xref: /illumos-gate/usr/src/uts/i86pc/io/apix/apix.c (revision 202ca9ae460faf1825ede303c46abd4e1f6cee28)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 /*
30  * Copyright (c) 2017, Joyent, Inc.  All rights reserved.
31  */
32 
33 /*
34  * To understand how the apix module interacts with the interrupt subsystem read
35  * the theory statement in uts/i86pc/os/intr.c.
36  */
37 
38 /*
39  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
40  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
41  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
42  * PSMI 1.5 extensions are supported in Solaris Nevada.
43  * PSMI 1.6 extensions are supported in Solaris Nevada.
44  * PSMI 1.7 extensions are supported in Solaris Nevada.
45  */
46 #define	PSMI_1_7
47 
48 #include <sys/processor.h>
49 #include <sys/time.h>
50 #include <sys/psm.h>
51 #include <sys/smp_impldefs.h>
52 #include <sys/cram.h>
53 #include <sys/acpi/acpi.h>
54 #include <sys/acpica.h>
55 #include <sys/psm_common.h>
56 #include <sys/pit.h>
57 #include <sys/ddi.h>
58 #include <sys/sunddi.h>
59 #include <sys/ddi_impldefs.h>
60 #include <sys/pci.h>
61 #include <sys/promif.h>
62 #include <sys/x86_archext.h>
63 #include <sys/cpc_impl.h>
64 #include <sys/uadmin.h>
65 #include <sys/panic.h>
66 #include <sys/debug.h>
67 #include <sys/archsystm.h>
68 #include <sys/trap.h>
69 #include <sys/machsystm.h>
70 #include <sys/sysmacros.h>
71 #include <sys/cpuvar.h>
72 #include <sys/rm_platter.h>
73 #include <sys/privregs.h>
74 #include <sys/note.h>
75 #include <sys/pci_intr_lib.h>
76 #include <sys/spl.h>
77 #include <sys/clock.h>
78 #include <sys/cyclic.h>
79 #include <sys/dditypes.h>
80 #include <sys/sunddi.h>
81 #include <sys/x_call.h>
82 #include <sys/reboot.h>
83 #include <sys/mach_intr.h>
84 #include <sys/apix.h>
85 #include <sys/apix_irm_impl.h>
86 
87 static int apix_probe();
88 static void apix_init();
89 static void apix_picinit(void);
90 static int apix_intr_enter(int, int *);
91 static void apix_intr_exit(int, int);
92 static void apix_setspl(int);
93 static int apix_disable_intr(processorid_t);
94 static void apix_enable_intr(processorid_t);
95 static int apix_get_clkvect(int);
96 static int apix_get_ipivect(int, int);
97 static void apix_post_cyclic_setup(void *);
98 static int apix_post_cpu_start();
99 static int apix_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
100     psm_intr_op_t, int *);
101 
102 /*
103  * Helper functions for apix_intr_ops()
104  */
105 static void apix_redistribute_compute(void);
106 static int apix_get_pending(apix_vector_t *);
107 static apix_vector_t *apix_get_req_vector(ddi_intr_handle_impl_t *, ushort_t);
108 static int apix_get_intr_info(ddi_intr_handle_impl_t *, apic_get_intr_t *);
109 static char *apix_get_apic_type(void);
110 static int apix_intx_get_pending(int);
111 static void apix_intx_set_mask(int irqno);
112 static void apix_intx_clear_mask(int irqno);
113 static int apix_intx_get_shared(int irqno);
114 static void apix_intx_set_shared(int irqno, int delta);
115 static apix_vector_t *apix_intx_xlate_vector(dev_info_t *, int,
116     struct intrspec *);
117 static int apix_intx_alloc_vector(dev_info_t *, int, struct intrspec *);
118 
119 extern int apic_clkinit(int);
120 
121 /* IRM initialization for APIX PSM module */
122 extern void apix_irm_init(void);
123 
124 extern int irm_enable;
125 
126 /*
127  *	Local static data
128  */
129 static struct	psm_ops apix_ops = {
130 	apix_probe,
131 
132 	apix_init,
133 	apix_picinit,
134 	apix_intr_enter,
135 	apix_intr_exit,
136 	apix_setspl,
137 	apix_addspl,
138 	apix_delspl,
139 	apix_disable_intr,
140 	apix_enable_intr,
141 	NULL,			/* psm_softlvl_to_irq */
142 	NULL,			/* psm_set_softintr */
143 
144 	apic_set_idlecpu,
145 	apic_unset_idlecpu,
146 
147 	apic_clkinit,
148 	apix_get_clkvect,
149 	NULL,			/* psm_hrtimeinit */
150 	apic_gethrtime,
151 
152 	apic_get_next_processorid,
153 	apic_cpu_start,
154 	apix_post_cpu_start,
155 	apic_shutdown,
156 	apix_get_ipivect,
157 	apic_send_ipi,
158 
159 	NULL,			/* psm_translate_irq */
160 	NULL,			/* psm_notify_error */
161 	NULL,			/* psm_notify_func */
162 	apic_timer_reprogram,
163 	apic_timer_enable,
164 	apic_timer_disable,
165 	apix_post_cyclic_setup,
166 	apic_preshutdown,
167 	apix_intr_ops,		/* Advanced DDI Interrupt framework */
168 	apic_state,		/* save, restore apic state for S3 */
169 	apic_cpu_ops,		/* CPU control interface. */
170 };
171 
172 struct psm_ops *psmops = &apix_ops;
173 
174 static struct	psm_info apix_psm_info = {
175 	PSM_INFO_VER01_7,			/* version */
176 	PSM_OWN_EXCLUSIVE,			/* ownership */
177 	&apix_ops,				/* operation */
178 	APIX_NAME,				/* machine name */
179 	"apix MPv1.4 compatible",
180 };
181 
182 static void *apix_hdlp;
183 
184 static int apix_is_enabled = 0;
185 
186 /*
187  * Flag to indicate if APIX is to be enabled only for platforms
188  * with specific hw feature(s).
189  */
190 int apix_hw_chk_enable = 1;
191 
192 /*
193  * Hw features that are checked for enabling APIX support.
194  */
195 #define	APIX_SUPPORT_X2APIC	0x00000001
196 uint_t apix_supported_hw = APIX_SUPPORT_X2APIC;
197 
198 /*
199  * apix_lock is used for cpu selection and vector re-binding
200  */
201 lock_t apix_lock;
202 apix_impl_t *apixs[NCPU];
203 /*
204  * Mapping between device interrupt and the allocated vector. Indexed
205  * by major number.
206  */
207 apix_dev_vector_t **apix_dev_vector;
208 /*
209  * Mapping between device major number and cpu id. It gets used
210  * when interrupt binding policy round robin with affinity is
211  * applied. With that policy, devices with the same major number
212  * will be bound to the same CPU.
213  */
214 processorid_t *apix_major_to_cpu;	/* major to cpu mapping */
215 kmutex_t apix_mutex;	/* for apix_dev_vector & apix_major_to_cpu */
216 
217 int apix_nipis = 16;	/* Maximum number of IPIs */
218 /*
219  * Maximum number of vectors in a CPU that can be used for interrupt
220  * allocation (including IPIs and the reserved vectors).
221  */
222 int apix_cpu_nvectors = APIX_NVECTOR;
223 
224 /* gcpu.h */
225 
226 extern void apic_do_interrupt(struct regs *rp, trap_trace_rec_t *ttp);
227 extern void apic_change_eoi();
228 
229 /*
230  *	This is the loadable module wrapper
231  */
232 
233 int
234 _init(void)
235 {
236 	if (apic_coarse_hrtime)
237 		apix_ops.psm_gethrtime = &apic_gettime;
238 	return (psm_mod_init(&apix_hdlp, &apix_psm_info));
239 }
240 
241 int
242 _fini(void)
243 {
244 	return (psm_mod_fini(&apix_hdlp, &apix_psm_info));
245 }
246 
247 int
248 _info(struct modinfo *modinfop)
249 {
250 	return (psm_mod_info(&apix_hdlp, &apix_psm_info, modinfop));
251 }
252 
253 static int
254 apix_probe()
255 {
256 	int rval;
257 
258 	if (apix_enable == 0)
259 		return (PSM_FAILURE);
260 
261 	/*
262 	 * FIXME Temporarily disable apix module on Xen HVM platform due to
263 	 * known hang during boot (see #3605).
264 	 *
265 	 * Please remove when/if the issue is resolved.
266 	 */
267 	if (get_hwenv() == HW_XEN_HVM)
268 		return (PSM_FAILURE);
269 
270 	/* check for hw features if specified  */
271 	if (apix_hw_chk_enable) {
272 		/* check if x2APIC mode is supported */
273 		if ((apix_supported_hw & APIX_SUPPORT_X2APIC) ==
274 		    APIX_SUPPORT_X2APIC) {
275 			if (apic_local_mode() == LOCAL_X2APIC) {
276 				/* x2APIC mode activated by BIOS, switch ops */
277 				apic_mode = LOCAL_X2APIC;
278 				apic_change_ops();
279 			} else if (!apic_detect_x2apic()) {
280 				/* x2APIC mode is not supported in the hw */
281 				apix_enable = 0;
282 			}
283 		}
284 		if (apix_enable == 0)
285 			return (PSM_FAILURE);
286 	}
287 
288 	rval = apic_probe_common(apix_psm_info.p_mach_idstring);
289 	if (rval == PSM_SUCCESS)
290 		apix_is_enabled = 1;
291 	else
292 		apix_is_enabled = 0;
293 	return (rval);
294 }
295 
296 /*
297  * Initialize the data structures needed by pcplusmpx module.
298  * Specifically, the data structures used by addspl() and delspl()
299  * routines.
300  */
301 static void
302 apix_softinit()
303 {
304 	int i, *iptr;
305 	apix_impl_t *hdlp;
306 	int nproc;
307 
308 	nproc = max(apic_nproc, apic_max_nproc);
309 
310 	hdlp = kmem_zalloc(nproc * sizeof (apix_impl_t), KM_SLEEP);
311 	for (i = 0; i < nproc; i++) {
312 		apixs[i] = &hdlp[i];
313 		apixs[i]->x_cpuid = i;
314 		LOCK_INIT_CLEAR(&apixs[i]->x_lock);
315 	}
316 
317 	/* cpu 0 is always up (for now) */
318 	apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
319 
320 	iptr = (int *)&apic_irq_table[0];
321 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
322 		apic_level_intr[i] = 0;
323 		*iptr++ = NULL;
324 	}
325 	mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
326 
327 	apix_dev_vector = kmem_zalloc(sizeof (apix_dev_vector_t *) * devcnt,
328 	    KM_SLEEP);
329 
330 	if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
331 		apix_major_to_cpu = kmem_zalloc(sizeof (int) * devcnt,
332 		    KM_SLEEP);
333 		for (i = 0; i < devcnt; i++)
334 			apix_major_to_cpu[i] = IRQ_UNINIT;
335 	}
336 
337 	mutex_init(&apix_mutex, NULL, MUTEX_DEFAULT, NULL);
338 }
339 
340 static int
341 apix_get_pending_spl(void)
342 {
343 	int cpuid = CPU->cpu_id;
344 
345 	return (bsrw_insn(apixs[cpuid]->x_intr_pending));
346 }
347 
348 static uintptr_t
349 apix_get_intr_handler(int cpu, short vec)
350 {
351 	apix_vector_t *apix_vector;
352 
353 	ASSERT(cpu < apic_nproc && vec < APIX_NVECTOR);
354 	if (cpu >= apic_nproc)
355 		return (NULL);
356 
357 	apix_vector = apixs[cpu]->x_vectbl[vec];
358 
359 	return ((uintptr_t)(apix_vector->v_autovect));
360 }
361 
362 static void
363 apix_init()
364 {
365 	extern void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *);
366 
367 	APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_softinit\n"));
368 
369 	do_interrupt_common = apix_do_interrupt;
370 	addintr = apix_add_avintr;
371 	remintr = apix_rem_avintr;
372 	get_pending_spl = apix_get_pending_spl;
373 	get_intr_handler = apix_get_intr_handler;
374 	psm_get_localapicid = apic_get_localapicid;
375 	psm_get_ioapicid = apic_get_ioapicid;
376 
377 	apix_softinit();
378 
379 #if !defined(__amd64)
380 	if (cpuid_have_cr8access(CPU))
381 		apic_have_32bit_cr8 = 1;
382 #endif
383 
384 	/*
385 	 * Initialize IRM pool parameters
386 	 */
387 	if (irm_enable) {
388 		int	i;
389 		int	lowest_irq;
390 		int	highest_irq;
391 
392 		/* number of CPUs present */
393 		apix_irminfo.apix_ncpus = apic_nproc;
394 		/* total number of entries in all of the IOAPICs present */
395 		lowest_irq = apic_io_vectbase[0];
396 		highest_irq = apic_io_vectend[0];
397 		for (i = 1; i < apic_io_max; i++) {
398 			if (apic_io_vectbase[i] < lowest_irq)
399 				lowest_irq = apic_io_vectbase[i];
400 			if (apic_io_vectend[i] > highest_irq)
401 				highest_irq = apic_io_vectend[i];
402 		}
403 		apix_irminfo.apix_ioapic_max_vectors =
404 		    highest_irq - lowest_irq + 1;
405 		/*
406 		 * Number of available per-CPU vectors excluding
407 		 * reserved vectors for Dtrace, int80, system-call,
408 		 * fast-trap, etc.
