1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 /* 30 * Copyright (c) 2017, Joyent, Inc. All rights reserved. 31 */ 32 33 /* 34 * To understand how the apix module interacts with the interrupt subsystem read 35 * the theory statement in uts/i86pc/os/intr.c. 36 */ 37 38 /* 39 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 40 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 41 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 42 * PSMI 1.5 extensions are supported in Solaris Nevada. 43 * PSMI 1.6 extensions are supported in Solaris Nevada. 44 * PSMI 1.7 extensions are supported in Solaris Nevada. 45 */ 46 #define PSMI_1_7 47 48 #include <sys/processor.h> 49 #include <sys/time.h> 50 #include <sys/psm.h> 51 #include <sys/smp_impldefs.h> 52 #include <sys/cram.h> 53 #include <sys/acpi/acpi.h> 54 #include <sys/acpica.h> 55 #include <sys/psm_common.h> 56 #include <sys/pit.h> 57 #include <sys/ddi.h> 58 #include <sys/sunddi.h> 59 #include <sys/ddi_impldefs.h> 60 #include <sys/pci.h> 61 #include <sys/promif.h> 62 #include <sys/x86_archext.h> 63 #include <sys/cpc_impl.h> 64 #include <sys/uadmin.h> 65 #include <sys/panic.h> 66 #include <sys/debug.h> 67 #include <sys/archsystm.h> 68 #include <sys/trap.h> 69 #include <sys/machsystm.h> 70 #include <sys/sysmacros.h> 71 #include <sys/cpuvar.h> 72 #include <sys/rm_platter.h> 73 #include <sys/privregs.h> 74 #include <sys/note.h> 75 #include <sys/pci_intr_lib.h> 76 #include <sys/spl.h> 77 #include <sys/clock.h> 78 #include <sys/cyclic.h> 79 #include <sys/dditypes.h> 80 #include <sys/sunddi.h> 81 #include <sys/x_call.h> 82 #include <sys/reboot.h> 83 #include <sys/mach_intr.h> 84 #include <sys/apix.h> 85 #include <sys/apix_irm_impl.h> 86 87 static int apix_probe(); 88 static void apix_init(); 89 static void apix_picinit(void); 90 static int apix_intr_enter(int, int *); 91 static void apix_intr_exit(int, int); 92 static void apix_setspl(int); 93 static int apix_disable_intr(processorid_t); 94 static void apix_enable_intr(processorid_t); 95 static int apix_get_clkvect(int); 96 static int apix_get_ipivect(int, int); 97 static void apix_post_cyclic_setup(void *); 98 static int apix_post_cpu_start(); 99 static int apix_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *, 100 psm_intr_op_t, int *); 101 102 /* 103 * Helper functions for apix_intr_ops() 104 */ 105 static void apix_redistribute_compute(void); 106 static int apix_get_pending(apix_vector_t *); 107 static apix_vector_t *apix_get_req_vector(ddi_intr_handle_impl_t *, ushort_t); 108 static int apix_get_intr_info(ddi_intr_handle_impl_t *, apic_get_intr_t *); 109 static char *apix_get_apic_type(void); 110 static int apix_intx_get_pending(int); 111 static void apix_intx_set_mask(int irqno); 112 static void apix_intx_clear_mask(int irqno); 113 static int apix_intx_get_shared(int irqno); 114 static void apix_intx_set_shared(int irqno, int delta); 115 static apix_vector_t *apix_intx_xlate_vector(dev_info_t *, int, 116 struct intrspec *); 117 static int apix_intx_alloc_vector(dev_info_t *, int, struct intrspec *); 118 119 extern int apic_clkinit(int); 120 121 /* IRM initialization for APIX PSM module */ 122 extern void apix_irm_init(void); 123 124 extern int irm_enable; 125 126 /* 127 * Local static data 128 */ 129 static struct psm_ops apix_ops = { 130 apix_probe, 131 132 apix_init, 133 apix_picinit, 134 apix_intr_enter, 135 apix_intr_exit, 136 apix_setspl, 137 apix_addspl, 138 apix_delspl, 139 apix_disable_intr, 140 apix_enable_intr, 141 NULL, /* psm_softlvl_to_irq */ 142 NULL, /* psm_set_softintr */ 143 144 apic_set_idlecpu, 145 apic_unset_idlecpu, 146 147 apic_clkinit, 148 apix_get_clkvect, 149 NULL, /* psm_hrtimeinit */ 150 apic_gethrtime, 151 152 apic_get_next_processorid, 153 apic_cpu_start, 154 apix_post_cpu_start, 155 apic_shutdown, 156 apix_get_ipivect, 157 apic_send_ipi, 158 159 NULL, /* psm_translate_irq */ 160 NULL, /* psm_notify_error */ 161 NULL, /* psm_notify_func */ 162 apic_timer_reprogram, 163 apic_timer_enable, 164 apic_timer_disable, 165 apix_post_cyclic_setup, 166 apic_preshutdown, 167 apix_intr_ops, /* Advanced DDI Interrupt framework */ 168 apic_state, /* save, restore apic state for S3 */ 169 apic_cpu_ops, /* CPU control interface. */ 170 }; 171 172 struct psm_ops *psmops = &apix_ops; 173 174 static struct psm_info apix_psm_info = { 175 PSM_INFO_VER01_7, /* version */ 176 PSM_OWN_EXCLUSIVE, /* ownership */ 177 &apix_ops, /* operation */ 178 APIX_NAME, /* machine name */ 179 "apix MPv1.4 compatible", 180 }; 181 182 static void *apix_hdlp; 183 184 static int apix_is_enabled = 0; 185 186 /* 187 * Flag to indicate if APIX is to be enabled only for platforms 188 * with specific hw feature(s). 189 */ 190 int apix_hw_chk_enable = 1; 191 192 /* 193 * Hw features that are checked for enabling APIX support. 194 */ 195 #define APIX_SUPPORT_X2APIC 0x00000001 196 uint_t apix_supported_hw = APIX_SUPPORT_X2APIC; 197 198 /* 199 * apix_lock is used for cpu selection and vector re-binding 200 */ 201 lock_t apix_lock; 202 apix_impl_t *apixs[NCPU]; 203 /* 204 * Mapping between device interrupt and the allocated vector. Indexed 205 * by major number. 206 */ 207 apix_dev_vector_t **apix_dev_vector; 208 /* 209 * Mapping between device major number and cpu id. It gets used 210 * when interrupt binding policy round robin with affinity is 211 * applied. With that policy, devices with the same major number 212 * will be bound to the same CPU. 213 */ 214 processorid_t *apix_major_to_cpu; /* major to cpu mapping */ 215 kmutex_t apix_mutex; /* for apix_dev_vector & apix_major_to_cpu */ 216 217 int apix_nipis = 16; /* Maximum number of IPIs */ 218 /* 219 * Maximum number of vectors in a CPU that can be used for interrupt 220 * allocation (including IPIs and the reserved vectors). 221 */ 222 int apix_cpu_nvectors = APIX_NVECTOR; 223 224 /* number of CPUs in power-on transition state */ 225 static int apic_poweron_cnt = 0; 226 227 /* gcpu.h */ 228 229 extern void apic_do_interrupt(struct regs *rp, trap_trace_rec_t *ttp); 230 extern void apic_change_eoi(); 231 232 /* 233 * This is the loadable module wrapper 234 */ 235 236 int 237 _init(void) 238 { 239 if (apic_coarse_hrtime) 240 apix_ops.psm_gethrtime = &apic_gettime; 241 return (psm_mod_init(&apix_hdlp, &apix_psm_info)); 242 } 243 244 int 245 _fini(void) 246 { 247 return (psm_mod_fini(&apix_hdlp, &apix_psm_info)); 248 } 249 250 int 251 _info(struct modinfo *modinfop) 252 { 253 return (psm_mod_info(&apix_hdlp, &apix_psm_info, modinfop)); 254 } 255 256 static int 257 apix_probe() 258 { 259 int rval; 260 261 if (apix_enable == 0) 262 return (PSM_FAILURE); 263 264 /* 265 * FIXME Temporarily disable apix module on Xen HVM platform due to 266 * known hang during boot (see #3605). 267 * 268 * Please remove when/if the issue is resolved. 269 */ 270 if (get_hwenv() & HW_XEN_HVM) 271 return (PSM_FAILURE); 272 273 /* check for hw features if specified */ 274 if (apix_hw_chk_enable) { 275 /* check if x2APIC mode is supported */ 276 if ((apix_supported_hw & APIX_SUPPORT_X2APIC) == 277 APIX_SUPPORT_X2APIC) { 278 if (apic_local_mode() == LOCAL_X2APIC) { 279 /* x2APIC mode activated by BIOS, switch ops */ 280 apic_mode = LOCAL_X2APIC; 281 apic_change_ops(); 282 } else if (!apic_detect_x2apic()) { 283 /* x2APIC mode is not supported in the hw */ 284 apix_enable = 0; 285 } 286 } 287 if (apix_enable == 0) 288 return (PSM_FAILURE); 289 } 290 291 rval = apic_probe_common(apix_psm_info.p_mach_idstring); 292 if (rval == PSM_SUCCESS) 293 apix_is_enabled = 1; 294 else 295 apix_is_enabled = 0; 296 return (rval); 297 } 298 299 /* 300 * Initialize the data structures needed by pcplusmpx module. 301 * Specifically, the data structures used by addspl() and delspl() 302 * routines. 303 */ 304 static void 305 apix_softinit() 306 { 307 int i, *iptr; 308 apix_impl_t *hdlp; 309 int nproc; 310 311 nproc = max(apic_nproc, apic_max_nproc); 312 313 hdlp = kmem_zalloc(nproc * sizeof (apix_impl_t), KM_SLEEP); 314 for (i = 0; i < nproc; i++) { 315 apixs[i] = &hdlp[i]; 316 apixs[i]->x_cpuid = i; 317 LOCK_INIT_CLEAR(&apixs[i]->x_lock); 318 } 319 320 /* cpu 0 is always up (for now) */ 321 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; 322 323 iptr = (int *)&apic_irq_table[0]; 324 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 325 apic_level_intr[i] = 0; 326 *iptr++ = NULL; 327 } 328 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL); 329 330 apix_dev_vector = kmem_zalloc(sizeof (apix_dev_vector_t *) * devcnt, 331 KM_SLEEP); 332 333 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) { 334 apix_major_to_cpu = kmem_zalloc(sizeof (int) * devcnt, 335 KM_SLEEP); 336 for (i = 0; i < devcnt; i++) 337 apix_major_to_cpu[i] = IRQ_UNINIT; 338 } 339 340 mutex_init(&apix_mutex, NULL, MUTEX_DEFAULT, NULL); 341 } 342 343 static int 344 apix_get_pending_spl(void) 345 { 346 int cpuid = CPU->cpu_id; 347 348 return (bsrw_insn(apixs[cpuid]->x_intr_pending)); 349 } 350 351 static uintptr_t 352 apix_get_intr_handler(int cpu, short vec) 353 { 354 apix_vector_t *apix_vector; 355 356 ASSERT(cpu < apic_nproc && vec < APIX_NVECTOR); 357 if (cpu >= apic_nproc) 358 return (NULL); 359 360 apix_vector = apixs[cpu]->x_vectbl[vec]; 361 362 return ((uintptr_t)(apix_vector->v_autovect)); 363 } 364 365 static void 366 apix_init() 367 { 368 extern