1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 * Copyright 2018 Joyent, Inc. 29 */ 30 31 /* 32 * To understand how the apix module interacts with the interrupt subsystem read 33 * the theory statement in uts/i86pc/os/intr.c. 34 */ 35 36 /* 37 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 38 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 39 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 40 * PSMI 1.5 extensions are supported in Solaris Nevada. 41 * PSMI 1.6 extensions are supported in Solaris Nevada. 42 * PSMI 1.7 extensions are supported in Solaris Nevada. 43 */ 44 #define PSMI_1_7 45 46 #include <sys/processor.h> 47 #include <sys/time.h> 48 #include <sys/psm.h> 49 #include <sys/smp_impldefs.h> 50 #include <sys/cram.h> 51 #include <sys/acpi/acpi.h> 52 #include <sys/acpica.h> 53 #include <sys/psm_common.h> 54 #include <sys/pit.h> 55 #include <sys/ddi.h> 56 #include <sys/sunddi.h> 57 #include <sys/ddi_impldefs.h> 58 #include <sys/pci.h> 59 #include <sys/promif.h> 60 #include <sys/x86_archext.h> 61 #include <sys/cpc_impl.h> 62 #include <sys/uadmin.h> 63 #include <sys/panic.h> 64 #include <sys/debug.h> 65 #include <sys/archsystm.h> 66 #include <sys/trap.h> 67 #include <sys/machsystm.h> 68 #include <sys/sysmacros.h> 69 #include <sys/cpuvar.h> 70 #include <sys/rm_platter.h> 71 #include <sys/privregs.h> 72 #include <sys/note.h> 73 #include <sys/pci_intr_lib.h> 74 #include <sys/spl.h> 75 #include <sys/clock.h> 76 #include <sys/cyclic.h> 77 #include <sys/dditypes.h> 78 #include <sys/sunddi.h> 79 #include <sys/x_call.h> 80 #include <sys/reboot.h> 81 #include <sys/mach_intr.h> 82 #include <sys/apix.h> 83 #include <sys/apix_irm_impl.h> 84 85 static int apix_probe(); 86 static void apix_init(); 87 static void apix_picinit(void); 88 static int apix_intr_enter(int, int *); 89 static void apix_intr_exit(int, int); 90 static void apix_setspl(int); 91 static int apix_disable_intr(processorid_t); 92 static void apix_enable_intr(processorid_t); 93 static int apix_get_clkvect(int); 94 static int apix_get_ipivect(int, int); 95 static void apix_post_cyclic_setup(void *); 96 static int apix_post_cpu_start(); 97 static int apix_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *, 98 psm_intr_op_t, int *); 99 100 /* 101 * Helper functions for apix_intr_ops() 102 */ 103 static void apix_redistribute_compute(void); 104 static int apix_get_pending(apix_vector_t *); 105 static apix_vector_t *apix_get_req_vector(ddi_intr_handle_impl_t *, ushort_t); 106 static int apix_get_intr_info(ddi_intr_handle_impl_t *, apic_get_intr_t *); 107 static char *apix_get_apic_type(void); 108 static int apix_intx_get_pending(int); 109 static void apix_intx_set_mask(int irqno); 110 static void apix_intx_clear_mask(int irqno); 111 static int apix_intx_get_shared(int irqno); 112 static void apix_intx_set_shared(int irqno, int delta); 113 static apix_vector_t *apix_intx_xlate_vector(dev_info_t *, int, 114 struct intrspec *); 115 static int apix_intx_alloc_vector(dev_info_t *, int, struct intrspec *); 116 117 extern int apic_clkinit(int); 118 119 /* IRM initialization for APIX PSM module */ 120 extern void apix_irm_init(void); 121 122 extern int irm_enable; 123 124 /* 125 * Local static data 126 */ 127 static struct psm_ops apix_ops = { 128 apix_probe, 129 130 apix_init, 131 apix_picinit, 132 apix_intr_enter, 133 apix_intr_exit, 134 apix_setspl, 135 apix_addspl, 136 apix_delspl, 137 apix_disable_intr, 138 apix_enable_intr, 139 NULL, /* psm_softlvl_to_irq */ 140 NULL, /* psm_set_softintr */ 141 142 apic_set_idlecpu, 143 apic_unset_idlecpu, 144 145 apic_clkinit, 146 apix_get_clkvect, 147 NULL, /* psm_hrtimeinit */ 148 apic_gethrtime, 149 150 apic_get_next_processorid, 151 apic_cpu_start, 152 apix_post_cpu_start, 153 apic_shutdown, 154 apix_get_ipivect, 155 apic_send_ipi, 156 157 NULL, /* psm_translate_irq */ 158 NULL, /* psm_notify_error */ 159 NULL, /* psm_notify_func */ 160 apic_timer_reprogram, 161 apic_timer_enable, 162 apic_timer_disable, 163 apix_post_cyclic_setup, 164 apic_preshutdown, 165 apix_intr_ops, /* Advanced DDI Interrupt framework */ 166 apic_state, /* save, restore apic state for S3 */ 167 apic_cpu_ops, /* CPU control interface. */ 168 169 apic_get_pir_ipivect, 170 apic_send_pir_ipi, 171 apic_cmci_setup 172 }; 173 174 struct psm_ops *psmops = &apix_ops; 175 176 static struct psm_info apix_psm_info = { 177 PSM_INFO_VER01_7, /* version */ 178 PSM_OWN_EXCLUSIVE, /* ownership */ 179 &apix_ops, /* operation */ 180 APIX_NAME, /* machine name */ 181 "apix MPv1.4 compatible", 182 }; 183 184 static void *apix_hdlp; 185 186 static int apix_is_enabled = 0; 187 188 /* 189 * apix_lock is used for cpu selection and vector re-binding 190 */ 191 lock_t apix_lock; 192 apix_impl_t *apixs[NCPU]; 193 /* 194 * Mapping between device interrupt and the allocated vector. Indexed 195 * by major number. 196 */ 197 apix_dev_vector_t **apix_dev_vector; 198 /* 199 * Mapping between device major number and cpu id. It gets used 200 * when interrupt binding policy round robin with affinity is 201 * applied. With that policy, devices with the same major number 202 * will be bound to the same CPU. 203 */ 204 processorid_t *apix_major_to_cpu; /* major to cpu mapping */ 205 kmutex_t apix_mutex; /* for apix_dev_vector & apix_major_to_cpu */ 206 207 int apix_nipis = 16; /* Maximum number of IPIs */ 208 /* 209 * Maximum number of vectors in a CPU that can be used for interrupt 210 * allocation (including IPIs and the reserved vectors). 