1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/hpet_acpi.h> 27 #include <sys/hpet.h> 28 #include <sys/bitmap.h> 29 #include <sys/inttypes.h> 30 #include <sys/time.h> 31 #include <sys/sunddi.h> 32 #include <sys/ksynch.h> 33 #include <sys/apic.h> 34 #include <sys/callb.h> 35 #include <sys/clock.h> 36 #include <sys/archsystm.h> 37 #include <sys/cpupart.h> 38 39 /* 40 * hpet_state_lock is used to synchronize disabling/enabling deep c-states 41 * and to synchronize suspend/resume. 42 */ 43 static kmutex_t hpet_state_lock; 44 static struct hpet_state { 45 boolean_t proxy_installed; /* CBE proxy interrupt setup */ 46 boolean_t cpr; /* currently in CPR */ 47 boolean_t cpu_deep_idle; /* user enable/disable */ 48 boolean_t uni_cstate; /* disable if only one cstate */ 49 } hpet_state = { B_FALSE, B_FALSE, B_TRUE, B_TRUE}; 50 51 uint64_t hpet_spin_check = HPET_SPIN_CHECK; 52 uint64_t hpet_spin_timeout = HPET_SPIN_TIMEOUT; 53 uint64_t hpet_idle_spin_timeout = HPET_SPIN_TIMEOUT; 54 uint64_t hpet_isr_spin_timeout = HPET_SPIN_TIMEOUT; 55 56 static kmutex_t hpet_proxy_lock; /* lock for lAPIC proxy data */ 57 /* 58 * hpet_proxy_users is a per-cpu array. 59 */ 60 static hpet_proxy_t *hpet_proxy_users; /* one per CPU */ 61 62 63 ACPI_TABLE_HPET *hpet_table; /* ACPI HPET table */ 64 hpet_info_t hpet_info; /* Human readable Information */ 65 66 /* 67 * Provide HPET access from unix.so. 68 * Set up pointers to access symbols in pcplusmp. 69 */ 70 static void 71 hpet_establish_hooks(void) 72 { 73 hpet.install_proxy = &hpet_install_proxy; 74 hpet.callback = &hpet_callback; 75 hpet.use_hpet_timer = &hpet_use_hpet_timer; 76 hpet.use_lapic_timer = &hpet_use_lapic_timer; 77 } 78 79 /* 80 * Get the ACPI "HPET" table. 81 * acpi_probe() calls this function from mp_startup before drivers are loaded. 82 * acpi_probe() verified the system is using ACPI before calling this. 83 * 84 * There may be more than one ACPI HPET table (Itanium only?). 85 * Intel's HPET spec defines each timer block to have up to 32 counters and 86 * be 1024 bytes long. There can be more than one timer block of 32 counters. 87 * Each timer block would have an additional ACPI HPET table. 88 * Typical x86 systems today only have 1 HPET with 3 counters. 89 * On x86 we only consume HPET table "1" for now. 90 */ 91 int 92 hpet_acpi_init(int *hpet_vect, iflag_t *hpet_flags) 93 { 94 extern hrtime_t tsc_read(void); 95 extern int idle_cpu_no_deep_c; 96 extern int cpuid_deep_cstates_supported(void); 97 void *la; 98 uint64_t ret; 99 uint_t num_timers; 100 uint_t ti; 101 102 (void) memset(&hpet_info, 0, sizeof (hpet_info)); 103 hpet.supported = HPET_NO_SUPPORT; 104 105 if (idle_cpu_no_deep_c) 106 return (DDI_FAILURE); 107 108 if (!cpuid_deep_cstates_supported()) 109 return (DDI_FAILURE); 110 111 hpet_establish_hooks(); 112 113 /* 114 * Get HPET ACPI table 1. 115 */ 116 if (ACPI_FAILURE(AcpiGetTable(ACPI_SIG_HPET, HPET_TABLE_1, 117 (ACPI_TABLE_HEADER **)&hpet_table))) { 118 cmn_err(CE_NOTE, "!hpet_acpi: unable to get ACPI HPET table"); 119 return (DDI_FAILURE); 120 } 121 122 if (hpet_validate_table(hpet_table) != AE_OK) { 123 cmn_err(CE_NOTE, "!hpet_acpi: invalid HPET table"); 124 return (DDI_FAILURE); 125 } 126 127 la = hpet_memory_map(hpet_table); 128 if (la == NULL) { 129 cmn_err(CE_NOTE, "!hpet_acpi: memory map HPET failed"); 130 return (DDI_FAILURE); 131 } 132 hpet_info.logical_address = la; 133 134 ret = hpet_read_gen_cap(&hpet_info); 135 hpet_info.gen_cap.counter_clk_period = HPET_GCAP_CNTR_CLK_PERIOD(ret); 136 hpet_info.gen_cap.vendor_id = HPET_GCAP_VENDOR_ID(ret); 137 hpet_info.gen_cap.leg_route_cap = HPET_GCAP_LEG_ROUTE_CAP(ret); 138 hpet_info.gen_cap.count_size_cap = HPET_GCAP_CNT_SIZE_CAP(ret); 139 /* 140 * Hardware contains the last timer's number. 141 * Add 1 to get the number of timers. 142 */ 143 hpet_info.gen_cap.num_tim_cap = HPET_GCAP_NUM_TIM_CAP(ret) + 1; 144 hpet_info.gen_cap.rev_id = HPET_GCAP_REV_ID(ret); 145 146 if (hpet_info.gen_cap.counter_clk_period > HPET_MAX_CLK_PERIOD) { 147 cmn_err(CE_NOTE, "!hpet_acpi: COUNTER_CLK_PERIOD 0x%lx > 0x%lx", 148 (long)hpet_info.gen_cap.counter_clk_period, 149 (long)HPET_MAX_CLK_PERIOD); 150 return (DDI_FAILURE); 151 } 152 153 num_timers = (uint_t)hpet_info.gen_cap.num_tim_cap; 154 if ((num_timers < 3) || (num_timers > 32)) { 155 cmn_err(CE_NOTE, "!hpet_acpi: invalid number of HPET timers " 156 "%lx", (long)num_timers); 157 return (DDI_FAILURE); 158 } 159 hpet_info.timer_n_config = (hpet_TN_conf_cap_t *)kmem_zalloc( 160 num_timers * sizeof (uint64_t), KM_SLEEP); 161 162 ret = hpet_read_gen_config(&hpet_info); 163 hpet_info.gen_config.leg_rt_cnf = HPET_GCFR_LEG_RT_CNF_BITX(ret); 164 hpet_info.gen_config.enable_cnf = HPET_GCFR_ENABLE_CNF_BITX(ret); 165 166 /* 167 * Solaris does not use the HPET Legacy Replacement Route capabilities. 168 * This feature has been off by default on test systems. 169 * The HPET spec does not specify if Legacy Replacement Route is 170 * on or off by default, so we explicitely set it off here. 171 * It should not matter which mode the HPET is in since we use 172 * the first available non-legacy replacement timer: timer 2. 