1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 /* 30 * Copyright (c) 2017, Joyent, Inc. All rights reserved. 31 */ 32 33 /* 34 * To understand how the apix module interacts with the interrupt subsystem read 35 * the theory statement in uts/i86pc/os/intr.c. 36 */ 37 38 /* 39 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 40 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 41 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 42 * PSMI 1.5 extensions are supported in Solaris Nevada. 43 * PSMI 1.6 extensions are supported in Solaris Nevada. 44 * PSMI 1.7 extensions are supported in Solaris Nevada. 45 */ 46 #define PSMI_1_7 47 48 #include <sys/processor.h> 49 #include <sys/time.h> 50 #include <sys/psm.h> 51 #include <sys/smp_impldefs.h> 52 #include <sys/cram.h> 53 #include <sys/acpi/acpi.h> 54 #include <sys/acpica.h> 55 #include <sys/psm_common.h> 56 #include <sys/pit.h> 57 #include <sys/ddi.h> 58 #include <sys/sunddi.h> 59 #include <sys/ddi_impldefs.h> 60 #include <sys/pci.h> 61 #include <sys/promif.h> 62 #include <sys/x86_archext.h> 63 #include <sys/cpc_impl.h> 64 #include <sys/uadmin.h> 65 #include <sys/panic.h> 66 #include <sys/debug.h> 67 #include <sys/archsystm.h> 68 #include <sys/trap.h> 69 #include <sys/machsystm.h> 70 #include <sys/sysmacros.h> 71 #include <sys/cpuvar.h> 72 #include <sys/rm_platter.h> 73 #include <sys/privregs.h> 74 #include <sys/note.h> 75 #include <sys/pci_intr_lib.h> 76 #include <sys/spl.h> 77 #include <sys/clock.h> 78 #include <sys/cyclic.h> 79 #include <sys/dditypes.h> 80 #include <sys/sunddi.h> 81 #include <sys/x_call.h> 82 #include <sys/reboot.h> 83 #include <sys/mach_intr.h> 84 #include <sys/apix.h> 85 #include <sys/apix_irm_impl.h> 86 87 static int apix_probe(); 88 static void apix_init(); 89 static void apix_picinit(void); 90 static int apix_intr_enter(int, int *); 91 static void apix_intr_exit(int, int); 92 static void apix_setspl(int); 93 static int apix_disable_intr(processorid_t); 94 static void apix_enable_intr(processorid_t); 95 static int apix_get_clkvect(int); 96 static int apix_get_ipivect(int, int); 97 static void apix_post_cyclic_setup(void *); 98 static int apix_post_cpu_start(); 99 static int apix_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *, 100 psm_intr_op_t, int *); 101 102 /* 103 * Helper functions for apix_intr_ops() 104 */ 105 static void apix_redistribute_compute(void); 106 static int apix_get_pending(apix_vector_t *); 107 static apix_vector_t *apix_get_req_vector(ddi_intr_handle_impl_t *, ushort_t); 108 static int apix_get_intr_info(ddi_intr_handle_impl_t *, apic_get_intr_t *); 109 static char *apix_get_apic_type(void); 110 static int apix_intx_get_pending(int); 111 static void apix_intx_set_mask(int irqno); 112 static void apix_intx_clear_mask(int irqno); 113 static int apix_intx_get_shared(int irqno); 114 static void apix_intx_set_shared(int irqno, int delta); 115 static apix_vector_t *apix_intx_xlate_vector(dev_info_t *, int, 116 struct intrspec *); 117 static int apix_intx_alloc_vector(dev_info_t *, int, struct intrspec *); 118 119 extern int apic_clkinit(int); 120 121 /* IRM initialization for APIX PSM module */ 122 extern void apix_irm_init(void); 123 124 extern int irm_enable; 125 126 /* 127 * Local static data 128 */ 129 static struct psm_ops apix_ops = { 130 apix_probe, 131 132 apix_init, 133 apix_picinit, 134 apix_intr_enter, 135 apix_intr_exit, 136 apix_setspl, 137 apix_addspl, 138 apix_delspl, 139 apix_disable_intr, 140 apix_enable_intr, 141 NULL, /* psm_softlvl_to_irq */ 142 NULL, /* psm_set_softintr */ 143 144 apic_set_idlecpu, 145 apic_unset_idlecpu, 146 147 apic_clkinit, 148 apix_get_clkvect, 149 NULL, /* psm_hrtimeinit */ 150 apic_gethrtime, 151 152 apic_get_next_processorid, 153 apic_cpu_start, 154 apix_post_cpu_start, 155 apic_shutdown, 156 apix_get_ipivect, 157 apic_send_ipi, 158 159 NULL, /* psm_translate_irq */ 160 NULL, /* psm_notify_error */ 161 NULL, /* psm_notify_func */ 162 apic_timer_reprogram, 163 apic_timer_enable, 164 apic_timer_disable, 165 apix_post_cyclic_setup, 166 apic_preshutdown, 167 apix_intr_ops, /* Advanced DDI Interrupt framework */ 168 apic_state, /* save, restore apic state for S3 */ 169 apic_cpu_ops, /* CPU control interface. */ 170 }; 171 172 struct psm_ops *psmops = &apix_ops; 173 174 static struct psm_info apix_psm_info = { 175 PSM_INFO_VER01_7, /* version */ 176 PSM_OWN_EXCLUSIVE, /* ownership */ 177 &apix_ops, /* operation */ 178 APIX_NAME, /* machine name */ 179 "apix MPv1.4 compatible", 180 }; 181 182 static void *apix_hdlp; 183 184 static int apix_is_enabled = 0; 185 186 /* 187 * Flag to indicate if APIX is to be enabled only for platforms 188 * with specific hw feature(s). 189 */ 190 int apix_hw_chk_enable = 1; 191 192 /* 193 * Hw features that are checked for enabling APIX support. 194 */ 195 #define APIX_SUPPORT_X2APIC 0x00000001 196 uint_t apix_supported_hw = APIX_SUPPORT_X2APIC; 197 198 /* 199 * apix_lock is used for cpu selection and vector re-binding 200 */ 201 lock_t apix_lock; 202 apix_impl_t *apixs[NCPU]; 203 /* 204 * Mapping between device interrupt and the allocated vector. Indexed 205 * by major number. 206 */ 207 apix_dev_vector_t **apix_dev_vector; 208 /* 209 * Mapping between device major number and cpu id. It gets used 210 * when interrupt binding policy round robin with affinity is 211 * applied. With that policy, devices with the same major number 212 * will be bound to the same CPU. 213 */ 214 processorid_t *apix_major_to_cpu; /* major to cpu mapping */ 215 kmutex_t apix_mutex; /* for apix_dev_vector & apix_major_to_cpu */ 216 217 int apix_nipis = 16; /* Maximum number of IPIs */ 218 /* 219 * Maximum number of vectors in a CPU that can be used for interrupt 220 * allocation (including IPIs and the reserved vectors). 221 */ 222 int apix_cpu_nvectors = APIX_NVECTOR; 223 224 /* gcpu.h */ 225 226 extern void apic_do_interrupt(struct regs *rp, trap_trace_rec_t *ttp); 227 extern void apic_change_eoi(); 228 229 /* 230 * This is the loadable module wrapper 231 */ 232 233 int 234 _init(void) 235 { 236 if (apic_coarse_hrtime) 237 apix_ops.psm_gethrtime = &apic_gettime; 238 return (psm_mod_init(&apix_hdlp, &apix_psm_info)); 239 } 240 241 int 242 _fini(void) 243 { 244 return (psm_mod_fini(&apix_hdlp, &apix_psm_info)); 245 } 246 247 int 248 _info(struct modinfo *modinfop) 249 { 250 return (psm_mod_info(&apix_hdlp, &apix_psm_info, modinfop)); 251 } 252 253 static int 254 apix_probe() 255 { 256 int rval; 257 258 if (apix_enable == 0) 259 return (PSM_FAILURE); 260 261 /* 262 * FIXME Temporarily disable apix module on Xen HVM platform due to 263 * known hang during boot (see #3605). 264 * 265 * Please remove when/if the issue is resolved. 266 */ 267 if (get_hwenv() == HW_XEN_HVM) 268 return (PSM_FAILURE); 269 270 /* check for hw features if specified */ 271 if (apix_hw_chk_enable) { 272 /* check if x2APIC mode is supported */ 273 if ((apix_supported_hw & APIX_SUPPORT_X2APIC) == 274 APIX_SUPPORT_X2APIC) { 275 if (apic_local_mode() == LOCAL_X2APIC) { 276 /* x2APIC mode activated by BIOS, switch ops */ 277 apic_mode = LOCAL_X2APIC; 278 apic_change_ops(); 279 } else if (!apic_detect_x2apic()) { 280 /* x2APIC mode is not supported in the hw */ 281 apix_enable = 0; 282 } 283 } 284 if (apix_enable == 0) 285 return (PSM_FAILURE); 286 } 287 288 rval = apic_probe_common(apix_psm_info.p_mach_idstring); 289 if (rval == PSM_SUCCESS) 290 apix_is_enabled = 1; 291 else 292 apix_is_enabled = 0; 293 return (rval); 294 } 295 296 /* 297 * Initialize the data structures needed by pcplusmpx module. 298 * Specifically, the data structures used by addspl() and delspl() 299 * routines. 300 */ 301 static void 302 apix_softinit() 303 { 304 int i, *iptr; 305 apix_impl_t *hdlp; 306 int nproc; 307 308 nproc = max(apic_nproc, apic_max_nproc); 309 310 hdlp = kmem_zalloc(nproc * sizeof (apix_impl_t), KM_SLEEP); 311 for (i = 0; i < nproc; i++) { 312 apixs[i] = &hdlp[i]; 313 apixs[i]->x_cpuid = i; 314 LOCK_INIT_CLEAR(&apixs[i]->x_lock); 315 } 316 317 /* cpu 0 is always up (for now) */ 318 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; 319 320 iptr = (int *)&apic_irq_table[0]; 321 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 322 apic_level_intr[i] = 0; 323 *iptr++ = NULL; 324 } 325 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL); 326 327 apix_dev_vector = kmem_zalloc(sizeof (apix_dev_vector_t *) * devcnt, 328 KM_SLEEP); 329 330 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) { 331 apix_major_to_cpu = kmem_zalloc(sizeof (int) * devcnt, 332 KM_SLEEP); 333 for (i = 0; i < devcnt; i++) 334 apix_major_to_cpu[i] = IRQ_UNINIT; 335 } 336 337 mutex_init(&apix_mutex, NULL, MUTEX_DEFAULT, NULL); 338 } 339 340 static int 341 apix_get_pending_spl(void) 342 { 343 int cpuid = CPU->cpu_id; 344 345 return (bsrw_insn(apixs[cpuid]->x_intr_pending)); 346 } 347 348 static uintptr_t 349 apix_get_intr_handler(int cpu, short vec) 350 { 351 apix_vector_t *apix_vector; 352 353 ASSERT(cpu < apic_nproc && vec < APIX_NVECTOR); 354 if (cpu >= apic_nproc) 355 return (NULL); 356 357 apix_vector = apixs[cpu]->x_vectbl[vec]; 358 359 return ((uintptr_t)(apix_vector->v_autovect)); 360 } 361 362 static void 363 apix_init() 364 { 365 extern void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *); 366 367 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_softinit\n")); 368 369 do_interrupt_common = apix_do_interrupt; 370 addintr = apix_add_avintr; 371 remintr = apix_rem_avintr; 372 get_pending_spl = apix_get_pending_spl; 373 get_intr_handler = apix_get_intr_handler; 374 psm_get_localapicid = apic_get_localapicid; 375 psm_get_ioapicid = apic_get_ioapicid; 376 377 apix_softinit(); 378 379 #if !defined(__amd64) 380 if (cpuid_have_cr8access(CPU)) 381 apic_have_32bit_cr8 = 1; 382 #endif 383 384 /* 385 * Initialize IRM pool parameters 386 */ 387 if (irm_enable) { 388 int i; 389 int lowest_irq; 390 int highest_irq; 391 392 /* number of CPUs present */ 393 apix_irminfo.apix_ncpus = apic_nproc; 394 /* total number of entries in all of the IOAPICs present */ 395 lowest_irq = apic_io_vectbase[0]; 396 highest_irq = apic_io_vectend[0]; 397 for (i = 1; i < apic_io_max; i++) { 398 if (apic_io_vectbase[i] < lowest_irq) 399 lowest_irq = apic_io_vectbase[i]; 400 if (apic_io_vectend[i] > highest_irq) 401 highest_irq = apic_io_vectend[i]; 402 } 403 apix_irminfo.apix_ioapic_max_vectors = 404 highest_irq - lowest_irq + 1; 405 /* 406 * Number of available per-CPU vectors excluding 407 * reserved vectors for Dtrace, int80, system-call, 408 * fast-trap, etc. 409 */ 410 apix_irminfo.apix_per_cpu_vectors = APIX_NAVINTR - 411 APIX_SW_RESERVED_VECTORS; 412 413 /* Number of vectors (pre) allocated (SCI and HPET) */ 414 apix_irminfo.apix_vectors_allocated = 0; 415 if (apic_hpet_vect != -1) 416 apix_irminfo.apix_vectors_allocated++; 417 if (apic_sci_vect != -1) 418 apix_irminfo.apix_vectors_allocated++; 419 } 420 } 421 422 static void 423 apix_init_intr() 424 { 425 processorid_t cpun = psm_get_cpu_id(); 426 uint_t nlvt; 427 uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR; 428 extern void cmi_cmci_trap(void); 429 430 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 431 432 if (apic_mode == LOCAL_APIC) { 433 /* 434 * We are running APIC in MMIO mode. 435 */ 436 if (apic_flat_model) { 437 apic_reg_ops->apic_write(APIC_FORMAT_REG, 438 APIC_FLAT_MODEL); 439 } else { 440 apic_reg_ops->apic_write(APIC_FORMAT_REG, 441 APIC_CLUSTER_MODEL); 442 } 443 444 apic_reg_ops->apic_write(APIC_DEST_REG, 445 AV_HIGH_ORDER >> cpun); 446 } 447 448 if (apic_directed_EOI_supported()) { 449 /* 450 * Setting the 12th bit in the Spurious Interrupt Vector 451 * Register suppresses broadcast EOIs generated by the local 452 * APIC. The suppression of broadcast EOIs happens only when 453 * interrupts are level-triggered. 454 */ 455 svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI; 456 } 457 458 /* need to enable APIC before unmasking NMI */ 459 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr); 460 461 /* 462 * Presence of an invalid vector with delivery mode AV_FIXED can 463 * cause an error interrupt, even if the entry is masked...so 464 * write a valid vector to LVT entries along with the mask bit 465 */ 466 467 /* All APICs have timer and LINT0/1 */ 468 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ); 469 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ); 470 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */ 471 472 /* 473 * On integrated APICs, the number of LVT entries is 474 * 'Max LVT entry' + 1; on 82489DX's (non-integrated 475 * APICs), nlvt is "3" (LINT0, LINT1, and timer) 476 */ 477 478 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { 479 nlvt = 3; 480 } else { 481 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) & 482 0xFF) + 1; 483 } 484 485 if (nlvt >= 5) { 486 /* Enable performance counter overflow interrupt */ 487 488 if (!is_x86_feature(x86_featureset, X86FSET_MSR)) 489 apic_enable_cpcovf_intr = 0; 490 if (apic_enable_cpcovf_intr) { 491 if (apic_cpcovf_vect == 0) { 492 int ipl = APIC_PCINT_IPL; 493 494 apic_cpcovf_vect = apix_get_ipivect(ipl, -1); 495 ASSERT(apic_cpcovf_vect); 496 497 (void) add_avintr(NULL, ipl, 498 (avfunc)kcpc_hw_overflow_intr, 499 "apic pcint", apic_cpcovf_vect, 500 NULL, NULL, NULL, NULL); 501 kcpc_hw_overflow_intr_installed = 1; 502 kcpc_hw_enable_cpc_intr = 503 apic_cpcovf_mask_clear; 504 } 505 apic_reg_ops->apic_write(APIC_PCINT_VECT, 506 apic_cpcovf_vect); 507 } 508 } 509 510 if (nlvt >= 6) { 511 /* Only mask TM intr if the BIOS apparently doesn't use it */ 512 513 uint32_t lvtval; 514 515 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT); 516 if (((lvtval & AV_MASK) == AV_MASK) || 517 ((lvtval & AV_DELIV_MODE) != AV_SMI)) { 518 apic_reg_ops->apic_write(APIC_THERM_VECT, 519 AV_MASK|APIC_RESV_IRQ); 520 } 521 } 522 523 /* Enable error interrupt */ 524 525 if (nlvt >= 4 && apic_enable_error_intr) { 526 if (apic_errvect == 0) { 527 int ipl = 0xf; /* get highest priority intr */ 528 apic_errvect = apix_get_ipivect(ipl, -1); 529 ASSERT(apic_errvect); 530 /* 531 * Not PSMI compliant, but we are going to merge 532 * with ON anyway 533 */ 534 (void) add_avintr(NULL, ipl, 535 (avfunc)apic_error_intr, "apic error intr", 536 apic_errvect, NULL, NULL, NULL, NULL); 537 } 538 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect); 539 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 540 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 541 } 542 543 /* Enable CMCI interrupt */ 544 if (cmi_enable_cmci) { 545 mutex_enter(&cmci_cpu_setup_lock); 546 if (cmci_cpu_setup_registered == 0) { 547 mutex_enter(&cpu_lock); 548 register_cpu_setup_func(cmci_cpu_setup, NULL); 549 mutex_exit(&cpu_lock); 550 cmci_cpu_setup_registered = 1; 551 } 552 mutex_exit(&cmci_cpu_setup_lock); 553 554 if (apic_cmci_vect == 0) { 555 int ipl = 0x2; 556 apic_cmci_vect = apix_get_ipivect(ipl, -1); 557 ASSERT(apic_cmci_vect); 558 559 (void) add_avintr(NULL, ipl, 560 (avfunc)cmi_cmci_trap, "apic cmci intr", 561 apic_cmci_vect, NULL, NULL, NULL, NULL); 562 } 563 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); 564 } 565 566 apic_reg_ops->apic_write_task_reg(0); 567 } 568 569 static void 570 apix_picinit(void) 571 { 572 int i, j; 573 uint_t isr; 574 575 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_picinit\n")); 576 577 /* 578 * initialize interrupt remapping before apic 579 * hardware initialization 580 */ 581 apic_intrmap_init(apic_mode); 582 if (apic_vt_ops == psm_vt_ops) 583 apix_mul_ioapic_method = APIC_MUL_IOAPIC_IIR; 584 585 /* 586 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr 587 * bit on without clearing it with EOI. Since softint 588 * uses vector 0x20 to interrupt itself, so softint will 589 * not work on this machine. In order to fix this problem 590 * a check is made to verify all the isr bits are clear. 591 * If not, EOIs are issued to clear the bits. 592 */ 593 for (i = 7; i >= 1; i--) { 594 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4)); 595 if (isr != 0) 596 for (j = 0; ((j < 32) && (isr != 0)); j++) 597 if (isr & (1 << j)) { 598 apic_reg_ops->apic_write( 599 APIC_EOI_REG, 0); 600 isr &= ~(1 << j); 601 apic_error |= APIC_ERR_BOOT_EOI; 602 } 603 } 604 605 /* set a flag so we know we have run apic_picinit() */ 606 apic_picinit_called = 1; 607 LOCK_INIT_CLEAR(&apic_gethrtime_lock); 608 LOCK_INIT_CLEAR(&apic_ioapic_lock); 609 LOCK_INIT_CLEAR(&apic_error_lock); 610 LOCK_INIT_CLEAR(&apic_mode_switch_lock); 611 612 picsetup(); /* initialise the 8259 */ 613 614 /* add nmi handler - least priority nmi handler */ 615 LOCK_INIT_CLEAR(&apic_nmi_lock); 616 617 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr, 618 "apix NMI handler", (caddr_t)NULL)) 619 cmn_err(CE_WARN, "apix: Unable to add nmi handler"); 620 621 apix_init_intr(); 622 623 /* enable apic mode if imcr present */ 624 if (apic_imcrp) { 625 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 626 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); 627 } 628 629 ioapix_init_intr(IOAPIC_MASK); 630 631 /* setup global IRM pool if applicable */ 632 if (irm_enable) 633 apix_irm_init(); 634 } 635 636 static __inline__ void 637 apix_send_eoi(void) 638 { 639 if (apic_mode == LOCAL_APIC) 640 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); 641 else 642 X2APIC_WRITE(APIC_EOI_REG, 0); 643 } 644 645 /* 646 * platform_intr_enter 647 * 648 * Called at the beginning of the interrupt service routine, but unlike 649 * pcplusmp, does not mask interrupts. An EOI is given to the interrupt 650 * controller to enable other HW interrupts but interrupts are still 651 * masked by the IF flag. 652 * 653 * Return -1 for spurious interrupts 654 * 655 */ 656 static int 657 apix_intr_enter(int ipl, int *vectorp) 658 { 659 struct cpu *cpu = CPU; 660 uint32_t cpuid = CPU->cpu_id; 661 apic_cpus_info_t *cpu_infop; 662 uchar_t vector; 663 apix_vector_t *vecp; 664 int nipl = -1; 665 666 /* 667 * The real vector delivered is (*vectorp + 0x20), but our caller 668 * subtracts 0x20 from the vector before passing it to us. 669 * (That's why APIC_BASE_VECT is 0x20.) 