211 */ 212 int apix_cpu_nvectors = APIX_NVECTOR; 213 214 /* number of CPUs in power-on transition state */ 215 static int apic_poweron_cnt = 0; 216 217 /* gcpu.h */ 218 219 extern void apic_do_interrupt(struct regs *rp, trap_trace_rec_t *ttp); 220 extern void apic_change_eoi(); 221 222 /* 223 * This is the loadable module wrapper 224 */ 225 226 int 227 _init(void) 228 { 229 if (apic_coarse_hrtime) 230 apix_ops.psm_gethrtime = &apic_gettime; 231 return (psm_mod_init(&apix_hdlp, &apix_psm_info)); 232 } 233 234 int 235 _fini(void) 236 { 237 return (psm_mod_fini(&apix_hdlp, &apix_psm_info)); 238 } 239 240 int 241 _info(struct modinfo *modinfop) 242 { 243 return (psm_mod_info(&apix_hdlp, &apix_psm_info, modinfop)); 244 } 245 246 static int 247 apix_probe() 248 { 249 int rval; 250 251 if (apix_enable == 0) 252 return (PSM_FAILURE); 253 254 /* 255 * FIXME Temporarily disable apix module on Xen HVM platform due to 256 * known hang during boot (see #3605). 257 * 258 * Please remove when/if the issue is resolved. 259 */ 260 if (get_hwenv() & HW_XEN_HVM) 261 return (PSM_FAILURE); 262 263 if (apic_local_mode() == LOCAL_X2APIC) { 264 /* x2APIC mode activated by BIOS, switch ops */ 265 apic_mode = LOCAL_X2APIC; 266 apic_change_ops(); 267 } 268 269 rval = apic_probe_common(apix_psm_info.p_mach_idstring); 270 if (rval == PSM_SUCCESS) 271 apix_is_enabled = 1; 272 else 273 apix_is_enabled = 0; 274 return (rval); 275 } 276 277 /* 278 * Initialize the data structures needed by pcplusmpx module. 279 * Specifically, the data structures used by addspl() and delspl() 280 * routines. 281 */ 282 static void 283 apix_softinit() 284 { 285 int i, *iptr; 286 apix_impl_t *hdlp; 287 int nproc; 288 289 nproc = max(apic_nproc, apic_max_nproc); 290 291 hdlp = kmem_zalloc(nproc * sizeof (apix_impl_t), KM_SLEEP); 292 for (i = 0; i < nproc; i++) { 293 apixs[i] = &hdlp[i]; 294 apixs[i]->x_cpuid = i; 295 LOCK_INIT_CLEAR(&apixs[i]->x_lock); 296 } 297 298 /* cpu 0 is always up (for now) */ 299 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; 300 301 iptr = (int *)&apic_irq_table[0]; 302 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 303 apic_level_intr[i] = 0; 304 *iptr++ = 0; 305 } 306 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL); 307 308 apix_dev_vector = kmem_zalloc(sizeof (apix_dev_vector_t *) * devcnt, 309 KM_SLEEP); 310 311 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) { 312 apix_major_to_cpu = kmem_zalloc(sizeof (int) * devcnt, 313 KM_SLEEP); 314 for (i = 0; i < devcnt; i++) 315 apix_major_to_cpu[i] = IRQ_UNINIT; 316 } 317 318 mutex_init(&apix_mutex, NULL, MUTEX_DEFAULT, NULL); 319 } 320 321 static int 322 apix_get_pending_spl(void) 323 { 324 int cpuid = CPU->cpu_id; 325 326 return (bsrw_insn(apixs[cpuid]->x_intr_pending)); 327 } 328 329 static uintptr_t 330 apix_get_intr_handler(int cpu, short vec) 331 { 332 apix_vector_t *apix_vector; 333 334 ASSERT(cpu < apic_nproc && vec < APIX_NVECTOR); 335 if (cpu >= apic_nproc || vec >= APIX_NVECTOR) 336 return (0); 337 338 apix_vector = apixs[cpu]->x_vectbl[vec]; 339 340 return ((uintptr_t)(apix_vector->v_autovect)); 341 } 342 343 static void 344 apix_init() 345 { 346 extern void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *); 347 348 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_softinit\n")); 349 350 do_interrupt_common = apix_do_interrupt; 351 addintr = apix_add_avintr; 352 remintr = apix_rem_avintr; 353 get_pending_spl = apix_get_pending_spl; 354 get_intr_handler = apix_get_intr_handler; 355 psm_get_localapicid = apic_get_localapicid; 356 psm_get_ioapicid = apic_get_ioapicid; 357 358 apix_softinit(); 359 360 apic_pir_vect = apix_get_ipivect(XC_CPUPOKE_PIL, -1); 361 362 /* 363 * Initialize IRM pool parameters 364 */ 365 if (irm_enable) { 366 int i; 367 int lowest_irq; 368 int highest_irq; 369 370 /* number of CPUs present */ 371 apix_irminfo.apix_ncpus = apic_nproc; 372 /* total number of entries in all of the IOAPICs present */ 373 lowest_irq = apic_io_vectbase[0]; 374 highest_irq = apic_io_vectend[0]; 375 for (i = 1; i < apic_io_max; i++) { 376 if (apic_io_vectbase[i] < lowest_irq) 377 lowest_irq = apic_io_vectbase[i]; 378 if (apic_io_vectend[i] > highest_irq) 379 highest_irq = apic_io_vectend[i]; 380 } 381 apix_irminfo.apix_ioapic_max_vectors = 382 highest_irq - lowest_irq + 1; 383 /* 384 * Number of available per-CPU vectors excluding 385 * reserved vectors for Dtrace, int80, system-call, 386 * fast-trap, etc. 387 */ 388 apix_irminfo.apix_per_cpu_vectors = APIX_NAVINTR - 389 APIX_SW_RESERVED_VECTORS; 390 391 /* Number of vectors (pre) allocated (SCI and HPET) */ 392 apix_irminfo.apix_vectors_allocated = 0; 393 if (apic_hpet_vect != -1) 394 apix_irminfo.apix_vectors_allocated++; 395 if (apic_sci_vect != -1) 396 apix_irminfo.apix_vectors_allocated++; 397 } 398 } 399 400 static void 401 apix_init_intr() 402 { 403 processorid_t cpun = psm_get_cpu_id(); 404 uint_t nlvt; 405 uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR; 406 extern void cmi_cmci_trap(void); 407 408 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 409 410 if (apic_mode == LOCAL_APIC) { 411 /* 412 * We are running APIC in MMIO mode. 413 */ 414 if (apic_flat_model) { 415 apic_reg_ops->apic_write(APIC_FORMAT_REG, 416 APIC_FLAT_MODEL); 417 } else { 418 apic_reg_ops->apic_write(APIC_FORMAT_REG, 419 APIC_CLUSTER_MODEL); 420 } 421 422 apic_reg_ops->apic_write(APIC_DEST_REG, 423 AV_HIGH_ORDER >> cpun); 424 } 425 426 if (apic_directed_EOI_supported()) { 427 /* 428 * Setting the 12th bit in the Spurious Interrupt Vector 429 * Register suppresses broadcast EOIs generated by the local 430 * APIC. The suppression of broadcast EOIs happens only when 431 * interrupts are level-triggered. 