409 		 */
410 		apix_irminfo.apix_per_cpu_vectors = APIX_NAVINTR -
411 		    APIX_SW_RESERVED_VECTORS;
412 
413 		/* Number of vectors (pre) allocated (SCI and HPET) */
414 		apix_irminfo.apix_vectors_allocated = 0;
415 		if (apic_hpet_vect != -1)
416 			apix_irminfo.apix_vectors_allocated++;
417 		if (apic_sci_vect != -1)
418 			apix_irminfo.apix_vectors_allocated++;
419 	}
420 }
421 
422 static void
423 apix_init_intr()
424 {
425 	processorid_t	cpun = psm_get_cpu_id();
426 	uint_t nlvt;
427 	uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
428 	extern void cmi_cmci_trap(void);
429 
430 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
431 
432 	if (apic_mode == LOCAL_APIC) {
433 		/*
434 		 * We are running APIC in MMIO mode.
435 		 */
436 		if (apic_flat_model) {
437 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
438 			    APIC_FLAT_MODEL);
439 		} else {
440 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
441 			    APIC_CLUSTER_MODEL);
442 		}
443 
444 		apic_reg_ops->apic_write(APIC_DEST_REG,
445 		    AV_HIGH_ORDER >> cpun);
446 	}
447 
448 	if (apic_directed_EOI_supported()) {
449 		/*
450 		 * Setting the 12th bit in the Spurious Interrupt Vector
451 		 * Register suppresses broadcast EOIs generated by the local
452 		 * APIC. The suppression of broadcast EOIs happens only when
453 		 * interrupts are level-triggered.
454 		 */
455 		svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
456 	}
457 
458 	/* need to enable APIC before unmasking NMI */
459 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
460 
461 	/*
462 	 * Presence of an invalid vector with delivery mode AV_FIXED can
463 	 * cause an error interrupt, even if the entry is masked...so
464 	 * write a valid vector to LVT entries along with the mask bit
465 	 */
466 
467 	/* All APICs have timer and LINT0/1 */
468 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
469 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
470 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI);	/* enable NMI */
471 
472 	/*
473 	 * On integrated APICs, the number of LVT entries is
474 	 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
475 	 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
476 	 */
477 
478 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
479 		nlvt = 3;
480 	} else {
481 		nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
482 		    0xFF) + 1;
483 	}
484 
485 	if (nlvt >= 5) {
486 		/* Enable performance counter overflow interrupt */
487 
488 		if (!is_x86_feature(x86_featureset, X86FSET_MSR))
489 			apic_enable_cpcovf_intr = 0;
490 		if (apic_enable_cpcovf_intr) {
491 			if (apic_cpcovf_vect == 0) {
492 				int ipl = APIC_PCINT_IPL;
493 
494 				apic_cpcovf_vect = apix_get_ipivect(ipl, -1);
495 				ASSERT(apic_cpcovf_vect);
496 
497 				(void) add_avintr(NULL, ipl,
498 				    (avfunc)kcpc_hw_overflow_intr,
499 				    "apic pcint", apic_cpcovf_vect,
500 				    NULL, NULL, NULL, NULL);
501 				kcpc_hw_overflow_intr_installed = 1;
502 				kcpc_hw_enable_cpc_intr =
503 				    apic_cpcovf_mask_clear;
504 			}
505 			apic_reg_ops->apic_write(APIC_PCINT_VECT,
506 			    apic_cpcovf_vect);
507 		}
508 	}
509 
510 	if (nlvt >= 6) {
511 		/* Only mask TM intr if the BIOS apparently doesn't use it */
512 
513 		uint32_t lvtval;
514 
515 		lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
516 		if (((lvtval & AV_MASK) == AV_MASK) ||
517 		    ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
518 			apic_reg_ops->apic_write(APIC_THERM_VECT,
519 			    AV_MASK|APIC_RESV_IRQ);
520 		}
521 	}
522 
523 	/* Enable error interrupt */
524 
525 	if (nlvt >= 4 && apic_enable_error_intr) {
526 		if (apic_errvect == 0) {
527 			int ipl = 0xf;	/* get highest priority intr */
528 			apic_errvect = apix_get_ipivect(ipl, -1);
529 			ASSERT(apic_errvect);
530 			/*
531 			 * Not PSMI compliant, but we are going to merge
532 			 * with ON anyway
533 			 */
534 			(void) add_avintr(NULL, ipl,
535 			    (avfunc)apic_error_intr, "apic error intr",
536 			    apic_errvect, NULL, NULL, NULL, NULL);
537 		}
538 		apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
539 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
540 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
541 	}
542 
543 	/* Enable CMCI interrupt */
544 	if (cmi_enable_cmci) {
545 		mutex_enter(&cmci_cpu_setup_lock);
546 		if (cmci_cpu_setup_registered == 0) {
547 			mutex_enter(&cpu_lock);
548 			register_cpu_setup_func(cmci_cpu_setup, NULL);
549 			mutex_exit(&cpu_lock);
550 			cmci_cpu_setup_registered = 1;
551 		}
552 		mutex_exit(&cmci_cpu_setup_lock);
553 
554 		if (apic_cmci_vect == 0) {
555 			int ipl = 0x2;
556 			apic_cmci_vect = apix_get_ipivect(ipl, -1);
557 			ASSERT(apic_cmci_vect);
558 
559 			(void) add_avintr(NULL, ipl,
560 			    (avfunc)cmi_cmci_trap, "apic cmci intr",
561 			    apic_cmci_vect, NULL, NULL, NULL, NULL);
562 		}
563 		apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
564 	}
565 
566 	apic_reg_ops->apic_write_task_reg(0);
567 }
568 
569 static void
570 apix_picinit(void)
571 {
572 	int i, j;
573 	uint_t isr;
574 
575 	APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_picinit\n"));
576 
577 	/*
578 	 * initialize interrupt remapping before apic
579 	 * hardware initialization
580 	 */
581 	apic_intrmap_init(apic_mode);
582 	if (apic_vt_ops == psm_vt_ops)
583 		apix_mul_ioapic_method = APIC_MUL_IOAPIC_IIR;
584 
585 	/*
586 	 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
587 	 * bit on without clearing it with EOI.  Since softint
588 	 * uses vector 0x20 to interrupt itself, so softint will
589 	 * not work on this machine.  In order to fix this problem
590 	 * a check is made to verify all the isr bits are clear.
591 	 * If not, EOIs are issued to clear the bits.
592 	 */
593 	for (i = 7; i >= 1; i--) {
594 		isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
595 		if (isr != 0)
596 			for (j = 0; ((j < 32) && (isr != 0)); j++)
597 				if (isr & (1 << j)) {
598 					apic_reg_ops->apic_write(
599 					    APIC_EOI_REG, 0);
600 					isr &= ~(1 << j);
601 					apic_error |= APIC_ERR_BOOT_EOI;
602 				}
603 	}
604 
605 	/* set a flag so we know we have run apic_picinit() */
606 	apic_picinit_called = 1;
607 	LOCK_INIT_CLEAR(&apic_gethrtime_lock);
608 	LOCK_INIT_CLEAR(&apic_ioapic_lock);
609 	LOCK_INIT_CLEAR(&apic_error_lock);
610 	LOCK_INIT_CLEAR(&apic_mode_switch_lock);
611 
612 	picsetup();	 /* initialise the 8259 */
613 
614 	/* add nmi handler - least priority nmi handler */
615 	LOCK_INIT_CLEAR(&apic_nmi_lock);
616 
617 	if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
618 	    "apix NMI handler", (caddr_t)NULL))
619 		cmn_err(CE_WARN, "apix: Unable to add nmi handler");
620 
621 	apix_init_intr();
622 
623 	/* enable apic mode if imcr present */
624 	if (apic_imcrp) {
625 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
626 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
627 	}
628 
629 	ioapix_init_intr(IOAPIC_MASK);
630 
631 	/* setup global IRM pool if applicable */
632 	if (irm_enable)
633 		apix_irm_init();
634 }
635 
636 static __inline__ void
637 apix_send_eoi(void)
638 {
639 	if (apic_mode == LOCAL_APIC)
640 		LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
641 	else
642 		X2APIC_WRITE(APIC_EOI_REG, 0);
643 }
644 
645 /*
646  * platform_intr_enter
647  *
648  *	Called at the beginning of the interrupt service routine, but unlike
649  *	pcplusmp, does not mask interrupts. An EOI is given to the interrupt
650  *	controller to enable other HW interrupts but interrupts are still
651  * 	masked by the IF flag.
652  *
653  *	Return -1 for spurious interrupts
654  *
655  */
656 static int
657 apix_intr_enter(int ipl, int *vectorp)
658 {
659 	struct cpu *cpu = CPU;
660 	uint32_t cpuid = CPU->cpu_id;
661 	apic_cpus_info_t *cpu_infop;
662 	uchar_t vector;
663 	apix_vector_t *vecp;
664 	int nipl = -1;
665 
666 	/*
667 	 * The real vector delivered is (*vectorp + 0x20), but our caller
668 	 * subtracts 0x20 from the vector before passing it to us.
669 	 * (That's why APIC_BASE_VECT is 0x20.)
