
2288 			}
2289 
2290 			/* Change to a write lock */
2291 			if (rwtype == RW_READER &&
2292 			    rw_tryupgrade(&(pgtable->swpg_rwlock)) == 0) {
2293 				rw_exit(&(pgtable->swpg_rwlock));
2294 				rw_enter(&(pgtable->swpg_rwlock), RW_WRITER);
2295 				rwtype = RW_WRITER;
2296 				goto again;
2297 			}
2298 			rwtype = RW_WRITER;
2299 			next = new;
2300 			(pgtable->swpg_next_array)[idx] = next;
2301 			new = NULL;
2302 			PDE_set_one(immu, hwp, next, rdip, immu_flags);
2303 			set = B_TRUE;
2304 			rw_downgrade(&(pgtable->swpg_rwlock));
2305 			rwtype = RW_READER;
2306 		}
2307 #ifndef  BUGGY_DRIVERS
2308 		else {
2309 			hw_pdte_t pde = *hwp;
2310 
2311 			/*
2312 			 * If buggy driver we already set permission
2313 			 * READ+WRITE so nothing to do for that case
2314 			 * XXX Check that read writer perms change before
2315 			 * actually setting perms. Also need to hold lock
2316 			 */
2317 			if (immu_flags & IMMU_FLAGS_READ)
2318 				PDTE_SET_READ(pde);
2319 			if (immu_flags & IMMU_FLAGS_WRITE)
2320 				PDTE_SET_WRITE(pde);
2321 
2322 			*hwp = pde;
2323 		}
2324 #endif
2325 
2326 		ASSERT(PDTE_check(immu, *hwp, next, 0, rdip, immu_flags)
2327 		    == B_TRUE);
2328 
2329 		(xlate - 1)->xlt_pgtable = next;
2330 		rw_exit(&(pgtable->swpg_rwlock));
2331 	}
2332 
2333 	if (new) {
2334 		pgtable_free(immu, new);
2335 	}
2336 
2337 	return (set);
2338 }
2339 
2340 /*
2341  * dvma_map()
2342  *     map a contiguous range of DVMA pages
2343  *
2344  *     immu: IOMMU unit for which we are generating DVMA cookies
2345  *   domain: domain
2346  *    sdvma: Starting dvma
2347  *   spaddr: Starting paddr
2348  *   npages: Number of pages
2349  *     rdip: requesting device
2350  *     immu_flags: flags
2351  */
2352 static boolean_t
2353 dvma_map(domain_t *domain, uint64_t sdvma, uint64_t snvpages,
2354     immu_dcookie_t *dcookies, int dcount, dev_info_t *rdip,
2355     immu_flags_t immu_flags)
2356 {
2357 	uint64_t dvma;
2358 	uint64_t n;
2359 	immu_t *immu = domain->dom_immu;
2360 	int nlevels = immu->immu_dvma_nlevels;
2361 	xlate_t xlate[IMMU_PGTABLE_MAX_LEVELS + 1] = {0};
2362 	boolean_t pde_set = B_FALSE;
2363 
2364 	n = snvpages;
2365 	dvma = sdvma;
2366 
2367 	while (n > 0) {
2368 		xlate_setup(dvma, xlate, nlevels);
2369 
2370 		/* Lookup or allocate PGDIRs and PGTABLEs if necessary */
2371 		if (PDE_set_all(immu, domain, xlate, nlevels, rdip, immu_flags)
2372 		    == B_TRUE) {
2373 			pde_set = B_TRUE;
2374 		}
2375 
2376 		/* set all matching ptes that fit into this leaf pgtable */
2377 		PTE_set_all(immu, domain, &xlate[1], &dvma, &n, dcookies,
2378 		    dcount, rdip, immu_flags);
2379 	}
2380 
2381 	return (pde_set);
2382 }
2383 
2384 /*
2385  * dvma_unmap()
2386  *   unmap a range of DVMAs
2387  *
2388  * immu: IOMMU unit state
2389  * domain: domain for requesting device
2390  * ddip: domain-dip
2391  * dvma: starting DVMA
2392  * npages: Number of IMMU pages to be unmapped
2393  * rdip: requesting device
2394  */
2395 static void
2396 dvma_unmap(domain_t *domain, uint64_t sdvma, uint64_t snpages,
2397     dev_info_t *rdip)
2398 {