432 */ 433 svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI; 434 } 435 436 /* need to enable APIC before unmasking NMI */ 437 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr); 438 439 /* 440 * Presence of an invalid vector with delivery mode AV_FIXED can 441 * cause an error interrupt, even if the entry is masked...so 442 * write a valid vector to LVT entries along with the mask bit 443 */ 444 445 /* All APICs have timer and LINT0/1 */ 446 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ); 447 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ); 448 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */ 449 450 /* 451 * On integrated APICs, the number of LVT entries is 452 * 'Max LVT entry' + 1; on 82489DX's (non-integrated 453 * APICs), nlvt is "3" (LINT0, LINT1, and timer) 454 */ 455 456 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { 457 nlvt = 3; 458 } else { 459 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) & 460 0xFF) + 1; 461 } 462 463 if (nlvt >= 5) { 464 /* Enable performance counter overflow interrupt */ 465 466 if (!is_x86_feature(x86_featureset, X86FSET_MSR)) 467 apic_enable_cpcovf_intr = 0; 468 if (apic_enable_cpcovf_intr) { 469 if (apic_cpcovf_vect == 0) { 470 int ipl = APIC_PCINT_IPL; 471 472 apic_cpcovf_vect = apix_get_ipivect(ipl, -1); 473 ASSERT(apic_cpcovf_vect); 474 475 (void) add_avintr(NULL, ipl, 476 (avfunc)kcpc_hw_overflow_intr, 477 "apic pcint", apic_cpcovf_vect, 478 NULL, NULL, NULL, NULL); 479 kcpc_hw_overflow_intr_installed = 1; 480 kcpc_hw_enable_cpc_intr = 481 apic_cpcovf_mask_clear; 482 } 483 apic_reg_ops->apic_write(APIC_PCINT_VECT, 484 apic_cpcovf_vect); 485 } 486 } 487 488 if (nlvt >= 6) { 489 /* Only mask TM intr if the BIOS apparently doesn't use it */ 490 491 uint32_t lvtval; 492 493 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT); 494 if (((lvtval & AV_MASK) == AV_MASK) || 495 ((lvtval & AV_DELIV_MODE) != AV_SMI)) { 496 apic_reg_ops->apic_write(APIC_THERM_VECT, 497 AV_MASK|APIC_RESV_IRQ); 498 } 499 } 500 501 /* Enable error interrupt */ 502 503 if (nlvt >= 4 && apic_enable_error_intr) { 504 if (apic_errvect == 0) { 505 int ipl = 0xf; /* get highest priority intr */ 506 apic_errvect = apix_get_ipivect(ipl, -1); 507 ASSERT(apic_errvect); 508 /* 509 * Not PSMI compliant, but we are going to merge 510 * with ON anyway 511 */ 512 (void) add_avintr(NULL, ipl, 513 (avfunc)apic_error_intr, "apic error intr", 514 apic_errvect, NULL, NULL, NULL, NULL); 515 } 516 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect); 517 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 518 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 519 } 520 521 /* 522 * Ensure a CMCI interrupt is allocated, regardless of whether it is 523 * enabled or not. 524 */ 525 if (apic_cmci_vect == 0) { 526 const int ipl = 0x2; 527 apic_cmci_vect = apix_get_ipivect(ipl, -1); 528 ASSERT(apic_cmci_vect); 529 530 (void) add_avintr(NULL, ipl, 531 (avfunc)cmi_cmci_trap, "apic cmci intr", 532 apic_cmci_vect, NULL, NULL, NULL, NULL); 533 } 534 535 apic_reg_ops->apic_write_task_reg(0); 536 } 537 538 static void 539 apix_picinit(void) 540 { 541 int i, j; 542 uint_t isr; 543 544 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_picinit\n")); 545 546 /* 547 * initialize interrupt remapping before apic 548 * hardware initialization 549 */ 550 apic_intrmap_init(apic_mode); 551 if (apic_vt_ops == psm_vt_ops) 552 apix_mul_ioapic_method = APIC_MUL_IOAPIC_IIR; 553 554 /* 555 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr 556 * bit on without clearing it with EOI. Since softint 557 * uses vector 0x20 to interrupt itself, so softint will 558 * not work on this machine. In order to fix this problem 559 * a check is made to verify all the isr bits are clear. 560 * If not, EOIs are issued to clear the bits. 561 */ 562 for (i = 7; i >= 1; i--) { 563 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4)); 564 if (isr != 0) 565 for (j = 0; ((j < 32) && (isr != 0)); j++) 566 if (isr & (1 << j)) { 567 apic_reg_ops->apic_write( 568 APIC_EOI_REG, 0); 569 isr &= ~(1 << j); 570 apic_error |= APIC_ERR_BOOT_EOI; 571 } 572 } 573 574 /* set a flag so we know we have run apic_picinit() */ 575 apic_picinit_called = 1; 576 LOCK_INIT_CLEAR(&apic_gethrtime_lock); 577 LOCK_INIT_CLEAR(&apic_ioapic_lock); 578 LOCK_INIT_CLEAR(&apic_error_lock); 579 LOCK_INIT_CLEAR(&apic_mode_switch_lock); 580 581 picsetup(); /* initialise the 8259 */ 582 583 /* add nmi handler - least priority nmi handler */ 584 LOCK_INIT_CLEAR(&apic_nmi_lock); 585 586 if (!psm_add_nmintr(0, apic_nmi_intr, 587 "apix NMI handler", (caddr_t)NULL)) 588 cmn_err(CE_WARN, "apix: Unable to add nmi handler"); 589 590 apix_init_intr(); 591 592 /* enable apic mode if imcr present */ 593 if (apic_imcrp) { 594 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 595 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); 596 } 597 598 ioapix_init_intr(IOAPIC_MASK); 599 600 /* setup global IRM pool if applicable */ 601 if (irm_enable) 602 apix_irm_init(); 603 } 604 605 static __inline__ void 606 apix_send_eoi(void) 607 { 608 if (apic_mode == LOCAL_APIC) 609 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); 610 else 611 X2APIC_WRITE(APIC_EOI_REG, 0); 612 } 613 614 /* 615 * platform_intr_enter 616 * 617 * Called at the beginning of the interrupt service routine, but unlike 618 * pcplusmp, does not mask interrupts. An EOI is given to the interrupt 619 * controller to enable other HW interrupts but interrupts are still 620 * masked by the IF flag. 621 * 622 * Return -1 for spurious interrupts 623 * 624 */ 625 static int 626 apix_intr_enter(int ipl, int *vectorp) 627 { 628 struct cpu *cpu = CPU; 629 uint32_t cpuid = CPU->cpu_id; 630 apic_cpus_info_t *cpu_infop; 631 uchar_t vector; 632 apix_vector_t *vecp; 633 int nipl = -1; 634 635 /* 636 * The real vector delivered is (*vectorp + 0x20), but our caller 637 * subtracts 0x20 from the vector before passing it to us. 638 * (That's why APIC_BASE_VECT is 0x20.) 