173 */ 174 (void) hpet_set_leg_rt_cnf(&hpet_info, 0); 175 176 ret = hpet_read_gen_config(&hpet_info); 177 hpet_info.gen_config.leg_rt_cnf = HPET_GCFR_LEG_RT_CNF_BITX(ret); 178 hpet_info.gen_config.enable_cnf = HPET_GCFR_ENABLE_CNF_BITX(ret); 179 180 hpet_info.gen_intrpt_stat = hpet_read_gen_intrpt_stat(&hpet_info); 181 hpet_info.main_counter_value = hpet_read_main_counter_value(&hpet_info); 182 183 for (ti = 0; ti < num_timers; ++ti) { 184 ret = hpet_read_timer_N_config(&hpet_info, ti); 185 /* 186 * Make sure no timers are enabled (think fast reboot or 187 * virtual hardware). 188 */ 189 if (ret & HPET_TIMER_N_INT_ENB_CNF_BIT) { 190 hpet_disable_timer(&hpet_info, ti); 191 ret &= ~HPET_TIMER_N_INT_ENB_CNF_BIT; 192 } 193 194 hpet_info.timer_n_config[ti] = hpet_convert_timer_N_config(ret); 195 } 196 197 /* 198 * Be aware the Main Counter may need to be initialized in the future 199 * if it is used for more than just Deep C-State support. 200 * The HPET's Main Counter does not need to be initialize to a specific 201 * value before starting it for use to wake up CPUs from Deep C-States. 202 */ 203 if (hpet_start_main_counter(&hpet_info) != AE_OK) { 204 cmn_err(CE_NOTE, "!hpet_acpi: hpet_start_main_counter failed"); 205 return (DDI_FAILURE); 206 } 207 208 hpet_info.period = hpet_info.gen_cap.counter_clk_period; 209 /* 210 * Read main counter twice to record HPET latency for debugging. 211 */ 212 hpet_info.tsc[0] = tsc_read(); 213 hpet_info.hpet_main_counter_reads[0] = 214 hpet_read_main_counter_value(&hpet_info); 215 hpet_info.tsc[1] = tsc_read(); 216 hpet_info.hpet_main_counter_reads[1] = 217 hpet_read_main_counter_value(&hpet_info); 218 hpet_info.tsc[2] = tsc_read(); 219 220 ret = hpet_read_gen_config(&hpet_info); 221 hpet_info.gen_config.leg_rt_cnf = HPET_GCFR_LEG_RT_CNF_BITX(ret); 222 hpet_info.gen_config.enable_cnf = HPET_GCFR_ENABLE_CNF_BITX(ret); 223 224 /* 225 * HPET main counter reads are supported now. 226 */ 227 hpet.supported = HPET_TIMER_SUPPORT; 228 229 return (hpet_init_proxy(hpet_vect, hpet_flags)); 230 } 231 232 void 233 hpet_acpi_fini(void) 234 { 235 if (hpet.supported == HPET_NO_SUPPORT) 236 return; 237 if (hpet.supported >= HPET_TIMER_SUPPORT) 238 (void) hpet_stop_main_counter(&hpet_info); 239 if (hpet.supported > HPET_TIMER_SUPPORT) 240 hpet_disable_timer(&hpet_info, hpet_info.cstate_timer.timer); 241 } 242 243 /* 244 * Do initial setup to use a HPET timer as a proxy for Deep C-state stalled 245 * LAPIC Timers. Get a free HPET timer that supports I/O APIC routed interrupt. 246 * Setup data to handle the timer's ISR, and add the timer's interrupt. 247 * 248 * The ddi cannot be use to allocate the HPET timer's interrupt. 249 * ioapic_init_intr() in mp_platform_common() later sets up the I/O APIC 250 * to handle the HPET timer's interrupt. 251 * 252 * Note: FSB (MSI) interrupts are not currently supported by Intel HPETs as of 253 * ICH9. The HPET spec allows for MSI. In the future MSI may be prefered. 254 */ 255 static int 256 hpet_init_proxy(int *hpet_vect, iflag_t *hpet_flags) 257 { 258 if (hpet_get_IOAPIC_intr_capable_timer(&hpet_info) == -1) { 259 cmn_err(CE_WARN, "!hpet_acpi: get ioapic intr failed."); 260 return (DDI_FAILURE); 261 } 262 263 hpet_init_proxy_data(); 264 265 if (hpet_install_interrupt_handler(&hpet_isr, 266 hpet_info.cstate_timer.intr) != AE_OK) { 267 cmn_err(CE_WARN, "!hpet_acpi: install interrupt failed."); 268 return (DDI_FAILURE); 269 } 270 *hpet_vect = hpet_info.cstate_timer.intr; 271 hpet_flags->intr_el = INTR_EL_LEVEL; 272 hpet_flags->intr_po = INTR_PO_ACTIVE_HIGH; 273 hpet_flags->bustype = BUS_PCI; /* we *do* conform to PCI */ 274 275 /* 276 * Avoid a possibly stuck interrupt by programing the HPET's timer here 277 * before the I/O APIC is programmed to handle this interrupt. 278 */ 279 hpet_timer_set_up(&hpet_info, hpet_info.cstate_timer.timer, 280 hpet_info.cstate_timer.intr); 281 282 /* 283 * All HPET functionality is supported. 284 */ 285 hpet.supported = HPET_FULL_SUPPORT; 286 return (DDI_SUCCESS); 287 } 288 289 /* 290 * Called by kernel if it can support Deep C-States. 291 */ 292 static boolean_t 293 hpet_install_proxy(void) 294 { 295 if (hpet_state.proxy_installed == B_TRUE) 296 return (B_TRUE); 297 298 if (hpet.supported != HPET_FULL_SUPPORT) 299 return (B_FALSE); 300 301 hpet_enable_timer(&hpet_info, hpet_info.cstate_timer.timer); 302 hpet_state.proxy_installed = B_TRUE; 303 304 return (B_TRUE); 305 } 306 307 /* 308 * Remove the interrupt that was added with add_avintr() in 309 * hpet_install_interrupt_handler(). 310 */ 311 static void 312 hpet_uninstall_interrupt_handler(void) 313 { 314 rem_avintr(NULL, CBE_HIGH_PIL, (avfunc)&hpet_isr, 315 hpet_info.cstate_timer.intr); 316 } 317 318 static int 319 hpet_validate_table(ACPI_TABLE_HPET *hpet_table) 320 { 321 ACPI_TABLE_HEADER *table_header = (ACPI_TABLE_HEADER *)hpet_table; 322 323 if (table_header->Length != sizeof (ACPI_TABLE_HPET)) { 324 cmn_err(CE_WARN, "!hpet_validate_table: Length %lx != sizeof (" 325 "ACPI_TABLE_HPET) %lx.", 326 (unsigned long)((ACPI_TABLE_HEADER *)hpet_table)->Length, 327 (unsigned long)sizeof (ACPI_TABLE_HPET)); 328 return (AE_ERROR); 329 } 330 331 if (!ACPI_COMPARE_NAME(table_header->Signature, ACPI_SIG_HPET)) { 332 cmn_err(CE_WARN, "!hpet_validate_table: Invalid HPET table " 333 "signature"); 334 return (AE_ERROR); 335 } 336 337 if (!hpet_checksum_table((unsigned char *)hpet_table, 338 (unsigned int)table_header->Length)) { 339 cmn_err(CE_WARN, "!hpet_validate_table: Invalid HPET checksum"); 340 return (AE_ERROR); 341 } 342 343 /* 344 * Sequence should be table number - 1. We are using table 1. 