2399 	immu_t *immu = domain->dom_immu;
2400 	int nlevels = immu->immu_dvma_nlevels;
2401 	xlate_t xlate[IMMU_PGTABLE_MAX_LEVELS + 1] = {0};
2402 	uint64_t n;
2403 	uint64_t dvma;
2404 
2405 	dvma = sdvma;
2406 	n = snpages;
2407 
2408 	while (n > 0) {
2409 		/* setup the xlate array */
2410 		xlate_setup(dvma, xlate, nlevels);
2411 
2412 		/* just lookup existing pgtables. Should never fail */
2413 		if (!PDE_lookup(domain, xlate, nlevels))
2414 			ddi_err(DER_PANIC, rdip,
2415 			    "PTE not found for addr %" PRIx64,
2416 			    (unsigned long long)dvma);
2417 
2418 		/* clear all matching ptes that fit into this leaf pgtable */
2419 		PTE_clear_all(immu, domain, &xlate[1], &dvma, &n, rdip);
2420 	}
2421 
2422 	/* No need to flush IOTLB after unmap */
2423 }
2424 
2425 static uint64_t
2426 dvma_alloc(domain_t *domain, ddi_dma_attr_t *dma_attr, uint_t npages, int kmf)
2427 {
2428 	uint64_t dvma;
2429 	size_t xsize, align;
2430 	uint64_t minaddr, maxaddr;
2431 
2432 	/* parameters */
2433 	xsize = npages * IMMU_PAGESIZE;
2434 	align = MAX((size_t)(dma_attr->dma_attr_align), IMMU_PAGESIZE);
2435 	minaddr = dma_attr->dma_attr_addr_lo;
2436 	maxaddr = dma_attr->dma_attr_addr_hi + 1;
2437 
2438 	/* handle the rollover cases */
2439 	if (maxaddr < dma_attr->dma_attr_addr_hi) {
2440 		maxaddr = dma_attr->dma_attr_addr_hi;
2441 	}
2442 
2443 	/*
2444 	 * allocate from vmem arena.
2445 	 */
2446 	dvma = (uint64_t)(uintptr_t)vmem_xalloc(domain->dom_dvma_arena,
2447 	    xsize, align, 0, 0, (void *)(uintptr_t)minaddr,
2448 	    (void *)(uintptr_t)maxaddr, kmf);
2449 
2450 	return (dvma);
2451 }
2452 
2453 static void
2454 dvma_prealloc(dev_info_t *rdip, immu_hdl_priv_t *ihp, ddi_dma_attr_t *dma_attr)
2455 {
2456 	int nlevels;
2457 	xlate_t xlate[IMMU_PGTABLE_MAX_LEVELS + 1] = {0}, *xlp;
2458 	uint64_t dvma, n;
2459 	size_t xsize, align;
2460 	uint64_t minaddr, maxaddr, dmamax;
2461 	int on, npte, pindex;
2462 	hw_pdte_t *shwp;
2463 	immu_t *immu;
2464 	domain_t *domain;
2465 
2466 	/* parameters */
2467 	domain = IMMU_DEVI(rdip)->imd_domain;
2468 	immu = domain->dom_immu;
2469 	nlevels = immu->immu_dvma_nlevels;
2470 	xsize = IMMU_NPREPTES * IMMU_PAGESIZE;
2471 	align = MAX((size_t)(dma_attr->dma_attr_align), IMMU_PAGESIZE);
2472 	minaddr = dma_attr->dma_attr_addr_lo;
2473 	if (dma_attr->dma_attr_flags & _DDI_DMA_BOUNCE_ON_SEG)
2474 		dmamax = dma_attr->dma_attr_seg;
2475 	else
2476 		dmamax = dma_attr->dma_attr_addr_hi;
2477 	maxaddr = dmamax + 1;
2478 
2479 	if (maxaddr < dmamax)
2480 		maxaddr = dmamax;
2481 
2482 	dvma = (uint64_t)(uintptr_t)vmem_xalloc(domain->dom_dvma_arena,
2483 	    xsize, align, 0, dma_attr->dma_attr_seg + 1,
2484 	    (void *)(uintptr_t)minaddr, (void *)(uintptr_t)maxaddr, VM_NOSLEEP);
2485 
2486 	ihp->ihp_predvma = dvma;
2487 	ihp->ihp_npremapped = 0;
2488 	if (dvma == 0)
2489 		return;
2490 
2491 	n = IMMU_NPREPTES;
2492 	pindex = 0;
2493 
2494 	/*
2495 	 * Set up a mapping at address 0, just so that all PDPs get allocated
2496 	 * now. Although this initial mapping should never be used,
2497 	 * explicitly set it to read-only, just to be safe.