639 */ 640 vector = *vectorp = (uchar_t)*vectorp + APIC_BASE_VECT; 641 642 cpu_infop = &apic_cpus[cpuid]; 643 if (vector == APIC_SPUR_INTR) { 644 cpu_infop->aci_spur_cnt++; 645 return (APIC_INT_SPURIOUS); 646 } 647 648 vecp = xv_vector(cpuid, vector); 649 if (vecp == NULL) { 650 if (APIX_IS_FAKE_INTR(vector)) 651 nipl = apix_rebindinfo.i_pri; 652 apix_send_eoi(); 653 return (nipl); 654 } 655 nipl = vecp->v_pri; 656 657 /* if interrupted by the clock, increment apic_nsec_since_boot */ 658 if (vector == (apic_clkvect + APIC_BASE_VECT)) { 659 if (!apic_oneshot) { 660 /* NOTE: this is not MT aware */ 661 apic_hrtime_stamp++; 662 apic_nsec_since_boot += apic_nsec_per_intr; 663 apic_hrtime_stamp++; 664 last_count_read = apic_hertz_count; 665 apix_redistribute_compute(); 666 } 667 668 apix_send_eoi(); 669 670 return (nipl); 671 } 672 673 ASSERT(vecp->v_state != APIX_STATE_OBSOLETED); 674 675 /* pre-EOI handling for level-triggered interrupts */ 676 if (!APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method) && 677 (vecp->v_type & APIX_TYPE_FIXED) && apic_level_intr[vecp->v_inum]) 678 apix_level_intr_pre_eoi(vecp->v_inum); 679 680 /* send back EOI */ 681 apix_send_eoi(); 682 683 cpu_infop->aci_current[nipl] = vector; 684 if ((nipl > ipl) && (nipl > cpu->cpu_base_spl)) { 685 cpu_infop->aci_curipl = (uchar_t)nipl; 686 cpu_infop->aci_ISR_in_progress |= 1 << nipl; 687 } 688 689 #ifdef DEBUG 690 if (vector >= APIX_IPI_MIN) 691 return (nipl); /* skip IPI */ 692 693 APIC_DEBUG_BUF_PUT(vector); 694 APIC_DEBUG_BUF_PUT(vecp->v_inum); 695 APIC_DEBUG_BUF_PUT(nipl); 696 APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); 697 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) 698 drv_usecwait(apic_stretch_interrupts); 699 #endif /* DEBUG */ 700 701 return (nipl); 702 } 703 704 /* 705 * Any changes made to this function must also change X2APIC 706 * version of intr_exit. 707 */ 708 static void 709 apix_intr_exit(int prev_ipl, int arg2) 710 { 711 int cpuid = psm_get_cpu_id(); 712 apic_cpus_info_t *cpu_infop = &apic_cpus[cpuid]; 713 apix_impl_t *apixp = apixs[cpuid]; 714 715 UNREFERENCED_1PARAMETER(arg2); 716 717 cpu_infop->aci_curipl = (uchar_t)prev_ipl; 718 /* ISR above current pri could not be in progress */ 719 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; 720 721 if (apixp->x_obsoletes != NULL) { 722 if (APIX_CPU_LOCK_HELD(cpuid)) 723 return; 724 725 APIX_ENTER_CPU_LOCK(cpuid); 726 (void) apix_obsolete_vector(apixp->x_obsoletes); 727 APIX_LEAVE_CPU_LOCK(cpuid); 728 } 729 } 730 731 /* 732 * The pcplusmp setspl code uses the TPR to mask all interrupts at or below the 733 * given ipl, but apix never uses the TPR and we never mask a subset of the 734 * interrupts. They are either all blocked by the IF flag or all can come in. 735 * 736 * For setspl, we mask all interrupts for XC_HI_PIL (15), otherwise, interrupts 737 * can come in if currently enabled by the IF flag. This table shows the state 738 * of the IF flag when we leave this function. 739 * 740 * curr IF | ipl == 15 ipl != 15 741 * --------+--------------------------- 742 * 0 | 0 0 743 * 1 | 0 1 744 */ 745 static void 746 apix_setspl(int ipl) 747 { 748 /* 749 * Interrupts at ipl above this cannot be in progress, so the following 750 * mask is ok. 751 */ 752 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 753 754 if (ipl == XC_HI_PIL) 755 cli(); 756 } 757 758 int 759 apix_addspl(int virtvec, int ipl, int min_ipl, int max_ipl) 760 { 761 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec); 762 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec); 763 apix_vector_t *vecp = xv_vector(cpuid, vector); 764 765 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl); 766 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock)); 767 768 if (vecp->v_type == APIX_TYPE_FIXED) 769 apix_intx_set_shared(vecp->v_inum, 1); 770 771 /* There are more interrupts, so it's already been enabled */ 772 if (vecp->v_share > 1) 773 return (PSM_SUCCESS); 774 775 /* return if it is not hardware interrupt */ 776 if (vecp->v_type == APIX_TYPE_IPI) 777 return (PSM_SUCCESS); 778 779 /* 780 * if apix_picinit() has not been called yet, just return. 781 * At the end of apic_picinit(), we will call setup_io_intr(). 782 */ 783 if (!apic_picinit_called) 784 return (PSM_SUCCESS); 785 786 (void) apix_setup_io_intr(vecp); 787 788 return (PSM_SUCCESS); 789 } 790 791 int 792 apix_delspl(int virtvec, int ipl, int min_ipl, int max_ipl) 793 { 794 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec); 795 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec); 796 apix_vector_t *vecp = xv_vector(cpuid, vector); 797 798 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl); 799 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock)); 800 801 if (vecp->v_type == APIX_TYPE_FIXED) 802 apix_intx_set_shared(vecp->v_inum, -1); 803 804 /* There are more interrupts */ 805 if (vecp->v_share > 1) 806 return (PSM_SUCCESS); 807 808 /* return if it is not hardware interrupt */ 809 if (vecp->v_type == APIX_TYPE_IPI) 810 return (PSM_SUCCESS); 811 812 if (!apic_picinit_called) { 813 cmn_err(CE_WARN, "apix: delete 0x%x before apic init", 814 virtvec); 815 return (PSM_SUCCESS); 816 } 817 818 apix_disable_vector(vecp); 819 820 return (PSM_SUCCESS); 821 } 822 823 /* 824 * Try and disable all interrupts. We just assign interrupts to other 825 * processors based on policy. If any were bound by user request, we 826 * let them continue and return failure. We do not bother to check 827 * for cache affinity while rebinding. 