345 */ 346 if (hpet_table->Sequence != HPET_TABLE_1 - 1) { 347 cmn_err(CE_WARN, "!hpet_validate_table: Invalid Sequence %lx", 348 (long)hpet_table->Sequence); 349 return (AE_ERROR); 350 } 351 352 return (AE_OK); 353 } 354 355 static boolean_t 356 hpet_checksum_table(unsigned char *table, unsigned int length) 357 { 358 unsigned char checksum = 0; 359 int i; 360 361 for (i = 0; i < length; ++i, ++table) 362 checksum += *table; 363 364 return (checksum == 0); 365 } 366 367 static void * 368 hpet_memory_map(ACPI_TABLE_HPET *hpet_table) 369 { 370 return (AcpiOsMapMemory(hpet_table->Address.Address, HPET_SIZE)); 371 } 372 373 static int 374 hpet_start_main_counter(hpet_info_t *hip) 375 { 376 uint64_t *gcr_ptr; 377 uint64_t gcr; 378 379 gcr_ptr = (uint64_t *)HPET_GEN_CONFIG_ADDRESS(hip->logical_address); 380 gcr = *gcr_ptr; 381 382 gcr |= HPET_GCFR_ENABLE_CNF; 383 *gcr_ptr = gcr; 384 gcr = *gcr_ptr; 385 386 return (gcr & HPET_GCFR_ENABLE_CNF ? AE_OK : ~AE_OK); 387 } 388 389 static int 390 hpet_stop_main_counter(hpet_info_t *hip) 391 { 392 uint64_t *gcr_ptr; 393 uint64_t gcr; 394 395 gcr_ptr = (uint64_t *)HPET_GEN_CONFIG_ADDRESS(hip->logical_address); 396 gcr = *gcr_ptr; 397 398 gcr &= ~HPET_GCFR_ENABLE_CNF; 399 *gcr_ptr = gcr; 400 gcr = *gcr_ptr; 401 402 return (gcr & HPET_GCFR_ENABLE_CNF ? ~AE_OK : AE_OK); 403 } 404 405 /* 406 * Set the Legacy Replacement Route bit. 407 * This should be called before setting up timers. 408 * The HPET specification is silent regarding setting this after timers are 409 * programmed. 410 */ 411 static uint64_t 412 hpet_set_leg_rt_cnf(hpet_info_t *hip, uint32_t new_value) 413 { 414 uint64_t gen_conf = hpet_read_gen_config(hip); 415 416 switch (new_value) { 417 case 0: 418 gen_conf &= ~HPET_GCFR_LEG_RT_CNF; 419 break; 420 421 case HPET_GCFR_LEG_RT_CNF: 422 gen_conf |= HPET_GCFR_LEG_RT_CNF; 423 break; 424 425 default: 426 ASSERT(new_value == 0 || new_value == HPET_GCFR_LEG_RT_CNF); 427 break; 428 } 429 hpet_write_gen_config(hip, gen_conf); 430 return (gen_conf); 431 } 432 433 static uint64_t 434 hpet_read_gen_cap(hpet_info_t *hip) 435 { 436 return (*(uint64_t *)HPET_GEN_CAP_ADDRESS(hip->logical_address)); 437 } 438 439 static uint64_t 440 hpet_read_gen_config(hpet_info_t *hip) 441 { 442 return (*(uint64_t *) 443 HPET_GEN_CONFIG_ADDRESS(hip->logical_address)); 444 } 445 446 static uint64_t 447 hpet_read_gen_intrpt_stat(hpet_info_t *hip) 448 { 449 hip->gen_intrpt_stat = *(uint64_t *)HPET_GEN_INTR_STAT_ADDRESS( 450 hip->logical_address); 451 return (hip->gen_intrpt_stat); 452 } 453 454 static uint64_t 455 hpet_read_timer_N_config(hpet_info_t *hip, uint_t n) 456 { 457 uint64_t conf = *(uint64_t *)HPET_TIMER_N_CONF_ADDRESS( 458 hip->logical_address, n); 459 hip->timer_n_config[n] = hpet_convert_timer_N_config(conf); 460 return (conf); 461 } 462 463 static hpet_TN_conf_cap_t 464 hpet_convert_timer_N_config(uint64_t conf) 465 { 466 hpet_TN_conf_cap_t cc = { 0 }; 467 468 cc.int_route_cap = HPET_TIMER_N_INT_ROUTE_CAP(conf); 469 cc.fsb_int_del_cap = HPET_TIMER_N_FSB_INT_DEL_CAP(conf); 470 cc.fsb_int_en_cnf = HPET_TIMER_N_FSB_EN_CNF(conf); 471 cc.int_route_cnf = HPET_TIMER_N_INT_ROUTE_CNF(conf); 472 cc.mode32_cnf = HPET_TIMER_N_MODE32_CNF(conf); 473 cc.val_set_cnf = HPET_TIMER_N_VAL_SET_CNF(conf); 474 cc.size_cap = HPET_TIMER_N_SIZE_CAP(conf); 475 cc.per_int_cap = HPET_TIMER_N_PER_INT_CAP(conf); 476 cc.type_cnf = HPET_TIMER_N_TYPE_CNF(conf); 477 cc.int_enb_cnf = HPET_TIMER_N_INT_ENB_CNF(conf); 478 cc.int_type_cnf = HPET_TIMER_N_INT_TYPE_CNF(conf); 479 480 return (cc); 481 } 482 483 static uint64_t 484 hpet_read_timer_N_comp(hpet_info_t *hip, uint_t n) 485 { 486 if (hip->timer_n_config[n].size_cap == 1) 487 return (*(uint64_t *) 488 HPET_TIMER_N_COMP_ADDRESS(hip->logical_address, n)); 489 else 490 return (*(uint32_t *) 491 HPET_TIMER_N_COMP_ADDRESS(hip->logical_address, n)); 492 } 493 494 static uint64_t 495 hpet_read_main_counter_value(hpet_info_t *hip) 496 { 497 uint64_t value; 498 uint32_t *counter; 499 uint32_t high1, high2, low; 500 501 counter = (uint32_t *)HPET_MAIN_COUNTER_ADDRESS(hip->logical_address); 502 503 /* 504 * 32-bit main counters 505 */ 506 if (hip->gen_cap.count_size_cap == 0) { 507 value = (uint64_t)*counter; 508 hip->main_counter_value = value; 509 return (value); 510 } 511 512 /* 513 * HPET spec claims a 64-bit read can be split into two 32-bit reads 514 * by the hardware connection to the HPET. 515 */ 516 high2 = counter[1]; 517 do { 518 high1 = high2; 519 low = counter[0]; 520 high2 = counter[1]; 521 } while (high2 != high1); 522 523 value = ((uint64_t)high1 << 32) | low; 524 hip->main_counter_value = value; 525 return (value); 526 } 527 528 static