void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *); 369 370 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_softinit\n")); 371 372 do_interrupt_common = apix_do_interrupt; 373 addintr = apix_add_avintr; 374 remintr = apix_rem_avintr; 375 get_pending_spl = apix_get_pending_spl; 376 get_intr_handler = apix_get_intr_handler; 377 psm_get_localapicid = apic_get_localapicid; 378 psm_get_ioapicid = apic_get_ioapicid; 379 380 apix_softinit(); 381 382 #if !defined(__amd64) 383 if (cpuid_have_cr8access(CPU)) 384 apic_have_32bit_cr8 = 1; 385 #endif 386 387 /* 388 * Initialize IRM pool parameters 389 */ 390 if (irm_enable) { 391 int i; 392 int lowest_irq; 393 int highest_irq; 394 395 /* number of CPUs present */ 396 apix_irminfo.apix_ncpus = apic_nproc; 397 /* total number of entries in all of the IOAPICs present */ 398 lowest_irq = apic_io_vectbase[0]; 399 highest_irq = apic_io_vectend[0]; 400 for (i = 1; i < apic_io_max; i++) { 401 if (apic_io_vectbase[i] < lowest_irq) 402 lowest_irq = apic_io_vectbase[i]; 403 if (apic_io_vectend[i] > highest_irq) 404 highest_irq = apic_io_vectend[i]; 405 } 406 apix_irminfo.apix_ioapic_max_vectors = 407 highest_irq - lowest_irq + 1; 408 /* 409 * Number of available per-CPU vectors excluding 410 * reserved vectors for Dtrace, int80, system-call, 411 * fast-trap, etc. 412 */ 413 apix_irminfo.apix_per_cpu_vectors = APIX_NAVINTR - 414 APIX_SW_RESERVED_VECTORS; 415 416 /* Number of vectors (pre) allocated (SCI and HPET) */ 417 apix_irminfo.apix_vectors_allocated = 0; 418 if (apic_hpet_vect != -1) 419 apix_irminfo.apix_vectors_allocated++; 420 if (apic_sci_vect != -1) 421 apix_irminfo.apix_vectors_allocated++; 422 } 423 } 424 425 static void 426 apix_init_intr() 427 { 428 processorid_t cpun = psm_get_cpu_id(); 429 uint_t nlvt; 430 uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR; 431 extern void cmi_cmci_trap(void); 432 433 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 434 435 if (apic_mode == LOCAL_APIC) { 436 /* 437 * We are running APIC in MMIO mode. 438 */ 439 if (apic_flat_model) { 440 apic_reg_ops->apic_write(APIC_FORMAT_REG, 441 APIC_FLAT_MODEL); 442 } else { 443 apic_reg_ops->apic_write(APIC_FORMAT_REG, 444 APIC_CLUSTER_MODEL); 445 } 446 447 apic_reg_ops->apic_write(APIC_DEST_REG, 448 AV_HIGH_ORDER >> cpun); 449 } 450 451 if (apic_directed_EOI_supported()) { 452 /* 453 * Setting the 12th bit in the Spurious Interrupt Vector 454 * Register suppresses broadcast EOIs generated by the local 455 * APIC. The suppression of broadcast EOIs happens only when 456 * interrupts are level-triggered. 457 */ 458 svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI; 459 } 460 461 /* need to enable APIC before unmasking NMI */ 462 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr); 463 464 /* 465 * Presence of an invalid vector with delivery mode AV_FIXED can 466 * cause an error interrupt, even if the entry is masked...so 467 * write a valid vector to LVT entries along with the mask bit 468 */ 469 470 /* All APICs have timer and LINT0/1 */ 471 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ); 472 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ); 473 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */ 474 475 /* 476 * On integrated APICs, the number of LVT entries is 477 * 'Max LVT entry' + 1; on 82489DX's (non-integrated 478 * APICs), nlvt is "3" (LINT0, LINT1, and timer) 479 */ 480 481 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { 482 nlvt = 3; 483 } else { 484 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) & 485 0xFF) + 1; 486 } 487 488 if (nlvt >= 5) { 489 /* Enable performance counter overflow interrupt */ 490 491 if (!is_x86_feature(x86_featureset, X86FSET_MSR)) 492 apic_enable_cpcovf_intr = 0; 493 if (apic_enable_cpcovf_intr) { 494 if (apic_cpcovf_vect == 0) { 495 int ipl = APIC_PCINT_IPL; 496 497 apic_cpcovf_vect = apix_get_ipivect(ipl, -1); 498 ASSERT(apic_cpcovf_vect); 499 500 (void) add_avintr(NULL, ipl, 501 (avfunc)kcpc_hw_overflow_intr, 502 "apic pcint", apic_cpcovf_vect, 503 NULL, NULL, NULL, NULL); 504 kcpc_hw_overflow_intr_installed = 1; 505 kcpc_hw_enable_cpc_intr = 506 apic_cpcovf_mask_clear; 507 } 508 apic_reg_ops->apic_write(APIC_PCINT_VECT, 509 apic_cpcovf_vect); 510 } 511 } 512 513 if (nlvt >= 6) { 514 /* Only mask TM intr if the BIOS apparently doesn't use it */ 515 516 uint32_t lvtval; 517 518 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT); 519 if (((lvtval & AV_MASK) == AV_MASK) || 520 ((lvtval & AV_DELIV_MODE) != AV_SMI)) { 521 apic_reg_ops->apic_write(APIC_THERM_VECT, 522 AV_MASK|APIC_RESV_IRQ); 523 } 524 } 525 526 /* Enable error interrupt */ 527 528 if (nlvt >= 4 && apic_enable_error_intr) { 529 if (apic_errvect == 0) { 530 int ipl = 0xf; /* get highest priority intr */ 531 apic_errvect = apix_get_ipivect(ipl, -1); 532 ASSERT(apic_errvect); 533 /* 534 * Not PSMI compliant, but we are going to merge 535 * with ON anyway 536 */ 537 (void) add_avintr(NULL, ipl, 538 (avfunc)apic_error_intr, "apic error intr", 539 apic_errvect, NULL, NULL, NULL, NULL); 540 } 541 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect); 542 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 543 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 544 } 545 546 /* Enable CMCI interrupt */ 547 if (cmi_enable_cmci) { 548 mutex_enter(&cmci_cpu_setup_lock); 549 if (cmci_cpu_setup_registered == 0) { 550 mutex_enter(&cpu_lock); 551 register_cpu_setup_func(cmci_cpu_setup, NULL); 552 mutex_exit(&cpu_lock); 553 cmci_cpu_setup_registered = 1; 554 } 555 mutex_exit(&cmci_cpu_setup_lock); 556 557 if (apic_cmci_vect == 0) { 558 int ipl = 0x2; 559 apic_cmci_vect = apix_get_ipivect(ipl, -1); 560 ASSERT(apic_cmci_vect); 561 562 (void) add_avintr(NULL, ipl, 563 (avfunc)cmi_cmci_trap, "apic cmci intr", 564 apic_cmci_vect, NULL, NULL, NULL, NULL); 565 } 566 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); 567 } 568 569 apic_reg_ops->apic_write_task_reg(0); 570 } 571 572 static void 573 apix_picinit(void) 574 { 575 int i, j; 576 uint_t isr; 577 578 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_picinit\n")); 579 580 /* 581 * initialize interrupt remapping before apic 582 * hardware initialization 583 */ 584 apic_intrmap_init(apic_mode); 585 if (apic_vt_ops == psm_vt_ops) 586 apix_mul_ioapic_method = APIC_MUL_IOAPIC_IIR; 587 588 /* 589 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr 590 * bit on without clearing it with EOI. Since softint 591 * uses vector 0x20 to interrupt itself, so softint will 592 * not work on this machine. In order to fix this problem 593 * a check is made to verify all the isr bits are clear. 594 * If not, EOIs are issued to clear the bits. 595 */ 596 for (i = 7; i >= 1; i--) { 597 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4)); 598 if (isr != 0) 599 for (j = 0; ((j < 32) && (isr != 0)); j++) 600 if (isr & (1 << j)) { 601 apic_reg_ops->apic_write( 602 APIC_EOI_REG, 0); 603 isr &= ~(1 << j); 604 apic_error |= APIC_ERR_BOOT_EOI; 605 } 606 } 607 608 /* set a flag so we know we have run apic_picinit() */ 609 apic_picinit_called = 1; 610 LOCK_INIT_CLEAR(&apic_gethrtime_lock); 611 LOCK_INIT_CLEAR(&apic_ioapic_lock); 612 LOCK_INIT_CLEAR(&apic_error_lock); 613 LOCK_INIT_CLEAR(&apic_mode_switch_lock); 614 615 picsetup(); /* initialise the 8259 */ 616 617 /* add nmi handler - least priority nmi handler */ 618 LOCK_INIT_CLEAR(&apic_nmi_lock); 619 620 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr, 621 "apix NMI handler", (caddr_t)NULL)) 622 cmn_err(CE_WARN, "apix: Unable to add nmi handler"); 623 624 apix_init_intr(); 625 626 /* enable apic mode if imcr present */ 627 if (apic_imcrp) { 628 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 629 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); 630 } 631 632 ioapix_init_intr(IOAPIC_MASK); 633 634 /* setup global IRM pool if applicable */ 635 if (irm_enable) 636 apix_irm_init(); 637 } 638 639 static __inline__ void 640 apix_send_eoi(void) 641 { 642 if (apic_mode == LOCAL_APIC) 643 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); 644 else 645 X2APIC_WRITE(APIC_EOI_REG, 0); 646 } 647 648 /* 649 * platform_intr_enter 650 * 651 * Called at the beginning of the interrupt service routine, but unlike 652 * pcplusmp, does not mask interrupts. An EOI is given to the interrupt 653 * controller to enable other HW interrupts but interrupts are still 654 * masked by the IF flag. 655 * 656 * Return -1 for spurious interrupts 657 * 658 */ 659 static int 660 apix_intr_enter(int ipl, int *vectorp) 661 { 662 struct cpu *cpu = CPU; 663 uint32_t cpuid = CPU->cpu_id; 664 apic_cpus_info_t *cpu_infop; 665 uchar_t vector; 666 apix_vector_t *vecp; 667 int nipl = -1; 668 669 /* 670 * The real vector delivered is (*vectorp + 0x20), but our caller 671 * subtracts 0x20 from the vector before passing it to us. 672 * (That's why APIC_BASE_VECT is 0x20.) 