670 	 */
671 	vector = *vectorp = (uchar_t)*vectorp + APIC_BASE_VECT;
672 
673 	cpu_infop = &apic_cpus[cpuid];
674 	if (vector == APIC_SPUR_INTR) {
675 		cpu_infop->aci_spur_cnt++;
676 		return (APIC_INT_SPURIOUS);
677 	}
678 
679 	vecp = xv_vector(cpuid, vector);
680 	if (vecp == NULL) {
681 		if (APIX_IS_FAKE_INTR(vector))
682 			nipl = apix_rebindinfo.i_pri;
683 		apix_send_eoi();
684 		return (nipl);
685 	}
686 	nipl = vecp->v_pri;
687 
688 	/* if interrupted by the clock, increment apic_nsec_since_boot */
689 	if (vector == (apic_clkvect + APIC_BASE_VECT)) {
690 		if (!apic_oneshot) {
691 			/* NOTE: this is not MT aware */
692 			apic_hrtime_stamp++;
693 			apic_nsec_since_boot += apic_nsec_per_intr;
694 			apic_hrtime_stamp++;
695 			last_count_read = apic_hertz_count;
696 			apix_redistribute_compute();
697 		}
698 
699 		apix_send_eoi();
700 
701 		return (nipl);
702 	}
703 
704 	ASSERT(vecp->v_state != APIX_STATE_OBSOLETED);
705 
706 	/* pre-EOI handling for level-triggered interrupts */
707 	if (!APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method) &&
708 	    (vecp->v_type & APIX_TYPE_FIXED) && apic_level_intr[vecp->v_inum])
709 		apix_level_intr_pre_eoi(vecp->v_inum);
710 
711 	/* send back EOI */
712 	apix_send_eoi();
713 
714 	cpu_infop->aci_current[nipl] = vector;
715 	if ((nipl > ipl) && (nipl > cpu->cpu_base_spl)) {
716 		cpu_infop->aci_curipl = (uchar_t)nipl;
717 		cpu_infop->aci_ISR_in_progress |= 1 << nipl;
718 	}
719 
720 #ifdef	DEBUG
721 	if (vector >= APIX_IPI_MIN)
722 		return (nipl);	/* skip IPI */
723 
724 	APIC_DEBUG_BUF_PUT(vector);
725 	APIC_DEBUG_BUF_PUT(vecp->v_inum);
726 	APIC_DEBUG_BUF_PUT(nipl);
727 	APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
728 	if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
729 		drv_usecwait(apic_stretch_interrupts);
730 #endif /* DEBUG */
731 
732 	return (nipl);
733 }
734 
735 /*
736  * Any changes made to this function must also change X2APIC
737  * version of intr_exit.
738  */
739 static void
740 apix_intr_exit(int prev_ipl, int arg2)
741 {
742 	int cpuid = psm_get_cpu_id();
743 	apic_cpus_info_t *cpu_infop = &apic_cpus[cpuid];
744 	apix_impl_t *apixp = apixs[cpuid];
745 
746 	UNREFERENCED_1PARAMETER(arg2);
747 
748 	cpu_infop->aci_curipl = (uchar_t)prev_ipl;
749 	/* ISR above current pri could not be in progress */
750 	cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1;
751 
752 	if (apixp->x_obsoletes != NULL) {
753 		if (APIX_CPU_LOCK_HELD(cpuid))
754 			return;
755 
756 		APIX_ENTER_CPU_LOCK(cpuid);
757 		(void) apix_obsolete_vector(apixp->x_obsoletes);
758 		APIX_LEAVE_CPU_LOCK(cpuid);
759 	}
760 }
761 
762 /*
763  * The pcplusmp setspl code uses the TPR to mask all interrupts at or below the
764  * given ipl, but apix never uses the TPR and we never mask a subset of the
765  * interrupts. They are either all blocked by the IF flag or all can come in.
766  *
767  * For setspl, we mask all interrupts for XC_HI_PIL (15), otherwise, interrupts
768  * can come in if currently enabled by the IF flag. This table shows the state
769  * of the IF flag when we leave this function.
770  *
771  *    curr IF |	ipl == 15	ipl != 15
772  *    --------+---------------------------
773  *       0    |    0		    0
774  *       1    |    0		    1
775  */
776 static void
777 apix_setspl(int ipl)
778 {
779 	/*
780 	 * Interrupts at ipl above this cannot be in progress, so the following
781 	 * mask is ok.
782 	 */
783 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
784 
785 	if (ipl == XC_HI_PIL)
786 		cli();
787 }
788 
789 int
790 apix_addspl(int virtvec, int ipl, int min_ipl, int max_ipl)
791 {
792 	uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec);
793 	uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec);
794 	apix_vector_t *vecp = xv_vector(cpuid, vector);
795 
796 	UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl);
797 	ASSERT(vecp != NULL && LOCK_HELD(&apix_lock));
798 
799 	if (vecp->v_type == APIX_TYPE_FIXED)
800 		apix_intx_set_shared(vecp->v_inum, 1);
801 
802 	/* There are more interrupts, so it's already been enabled */
803 	if (vecp->v_share > 1)
804 		return (PSM_SUCCESS);
805 
806 	/* return if it is not hardware interrupt */
807 	if (vecp->v_type == APIX_TYPE_IPI)
808 		return (PSM_SUCCESS);
809 
810 	/*
811 	 * if apix_picinit() has not been called yet, just return.
812 	 * At the end of apic_picinit(), we will call setup_io_intr().
813 	 */
814 	if (!apic_picinit_called)
815 		return (PSM_SUCCESS);
816 
817 	(void) apix_setup_io_intr(vecp);
818 
819 	return (PSM_SUCCESS);
820 }
821 
822 int
823 apix_delspl(int virtvec, int ipl, int min_ipl, int max_ipl)
824 {
825 	uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec);
826 	uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec);
827 	apix_vector_t *vecp = xv_vector(cpuid, vector);
828 
829 	UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl);
830 	ASSERT(vecp != NULL && LOCK_HELD(&apix_lock));
831 
832 	if (vecp->v_type == APIX_TYPE_FIXED)
833 		apix_intx_set_shared(vecp->v_inum, -1);
834 
835 	/* There are more interrupts */
836 	if (vecp->v_share > 1)
837 		return (PSM_SUCCESS);
838 
839 	/* return if it is not hardware interrupt */
840 	if (vecp->v_type == APIX_TYPE_IPI)
841 		return (PSM_SUCCESS);
842 
843 	if (!apic_picinit_called) {
844 		cmn_err(CE_WARN, "apix: delete 0x%x before apic init",
845 		    virtvec);
846 		return (PSM_SUCCESS);
847 	}
848 
849 	apix_disable_vector(vecp);
850 
851 	return (PSM_SUCCESS);
852 }
853 
854 /*
855  * Try and disable all interrupts. We just assign interrupts to other
856  * processors based on policy. If any were bound by user request, we
857  * let them continue and return failure. We do not bother to check
858  * for cache affinity while rebinding.
859  */
860 static int
861 apix_disable_intr(processorid_t cpun)
862 {
863 	apix_impl_t *apixp = apixs[cpun];
864 	apix_vector_t *vecp, *newp;
865 	int bindcpu, i, hardbound = 0, errbound = 0, ret, loop, type;
866 
867 	lock_set(&apix_lock);
868 
869 	apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
870 	apic_cpus[cpun].aci_curipl = 0;
871 
872 	/* if this is for SUSPEND operation, skip rebinding */
873 	if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) {
874 		for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
875 			vecp = apixp->x_vectbl[i];
876 			if (!IS_VECT_ENABLED(vecp))
877 				continue;
878 
879 			apix_disable_vector(vecp);
880 		}
881 		lock_clear(&apix_lock);
882 		return (PSM_SUCCESS);
883 	}
884 
885 	for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
886 		vecp = apixp->x_vectbl[i];
887 		if (!IS_VECT_ENABLED(vecp))
888 			continue;
889 
890 		if (vecp->v_flags & APIX_VECT_USER_BOUND) {
891 			hardbound++;
892 			continue;
893 		}
894 		type = vecp->v_type;
895 
896 		/*
897 		 * If there are bound interrupts on this cpu, then
898 		 * rebind them to other processors.
899 		 */
900 		loop = 0;
901 		do {
902 			bindcpu = apic_find_cpu(APIC_CPU_INTR_ENABLE);
903 
904 			if (type != APIX_TYPE_MSI)
905 				newp = apix_set_cpu(vecp, bindcpu, &ret);
906 			else
907 				newp = apix_grp_set_cpu(vecp, bindcpu, &ret);
908 		} while ((newp == NULL) && (loop++ < apic_nproc));
909 
910 		if (loop >= apic_nproc) {
911 			errbound++;
912 			cmn_err(CE_WARN, "apix: failed to rebind vector %x/%x",
913 			    vecp->v_cpuid, vecp->v_vector);
914 		}
915 	}
916 
917 	lock_clear(&apix_lock);
918 
919 	if (hardbound || errbound) {
920 		cmn_err(CE_WARN, "Could not disable interrupts on %d"
921 		    "due to user bound interrupts or failed operation",
922 		    cpun);
923 		return (PSM_FAILURE);
924 	}
925 
926 	return (PSM_SUCCESS);
927 }
928 
929 /*
930  * Bind interrupts to specified CPU
931  */
932 static void
933 apix_enable_intr(processorid_t cpun)
934 {
935 	apix_vector_t *vecp;
936 	int i, ret;
937 	processorid_t n;
938 
939 	lock_set(&apix_lock);
940 
941 	apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
942 
943 	/* interrupt enabling for system resume */
944 	if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) {
945 		for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
946 			vecp = xv_vector(cpun, i);
947 			if (!IS_VECT_ENABLED(vecp))
948 				continue;
949 
950 			apix_enable_vector(vecp);
951 		}
952 		apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
953 	}
954 
955 	for (n = 0; n < apic_nproc; n++) {
956 		if (!apic_cpu_in_range(n) || n == cpun ||
957 		    (apic_cpus[n].aci_status & APIC_CPU_INTR_ENABLE) == 0)
958 			continue;
959 
960 		for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
961 			vecp = xv_vector(n, i);
962 			if (!IS_VECT_ENABLED(vecp) ||
963 			    vecp->v_bound_cpuid != cpun)
964 				continue;
965 
966 			if (vecp->v_type != APIX_TYPE_MSI)
967 				(void) apix_set_cpu(vecp, cpun, &ret);
968 			else
969 				(void) apix_grp_set_cpu(vecp, cpun, &ret);
970 		}
971 	}
972 
973 	lock_clear(&apix_lock);
974 }
975 
976 /*
977  * Allocate vector for IPI
978  * type == -1 indicates it is an internal request. Do not change
979  * resv_vector for these requests.
980  */
981 static int
982 apix_get_ipivect(int ipl, int type)
983 {
984 	uchar_t vector;
985 
986 	if ((vector = apix_alloc_ipi(ipl)) > 0) {
987 		if (type != -1)
988 			apic_resv_vector[ipl] = vector;
989 		return (vector);
990 	}
991 	apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
992 	return (-1);	/* shouldn't happen */
993 }
994 
995 static int
996 apix_get_clkvect(int ipl)
997 {
998 	int vector;
999 
1000 	if ((vector = apix_get_ipivect(ipl, -1)) == -1)
1001 		return (-1);
1002 
1003 	apic_clkvect = vector - APIC_BASE_VECT;
1004 	APIC_VERBOSE(IPI, (CE_CONT, "apix: clock vector = %x\n",
1005 	    apic_clkvect));
1006 	return (vector);
1007 }
1008 
1009 static int
1010 apix_post_cpu_start()
1011 {
1012 	int cpun;
1013 	static int cpus_started = 1;
1014 
1015 	/* We know this CPU + BSP  started successfully. */
1016 	cpus_started++;
1017 
1018 	/*
1019 	 * On BSP we would have enabled X2APIC, if supported by processor,
1020 	 * in acpi_probe(), but on AP we do it here.
1021 	 *
1022 	 * We enable X2APIC mode only if BSP is running in X2APIC & the
1023 	 * local APIC mode of the current CPU is MMIO (xAPIC).
1024 	 */
1025 	if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
1026 	    apic_local_mode() == LOCAL_APIC) {
1027 		apic_enable_x2apic();
1028 	}
1029 
1030 	/*
1031 	 * Switch back to x2apic IPI sending method for performance when target
1032 	 * CPU has entered x2apic mode.