void 529 hpet_write_gen_cap(hpet_info_t *hip, uint64_t l) 530 { 531 *(uint64_t *)HPET_GEN_CAP_ADDRESS(hip->logical_address) = l; 532 } 533 534 static void 535 hpet_write_gen_config(hpet_info_t *hip, uint64_t l) 536 { 537 *(uint64_t *)HPET_GEN_CONFIG_ADDRESS(hip->logical_address) = l; 538 } 539 540 static void 541 hpet_write_gen_intrpt_stat(hpet_info_t *hip, uint64_t l) 542 { 543 *(uint64_t *)HPET_GEN_INTR_STAT_ADDRESS(hip->logical_address) = l; 544 } 545 546 static void 547 hpet_write_timer_N_config(hpet_info_t *hip, uint_t n, uint64_t l) 548 { 549 if (hip->timer_n_config[n].size_cap == 1) 550 *(uint64_t *)HPET_TIMER_N_CONF_ADDRESS( 551 hip->logical_address, n) = l; 552 else 553 *(uint32_t *)HPET_TIMER_N_CONF_ADDRESS( 554 hip->logical_address, n) = (uint32_t)(0xFFFFFFFF & l); 555 } 556 557 static void 558 hpet_write_timer_N_comp(hpet_info_t *hip, uint_t n, uint64_t l) 559 { 560 *(uint64_t *)HPET_TIMER_N_COMP_ADDRESS(hip->logical_address, n) = l; 561 } 562 563 static void 564 hpet_disable_timer(hpet_info_t *hip, uint32_t timer_n) 565 { 566 uint64_t l; 567 568 l = hpet_read_timer_N_config(hip, timer_n); 569 l &= ~HPET_TIMER_N_INT_ENB_CNF_BIT; 570 hpet_write_timer_N_config(hip, timer_n, l); 571 } 572 573 static void 574 hpet_enable_timer(hpet_info_t *hip, uint32_t timer_n) 575 { 576 uint64_t l; 577 578 l = hpet_read_timer_N_config(hip, timer_n); 579 l |= HPET_TIMER_N_INT_ENB_CNF_BIT; 580 hpet_write_timer_N_config(hip, timer_n, l); 581 } 582 583 static void 584 hpet_write_main_counter_value(hpet_info_t *hip, uint64_t l) 585 { 586 uint32_t *address; 587 588 /* 589 * HPET spec 1.0a states main counter register should be halted before 590 * it is written to. 591 */ 592 ASSERT(!(hpet_read_gen_config(hip) & HPET_GCFR_ENABLE_CNF)); 593 594 if (hip->gen_cap.count_size_cap == 1) { 595 *(uint64_t *)HPET_MAIN_COUNTER_ADDRESS(hip->logical_address) 596 = l; 597 } else { 598 address = (uint32_t *)HPET_MAIN_COUNTER_ADDRESS( 599 hip->logical_address); 600 601 address[0] = (uint32_t)(l & 0xFFFFFFFF); 602 } 603 } 604 605 /* 606 * Add the interrupt handler for I/O APIC interrupt number (interrupt line). 607 * 608 * The I/O APIC line (vector) is programmed in ioapic_init_intr() called 609 * from apic_picinit() psm_ops apic_ops entry point after we return from 610 * apic_init() psm_ops entry point. 611 */ 612 static uint32_t 613 hpet_install_interrupt_handler(uint_t (*func)(char *), int vector) 614 { 615 uint32_t retval; 616 617 retval = add_avintr(NULL, CBE_HIGH_PIL, (avfunc)func, "HPET Timer", 618 vector, NULL, NULL, NULL, NULL); 619 if (retval == 0) { 620 cmn_err(CE_WARN, "!hpet_acpi: add_avintr() failed"); 621 return (AE_BAD_PARAMETER); 622 } 623 return (AE_OK); 624 } 625 626 /* 627 * The HPET timers specify which I/O APIC interrupts they can be routed to. 628 * Find the first available non-legacy-replacement timer and its I/O APIC irq. 629 * Supported I/O APIC IRQs are specified in the int_route_cap bitmap in each 630 * timer's timer_n_config register. 631 */ 632 static int 633 hpet_get_IOAPIC_intr_capable_timer(hpet_info_t *hip) 634 { 635 int timer; 636 int intr; 637 638 for (timer = HPET_FIRST_NON_LEGACY_TIMER; 639 timer < hip->gen_cap.num_tim_cap; ++timer) { 640 641 if (!hpet_timer_available(hip->allocated_timers, timer)) 642 continue; 643 644 intr = lowbit(hip->timer_n_config[timer].int_route_cap) - 1; 645 if (intr >= 0) { 646 hpet_timer_alloc(&hip->allocated_timers, timer); 647 hip->cstate_timer.timer = timer; 648 hip->cstate_timer.intr = intr; 649 return (timer); 650 } 651 } 652 653 return (-1); 654 } 655 656 /* 657 * Mark this timer as used. 658 */ 659 static void 660 hpet_timer_alloc(uint32_t *allocated_timers, uint32_t n) 661 { 662 *allocated_timers |= 1 << n; 663 } 664 665 /* 666 * Check if this timer is available. 667 * No mutual exclusion because only one thread uses this. 668 */ 669 static int 670 hpet_timer_available(uint32_t allocated_timers, uint32_t n) 671 { 672 return ((allocated_timers & (1 << n)) == 0); 673 } 674 675 /* 676 * Setup timer N to route its interrupt to I/O APIC. 677 */ 678 static void 679 hpet_timer_set_up(hpet_info_t *hip, uint32_t timer_n, uint32_t interrupt) 680 { 681 uint64_t conf; 682 683 conf = hpet_read_timer_N_config(hip, timer_n); 684 685 /* 686 * Caller is required to verify this interrupt route is supported. 687 */ 688 ASSERT(HPET_TIMER_N_INT_ROUTE_CAP(conf) & (1 << interrupt)); 689 690 conf &= ~HPET_TIMER_N_FSB_EN_CNF_BIT; /* use IOAPIC */ 691 conf |= HPET_TIMER_N_INT_ROUTE_SHIFT(interrupt); 692 conf &= ~HPET_TIMER_N_TYPE_CNF_BIT; /* non periodic */ 693 conf &= ~HPET_TIMER_N_INT_ENB_CNF_BIT; /* disabled */ 694 conf |= HPET_TIMER_N_INT_TYPE_CNF_BIT; /* Level Triggered */ 695 696 hpet_write_timer_N_config(hip, timer_n, conf); 697 } 698 699 /* 700 * The HPET's Main Counter is not stopped before programming an HPET timer. 701 * This will allow the HPET to be used as a time source. 702 * The programmed timer interrupt may occur before this function returns. 703 * Callers must block interrupts before calling this function if they must 704 * guarantee the interrupt is handled after this function returns. 