673 */ 674 vector = *vectorp = (uchar_t)*vectorp + APIC_BASE_VECT; 675 676 cpu_infop = &apic_cpus[cpuid]; 677 if (vector == APIC_SPUR_INTR) { 678 cpu_infop->aci_spur_cnt++; 679 return (APIC_INT_SPURIOUS); 680 } 681 682 vecp = xv_vector(cpuid, vector); 683 if (vecp == NULL) { 684 if (APIX_IS_FAKE_INTR(vector)) 685 nipl = apix_rebindinfo.i_pri; 686 apix_send_eoi(); 687 return (nipl); 688 } 689 nipl = vecp->v_pri; 690 691 /* if interrupted by the clock, increment apic_nsec_since_boot */ 692 if (vector == (apic_clkvect + APIC_BASE_VECT)) { 693 if (!apic_oneshot) { 694 /* NOTE: this is not MT aware */ 695 apic_hrtime_stamp++; 696 apic_nsec_since_boot += apic_nsec_per_intr; 697 apic_hrtime_stamp++; 698 last_count_read = apic_hertz_count; 699 apix_redistribute_compute(); 700 } 701 702 apix_send_eoi(); 703 704 return (nipl); 705 } 706 707 ASSERT(vecp->v_state != APIX_STATE_OBSOLETED); 708 709 /* pre-EOI handling for level-triggered interrupts */ 710 if (!APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method) && 711 (vecp->v_type & APIX_TYPE_FIXED) && apic_level_intr[vecp->v_inum]) 712 apix_level_intr_pre_eoi(vecp->v_inum); 713 714 /* send back EOI */ 715 apix_send_eoi(); 716 717 cpu_infop->aci_current[nipl] = vector; 718 if ((nipl > ipl) && (nipl > cpu->cpu_base_spl)) { 719 cpu_infop->aci_curipl = (uchar_t)nipl; 720 cpu_infop->aci_ISR_in_progress |= 1 << nipl; 721 } 722 723 #ifdef DEBUG 724 if (vector >= APIX_IPI_MIN) 725 return (nipl); /* skip IPI */ 726 727 APIC_DEBUG_BUF_PUT(vector); 728 APIC_DEBUG_BUF_PUT(vecp->v_inum); 729 APIC_DEBUG_BUF_PUT(nipl); 730 APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); 731 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) 732 drv_usecwait(apic_stretch_interrupts); 733 #endif /* DEBUG */ 734 735 return (nipl); 736 } 737 738 /* 739 * Any changes made to this function must also change X2APIC 740 * version of intr_exit. 741 */ 742 static void 743 apix_intr_exit(int prev_ipl, int arg2) 744 { 745 int cpuid = psm_get_cpu_id(); 746 apic_cpus_info_t *cpu_infop = &apic_cpus[cpuid]; 747 apix_impl_t *apixp = apixs[cpuid]; 748 749 UNREFERENCED_1PARAMETER(arg2); 750 751 cpu_infop->aci_curipl = (uchar_t)prev_ipl; 752 /* ISR above current pri could not be in progress */ 753 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; 754 755 if (apixp->x_obsoletes != NULL) { 756 if (APIX_CPU_LOCK_HELD(cpuid)) 757 return; 758 759 APIX_ENTER_CPU_LOCK(cpuid); 760 (void) apix_obsolete_vector(apixp->x_obsoletes); 761 APIX_LEAVE_CPU_LOCK(cpuid); 762 } 763 } 764 765 /* 766 * The pcplusmp setspl code uses the TPR to mask all interrupts at or below the 767 * given ipl, but apix never uses the TPR and we never mask a subset of the 768 * interrupts. They are either all blocked by the IF flag or all can come in. 769 * 770 * For setspl, we mask all interrupts for XC_HI_PIL (15), otherwise, interrupts 771 * can come in if currently enabled by the IF flag. This table shows the state 772 * of the IF flag when we leave this function. 773 * 774 * curr IF | ipl == 15 ipl != 15 775 * --------+--------------------------- 776 * 0 | 0 0 777 * 1 | 0 1 778 */ 779 static void 780 apix_setspl(int ipl) 781 { 782 /* 783 * Interrupts at ipl above this cannot be in progress, so the following 784 * mask is ok. 785 */ 786 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 787 788 if (ipl == XC_HI_PIL) 789 cli(); 790 } 791 792 int 793 apix_addspl(int virtvec, int ipl, int min_ipl, int max_ipl) 794 { 795 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec); 796 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec); 797 apix_vector_t *vecp = xv_vector(cpuid, vector); 798 799 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl); 800 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock)); 801 802 if (vecp->v_type == APIX_TYPE_FIXED) 803 apix_intx_set_shared(vecp->v_inum, 1); 804 805 /* There are more interrupts, so it's already been enabled */ 806 if (vecp->v_share > 1) 807 return (PSM_SUCCESS); 808 809 /* return if it is not hardware interrupt */ 810 if (vecp->v_type == APIX_TYPE_IPI) 811 return (PSM_SUCCESS); 812 813 /* 814 * if apix_picinit() has not been called yet, just return. 815 * At the end of apic_picinit(), we will call setup_io_intr(). 816 */ 817 if (!apic_picinit_called) 818 return (PSM_SUCCESS); 819 820 (void) apix_setup_io_intr(vecp); 821 822 return (PSM_SUCCESS); 823 } 824 825 int 826 apix_delspl(int virtvec, int ipl, int min_ipl, int max_ipl) 827 { 828 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec); 829 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec); 830 apix_vector_t *vecp = xv_vector(cpuid, vector); 831 832 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl); 833 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock)); 834 835 if (vecp->v_type == APIX_TYPE_FIXED) 836 apix_intx_set_shared(vecp->v_inum, -1); 837 838 /* There are more interrupts */ 839 if (vecp->v_share > 1) 840 return (PSM_SUCCESS); 841 842 /* return if it is not hardware interrupt */ 843 if (vecp->v_type == APIX_TYPE_IPI) 844 return (PSM_SUCCESS); 845 846 if (!apic_picinit_called) { 847 cmn_err(CE_WARN, "apix: delete 0x%x before apic init", 848 virtvec); 849 return (PSM_SUCCESS); 850 } 851 852 apix_disable_vector(vecp); 853 854 return (PSM_SUCCESS); 855 } 856 857 /* 858 * Try and disable all interrupts. We just assign interrupts to other 859 * processors based on policy. If any were bound by user request, we 860 * let them continue and return failure. We do not bother to check 861 * for cache affinity while rebinding. 862 */ 863 static int 864 apix_disable_intr(processorid_t cpun) 865 { 866 apix_impl_t *apixp = apixs[cpun]; 867 apix_vector_t *vecp, *newp; 868 int bindcpu, i, hardbound = 0, errbound = 0, ret, loop, type; 869 870 lock_set(&apix_lock); 871 872 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; 873 apic_cpus[cpun].aci_curipl = 0; 874 875 /* if this is for SUSPEND operation, skip rebinding */ 876 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) { 877 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 878 vecp = apixp->x_vectbl[i]; 879 if (!IS_VECT_ENABLED(vecp)) 880 continue; 881 882 apix_disable_vector(vecp); 883 } 884 lock_clear(&apix_lock); 885 return (PSM_SUCCESS); 886 } 887 888 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 889 vecp = apixp->x_vectbl[i]; 890 if (!IS_VECT_ENABLED(vecp)) 891 continue; 892 893 if (vecp->v_flags & APIX_VECT_USER_BOUND) { 894 hardbound++; 895 continue; 896 } 897 type = vecp->v_type; 898 899 /* 900 * If there are bound interrupts on this cpu, then 901 * rebind them to other processors. 902 */ 903 loop = 0; 904 do { 905 bindcpu = apic_find_cpu(APIC_CPU_INTR_ENABLE); 906 907 if (type != APIX_TYPE_MSI) 908 newp = apix_set_cpu(vecp, bindcpu, &ret); 909 else 910 newp = apix_grp_set_cpu(vecp, bindcpu, &ret); 911 } while ((newp == NULL) && (loop++ < apic_nproc)); 912 913 if (loop >= apic_nproc) { 914 errbound++; 915 cmn_err(CE_WARN, "apix: failed to rebind vector %x/%x", 916 vecp->v_cpuid, vecp->v_vector); 917 } 918 } 919 920 lock_clear(&apix_lock); 921 922 if (hardbound || errbound) { 923 cmn_err(CE_WARN, "Could not disable interrupts on %d" 924 "due to user bound interrupts or failed operation", 925 cpun); 926 return (PSM_FAILURE); 927 } 928 929 return (PSM_SUCCESS); 930 } 931 932 /* 933 * Bind interrupts to specified CPU 934 */ 935 static void 936 apix_enable_intr(processorid_t cpun) 937 { 938 apix_vector_t *vecp; 939 int i, ret; 940 processorid_t n; 941 942 lock_set(&apix_lock); 943 944 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; 945 946 /* interrupt enabling for system resume */ 947 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) { 948 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 949 vecp = xv_vector(cpun, i); 950 if (!IS_VECT_ENABLED(vecp)) 951 continue; 952 953 apix_enable_vector(vecp); 954 } 955 apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND; 956 } 957 958 for (n = 0; n < apic_nproc; n++) { 959 if (!apic_cpu_in_range(n) || n == cpun || 960 (apic_cpus[n].aci_status & APIC_CPU_INTR_ENABLE) == 0) 961 continue; 962 963 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 964 vecp = xv_vector(n, i); 965 if (!IS_VECT_ENABLED(vecp) || 966 vecp->v_bound_cpuid != cpun) 967 continue; 968 969 if (vecp->v_type != APIX_TYPE_MSI) 970 (void) apix_set_cpu(vecp, cpun, &ret); 971 else 972 (void) apix_grp_set_cpu(vecp, cpun, &ret); 973 } 974 } 975 976 lock_clear(&apix_lock); 977 } 978 979 /* 980 * Allocate vector for IPI 981 * type == -1 indicates it is an internal request. Do not change 982 * resv_vector for these requests. 983 */ 984 static int 985 apix_get_ipivect(int ipl, int type) 986 { 987 uchar_t vector; 988 989 if ((vector = apix_alloc_ipi(ipl)) > 0) { 990 if (type != -1) 991 apic_resv_vector[ipl] = vector; 992 return (vector); 993 } 994 apic_error |= APIC_ERR_GET_IPIVECT_FAIL; 995 return (-1); /* shouldn't happen */ 996 } 997 998 static int 999 apix_get_clkvect(int ipl) 1000 { 1001 int vector; 1002 1003 if ((vector = apix_get_ipivect(ipl, -1)) == -1) 1004 return (-1); 1005 1006 apic_clkvect = vector - APIC_BASE_VECT; 1007 APIC_VERBOSE(IPI, (CE_CONT, "apix: clock vector = %x\n", 1008 apic_clkvect)); 1009 return (vector); 1010 } 1011 1012 static int 1013 apix_post_cpu_start() 1014 { 1015 int cpun; 1016 static int cpus_started = 1; 1017 1018 /* We know this CPU + BSP started successfully. */ 1019 cpus_started++; 1020 1021 /* 1022 * On BSP we would have enabled X2APIC, if supported by processor, 1023 * in acpi_probe(), but on AP we do it here. 1024 * 1025 * We enable X2APIC mode only if BSP is running in X2APIC & the 1026 * local APIC mode of the current CPU is MMIO (xAPIC). 