1033 	 */
1034 	if (apic_mode == LOCAL_X2APIC) {
1035 		apic_switch_ipi_callback(B_FALSE);
1036 	}
1037 
1038 	splx(ipltospl(LOCK_LEVEL));
1039 	apix_init_intr();
1040 
1041 	/*
1042 	 * since some systems don't enable the internal cache on the non-boot
1043 	 * cpus, so we have to enable them here
1044 	 */
1045 	setcr0(getcr0() & ~(CR0_CD | CR0_NW));
1046 
1047 #ifdef	DEBUG
1048 	APIC_AV_PENDING_SET();
1049 #else
1050 	if (apic_mode == LOCAL_APIC)
1051 		APIC_AV_PENDING_SET();
1052 #endif	/* DEBUG */
1053 
1054 	/*
1055 	 * We may be booting, or resuming from suspend; aci_status will
1056 	 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
1057 	 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
1058 	 */
1059 	cpun = psm_get_cpu_id();
1060 	apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
1061 
1062 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
1063 
1064 	return (PSM_SUCCESS);
1065 }
1066 
1067 /*
1068  * If this module needs a periodic handler for the interrupt distribution, it
1069  * can be added here. The argument to the periodic handler is not currently
1070  * used, but is reserved for future.
1071  */
1072 static void
1073 apix_post_cyclic_setup(void *arg)
1074 {
1075 	UNREFERENCED_1PARAMETER(arg);
1076 
1077 	cyc_handler_t cyh;
1078 	cyc_time_t cyt;
1079 
1080 	/* cpu_lock is held */
1081 	/* set up a periodic handler for intr redistribution */
1082 
1083 	/*
1084 	 * In peridoc mode intr redistribution processing is done in
1085 	 * apic_intr_enter during clk intr processing
1086 	 */
1087 	if (!apic_oneshot)
1088 		return;
1089 
1090 	/*
1091 	 * Register a periodical handler for the redistribution processing.
1092 	 * Though we would generally prefer to use the DDI interface for
1093 	 * periodic handler invocation, ddi_periodic_add(9F), we are
1094 	 * unfortunately already holding cpu_lock, which ddi_periodic_add will
1095 	 * attempt to take for us.  Thus, we add our own cyclic directly:
1096 	 */
1097 	cyh.cyh_func = (void (*)(void *))apix_redistribute_compute;
1098 	cyh.cyh_arg = NULL;
1099 	cyh.cyh_level = CY_LOW_LEVEL;
1100 
1101 	cyt.cyt_when = 0;
1102 	cyt.cyt_interval = apic_redistribute_sample_interval;
1103 
1104 	apic_cyclic_id = cyclic_add(&cyh, &cyt);
1105 }
1106 
1107 /*
1108  * Called the first time we enable x2apic mode on this cpu.
1109  * Update some of the function pointers to use x2apic routines.
1110  */
1111 void
1112 x2apic_update_psm()
1113 {
1114 	struct psm_ops *pops = &apix_ops;
1115 
1116 	ASSERT(pops != NULL);
1117 
1118 	/*
1119 	 * The pcplusmp module's version of x2apic_update_psm makes additional
1120 	 * changes that we do not have to make here. It needs to make those
1121 	 * changes because pcplusmp relies on the TPR register and the means of
1122 	 * addressing that changes when using the local apic versus the x2apic.
1123 	 * It's also worth noting that the apix driver specific function end up
1124 	 * being apix_foo as opposed to apic_foo and x2apic_foo.
1125 	 */
1126 	pops->psm_send_ipi = x2apic_send_ipi;
1127 
1128 	send_dirintf = pops->psm_send_ipi;
1129 
1130 	apic_mode = LOCAL_X2APIC;
1131 	apic_change_ops();
1132 }
1133 
1134 /*
1135  * This function provides external interface to the nexus for all
1136  * functionalities related to the new DDI interrupt framework.
1137  *
1138  * Input:
1139  * dip     - pointer to the dev_info structure of the requested device
1140  * hdlp    - pointer to the internal interrupt handle structure for the
1141  *	     requested interrupt
1142  * intr_op - opcode for this call
1143  * result  - pointer to the integer that will hold the result to be
1144  *	     passed back if return value is PSM_SUCCESS
1145  *
1146  * Output:
1147  * return value is either PSM_SUCCESS or PSM_FAILURE
1148  */
1149 static int
1150 apix_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1151     psm_intr_op_t intr_op, int *result)
1152 {
1153 	int		cap;
1154 	apix_vector_t	*vecp, *newvecp;
1155 	struct intrspec *ispec, intr_spec;
1156 	processorid_t target;
1157 
1158 	ispec = &intr_spec;
1159 	ispec->intrspec_pri = hdlp->ih_pri;
1160 	ispec->intrspec_vec = hdlp->ih_inum;
1161 	ispec->intrspec_func = hdlp->ih_cb_func;
1162 
1163 	switch (intr_op) {
1164 	case PSM_INTR_OP_ALLOC_VECTORS:
1165 		switch (hdlp->ih_type) {
1166 		case DDI_INTR_TYPE_MSI:
1167 			/* allocate MSI vectors */
1168 			*result = apix_alloc_msi(dip, hdlp->ih_inum,
1169 			    hdlp->ih_scratch1,
1170 			    (int)(uintptr_t)hdlp->ih_scratch2);
1171 			break;
1172 		case DDI_INTR_TYPE_MSIX:
1173 			/* allocate MSI-X vectors */
1174 			*result = apix_alloc_msix(dip, hdlp->ih_inum,
1175 			    hdlp->ih_scratch1,
1176 			    (int)(uintptr_t)hdlp->ih_scratch2);
1177 			break;
1178 		case DDI_INTR_TYPE_FIXED:
1179 			/* allocate or share vector for fixed */
1180 			if ((ihdl_plat_t *)hdlp->ih_private == NULL) {
1181 				return (PSM_FAILURE);
1182 			}
1183 			ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1184 			*result = apix_intx_alloc_vector(dip, hdlp->ih_inum,
1185 			    ispec);
1186 			break;
1187 		default:
1188 			return (PSM_FAILURE);
1189 		}
1190 		break;
1191 	case PSM_INTR_OP_FREE_VECTORS:
1192 		apix_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1,
1193 		    hdlp->ih_type);
1194 		break;
1195 	case PSM_INTR_OP_XLATE_VECTOR:
1196 		/*
1197 		 * Vectors are allocated by ALLOC and freed by FREE.
1198 		 * XLATE finds and returns APIX_VIRTVEC_VECTOR(cpu, vector).
1199 		 */
1200 		*result = APIX_INVALID_VECT;
1201 		vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1202 		if (vecp != NULL) {
1203 			*result = APIX_VIRTVECTOR(vecp->v_cpuid,
1204 			    vecp->v_vector);
1205 			break;
1206 		}
1207 
1208 		/*
1209 		 * No vector to device mapping exists. If this is FIXED type
1210 		 * then check if this IRQ is already mapped for another device
1211 		 * then return the vector number for it (i.e. shared IRQ case).
1212 		 * Otherwise, return PSM_FAILURE.
1213 		 */
1214 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) {
1215 			vecp = apix_intx_xlate_vector(dip, hdlp->ih_inum,
1216 			    ispec);
1217 			*result = (vecp == NULL) ? APIX_INVALID_VECT :
1218 			    APIX_VIRTVECTOR(vecp->v_cpuid, vecp->v_vector);
1219 		}
1220 		if (*result == APIX_INVALID_VECT)
1221 			return (PSM_FAILURE);
1222 		break;
1223 	case PSM_INTR_OP_GET_PENDING:
1224 		vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1225 		if (vecp == NULL)
1226 			return (PSM_FAILURE);
1227 
1228 		*result = apix_get_pending(vecp);
1229 		break;
1230 	case PSM_INTR_OP_CLEAR_MASK:
1231 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1232 			return (PSM_FAILURE);
1233 
1234 		vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1235 		if (vecp == NULL)
1236 			return (PSM_FAILURE);
1237 
1238 		apix_intx_clear_mask(vecp->v_inum);
1239 		break;
1240 	case PSM_INTR_OP_SET_MASK:
1241 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1242 			return (PSM_FAILURE);
1243 
1244 		vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1245 		if (vecp == NULL)
1246 			return (PSM_FAILURE);
1247 
1248 		apix_intx_set_mask(vecp->v_inum);
1249 		break;
1250 	case PSM_INTR_OP_GET_SHARED:
1251 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1252 			return (PSM_FAILURE);
1253 
1254 		vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1255 		if (vecp == NULL)
1256 			return (PSM_FAILURE);
1257 
1258 		*result = apix_intx_get_shared(vecp->v_inum);
1259 		break;
1260 	case PSM_INTR_OP_SET_PRI:
1261 		/*
1262 		 * Called prior to adding the interrupt handler or when
1263 		 * an interrupt handler is unassigned.
1264 		 */
1265 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1266 			return (PSM_SUCCESS);
1267 
1268 		if (apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type) == NULL)
1269 			return (PSM_FAILURE);
1270 
1271 		break;
1272 	case PSM_INTR_OP_SET_CPU:
1273 	case PSM_INTR_OP_GRP_SET_CPU:
1274 		/*
1275 		 * The interrupt handle given here has been allocated
1276 		 * specifically for this command, and ih_private carries
1277 		 * a CPU value.
1278 		 */
1279 		*result = EINVAL;
1280 		target = (int)(intptr_t)hdlp->ih_private;
1281 		if (!apic_cpu_in_range(target)) {
1282 			DDI_INTR_IMPLDBG((CE_WARN,
1283 			    "[grp_]set_cpu: cpu out of range: %d\n", target));
1284 			return (PSM_FAILURE);
1285 		}
1286 
1287 		lock_set(&apix_lock);
1288 
1289 		vecp = apix_get_req_vector(hdlp, hdlp->ih_flags);
1290 		if (!IS_VECT_ENABLED(vecp)) {
1291 			DDI_INTR_IMPLDBG((CE_WARN,
1292 			    "[grp]_set_cpu: invalid vector 0x%x\n",
1293 			    hdlp->ih_vector));
1294 			lock_clear(&apix_lock);
1295 			return (PSM_FAILURE);
1296 		}
1297 
1298 		*result = 0;
1299 
1300 		if (intr_op == PSM_INTR_OP_SET_CPU)
1301 			newvecp = apix_set_cpu(vecp, target, result);
1302 		else
1303 			newvecp = apix_grp_set_cpu(vecp, target, result);
1304 
1305 		lock_clear(&apix_lock);
1306 
1307 		if (newvecp == NULL) {
1308 			*result = EIO;
1309 			return (PSM_FAILURE);
1310 		}
1311 		newvecp->v_bound_cpuid = target;
1312 		hdlp->ih_vector = APIX_VIRTVECTOR(newvecp->v_cpuid,
1313 		    newvecp->v_vector);
1314 		break;
1315 
1316 	case PSM_INTR_OP_GET_INTR:
1317 		/*
1318 		 * The interrupt handle given here has been allocated
1319 		 * specifically for this command, and ih_private carries
1320 		 * a pointer to a apic_get_intr_t.
1321 		 */
1322 		if (apix_get_intr_info(hdlp, hdlp->ih_private) != PSM_SUCCESS)
1323 			return (PSM_FAILURE);
1324 		break;
1325 
1326 	case PSM_INTR_OP_CHECK_MSI:
1327 		/*
1328 		 * Check MSI/X is supported or not at APIC level and
1329 		 * masked off the MSI/X bits in hdlp->ih_type if not
1330 		 * supported before return.  If MSI/X is supported,
1331 		 * leave the ih_type unchanged and return.
1332 		 *
1333 		 * hdlp->ih_type passed in from the nexus has all the
1334 		 * interrupt types supported by the device.