705 * 706 * Return 0 if main counter is less than timer after enabling timer. 707 * The interrupt was programmed, but it may fire before this returns. 708 * Return !0 if main counter is greater than timer after enabling timer. 709 * In other words: the timer will not fire, and we do not know if it did fire. 710 * 711 * delta is in HPET ticks. 712 * 713 * Writing a 64-bit value to a 32-bit register will "wrap around". 714 * A 32-bit HPET timer will wrap around in a little over 5 minutes. 715 */ 716 int 717 hpet_timer_program(hpet_info_t *hip, uint32_t timer, uint64_t delta) 718 { 719 uint64_t time, program; 720 721 program = hpet_read_main_counter_value(hip); 722 program += delta; 723 hpet_write_timer_N_comp(hip, timer, program); 724 725 time = hpet_read_main_counter_value(hip); 726 if (time < program) 727 return (AE_OK); 728 729 return (AE_TIME); 730 } 731 732 /* 733 * CPR and power policy-change callback entry point. 734 */ 735 boolean_t 736 hpet_callback(int code) 737 { 738 switch (code) { 739 case PM_DEFAULT_CPU_DEEP_IDLE: 740 /*FALLTHROUGH*/ 741 case PM_ENABLE_CPU_DEEP_IDLE: 742 /*FALLTHROUGH*/ 743 case PM_DISABLE_CPU_DEEP_IDLE: 744 return (hpet_deep_idle_config(code)); 745 746 case CB_CODE_CPR_RESUME: 747 /*FALLTHROUGH*/ 748 case CB_CODE_CPR_CHKPT: 749 return (hpet_cpr(code)); 750 751 case CST_EVENT_MULTIPLE_CSTATES: 752 hpet_cst_callback(CST_EVENT_MULTIPLE_CSTATES); 753 return (B_TRUE); 754 755 case CST_EVENT_ONE_CSTATE: 756 hpet_cst_callback(CST_EVENT_ONE_CSTATE); 757 return (B_TRUE); 758 759 default: 760 cmn_err(CE_NOTE, "!hpet_callback: invalid code %d\n", code); 761 return (B_FALSE); 762 } 763 } 764 765 /* 766 * According to the HPET spec 1.0a: the Operating System must save and restore 767 * HPET event timer hardware context through ACPI sleep state transitions. 768 * Timer registers (including the main counter) may not be preserved through 769 * ACPI S3, S4, or S5 sleep states. This code does not not support S1 nor S2. 770 * 771 * Current HPET state is already in hpet.supported and 772 * hpet_state.proxy_installed. hpet_info contains the proxy interrupt HPET 773 * Timer state. 774 * 775 * Future projects beware: the HPET Main Counter is undefined after ACPI S3 or 776 * S4, and it is not saved/restored here. Future projects cannot expect the 777 * Main Counter to be monotomically (or accurately) increasing across CPR. 778 * 779 * Note: the CPR Checkpoint path later calls pause_cpus() which ensures all 780 * CPUs are awake and in a spin loop before the system suspends. The HPET is 781 * not needed for Deep C-state wakeup when CPUs are in cpu_pause(). 782 * It is safe to leave the HPET running as the system suspends; we just 783 * disable the timer from generating interrupts here. 784 */ 785 static boolean_t 786 hpet_cpr(int code) 787 { 788 ulong_t intr, dead_count = 0; 789 hrtime_t dead = gethrtime() + hpet_spin_timeout; 790 boolean_t ret = B_TRUE; 791 792 mutex_enter(&hpet_state_lock); 793 switch (code) { 794 case CB_CODE_CPR_CHKPT: 795 if (hpet_state.proxy_installed == B_FALSE) 796 break; 797 798 hpet_state.cpr = B_TRUE; 799 800 intr = intr_clear(); 801 while (!mutex_tryenter(&hpet_proxy_lock)) { 802 /* 803 * spin 804 */ 805 intr_restore(intr); 806 if (dead_count++ > hpet_spin_check) { 807 dead_count = 0; 808 if (gethrtime() > dead) { 809 hpet_state.cpr = B_FALSE; 810 mutex_exit(&hpet_state_lock); 811 cmn_err(CE_NOTE, "!hpet_cpr: deadman"); 812 return (B_FALSE); 813 } 814 } 815 intr = intr_clear(); 816 } 817 hpet_expire_all(); 818 mutex_exit(&hpet_proxy_lock); 819 intr_restore(intr); 820 821 hpet_disable_timer(&hpet_info, hpet_info.cstate_timer.timer); 822 break; 823 824 case CB_CODE_CPR_RESUME: 825 if (hpet_resume() == B_TRUE) 826 hpet_state.cpr = B_FALSE; 827 else 828 cmn_err(CE_NOTE, "!hpet_resume failed."); 829 break; 830 831 default: 832 cmn_err(CE_NOTE, "!hpet_cpr: invalid code %d\n", code); 833 ret = B_FALSE; 834 break; 835 } 836 mutex_exit(&hpet_state_lock); 837 return (ret); 838 } 839 840 /* 841 * Assume the HPET stopped in Suspend state and timer state was lost. 842 */ 843 static boolean_t 844 hpet_resume(void) 845 { 846 if (hpet.supported != HPET_TIMER_SUPPORT) 847 return (B_TRUE); 848 849 /* 850 * The HPET spec does not specify if Legacy Replacement Route is 851 * on or off by default, so we set it off here. 852 */ 853 (void) hpet_set_leg_rt_cnf(&hpet_info, 0); 854 855 if (hpet_start_main_counter(&hpet_info) != AE_OK) { 856 cmn_err(CE_NOTE, "!hpet_resume: start main counter failed"); 857 hpet.supported = HPET_NO_SUPPORT; 858 if (hpet_state.proxy_installed == B_TRUE) { 859 hpet_state.proxy_installed = B_FALSE; 860 hpet_uninstall_interrupt_handler(); 861 } 862 return (B_FALSE); 863 } 864 865 if (hpet_state.proxy_installed == B_FALSE) 866 return (B_TRUE); 867 868 hpet_timer_set_up(&hpet_info, hpet_info.cstate_timer.timer, 869 hpet_info.cstate_timer.intr); 870 if (hpet_state.cpu_deep_idle == B_TRUE) 871 hpet_enable_timer(&hpet_info, hpet_info.cstate_timer.timer); 872 873 return (B_TRUE); 874 } 875 876 /* 877 * Callback to enable/disable Deep C-States based on power.conf setting. 