1027 */ 1028 if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() && 1029 apic_local_mode() == LOCAL_APIC) { 1030 apic_enable_x2apic(); 1031 } 1032 1033 /* 1034 * Switch back to x2apic IPI sending method for performance when target 1035 * CPU has entered x2apic mode. 1036 */ 1037 if (apic_mode == LOCAL_X2APIC) { 1038 apic_switch_ipi_callback(B_FALSE); 1039 } 1040 1041 splx(ipltospl(LOCK_LEVEL)); 1042 apix_init_intr(); 1043 1044 /* 1045 * since some systems don't enable the internal cache on the non-boot 1046 * cpus, so we have to enable them here 1047 */ 1048 setcr0(getcr0() & ~(CR0_CD | CR0_NW)); 1049 1050 #ifdef DEBUG 1051 APIC_AV_PENDING_SET(); 1052 #else 1053 if (apic_mode == LOCAL_APIC) 1054 APIC_AV_PENDING_SET(); 1055 #endif /* DEBUG */ 1056 1057 /* 1058 * We may be booting, or resuming from suspend; aci_status will 1059 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the 1060 * APIC_CPU_ONLINE flag here rather than setting aci_status completely. 1061 */ 1062 cpun = psm_get_cpu_id(); 1063 apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE; 1064 1065 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); 1066 1067 return (PSM_SUCCESS); 1068 } 1069 1070 /* 1071 * If this module needs a periodic handler for the interrupt distribution, it 1072 * can be added here. The argument to the periodic handler is not currently 1073 * used, but is reserved for future. 1074 */ 1075 static void 1076 apix_post_cyclic_setup(void *arg) 1077 { 1078 UNREFERENCED_1PARAMETER(arg); 1079 1080 cyc_handler_t cyh; 1081 cyc_time_t cyt; 1082 1083 /* cpu_lock is held */ 1084 /* set up a periodic handler for intr redistribution */ 1085 1086 /* 1087 * In peridoc mode intr redistribution processing is done in 1088 * apic_intr_enter during clk intr processing 1089 */ 1090 if (!apic_oneshot) 1091 return; 1092 1093 /* 1094 * Register a periodical handler for the redistribution processing. 1095 * Though we would generally prefer to use the DDI interface for 1096 * periodic handler invocation, ddi_periodic_add(9F), we are 1097 * unfortunately already holding cpu_lock, which ddi_periodic_add will 1098 * attempt to take for us. Thus, we add our own cyclic directly: 1099 */ 1100 cyh.cyh_func = (void (*)(void *))apix_redistribute_compute; 1101 cyh.cyh_arg = NULL; 1102 cyh.cyh_level = CY_LOW_LEVEL; 1103 1104 cyt.cyt_when = 0; 1105 cyt.cyt_interval = apic_redistribute_sample_interval; 1106 1107 apic_cyclic_id = cyclic_add(&cyh, &cyt); 1108 } 1109 1110 /* 1111 * Called the first time we enable x2apic mode on this cpu. 1112 * Update some of the function pointers to use x2apic routines. 1113 */ 1114 void 1115 x2apic_update_psm() 1116 { 1117 struct psm_ops *pops = &apix_ops; 1118 1119 ASSERT(pops != NULL); 1120 1121 /* 1122 * The pcplusmp module's version of x2apic_update_psm makes additional 1123 * changes that we do not have to make here. It needs to make those 1124 * changes because pcplusmp relies on the TPR register and the means of 1125 * addressing that changes when using the local apic versus the x2apic. 1126 * It's also worth noting that the apix driver specific function end up 1127 * being apix_foo as opposed to apic_foo and x2apic_foo. 1128 */ 1129 pops->psm_send_ipi = x2apic_send_ipi; 1130 1131 send_dirintf = pops->psm_send_ipi; 1132 1133 apic_mode = LOCAL_X2APIC; 1134 apic_change_ops(); 1135 } 1136 1137 /* 1138 * This function provides external interface to the nexus for all 1139 * functionalities related to the new DDI interrupt framework. 1140 * 1141 * Input: 1142 * dip - pointer to the dev_info structure of the requested device 1143 * hdlp - pointer to the internal interrupt handle structure for the 1144 * requested interrupt 1145 * intr_op - opcode for this call 1146 * result - pointer to the integer that will hold the result to be 1147 * passed back if return value is PSM_SUCCESS 1148 * 1149 * Output: 1150 * return value is either PSM_SUCCESS or PSM_FAILURE 1151 */ 1152 static int 1153 apix_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, 1154 psm_intr_op_t intr_op, int *result) 1155 { 1156 int cap; 1157 apix_vector_t *vecp, *newvecp; 1158 struct intrspec *ispec, intr_spec; 1159 processorid_t target; 1160 1161 ispec = &intr_spec; 1162 ispec->intrspec_pri = hdlp->ih_pri; 1163 ispec->intrspec_vec = hdlp->ih_inum; 1164 ispec->intrspec_func = hdlp->ih_cb_func; 1165 1166 switch (intr_op) { 1167 case PSM_INTR_OP_ALLOC_VECTORS: 1168 switch (hdlp->ih_type) { 1169 case DDI_INTR_TYPE_MSI: 1170 /* allocate MSI vectors */ 1171 *result = apix_alloc_msi(dip, hdlp->ih_inum, 1172 hdlp->ih_scratch1, 1173 (int)(uintptr_t)hdlp->ih_scratch2); 1174 break; 1175 case DDI_INTR_TYPE_MSIX: 1176 /* allocate MSI-X vectors */ 1177 *result = apix_alloc_msix(dip, hdlp->ih_inum, 1178 hdlp->ih_scratch1, 1179 (int)(uintptr_t)hdlp->ih_scratch2); 1180 break; 1181 case DDI_INTR_TYPE_FIXED: 1182 /* allocate or share vector for fixed */ 1183 if ((ihdl_plat_t *)hdlp->ih_private == NULL) { 1184 return (PSM_FAILURE); 1185 } 1186 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; 1187 *result = apix_intx_alloc_vector(dip, hdlp->ih_inum, 1188 ispec); 1189 break; 1190 default: 1191 return (PSM_FAILURE); 1192 } 1193 break; 1194 case PSM_INTR_OP_FREE_VECTORS: 1195 apix_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1, 1196 hdlp->ih_type); 1197 break; 1198 case PSM_INTR_OP_XLATE_VECTOR: 1199 /* 1200 * Vectors are allocated by ALLOC and freed by FREE. 1201 * XLATE finds and returns APIX_VIRTVEC_VECTOR(cpu, vector). 1202 */ 1203 *result = APIX_INVALID_VECT; 1204 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1205 if (vecp != NULL) { 1206 *result = APIX_VIRTVECTOR(vecp->v_cpuid, 1207 vecp->v_vector); 1208 break; 1209 } 1210 1211 /* 1212 * No vector to device mapping exists. If this is FIXED type 1213 * then check if this IRQ is already mapped for another device 1214 * then return the vector number for it (i.e. shared IRQ case). 1215 * Otherwise, return PSM_FAILURE. 1216 */ 1217 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) { 1218 vecp = apix_intx_xlate_vector(dip, hdlp->ih_inum, 1219 ispec); 1220 *result = (vecp == NULL) ? APIX_INVALID_VECT : 1221 APIX_VIRTVECTOR(vecp->v_cpuid, vecp->v_vector); 1222 } 1223 if (*result == APIX_INVALID_VECT) 1224 return (PSM_FAILURE); 1225 break; 1226 case PSM_INTR_OP_GET_PENDING: 1227 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1228 if (vecp == NULL) 1229 return (PSM_FAILURE); 1230 1231 *result = apix_get_pending(vecp); 1232 break; 1233 case PSM_INTR_OP_CLEAR_MASK: 1234 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1235 return (PSM_FAILURE); 1236 1237 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1238 if (vecp == NULL) 1239 return (PSM_FAILURE); 1240 1241 apix_intx_clear_mask(vecp->v_inum); 1242 break; 1243 case PSM_INTR_OP_SET_MASK: 1244 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1245 return (PSM_FAILURE); 1246 1247 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1248 if (vecp == NULL) 1249 return (PSM_FAILURE); 1250 1251 apix_intx_set_mask(vecp->v_inum); 1252 break; 1253 case PSM_INTR_OP_GET_SHARED: 1254 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1255 return (PSM_FAILURE); 1256 1257 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1258 if (vecp == NULL) 1259 return (PSM_FAILURE); 1260 1261 *result = apix_intx_get_shared(vecp->v_inum); 1262 break; 1263 case PSM_INTR_OP_SET_PRI: 1264 /* 1265 * Called prior to adding the interrupt handler or when 1266 * an interrupt handler is unassigned. 1267 */ 1268 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1269 return (PSM_SUCCESS); 1270 1271 if (apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type) == NULL) 1272 return (PSM_FAILURE); 1273 1274 break; 1275 case PSM_INTR_OP_SET_CPU: 1276 case PSM_INTR_OP_GRP_SET_CPU: 1277 /* 1278 * The interrupt handle given here has been allocated 1279 * specifically for this command, and ih_private carries 1280 * a CPU value. 1281 */ 1282 *result = EINVAL; 1283 target = (int)(intptr_t)hdlp->ih_private; 1284 if (!apic_cpu_in_range(target)) { 1285 DDI_INTR_IMPLDBG((CE_WARN, 1286 "[grp_]set_cpu: cpu out of range: %d\n", target)); 1287 return (PSM_FAILURE); 1288 } 1289 1290 lock_set(&apix_lock); 1291 1292 vecp = apix_get_req_vector(hdlp, hdlp->ih_flags); 1293 if (!IS_VECT_ENABLED(vecp)) { 1294 DDI_INTR_IMPLDBG((CE_WARN, 1295 "[grp]_set_cpu: invalid vector 0x%x\n", 1296 hdlp->ih_vector)); 1297 lock_clear(&apix_lock); 1298 return (PSM_FAILURE); 1299 } 1300 1301 *result = 0; 1302 1303 if (intr_op == PSM_INTR_OP_SET_CPU) 1304 newvecp = apix_set_cpu(vecp, target, result); 1305 else 1306 newvecp = apix_grp_set_cpu(vecp, target, result); 1307 1308 lock_clear(&apix_lock); 1309 1310 if (newvecp == NULL) { 1311 *result = EIO; 1312 return (PSM_FAILURE); 1313 } 1314 newvecp->v_bound_cpuid = target; 1315 hdlp->ih_vector = APIX_VIRTVECTOR(newvecp->v_cpuid, 1316 newvecp->v_vector); 1317 break; 1318 1319 case PSM_INTR_OP_GET_INTR: 1320 /* 1321 * The interrupt handle given here has been allocated 1322 * specifically for this command, and ih_private carries 1323 * a pointer to a apic_get_intr_t. 1324 */ 1325 if (apix_get_intr_info(hdlp, hdlp->ih_private) != PSM_SUCCESS) 1326 return (PSM_FAILURE); 1327 break; 1328 1329 case PSM_INTR_OP_CHECK_MSI: 1330 /* 1331 * Check MSI/X is supported or not at APIC level and 1332 * masked off the MSI/X bits in hdlp->ih_type if not 1333 * supported before return. If MSI/X is supported, 1334 * leave the ih_type unchanged and return. 