1335 		 */
1336 		if (apic_support_msi == 0) {	/* uninitialized */
1337 			/*
1338 			 * if apic_support_msi is not set, call
1339 			 * apic_check_msi_support() to check whether msi
1340 			 * is supported first
1341 			 */
1342 			if (apic_check_msi_support() == PSM_SUCCESS)
1343 				apic_support_msi = 1;	/* supported */
1344 			else
1345 				apic_support_msi = -1;	/* not-supported */
1346 		}
1347 		if (apic_support_msi == 1) {
1348 			if (apic_msix_enable)
1349 				*result = hdlp->ih_type;
1350 			else
1351 				*result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX;
1352 		} else
1353 			*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1354 			    DDI_INTR_TYPE_MSIX);
1355 		break;
1356 	case PSM_INTR_OP_GET_CAP:
1357 		cap = DDI_INTR_FLAG_PENDING;
1358 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1359 			cap |= DDI_INTR_FLAG_MASKABLE;
1360 		*result = cap;
1361 		break;
1362 	case PSM_INTR_OP_APIC_TYPE:
1363 		((apic_get_type_t *)(hdlp->ih_private))->avgi_type =
1364 		    apix_get_apic_type();
1365 		((apic_get_type_t *)(hdlp->ih_private))->avgi_num_intr =
1366 		    APIX_IPI_MIN;
1367 		((apic_get_type_t *)(hdlp->ih_private))->avgi_num_cpu =
1368 		    apic_nproc;
1369 		hdlp->ih_ver = apic_get_apic_version();
1370 		break;
1371 	case PSM_INTR_OP_SET_CAP:
1372 	default:
1373 		return (PSM_FAILURE);
1374 	}
1375 
1376 	return (PSM_SUCCESS);
1377 }
1378 
1379 static void
1380 apix_cleanup_busy(void)
1381 {
1382 	int i, j;
1383 	apix_vector_t *vecp;
1384 
1385 	for (i = 0; i < apic_nproc; i++) {
1386 		if (!apic_cpu_in_range(i))
1387 			continue;
1388 		apic_cpus[i].aci_busy = 0;
1389 		for (j = APIX_AVINTR_MIN; j < APIX_AVINTR_MAX; j++) {
1390 			if ((vecp = xv_vector(i, j)) != NULL)
1391 				vecp->v_busy = 0;
1392 		}
1393 	}
1394 }
1395 
1396 static void
1397 apix_redistribute_compute(void)
1398 {
1399 	int	i, j, max_busy;
1400 
1401 	if (!apic_enable_dynamic_migration)
1402 		return;
1403 
1404 	if (++apic_nticks == apic_sample_factor_redistribution) {
1405 		/*
1406 		 * Time to call apic_intr_redistribute().
1407 		 * reset apic_nticks. This will cause max_busy
1408 		 * to be calculated below and if it is more than
1409 		 * apic_int_busy, we will do the whole thing
1410 		 */
1411 		apic_nticks = 0;
1412 	}
1413 	max_busy = 0;
1414 	for (i = 0; i < apic_nproc; i++) {
1415 		if (!apic_cpu_in_range(i))
1416 			continue;
1417 		/*
1418 		 * Check if curipl is non zero & if ISR is in
1419 		 * progress
1420 		 */
1421 		if (((j = apic_cpus[i].aci_curipl) != 0) &&
1422 		    (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
1423 
1424 			int	vect;
1425 			apic_cpus[i].aci_busy++;
1426 			vect = apic_cpus[i].aci_current[j];
1427 			apixs[i]->x_vectbl[vect]->v_busy++;
1428 		}
1429 
1430 		if (!apic_nticks &&
1431 		    (apic_cpus[i].aci_busy > max_busy))
1432 			max_busy = apic_cpus[i].aci_busy;
1433 	}
1434 	if (!apic_nticks) {
1435 		if (max_busy > apic_int_busy_mark) {
1436 		/*
1437 		 * We could make the following check be
1438 		 * skipped > 1 in which case, we get a
1439 		 * redistribution at half the busy mark (due to
1440 		 * double interval). Need to be able to collect
1441 		 * more empirical data to decide if that is a
1442 		 * good strategy. Punt for now.
1443 		 */
1444 			apix_cleanup_busy();
1445 			apic_skipped_redistribute = 0;
1446 		} else
1447 			apic_skipped_redistribute++;
1448 	}
1449 }
1450 
1451 /*
1452  * intr_ops() service routines
1453  */
1454 
1455 static int
1456 apix_get_pending(apix_vector_t *vecp)
1457 {
1458 	int bit, index, irr, pending;
1459 
1460 	/* need to get on the bound cpu */
1461 	mutex_enter(&cpu_lock);
1462 	affinity_set(vecp->v_cpuid);
1463 
1464 	index = vecp->v_vector / 32;
1465 	bit = vecp->v_vector % 32;
1466 	irr = apic_reg_ops->apic_read(APIC_IRR_REG + index);
1467 
1468 	affinity_clear();
1469 	mutex_exit(&cpu_lock);
1470 
1471 	pending = (irr & (1 << bit)) ? 1 : 0;
1472 	if (!pending && vecp->v_type == APIX_TYPE_FIXED)
1473 		pending = apix_intx_get_pending(vecp->v_inum);
1474 
1475 	return (pending);
1476 }
1477 
1478 static apix_vector_t *
1479 apix_get_req_vector(ddi_intr_handle_impl_t *hdlp, ushort_t flags)
1480 {
1481 	apix_vector_t *vecp;
1482 	processorid_t cpuid;
1483 	int32_t virt_vec = 0;
1484 
1485 	switch (flags & PSMGI_INTRBY_FLAGS) {
1486 	case PSMGI_INTRBY_IRQ:
1487 		return (apix_intx_get_vector(hdlp->ih_vector));
1488 	case PSMGI_INTRBY_VEC:
1489 		virt_vec = (virt_vec == 0) ? hdlp->ih_vector : virt_vec;
1490 
1491 		cpuid = APIX_VIRTVEC_CPU(virt_vec);
1492 		if (!apic_cpu_in_range(cpuid))
1493 			return (NULL);
1494 
1495 		vecp = xv_vector(cpuid, APIX_VIRTVEC_VECTOR(virt_vec));
1496 		break;
1497 	case PSMGI_INTRBY_DEFAULT:
1498 		vecp = apix_get_dev_map(hdlp->ih_dip, hdlp->ih_inum,
1499 		    hdlp->ih_type);
1500 		break;
1501 	default:
1502 		return (NULL);
1503 	}
1504 
1505 	return (vecp);
1506 }
1507 
1508 static int
1509 apix_get_intr_info(ddi_intr_handle_impl_t *hdlp,
1510     apic_get_intr_t *intr_params_p)
1511 {
1512 	apix_vector_t *vecp;
1513 	struct autovec *av_dev;
1514 	int i;
1515 
1516 	vecp = apix_get_req_vector(hdlp, intr_params_p->avgi_req_flags);
1517 	if (IS_VECT_FREE(vecp)) {
1518 		intr_params_p->avgi_num_devs = 0;
1519 		intr_params_p->avgi_cpu_id = 0;
1520 		intr_params_p->avgi_req_flags = 0;
1521 		return (PSM_SUCCESS);
1522 	}
1523 
1524 	if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) {
1525 		intr_params_p->avgi_cpu_id = vecp->v_cpuid;
1526 
1527 		/* Return user bound info for intrd. */
1528 		if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) {
1529 			intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND;
1530 			intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND;
1531 		}
1532 	}
1533 
1534 	if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR)
1535 		intr_params_p->avgi_vector = vecp->v_vector;
1536 
1537 	if (intr_params_p->avgi_req_flags &
1538 	    (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS))
1539 		/* Get number of devices from apic_irq table shared field. */
1540 		intr_params_p->avgi_num_devs = vecp->v_share;
1541 
1542 	if (intr_params_p->avgi_req_flags &  PSMGI_REQ_GET_DEVS) {
1543 
1544 		intr_params_p->avgi_req_flags  |= PSMGI_REQ_NUM_DEVS;
1545 
1546 		/* Some devices have NULL dip.  Don't count these. */
1547 		if (intr_params_p->avgi_num_devs > 0) {
1548 			for (i = 0, av_dev = vecp->v_autovect; av_dev;
1549 			    av_dev = av_dev->av_link) {
1550 				if (av_dev->av_vector && av_dev->av_dip)
1551 					i++;
1552 			}
1553 			intr_params_p->avgi_num_devs =
1554 			    (uint8_t)MIN(intr_params_p->avgi_num_devs, i);
1555 		}
1556 
1557 		/* There are no viable dips to return. */
1558 		if (intr_params_p->avgi_num_devs == 0) {
1559 			intr_params_p->avgi_dip_list = NULL;
1560 
1561 		} else {	/* Return list of dips */
1562 
1563 			/* Allocate space in array for that number of devs. */
1564 			intr_params_p->avgi_dip_list = kmem_zalloc(
1565 			    intr_params_p->avgi_num_devs *
1566 			    sizeof (dev_info_t *),
1567 			    KM_NOSLEEP);
1568 			if (intr_params_p->avgi_dip_list == NULL) {
1569 				DDI_INTR_IMPLDBG((CE_WARN,
1570 				    "apix_get_vector_intr_info: no memory"));
1571 				return (PSM_FAILURE);
1572 			}
1573 
1574 			/*
1575 			 * Loop through the device list of the autovec table
1576 			 * filling in the dip array.
1577 			 *
1578 			 * Note that the autovect table may have some special
1579 			 * entries which contain NULL dips.  These will be
1580 			 * ignored.
1581 			 */
1582 			for (i = 0, av_dev = vecp->v_autovect; av_dev;
1583 			    av_dev = av_dev->av_link) {
1584 				if (av_dev->av_vector && av_dev->av_dip)
1585 					intr_params_p->avgi_dip_list[i++] =
1586 					    av_dev->av_dip;
1587 			}
1588 		}
1589 	}
1590 
1591 	return (PSM_SUCCESS);
1592 }
1593 
1594 static char *
1595 apix_get_apic_type(void)
1596 {
1597 	return (apix_psm_info.p_mach_idstring);
1598 }
1599 
1600 apix_vector_t *
1601 apix_set_cpu(apix_vector_t *vecp, int new_cpu, int *result)
1602 {
1603 	apix_vector_t *newp = NULL;
1604 	dev_info_t *dip;
1605 	int inum, cap_ptr;
1606 	ddi_acc_handle_t handle;
1607 	ddi_intr_msix_t *msix_p = NULL;
1608 	ushort_t msix_ctrl;
1609 	uintptr_t off;
1610 	uint32_t mask;
1611 
1612 	ASSERT(LOCK_HELD(&apix_lock));
1613 	*result = ENXIO;
1614 
1615 	/* Fail if this is an MSI intr and is part of a group. */
1616 	if (vecp->v_type == APIX_TYPE_MSI) {
1617 		if (i_ddi_intr_get_current_nintrs(APIX_GET_DIP(vecp)) > 1)
1618 			return (NULL);
1619 		else
1620 			return (apix_grp_set_cpu(vecp, new_cpu, result));
1621 	}
1622 
1623 	/*
1624 	 * Mask MSI-X. It's unmasked when MSI-X gets enabled.