878 */ 879 static boolean_t 880 hpet_deep_idle_config(int code) 881 { 882 ulong_t intr, dead_count = 0; 883 hrtime_t dead = gethrtime() + hpet_spin_timeout; 884 boolean_t ret = B_TRUE; 885 886 mutex_enter(&hpet_state_lock); 887 switch (code) { 888 case PM_DEFAULT_CPU_DEEP_IDLE: 889 /*FALLTHROUGH*/ 890 case PM_ENABLE_CPU_DEEP_IDLE: 891 892 if (hpet_state.cpu_deep_idle == B_TRUE) 893 break; 894 895 if (hpet_state.proxy_installed == B_FALSE) { 896 ret = B_FALSE; /* Deep C-States not supported */ 897 break; 898 } 899 900 hpet_enable_timer(&hpet_info, hpet_info.cstate_timer.timer); 901 hpet_state.cpu_deep_idle = B_TRUE; 902 break; 903 904 case PM_DISABLE_CPU_DEEP_IDLE: 905 906 if ((hpet_state.cpu_deep_idle == B_FALSE) || 907 (hpet_state.proxy_installed == B_FALSE)) 908 break; 909 910 /* 911 * The order of these operations is important to avoid 912 * lost wakeups: Set a flag to refuse all future LAPIC Timer 913 * proxy requests, then wake up all CPUs from deep C-state, 914 * and finally disable the HPET interrupt-generating timer. 915 */ 916 hpet_state.cpu_deep_idle = B_FALSE; 917 918 intr = intr_clear(); 919 while (!mutex_tryenter(&hpet_proxy_lock)) { 920 /* 921 * spin 922 */ 923 intr_restore(intr); 924 if (dead_count++ > hpet_spin_check) { 925 dead_count = 0; 926 if (gethrtime() > dead) { 927 hpet_state.cpu_deep_idle = B_TRUE; 928 mutex_exit(&hpet_state_lock); 929 cmn_err(CE_NOTE, 930 "!hpet_deep_idle_config: deadman"); 931 return (B_FALSE); 932 } 933 } 934 intr = intr_clear(); 935 } 936 hpet_expire_all(); 937 mutex_exit(&hpet_proxy_lock); 938 intr_restore(intr); 939 940 hpet_disable_timer(&hpet_info, hpet_info.cstate_timer.timer); 941 break; 942 943 default: 944 cmn_err(CE_NOTE, "!hpet_deep_idle_config: invalid code %d\n", 945 code); 946 ret = B_FALSE; 947 break; 948 } 949 mutex_exit(&hpet_state_lock); 950 951 return (ret); 952 } 953 954 /* 955 * Callback for _CST c-state change notifications. 956 */ 957 static void 958 hpet_cst_callback(uint32_t code) 959 { 960 ulong_t intr, dead_count = 0; 961 hrtime_t dead = gethrtime() + hpet_spin_timeout; 962 963 switch (code) { 964 case CST_EVENT_ONE_CSTATE: 965 hpet_state.uni_cstate = B_TRUE; 966 intr = intr_clear(); 967 while (!mutex_tryenter(&hpet_proxy_lock)) { 968 /* 969 * spin 970 */ 971 intr_restore(intr); 972 if (dead_count++ > hpet_spin_check) { 973 dead_count = 0; 974 if (gethrtime() > dead) { 975 hpet_expire_all(); 976 cmn_err(CE_NOTE, 977 "!hpet_cst_callback: deadman"); 978 return; 979 } 980 } 981 intr = intr_clear(); 982 } 983 hpet_expire_all(); 984 mutex_exit(&hpet_proxy_lock); 985 intr_restore(intr); 986 break; 987 988 case CST_EVENT_MULTIPLE_CSTATES: 989 hpet_state.uni_cstate = B_FALSE; 990 break; 991 992 default: 993 cmn_err(CE_NOTE, "!hpet_cst_callback: invalid code %d\n", code); 994 break; 995 } 996 } 997 998 /* 999 * Interrupt Service Routine for HPET I/O-APIC-generated interrupts. 1000 * Used to wakeup CPUs from Deep C-state when their Local APIC Timer stops. 1001 * This ISR runs on one CPU which pokes other CPUs out of Deep C-state as 1002 * needed. 1003 */ 1004 /* ARGSUSED */ 1005 static uint_t 1006 hpet_isr(char *arg) 1007 { 1008 uint64_t timer_status; 1009 uint64_t timer_mask; 1010 ulong_t intr, dead_count = 0; 1011 hrtime_t dead = gethrtime() + hpet_isr_spin_timeout; 1012 1013 timer_mask = HPET_INTR_STATUS_MASK(hpet_info.cstate_timer.timer); 1014 1015 /* 1016 * We are using a level-triggered interrupt. 1017 * HPET sets timer's General Interrupt Status Register bit N. 1018 * ISR checks this bit to see if it needs servicing. 1019 * ISR then clears this bit by writing 1 to that bit. 1020 */ 1021 timer_status = hpet_read_gen_intrpt_stat(&hpet_info); 1022 if (!(timer_status & timer_mask)) 1023 return (DDI_INTR_UNCLAIMED); 1024 hpet_write_gen_intrpt_stat(&hpet_info, timer_mask); 1025 1026 /* 1027 * Do not touch ISR data structures before checking the HPET's General 1028 * Interrupt Status register. The General Interrupt Status register 1029 * will not be set by hardware until after timer interrupt generation 1030 * is enabled by software. Software allocates necessary data 1031 * structures before enabling timer interrupts. ASSERT the software 1032 * data structures required to handle this interrupt are initialized. 1033 */ 1034 ASSERT(hpet_proxy_users != NULL); 1035 1036 /* 1037 * CPUs in deep c-states do not enable interrupts until after 1038 * performing idle cleanup which includes descheduling themselves from 1039 * the HPET. The CPU running this ISR will NEVER find itself in the 1040 * proxy list. A lost wakeup may occur if this is false. 1041 */ 1042 ASSERT(hpet_proxy_users[CPU->cpu_id] == HPET_INFINITY); 1043 1044 /* 1045 * Higher level interrupts may deadlock with CPUs going idle if this 1046 * ISR is prempted while holding hpet_proxy_lock. 1047 */ 1048 intr = intr_clear(); 1049 while (!mutex_tryenter(&hpet_proxy_lock)) { 1050 /* 1051 * spin 1052 */ 1053 intr_restore(intr); 1054 if (dead_count++ > hpet_spin_check) { 1055 dead_count = 0; 1056 if (gethrtime() > dead) { 1057 hpet_expire_all(); 1058 return (DDI_INTR_CLAIMED); 1059 } 1060 } 1061 intr = intr_clear(); 1062 } 1063 (void) hpet_guaranteed_schedule(HPET_INFINITY); 1064 mutex_exit(&hpet_proxy_lock); 1065 intr_restore(intr); 1066 1067 return (DDI_INTR_CLAIMED); 1068 } 1069 1070 /* 1071 * Used when disabling the HPET Timer interrupt. CPUs in Deep C-state must be 1072 * woken up because they can no longer rely on the HPET's Timer to wake them. 1073 * We do not need to wait for CPUs to wakeup. 