2498 	 */
2499 	while (n > 0) {
2500 		xlate_setup(dvma, xlate, nlevels);
2501 
2502 		(void) PDE_set_all(immu, domain, xlate, nlevels, rdip,
2503 		    IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
2504 
2505 		xlp = &xlate[1];
2506 		shwp = (hw_pdte_t *)(xlp->xlt_pgtable->hwpg_vaddr)
2507 		    + xlp->xlt_idx;
2508 		on = n;
2509 
2510 		PTE_set_all(immu, domain, xlp, &dvma, &n, &immu_precookie,
2511 		    1, rdip, IMMU_FLAGS_READ);
2512 
2513 		npte = on - n;
2514 
2515 		while (npte > 0) {
2516 			ihp->ihp_preptes[pindex++] = shwp;
2517 #ifdef BUGGY_DRIVERS
2518 			PDTE_CLEAR_WRITE(*shwp);
2519 #endif
2520 			shwp++;
2521 			npte--;
2522 		}
2523 	}
2524 }
2525 
2526 static void
2527 dvma_prefree(dev_info_t *rdip, immu_hdl_priv_t *ihp)
2528 {
2529 	domain_t *domain;
2530 
2531 	domain = IMMU_DEVI(rdip)->imd_domain;
2532 
2533 	if (ihp->ihp_predvma != 0) {
2534 		dvma_unmap(domain, ihp->ihp_predvma, IMMU_NPREPTES, rdip);
2535 		vmem_free(domain->dom_dvma_arena,
2536 		    (void *)(uintptr_t)ihp->ihp_predvma,
2537 		    IMMU_NPREPTES * IMMU_PAGESIZE);
2538 	}
2539 }
2540 
2541 static void
2542 dvma_free(domain_t *domain, uint64_t dvma, uint64_t npages)
2543 {
2544 	uint64_t size = npages * IMMU_PAGESIZE;
2545 
2546 	if (domain->dom_maptype != IMMU_MAPTYPE_XLATE)
2547 		return;
2548 
2549 	vmem_free(domain->dom_dvma_arena, (void *)(uintptr_t)dvma, size);
2550 }
2551 
2552 static int
2553 immu_map_dvmaseg(dev_info_t *rdip, ddi_dma_handle_t handle,
2554     immu_hdl_priv_t *ihp, struct ddi_dma_req *dmareq,
2555     ddi_dma_obj_t *dma_out)
2556 {
2557 	domain_t *domain;
2558 	immu_t *immu;
2559 	immu_flags_t immu_flags;
2560 	ddi_dma_atyp_t buftype;
2561 	ddi_dma_obj_t *dmar_object;
2562 	ddi_dma_attr_t *attrp;
2563 	uint64_t offset, paddr, dvma, sdvma, rwmask;
2564 	size_t npages, npgalloc;
2565 	uint_t psize, size, pcnt, dmax;
2566 	page_t **pparray;
2567 	caddr_t vaddr;
2568 	page_t *page;
2569 	struct as *vas;
2570 	immu_dcookie_t *dcookies;
2571 	int pde_set;
2572 
2573 	rwmask = 0;
2574 	page = NULL;
2575 	domain = IMMU_DEVI(rdip)->imd_domain;
2576 	immu = domain->dom_immu;
2577 	immu_flags = dma_to_immu_flags(dmareq);
2578 
2579 	attrp = &((ddi_dma_impl_t *)handle)->dmai_attr;
2580 
2581 	dmar_object = &dmareq->dmar_object;
2582 	pparray = dmar_object->dmao_obj.virt_obj.v_priv;
2583 	vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2584 	buftype = dmar_object->dmao_type;
2585 	size = dmar_object->dmao_size;
2586 
2587 	IMMU_DPROBE3(immu__map__dvma, dev_info_t *, rdip, ddi_dma_atyp_t,
2588 	    buftype, uint_t, size);
2589 
2590 	dcookies = &ihp->ihp_dcookies[0];
2591 
2592 	pcnt = dmax = 0;
2593 
2594 	/* retrieve paddr, psize, offset from dmareq */
2595 	if (buftype == DMA_OTYP_PAGES) {
2596 		page = dmar_object->dmao_obj.pp_obj.pp_pp;
2597 		offset =  dmar_object->dmao_obj.pp_obj.pp_offset &
2598 		    MMU_PAGEOFFSET;
2599 		paddr = pfn_to_pa(page->p_pagenum) + offset;
2600 		psize = MIN((MMU_PAGESIZE - offset), size);
2601 		page = page->p_next;
2602 		vas = dmar_object->dmao_obj.virt_obj.v_as;
2603 	} else {
2604 		if (vas == NULL) {
2605 			vas = &kas;
2606 		}
2607 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2608 		if (pparray != NULL) {