828 */ 829 static int 830 apix_disable_intr(processorid_t cpun) 831 { 832 apix_impl_t *apixp = apixs[cpun]; 833 apix_vector_t *vecp, *newp; 834 int bindcpu, i, hardbound = 0, errbound = 0, ret, loop, type; 835 836 lock_set(&apix_lock); 837 838 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; 839 apic_cpus[cpun].aci_curipl = 0; 840 841 /* if this is for SUSPEND operation, skip rebinding */ 842 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) { 843 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 844 vecp = apixp->x_vectbl[i]; 845 if (!IS_VECT_ENABLED(vecp)) 846 continue; 847 848 apix_disable_vector(vecp); 849 } 850 lock_clear(&apix_lock); 851 return (PSM_SUCCESS); 852 } 853 854 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 855 vecp = apixp->x_vectbl[i]; 856 if (!IS_VECT_ENABLED(vecp)) 857 continue; 858 859 if (vecp->v_flags & APIX_VECT_USER_BOUND) { 860 hardbound++; 861 continue; 862 } 863 type = vecp->v_type; 864 865 /* 866 * If there are bound interrupts on this cpu, then 867 * rebind them to other processors. 868 */ 869 loop = 0; 870 do { 871 bindcpu = apic_find_cpu(APIC_CPU_INTR_ENABLE); 872 873 if (type != APIX_TYPE_MSI) 874 newp = apix_set_cpu(vecp, bindcpu, &ret); 875 else 876 newp = apix_grp_set_cpu(vecp, bindcpu, &ret); 877 } while ((newp == NULL) && (loop++ < apic_nproc)); 878 879 if (loop >= apic_nproc) { 880 errbound++; 881 cmn_err(CE_WARN, "apix: failed to rebind vector %x/%x", 882 vecp->v_cpuid, vecp->v_vector); 883 } 884 } 885 886 lock_clear(&apix_lock); 887 888 if (hardbound || errbound) { 889 cmn_err(CE_WARN, "Could not disable interrupts on %d" 890 "due to user bound interrupts or failed operation", 891 cpun); 892 return (PSM_FAILURE); 893 } 894 895 return (PSM_SUCCESS); 896 } 897 898 /* 899 * Bind interrupts to specified CPU 900 */ 901 static void 902 apix_enable_intr(processorid_t cpun) 903 { 904 apix_vector_t *vecp; 905 int i, ret; 906 processorid_t n; 907 908 lock_set(&apix_lock); 909 910 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; 911 912 /* interrupt enabling for system resume */ 913 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) { 914 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 915 vecp = xv_vector(cpun, i); 916 if (!IS_VECT_ENABLED(vecp)) 917 continue; 918 919 apix_enable_vector(vecp); 920 } 921 apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND; 922 } 923 924 for (n = 0; n < apic_nproc; n++) { 925 if (!apic_cpu_in_range(n) || n == cpun || 926 (apic_cpus[n].aci_status & APIC_CPU_INTR_ENABLE) == 0) 927 continue; 928 929 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 930 vecp = xv_vector(n, i); 931 if (!IS_VECT_ENABLED(vecp) || 932 vecp->v_bound_cpuid != cpun) 933 continue; 934 935 if (vecp->v_type != APIX_TYPE_MSI) 936 (void) apix_set_cpu(vecp, cpun, &ret); 937 else 938 (void) apix_grp_set_cpu(vecp, cpun, &ret); 939 } 940 } 941 942 lock_clear(&apix_lock); 943 } 944 945 /* 946 * Allocate vector for IPI 947 * type == -1 indicates it is an internal request. Do not change 948 * resv_vector for these requests. 949 */ 950 static int 951 apix_get_ipivect(int ipl, int type) 952 { 953 uchar_t vector; 954 955 if ((vector = apix_alloc_ipi(ipl)) > 0) { 956 if (type != -1) 957 apic_resv_vector[ipl] = vector; 958 return (vector); 959 } 960 apic_error |= APIC_ERR_GET_IPIVECT_FAIL; 961 return (-1); /* shouldn't happen */ 962 } 963 964 static int 965 apix_get_clkvect(int ipl) 966 { 967 int vector; 968 969 if ((vector = apix_get_ipivect(ipl, -1)) == -1) 970 return (-1); 971 972 apic_clkvect = vector - APIC_BASE_VECT; 973 APIC_VERBOSE(IPI, (CE_CONT, "apix: clock vector = %x\n", 974 apic_clkvect)); 975 return (vector); 976 } 977 978 static int 979 apix_post_cpu_start() 980 { 981 int cpun; 982 static int cpus_started = 1; 983 984 /* We know this CPU + BSP started successfully. */ 985 cpus_started++; 986 987 /* 988 * On BSP we would have enabled X2APIC, if supported by processor, 989 * in acpi_probe(), but on AP we do it here. 990 * 991 * We enable X2APIC mode only if BSP is running in X2APIC & the 992 * local APIC mode of the current CPU is MMIO (xAPIC). 993 */ 994 if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() && 995 apic_local_mode() == LOCAL_APIC) { 996 apic_enable_x2apic(); 997 } 998 999 /* 1000 * Switch back to x2apic IPI sending method for performance when target 1001 * CPU has entered x2apic mode. 1002 */ 1003 if (apic_mode == LOCAL_X2APIC) { 1004 apic_switch_ipi_callback(B_FALSE); 1005 } 1006 1007 splx(ipltospl(LOCK_LEVEL)); 1008 apix_init_intr(); 1009 1010 #ifdef DEBUG 1011 APIC_AV_PENDING_SET(); 1012 #else 1013 if (apic_mode == LOCAL_APIC) 1014 APIC_AV_PENDING_SET(); 1015 #endif /* DEBUG */ 1016 1017 /* 1018 * We may be booting, or resuming from suspend; aci_status will 1019 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the 1020 * APIC_CPU_ONLINE flag here rather than setting aci_status completely. 1021 */ 1022 cpun = psm_get_cpu_id(); 1023 apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE; 1024 1025 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); 1026 1027 return (PSM_SUCCESS); 1028 } 1029 1030 /* 1031 * If this module needs a periodic handler for the interrupt distribution, it 1032 * can be added here. The argument to the periodic handler is not currently 1033 * used, but is reserved for future. 