670 */ 671 vector = *vectorp = (uchar_t)*vectorp + APIC_BASE_VECT; 672 673 cpu_infop = &apic_cpus[cpuid]; 674 if (vector == APIC_SPUR_INTR) { 675 cpu_infop->aci_spur_cnt++; 676 return (APIC_INT_SPURIOUS); 677 } 678 679 vecp = xv_vector(cpuid, vector); 680 if (vecp == NULL) { 681 if (APIX_IS_FAKE_INTR(vector)) 682 nipl = apix_rebindinfo.i_pri; 683 apix_send_eoi(); 684 return (nipl); 685 } 686 nipl = vecp->v_pri; 687 688 /* if interrupted by the clock, increment apic_nsec_since_boot */ 689 if (vector == (apic_clkvect + APIC_BASE_VECT)) { 690 if (!apic_oneshot) { 691 /* NOTE: this is not MT aware */ 692 apic_hrtime_stamp++; 693 apic_nsec_since_boot += apic_nsec_per_intr; 694 apic_hrtime_stamp++; 695 last_count_read = apic_hertz_count; 696 apix_redistribute_compute(); 697 } 698 699 apix_send_eoi(); 700 701 return (nipl); 702 } 703 704 ASSERT(vecp->v_state != APIX_STATE_OBSOLETED); 705 706 /* pre-EOI handling for level-triggered interrupts */ 707 if (!APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method) && 708 (vecp->v_type & APIX_TYPE_FIXED) && apic_level_intr[vecp->v_inum]) 709 apix_level_intr_pre_eoi(vecp->v_inum); 710 711 /* send back EOI */ 712 apix_send_eoi(); 713 714 cpu_infop->aci_current[nipl] = vector; 715 if ((nipl > ipl) && (nipl > cpu->cpu_base_spl)) { 716 cpu_infop->aci_curipl = (uchar_t)nipl; 717 cpu_infop->aci_ISR_in_progress |= 1 << nipl; 718 } 719 720 #ifdef DEBUG 721 if (vector >= APIX_IPI_MIN) 722 return (nipl); /* skip IPI */ 723 724 APIC_DEBUG_BUF_PUT(vector); 725 APIC_DEBUG_BUF_PUT(vecp->v_inum); 726 APIC_DEBUG_BUF_PUT(nipl); 727 APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); 728 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) 729 drv_usecwait(apic_stretch_interrupts); 730 #endif /* DEBUG */ 731 732 return (nipl); 733 } 734 735 /* 736 * Any changes made to this function must also change X2APIC 737 * version of intr_exit. 738 */ 739 static void 740 apix_intr_exit(int prev_ipl, int arg2) 741 { 742 int cpuid = psm_get_cpu_id(); 743 apic_cpus_info_t *cpu_infop = &apic_cpus[cpuid]; 744 apix_impl_t *apixp = apixs[cpuid]; 745 746 UNREFERENCED_1PARAMETER(arg2); 747 748 cpu_infop->aci_curipl = (uchar_t)prev_ipl; 749 /* ISR above current pri could not be in progress */ 750 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; 751 752 if (apixp->x_obsoletes != NULL) { 753 if (APIX_CPU_LOCK_HELD(cpuid)) 754 return; 755 756 APIX_ENTER_CPU_LOCK(cpuid); 757 (void) apix_obsolete_vector(apixp->x_obsoletes); 758 APIX_LEAVE_CPU_LOCK(cpuid); 759 } 760 } 761 762 /* 763 * The pcplusmp setspl code uses the TPR to mask all interrupts at or below the 764 * given ipl, but apix never uses the TPR and we never mask a subset of the 765 * interrupts. They are either all blocked by the IF flag or all can come in. 766 * 767 * For setspl, we mask all interrupts for XC_HI_PIL (15), otherwise, interrupts 768 * can come in if currently enabled by the IF flag. This table shows the state 769 * of the IF flag when we leave this function. 770 * 771 * curr IF | ipl == 15 ipl != 15 772 * --------+--------------------------- 773 * 0 | 0 0 774 * 1 | 0 1 775 */ 776 static void 777 apix_setspl(int ipl) 778 { 779 /* 780 * Interrupts at ipl above this cannot be in progress, so the following 781 * mask is ok. 782 */ 783 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 784 785 if (ipl == XC_HI_PIL) 786 cli(); 787 } 788 789 int 790 apix_addspl(int virtvec, int ipl, int min_ipl, int max_ipl) 791 { 792 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec); 793 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec); 794 apix_vector_t *vecp = xv_vector(cpuid, vector); 795 796 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl); 797 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock)); 798 799 if (vecp->v_type == APIX_TYPE_FIXED) 800 apix_intx_set_shared(vecp->v_inum, 1); 801 802 /* There are more interrupts, so it's already been enabled */ 803 if (vecp->v_share > 1) 804 return (PSM_SUCCESS); 805 806 /* return if it is not hardware interrupt */ 807 if (vecp->v_type == APIX_TYPE_IPI) 808 return (PSM_SUCCESS); 809 810 /* 811 * if apix_picinit() has not been called yet, just return. 812 * At the end of apic_picinit(), we will call setup_io_intr(). 813 */ 814 if (!apic_picinit_called) 815 return (PSM_SUCCESS); 816 817 (void) apix_setup_io_intr(vecp); 818 819 return (PSM_SUCCESS); 820 } 821 822 int 823 apix_delspl(int virtvec, int ipl, int min_ipl, int max_ipl) 824 { 825 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec); 826 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec); 827 apix_vector_t *vecp = xv_vector(cpuid, vector); 828 829 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl); 830 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock)); 831 832 if (vecp->v_type == APIX_TYPE_FIXED) 833 apix_intx_set_shared(vecp->v_inum, -1); 834 835 /* There are more interrupts */ 836 if (vecp->v_share > 1) 837 return (PSM_SUCCESS); 838 839 /* return if it is not hardware interrupt */ 840 if (vecp->v_type == APIX_TYPE_IPI) 841 return (PSM_SUCCESS); 842 843 if (!apic_picinit_called) { 844 cmn_err(CE_WARN, "apix: delete 0x%x before apic init", 845 virtvec); 846 return (PSM_SUCCESS); 847 } 848 849 apix_disable_vector(vecp); 850 851 return (PSM_SUCCESS); 852 } 853 854 /* 855 * Try and disable all interrupts. We just assign interrupts to other 856 * processors based on policy. If any were bound by user request, we 857 * let them continue and return failure. We do not bother to check 858 * for cache affinity while rebinding. 859 */ 860 static int 861 apix_disable_intr(processorid_t cpun) 862 { 863 apix_impl_t *apixp = apixs[cpun]; 864 apix_vector_t *vecp, *newp; 865 int bindcpu, i, hardbound = 0, errbound = 0, ret, loop, type; 866 867 lock_set(&apix_lock); 868 869 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; 870 apic_cpus[cpun].aci_curipl = 0; 871 872 /* if this is for SUSPEND operation, skip rebinding */ 873 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) { 874 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 875 vecp = apixp->x_vectbl[i]; 876 if (!IS_VECT_ENABLED(vecp)) 877 continue; 878 879 apix_disable_vector(vecp); 880 } 881 lock_clear(&apix_lock); 882 return (PSM_SUCCESS); 883 } 884 885 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 886 vecp = apixp->x_vectbl[i]; 887 if (!IS_VECT_ENABLED(vecp)) 888 continue; 889 890 if (vecp->v_flags & APIX_VECT_USER_BOUND) { 891 hardbound++; 892 continue; 893 } 894 type = vecp->v_type; 895 896 /* 897 * If there are bound interrupts on this cpu, then 898 * rebind them to other processors. 899 */ 900 loop = 0; 901 do { 902 bindcpu = apic_find_cpu(APIC_CPU_INTR_ENABLE); 903 904 if (type != APIX_TYPE_MSI) 905 newp = apix_set_cpu(vecp, bindcpu, &ret); 906 else 907 newp = apix_grp_set_cpu(vecp, bindcpu, &ret); 908 } while ((newp == NULL) && (loop++ < apic_nproc)); 909 910 if (loop >= apic_nproc) { 911 errbound++; 912 cmn_err(CE_WARN, "apix: failed to rebind vector %x/%x", 913 vecp->v_cpuid, vecp->v_vector); 914 } 915 } 916 917 lock_clear(&apix_lock); 918 919 if (hardbound || errbound) { 920 cmn_err(CE_WARN, "Could not disable interrupts on %d" 921 "due to user bound interrupts or failed operation", 922 cpun); 923 return (PSM_FAILURE); 924 } 925 926 return (PSM_SUCCESS); 927 } 928 929 /* 930 * Bind interrupts to specified CPU 931 */ 932 static void 933 apix_enable_intr(processorid_t cpun) 934 { 935 apix_vector_t *vecp; 936 int i, ret; 937 processorid_t n; 938 939 lock_set(&apix_lock); 940 941 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; 942 943 /* interrupt enabling for system resume */ 944 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) { 945 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 946 vecp = xv_vector(cpun, i); 947 if (!IS_VECT_ENABLED(vecp)) 948 continue; 949 950 apix_enable_vector(vecp); 951 } 952 apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND; 953 } 954 955 for (n = 0; n < apic_nproc; n++) { 956 if (!apic_cpu_in_range(n) || n == cpun || 957 (apic_cpus[n].aci_status & APIC_CPU_INTR_ENABLE) == 0) 958 continue; 959 960 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 961 vecp = xv_vector(n, i); 962 if (!IS_VECT_ENABLED(vecp) || 963 vecp->v_bound_cpuid != cpun) 964 continue; 965 966 if (vecp->v_type != APIX_TYPE_MSI) 967 (void) apix_set_cpu(vecp, cpun, &ret); 968 else 969 (void) apix_grp_set_cpu(vecp, cpun, &ret); 970 } 971 } 972 973 lock_clear(&apix_lock); 974 } 975 976 /* 977 * Allocate vector for IPI 978 * type == -1 indicates it is an internal request. Do not change 979 * resv_vector for these requests. 980 */ 981 static int 982 apix_get_ipivect(int ipl, int type) 983 { 984 uchar_t vector; 985 986 if ((vector = apix_alloc_ipi(ipl)) > 0) { 987 if (type != -1) 988 apic_resv_vector[ipl] = vector; 989 return (vector); 990 } 991 apic_error |= APIC_ERR_GET_IPIVECT_FAIL; 992 return (-1); /* shouldn't happen */ 993 } 994 995 static int 996 apix_get_clkvect(int ipl) 997 { 998 int vector; 999 1000 if ((vector = apix_get_ipivect(ipl, -1)) == -1) 1001 return (-1); 1002 1003 apic_clkvect = vector - APIC_BASE_VECT; 1004 APIC_VERBOSE(IPI, (CE_CONT, "apix: clock vector = %x\n", 1005 apic_clkvect)); 1006 return (vector); 1007 } 1008 1009 static int 1010 apix_post_cpu_start() 1011 { 1012 int cpun; 1013 static int cpus_started = 1; 1014 1015 /* We know this CPU + BSP started successfully. */ 1016 cpus_started++; 1017 1018 /* 1019 * On BSP we would have enabled X2APIC, if supported by processor, 1020 * in acpi_probe(), but on AP we do it here. 1021 * 1022 * We enable X2APIC mode only if BSP is running in X2APIC & the 1023 * local APIC mode of the current CPU is MMIO (xAPIC). 