2609 			paddr = pfn_to_pa(pparray[pcnt]->p_pagenum) + offset;
2610 			psize = MIN((MMU_PAGESIZE - offset), size);
2611 			pcnt++;
2612 		} else {
2613 			paddr = pfn_to_pa(hat_getpfnum(vas->a_hat,
2614 			    vaddr)) + offset;
2615 			psize = MIN(size, (MMU_PAGESIZE - offset));
2616 			vaddr += psize;
2617 		}
2618 	}
2619 
2620 	npgalloc = IMMU_BTOPR(size + offset);
2621 
2622 	if (npgalloc <= IMMU_NPREPTES && ihp->ihp_predvma != 0) {
2623 #ifdef BUGGY_DRIVERS
2624 		rwmask = PDTE_MASK_R | PDTE_MASK_W | immu->immu_ptemask;
2625 #else
2626 		rwmask = immu->immu_ptemask;
2627 		if (immu_flags & IMMU_FLAGS_READ)
2628 			rwmask |= PDTE_MASK_R;
2629 		if (immu_flags & IMMU_FLAGS_WRITE)
2630 			rwmask |= PDTE_MASK_W;
2631 #endif
2632 #ifdef DEBUG
2633 		rwmask |= PDTE_MASK_P;
2634 #endif
2635 		sdvma = ihp->ihp_predvma;
2636 		ihp->ihp_npremapped = npgalloc;
2637 		*ihp->ihp_preptes[0] =
2638 		    PDTE_PADDR(paddr & ~MMU_PAGEOFFSET) | rwmask;
2639 	} else {
2640 		ihp->ihp_npremapped = 0;
2641 		sdvma = dvma_alloc(domain, attrp, npgalloc,
2642 		    dmareq->dmar_fp == DDI_DMA_SLEEP ? VM_SLEEP : VM_NOSLEEP);
2643 		if (sdvma == 0)
2644 			return (DDI_DMA_NORESOURCES);
2645 
2646 		dcookies[0].dck_paddr = (paddr & ~MMU_PAGEOFFSET);
2647 		dcookies[0].dck_npages = 1;
2648 	}
2649 
2650 	IMMU_DPROBE3(immu__dvma__alloc, dev_info_t *, rdip, uint64_t, npgalloc,
2651 	    uint64_t, sdvma);
2652 
2653 	dvma = sdvma;
2654 	pde_set = 0;
2655 	npages = 1;
2656 	size -= psize;
2657 	while (size > 0) {
2658 		/* get the size for this page (i.e. partial or full page) */
2659 		psize = MIN(size, MMU_PAGESIZE);
2660 		if (buftype == DMA_OTYP_PAGES) {
2661 			/* get the paddr from the page_t */
2662 			paddr = pfn_to_pa(page->p_pagenum);
2663 			page = page->p_next;
2664 		} else if (pparray != NULL) {
2665 			/* index into the array of page_t's to get the paddr */
2666 			paddr = pfn_to_pa(pparray[pcnt]->p_pagenum);
2667 			pcnt++;
2668 		} else {
2669 			/* call into the VM to get the paddr */
2670 			paddr = pfn_to_pa(hat_getpfnum(vas->a_hat, vaddr));
2671 			vaddr += psize;
2672 		}
2673 
2674 		if (ihp->ihp_npremapped > 0) {
2675 			*ihp->ihp_preptes[npages] =
2676 			    PDTE_PADDR(paddr) | rwmask;
2677 		} else if (IMMU_CONTIG_PADDR(dcookies[dmax], paddr)) {
2678 			dcookies[dmax].dck_npages++;
2679 		} else {
2680 			/* No, we need a new dcookie */
2681 			if (dmax == (IMMU_NDCK - 1)) {
2682 				/*
2683 				 * Ran out of dcookies. Map them now.
2684 				 */
2685 				if (dvma_map(domain, dvma,
2686 				    npages, dcookies, dmax + 1, rdip,
2687 				    immu_flags))
2688 					pde_set++;
2689 
2690 				IMMU_DPROBE4(immu__dvmamap__early,
2691 				    dev_info_t *, rdip, uint64_t, dvma,
2692 				    uint_t, npages, uint_t, dmax+1);
2693 
2694 				dvma += (npages << IMMU_PAGESHIFT);
2695 				npages = 0;
2696 				dmax = 0;
2697 			} else {
2698 				dmax++;
2699 			}
2700 			dcookies[dmax].dck_paddr = paddr;
2701 			dcookies[dmax].dck_npages = 1;
2702 		}
2703 		size -= psize;
2704 		if (npages != 0)
2705 			npages++;
2706 	}
2707 
2708 	/*
2709 	 * Finish up, mapping all, or all of the remaining,
2710 	 * physical memory ranges.