1074 */ 1075 static void 1076 hpet_expire_all(void) 1077 { 1078 processorid_t id; 1079 1080 for (id = 0; id < ncpus; ++id) { 1081 if (hpet_proxy_users[id] != HPET_INFINITY) { 1082 hpet_proxy_users[id] = HPET_INFINITY; 1083 if (id != CPU->cpu_id) 1084 poke_cpu(id); 1085 } 1086 } 1087 } 1088 1089 /* 1090 * To avoid missed wakeups this function must guarantee either the HPET timer 1091 * was successfully programmed to the next expire time or there are no waiting 1092 * CPUs. 1093 * 1094 * Callers cannot enter C2 or deeper if the HPET could not be programmed to 1095 * generate its next interrupt to happen at required_wakeup_time or sooner. 1096 * Returns B_TRUE if the HPET was programmed to interrupt by 1097 * required_wakeup_time, B_FALSE if not. 1098 */ 1099 static boolean_t 1100 hpet_guaranteed_schedule(hrtime_t required_wakeup_time) 1101 { 1102 hrtime_t now, next_proxy_time; 1103 processorid_t id, next_proxy_id; 1104 int proxy_timer = hpet_info.cstate_timer.timer; 1105 boolean_t done = B_FALSE; 1106 1107 ASSERT(mutex_owned(&hpet_proxy_lock)); 1108 1109 /* 1110 * Loop until we successfully program the HPET, 1111 * or no CPUs are scheduled to use the HPET as a proxy. 1112 */ 1113 do { 1114 /* 1115 * Wake all CPUs that expired before now. 1116 * Find the next CPU to wake up and next HPET program time. 1117 */ 1118 now = gethrtime(); 1119 next_proxy_time = HPET_INFINITY; 1120 next_proxy_id = CPU->cpu_id; 1121 for (id = 0; id < ncpus; ++id) { 1122 if (hpet_proxy_users[id] < now) { 1123 hpet_proxy_users[id] = HPET_INFINITY; 1124 if (id != CPU->cpu_id) 1125 poke_cpu(id); 1126 } else if (hpet_proxy_users[id] < next_proxy_time) { 1127 next_proxy_time = hpet_proxy_users[id]; 1128 next_proxy_id = id; 1129 } 1130 } 1131 1132 if (next_proxy_time == HPET_INFINITY) { 1133 done = B_TRUE; 1134 /* 1135 * There are currently no CPUs using the HPET's Timer 1136 * as a proxy for their LAPIC Timer. The HPET's Timer 1137 * does not need to be programmed. 1138 * 1139 * Letting the HPET timer wrap around to the current 1140 * time is the longest possible timeout. 1141 * A 64-bit timer will wrap around in ~ 2^44 seconds. 1142 * A 32-bit timer will wrap around in ~ 2^12 seconds. 1143 * 1144 * Disabling the HPET's timer interrupt requires a 1145 * (relatively expensive) write to the HPET. 1146 * Instead we do nothing. 1147 * 1148 * We are gambling some CPU will attempt to enter a 1149 * deep c-state before the timer wraps around. 1150 * We assume one spurious interrupt in a little over an 1151 * hour has less performance impact than writing to the 1152 * HPET's timer disable bit every time all CPUs wakeup 1153 * from deep c-state. 1154 */ 1155 1156 } else { 1157 /* 1158 * Idle CPUs disable interrupts before programming the 1159 * HPET to prevent a lost wakeup if the HPET 1160 * interrupts the idle cpu before it can enter a 1161 * Deep C-State. 1162 */ 1163 if (hpet_timer_program(&hpet_info, proxy_timer, 1164 HRTIME_TO_HPET_TICKS(next_proxy_time - gethrtime())) 1165 != AE_OK) { 1166 /* 1167 * We could not program the HPET to wakeup the 1168 * next CPU. We must wake the CPU ourself to 1169 * avoid a lost wakeup. 1170 */ 1171 hpet_proxy_users[next_proxy_id] = HPET_INFINITY; 1172 if (next_proxy_id != CPU->cpu_id) 1173 poke_cpu(next_proxy_id); 1174 } else { 1175 done = B_TRUE; 1176 } 1177 } 1178 1179 } while (!done); 1180 1181 return (next_proxy_time <= required_wakeup_time); 1182 } 1183 1184 /* 1185 * Use an HPET timer to act as this CPU's proxy local APIC timer. 1186 * Used in deep c-states C2 and above while the CPU's local APIC timer stalls. 1187 * Called by the idle thread with interrupts enabled. 1188 * Always returns with interrupts disabled. 1189 * 1190 * There are 3 possible outcomes from this function: 1191 * 1. The Local APIC Timer was already disabled before this function was called. 1192 * LAPIC TIMER : disabled 1193 * HPET : not scheduled to wake this CPU 1194 * *lapic_expire : (hrtime_t)HPET_INFINITY 1195 * Returns : B_TRUE 1196 * 2. Successfully programmed the HPET to act as a LAPIC Timer proxy. 1197 * LAPIC TIMER : disabled 1198 * HPET : scheduled to wake this CPU 1199 * *lapic_expire : hrtime_t when LAPIC timer would have expired 1200 * Returns : B_TRUE 1201 * 3. Failed to programmed the HPET to act as a LAPIC Timer proxy. 1202 * LAPIC TIMER : enabled 1203 * HPET : not scheduled to wake this CPU 1204 * *lapic_expire : (hrtime_t)HPET_INFINITY 1205 * Returns : B_FALSE 1206 * 1207 * The idle thread cannot enter Deep C-State in case 3. 1208 * The idle thread must re-enable & re-program the LAPIC_TIMER in case 2. 