1034 */ 1035 static void 1036 apix_post_cyclic_setup(void *arg) 1037 { 1038 UNREFERENCED_1PARAMETER(arg); 1039 1040 cyc_handler_t cyh; 1041 cyc_time_t cyt; 1042 1043 /* cpu_lock is held */ 1044 /* set up a periodic handler for intr redistribution */ 1045 1046 /* 1047 * In peridoc mode intr redistribution processing is done in 1048 * apic_intr_enter during clk intr processing 1049 */ 1050 if (!apic_oneshot) 1051 return; 1052 1053 /* 1054 * Register a periodical handler for the redistribution processing. 1055 * Though we would generally prefer to use the DDI interface for 1056 * periodic handler invocation, ddi_periodic_add(9F), we are 1057 * unfortunately already holding cpu_lock, which ddi_periodic_add will 1058 * attempt to take for us. Thus, we add our own cyclic directly: 1059 */ 1060 cyh.cyh_func = (void (*)(void *))apix_redistribute_compute; 1061 cyh.cyh_arg = NULL; 1062 cyh.cyh_level = CY_LOW_LEVEL; 1063 1064 cyt.cyt_when = 0; 1065 cyt.cyt_interval = apic_redistribute_sample_interval; 1066 1067 apic_cyclic_id = cyclic_add(&cyh, &cyt); 1068 } 1069 1070 /* 1071 * Called the first time we enable x2apic mode on this cpu. 1072 * Update some of the function pointers to use x2apic routines. 1073 */ 1074 void 1075 x2apic_update_psm() 1076 { 1077 struct psm_ops *pops = &apix_ops; 1078 1079 ASSERT(pops != NULL); 1080 1081 /* 1082 * The pcplusmp module's version of x2apic_update_psm makes additional 1083 * changes that we do not have to make here. It needs to make those 1084 * changes because pcplusmp relies on the TPR register and the means of 1085 * addressing that changes when using the local apic versus the x2apic. 1086 * It's also worth noting that the apix driver specific function end up 1087 * being apix_foo as opposed to apic_foo and x2apic_foo. 1088 */ 1089 pops->psm_send_ipi = x2apic_send_ipi; 1090 send_dirintf = pops->psm_send_ipi; 1091 1092 pops->psm_send_pir_ipi = x2apic_send_pir_ipi; 1093 psm_send_pir_ipi = pops->psm_send_pir_ipi; 1094 1095 apic_mode = LOCAL_X2APIC; 1096 apic_change_ops(); 1097 } 1098 1099 /* 1100 * This function provides external interface to the nexus for all 1101 * functionalities related to the new DDI interrupt framework. 1102 * 1103 * Input: 1104 * dip - pointer to the dev_info structure of the requested device 1105 * hdlp - pointer to the internal interrupt handle structure for the 1106 * requested interrupt 1107 * intr_op - opcode for this call 1108 * result - pointer to the integer that will hold the result to be 1109 * passed back if return value is PSM_SUCCESS 1110 * 1111 * Output: 1112 * return value is either PSM_SUCCESS or PSM_FAILURE 1113 */ 1114 static int 1115 apix_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, 1116 psm_intr_op_t intr_op, int *result) 1117 { 1118 int cap; 1119 apix_vector_t *vecp, *newvecp; 1120 struct intrspec *ispec, intr_spec; 1121 processorid_t target; 1122 1123 ispec = &intr_spec; 1124 ispec->intrspec_pri = hdlp->ih_pri; 1125 ispec->intrspec_vec = hdlp->ih_inum; 1126 ispec->intrspec_func = hdlp->ih_cb_func; 1127 1128 switch (intr_op) { 1129 case PSM_INTR_OP_ALLOC_VECTORS: 1130 switch (hdlp->ih_type) { 1131 case DDI_INTR_TYPE_MSI: 1132 /* allocate MSI vectors */ 1133 *result = apix_alloc_msi(dip, hdlp->ih_inum, 1134 hdlp->ih_scratch1, 1135 (int)(uintptr_t)hdlp->ih_scratch2); 1136 break; 1137 case DDI_INTR_TYPE_MSIX: 1138 /* allocate MSI-X vectors */ 1139 *result = apix_alloc_msix(dip, hdlp->ih_inum, 1140 hdlp->ih_scratch1, 1141 (int)(uintptr_t)hdlp->ih_scratch2); 1142 break; 1143 case DDI_INTR_TYPE_FIXED: 1144 /* allocate or share vector for fixed */ 1145 if ((ihdl_plat_t *)hdlp->ih_private == NULL) { 1146 return (PSM_FAILURE); 1147 } 1148 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; 1149 *result = apix_intx_alloc_vector(dip, hdlp->ih_inum, 1150 ispec); 1151 break; 1152 default: 1153 return (PSM_FAILURE); 1154 } 1155 break; 1156 case PSM_INTR_OP_FREE_VECTORS: 1157 apix_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1, 1158 hdlp->ih_type); 1159 break; 1160 case PSM_INTR_OP_XLATE_VECTOR: 1161 /* 1162 * Vectors are allocated by ALLOC and freed by FREE. 1163 * XLATE finds and returns APIX_VIRTVEC_VECTOR(cpu, vector). 1164 */ 1165 *result = APIX_INVALID_VECT; 1166 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1167 if (vecp != NULL) { 1168 *result = APIX_VIRTVECTOR(vecp->v_cpuid, 1169 vecp->v_vector); 1170 break; 1171 } 1172 1173 /* 1174 * No vector to device mapping exists. If this is FIXED type 1175 * then check if this IRQ is already mapped for another device 1176 * then return the vector number for it (i.e. shared IRQ case). 1177 * Otherwise, return PSM_FAILURE. 1178 */ 1179 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) { 1180 vecp = apix_intx_xlate_vector(dip, hdlp->ih_inum, 1181 ispec); 1182 *result = (vecp == NULL) ? APIX_INVALID_VECT : 1183 APIX_VIRTVECTOR(vecp->v_cpuid, vecp->v_vector); 1184 } 1185 if (*result == APIX_INVALID_VECT) 1186 return (PSM_FAILURE); 1187 break; 1188 case PSM_INTR_OP_GET_PENDING: 1189 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1190 if (vecp == NULL) 1191 return (PSM_FAILURE); 1192 1193 *result = apix_get_pending(vecp); 1194 break; 1195 case PSM_INTR_OP_CLEAR_MASK: 1196 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1197 return (PSM_FAILURE); 1198 1199 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1200 if (vecp == NULL) 1201 return (PSM_FAILURE); 1202 1203 apix_intx_clear_mask(vecp->v_inum); 1204 break; 1205 case PSM_INTR_OP_SET_MASK: 1206 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1207 return (PSM_FAILURE); 1208 1209 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1210 if (vecp == NULL) 1211 return (PSM_FAILURE); 1212 1213 apix_intx_set_mask(vecp->v_inum); 1214 break; 1215 case PSM_INTR_OP_GET_SHARED: 1216 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1217 return (PSM_FAILURE); 1218 1219 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1220 if (vecp == NULL) 1221 return (PSM_FAILURE); 1222 1223 *result = apix_intx_get_shared(vecp->v_inum); 1224 break; 1225 case PSM_INTR_OP_SET_PRI: 1226 /* 1227 * Called prior to adding the interrupt handler or when 1228 * an interrupt handler is unassigned. 