1625 	 */
1626 	if (vecp->v_type == APIX_TYPE_MSIX && IS_VECT_ENABLED(vecp)) {
1627 		if ((dip = APIX_GET_DIP(vecp)) == NULL)
1628 			return (NULL);
1629 		inum = vecp->v_devp->dv_inum;
1630 
1631 		handle = i_ddi_get_pci_config_handle(dip);
1632 		cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
1633 		msix_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
1634 		if ((msix_ctrl & PCI_MSIX_FUNCTION_MASK) == 0) {
1635 			/*
1636 			 * Function is not masked, then mask "inum"th
1637 			 * entry in the MSI-X table
1638 			 */
1639 			msix_p = i_ddi_get_msix(dip);
1640 			off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
1641 			    PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
1642 			mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
1643 			ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off,
1644 			    mask | 1);
1645 		}
1646 	}
1647 
1648 	*result = 0;
1649 	if ((newp = apix_rebind(vecp, new_cpu, 1)) == NULL)
1650 		*result = EIO;
1651 
1652 	/* Restore mask bit */
1653 	if (msix_p != NULL)
1654 		ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, mask);
1655 
1656 	return (newp);
1657 }
1658 
1659 /*
1660  * Set cpu for MSIs
1661  */
1662 apix_vector_t *
1663 apix_grp_set_cpu(apix_vector_t *vecp, int new_cpu, int *result)
1664 {
1665 	apix_vector_t *newp, *vp;
1666 	uint32_t orig_cpu = vecp->v_cpuid;
1667 	int orig_vect = vecp->v_vector;
1668 	int i, num_vectors, cap_ptr, msi_mask_off;
1669 	uint32_t msi_pvm;
1670 	ushort_t msi_ctrl;
1671 	ddi_acc_handle_t handle;
1672 	dev_info_t *dip;
1673 
1674 	APIC_VERBOSE(INTR, (CE_CONT, "apix_grp_set_cpu: oldcpu: %x, vector: %x,"
1675 	    " newcpu:%x\n", vecp->v_cpuid, vecp->v_vector, new_cpu));
1676 
1677 	ASSERT(LOCK_HELD(&apix_lock));
1678 
1679 	*result = ENXIO;
1680 
1681 	if (vecp->v_type != APIX_TYPE_MSI) {
1682 		DDI_INTR_IMPLDBG((CE_WARN, "set_grp: intr not MSI\n"));
1683 		return (NULL);
1684 	}
1685 
1686 	if ((dip = APIX_GET_DIP(vecp)) == NULL)
1687 		return (NULL);
1688 
1689 	num_vectors = i_ddi_intr_get_current_nintrs(dip);
1690 	if ((num_vectors < 1) || ((num_vectors - 1) & orig_vect)) {
1691 		APIC_VERBOSE(INTR, (CE_WARN,
1692 		    "set_grp: base vec not part of a grp or not aligned: "
1693 		    "vec:0x%x, num_vec:0x%x\n", orig_vect, num_vectors));
1694 		return (NULL);
1695 	}
1696 
1697 	if (vecp->v_inum != apix_get_min_dev_inum(dip, vecp->v_type))
1698 		return (NULL);
1699 
1700 	*result = EIO;
1701 	for (i = 1; i < num_vectors; i++) {
1702 		if ((vp = xv_vector(orig_cpu, orig_vect + i)) == NULL)
1703 			return (NULL);
1704 #ifdef DEBUG
1705 		/*
1706 		 * Sanity check: CPU and dip is the same for all entries.
1707 		 * May be called when first msi to be enabled, at this time
1708 		 * add_avintr() is not called for other msi
1709 		 */
1710 		if ((vp->v_share != 0) &&
1711 		    ((APIX_GET_DIP(vp) != dip) ||
1712 		    (vp->v_cpuid != vecp->v_cpuid))) {
1713 			APIC_VERBOSE(INTR, (CE_WARN,
1714 			    "set_grp: cpu or dip for vec 0x%x difft than for "
1715 			    "vec 0x%x\n", orig_vect, orig_vect + i));
1716 			APIC_VERBOSE(INTR, (CE_WARN,
1717 			    "  cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu,
1718 			    vp->v_cpuid, (void *)dip,
1719 			    (void *)APIX_GET_DIP(vp)));
1720 			return (NULL);
1721 		}
1722 #endif /* DEBUG */
1723 	}
1724 
1725 	cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
1726 	handle = i_ddi_get_pci_config_handle(dip);
1727 	msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
1728 
1729 	/* MSI Per vector masking is supported. */
1730 	if (msi_ctrl & PCI_MSI_PVM_MASK) {
1731 		if (msi_ctrl &  PCI_MSI_64BIT_MASK)
1732 			msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS;
1733 		else
1734 			msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK;
1735 		msi_pvm = pci_config_get32(handle, msi_mask_off);
1736 		pci_config_put32(handle, msi_mask_off, (uint32_t)-1);
1737 		APIC_VERBOSE(INTR, (CE_CONT,
1738 		    "set_grp: pvm supported.  Mask set to 0x%x\n",
1739 		    pci_config_get32(handle, msi_mask_off)));
1740 	}
1741 
1742 	if ((newp = apix_rebind(vecp, new_cpu, num_vectors)) != NULL)
1743 		*result = 0;
1744 
1745 	/* Reenable vectors if per vector masking is supported. */
1746 	if (msi_ctrl & PCI_MSI_PVM_MASK) {
1747 		pci_config_put32(handle, msi_mask_off, msi_pvm);
1748 		APIC_VERBOSE(INTR, (CE_CONT,
1749 		    "set_grp: pvm supported.  Mask restored to 0x%x\n",
1750 		    pci_config_get32(handle, msi_mask_off)));
1751 	}
1752 
1753 	return (newp);
1754 }
1755 
1756 void
1757 apix_intx_set_vector(int irqno, uint32_t cpuid, uchar_t vector)
1758 {
1759 	apic_irq_t *irqp;
1760 
1761 	mutex_enter(&airq_mutex);
1762 	irqp = apic_irq_table[irqno];
1763 	irqp->airq_cpu = cpuid;
1764 	irqp->airq_vector = vector;
1765 	apic_record_rdt_entry(irqp, irqno);
1766 	mutex_exit(&airq_mutex);
1767 }
1768 
1769 apix_vector_t *
1770 apix_intx_get_vector(int irqno)
1771 {
1772 	apic_irq_t *irqp;
1773 	uint32_t cpuid;
1774 	uchar_t vector;
1775 
1776 	mutex_enter(&airq_mutex);
1777 	irqp = apic_irq_table[irqno & 0xff];
1778 	if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) {
1779 		mutex_exit(&airq_mutex);
1780 		return (NULL);
1781 	}
1782 	cpuid = irqp->airq_cpu;
1783 	vector = irqp->airq_vector;
1784 	mutex_exit(&airq_mutex);
1785 
1786 	return (xv_vector(cpuid, vector));
1787 }
1788 
1789 /*
1790  * Must called with interrupts disabled and apic_ioapic_lock held
1791  */
1792 void
1793 apix_intx_enable(int irqno)
1794 {
1795 	uchar_t ioapicindex, intin;
1796 	apic_irq_t *irqp = apic_irq_table[irqno];
1797 	ioapic_rdt_t irdt;
1798 	apic_cpus_info_t *cpu_infop;
1799 	apix_vector_t *vecp = xv_vector(irqp->airq_cpu, irqp->airq_vector);
1800 
1801 	ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp));
1802 
1803 	ioapicindex = irqp->airq_ioapicindex;
1804 	intin = irqp->airq_intin_no;
1805 	cpu_infop =  &apic_cpus[irqp->airq_cpu];
1806 
1807 	irdt.ir_lo = AV_PDEST | AV_FIXED | irqp->airq_rdt_entry;
1808 	irdt.ir_hi = cpu_infop->aci_local_id;
1809 
1810 	apic_vt_ops->apic_intrmap_alloc_entry(&vecp->v_intrmap_private, NULL,
1811 	    vecp->v_type, 1, ioapicindex);
1812 	apic_vt_ops->apic_intrmap_map_entry(vecp->v_intrmap_private,
1813 	    (void *)&irdt, vecp->v_type, 1);
1814 	apic_vt_ops->apic_intrmap_record_rdt(vecp->v_intrmap_private, &irdt);
1815 
1816 	/* write RDT entry high dword - destination */
1817 	WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin,
1818 	    irdt.ir_hi);
1819 
1820 	/* Write the vector, trigger, and polarity portion of the RDT */
1821 	WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin, irdt.ir_lo);
1822 
1823 	vecp->v_state = APIX_STATE_ENABLED;
1824 
1825 	APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_enable: ioapic 0x%x"
1826 	    " intin 0x%x rdt_low 0x%x rdt_high 0x%x\n",
1827 	    ioapicindex, intin, irdt.ir_lo, irdt.ir_hi));
1828 }
1829 
1830 /*
1831  * Must called with interrupts disabled and apic_ioapic_lock held
1832  */
1833 void
1834 apix_intx_disable(int irqno)
1835 {
1836 	apic_irq_t *irqp = apic_irq_table[irqno];
1837 	int ioapicindex, intin;
1838 
1839 	ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp));
1840 	/*
1841 	 * The assumption here is that this is safe, even for
1842 	 * systems with IOAPICs that suffer from the hardware
1843 	 * erratum because all devices have been quiesced before
1844 	 * they unregister their interrupt handlers.  If that
1845 	 * assumption turns out to be false, this mask operation
1846 	 * can induce the same erratum result we're trying to
1847 	 * avoid.
1848 	 */
1849 	ioapicindex = irqp->airq_ioapicindex;
1850 	intin = irqp->airq_intin_no;
1851 	ioapic_write(ioapicindex, APIC_RDT_CMD + 2 * intin, AV_MASK);
1852 
1853 	APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_disable: ioapic 0x%x"
1854 	    " intin 0x%x\n", ioapicindex, intin));
1855 }
1856 
1857 void
1858 apix_intx_free(int irqno)
1859 {
1860 	apic_irq_t *irqp;
1861 
1862 	mutex_enter(&airq_mutex);
1863 	irqp = apic_irq_table[irqno];
1864 
1865 	if (IS_IRQ_FREE(irqp)) {
1866 		mutex_exit(&airq_mutex);
1867 		return;
1868 	}
1869 
1870 	irqp->airq_mps_intr_index = FREE_INDEX;
1871 	irqp->airq_cpu = IRQ_UNINIT;
1872 	irqp->airq_vector = APIX_INVALID_VECT;
1873 	mutex_exit(&airq_mutex);
1874 }
1875 
1876 #ifdef DEBUG
1877 int apix_intr_deliver_timeouts = 0;
1878 int apix_intr_rirr_timeouts = 0;
1879 int apix_intr_rirr_reset_failure = 0;
1880 #endif
1881 int apix_max_reps_irr_pending = 10;
1882 
1883 #define	GET_RDT_BITS(ioapic, intin, bits)	\
1884 	(READ_IOAPIC_RDT_ENTRY_LOW_DWORD((ioapic), (intin)) & (bits))
1885 #define	APIX_CHECK_IRR_DELAY	drv_usectohz(5000)
1886 
1887 int
1888 apix_intx_rebind(int irqno, processorid_t cpuid, uchar_t vector)
1889 {
1890 	apic_irq_t *irqp = apic_irq_table[irqno];
1891 	ulong_t iflag;
1892 	int waited, ioapic_ix, intin_no, level, repeats, rdt_entry, masked;
1893 
1894 	ASSERT(irqp != NULL);
1895 
1896 	iflag = intr_clear();
1897 	lock_set(&apic_ioapic_lock);
1898 
1899 	ioapic_ix = irqp->airq_ioapicindex;
1900 	intin_no = irqp->airq_intin_no;
1901 	level = apic_level_intr[irqno];
1902 
1903 	/*
1904 	 * Wait for the delivery status bit to be cleared. This should
1905 	 * be a very small amount of time.
1906 	 */
1907 	repeats = 0;
1908 	do {
1909 		repeats++;
1910 
1911 		for (waited = 0; waited < apic_max_reps_clear_pending;
1912 		    waited++) {
1913 			if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) == 0)
1914 				break;
1915 		}
1916 		if (!level)
1917 			break;
1918 
1919 		/*
1920 		 * Mask the RDT entry for level-triggered interrupts.