2711 	 */
2712 	if (ihp->ihp_npremapped == 0 && npages > 0) {
2713 		IMMU_DPROBE4(immu__dvmamap__late, dev_info_t *, rdip, \
2714 		    uint64_t, dvma, uint_t, npages, uint_t, dmax+1);
2715 
2716 		if (dvma_map(domain, dvma, npages, dcookies,
2717 		    dmax + 1, rdip, immu_flags))
2718 			pde_set++;
2719 	}
2720 
2721 	/* Invalidate the IOTLB */
2722 	immu_flush_iotlb_psi(immu, domain->dom_did, sdvma, npgalloc,
2723 	    pde_set > 0 ? TLB_IVA_WHOLE : TLB_IVA_LEAF,
2724 	    &ihp->ihp_inv_wait);
2725 
2726 	ihp->ihp_ndvseg = 1;
2727 	ihp->ihp_dvseg[0].dvs_start = sdvma;
2728 	ihp->ihp_dvseg[0].dvs_len = dmar_object->dmao_size;
2729 
2730 	dma_out->dmao_size = dmar_object->dmao_size;
2731 	dma_out->dmao_obj.dvma_obj.dv_off = offset & IMMU_PAGEOFFSET;
2732 	dma_out->dmao_obj.dvma_obj.dv_nseg = 1;
2733 	dma_out->dmao_obj.dvma_obj.dv_seg = &ihp->ihp_dvseg[0];
2734 	dma_out->dmao_type = DMA_OTYP_DVADDR;
2735 
2736 	return (DDI_DMA_MAPPED);
2737 }
2738 
2739 static int
2740 immu_unmap_dvmaseg(dev_info_t *rdip, ddi_dma_obj_t *dmao)
2741 {
2742 	uint64_t dvma, npages;
2743 	domain_t *domain;
2744 	struct dvmaseg *dvs;
2745 
2746 	domain = IMMU_DEVI(rdip)->imd_domain;
2747 	dvs = dmao->dmao_obj.dvma_obj.dv_seg;
2748 
2749 	dvma = dvs[0].dvs_start;
2750 	npages = IMMU_BTOPR(dvs[0].dvs_len + dmao->dmao_obj.dvma_obj.dv_off);
2751 
2752 #ifdef DEBUG
2753 	/* Unmap only in DEBUG mode */
2754 	dvma_unmap(domain, dvma, npages, rdip);
2755 #endif
2756 	dvma_free(domain, dvma, npages);
2757 
2758 	IMMU_DPROBE3(immu__dvma__free, dev_info_t *, rdip, uint_t, npages,
2759 	    uint64_t, dvma);
2760 
2761 #ifdef DEBUG
2762 	/*
2763 	 * In the DEBUG case, the unmap was actually done,
2764 	 * but an IOTLB flush was not done. So, an explicit
2765 	 * write back flush is needed.
2766 	 */
2767 	immu_regs_wbf_flush(domain->dom_immu);
2768 #endif
2769 
2770 	return (DDI_SUCCESS);
2771 }
2772 
2773 /* ############################# Functions exported ######################## */
2774 
2775 /*
2776  * setup the DVMA subsystem
2777  * this code runs only for the first IOMMU unit
2778  */
2779 void
2780 immu_dvma_setup(list_t *listp)
2781 {
2782 	immu_t *immu;
2783 	uint_t kval;
2784 	size_t nchains;
2785 
2786 	/* locks */
2787 	mutex_init(&immu_domain_lock, NULL, MUTEX_DEFAULT, NULL);
2788 
2789 	/* Create lists */
2790 	list_create(&immu_unity_domain_list, sizeof (domain_t),
2791 	    offsetof(domain_t, dom_maptype_node));
2792 	list_create(&immu_xlate_domain_list, sizeof (domain_t),
2793 	    offsetof(domain_t, dom_maptype_node));
2794 
2795 	/* Setup BDF domain hash */
2796 	nchains = 0xff;
2797 	kval = mod_hash_iddata_gen(nchains);
2798 
2799 	bdf_domain_hash = mod_hash_create_extended("BDF-DOMAIN_HASH",
2800 	    nchains, mod_hash_null_keydtor, mod_hash_null_valdtor,
2801 	    mod_hash_byid, (void *)(uintptr_t)kval, mod_hash_idkey_cmp,
2802 	    KM_NOSLEEP);
2803 
2804 	immu = list_head(listp);
2805 	for (; immu; immu = list_next(listp, immu)) {
2806 		create_unity_domain(immu);
2807 		did_init(immu);
2808 		context_init(immu);
2809 		immu->immu_dvma_setup = B_TRUE;
2810 	}
2811 }
2812 
2813 /*
2814  * Startup up one DVMA unit
2815  */
2816 void
2817 immu_dvma_startup(immu_t *immu)
2818 {
2819 	if (immu_gfxdvma_enable == B_FALSE &&
2820 	    immu->immu_dvma_gfx_only == B_TRUE) {
2821 		return;
2822 	}
2823 
2824 	/*
2825 	 * DVMA will start once IOMMU is "running"
2826 	 */
2827 	immu->immu_dvma_running = B_TRUE;
2828 }
2829 
2830 /*
2831  * immu_dvma_physmem_update()
2832  *       called when the installed memory on a
2833  *       system increases, to expand domain DVMA
2834  *       for domains with UNITY mapping
2835  */
2836 void
2837 immu_dvma_physmem_update(uint64_t addr, uint64_t size)
2838 {
2839 	uint64_t start;
2840 	uint64_t npages;
2841 	int dcount;
2842 	immu_dcookie_t dcookies[1] = {0};
2843 	domain_t *domain;
2844 
2845 	/*
2846 	 * Just walk the system-wide list of domains with
2847 	 * UNITY mapping. Both the list of *all* domains
2848 	 * and *UNITY* domains is protected by the same
2849 	 * single lock
2850 	 */
2851 	mutex_enter(&immu_domain_lock);
2852 	domain = list_head(&immu_unity_domain_list);
2853 	for (; domain; domain = list_next(&immu_unity_domain_list, domain)) {
2854 		/*
2855 		 * Nothing to do if the IOMMU supports passthrough.