1209 */ 1210 static boolean_t 1211 hpet_use_hpet_timer(hrtime_t *lapic_expire) 1212 { 1213 extern hrtime_t apic_timer_stop_count(void); 1214 extern void apic_timer_restart(hrtime_t); 1215 hrtime_t now, expire, dead; 1216 uint64_t lapic_count, dead_count; 1217 cpupart_t *cpu_part; 1218 processorid_t cpu_sid; 1219 processorid_t cpu_id = CPU->cpu_id; 1220 processorid_t id; 1221 boolean_t rslt; 1222 boolean_t hset_update; 1223 1224 cpu_part = CPU->cpu_part; 1225 cpu_sid = CPU->cpu_seqid; 1226 1227 ASSERT(CPU->cpu_thread == CPU->cpu_idle_thread); 1228 ASSERT(interrupts_enabled()); 1229 1230 /* 1231 * A critical section exists between when the HPET is programmed 1232 * to interrupt the CPU and when this CPU enters an idle state. 1233 * Interrupts must be blocked during that time to prevent lost 1234 * CBE wakeup interrupts from either LAPIC or HPET. 1235 * 1236 * Must block interrupts before acquiring hpet_proxy_lock to prevent 1237 * a deadlock with the ISR if the ISR runs on this CPU after the 1238 * idle thread acquires the mutex but before it clears interrupts. 1239 */ 1240 cli(); 1241 1242 lapic_count = apic_timer_stop_count(); 1243 now = gethrtime(); 1244 dead = now + hpet_idle_spin_timeout; 1245 *lapic_expire = expire = now + lapic_count; 1246 if (lapic_count == (hrtime_t)-1) { 1247 /* 1248 * LAPIC timer is currently disabled. 1249 * Will not use the HPET as a LAPIC Timer proxy. 1250 */ 1251 *lapic_expire = (hrtime_t)HPET_INFINITY; 1252 return (B_TRUE); 1253 } 1254 1255 /* 1256 * Serialize hpet_proxy data structure manipulation. 1257 */ 1258 dead_count = 0; 1259 while (!mutex_tryenter(&hpet_proxy_lock)) { 1260 /* 1261 * spin 1262 */ 1263 apic_timer_restart(expire); 1264 sti(); 1265 cli(); 1266 1267 if (dead_count++ > hpet_spin_check) { 1268 dead_count = 0; 1269 hset_update = (((CPU->cpu_flags & CPU_OFFLINE) == 0) && 1270 (ncpus > 1)); 1271 if (hset_update && 1272 !bitset_in_set(&cpu_part->cp_haltset, cpu_sid)) { 1273 *lapic_expire = (hrtime_t)HPET_INFINITY; 1274 return (B_FALSE); 1275 } 1276 } 1277 1278 lapic_count = apic_timer_stop_count(); 1279 now = gethrtime(); 1280 *lapic_expire = expire = now + lapic_count; 1281 if (lapic_count == (hrtime_t)-1) { 1282 /* 1283 * LAPIC timer is currently disabled. 1284 * Will not use the HPET as a LAPIC Timer proxy. 1285 */ 1286 *lapic_expire = (hrtime_t)HPET_INFINITY; 1287 return (B_TRUE); 1288 } 1289 if (now > dead) { 1290 apic_timer_restart(expire); 1291 *lapic_expire = (hrtime_t)HPET_INFINITY; 1292 return (B_FALSE); 1293 } 1294 } 1295 1296 if ((hpet_state.cpr == B_TRUE) || 1297 (hpet_state.cpu_deep_idle == B_FALSE) || 1298 (hpet_state.proxy_installed == B_FALSE) || 1299 (hpet_state.uni_cstate == B_TRUE)) { 1300 mutex_exit(&hpet_proxy_lock); 1301 apic_timer_restart(expire); 1302 *lapic_expire = (hrtime_t)HPET_INFINITY; 1303 return (B_FALSE); 1304 } 1305 1306 hpet_proxy_users[cpu_id] = expire; 1307 1308 /* 1309 * We are done if another cpu is scheduled on the HPET with an 1310 * expire time before us. The next HPET interrupt has been programmed 1311 * to fire before our expire time. 1312 */ 1313 for (id = 0; id < ncpus; ++id) { 1314 if ((hpet_proxy_users[id] <= expire) && (id != cpu_id)) { 1315 mutex_exit(&hpet_proxy_lock); 1316 return (B_TRUE); 1317 } 1318 } 1319 1320 /* 1321 * We are the next lAPIC to expire. 1322 * Program the HPET with our expire time. 1323 */ 1324 rslt = hpet_guaranteed_schedule(expire); 1325 mutex_exit(&hpet_proxy_lock); 1326 1327 if (rslt == B_FALSE) { 1328 apic_timer_restart(expire); 1329 *lapic_expire = (hrtime_t)HPET_INFINITY; 1330 } 1331 1332 return (rslt); 1333 } 1334 1335 /* 1336 * Called by the idle thread when waking up from Deep C-state before enabling 1337 * interrupts. With an array data structure it is faster to always remove 1338 * ourself from the array without checking if the HPET ISR already removed. 1339 * 1340 * We use a lazy algorithm for removing CPUs from the HPET's schedule. 1341 * We do not reprogram the HPET here because this CPU has real work to do. 1342 * On a idle system the CPU was probably woken up by the HPET's ISR. 1343 * On a heavily loaded system CPUs are not going into Deep C-state. 1344 * On a moderately loaded system another CPU will usually enter Deep C-state 1345 * and reprogram the HPET before the HPET fires with our wakeup. 1346 */ 1347 static void 1348 hpet_use_lapic_timer(hrtime_t expire) 1349 { 1350 extern void apic_timer_restart(hrtime_t); 1351 processorid_t cpu_id = CPU->cpu_id; 1352 1353 ASSERT(CPU->cpu_thread == CPU->cpu_idle_thread); 1354 ASSERT(!interrupts_enabled()); 1355 1356 hpet_proxy_users[cpu_id] = HPET_INFINITY; 1357 1358 /* 1359 * Do not enable a LAPIC Timer that was initially disabled. 1360 */ 1361 if (expire != HPET_INFINITY) 1362 apic_timer_restart(expire); 1363 1364 sti(); 1365 } 1366 1367 /* 1368 * Initialize data structure to keep track of CPUs using HPET as a proxy for 1369 * their stalled local APIC timer. For now this is just an array. 1370 */ 1371 static void 1372 hpet_init_proxy_data(void) 1373 { 1374 processorid_t id; 1375 1376 /* 1377 * Use apic_nproc because we are in boot before max_ncpus has been 1378 * initialized. 1379 */ 1380 hpet_proxy_users = kmem_zalloc(apic_nproc * sizeof (*hpet_proxy_users), 1381 KM_SLEEP); 1382 1383 /* 1384 * Unused entries always contain HPET_INFINITY. 1385 */ 1386 for (id = 0; id < apic_nproc; ++id) 1387 hpet_proxy_users[id] = HPET_INFINITY; 1388 } 1389