1921 		 */
1922 		irqp->airq_rdt_entry |= AV_MASK;
1923 		rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1924 		    intin_no);
1925 		if ((masked = (rdt_entry & AV_MASK)) == 0) {
1926 			/* Mask it */
1927 			WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no,
1928 			    AV_MASK | rdt_entry);
1929 		}
1930 
1931 		/*
1932 		 * If there was a race and an interrupt was injected
1933 		 * just before we masked, check for that case here.
1934 		 * Then, unmask the RDT entry and try again.  If we're
1935 		 * on our last try, don't unmask (because we want the
1936 		 * RDT entry to remain masked for the rest of the
1937 		 * function).
1938 		 */
1939 		rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1940 		    intin_no);
1941 		if ((masked == 0) && ((rdt_entry & AV_PENDING) != 0) &&
1942 		    (repeats < apic_max_reps_clear_pending)) {
1943 			/* Unmask it */
1944 			WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1945 			    intin_no, rdt_entry & ~AV_MASK);
1946 			irqp->airq_rdt_entry &= ~AV_MASK;
1947 		}
1948 	} while ((rdt_entry & AV_PENDING) &&
1949 	    (repeats < apic_max_reps_clear_pending));
1950 
1951 #ifdef DEBUG
1952 	if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) != 0)
1953 		apix_intr_deliver_timeouts++;
1954 #endif
1955 
1956 	if (!level || !APIX_IS_MASK_RDT(apix_mul_ioapic_method))
1957 		goto done;
1958 
1959 	/*
1960 	 * wait for remote IRR to be cleared for level-triggered
1961 	 * interrupts
1962 	 */
1963 	repeats = 0;
1964 	do {
1965 		repeats++;
1966 
1967 		for (waited = 0; waited < apic_max_reps_clear_pending;
1968 		    waited++) {
1969 			if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR)
1970 			    == 0)
1971 				break;
1972 		}
1973 
1974 		if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
1975 			lock_clear(&apic_ioapic_lock);
1976 			intr_restore(iflag);
1977 
1978 			delay(APIX_CHECK_IRR_DELAY);
1979 
1980 			iflag = intr_clear();
1981 			lock_set(&apic_ioapic_lock);
1982 		}
1983 	} while (repeats < apix_max_reps_irr_pending);
1984 
1985 	if (repeats >= apix_max_reps_irr_pending) {
1986 #ifdef DEBUG
1987 		apix_intr_rirr_timeouts++;
1988 #endif
1989 
1990 		/*
1991 		 * If we waited and the Remote IRR bit is still not cleared,
1992 		 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
1993 		 * times for this interrupt, try the last-ditch workaround:
1994 		 */
1995 		if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
1996 			/*
1997 			 * Trying to clear the bit through normal
1998 			 * channels has failed.  So as a last-ditch
1999 			 * effort, try to set the trigger mode to
2000 			 * edge, then to level.  This has been
2001 			 * observed to work on many systems.
2002 			 */
2003 			WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2004 			    intin_no,
2005 			    READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2006 			    intin_no) & ~AV_LEVEL);
2007 			WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2008 			    intin_no,
2009 			    READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2010 			    intin_no) | AV_LEVEL);
2011 		}
2012 
2013 		if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
2014 #ifdef DEBUG
2015 			apix_intr_rirr_reset_failure++;
2016 #endif
2017 			lock_clear(&apic_ioapic_lock);
2018 			intr_restore(iflag);
2019 			prom_printf("apix: Remote IRR still "
2020 			    "not clear for IOAPIC %d intin %d.\n"
2021 			    "\tInterrupts to this pin may cease "
2022 			    "functioning.\n", ioapic_ix, intin_no);
2023 			return (1);	/* return failure */
2024 		}
2025 	}
2026 
2027 done:
2028 	/* change apic_irq_table */
2029 	lock_clear(&apic_ioapic_lock);
2030 	intr_restore(iflag);
2031 	apix_intx_set_vector(irqno, cpuid, vector);
2032 	iflag = intr_clear();
2033 	lock_set(&apic_ioapic_lock);
2034 
2035 	/* reprogramme IO-APIC RDT entry */
2036 	apix_intx_enable(irqno);
2037 
2038 	lock_clear(&apic_ioapic_lock);
2039 	intr_restore(iflag);
2040 
2041 	return (0);
2042 }
2043 
2044 static int
2045 apix_intx_get_pending(int irqno)
2046 {
2047 	apic_irq_t *irqp;
2048 	int intin, ioapicindex, pending;
2049 	ulong_t iflag;
2050 
2051 	mutex_enter(&airq_mutex);
2052 	irqp = apic_irq_table[irqno];
2053 	if (IS_IRQ_FREE(irqp)) {
2054 		mutex_exit(&airq_mutex);
2055 		return (0);
2056 	}
2057 
2058 	/* check IO-APIC delivery status */
2059 	intin = irqp->airq_intin_no;
2060 	ioapicindex = irqp->airq_ioapicindex;
2061 	mutex_exit(&airq_mutex);
2062 
2063 	iflag = intr_clear();
2064 	lock_set(&apic_ioapic_lock);
2065 
2066 	pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin) &
2067 	    AV_PENDING) ? 1 : 0;
2068 
2069 	lock_clear(&apic_ioapic_lock);
2070 	intr_restore(iflag);
2071 
2072 	return (pending);
2073 }
2074 
2075 /*
2076  * This function will mask the interrupt on the I/O APIC
2077  */
2078 static void
2079 apix_intx_set_mask(int irqno)
2080 {
2081 	int intin, ioapixindex, rdt_entry;
2082 	ulong_t iflag;
2083 	apic_irq_t *irqp;
2084 
2085 	mutex_enter(&airq_mutex);
2086 	irqp = apic_irq_table[irqno];
2087 
2088 	ASSERT(irqp->airq_mps_intr_index != FREE_INDEX);
2089 
2090 	intin = irqp->airq_intin_no;
2091 	ioapixindex = irqp->airq_ioapicindex;
2092 	mutex_exit(&airq_mutex);
2093 
2094 	iflag = intr_clear();
2095 	lock_set(&apic_ioapic_lock);
2096 
2097 	rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin);
2098 
2099 	/* clear mask */
2100 	WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin,
2101 	    (AV_MASK | rdt_entry));
2102 
2103 	lock_clear(&apic_ioapic_lock);
2104 	intr_restore(iflag);
2105 }
2106 
2107 /*
2108  * This function will clear the mask for the interrupt on the I/O APIC
2109  */
2110 static void
2111 apix_intx_clear_mask(int irqno)
2112 {
2113 	int intin, ioapixindex, rdt_entry;
2114 	ulong_t iflag;
2115 	apic_irq_t *irqp;
2116 
2117 	mutex_enter(&airq_mutex);
2118 	irqp = apic_irq_table[irqno];
2119 
2120 	ASSERT(irqp->airq_mps_intr_index != FREE_INDEX);
2121 
2122 	intin = irqp->airq_intin_no;
2123 	ioapixindex = irqp->airq_ioapicindex;
2124 	mutex_exit(&airq_mutex);
2125 
2126 	iflag = intr_clear();
2127 	lock_set(&apic_ioapic_lock);
2128 
2129 	rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin);
2130 
2131 	/* clear mask */
2132 	WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin,
2133 	    ((~AV_MASK) & rdt_entry));
2134 
2135 	lock_clear(&apic_ioapic_lock);
2136 	intr_restore(iflag);
2137 }
2138 
2139 /*
2140  * For level-triggered interrupt, mask the IRQ line. Mask means
2141  * new interrupts will not be delivered. The interrupt already
2142  * accepted by a local APIC is not affected
2143  */
2144 void
2145 apix_level_intr_pre_eoi(int irq)
2146 {
2147 	apic_irq_t *irqp = apic_irq_table[irq];
2148 	int apic_ix, intin_ix;
2149 
2150 	if (irqp == NULL)
2151 		return;
2152 
2153 	ASSERT(apic_level_intr[irq] == TRIGGER_MODE_LEVEL);
2154 
2155 	lock_set(&apic_ioapic_lock);
2156 
2157 	intin_ix = irqp->airq_intin_no;
2158 	apic_ix = irqp->airq_ioapicindex;
2159 
2160 	if (irqp->airq_cpu != CPU->cpu_id) {
2161 		if (!APIX_IS_MASK_RDT(apix_mul_ioapic_method))
2162 			ioapic_write_eoi(apic_ix, irqp->airq_vector);
2163 		lock_clear(&apic_ioapic_lock);
2164 		return;
2165 	}
2166 
2167 	if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) {
2168 		/*
2169 		 * This is a IOxAPIC and there is EOI register:
2170 		 * 	Change the vector to reserved unused vector, so that
2171 		 * 	the EOI	from Local APIC won't clear the Remote IRR for
2172 		 * 	this level trigger interrupt. Instead, we'll manually
2173 		 * 	clear it in apix_post_hardint() after ISR handling.
2174 		 */
2175 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2176 		    (irqp->airq_rdt_entry & (~0xff)) | APIX_RESV_VECTOR);
2177 	} else {
2178 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2179 		    AV_MASK | irqp->airq_rdt_entry);
2180 	}
2181 
2182 	lock_clear(&apic_ioapic_lock);
2183 }
2184 
2185 /*
2186  * For level-triggered interrupt, unmask the IRQ line
2187  * or restore the original vector number.
2188  */
2189 void
2190 apix_level_intr_post_dispatch(int irq)
2191 {
2192 	apic_irq_t *irqp = apic_irq_table[irq];
2193 	int apic_ix, intin_ix;
2194 
2195 	if (irqp == NULL)
2196 		return;
2197 
2198 	lock_set(&apic_ioapic_lock);
2199 
2200 	intin_ix = irqp->airq_intin_no;
2201 	apic_ix = irqp->airq_ioapicindex;
2202 
2203 	if (APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method)) {
2204 		/*
2205 		 * Already sent EOI back to Local APIC.