1024 */ 1025 if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() && 1026 apic_local_mode() == LOCAL_APIC) { 1027 apic_enable_x2apic(); 1028 } 1029 1030 /* 1031 * Switch back to x2apic IPI sending method for performance when target 1032 * CPU has entered x2apic mode. 1033 */ 1034 if (apic_mode == LOCAL_X2APIC) { 1035 apic_switch_ipi_callback(B_FALSE); 1036 } 1037 1038 splx(ipltospl(LOCK_LEVEL)); 1039 apix_init_intr(); 1040 1041 /* 1042 * since some systems don't enable the internal cache on the non-boot 1043 * cpus, so we have to enable them here 1044 */ 1045 setcr0(getcr0() & ~(CR0_CD | CR0_NW)); 1046 1047 #ifdef DEBUG 1048 APIC_AV_PENDING_SET(); 1049 #else 1050 if (apic_mode == LOCAL_APIC) 1051 APIC_AV_PENDING_SET(); 1052 #endif /* DEBUG */ 1053 1054 /* 1055 * We may be booting, or resuming from suspend; aci_status will 1056 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the 1057 * APIC_CPU_ONLINE flag here rather than setting aci_status completely. 1058 */ 1059 cpun = psm_get_cpu_id(); 1060 apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE; 1061 1062 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); 1063 1064 return (PSM_SUCCESS); 1065 } 1066 1067 /* 1068 * If this module needs a periodic handler for the interrupt distribution, it 1069 * can be added here. The argument to the periodic handler is not currently 1070 * used, but is reserved for future. 1071 */ 1072 static void 1073 apix_post_cyclic_setup(void *arg) 1074 { 1075 UNREFERENCED_1PARAMETER(arg); 1076 1077 cyc_handler_t cyh; 1078 cyc_time_t cyt; 1079 1080 /* cpu_lock is held */ 1081 /* set up a periodic handler for intr redistribution */ 1082 1083 /* 1084 * In peridoc mode intr redistribution processing is done in 1085 * apic_intr_enter during clk intr processing 1086 */ 1087 if (!apic_oneshot) 1088 return; 1089 1090 /* 1091 * Register a periodical handler for the redistribution processing. 1092 * Though we would generally prefer to use the DDI interface for 1093 * periodic handler invocation, ddi_periodic_add(9F), we are 1094 * unfortunately already holding cpu_lock, which ddi_periodic_add will 1095 * attempt to take for us. Thus, we add our own cyclic directly: 1096 */ 1097 cyh.cyh_func = (void (*)(void *))apix_redistribute_compute; 1098 cyh.cyh_arg = NULL; 1099 cyh.cyh_level = CY_LOW_LEVEL; 1100 1101 cyt.cyt_when = 0; 1102 cyt.cyt_interval = apic_redistribute_sample_interval; 1103 1104 apic_cyclic_id = cyclic_add(&cyh, &cyt); 1105 } 1106 1107 /* 1108 * Called the first time we enable x2apic mode on this cpu. 1109 * Update some of the function pointers to use x2apic routines. 1110 */ 1111 void 1112 x2apic_update_psm() 1113 { 1114 struct psm_ops *pops = &apix_ops; 1115 1116 ASSERT(pops != NULL); 1117 1118 /* 1119 * The pcplusmp module's version of x2apic_update_psm makes additional 1120 * changes that we do not have to make here. It needs to make those 1121 * changes because pcplusmp relies on the TPR register and the means of 1122 * addressing that changes when using the local apic versus the x2apic. 1123 * It's also worth noting that the apix driver specific function end up 1124 * being apix_foo as opposed to apic_foo and x2apic_foo. 1125 */ 1126 pops->psm_send_ipi = x2apic_send_ipi; 1127 1128 send_dirintf = pops->psm_send_ipi; 1129 1130 apic_mode = LOCAL_X2APIC; 1131 apic_change_ops(); 1132 } 1133 1134 /* 1135 * This function provides external interface to the nexus for all 1136 * functionalities related to the new DDI interrupt framework. 1137 * 1138 * Input: 1139 * dip - pointer to the dev_info structure of the requested device 1140 * hdlp - pointer to the internal interrupt handle structure for the 1141 * requested interrupt 1142 * intr_op - opcode for this call 1143 * result - pointer to the integer that will hold the result to be 1144 * passed back if return value is PSM_SUCCESS 1145 * 1146 * Output: 1147 * return value is either PSM_SUCCESS or PSM_FAILURE 1148 */ 1149 static int 1150 apix_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, 1151 psm_intr_op_t intr_op, int *result) 1152 { 1153 int cap; 1154 apix_vector_t *vecp, *newvecp; 1155 struct intrspec *ispec, intr_spec; 1156 processorid_t target; 1157 1158 ispec = &intr_spec; 1159 ispec->intrspec_pri = hdlp->ih_pri; 1160 ispec->intrspec_vec = hdlp->ih_inum; 1161 ispec->intrspec_func = hdlp->ih_cb_func; 1162 1163 switch (intr_op) { 1164 case PSM_INTR_OP_ALLOC_VECTORS: 1165 switch (hdlp->ih_type) { 1166 case DDI_INTR_TYPE_MSI: 1167 /* allocate MSI vectors */ 1168 *result = apix_alloc_msi(dip, hdlp->ih_inum, 1169 hdlp->ih_scratch1, 1170 (int)(uintptr_t)hdlp->ih_scratch2); 1171 break; 1172 case DDI_INTR_TYPE_MSIX: 1173 /* allocate MSI-X vectors */ 1174 *result = apix_alloc_msix(dip, hdlp->ih_inum, 1175 hdlp->ih_scratch1, 1176 (int)(uintptr_t)hdlp->ih_scratch2); 1177 break; 1178 case DDI_INTR_TYPE_FIXED: 1179 /* allocate or share vector for fixed */ 1180 if ((ihdl_plat_t *)hdlp->ih_private == NULL) { 1181 return (PSM_FAILURE); 1182 } 1183 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; 1184 *result = apix_intx_alloc_vector(dip, hdlp->ih_inum, 1185 ispec); 1186 break; 1187 default: 1188 return (PSM_FAILURE); 1189 } 1190 break; 1191 case PSM_INTR_OP_FREE_VECTORS: 1192 apix_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1, 1193 hdlp->ih_type); 1194 break; 1195 case PSM_INTR_OP_XLATE_VECTOR: 1196 /* 1197 * Vectors are allocated by ALLOC and freed by FREE. 1198 * XLATE finds and returns APIX_VIRTVEC_VECTOR(cpu, vector). 1199 */ 1200 *result = APIX_INVALID_VECT; 1201 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1202 if (vecp != NULL) { 1203 *result = APIX_VIRTVECTOR(vecp->v_cpuid, 1204 vecp->v_vector); 1205 break; 1206 } 1207 1208 /* 1209 * No vector to device mapping exists. If this is FIXED type 1210 * then check if this IRQ is already mapped for another device 1211 * then return the vector number for it (i.e. shared IRQ case). 1212 * Otherwise, return PSM_FAILURE. 1213 */ 1214 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) { 1215 vecp = apix_intx_xlate_vector(dip, hdlp->ih_inum, 1216 ispec); 1217 *result = (vecp == NULL) ? APIX_INVALID_VECT : 1218 APIX_VIRTVECTOR(vecp->v_cpuid, vecp->v_vector); 1219 } 1220 if (*result == APIX_INVALID_VECT) 1221 return (PSM_FAILURE); 1222 break; 1223 case PSM_INTR_OP_GET_PENDING: 1224 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1225 if (vecp == NULL) 1226 return (PSM_FAILURE); 1227 1228 *result = apix_get_pending(vecp); 1229 break; 1230 case PSM_INTR_OP_CLEAR_MASK: 1231 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1232 return (PSM_FAILURE); 1233 1234 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1235 if (vecp == NULL) 1236 return (PSM_FAILURE); 1237 1238 apix_intx_clear_mask(vecp->v_inum); 1239 break; 1240 case PSM_INTR_OP_SET_MASK: 1241 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1242 return (PSM_FAILURE); 1243 1244 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1245 if (vecp == NULL) 1246 return (PSM_FAILURE); 1247 1248 apix_intx_set_mask(vecp->v_inum); 1249 break; 1250 case PSM_INTR_OP_GET_SHARED: 1251 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1252 return (PSM_FAILURE); 1253 1254 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1255 if (vecp == NULL) 1256 return (PSM_FAILURE); 1257 1258 *result = apix_intx_get_shared(vecp->v_inum); 1259 break; 1260 case PSM_INTR_OP_SET_PRI: 1261 /* 1262 * Called prior to adding the interrupt handler or when 1263 * an interrupt handler is unassigned. 1264 */ 1265 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1266 return (PSM_SUCCESS); 1267 1268 if (apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type) == NULL) 1269 return (PSM_FAILURE); 1270 1271 break; 1272 case PSM_INTR_OP_SET_CPU: 1273 case PSM_INTR_OP_GRP_SET_CPU: 1274 /* 1275 * The interrupt handle given here has been allocated 1276 * specifically for this command, and ih_private carries 1277 * a CPU value. 1278 */ 1279 *result = EINVAL; 1280 target = (int)(intptr_t)hdlp->ih_private; 1281 if (!apic_cpu_in_range(target)) { 1282 DDI_INTR_IMPLDBG((CE_WARN, 1283 "[grp_]set_cpu: cpu out of range: %d\n", target)); 1284 return (PSM_FAILURE); 1285 } 1286 1287 lock_set(&apix_lock); 1288 1289 vecp = apix_get_req_vector(hdlp, hdlp->ih_flags); 1290 if (!IS_VECT_ENABLED(vecp)) { 1291 DDI_INTR_IMPLDBG((CE_WARN, 1292 "[grp]_set_cpu: invalid vector 0x%x\n", 1293 hdlp->ih_vector)); 1294 lock_clear(&apix_lock); 1295 return (PSM_FAILURE); 1296 } 1297 1298 *result = 0; 1299 1300 if (intr_op == PSM_INTR_OP_SET_CPU) 1301 newvecp = apix_set_cpu(vecp, target, result); 1302 else 1303 newvecp = apix_grp_set_cpu(vecp, target, result); 1304 1305 lock_clear(&apix_lock); 1306 1307 if (newvecp == NULL) { 1308 *result = EIO; 1309 return (PSM_FAILURE); 1310 } 1311 newvecp->v_bound_cpuid = target; 1312 hdlp->ih_vector = APIX_VIRTVECTOR(newvecp->v_cpuid, 1313 newvecp->v_vector); 1314 break; 1315 1316 case PSM_INTR_OP_GET_INTR: 1317 /* 1318 * The interrupt handle given here has been allocated 1319 * specifically for this command, and ih_private carries 1320 * a pointer to a apic_get_intr_t. 1321 */ 1322 if (apix_get_intr_info(hdlp, hdlp->ih_private) != PSM_SUCCESS) 1323 return (PSM_FAILURE); 1324 break; 1325 1326 case PSM_INTR_OP_CHECK_MSI: 1327 /* 1328 * Check MSI/X is supported or not at APIC level and 1329 * masked off the MSI/X bits in hdlp->ih_type if not 1330 * supported before return. If MSI/X is supported, 1331 * leave the ih_type unchanged and return. 