2856 		 */
2857 		if (IMMU_ECAP_GET_PT(domain->dom_immu->immu_regs_excap))
2858 			continue;
2859 
2860 		/* There is no vmem_arena for unity domains. Just map it */
2861 		ddi_err(DER_LOG, domain->dom_dip,
2862 		    "iommu: unity-domain: Adding map "
2863 		    "[0x%" PRIx64 " - 0x%" PRIx64 "]", addr, addr + size);
2864 
2865 		start = IMMU_ROUNDOWN(addr);
2866 		npages = (IMMU_ROUNDUP(size) / IMMU_PAGESIZE) + 1;
2867 
2868 		dcookies[0].dck_paddr = start;
2869 		dcookies[0].dck_npages = npages;
2870 		dcount = 1;
2871 		(void) dvma_map(domain, start, npages,
2872 		    dcookies, dcount, NULL, IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
2873 
2874 	}
2875 	mutex_exit(&immu_domain_lock);
2876 }
2877 
2878 int
2879 immu_dvma_device_setup(dev_info_t *rdip, immu_flags_t immu_flags)
2880 {
2881 	dev_info_t *ddip, *odip;
2882 	immu_t *immu;
2883 	domain_t *domain;
2884 
2885 	odip = rdip;
2886 
2887 	immu = immu_dvma_get_immu(rdip, immu_flags);
2888 	if (immu == NULL) {
2889 		/*
2890 		 * possible that there is no IOMMU unit for this device
2891 		 * - BIOS bugs are one example.
2892 		 */
2893 		ddi_err(DER_WARN, rdip, "No iommu unit found for device");
2894 		return (DDI_DMA_NORESOURCES);
2895 	}
2896 
2897 	/*
2898 	 * redirect isa devices attached under lpc to lpc dip
2899 	 */
2900 	if (strcmp(ddi_node_name(ddi_get_parent(rdip)), "isa") == 0) {
2901 		rdip = get_lpc_devinfo(immu, rdip, immu_flags);
2902 		if (rdip == NULL) {
2903 			ddi_err(DER_PANIC, rdip, "iommu redirect failed");
2904 			/*NOTREACHED*/
2905 		}
2906 	}
2907 
2908 	/* Reset immu, as redirection can change IMMU */
2909 	immu = NULL;
2910 
2911 	/*
2912 	 * for gart, redirect to the real graphic devinfo
2913 	 */
2914 	if (strcmp(ddi_node_name(rdip), "agpgart") == 0) {
2915 		rdip = get_gfx_devinfo(rdip);
2916 		if (rdip == NULL) {
2917 			ddi_err(DER_PANIC, rdip, "iommu redirect failed");
2918 			/*NOTREACHED*/
2919 		}
2920 	}
2921 
2922 	/*
2923 	 * Setup DVMA domain for the device. This does
2924 	 * work only the first time we do DVMA for a
2925 	 * device.
2926 	 */
2927 	ddip = NULL;
2928 	domain = device_domain(rdip, &ddip, immu_flags);
2929 	if (domain == NULL) {
2930 		ddi_err(DER_MODE, rdip, "Intel IOMMU setup failed for device");
2931 		return (DDI_DMA_NORESOURCES);
2932 	}
2933 
2934 	immu = domain->dom_immu;
2935 
2936 	/*
2937 	 * If a domain is found, we must also have a domain dip
2938 	 * which is the topmost ancestor dip of rdip that shares
2939 	 * the same domain with rdip.