2206 		 * Send EOI to IO-APIC
2207 		 */
2208 		ioapic_write_eoi(apic_ix, irqp->airq_vector);
2209 	} else {
2210 		/* clear the mask or restore the vector */
2211 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2212 		    irqp->airq_rdt_entry);
2213 
2214 		/* send EOI to IOxAPIC */
2215 		if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC)
2216 			ioapic_write_eoi(apic_ix, irqp->airq_vector);
2217 	}
2218 
2219 	lock_clear(&apic_ioapic_lock);
2220 }
2221 
2222 static int
2223 apix_intx_get_shared(int irqno)
2224 {
2225 	apic_irq_t *irqp;
2226 	int share;
2227 
2228 	mutex_enter(&airq_mutex);
2229 	irqp = apic_irq_table[irqno];
2230 	if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) {
2231 		mutex_exit(&airq_mutex);
2232 		return (0);
2233 	}
2234 	share = irqp->airq_share;
2235 	mutex_exit(&airq_mutex);
2236 
2237 	return (share);
2238 }
2239 
2240 static void
2241 apix_intx_set_shared(int irqno, int delta)
2242 {
2243 	apic_irq_t *irqp;
2244 
2245 	mutex_enter(&airq_mutex);
2246 	irqp = apic_irq_table[irqno];
2247 	if (IS_IRQ_FREE(irqp)) {
2248 		mutex_exit(&airq_mutex);
2249 		return;
2250 	}
2251 	irqp->airq_share += delta;
2252 	mutex_exit(&airq_mutex);
2253 }
2254 
2255 /*
2256  * Setup IRQ table. Return IRQ no or -1 on failure
2257  */
2258 static int
2259 apix_intx_setup(dev_info_t *dip, int inum, int irqno,
2260     struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *iflagp)
2261 {
2262 	int origirq = ispec->intrspec_vec;
2263 	int newirq;
2264 	short intr_index;
2265 	uchar_t ipin, ioapic, ioapicindex;
2266 	apic_irq_t *irqp;
2267 
2268 	UNREFERENCED_1PARAMETER(inum);
2269 
2270 	if (intrp != NULL) {
2271 		intr_index = (short)(intrp - apic_io_intrp);
2272 		ioapic = intrp->intr_destid;
2273 		ipin = intrp->intr_destintin;
2274 
2275 		/* Find ioapicindex. If destid was ALL, we will exit with 0. */
2276 		for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
2277 			if (apic_io_id[ioapicindex] == ioapic)
2278 				break;
2279 		ASSERT((ioapic == apic_io_id[ioapicindex]) ||
2280 		    (ioapic == INTR_ALL_APIC));
2281 
2282 		/* check whether this intin# has been used by another irqno */
2283 		if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1)
2284 			return (newirq);
2285 
2286 	} else if (iflagp != NULL) {	/* ACPI */
2287 		intr_index = ACPI_INDEX;
2288 		ioapicindex = acpi_find_ioapic(irqno);
2289 		ASSERT(ioapicindex != 0xFF);
2290 		ioapic = apic_io_id[ioapicindex];
2291 		ipin = irqno - apic_io_vectbase[ioapicindex];
2292 
2293 		if (apic_irq_table[irqno] &&
2294 		    apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
2295 			ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
2296 			    apic_irq_table[irqno]->airq_ioapicindex ==
2297 			    ioapicindex);
2298 			return (irqno);
2299 		}
2300 
2301 	} else {	/* default configuration */
2302 		intr_index = DEFAULT_INDEX;
2303 		ioapicindex = 0;
2304 		ioapic = apic_io_id[ioapicindex];
2305 		ipin = (uchar_t)irqno;
2306 	}
2307 
2308 	/* allocate a new IRQ no */
2309 	if ((irqp = apic_irq_table[irqno]) == NULL) {
2310 		irqp = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
2311 		apic_irq_table[irqno] = irqp;
2312 	} else {
2313 		if (irqp->airq_mps_intr_index != FREE_INDEX) {
2314 			newirq = apic_allocate_irq(apic_first_avail_irq);
2315 			if (newirq == -1) {
2316 				return (-1);
2317 			}
2318 			irqno = newirq;
2319 			irqp = apic_irq_table[irqno];
2320 			ASSERT(irqp != NULL);
2321 		}
2322 	}
2323 	apic_max_device_irq = max(irqno, apic_max_device_irq);
2324 	apic_min_device_irq = min(irqno, apic_min_device_irq);
2325 
2326 	irqp->airq_mps_intr_index = intr_index;
2327 	irqp->airq_ioapicindex = ioapicindex;
2328 	irqp->airq_intin_no = ipin;
2329 	irqp->airq_dip = dip;
2330 	irqp->airq_origirq = (uchar_t)origirq;
2331 	if (iflagp != NULL)
2332 		irqp->airq_iflag = *iflagp;
2333 	irqp->airq_cpu = IRQ_UNINIT;
2334 	irqp->airq_vector = 0;
2335 
2336 	return (irqno);
2337 }
2338 
2339 /*
2340  * Setup IRQ table for non-pci devices. Return IRQ no or -1 on error
2341  */
2342 static int
2343 apix_intx_setup_nonpci(dev_info_t *dip, int inum, int bustype,
2344     struct intrspec *ispec)
2345 {
2346 	int irqno = ispec->intrspec_vec;
2347 	int newirq, i;
2348 	iflag_t intr_flag;
2349 	ACPI_SUBTABLE_HEADER	*hp;
2350 	ACPI_MADT_INTERRUPT_OVERRIDE *isop;
2351 	struct apic_io_intr *intrp;
2352 
2353 	if (!apic_enable_acpi || apic_use_acpi_madt_only) {
2354 		int busid;
2355 
2356 		if (bustype == 0)
2357 			bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
2358 
2359 		/* loop checking BUS_ISA/BUS_EISA */
2360 		for (i = 0; i < 2; i++) {
2361 			if (((busid = apic_find_bus_id(bustype)) != -1) &&
2362 			    ((intrp = apic_find_io_intr_w_busid(irqno, busid))
2363 			    != NULL)) {
2364 				return (apix_intx_setup(dip, inum, irqno,
2365 				    intrp, ispec, NULL));
2366 			}
2367 			bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
2368 		}
2369 
2370 		/* fall back to default configuration */
2371 		return (-1);
2372 	}
2373 
2374 	/* search iso entries first */
2375 	if (acpi_iso_cnt != 0) {
2376 		hp = (ACPI_SUBTABLE_HEADER *)acpi_isop;
2377 		i = 0;
2378 		while (i < acpi_iso_cnt) {
2379 			if (hp->Type == ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
2380 				isop = (ACPI_MADT_INTERRUPT_OVERRIDE *) hp;
2381 				if (isop->Bus == 0 &&
2382 				    isop->SourceIrq == irqno) {
2383 					newirq = isop->GlobalIrq;
2384 					intr_flag.intr_po = isop->IntiFlags &
2385 					    ACPI_MADT_POLARITY_MASK;
2386 					intr_flag.intr_el = (isop->IntiFlags &
2387 					    ACPI_MADT_TRIGGER_MASK) >> 2;
2388 					intr_flag.bustype = BUS_ISA;
2389 
2390 					return (apix_intx_setup(dip, inum,
2391 					    newirq, NULL, ispec, &intr_flag));
2392 				}
2393 				i++;
2394 			}
2395 			hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) +
2396 			    hp->Length);
2397 		}
2398 	}
2399 	intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
2400 	intr_flag.intr_el = INTR_EL_EDGE;
2401 	intr_flag.bustype = BUS_ISA;
2402 	return (apix_intx_setup(dip, inum, irqno, NULL, ispec, &intr_flag));
2403 }
2404 
2405 
2406 /*
2407  * Setup IRQ table for pci devices. Return IRQ no or -1 on error
2408  */
2409 static int
2410 apix_intx_setup_pci(dev_info_t *dip, int inum, int bustype,
2411     struct intrspec *ispec)
2412 {
2413 	int busid, devid, pci_irq;
2414 	ddi_acc_handle_t cfg_handle;
2415 	uchar_t ipin;
2416 	iflag_t intr_flag;
2417 	struct apic_io_intr *intrp;
2418 
2419 	if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
2420 		return (-1);
2421 
2422 	if (busid == 0 && apic_pci_bus_total == 1)
2423 		busid = (int)apic_single_pci_busid;
2424 
2425 	if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
2426 		return (-1);
2427 	ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
2428 	pci_config_teardown(&cfg_handle);
2429 
2430 	if (apic_enable_acpi && !apic_use_acpi_madt_only) {	/* ACPI */
2431 		if (apic_acpi_translate_pci_irq(dip, busid, devid,
2432 		    ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
2433 			return (-1);
2434 
2435 		intr_flag.bustype = (uchar_t)bustype;
2436 		return (apix_intx_setup(dip, inum, pci_irq, NULL, ispec,
2437 		    &intr_flag));
2438 	}
2439 
2440 	/* MP configuration table */
2441 	pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
2442 	if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) == NULL) {
2443 		pci_irq = apic_handle_pci_pci_bridge(dip, devid, ipin, &intrp);
2444 		if (pci_irq == -1)
2445 			return (-1);
2446 	}
2447 
2448 	return (apix_intx_setup(dip, inum, pci_irq, intrp, ispec, NULL));
2449 }
2450 
2451 /*
2452  * Translate and return IRQ no
2453  */
2454 static int
2455 apix_intx_xlate_irq(dev_info_t *dip, int inum, struct intrspec *ispec)
2456 {
2457 	int newirq, irqno = ispec->intrspec_vec;
2458 	int parent_is_pci_or_pciex = 0, child_is_pciex = 0;
2459 	int bustype = 0, dev_len;
2460 	char dev_type[16];
2461 
2462 	if (apic_defconf) {
2463 		mutex_enter(&airq_mutex);
2464 		goto defconf;
2465 	}
2466 
2467 	if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) {
2468 		mutex_enter(&airq_mutex);
2469 		goto nonpci;
2470 	}
2471 
2472 	/*
2473 	 * use ddi_getlongprop_buf() instead of ddi_prop_lookup_string()
2474 	 * to avoid extra buffer allocation.
2475 	 */
2476 	dev_len = sizeof (dev_type);
2477 	if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
2478 	    DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
2479 	    &dev_len) == DDI_PROP_SUCCESS) {
2480 		if ((strcmp(dev_type, "pci") == 0) ||
2481 		    (strcmp(dev_type, "pciex") == 0))
2482 			parent_is_pci_or_pciex = 1;
2483 	}
2484 
2485 	if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
2486 	    DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type,
2487 	    &dev_len) == DDI_PROP_SUCCESS) {
2488 		if (strstr(dev_type, "pciex"))
2489 			child_is_pciex = 1;
2490 	}
2491 
2492 	mutex_enter(&airq_mutex);
2493 
2494 	if (parent_is_pci_or_pciex) {
2495 		bustype = child_is_pciex ? BUS_PCIE : BUS_PCI;
2496 		newirq = apix_intx_setup_pci(dip, inum, bustype, ispec);
2497 		if (newirq != -1)
2498 			goto done;
2499 		bustype = 0;
2500 	} else if (strcmp(dev_type, "isa") == 0)
2501 		bustype = BUS_ISA;
2502 	else if (strcmp(dev_type, "eisa") == 0)
2503 		bustype = BUS_EISA;
2504 
2505 nonpci:
2506 	newirq = apix_intx_setup_nonpci(dip, inum, bustype, ispec);
2507 	if (newirq != -1)
2508 		goto done;
2509 
2510 defconf:
2511 	newirq = apix_intx_setup(dip, inum, irqno, NULL, ispec, NULL);
2512 	if (newirq == -1) {
2513 		mutex_exit(&airq_mutex);
2514 		return (-1);
2515 	}
2516 done:
2517 	ASSERT(apic_irq_table[newirq]);
2518 	mutex_exit(&airq_mutex);
2519 	return (newirq);
2520 }
2521 
2522 static int
2523 apix_intx_alloc_vector(dev_info_t *dip, int inum, struct intrspec *ispec)
2524 {
2525 	int irqno;
2526 	apix_vector_t *vecp;
2527 
2528 	if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1)
2529 		return (0);
2530 
2531 	if ((vecp = apix_alloc_intx(dip, inum, irqno)) == NULL)
2532 		return (0);
2533 
2534 	DDI_INTR_IMPLDBG((CE_CONT, "apix_intx_alloc_vector: dip=0x%p name=%s "
2535 	    "irqno=0x%x cpuid=%d vector=0x%x\n",
2536 	    (void *)dip, ddi_driver_name(dip), irqno,
2537 	    vecp->v_cpuid, vecp->v_vector));
2538 
2539 	return (1);
2540 }
2541 
2542 /*
2543  * Return the vector number if the translated IRQ for this device
2544  * has a vector mapping setup. If no IRQ setup exists or no vector is
2545  * allocated to it then return 0.
2546  */
2547 static apix_vector_t *
2548 apix_intx_xlate_vector(dev_info_t *dip, int inum, struct intrspec *ispec)
2549 {
2550 	int irqno;
2551 	apix_vector_t *vecp;
2552 
2553 	/* get the IRQ number */
2554 	if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1)
2555 		return (NULL);
2556 
2557 	/* get the vector number if a vector is allocated to this irqno */
2558 	vecp = apix_intx_get_vector(irqno);
2559 
2560 	return (vecp);
2561 }
2562 
2563 /* stub function */
2564 int
2565 apix_loaded(void)
2566 {
2567 	return (apix_is_enabled);
2568 }
2569