1332 * 1333 * hdlp->ih_type passed in from the nexus has all the 1334 * interrupt types supported by the device. 1335 */ 1336 if (apic_support_msi == 0) { /* uninitialized */ 1337 /* 1338 * if apic_support_msi is not set, call 1339 * apic_check_msi_support() to check whether msi 1340 * is supported first 1341 */ 1342 if (apic_check_msi_support() == PSM_SUCCESS) 1343 apic_support_msi = 1; /* supported */ 1344 else 1345 apic_support_msi = -1; /* not-supported */ 1346 } 1347 if (apic_support_msi == 1) { 1348 if (apic_msix_enable) 1349 *result = hdlp->ih_type; 1350 else 1351 *result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX; 1352 } else 1353 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI | 1354 DDI_INTR_TYPE_MSIX); 1355 break; 1356 case PSM_INTR_OP_GET_CAP: 1357 cap = DDI_INTR_FLAG_PENDING; 1358 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1359 cap |= DDI_INTR_FLAG_MASKABLE; 1360 *result = cap; 1361 break; 1362 case PSM_INTR_OP_APIC_TYPE: 1363 ((apic_get_type_t *)(hdlp->ih_private))->avgi_type = 1364 apix_get_apic_type(); 1365 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_intr = 1366 APIX_IPI_MIN; 1367 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_cpu = 1368 apic_nproc; 1369 hdlp->ih_ver = apic_get_apic_version(); 1370 break; 1371 case PSM_INTR_OP_SET_CAP: 1372 default: 1373 return (PSM_FAILURE); 1374 } 1375 1376 return (PSM_SUCCESS); 1377 } 1378 1379 static void 1380 apix_cleanup_busy(void) 1381 { 1382 int i, j; 1383 apix_vector_t *vecp; 1384 1385 for (i = 0; i < apic_nproc; i++) { 1386 if (!apic_cpu_in_range(i)) 1387 continue; 1388 apic_cpus[i].aci_busy = 0; 1389 for (j = APIX_AVINTR_MIN; j < APIX_AVINTR_MAX; j++) { 1390 if ((vecp = xv_vector(i, j)) != NULL) 1391 vecp->v_busy = 0; 1392 } 1393 } 1394 } 1395 1396 static void 1397 apix_redistribute_compute(void) 1398 { 1399 int i, j, max_busy; 1400 1401 if (!apic_enable_dynamic_migration) 1402 return; 1403 1404 if (++apic_nticks == apic_sample_factor_redistribution) { 1405 /* 1406 * Time to call apic_intr_redistribute(). 1407 * reset apic_nticks. This will cause max_busy 1408 * to be calculated below and if it is more than 1409 * apic_int_busy, we will do the whole thing 1410 */ 1411 apic_nticks = 0; 1412 } 1413 max_busy = 0; 1414 for (i = 0; i < apic_nproc; i++) { 1415 if (!apic_cpu_in_range(i)) 1416 continue; 1417 /* 1418 * Check if curipl is non zero & if ISR is in 1419 * progress 1420 */ 1421 if (((j = apic_cpus[i].aci_curipl) != 0) && 1422 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { 1423 1424 int vect; 1425 apic_cpus[i].aci_busy++; 1426 vect = apic_cpus[i].aci_current[j]; 1427 apixs[i]->x_vectbl[vect]->v_busy++; 1428 } 1429 1430 if (!apic_nticks && 1431 (apic_cpus[i].aci_busy > max_busy)) 1432 max_busy = apic_cpus[i].aci_busy; 1433 } 1434 if (!apic_nticks) { 1435 if (max_busy > apic_int_busy_mark) { 1436 /* 1437 * We could make the following check be 1438 * skipped > 1 in which case, we get a 1439 * redistribution at half the busy mark (due to 1440 * double interval). Need to be able to collect 1441 * more empirical data to decide if that is a 1442 * good strategy. Punt for now. 1443 */ 1444 apix_cleanup_busy(); 1445 apic_skipped_redistribute = 0; 1446 } else 1447 apic_skipped_redistribute++; 1448 } 1449 } 1450 1451 /* 1452 * intr_ops() service routines 1453 */ 1454 1455 static int 1456 apix_get_pending(apix_vector_t *vecp) 1457 { 1458 int bit, index, irr, pending; 1459 1460 /* need to get on the bound cpu */ 1461 mutex_enter(&cpu_lock); 1462 affinity_set(vecp->v_cpuid); 1463 1464 index = vecp->v_vector / 32; 1465 bit = vecp->v_vector % 32; 1466 irr = apic_reg_ops->apic_read(APIC_IRR_REG + index); 1467 1468 affinity_clear(); 1469 mutex_exit(&cpu_lock); 1470 1471 pending = (irr & (1 << bit)) ? 1 : 0; 1472 if (!pending && vecp->v_type == APIX_TYPE_FIXED) 1473 pending = apix_intx_get_pending(vecp->v_inum); 1474 1475 return (pending); 1476 } 1477 1478 static apix_vector_t * 1479 apix_get_req_vector(ddi_intr_handle_impl_t *hdlp, ushort_t flags) 1480 { 1481 apix_vector_t *vecp; 1482 processorid_t cpuid; 1483 int32_t virt_vec = 0; 1484 1485 switch (flags & PSMGI_INTRBY_FLAGS) { 1486 case PSMGI_INTRBY_IRQ: 1487 return (apix_intx_get_vector(hdlp->ih_vector)); 1488 case PSMGI_INTRBY_VEC: 1489 virt_vec = (virt_vec == 0) ? hdlp->ih_vector : virt_vec; 1490 1491 cpuid = APIX_VIRTVEC_CPU(virt_vec); 1492 if (!apic_cpu_in_range(cpuid)) 1493 return (NULL); 1494 1495 vecp = xv_vector(cpuid, APIX_VIRTVEC_VECTOR(virt_vec)); 1496 break; 1497 case PSMGI_INTRBY_DEFAULT: 1498 vecp = apix_get_dev_map(hdlp->ih_dip, hdlp->ih_inum, 1499 hdlp->ih_type); 1500 break; 1501 default: 1502 return (NULL); 1503 } 1504 1505 return (vecp); 1506 } 1507 1508 static int 1509 apix_get_intr_info(ddi_intr_handle_impl_t *hdlp, 1510 apic_get_intr_t *intr_params_p) 1511 { 1512 apix_vector_t *vecp; 1513 struct autovec *av_dev; 1514 int i; 1515 1516 vecp = apix_get_req_vector(hdlp, intr_params_p->avgi_req_flags); 1517 if (IS_VECT_FREE(vecp)) { 1518 intr_params_p->avgi_num_devs = 0; 1519 intr_params_p->avgi_cpu_id = 0; 1520 intr_params_p->avgi_req_flags = 0; 1521 return (PSM_SUCCESS); 1522 } 1523 1524 if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) { 1525 intr_params_p->avgi_cpu_id = vecp->v_cpuid; 1526 1527 /* Return user bound info for intrd. */ 1528 if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) { 1529 intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND; 1530 intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND; 1531 } 1532 } 1533 1534 if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR) 1535 intr_params_p->avgi_vector = vecp->v_vector; 1536 1537 if (intr_params_p->avgi_req_flags & 1538 (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS)) 1539 /* Get number of devices from apic_irq table shared field. */ 1540 intr_params_p->avgi_num_devs = vecp->v_share; 1541 1542 if (intr_params_p->avgi_req_flags & PSMGI_REQ_GET_DEVS) { 1543 1544 intr_params_p->avgi_req_flags |= PSMGI_REQ_NUM_DEVS; 1545 1546 /* Some devices have NULL dip. Don't count these. */ 1547 if (intr_params_p->avgi_num_devs > 0) { 1548 for (i = 0, av_dev = vecp->v_autovect; av_dev; 1549 av_dev = av_dev->av_link) { 1550 if (av_dev->av_vector && av_dev->av_dip) 1551 i++; 1552 } 1553 intr_params_p->avgi_num_devs = 1554 (uint8_t)MIN(intr_params_p->avgi_num_devs, i); 1555 } 1556 1557 /* There are no viable dips to return. */ 1558 if (intr_params_p->avgi_num_devs == 0) { 1559 intr_params_p->avgi_dip_list = NULL; 1560 1561 } else { /* Return list of dips */ 1562 1563 /* Allocate space in array for that number of devs. */ 1564 intr_params_p->avgi_dip_list = kmem_zalloc( 1565 intr_params_p->avgi_num_devs * 1566 sizeof (dev_info_t *), 1567 KM_NOSLEEP); 1568 if (intr_params_p->avgi_dip_list == NULL) { 1569 DDI_INTR_IMPLDBG((CE_WARN, 1570 "apix_get_vector_intr_info: no memory")); 1571 return (PSM_FAILURE); 1572 } 1573 1574 /* 1575 * Loop through the device list of the autovec table 1576 * filling in the dip array. 1577 * 1578 * Note that the autovect table may have some special 1579 * entries which contain NULL dips. These will be 1580 * ignored. 1581 */ 1582 for (i = 0, av_dev = vecp->v_autovect; av_dev; 1583 av_dev = av_dev->av_link) { 1584 if (av_dev->av_vector && av_dev->av_dip) 1585 intr_params_p->avgi_dip_list[i++] = 1586 av_dev->av_dip; 1587 } 1588 } 1589 } 1590 1591 return (PSM_SUCCESS); 1592 } 1593 1594 static char * 1595 apix_get_apic_type(void) 1596 { 1597 return (apix_psm_info.p_mach_idstring); 1598 } 1599 1600 apix_vector_t * 1601 apix_set_cpu(apix_vector_t *vecp, int new_cpu, int *result) 1602 { 1603 apix_vector_t *newp = NULL; 1604 dev_info_t *dip; 1605 int inum, cap_ptr; 1606 ddi_acc_handle_t handle; 1607 ddi_intr_msix_t *msix_p = NULL; 1608 ushort_t msix_ctrl; 1609 uintptr_t off; 1610 uint32_t mask; 1611 1612 ASSERT(LOCK_HELD(&apix_lock)); 1613 *result = ENXIO; 1614 1615 /* Fail if this is an MSI intr and is part of a group. */ 1616 if (vecp->v_type == APIX_TYPE_MSI) { 1617 if (i_ddi_intr_get_current_nintrs(APIX_GET_DIP(vecp)) > 1) 1618 return (NULL); 1619 else 1620 return (apix_grp_set_cpu(vecp, new_cpu, result)); 1621 } 1622 1623 /* 1624 * Mask MSI-X. It's unmasked when MSI-X gets enabled. 