1335 * 1336 * hdlp->ih_type passed in from the nexus has all the 1337 * interrupt types supported by the device. 1338 */ 1339 if (apic_support_msi == 0) { /* uninitialized */ 1340 /* 1341 * if apic_support_msi is not set, call 1342 * apic_check_msi_support() to check whether msi 1343 * is supported first 1344 */ 1345 if (apic_check_msi_support() == PSM_SUCCESS) 1346 apic_support_msi = 1; /* supported */ 1347 else 1348 apic_support_msi = -1; /* not-supported */ 1349 } 1350 if (apic_support_msi == 1) { 1351 if (apic_msix_enable) 1352 *result = hdlp->ih_type; 1353 else 1354 *result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX; 1355 } else 1356 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI | 1357 DDI_INTR_TYPE_MSIX); 1358 break; 1359 case PSM_INTR_OP_GET_CAP: 1360 cap = DDI_INTR_FLAG_PENDING; 1361 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1362 cap |= DDI_INTR_FLAG_MASKABLE; 1363 *result = cap; 1364 break; 1365 case PSM_INTR_OP_APIC_TYPE: 1366 ((apic_get_type_t *)(hdlp->ih_private))->avgi_type = 1367 apix_get_apic_type(); 1368 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_intr = 1369 APIX_IPI_MIN; 1370 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_cpu = 1371 apic_nproc; 1372 hdlp->ih_ver = apic_get_apic_version(); 1373 break; 1374 case PSM_INTR_OP_SET_CAP: 1375 default: 1376 return (PSM_FAILURE); 1377 } 1378 1379 return (PSM_SUCCESS); 1380 } 1381 1382 static void 1383 apix_cleanup_busy(void) 1384 { 1385 int i, j; 1386 apix_vector_t *vecp; 1387 1388 for (i = 0; i < apic_nproc; i++) { 1389 if (!apic_cpu_in_range(i)) 1390 continue; 1391 apic_cpus[i].aci_busy = 0; 1392 for (j = APIX_AVINTR_MIN; j < APIX_AVINTR_MAX; j++) { 1393 if ((vecp = xv_vector(i, j)) != NULL) 1394 vecp->v_busy = 0; 1395 } 1396 } 1397 } 1398 1399 static void 1400 apix_redistribute_compute(void) 1401 { 1402 int i, j, max_busy; 1403 1404 if (!apic_enable_dynamic_migration) 1405 return; 1406 1407 if (++apic_nticks == apic_sample_factor_redistribution) { 1408 /* 1409 * Time to call apic_intr_redistribute(). 1410 * reset apic_nticks. This will cause max_busy 1411 * to be calculated below and if it is more than 1412 * apic_int_busy, we will do the whole thing 1413 */ 1414 apic_nticks = 0; 1415 } 1416 max_busy = 0; 1417 for (i = 0; i < apic_nproc; i++) { 1418 if (!apic_cpu_in_range(i)) 1419 continue; 1420 /* 1421 * Check if curipl is non zero & if ISR is in 1422 * progress 1423 */ 1424 if (((j = apic_cpus[i].aci_curipl) != 0) && 1425 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { 1426 1427 int vect; 1428 apic_cpus[i].aci_busy++; 1429 vect = apic_cpus[i].aci_current[j]; 1430 apixs[i]->x_vectbl[vect]->v_busy++; 1431 } 1432 1433 if (!apic_nticks && 1434 (apic_cpus[i].aci_busy > max_busy)) 1435 max_busy = apic_cpus[i].aci_busy; 1436 } 1437 if (!apic_nticks) { 1438 if (max_busy > apic_int_busy_mark) { 1439 /* 1440 * We could make the following check be 1441 * skipped > 1 in which case, we get a 1442 * redistribution at half the busy mark (due to 1443 * double interval). Need to be able to collect 1444 * more empirical data to decide if that is a 1445 * good strategy. Punt for now. 1446 */ 1447 apix_cleanup_busy(); 1448 apic_skipped_redistribute = 0; 1449 } else 1450 apic_skipped_redistribute++; 1451 } 1452 } 1453 1454 /* 1455 * intr_ops() service routines 1456 */ 1457 1458 static int 1459 apix_get_pending(apix_vector_t *vecp) 1460 { 1461 int bit, index, irr, pending; 1462 1463 /* need to get on the bound cpu */ 1464 mutex_enter(&cpu_lock); 1465 affinity_set(vecp->v_cpuid); 1466 1467 index = vecp->v_vector / 32; 1468 bit = vecp->v_vector % 32; 1469 irr = apic_reg_ops->apic_read(APIC_IRR_REG + index); 1470 1471 affinity_clear(); 1472 mutex_exit(&cpu_lock); 1473 1474 pending = (irr & (1 << bit)) ? 1 : 0; 1475 if (!pending && vecp->v_type == APIX_TYPE_FIXED) 1476 pending = apix_intx_get_pending(vecp->v_inum); 1477 1478 return (pending); 1479 } 1480 1481 static apix_vector_t * 1482 apix_get_req_vector(ddi_intr_handle_impl_t *hdlp, ushort_t flags) 1483 { 1484 apix_vector_t *vecp; 1485 processorid_t cpuid; 1486 int32_t virt_vec = 0; 1487 1488 switch (flags & PSMGI_INTRBY_FLAGS) { 1489 case PSMGI_INTRBY_IRQ: 1490 return (apix_intx_get_vector(hdlp->ih_vector)); 1491 case PSMGI_INTRBY_VEC: 1492 virt_vec = (virt_vec == 0) ? hdlp->ih_vector : virt_vec; 1493 1494 cpuid = APIX_VIRTVEC_CPU(virt_vec); 1495 if (!apic_cpu_in_range(cpuid)) 1496 return (NULL); 1497 1498 vecp = xv_vector(cpuid, APIX_VIRTVEC_VECTOR(virt_vec)); 1499 break; 1500 case PSMGI_INTRBY_DEFAULT: 1501 vecp = apix_get_dev_map(hdlp->ih_dip, hdlp->ih_inum, 1502 hdlp->ih_type); 1503 break; 1504 default: 1505 return (NULL); 1506 } 1507 1508 return (vecp); 1509 } 1510 1511 static int 1512 apix_get_intr_info(ddi_intr_handle_impl_t *hdlp, 1513 apic_get_intr_t *intr_params_p) 1514 { 1515 apix_vector_t *vecp; 1516 struct autovec *av_dev; 1517 int i; 1518 1519 vecp = apix_get_req_vector(hdlp, intr_params_p->avgi_req_flags); 1520 if (IS_VECT_FREE(vecp)) { 1521 intr_params_p->avgi_num_devs = 0; 1522 intr_params_p->avgi_cpu_id = 0; 1523 intr_params_p->avgi_req_flags = 0; 1524 return (PSM_SUCCESS); 1525 } 1526 1527 if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) { 1528 intr_params_p->avgi_cpu_id = vecp->v_cpuid; 1529 1530 /* Return user bound info for intrd. */ 1531 if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) { 1532 intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND; 1533 intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND; 1534 } 1535 } 1536 1537 if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR) 1538 intr_params_p->avgi_vector = vecp->v_vector; 1539 1540 if (intr_params_p->avgi_req_flags & 1541 (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS)) 1542 /* Get number of devices from apic_irq table shared field. */ 1543 intr_params_p->avgi_num_devs = vecp->v_share; 1544 1545 if (intr_params_p->avgi_req_flags & PSMGI_REQ_GET_DEVS) { 1546 1547 intr_params_p->avgi_req_flags |= PSMGI_REQ_NUM_DEVS; 1548 1549 /* Some devices have NULL dip. Don't count these. */ 1550 if (intr_params_p->avgi_num_devs > 0) { 1551 for (i = 0, av_dev = vecp->v_autovect; av_dev; 1552 av_dev = av_dev->av_link) { 1553 if (av_dev->av_vector && av_dev->av_dip) 1554 i++; 1555 } 1556 intr_params_p->avgi_num_devs = 1557 (uint8_t)MIN(intr_params_p->avgi_num_devs, i); 1558 } 1559 1560 /* There are no viable dips to return. */ 1561 if (intr_params_p->avgi_num_devs == 0) { 1562 intr_params_p->avgi_dip_list = NULL; 1563 1564 } else { /* Return list of dips */ 1565 1566 /* Allocate space in array for that number of devs. */ 1567 intr_params_p->avgi_dip_list = kmem_zalloc( 1568 intr_params_p->avgi_num_devs * 1569 sizeof (dev_info_t *), 1570 KM_NOSLEEP); 1571 if (intr_params_p->avgi_dip_list == NULL) { 1572 DDI_INTR_IMPLDBG((CE_WARN, 1573 "apix_get_vector_intr_info: no memory")); 1574 return (PSM_FAILURE); 1575 } 1576 1577 /* 1578 * Loop through the device list of the autovec table 1579 * filling in the dip array. 1580 * 1581 * Note that the autovect table may have some special 1582 * entries which contain NULL dips. These will be 1583 * ignored. 1584 */ 1585 for (i = 0, av_dev = vecp->v_autovect; av_dev; 1586 av_dev = av_dev->av_link) { 1587 if (av_dev->av_vector && av_dev->av_dip) 1588 intr_params_p->avgi_dip_list[i++] = 1589 av_dev->av_dip; 1590 } 1591 } 1592 } 1593 1594 return (PSM_SUCCESS); 1595 } 1596 1597 static char * 1598 apix_get_apic_type(void) 1599 { 1600 return (apix_psm_info.p_mach_idstring); 1601 } 1602 1603 apix_vector_t * 1604 apix_set_cpu(apix_vector_t *vecp, int new_cpu, int *result) 1605 { 1606 apix_vector_t *newp = NULL; 1607 dev_info_t *dip; 1608 int inum, cap_ptr; 1609 ddi_acc_handle_t handle; 1610 ddi_intr_msix_t *msix_p = NULL; 1611 ushort_t msix_ctrl; 1612 uintptr_t off = 0; 1613 uint32_t mask = 0; 1614 1615 ASSERT(LOCK_HELD(&apix_lock)); 1616 *result = ENXIO; 1617 1618 /* Fail if this is an MSI intr and is part of a group. */ 1619 if (vecp->v_type == APIX_TYPE_MSI) { 1620 if (i_ddi_intr_get_current_nintrs(APIX_GET_DIP(vecp)) > 1) 1621 return (NULL); 1622 else 1623 return (apix_grp_set_cpu(vecp, new_cpu, result)); 1624 } 1625 1626 /* 1627 * Mask MSI-X. It's unmasked when MSI-X gets enabled. 