2940 	 */
2941 	if (domain->dom_did == 0 || ddip == NULL) {
2942 		ddi_err(DER_MODE, rdip, "domain did 0(%d) or ddip NULL(%p)",
2943 		    domain->dom_did, ddip);
2944 		return (DDI_DMA_NORESOURCES);
2945 	}
2946 
2947 	if (odip != rdip)
2948 		set_domain(odip, ddip, domain);
2949 
2950 	/*
2951 	 * Update the root and context entries
2952 	 */
2953 	if (immu_context_update(immu, domain, ddip, rdip, immu_flags)
2954 	    != DDI_SUCCESS) {
2955 		ddi_err(DER_MODE, rdip, "DVMA map: context update failed");
2956 		return (DDI_DMA_NORESOURCES);
2957 	}
2958 
2959 	return (DDI_SUCCESS);
2960 }
2961 
2962 int
2963 immu_map_memrange(dev_info_t *rdip, memrng_t *mrng)
2964 {
2965 	immu_dcookie_t dcookies[1] = {0};
2966 	boolean_t pde_set;
2967 	immu_t *immu;
2968 	domain_t *domain;
2969 	immu_inv_wait_t iw;
2970 
2971 	dcookies[0].dck_paddr = mrng->mrng_start;
2972 	dcookies[0].dck_npages = mrng->mrng_npages;
2973 
2974 	domain = IMMU_DEVI(rdip)->imd_domain;
2975 	immu = domain->dom_immu;
2976 
2977 	pde_set = dvma_map(domain, mrng->mrng_start,
2978 	    mrng->mrng_npages, dcookies, 1, rdip,
2979 	    IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
2980 
2981 	immu_init_inv_wait(&iw, "memrange", B_TRUE);
2982 
2983 	immu_flush_iotlb_psi(immu, domain->dom_did, mrng->mrng_start,
2984 	    mrng->mrng_npages, pde_set == B_TRUE ?
2985 	    TLB_IVA_WHOLE : TLB_IVA_LEAF, &iw);
2986 
2987 	return (DDI_SUCCESS);
2988 }
2989 
2990 immu_devi_t *
2991 immu_devi_get(dev_info_t *rdip)
2992 {
2993 	immu_devi_t *immu_devi;
2994 	volatile uintptr_t *vptr = (uintptr_t *)&(DEVI(rdip)->devi_iommu);
2995 
2996 	/* Just want atomic reads. No need for lock */
2997 	immu_devi = (immu_devi_t *)(uintptr_t)atomic_or_64_nv((uint64_t *)vptr,
2998 	    0);
2999 	return (immu_devi);
3000 }
3001 
3002 /*ARGSUSED*/
3003 int
3004 immu_hdl_priv_ctor(void *buf, void *arg, int kmf)
3005 {
3006 	immu_hdl_priv_t *ihp;
3007 
3008 	ihp = buf;
3009 	immu_init_inv_wait(&ihp->ihp_inv_wait, "dmahandle", B_FALSE);
3010 
3011 	return (0);
3012 }
3013 
3014 /*
3015  * iommulib interface functions
3016  */
3017 static int
3018 immu_probe(iommulib_handle_t handle, dev_info_t *dip)
3019 {
3020 	immu_devi_t *immu_devi;
3021 	int ret;
3022 
3023 	if (!immu_enable)
3024 		return (DDI_FAILURE);
3025 
3026 	/*
3027 	 * Make sure the device has all the IOMMU structures
3028 	 * initialized. If this device goes through an IOMMU
3029 	 * unit (e.g. this probe function returns success),
3030 	 * this will be called at most N times, with N being
3031 	 * the number of IOMMUs in the system.
3032 	 *
3033 	 * After that, when iommulib_nex_open succeeds,
3034 	 * we can always assume that this device has all
3035 	 * the structures initialized. IOMMU_USED(dip) will
3036 	 * be true. There is no need to find the controlling
3037 	 * IOMMU/domain again.
3038 	 */
3039 	ret = immu_dvma_device_setup(dip, IMMU_FLAGS_NOSLEEP);
3040 	if (ret != DDI_SUCCESS)
3041 		return (ret);
3042 
3043 	immu_devi = IMMU_DEVI(dip);
3044 
3045 	/*
3046 	 * For unity domains, there is no need to call in to
3047 	 * the IOMMU code.