1625 */ 1626 if (vecp->v_type == APIX_TYPE_MSIX && IS_VECT_ENABLED(vecp)) { 1627 if ((dip = APIX_GET_DIP(vecp)) == NULL) 1628 return (NULL); 1629 inum = vecp->v_devp->dv_inum; 1630 1631 handle = i_ddi_get_pci_config_handle(dip); 1632 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip); 1633 msix_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL); 1634 if ((msix_ctrl & PCI_MSIX_FUNCTION_MASK) == 0) { 1635 /* 1636 * Function is not masked, then mask "inum"th 1637 * entry in the MSI-X table 1638 */ 1639 msix_p = i_ddi_get_msix(dip); 1640 off = (uintptr_t)msix_p->msix_tbl_addr + (inum * 1641 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET; 1642 mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off); 1643 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, 1644 mask | 1); 1645 } 1646 } 1647 1648 *result = 0; 1649 if ((newp = apix_rebind(vecp, new_cpu, 1)) == NULL) 1650 *result = EIO; 1651 1652 /* Restore mask bit */ 1653 if (msix_p != NULL) 1654 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, mask); 1655 1656 return (newp); 1657 } 1658 1659 /* 1660 * Set cpu for MSIs 1661 */ 1662 apix_vector_t * 1663 apix_grp_set_cpu(apix_vector_t *vecp, int new_cpu, int *result) 1664 { 1665 apix_vector_t *newp, *vp; 1666 uint32_t orig_cpu = vecp->v_cpuid; 1667 int orig_vect = vecp->v_vector; 1668 int i, num_vectors, cap_ptr, msi_mask_off; 1669 uint32_t msi_pvm; 1670 ushort_t msi_ctrl; 1671 ddi_acc_handle_t handle; 1672 dev_info_t *dip; 1673 1674 APIC_VERBOSE(INTR, (CE_CONT, "apix_grp_set_cpu: oldcpu: %x, vector: %x," 1675 " newcpu:%x\n", vecp->v_cpuid, vecp->v_vector, new_cpu)); 1676 1677 ASSERT(LOCK_HELD(&apix_lock)); 1678 1679 *result = ENXIO; 1680 1681 if (vecp->v_type != APIX_TYPE_MSI) { 1682 DDI_INTR_IMPLDBG((CE_WARN, "set_grp: intr not MSI\n")); 1683 return (NULL); 1684 } 1685 1686 if ((dip = APIX_GET_DIP(vecp)) == NULL) 1687 return (NULL); 1688 1689 num_vectors = i_ddi_intr_get_current_nintrs(dip); 1690 if ((num_vectors < 1) || ((num_vectors - 1) & orig_vect)) { 1691 APIC_VERBOSE(INTR, (CE_WARN, 1692 "set_grp: base vec not part of a grp or not aligned: " 1693 "vec:0x%x, num_vec:0x%x\n", orig_vect, num_vectors)); 1694 return (NULL); 1695 } 1696 1697 if (vecp->v_inum != apix_get_min_dev_inum(dip, vecp->v_type)) 1698 return (NULL); 1699 1700 *result = EIO; 1701 for (i = 1; i < num_vectors; i++) { 1702 if ((vp = xv_vector(orig_cpu, orig_vect + i)) == NULL) 1703 return (NULL); 1704 #ifdef DEBUG 1705 /* 1706 * Sanity check: CPU and dip is the same for all entries. 1707 * May be called when first msi to be enabled, at this time 1708 * add_avintr() is not called for other msi 1709 */ 1710 if ((vp->v_share != 0) && 1711 ((APIX_GET_DIP(vp) != dip) || 1712 (vp->v_cpuid != vecp->v_cpuid))) { 1713 APIC_VERBOSE(INTR, (CE_WARN, 1714 "set_grp: cpu or dip for vec 0x%x difft than for " 1715 "vec 0x%x\n", orig_vect, orig_vect + i)); 1716 APIC_VERBOSE(INTR, (CE_WARN, 1717 " cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu, 1718 vp->v_cpuid, (void *)dip, 1719 (void *)APIX_GET_DIP(vp))); 1720 return (NULL); 1721 } 1722 #endif /* DEBUG */ 1723 } 1724 1725 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip); 1726 handle = i_ddi_get_pci_config_handle(dip); 1727 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 1728 1729 /* MSI Per vector masking is supported. */ 1730 if (msi_ctrl & PCI_MSI_PVM_MASK) { 1731 if (msi_ctrl & PCI_MSI_64BIT_MASK) 1732 msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS; 1733 else 1734 msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK; 1735 msi_pvm = pci_config_get32(handle, msi_mask_off); 1736 pci_config_put32(handle, msi_mask_off, (uint32_t)-1); 1737 APIC_VERBOSE(INTR, (CE_CONT, 1738 "set_grp: pvm supported. Mask set to 0x%x\n", 1739 pci_config_get32(handle, msi_mask_off))); 1740 } 1741 1742 if ((newp = apix_rebind(vecp, new_cpu, num_vectors)) != NULL) 1743 *result = 0; 1744 1745 /* Reenable vectors if per vector masking is supported. */ 1746 if (msi_ctrl & PCI_MSI_PVM_MASK) { 1747 pci_config_put32(handle, msi_mask_off, msi_pvm); 1748 APIC_VERBOSE(INTR, (CE_CONT, 1749 "set_grp: pvm supported. Mask restored to 0x%x\n", 1750 pci_config_get32(handle, msi_mask_off))); 1751 } 1752 1753 return (newp); 1754 } 1755 1756 void 1757 apix_intx_set_vector(int irqno, uint32_t cpuid, uchar_t vector) 1758 { 1759 apic_irq_t *irqp; 1760 1761 mutex_enter(&airq_mutex); 1762 irqp = apic_irq_table[irqno]; 1763 irqp->airq_cpu = cpuid; 1764 irqp->airq_vector = vector; 1765 apic_record_rdt_entry(irqp, irqno); 1766 mutex_exit(&airq_mutex); 1767 } 1768 1769 apix_vector_t * 1770 apix_intx_get_vector(int irqno) 1771 { 1772 apic_irq_t *irqp; 1773 uint32_t cpuid; 1774 uchar_t vector; 1775 1776 mutex_enter(&airq_mutex); 1777 irqp = apic_irq_table[irqno & 0xff]; 1778 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) { 1779 mutex_exit(&airq_mutex); 1780 return (NULL); 1781 } 1782 cpuid = irqp->airq_cpu; 1783 vector = irqp->airq_vector; 1784 mutex_exit(&airq_mutex); 1785 1786 return (xv_vector(cpuid, vector)); 1787 } 1788 1789 /* 1790 * Must called with interrupts disabled and apic_ioapic_lock held 1791 */ 1792 void 1793 apix_intx_enable(int irqno) 1794 { 1795 uchar_t ioapicindex, intin; 1796 apic_irq_t *irqp = apic_irq_table[irqno]; 1797 ioapic_rdt_t irdt; 1798 apic_cpus_info_t *cpu_infop; 1799 apix_vector_t *vecp = xv_vector(irqp->airq_cpu, irqp->airq_vector); 1800 1801 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp)); 1802 1803 ioapicindex = irqp->airq_ioapicindex; 1804 intin = irqp->airq_intin_no; 1805 cpu_infop = &apic_cpus[irqp->airq_cpu]; 1806 1807 irdt.ir_lo = AV_PDEST | AV_FIXED | irqp->airq_rdt_entry; 1808 irdt.ir_hi = cpu_infop->aci_local_id; 1809 1810 apic_vt_ops->apic_intrmap_alloc_entry(&vecp->v_intrmap_private, NULL, 1811 vecp->v_type, 1, ioapicindex); 1812 apic_vt_ops->apic_intrmap_map_entry(vecp->v_intrmap_private, 1813 (void *)&irdt, vecp->v_type, 1); 1814 apic_vt_ops->apic_intrmap_record_rdt(vecp->v_intrmap_private, &irdt); 1815 1816 /* write RDT entry high dword - destination */ 1817 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin, 1818 irdt.ir_hi); 1819 1820 /* Write the vector, trigger, and polarity portion of the RDT */ 1821 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin, irdt.ir_lo); 1822 1823 vecp->v_state = APIX_STATE_ENABLED; 1824 1825 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_enable: ioapic 0x%x" 1826 " intin 0x%x rdt_low 0x%x rdt_high 0x%x\n", 1827 ioapicindex, intin, irdt.ir_lo, irdt.ir_hi)); 1828 } 1829 1830 /* 1831 * Must called with interrupts disabled and apic_ioapic_lock held 1832 */ 1833 void 1834 apix_intx_disable(int irqno) 1835 { 1836 apic_irq_t *irqp = apic_irq_table[irqno]; 1837 int ioapicindex, intin; 1838 1839 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp)); 1840 /* 1841 * The assumption here is that this is safe, even for 1842 * systems with IOAPICs that suffer from the hardware 1843 * erratum because all devices have been quiesced before 1844 * they unregister their interrupt handlers. If that 1845 * assumption turns out to be false, this mask operation 1846 * can induce the same erratum result we're trying to 1847 * avoid. 1848 */ 1849 ioapicindex = irqp->airq_ioapicindex; 1850 intin = irqp->airq_intin_no; 1851 ioapic_write(ioapicindex, APIC_RDT_CMD + 2 * intin, AV_MASK); 1852 1853 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_disable: ioapic 0x%x" 1854 " intin 0x%x\n", ioapicindex, intin)); 1855 } 1856 1857 void 1858 apix_intx_free(int irqno) 1859 { 1860 apic_irq_t *irqp; 1861 1862 mutex_enter(&airq_mutex); 1863 irqp = apic_irq_table[irqno]; 1864 1865 if (IS_IRQ_FREE(irqp)) { 1866 mutex_exit(&airq_mutex); 1867 return; 1868 } 1869 1870 irqp->airq_mps_intr_index = FREE_INDEX; 1871 irqp->airq_cpu = IRQ_UNINIT; 1872 irqp->airq_vector = APIX_INVALID_VECT; 1873 mutex_exit(&airq_mutex); 1874 } 1875 1876 #ifdef DEBUG 1877 int apix_intr_deliver_timeouts = 0; 1878 int apix_intr_rirr_timeouts = 0; 1879 int apix_intr_rirr_reset_failure = 0; 1880 #endif 1881 int apix_max_reps_irr_pending = 10; 1882 1883 #define GET_RDT_BITS(ioapic, intin, bits) \ 1884 (READ_IOAPIC_RDT_ENTRY_LOW_DWORD((ioapic), (intin)) & (bits)) 1885 #define APIX_CHECK_IRR_DELAY drv_usectohz(5000) 1886 1887 int 1888 apix_intx_rebind(int irqno, processorid_t cpuid, uchar_t vector) 1889 { 1890 apic_irq_t *irqp = apic_irq_table[irqno]; 1891 ulong_t iflag; 1892 int waited, ioapic_ix, intin_no, level, repeats, rdt_entry, masked; 1893 1894 ASSERT(irqp != NULL); 1895 1896 iflag = intr_clear(); 1897 lock_set(&apic_ioapic_lock); 1898 1899 ioapic_ix = irqp->airq_ioapicindex; 1900 intin_no = irqp->airq_intin_no; 1901 level = apic_level_intr[irqno]; 1902 1903 /* 1904 * Wait for the delivery status bit to be cleared. This should 1905 * be a very small amount of time. 1906 */ 1907 repeats = 0; 1908 do { 1909 repeats++; 1910 1911 for (waited = 0; waited < apic_max_reps_clear_pending; 1912 waited++) { 1913 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) == 0) 1914 break; 1915 } 1916 if (!level) 1917 break; 1918 1919 /* 1920 * Mask the RDT entry for level-triggered interrupts. 