1229 */ 1230 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1231 return (PSM_SUCCESS); 1232 1233 if (apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type) == NULL) 1234 return (PSM_FAILURE); 1235 1236 break; 1237 case PSM_INTR_OP_SET_CPU: 1238 case PSM_INTR_OP_GRP_SET_CPU: 1239 /* 1240 * The interrupt handle given here has been allocated 1241 * specifically for this command, and ih_private carries 1242 * a CPU value. 1243 */ 1244 *result = EINVAL; 1245 target = (int)(intptr_t)hdlp->ih_private; 1246 if (!apic_cpu_in_range(target)) { 1247 DDI_INTR_IMPLDBG((CE_WARN, 1248 "[grp_]set_cpu: cpu out of range: %d\n", target)); 1249 return (PSM_FAILURE); 1250 } 1251 1252 lock_set(&apix_lock); 1253 1254 vecp = apix_get_req_vector(hdlp, hdlp->ih_flags); 1255 if (!IS_VECT_ENABLED(vecp)) { 1256 DDI_INTR_IMPLDBG((CE_WARN, 1257 "[grp]_set_cpu: invalid vector 0x%x\n", 1258 hdlp->ih_vector)); 1259 lock_clear(&apix_lock); 1260 return (PSM_FAILURE); 1261 } 1262 1263 *result = 0; 1264 1265 if (intr_op == PSM_INTR_OP_SET_CPU) 1266 newvecp = apix_set_cpu(vecp, target, result); 1267 else 1268 newvecp = apix_grp_set_cpu(vecp, target, result); 1269 1270 lock_clear(&apix_lock); 1271 1272 if (newvecp == NULL) { 1273 *result = EIO; 1274 return (PSM_FAILURE); 1275 } 1276 newvecp->v_bound_cpuid = target; 1277 hdlp->ih_vector = APIX_VIRTVECTOR(newvecp->v_cpuid, 1278 newvecp->v_vector); 1279 break; 1280 1281 case PSM_INTR_OP_GET_INTR: 1282 /* 1283 * The interrupt handle given here has been allocated 1284 * specifically for this command, and ih_private carries 1285 * a pointer to a apic_get_intr_t. 1286 */ 1287 if (apix_get_intr_info(hdlp, hdlp->ih_private) != PSM_SUCCESS) 1288 return (PSM_FAILURE); 1289 break; 1290 1291 case PSM_INTR_OP_CHECK_MSI: 1292 /* 1293 * Check MSI/X is supported or not at APIC level and 1294 * masked off the MSI/X bits in hdlp->ih_type if not 1295 * supported before return. If MSI/X is supported, 1296 * leave the ih_type unchanged and return. 1297 * 1298 * hdlp->ih_type passed in from the nexus has all the 1299 * interrupt types supported by the device. 1300 */ 1301 if (apic_support_msi == 0) { /* uninitialized */ 1302 /* 1303 * if apic_support_msi is not set, call 1304 * apic_check_msi_support() to check whether msi 1305 * is supported first 1306 */ 1307 if (apic_check_msi_support() == PSM_SUCCESS) 1308 apic_support_msi = 1; /* supported */ 1309 else 1310 apic_support_msi = -1; /* not-supported */ 1311 } 1312 if (apic_support_msi == 1) { 1313 if (apic_msix_enable) 1314 *result = hdlp->ih_type; 1315 else 1316 *result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX; 1317 } else 1318 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI | 1319 DDI_INTR_TYPE_MSIX); 1320 break; 1321 case PSM_INTR_OP_GET_CAP: 1322 cap = DDI_INTR_FLAG_PENDING; 1323 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1324 cap |= DDI_INTR_FLAG_MASKABLE; 1325 *result = cap; 1326 break; 1327 case PSM_INTR_OP_APIC_TYPE: 1328 ((apic_get_type_t *)(hdlp->ih_private))->avgi_type = 1329 apix_get_apic_type(); 1330 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_intr = 1331 APIX_IPI_MIN; 1332 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_cpu = 1333 apic_nproc; 1334 hdlp->ih_ver = apic_get_apic_version(); 1335 break; 1336 case PSM_INTR_OP_SET_CAP: 1337 default: 1338 return (PSM_FAILURE); 1339 } 1340 1341 return (PSM_SUCCESS); 1342 } 1343 1344 static void 1345 apix_cleanup_busy(void) 1346 { 1347 int i, j; 1348 apix_vector_t *vecp; 1349 1350 for (i = 0; i < apic_nproc; i++) { 1351 if (!apic_cpu_in_range(i)) 1352 continue; 1353 apic_cpus[i].aci_busy = 0; 1354 for (j = APIX_AVINTR_MIN; j < APIX_AVINTR_MAX; j++) { 1355 if ((vecp = xv_vector(i, j)) != NULL) 1356 vecp->v_busy = 0; 1357 } 1358 } 1359 } 1360 1361 static void 1362 apix_redistribute_compute(void) 1363 { 1364 int i, j, max_busy; 1365 1366 if (!apic_enable_dynamic_migration) 1367 return; 1368 1369 if (++apic_nticks == apic_sample_factor_redistribution) { 1370 /* 1371 * Time to call apic_intr_redistribute(). 1372 * reset apic_nticks. This will cause max_busy 1373 * to be calculated below and if it is more than 1374 * apic_int_busy, we will do the whole thing 1375 */ 1376 apic_nticks = 0; 1377 } 1378 max_busy = 0; 1379 for (i = 0; i < apic_nproc; i++) { 1380 if (!apic_cpu_in_range(i)) 1381 continue; 1382 /* 1383 * Check if curipl is non zero & if ISR is in 1384 * progress 1385 */ 1386 if (((j = apic_cpus[i].aci_curipl) != 0) && 1387 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { 1388 1389 int vect; 1390 apic_cpus[i].aci_busy++; 1391 vect = apic_cpus[i].aci_current[j]; 1392 apixs[i]->x_vectbl[vect]->v_busy++; 1393 } 1394 1395 if (!apic_nticks && 1396 (apic_cpus[i].aci_busy > max_busy)) 1397 max_busy = apic_cpus[i].aci_busy; 1398 } 1399 if (!apic_nticks) { 1400 if (max_busy > apic_int_busy_mark) { 1401 /* 1402 * We could make the following check be 1403 * skipped > 1 in which case, we get a 1404 * redistribution at half the busy mark (due to 1405 * double interval). Need to be able to collect 1406 * more empirical data to decide if that is a 1407 * good strategy. Punt for now. 1408 */ 1409 apix_cleanup_busy(); 1410 apic_skipped_redistribute = 0; 1411 } else 1412 apic_skipped_redistribute++; 1413 } 1414 } 1415 1416 /* 1417 * intr_ops() service routines 1418 */ 1419 1420 static int 1421 apix_get_pending(apix_vector_t *vecp) 1422 { 1423 int bit, index, irr, pending; 1424 1425 /* need to get on the bound cpu */ 1426 mutex_enter(&cpu_lock); 1427 affinity_set(vecp->v_cpuid); 1428 1429 index = vecp->v_vector / 32; 1430 bit = vecp->v_vector % 32; 1431 irr = apic_reg_ops->apic_read(APIC_IRR_REG + index); 1432 1433 affinity_clear(); 1434 mutex_exit(&cpu_lock); 1435 1436 pending = (irr & (1 << bit)) ? 