3048 	 */
3049 	if (immu_devi->imd_domain->dom_did == IMMU_UNITY_DID)
3050 		return (DDI_FAILURE);
3051 
3052 	if (immu_devi->imd_immu->immu_dip == iommulib_iommu_getdip(handle))
3053 		return (DDI_SUCCESS);
3054 
3055 	return (DDI_FAILURE);
3056 }
3057 
3058 /*ARGSUSED*/
3059 static int
3060 immu_allochdl(iommulib_handle_t handle,
3061     dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
3062     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *dma_handlep)
3063 {
3064 	int ret;
3065 	immu_hdl_priv_t *ihp;
3066 	immu_t *immu;
3067 
3068 	ret = iommulib_iommu_dma_allochdl(dip, rdip, attr, waitfp,
3069 	    arg, dma_handlep);
3070 	if (ret == DDI_SUCCESS) {
3071 		immu = IMMU_DEVI(rdip)->imd_immu;
3072 
3073 		ihp = kmem_cache_alloc(immu->immu_hdl_cache,
3074 		    waitfp == DDI_DMA_SLEEP ? KM_SLEEP : KM_NOSLEEP);
3075 		if (ihp == NULL) {
3076 			(void) iommulib_iommu_dma_freehdl(dip, rdip,
3077 			    *dma_handlep);
3078 			return (DDI_DMA_NORESOURCES);
3079 		}
3080 
3081 		if (IMMU_DEVI(rdip)->imd_use_premap)
3082 			dvma_prealloc(rdip, ihp, attr);
3083 		else {
3084 			ihp->ihp_npremapped = 0;
3085 			ihp->ihp_predvma = 0;
3086 		}
3087 		ret = iommulib_iommu_dmahdl_setprivate(dip, rdip, *dma_handlep,
3088 		    ihp);
3089 	}
3090 	return (ret);
3091 }
3092 
3093 /*ARGSUSED*/
3094 static int
3095 immu_freehdl(iommulib_handle_t handle,
3096     dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t dma_handle)
3097 {
3098 	immu_hdl_priv_t *ihp;
3099 
3100 	ihp = iommulib_iommu_dmahdl_getprivate(dip, rdip, dma_handle);
3101 	if (ihp != NULL) {
3102 		if (IMMU_DEVI(rdip)->imd_use_premap)
3103 			dvma_prefree(rdip, ihp);
3104 		kmem_cache_free(IMMU_DEVI(rdip)->imd_immu->immu_hdl_cache, ihp);
3105 	}
3106 
3107 	return (iommulib_iommu_dma_freehdl(dip, rdip, dma_handle));
3108 }
3109 
3110 
3111 /*ARGSUSED*/
3112 static int
3113 immu_bindhdl(iommulib_handle_t handle, dev_info_t *dip,
3114     dev_info_t *rdip, ddi_dma_handle_t dma_handle,
3115     struct ddi_dma_req *dma_req, ddi_dma_cookie_t *cookiep,
3116     uint_t *ccountp)
3117 {
3118 	int ret;
3119 	immu_hdl_priv_t *ihp;
3120 
3121 	ret = iommulib_iommu_dma_bindhdl(dip, rdip, dma_handle,
3122 	    dma_req, cookiep, ccountp);
3123 
3124 	if (ret == DDI_DMA_MAPPED) {
3125 		ihp = iommulib_iommu_dmahdl_getprivate(dip, rdip, dma_handle);
3126 		immu_flush_wait(IMMU_DEVI(rdip)->imd_immu, &ihp->ihp_inv_wait);
3127 	}
3128 
3129 	return (ret);
3130 }
3131 
3132 /*ARGSUSED*/
3133 static int
3134 immu_unbindhdl(iommulib_handle_t handle,
3135     dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t dma_handle)
3136 {
3137 	return (iommulib_iommu_dma_unbindhdl(dip, rdip, dma_handle));
3138 }
3139 
3140 /*ARGSUSED*/
3141 static int
3142 immu_sync(iommulib_handle_t handle, dev_info_t *dip,
3143     dev_info_t *rdip, ddi_dma_handle_t dma_handle, off_t off,
3144     size_t len, uint_t cachefl)
3145 {
3146 	return (iommulib_iommu_dma_sync(dip, rdip, dma_handle, off, len,
3147 	    cachefl));
3148 }
3149 
3150 /*ARGSUSED*/
3151 static int
3152 immu_win(iommulib_handle_t handle, dev_info_t *dip,
3153     dev_info_t *rdip, ddi_dma_handle_t dma_handle, uint_t win,
3154     off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
3155     uint_t *ccountp)
3156 {
3157 	return (iommulib_iommu_dma_win(dip, rdip, dma_handle, win, offp,
3158 	    lenp, cookiep, ccountp));
3159 }
3160 
3161 /*ARGSUSED*/
3162 static int
3163 immu_mapobject(iommulib_handle_t handle, dev_info_t *dip,
3164     dev_info_t *rdip, ddi_dma_handle_t dma_handle,
3165     struct ddi_dma_req *dmareq, ddi_dma_obj_t *dmao)
3166 {
3167 	immu_hdl_priv_t *ihp;
3168 
3169 	ihp = iommulib_iommu_dmahdl_getprivate(dip, rdip, dma_handle);
3170 
3171 	return (immu_map_dvmaseg(rdip, dma_handle, ihp, dmareq, dmao));
3172 }
3173 
3174 /*ARGSUSED*/
3175 static int
3176 immu_unmapobject(iommulib_handle_t handle, dev_info_t *dip,
3177     dev_info_t *rdip, ddi_dma_handle_t dma_handle, ddi_dma_obj_t *dmao)
3178 {
3179 	immu_hdl_priv_t *ihp;
3180 
3181 	ihp = iommulib_iommu_dmahdl_getprivate(dip, rdip, dma_handle);
3182 	if (ihp->ihp_npremapped > 0)
3183 		return (DDI_SUCCESS);
3184 	return (immu_unmap_dvmaseg(rdip, dmao));
3185 }
3186