1628 */ 1629 if (vecp->v_type == APIX_TYPE_MSIX && IS_VECT_ENABLED(vecp)) { 1630 if ((dip = APIX_GET_DIP(vecp)) == NULL) 1631 return (NULL); 1632 inum = vecp->v_devp->dv_inum; 1633 1634 handle = i_ddi_get_pci_config_handle(dip); 1635 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip); 1636 msix_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL); 1637 if ((msix_ctrl & PCI_MSIX_FUNCTION_MASK) == 0) { 1638 /* 1639 * Function is not masked, then mask "inum"th 1640 * entry in the MSI-X table 1641 */ 1642 msix_p = i_ddi_get_msix(dip); 1643 off = (uintptr_t)msix_p->msix_tbl_addr + (inum * 1644 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET; 1645 mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off); 1646 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, 1647 mask | 1); 1648 } 1649 } 1650 1651 *result = 0; 1652 if ((newp = apix_rebind(vecp, new_cpu, 1)) == NULL) 1653 *result = EIO; 1654 1655 /* Restore mask bit */ 1656 if (msix_p != NULL) 1657 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, mask); 1658 1659 return (newp); 1660 } 1661 1662 /* 1663 * Set cpu for MSIs 1664 */ 1665 apix_vector_t * 1666 apix_grp_set_cpu(apix_vector_t *vecp, int new_cpu, int *result) 1667 { 1668 apix_vector_t *newp, *vp; 1669 uint32_t orig_cpu = vecp->v_cpuid; 1670 int orig_vect = vecp->v_vector; 1671 int i, num_vectors, cap_ptr, msi_mask_off = 0; 1672 uint32_t msi_pvm = 0; 1673 ushort_t msi_ctrl; 1674 ddi_acc_handle_t handle; 1675 dev_info_t *dip; 1676 1677 APIC_VERBOSE(INTR, (CE_CONT, "apix_grp_set_cpu: oldcpu: %x, vector: %x," 1678 " newcpu:%x\n", vecp->v_cpuid, vecp->v_vector, new_cpu)); 1679 1680 ASSERT(LOCK_HELD(&apix_lock)); 1681 1682 *result = ENXIO; 1683 1684 if (vecp->v_type != APIX_TYPE_MSI) { 1685 DDI_INTR_IMPLDBG((CE_WARN, "set_grp: intr not MSI\n")); 1686 return (NULL); 1687 } 1688 1689 if ((dip = APIX_GET_DIP(vecp)) == NULL) 1690 return (NULL); 1691 1692 num_vectors = i_ddi_intr_get_current_nintrs(dip); 1693 if ((num_vectors < 1) || ((num_vectors - 1) & orig_vect)) { 1694 APIC_VERBOSE(INTR, (CE_WARN, 1695 "set_grp: base vec not part of a grp or not aligned: " 1696 "vec:0x%x, num_vec:0x%x\n", orig_vect, num_vectors)); 1697 return (NULL); 1698 } 1699 1700 if (vecp->v_inum != apix_get_min_dev_inum(dip, vecp->v_type)) 1701 return (NULL); 1702 1703 *result = EIO; 1704 for (i = 1; i < num_vectors; i++) { 1705 if ((vp = xv_vector(orig_cpu, orig_vect + i)) == NULL) 1706 return (NULL); 1707 #ifdef DEBUG 1708 /* 1709 * Sanity check: CPU and dip is the same for all entries. 1710 * May be called when first msi to be enabled, at this time 1711 * add_avintr() is not called for other msi 1712 */ 1713 if ((vp->v_share != 0) && 1714 ((APIX_GET_DIP(vp) != dip) || 1715 (vp->v_cpuid != vecp->v_cpuid))) { 1716 APIC_VERBOSE(INTR, (CE_WARN, 1717 "set_grp: cpu or dip for vec 0x%x difft than for " 1718 "vec 0x%x\n", orig_vect, orig_vect + i)); 1719 APIC_VERBOSE(INTR, (CE_WARN, 1720 " cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu, 1721 vp->v_cpuid, (void *)dip, 1722 (void *)APIX_GET_DIP(vp))); 1723 return (NULL); 1724 } 1725 #endif /* DEBUG */ 1726 } 1727 1728 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip); 1729 handle = i_ddi_get_pci_config_handle(dip); 1730 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 1731 1732 /* MSI Per vector masking is supported. */ 1733 if (msi_ctrl & PCI_MSI_PVM_MASK) { 1734 if (msi_ctrl & PCI_MSI_64BIT_MASK) 1735 msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS; 1736 else 1737 msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK; 1738 msi_pvm = pci_config_get32(handle, msi_mask_off); 1739 pci_config_put32(handle, msi_mask_off, (uint32_t)-1); 1740 APIC_VERBOSE(INTR, (CE_CONT, 1741 "set_grp: pvm supported. Mask set to 0x%x\n", 1742 pci_config_get32(handle, msi_mask_off))); 1743 } 1744 1745 if ((newp = apix_rebind(vecp, new_cpu, num_vectors)) != NULL) 1746 *result = 0; 1747 1748 /* Reenable vectors if per vector masking is supported. */ 1749 if (msi_ctrl & PCI_MSI_PVM_MASK) { 1750 pci_config_put32(handle, msi_mask_off, msi_pvm); 1751 APIC_VERBOSE(INTR, (CE_CONT, 1752 "set_grp: pvm supported. Mask restored to 0x%x\n", 1753 pci_config_get32(handle, msi_mask_off))); 1754 } 1755 1756 return (newp); 1757 } 1758 1759 void 1760 apix_intx_set_vector(int irqno, uint32_t cpuid, uchar_t vector) 1761 { 1762 apic_irq_t *irqp; 1763 1764 mutex_enter(&airq_mutex); 1765 irqp = apic_irq_table[irqno]; 1766 irqp->airq_cpu = cpuid; 1767 irqp->airq_vector = vector; 1768 apic_record_rdt_entry(irqp, irqno); 1769 mutex_exit(&airq_mutex); 1770 } 1771 1772 apix_vector_t * 1773 apix_intx_get_vector(int irqno) 1774 { 1775 apic_irq_t *irqp; 1776 uint32_t cpuid; 1777 uchar_t vector; 1778 1779 mutex_enter(&airq_mutex); 1780 irqp = apic_irq_table[irqno & 0xff]; 1781 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) { 1782 mutex_exit(&airq_mutex); 1783 return (NULL); 1784 } 1785 cpuid = irqp->airq_cpu; 1786 vector = irqp->airq_vector; 1787 mutex_exit(&airq_mutex); 1788 1789 return (xv_vector(cpuid, vector)); 1790 } 1791 1792 /* 1793 * Must called with interrupts disabled and apic_ioapic_lock held 1794 */ 1795 void 1796 apix_intx_enable(int irqno) 1797 { 1798 uchar_t ioapicindex, intin; 1799 apic_irq_t *irqp = apic_irq_table[irqno]; 1800 ioapic_rdt_t irdt; 1801 apic_cpus_info_t *cpu_infop; 1802 apix_vector_t *vecp = xv_vector(irqp->airq_cpu, irqp->airq_vector); 1803 1804 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp)); 1805 1806 ioapicindex = irqp->airq_ioapicindex; 1807 intin = irqp->airq_intin_no; 1808 cpu_infop = &apic_cpus[irqp->airq_cpu]; 1809 1810 irdt.ir_lo = AV_PDEST | AV_FIXED | irqp->airq_rdt_entry; 1811 irdt.ir_hi = cpu_infop->aci_local_id; 1812 1813 apic_vt_ops->apic_intrmap_alloc_entry(&vecp->v_intrmap_private, NULL, 1814 vecp->v_type, 1, ioapicindex); 1815 apic_vt_ops->apic_intrmap_map_entry(vecp->v_intrmap_private, 1816 (void *)&irdt, vecp->v_type, 1); 1817 apic_vt_ops->apic_intrmap_record_rdt(vecp->v_intrmap_private, &irdt); 1818 1819 /* write RDT entry high dword - destination */ 1820 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin, 1821 irdt.ir_hi); 1822 1823 /* Write the vector, trigger, and polarity portion of the RDT */ 1824 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin, irdt.ir_lo); 1825 1826 vecp->v_state = APIX_STATE_ENABLED; 1827 1828 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_enable: ioapic 0x%x" 1829 " intin 0x%x rdt_low 0x%x rdt_high 0x%x\n", 1830 ioapicindex, intin, irdt.ir_lo, irdt.ir_hi)); 1831 } 1832 1833 /* 1834 * Must called with interrupts disabled and apic_ioapic_lock held 1835 */ 1836 void 1837 apix_intx_disable(int irqno) 1838 { 1839 apic_irq_t *irqp = apic_irq_table[irqno]; 1840 int ioapicindex, intin; 1841 1842 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp)); 1843 /* 1844 * The assumption here is that this is safe, even for 1845 * systems with IOAPICs that suffer from the hardware 1846 * erratum because all devices have been quiesced before 1847 * they unregister their interrupt handlers. If that 1848 * assumption turns out to be false, this mask operation 1849 * can induce the same erratum result we're trying to 1850 * avoid. 1851 */ 1852 ioapicindex = irqp->airq_ioapicindex; 1853 intin = irqp->airq_intin_no; 1854 ioapic_write(ioapicindex, APIC_RDT_CMD + 2 * intin, AV_MASK); 1855 1856 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_disable: ioapic 0x%x" 1857 " intin 0x%x\n", ioapicindex, intin)); 1858 } 1859 1860 void 1861 apix_intx_free(int irqno) 1862 { 1863 apic_irq_t *irqp; 1864 1865 mutex_enter(&airq_mutex); 1866 irqp = apic_irq_table[irqno]; 1867 1868 if (IS_IRQ_FREE(irqp)) { 1869 mutex_exit(&airq_mutex); 1870 return; 1871 } 1872 1873 irqp->airq_mps_intr_index = FREE_INDEX; 1874 irqp->airq_cpu = IRQ_UNINIT; 1875 irqp->airq_vector = APIX_INVALID_VECT; 1876 mutex_exit(&airq_mutex); 1877 } 1878 1879 #ifdef DEBUG 1880 int apix_intr_deliver_timeouts = 0; 1881 int apix_intr_rirr_timeouts = 0; 1882 int apix_intr_rirr_reset_failure = 0; 1883 #endif 1884 int apix_max_reps_irr_pending = 10; 1885 1886 #define GET_RDT_BITS(ioapic, intin, bits) \ 1887 (READ_IOAPIC_RDT_ENTRY_LOW_DWORD((ioapic), (intin)) & (bits)) 1888 #define APIX_CHECK_IRR_DELAY drv_usectohz(5000) 1889 1890 int 1891 apix_intx_rebind(int irqno, processorid_t cpuid, uchar_t vector) 1892 { 1893 apic_irq_t *irqp = apic_irq_table[irqno]; 1894 ulong_t iflag; 1895 int waited, ioapic_ix, intin_no, level, repeats, rdt_entry, masked; 1896 1897 ASSERT(irqp != NULL); 1898 1899 iflag = intr_clear(); 1900 lock_set(&apic_ioapic_lock); 1901 1902 ioapic_ix = irqp->airq_ioapicindex; 1903 intin_no = irqp->airq_intin_no; 1904 level = apic_level_intr[irqno]; 1905 1906 /* 1907 * Wait for the delivery status bit to be cleared. This should 1908 * be a very small amount of time. 1909 */ 1910 repeats = 0; 1911 do { 1912 repeats++; 1913 1914 for (waited = 0; waited < apic_max_reps_clear_pending; 1915 waited++) { 1916 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) == 0) 1917 break; 1918 } 1919 if (!level) 1920 break; 1921 1922 /* 1923 * Mask the RDT entry for level-triggered interrupts. 1924 */ 1925 irqp->airq_rdt_entry |= AV_MASK; 1926 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1927 intin_no); 1928 if ((masked = (rdt_entry & AV_MASK)) == 0) { 1929 /* Mask it */ 1930 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, 1931 AV_MASK | rdt_entry); 1932 } 1933 1934 /* 1935 * If there was a race and an interrupt was injected 1936 * just before we masked, check for that case here. 1937 * Then, unmask the RDT entry and try again. If we're 1938 * on our last try, don't unmask (because we want the 1939 * RDT entry to remain masked for the rest of the 1940 * function). 