1921 */ 1922 irqp->airq_rdt_entry |= AV_MASK; 1923 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1924 intin_no); 1925 if ((masked = (rdt_entry & AV_MASK)) == 0) { 1926 /* Mask it */ 1927 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, 1928 AV_MASK | rdt_entry); 1929 } 1930 1931 /* 1932 * If there was a race and an interrupt was injected 1933 * just before we masked, check for that case here. 1934 * Then, unmask the RDT entry and try again. If we're 1935 * on our last try, don't unmask (because we want the 1936 * RDT entry to remain masked for the rest of the 1937 * function). 1938 */ 1939 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1940 intin_no); 1941 if ((masked == 0) && ((rdt_entry & AV_PENDING) != 0) && 1942 (repeats < apic_max_reps_clear_pending)) { 1943 /* Unmask it */ 1944 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1945 intin_no, rdt_entry & ~AV_MASK); 1946 irqp->airq_rdt_entry &= ~AV_MASK; 1947 } 1948 } while ((rdt_entry & AV_PENDING) && 1949 (repeats < apic_max_reps_clear_pending)); 1950 1951 #ifdef DEBUG 1952 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) != 0) 1953 apix_intr_deliver_timeouts++; 1954 #endif 1955 1956 if (!level || !APIX_IS_MASK_RDT(apix_mul_ioapic_method)) 1957 goto done; 1958 1959 /* 1960 * wait for remote IRR to be cleared for level-triggered 1961 * interrupts 1962 */ 1963 repeats = 0; 1964 do { 1965 repeats++; 1966 1967 for (waited = 0; waited < apic_max_reps_clear_pending; 1968 waited++) { 1969 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) 1970 == 0) 1971 break; 1972 } 1973 1974 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { 1975 lock_clear(&apic_ioapic_lock); 1976 intr_restore(iflag); 1977 1978 delay(APIX_CHECK_IRR_DELAY); 1979 1980 iflag = intr_clear(); 1981 lock_set(&apic_ioapic_lock); 1982 } 1983 } while (repeats < apix_max_reps_irr_pending); 1984 1985 if (repeats >= apix_max_reps_irr_pending) { 1986 #ifdef DEBUG 1987 apix_intr_rirr_timeouts++; 1988 #endif 1989 1990 /* 1991 * If we waited and the Remote IRR bit is still not cleared, 1992 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS 1993 * times for this interrupt, try the last-ditch workaround: 1994 */ 1995 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { 1996 /* 1997 * Trying to clear the bit through normal 1998 * channels has failed. So as a last-ditch 1999 * effort, try to set the trigger mode to 2000 * edge, then to level. This has been 2001 * observed to work on many systems. 2002 */ 2003 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 2004 intin_no, 2005 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 2006 intin_no) & ~AV_LEVEL); 2007 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 2008 intin_no, 2009 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 2010 intin_no) | AV_LEVEL); 2011 } 2012 2013 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { 2014 #ifdef DEBUG 2015 apix_intr_rirr_reset_failure++; 2016 #endif 2017 lock_clear(&apic_ioapic_lock); 2018 intr_restore(iflag); 2019 prom_printf("apix: Remote IRR still " 2020 "not clear for IOAPIC %d intin %d.\n" 2021 "\tInterrupts to this pin may cease " 2022 "functioning.\n", ioapic_ix, intin_no); 2023 return (1); /* return failure */ 2024 } 2025 } 2026 2027 done: 2028 /* change apic_irq_table */ 2029 lock_clear(&apic_ioapic_lock); 2030 intr_restore(iflag); 2031 apix_intx_set_vector(irqno, cpuid, vector); 2032 iflag = intr_clear(); 2033 lock_set(&apic_ioapic_lock); 2034 2035 /* reprogramme IO-APIC RDT entry */ 2036 apix_intx_enable(irqno); 2037 2038 lock_clear(&apic_ioapic_lock); 2039 intr_restore(iflag); 2040 2041 return (0); 2042 } 2043 2044 static int 2045 apix_intx_get_pending(int irqno) 2046 { 2047 apic_irq_t *irqp; 2048 int intin, ioapicindex, pending; 2049 ulong_t iflag; 2050 2051 mutex_enter(&airq_mutex); 2052 irqp = apic_irq_table[irqno]; 2053 if (IS_IRQ_FREE(irqp)) { 2054 mutex_exit(&airq_mutex); 2055 return (0); 2056 } 2057 2058 /* check IO-APIC delivery status */ 2059 intin = irqp->airq_intin_no; 2060 ioapicindex = irqp->airq_ioapicindex; 2061 mutex_exit(&airq_mutex); 2062 2063 iflag = intr_clear(); 2064 lock_set(&apic_ioapic_lock); 2065 2066 pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin) & 2067 AV_PENDING) ? 1 : 0; 2068 2069 lock_clear(&apic_ioapic_lock); 2070 intr_restore(iflag); 2071 2072 return (pending); 2073 } 2074 2075 /* 2076 * This function will mask the interrupt on the I/O APIC 2077 */ 2078 static void 2079 apix_intx_set_mask(int irqno) 2080 { 2081 int intin, ioapixindex, rdt_entry; 2082 ulong_t iflag; 2083 apic_irq_t *irqp; 2084 2085 mutex_enter(&airq_mutex); 2086 irqp = apic_irq_table[irqno]; 2087 2088 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX); 2089 2090 intin = irqp->airq_intin_no; 2091 ioapixindex = irqp->airq_ioapicindex; 2092 mutex_exit(&airq_mutex); 2093 2094 iflag = intr_clear(); 2095 lock_set(&apic_ioapic_lock); 2096 2097 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin); 2098 2099 /* clear mask */ 2100 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin, 2101 (AV_MASK | rdt_entry)); 2102 2103 lock_clear(&apic_ioapic_lock); 2104 intr_restore(iflag); 2105 } 2106 2107 /* 2108 * This function will clear the mask for the interrupt on the I/O APIC 2109 */ 2110 static void 2111 apix_intx_clear_mask(int irqno) 2112 { 2113 int intin, ioapixindex, rdt_entry; 2114 ulong_t iflag; 2115 apic_irq_t *irqp; 2116 2117 mutex_enter(&airq_mutex); 2118 irqp = apic_irq_table[irqno]; 2119 2120 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX); 2121 2122 intin = irqp->airq_intin_no; 2123 ioapixindex = irqp->airq_ioapicindex; 2124 mutex_exit(&airq_mutex); 2125 2126 iflag = intr_clear(); 2127 lock_set(&apic_ioapic_lock); 2128 2129 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin); 2130 2131 /* clear mask */ 2132 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin, 2133 ((~AV_MASK) & rdt_entry)); 2134 2135 lock_clear(&apic_ioapic_lock); 2136 intr_restore(iflag); 2137 } 2138 2139 /* 2140 * For level-triggered interrupt, mask the IRQ line. Mask means 2141 * new interrupts will not be delivered. The interrupt already 2142 * accepted by a local APIC is not affected 2143 */ 2144 void 2145 apix_level_intr_pre_eoi(int irq) 2146 { 2147 apic_irq_t *irqp = apic_irq_table[irq]; 2148 int apic_ix, intin_ix; 2149 2150 if (irqp == NULL) 2151 return; 2152 2153 ASSERT(apic_level_intr[irq] == TRIGGER_MODE_LEVEL); 2154 2155 lock_set(&apic_ioapic_lock); 2156 2157 intin_ix = irqp->airq_intin_no; 2158 apic_ix = irqp->airq_ioapicindex; 2159 2160 if (irqp->airq_cpu != CPU->cpu_id) { 2161 if (!APIX_IS_MASK_RDT(apix_mul_ioapic_method)) 2162 ioapic_write_eoi(apic_ix, irqp->airq_vector); 2163 lock_clear(&apic_ioapic_lock); 2164 return; 2165 } 2166 2167 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) { 2168 /* 2169 * This is a IOxAPIC and there is EOI register: 2170 * Change the vector to reserved unused vector, so that 2171 * the EOI from Local APIC won't clear the Remote IRR for 2172 * this level trigger interrupt. Instead, we'll manually 2173 * clear it in apix_post_hardint() after ISR handling. 2174 */ 2175 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, 2176 (irqp->airq_rdt_entry & (~0xff)) | APIX_RESV_VECTOR); 2177 } else { 2178 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, 2179 AV_MASK | irqp->airq_rdt_entry); 2180 } 2181 2182 lock_clear(&apic_ioapic_lock); 2183 } 2184 2185 /* 2186 * For level-triggered interrupt, unmask the IRQ line 2187 * or restore the original vector number. 2188 */ 2189 void 2190 apix_level_intr_post_dispatch(int irq) 2191 { 2192 apic_irq_t *irqp = apic_irq_table[irq]; 2193 int apic_ix, intin_ix; 2194 2195 if (irqp == NULL) 2196 return; 2197 2198 lock_set(&apic_ioapic_lock); 2199 2200 intin_ix = irqp->airq_intin_no; 2201 apic_ix = irqp->airq_ioapicindex; 2202 2203 if (APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method)) { 2204 /* 2205 * Already sent EOI back to Local APIC. 2206 * Send EOI to IO-APIC 2207 */ 2208 ioapic_write_eoi(apic_ix, irqp->airq_vector); 2209 } else { 2210 /* clear the mask or restore the vector */ 2211 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, 2212 irqp->airq_rdt_entry); 2213 2214 /* send EOI to IOxAPIC */ 2215 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) 2216 ioapic_write_eoi(apic_ix, irqp->airq_vector); 2217 } 2218 2219 lock_clear(&apic_ioapic_lock); 2220 } 2221 2222 static int 2223 apix_intx_get_shared(int irqno) 2224 { 2225 apic_irq_t *irqp; 2226 int share; 2227 2228 mutex_enter(&airq_mutex); 2229 irqp = apic_irq_table[irqno]; 2230 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) { 2231 mutex_exit(&airq_mutex); 2232 return (0); 2233 } 2234 share = irqp->airq_share; 2235 mutex_exit(&airq_mutex); 2236 2237 return (share); 2238 } 2239 2240 static void 2241 apix_intx_set_shared(int irqno, int delta) 2242 { 2243 apic_irq_t *irqp; 2244 2245 mutex_enter(&airq_mutex); 2246 irqp = apic_irq_table[irqno]; 2247 if (IS_IRQ_FREE(irqp)) { 2248 mutex_exit(&airq_mutex); 2249 return; 2250 } 2251 irqp->airq_share += delta; 2252 mutex_exit(&airq_mutex); 2253 } 2254 2255 /* 2256 * Setup IRQ table. Return IRQ no or -1 on failure 2257 */ 2258 static int 2259 apix_intx_setup(dev_info_t *dip, int inum, int irqno, 2260 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *iflagp) 2261 { 2262 int origirq = ispec->intrspec_vec; 2263 int newirq; 2264 short intr_index; 2265 uchar_t ipin, ioapic, ioapicindex; 2266 apic_irq_t *irqp; 2267 2268 UNREFERENCED_1PARAMETER(inum); 2269 2270 if (intrp != NULL) { 2271 intr_index = (short)(intrp - apic_io_intrp); 2272 ioapic = intrp->intr_destid; 2273 ipin = intrp->intr_destintin; 2274 2275 /* Find ioapicindex. If destid was ALL, we will exit with 0. */ 2276 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--) 2277 if (apic_io_id[ioapicindex] == ioapic) 2278 break; 2279 ASSERT((ioapic == apic_io_id[ioapicindex]) || 2280 (ioapic == INTR_ALL_APIC)); 2281 2282 /* check whether this intin# has been used by another irqno */ 2283 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) 2284 return (newirq); 2285 2286 } else if (iflagp != NULL) { /* ACPI */ 2287 intr_index = ACPI_INDEX; 2288 ioapicindex = acpi_find_ioapic(irqno); 2289 ASSERT(ioapicindex != 0xFF); 2290 ioapic = apic_io_id[ioapicindex]; 2291 ipin = irqno - apic_io_vectbase[ioapicindex]; 2292 2293 if (apic_irq_table[irqno] && 2294 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) { 2295 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin && 2296 apic_irq_table[irqno]->airq_ioapicindex == 2297 ioapicindex); 2298 return (irqno); 2299 } 2300 2301 } else { /* default configuration */ 2302 intr_index = DEFAULT_INDEX; 2303 ioapicindex = 0; 2304 ioapic = apic_io_id[ioapicindex]; 2305 ipin = (uchar_t)irqno; 2306 } 2307 2308 /* allocate a new IRQ no */ 2309 if ((irqp = apic_irq_table[irqno]) == NULL) { 2310 irqp = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); 2311 apic_irq_table[irqno] = irqp; 2312 } else { 2313 if (irqp->airq_mps_intr_index != FREE_INDEX) { 2314 newirq = apic_allocate_irq(apic_first_avail_irq); 2315 if (newirq == -1) { 2316 return (-1); 2317 } 2318 irqno = newirq; 2319 irqp = apic_irq_table[irqno]; 2320 ASSERT(irqp != NULL); 2321 } 2322 } 2323 apic_max_device_irq = max(irqno, apic_max_device_irq); 2324 apic_min_device_irq = min(irqno, apic_min_device_irq); 2325 2326 irqp->airq_mps_intr_index = intr_index; 2327 irqp->airq_ioapicindex = ioapicindex; 2328 irqp->airq_intin_no = ipin; 2329 irqp->airq_dip = dip; 2330 irqp->airq_origirq = (uchar_t)origirq; 2331 if (iflagp != NULL) 2332 irqp->airq_iflag = *iflagp; 2333 irqp->airq_cpu = IRQ_UNINIT; 2334 irqp->airq_vector = 0; 2335 2336 return (irqno); 2337 } 2338 2339 /* 2340 * Setup IRQ table for non-pci devices. Return IRQ no or -1 on error 2341 */ 2342 static int 2343 apix_intx_setup_nonpci(dev_info_t *dip, int inum, int bustype, 2344 struct intrspec *ispec) 2345 { 2346 int irqno = ispec->intrspec_vec; 2347 int newirq, i; 2348 iflag_t intr_flag; 2349 ACPI_SUBTABLE_HEADER *hp; 2350 ACPI_MADT_INTERRUPT_OVERRIDE *isop; 2351 struct apic_io_intr *intrp; 2352 2353 if (!apic_enable_acpi || apic_use_acpi_madt_only) { 2354 int busid; 2355 2356 if (bustype == 0) 2357 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA; 2358 2359 /* loop checking BUS_ISA/BUS_EISA */ 2360 for (i = 0; i < 2; i++) { 2361 if (((busid = apic_find_bus_id(bustype)) != -1) && 2362 ((intrp = apic_find_io_intr_w_busid(irqno, busid)) 2363 != NULL)) { 2364 return (apix_intx_setup(dip, inum, irqno, 2365 intrp, ispec, NULL)); 2366 } 2367 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA; 2368 } 2369 2370 /* fall back to default configuration */ 2371 return (-1); 2372 } 2373 2374 /* search iso entries first */ 2375 if (acpi_iso_cnt != 0) { 2376 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop; 2377 i = 0; 2378 while (i < acpi_iso_cnt) { 2379 if (hp->Type == ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) { 2380 isop = (ACPI_MADT_INTERRUPT_OVERRIDE *) hp; 2381 if (isop->Bus == 0 && 2382 isop->SourceIrq == irqno) { 2383 newirq = isop->GlobalIrq; 2384 intr_flag.intr_po = isop->IntiFlags & 2385 ACPI_MADT_POLARITY_MASK; 2386 intr_flag.intr_el = (isop->IntiFlags & 2387 ACPI_MADT_TRIGGER_MASK) >> 2; 2388 intr_flag.bustype = BUS_ISA; 2389 2390 return (apix_intx_setup(dip, inum, 2391 newirq, NULL, ispec, &intr_flag)); 2392 } 2393 i++; 2394 } 2395 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) + 2396 hp->Length); 2397 } 2398 } 2399 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH; 2400 intr_flag.intr_el = INTR_EL_EDGE; 2401 intr_flag.bustype = BUS_ISA; 2402 return (apix_intx_setup(dip, inum, irqno, NULL, ispec, &intr_flag)); 2403 } 2404 2405 2406 /* 2407 * Setup IRQ table for pci devices. Return IRQ no or -1 on error 2408 */ 2409 static int 2410 apix_intx_setup_pci(dev_info_t *dip, int inum, int bustype, 2411 struct intrspec *ispec) 2412 { 2413 int busid, devid, pci_irq; 2414 ddi_acc_handle_t cfg_handle; 2415 uchar_t ipin; 2416 iflag_t intr_flag; 2417 struct apic_io_intr *intrp; 2418 2419 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0) 2420 return (-1); 2421 2422 if (busid == 0 && apic_pci_bus_total == 1) 2423 busid = (int)apic_single_pci_busid; 2424 2425 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS) 2426 return (-1); 2427 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA; 2428 pci_config_teardown(&cfg_handle); 2429 2430 if (apic_enable_acpi && !apic_use_acpi_madt_only) { /* ACPI */ 2431 if (apic_acpi_translate_pci_irq(dip, busid, devid, 2432 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS) 2433 return (-1); 2434 2435 intr_flag.bustype = (uchar_t)bustype; 2436 return (apix_intx_setup(dip, inum, pci_irq, NULL, ispec, 2437 &intr_flag)); 2438 } 2439 2440 /* MP configuration table */ 2441 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3); 2442 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) == NULL) { 2443 pci_irq = apic_handle_pci_pci_bridge(dip, devid, ipin, &intrp); 2444 if (pci_irq == -1) 2445 return (-1); 2446 } 2447 2448 return (apix_intx_setup(dip, inum, pci_irq, intrp, ispec, NULL)); 2449 } 2450 2451 /* 2452 * Translate and return IRQ no 2453 */ 2454 static int 2455 apix_intx_xlate_irq(dev_info_t *dip, int inum, struct intrspec *ispec) 2456 { 2457 int newirq, irqno = ispec->intrspec_vec; 2458 int parent_is_pci_or_pciex = 0, child_is_pciex = 0; 2459 int bustype = 0, dev_len; 2460 char dev_type[16]; 2461 2462 if (apic_defconf) { 2463 mutex_enter(&airq_mutex); 2464 goto defconf; 2465 } 2466 2467 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) { 2468 mutex_enter(&airq_mutex); 2469 goto nonpci; 2470 } 2471 2472 /* 2473 * use ddi_getlongprop_buf() instead of ddi_prop_lookup_string() 2474 * to avoid extra buffer allocation. 2475 */ 2476 dev_len = sizeof (dev_type); 2477 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip), 2478 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type, 2479 &dev_len) == DDI_PROP_SUCCESS) { 2480 if ((strcmp(dev_type, "pci") == 0) || 2481 (strcmp(dev_type, "pciex") == 0)) 2482 parent_is_pci_or_pciex = 1; 2483 } 2484 2485 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 2486 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type, 2487 &dev_len) == DDI_PROP_SUCCESS) { 2488 if (strstr(dev_type, "pciex")) 2489 child_is_pciex = 1; 2490 } 2491 2492 mutex_enter(&airq_mutex); 2493 2494 if (parent_is_pci_or_pciex) { 2495 bustype = child_is_pciex ? BUS_PCIE : BUS_PCI; 2496 newirq = apix_intx_setup_pci(dip, inum, bustype, ispec); 2497 if (newirq != -1) 2498 goto done; 2499 bustype = 0; 2500 } else if (strcmp(dev_type, "isa") == 0) 2501 bustype = BUS_ISA; 2502 else if (strcmp(dev_type, "eisa") == 0) 2503 bustype = BUS_EISA; 2504 2505 nonpci: 2506 newirq = apix_intx_setup_nonpci(dip, inum, bustype, ispec); 2507 if (newirq != -1) 2508 goto done; 2509 2510 defconf: 2511 newirq = apix_intx_setup(dip, inum, irqno, NULL, ispec, NULL); 2512 if (newirq == -1) { 2513 mutex_exit(&airq_mutex); 2514 return (-1); 2515 } 2516 done: 2517 ASSERT(apic_irq_table[newirq]); 2518 mutex_exit(&airq_mutex); 2519 return (newirq); 2520 } 2521 2522 static int 2523 apix_intx_alloc_vector(dev_info_t *dip, int inum, struct intrspec *ispec) 2524 { 2525 int irqno; 2526 apix_vector_t *vecp; 2527 2528 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1) 2529 return (0); 2530 2531 if ((vecp = apix_alloc_intx(dip, inum, irqno)) == NULL) 2532 return (0); 2533 2534 DDI_INTR_IMPLDBG((CE_CONT, "apix_intx_alloc_vector: dip=0x%p name=%s " 2535 "irqno=0x%x cpuid=%d vector=0x%x\n", 2536 (void *)dip, ddi_driver_name(dip), irqno, 2537 vecp->v_cpuid, vecp->v_vector)); 2538 2539 return (1); 2540 } 2541 2542 /* 2543 * Return the vector number if the translated IRQ for this device 2544 * has a vector mapping setup. If no IRQ setup exists or no vector is 2545 * allocated to it then return 0. 2546 */ 2547 static apix_vector_t * 2548 apix_intx_xlate_vector(dev_info_t *dip, int inum, struct intrspec *ispec) 2549 { 2550 int irqno; 2551 apix_vector_t *vecp; 2552 2553 /* get the IRQ number */ 2554 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1) 2555 return (NULL); 2556 2557 /* get the vector number if a vector is allocated to this irqno */ 2558 vecp = apix_intx_get_vector(irqno); 2559 2560 return (vecp); 2561 } 2562 2563 /* stub function */ 2564 int 2565 apix_loaded(void) 2566 { 2567 return (apix_is_enabled); 2568 } 2569