1941 */ 1942 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1943 intin_no); 1944 if ((masked == 0) && ((rdt_entry & AV_PENDING) != 0) && 1945 (repeats < apic_max_reps_clear_pending)) { 1946 /* Unmask it */ 1947 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1948 intin_no, rdt_entry & ~AV_MASK); 1949 irqp->airq_rdt_entry &= ~AV_MASK; 1950 } 1951 } while ((rdt_entry & AV_PENDING) && 1952 (repeats < apic_max_reps_clear_pending)); 1953 1954 #ifdef DEBUG 1955 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) != 0) 1956 apix_intr_deliver_timeouts++; 1957 #endif 1958 1959 if (!level || !APIX_IS_MASK_RDT(apix_mul_ioapic_method)) 1960 goto done; 1961 1962 /* 1963 * wait for remote IRR to be cleared for level-triggered 1964 * interrupts 1965 */ 1966 repeats = 0; 1967 do { 1968 repeats++; 1969 1970 for (waited = 0; waited < apic_max_reps_clear_pending; 1971 waited++) { 1972 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) 1973 == 0) 1974 break; 1975 } 1976 1977 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { 1978 lock_clear(&apic_ioapic_lock); 1979 intr_restore(iflag); 1980 1981 delay(APIX_CHECK_IRR_DELAY); 1982 1983 iflag = intr_clear(); 1984 lock_set(&apic_ioapic_lock); 1985 } 1986 } while (repeats < apix_max_reps_irr_pending); 1987 1988 if (repeats >= apix_max_reps_irr_pending) { 1989 #ifdef DEBUG 1990 apix_intr_rirr_timeouts++; 1991 #endif 1992 1993 /* 1994 * If we waited and the Remote IRR bit is still not cleared, 1995 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS 1996 * times for this interrupt, try the last-ditch workaround: 1997 */ 1998 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { 1999 /* 2000 * Trying to clear the bit through normal 2001 * channels has failed. So as a last-ditch 2002 * effort, try to set the trigger mode to 2003 * edge, then to level. This has been 2004 * observed to work on many systems. 2005 */ 2006 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 2007 intin_no, 2008 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 2009 intin_no) & ~AV_LEVEL); 2010 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 2011 intin_no, 2012 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 2013 intin_no) | AV_LEVEL); 2014 } 2015 2016 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { 2017 #ifdef DEBUG 2018 apix_intr_rirr_reset_failure++; 2019 #endif 2020 lock_clear(&apic_ioapic_lock); 2021 intr_restore(iflag); 2022 prom_printf("apix: Remote IRR still " 2023 "not clear for IOAPIC %d intin %d.\n" 2024 "\tInterrupts to this pin may cease " 2025 "functioning.\n", ioapic_ix, intin_no); 2026 return (1); /* return failure */ 2027 } 2028 } 2029 2030 done: 2031 /* change apic_irq_table */ 2032 lock_clear(&apic_ioapic_lock); 2033 intr_restore(iflag); 2034 apix_intx_set_vector(irqno, cpuid, vector); 2035 iflag = intr_clear(); 2036 lock_set(&apic_ioapic_lock); 2037 2038 /* reprogramme IO-APIC RDT entry */ 2039 apix_intx_enable(irqno); 2040 2041 lock_clear(&apic_ioapic_lock); 2042 intr_restore(iflag); 2043 2044 return (0); 2045 } 2046 2047 static int 2048 apix_intx_get_pending(int irqno) 2049 { 2050 apic_irq_t *irqp; 2051 int intin, ioapicindex, pending; 2052 ulong_t iflag; 2053 2054 mutex_enter(&airq_mutex); 2055 irqp = apic_irq_table[irqno]; 2056 if (IS_IRQ_FREE(irqp)) { 2057 mutex_exit(&airq_mutex); 2058 return (0); 2059 } 2060 2061 /* check IO-APIC delivery status */ 2062 intin = irqp->airq_intin_no; 2063 ioapicindex = irqp->airq_ioapicindex; 2064 mutex_exit(&airq_mutex); 2065 2066 iflag = intr_clear(); 2067 lock_set(&apic_ioapic_lock); 2068 2069 pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin) & 2070 AV_PENDING) ? 1 : 0; 2071 2072 lock_clear(&apic_ioapic_lock); 2073 intr_restore(iflag); 2074 2075 return (pending); 2076 } 2077 2078 /* 2079 * This function will mask the interrupt on the I/O APIC 2080 */ 2081 static void 2082 apix_intx_set_mask(int irqno) 2083 { 2084 int intin, ioapixindex, rdt_entry; 2085 ulong_t iflag; 2086 apic_irq_t *irqp; 2087 2088 mutex_enter(&airq_mutex); 2089 irqp = apic_irq_table[irqno]; 2090 2091 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX); 2092 2093 intin = irqp->airq_intin_no; 2094 ioapixindex = irqp->airq_ioapicindex; 2095 mutex_exit(&airq_mutex); 2096 2097 iflag = intr_clear(); 2098 lock_set(&apic_ioapic_lock); 2099 2100 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin); 2101 2102 /* clear mask */ 2103 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin, 2104 (AV_MASK | rdt_entry)); 2105 2106 lock_clear(&apic_ioapic_lock); 2107 intr_restore(iflag); 2108 } 2109 2110 /* 2111 * This function will clear the mask for the interrupt on the I/O APIC 2112 */ 2113 static void 2114 apix_intx_clear_mask(int irqno) 2115 { 2116 int intin, ioapixindex, rdt_entry; 2117 ulong_t iflag; 2118 apic_irq_t *irqp; 2119 2120 mutex_enter(&airq_mutex); 2121 irqp = apic_irq_table[irqno]; 2122 2123 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX); 2124 2125 intin = irqp->airq_intin_no; 2126 ioapixindex = irqp->airq_ioapicindex; 2127 mutex_exit(&airq_mutex); 2128 2129 iflag = intr_clear(); 2130 lock_set(&apic_ioapic_lock); 2131 2132 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin); 2133 2134 /* clear mask */ 2135 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin, 2136 ((~AV_MASK) & rdt_entry)); 2137 2138 lock_clear(&apic_ioapic_lock); 2139 intr_restore(iflag); 2140 } 2141 2142 /* 2143 * For level-triggered interrupt, mask the IRQ line. Mask means 2144 * new interrupts will not be delivered. The interrupt already 2145 * accepted by a local APIC is not affected 2146 */ 2147 void 2148 apix_level_intr_pre_eoi(int irq) 2149 { 2150 apic_irq_t *irqp = apic_irq_table[irq]; 2151 int apic_ix, intin_ix; 2152 2153 if (irqp == NULL) 2154 return; 2155 2156 ASSERT(apic_level_intr[irq] == TRIGGER_MODE_LEVEL); 2157 2158 lock_set(&apic_ioapic_lock); 2159 2160 intin_ix = irqp->airq_intin_no; 2161 apic_ix = irqp->airq_ioapicindex; 2162 2163 if (irqp->airq_cpu != CPU->cpu_id) { 2164 if (!APIX_IS_MASK_RDT(apix_mul_ioapic_method)) 2165 ioapic_write_eoi(apic_ix, irqp->airq_vector); 2166 lock_clear(&apic_ioapic_lock); 2167 return; 2168 } 2169 2170 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) { 2171 /* 2172 * This is a IOxAPIC and there is EOI register: 2173 * Change the vector to reserved unused vector, so that 2174 * the EOI from Local APIC won't clear the Remote IRR for 2175 * this level trigger interrupt. Instead, we'll manually 2176 * clear it in apix_post_hardint() after ISR handling. 2177 */ 2178 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, 2179 (irqp->airq_rdt_entry & (~0xff)) | APIX_RESV_VECTOR); 2180 } else { 2181 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, 2182 AV_MASK | irqp->airq_rdt_entry); 2183 } 2184 2185 lock_clear(&apic_ioapic_lock); 2186 } 2187 2188 /* 2189 * For level-triggered interrupt, unmask the IRQ line 2190 * or restore the original vector number. 2191 */ 2192 void 2193 apix_level_intr_post_dispatch(int irq) 2194 { 2195 apic_irq_t *irqp = apic_irq_table[irq]; 2196 int apic_ix, intin_ix; 2197 2198 if (irqp == NULL) 2199 return; 2200 2201 lock_set(&apic_ioapic_lock); 2202 2203 intin_ix = irqp->airq_intin_no; 2204 apic_ix = irqp->airq_ioapicindex; 2205 2206 if (APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method)) { 2207 /* 2208 * Already sent EOI back to Local APIC. 2209 * Send EOI to IO-APIC 2210 */ 2211 ioapic_write_eoi(apic_ix, irqp->airq_vector); 2212 } else { 2213 /* clear the mask or restore the vector */ 2214 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, 2215 irqp->airq_rdt_entry); 2216 2217 /* send EOI to IOxAPIC */ 2218 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) 2219 ioapic_write_eoi(apic_ix, irqp->airq_vector); 2220 } 2221 2222 lock_clear(&apic_ioapic_lock); 2223 } 2224 2225 static int 2226 apix_intx_get_shared(int irqno) 2227 { 2228 apic_irq_t *irqp; 2229 int share; 2230 2231 mutex_enter(&airq_mutex); 2232 irqp = apic_irq_table[irqno]; 2233 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) { 2234 mutex_exit(&airq_mutex); 2235 return (0); 2236 } 2237 share = irqp->airq_share; 2238 mutex_exit(&airq_mutex); 2239 2240 return (share); 2241 } 2242 2243 static void 2244 apix_intx_set_shared(int irqno, int delta) 2245 { 2246 apic_irq_t *irqp; 2247 2248 mutex_enter(&airq_mutex); 2249 irqp = apic_irq_table[irqno]; 2250 if (IS_IRQ_FREE(irqp)) { 2251 mutex_exit(&airq_mutex); 2252 return; 2253 } 2254 irqp->airq_share += delta; 2255 mutex_exit(&airq_mutex); 2256 } 2257 2258 /* 2259 * Setup IRQ table. Return IRQ no or -1 on failure 2260 */ 2261 static int 2262 apix_intx_setup(dev_info_t *dip, int inum, int irqno, 2263 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *iflagp) 2264 { 2265 int origirq = ispec->intrspec_vec; 2266 int newirq; 2267 short intr_index; 2268 uchar_t ipin, ioapic, ioapicindex; 2269 apic_irq_t *irqp; 2270 2271 UNREFERENCED_1PARAMETER(inum); 2272 2273 if (intrp != NULL) { 2274 intr_index = (short)(intrp - apic_io_intrp); 2275 ioapic = intrp->intr_destid; 2276 ipin = intrp->intr_destintin; 2277 2278 /* Find ioapicindex. If destid was ALL, we will exit with 0. */ 2279 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--) 2280 if (apic_io_id[ioapicindex] == ioapic) 2281 break; 2282 ASSERT((ioapic == apic_io_id[ioapicindex]) || 2283 (ioapic == INTR_ALL_APIC)); 2284 2285 /* check whether this intin# has been used by another irqno */ 2286 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) 2287 return (newirq); 2288 2289 } else if (iflagp != NULL) { /* ACPI */ 2290 intr_index = ACPI_INDEX; 2291 ioapicindex = acpi_find_ioapic(irqno); 2292 ASSERT(ioapicindex != 0xFF); 2293 ioapic = apic_io_id[ioapicindex]; 2294 ipin = irqno - apic_io_vectbase[ioapicindex]; 2295 2296 if (apic_irq_table[irqno] && 2297 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) { 2298 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin && 2299 apic_irq_table[irqno]->airq_ioapicindex == 2300 ioapicindex); 2301 return (irqno); 2302 } 2303 2304 } else { /* default configuration */ 2305 intr_index = DEFAULT_INDEX; 2306 ioapicindex = 0; 2307 ioapic = apic_io_id[ioapicindex]; 2308 ipin = (uchar_t)irqno; 2309 } 2310 2311 /* allocate a new IRQ no */ 2312 if ((irqp = apic_irq_table[irqno]) == NULL) { 2313 irqp = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); 2314 apic_irq_table[irqno] = irqp; 2315 } else { 2316 if (irqp->airq_mps_intr_index != FREE_INDEX) { 2317 newirq = apic_allocate_irq(apic_first_avail_irq); 2318 if (newirq == -1) { 2319 return (-1); 2320 } 2321 irqno = newirq; 2322 irqp = apic_irq_table[irqno]; 2323 ASSERT(irqp != NULL); 2324 } 2325 } 2326 apic_max_device_irq = max(irqno, apic_max_device_irq); 2327 apic_min_device_irq = min(irqno, apic_min_device_irq); 2328 2329 irqp->airq_mps_intr_index = intr_index; 2330 irqp->airq_ioapicindex = ioapicindex; 2331 irqp->airq_intin_no = ipin; 2332 irqp->airq_dip = dip; 2333 irqp->airq_origirq = (uchar_t)origirq; 2334 if (iflagp != NULL) 2335 irqp->airq_iflag = *iflagp; 2336 irqp->airq_cpu = IRQ_UNINIT; 2337 irqp->airq_vector = 0; 2338 2339 return (irqno); 2340 } 2341 2342 /* 2343 * Setup IRQ table for non-pci devices. Return IRQ no or -1 on error 2344 */ 2345 static int 2346 apix_intx_setup_nonpci(dev_info_t *dip, int inum, int bustype, 2347 struct intrspec *ispec) 2348 { 2349 int irqno = ispec->intrspec_vec; 2350 int newirq, i; 2351 iflag_t intr_flag; 2352 ACPI_SUBTABLE_HEADER *hp; 2353 ACPI_MADT_INTERRUPT_OVERRIDE *isop; 2354 struct apic_io_intr *intrp; 2355 2356 if (!apic_enable_acpi || apic_use_acpi_madt_only) { 2357 int busid; 2358 2359 if (bustype == 0) 2360 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA; 2361 2362 /* loop checking BUS_ISA/BUS_EISA */ 2363 for (i = 0; i < 2; i++) { 2364 if (((busid = apic_find_bus_id(bustype)) != -1) && 2365 ((intrp = apic_find_io_intr_w_busid(irqno, busid)) 2366 != NULL)) { 2367 return (apix_intx_setup(dip, inum, irqno, 2368 intrp, ispec, NULL)); 2369 } 2370 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA; 2371 } 2372 2373 /* fall back to default configuration */ 2374 return (-1); 2375 } 2376 2377 /* search iso entries first */ 2378 if (acpi_iso_cnt != 0) { 2379 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop; 2380 i = 0; 2381 while (i < acpi_iso_cnt) { 2382 if (hp->Type == ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) { 2383 isop = (ACPI_MADT_INTERRUPT_OVERRIDE *) hp; 2384 if (isop->Bus == 0 && 2385 isop->SourceIrq == irqno) { 2386 newirq = isop->GlobalIrq; 2387 intr_flag.intr_po = isop->IntiFlags & 2388 ACPI_MADT_POLARITY_MASK; 2389 intr_flag.intr_el = (isop->IntiFlags & 2390 ACPI_MADT_TRIGGER_MASK) >> 2; 2391 intr_flag.bustype = BUS_ISA; 2392 2393 return (apix_intx_setup(dip, inum, 2394 newirq, NULL, ispec, &intr_flag)); 2395 } 2396 i++; 2397 } 2398 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) + 2399 hp->Length); 2400 } 2401 } 2402 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH; 2403 intr_flag.intr_el = INTR_EL_EDGE; 2404 intr_flag.bustype = BUS_ISA; 2405 return (apix_intx_setup(dip, inum, irqno, NULL, ispec, &intr_flag)); 2406 } 2407 2408 2409 /* 2410 * Setup IRQ table for pci devices. Return IRQ no or -1 on error 2411 */ 2412 static int 2413 apix_intx_setup_pci(dev_info_t *dip, int inum, int bustype, 2414 struct intrspec *ispec) 2415 { 2416 int busid, devid, pci_irq; 2417 ddi_acc_handle_t cfg_handle; 2418 uchar_t ipin; 2419 iflag_t intr_flag; 2420 struct apic_io_intr *intrp; 2421 2422 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0) 2423 return (-1); 2424 2425 if (busid == 0 && apic_pci_bus_total == 1) 2426 busid = (int)apic_single_pci_busid; 2427 2428 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS) 2429 return (-1); 2430 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA; 2431 pci_config_teardown(&cfg_handle); 2432 2433 if (apic_enable_acpi && !apic_use_acpi_madt_only) { /* ACPI */ 2434 if (apic_acpi_translate_pci_irq(dip, busid, devid, 2435 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS) 2436 return (-1); 2437 2438 intr_flag.bustype = (uchar_t)bustype; 2439 return (apix_intx_setup(dip, inum, pci_irq, NULL, ispec, 2440 &intr_flag)); 2441 } 2442 2443 /* MP configuration table */ 2444 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3); 2445 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) == NULL) { 2446 pci_irq = apic_handle_pci_pci_bridge(dip, devid, ipin, &intrp); 2447 if (pci_irq == -1) 2448 return (-1); 2449 } 2450 2451 return (apix_intx_setup(dip, inum, pci_irq, intrp, ispec, NULL)); 2452 } 2453 2454 /* 2455 * Translate and return IRQ no 2456 */ 2457 static int 2458 apix_intx_xlate_irq(dev_info_t *dip, int inum, struct intrspec *ispec) 2459 { 2460 int newirq, irqno = ispec->intrspec_vec; 2461 int parent_is_pci_or_pciex = 0, child_is_pciex = 0; 2462 int bustype = 0, dev_len; 2463 char dev_type[16]; 2464 2465 if (apic_defconf) { 2466 mutex_enter(&airq_mutex); 2467 goto defconf; 2468 } 2469 2470 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) { 2471 mutex_enter(&airq_mutex); 2472 goto nonpci; 2473 } 2474 2475 /* 2476 * use ddi_getlongprop_buf() instead of ddi_prop_lookup_string() 2477 * to avoid extra buffer allocation. 2478 */ 2479 dev_len = sizeof (dev_type); 2480 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip), 2481 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type, 2482 &dev_len) == DDI_PROP_SUCCESS) { 2483 if ((strcmp(dev_type, "pci") == 0) || 2484 (strcmp(dev_type, "pciex") == 0)) 2485 parent_is_pci_or_pciex = 1; 2486 } 2487 2488 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 2489 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type, 2490 &dev_len) == DDI_PROP_SUCCESS) { 2491 if (strstr(dev_type, "pciex")) 2492 child_is_pciex = 1; 2493 } 2494 2495 mutex_enter(&airq_mutex); 2496 2497 if (parent_is_pci_or_pciex) { 2498 bustype = child_is_pciex ? BUS_PCIE : BUS_PCI; 2499 newirq = apix_intx_setup_pci(dip, inum, bustype, ispec); 2500 if (newirq != -1) 2501 goto done; 2502 bustype = 0; 2503 } else if (strcmp(dev_type, "isa") == 0) 2504 bustype = BUS_ISA; 2505 else if (strcmp(dev_type, "eisa") == 0) 2506 bustype = BUS_EISA; 2507 2508 nonpci: 2509 newirq = apix_intx_setup_nonpci(dip, inum, bustype, ispec); 2510 if (newirq != -1) 2511 goto done; 2512 2513 defconf: 2514 newirq = apix_intx_setup(dip, inum, irqno, NULL, ispec, NULL); 2515 if (newirq == -1) { 2516 mutex_exit(&airq_mutex); 2517 return (-1); 2518 } 2519 done: 2520 ASSERT(apic_irq_table[newirq]); 2521 mutex_exit(&airq_mutex); 2522 return (newirq); 2523 } 2524 2525 static int 2526 apix_intx_alloc_vector(dev_info_t *dip, int inum, struct intrspec *ispec) 2527 { 2528 int irqno; 2529 apix_vector_t *vecp; 2530 2531 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1) 2532 return (0); 2533 2534 if ((vecp = apix_alloc_intx(dip, inum, irqno)) == NULL) 2535 return (0); 2536 2537 DDI_INTR_IMPLDBG((CE_CONT, "apix_intx_alloc_vector: dip=0x%p name=%s " 2538 "irqno=0x%x cpuid=%d vector=0x%x\n", 2539 (void *)dip, ddi_driver_name(dip), irqno, 2540 vecp->v_cpuid, vecp->v_vector)); 2541 2542 return (1); 2543 } 2544 2545 /* 2546 * Return the vector number if the translated IRQ for this device 2547 * has a vector mapping setup. If no IRQ setup exists or no vector is 2548 * allocated to it then return 0. 2549 */ 2550 static apix_vector_t * 2551 apix_intx_xlate_vector(dev_info_t *dip, int inum, struct intrspec *ispec) 2552 { 2553 int irqno; 2554 apix_vector_t *vecp; 2555 2556 /* get the IRQ number */ 2557 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1) 2558 return (NULL); 2559 2560 /* get the vector number if a vector is allocated to this irqno */ 2561 vecp = apix_intx_get_vector(irqno); 2562 2563 return (vecp); 2564 } 2565 2566 /* 2567 * Switch between safe and x2APIC IPI sending method. 2568 * The CPU may power on in xapic mode or x2apic mode. If the CPU needs to send 2569 * an IPI to other CPUs before entering x2APIC mode, it still needs to use the 2570 * xAPIC method. Before sending a StartIPI to the target CPU, psm_send_ipi will 2571 * be changed to apic_common_send_ipi, which detects current local APIC mode and 2572 * use the right method to send an IPI. If some CPUs fail to start up, 2573 * apic_poweron_cnt won't return to zero, so apic_common_send_ipi will always be 2574 * used. psm_send_ipi can't be simply changed back to x2apic_send_ipi if some 2575 * CPUs failed to start up because those failed CPUs may recover itself later at 2576 * unpredictable time. 2577 */ 2578 void 2579 apic_switch_ipi_callback(boolean_t enter) 2580 { 2581 ulong_t iflag; 2582 struct psm_ops *pops = psmops; 2583 2584 iflag = intr_clear(); 2585 lock_set(&apic_mode_switch_lock); 2586 if (enter) { 2587 ASSERT(apic_poweron_cnt >= 0); 2588 if (apic_poweron_cnt == 0) { 2589 pops->psm_send_ipi = apic_common_send_ipi; 2590 send_dirintf = pops->psm_send_ipi; 2591 } 2592 apic_poweron_cnt++; 2593 } else { 2594 ASSERT(apic_poweron_cnt > 0); 2595 apic_poweron_cnt--; 2596 if (apic_poweron_cnt == 0) { 2597 pops->psm_send_ipi = x2apic_send_ipi; 2598 send_dirintf = pops->psm_send_ipi; 2599 } 2600 } 2601 lock_clear(&apic_mode_switch_lock); 2602 intr_restore(iflag); 2603 } 2604 2605 /* stub function */ 2606 int 2607 apix_loaded(void) 2608 { 2609 return (apix_is_enabled); 2610 } 2611