1 : 0; 1437 if (!pending && vecp->v_type == APIX_TYPE_FIXED) 1438 pending = apix_intx_get_pending(vecp->v_inum); 1439 1440 return (pending); 1441 } 1442 1443 static apix_vector_t * 1444 apix_get_req_vector(ddi_intr_handle_impl_t *hdlp, ushort_t flags) 1445 { 1446 apix_vector_t *vecp; 1447 processorid_t cpuid; 1448 int32_t virt_vec = 0; 1449 1450 switch (flags & PSMGI_INTRBY_FLAGS) { 1451 case PSMGI_INTRBY_IRQ: 1452 return (apix_intx_get_vector(hdlp->ih_vector)); 1453 case PSMGI_INTRBY_VEC: 1454 virt_vec = (virt_vec == 0) ? hdlp->ih_vector : virt_vec; 1455 1456 cpuid = APIX_VIRTVEC_CPU(virt_vec); 1457 if (!apic_cpu_in_range(cpuid)) 1458 return (NULL); 1459 1460 vecp = xv_vector(cpuid, APIX_VIRTVEC_VECTOR(virt_vec)); 1461 break; 1462 case PSMGI_INTRBY_DEFAULT: 1463 vecp = apix_get_dev_map(hdlp->ih_dip, hdlp->ih_inum, 1464 hdlp->ih_type); 1465 break; 1466 default: 1467 return (NULL); 1468 } 1469 1470 return (vecp); 1471 } 1472 1473 static int 1474 apix_get_intr_info(ddi_intr_handle_impl_t *hdlp, 1475 apic_get_intr_t *intr_params_p) 1476 { 1477 apix_vector_t *vecp; 1478 struct autovec *av_dev; 1479 int i; 1480 1481 vecp = apix_get_req_vector(hdlp, intr_params_p->avgi_req_flags); 1482 if (IS_VECT_FREE(vecp)) { 1483 intr_params_p->avgi_num_devs = 0; 1484 intr_params_p->avgi_cpu_id = 0; 1485 intr_params_p->avgi_req_flags = 0; 1486 return (PSM_SUCCESS); 1487 } 1488 1489 if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) { 1490 intr_params_p->avgi_cpu_id = vecp->v_cpuid; 1491 1492 /* Return user bound info for intrd. */ 1493 if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) { 1494 intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND; 1495 intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND; 1496 } 1497 } 1498 1499 if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR) 1500 intr_params_p->avgi_vector = vecp->v_vector; 1501 1502 if (intr_params_p->avgi_req_flags & 1503 (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS)) 1504 /* Get number of devices from apic_irq table shared field. */ 1505 intr_params_p->avgi_num_devs = vecp->v_share; 1506 1507 if (intr_params_p->avgi_req_flags & PSMGI_REQ_GET_DEVS) { 1508 1509 intr_params_p->avgi_req_flags |= PSMGI_REQ_NUM_DEVS; 1510 1511 /* Some devices have NULL dip. Don't count these. */ 1512 if (intr_params_p->avgi_num_devs > 0) { 1513 for (i = 0, av_dev = vecp->v_autovect; av_dev; 1514 av_dev = av_dev->av_link) { 1515 if (av_dev->av_vector && av_dev->av_dip) 1516 i++; 1517 } 1518 intr_params_p->avgi_num_devs = 1519 (uint8_t)MIN(intr_params_p->avgi_num_devs, i); 1520 } 1521 1522 /* There are no viable dips to return. */ 1523 if (intr_params_p->avgi_num_devs == 0) { 1524 intr_params_p->avgi_dip_list = NULL; 1525 1526 } else { /* Return list of dips */ 1527 1528 /* Allocate space in array for that number of devs. */ 1529 intr_params_p->avgi_dip_list = kmem_zalloc( 1530 intr_params_p->avgi_num_devs * 1531 sizeof (dev_info_t *), 1532 KM_NOSLEEP); 1533 if (intr_params_p->avgi_dip_list == NULL) { 1534 DDI_INTR_IMPLDBG((CE_WARN, 1535 "apix_get_vector_intr_info: no memory")); 1536 return (PSM_FAILURE); 1537 } 1538 1539 /* 1540 * Loop through the device list of the autovec table 1541 * filling in the dip array. 1542 * 1543 * Note that the autovect table may have some special 1544 * entries which contain NULL dips. These will be 1545 * ignored. 1546 */ 1547 for (i = 0, av_dev = vecp->v_autovect; av_dev; 1548 av_dev = av_dev->av_link) { 1549 if (av_dev->av_vector && av_dev->av_dip) 1550 intr_params_p->avgi_dip_list[i++] = 1551 av_dev->av_dip; 1552 } 1553 } 1554 } 1555 1556 return (PSM_SUCCESS); 1557 } 1558 1559 static char * 1560 apix_get_apic_type(void) 1561 { 1562 return (apix_psm_info.p_mach_idstring); 1563 } 1564 1565 apix_vector_t * 1566 apix_set_cpu(apix_vector_t *vecp, int new_cpu, int *result) 1567 { 1568 apix_vector_t *newp = NULL; 1569 dev_info_t *dip; 1570 int inum, cap_ptr; 1571 ddi_acc_handle_t handle; 1572 ddi_intr_msix_t *msix_p = NULL; 1573 ushort_t msix_ctrl; 1574 uintptr_t off = 0; 1575 uint32_t mask = 0; 1576 1577 ASSERT(LOCK_HELD(&apix_lock)); 1578 *result = ENXIO; 1579 1580 /* Fail if this is an MSI intr and is part of a group. */ 1581 if (vecp->v_type == APIX_TYPE_MSI) { 1582 if (i_ddi_intr_get_current_nintrs(APIX_GET_DIP(vecp)) > 1) 1583 return (NULL); 1584 else 1585 return (apix_grp_set_cpu(vecp, new_cpu, result)); 1586 } 1587 1588 /* 1589 * Mask MSI-X. It's unmasked when MSI-X gets enabled. 1590 */ 1591 if (vecp->v_type == APIX_TYPE_MSIX && IS_VECT_ENABLED(vecp)) { 1592 if ((dip = APIX_GET_DIP(vecp)) == NULL) 1593 return (NULL); 1594 inum = vecp->v_devp->dv_inum; 1595 1596 handle = i_ddi_get_pci_config_handle(dip); 1597 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip); 1598 msix_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL); 1599 if ((msix_ctrl & PCI_MSIX_FUNCTION_MASK) == 0) { 1600 /* 1601 * Function is not masked, then mask "inum"th 1602 * entry in the MSI-X table 1603 */ 1604 msix_p = i_ddi_get_msix(dip); 1605 off = (uintptr_t)msix_p->msix_tbl_addr + (inum * 1606 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET; 1607 mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off); 1608 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, 1609 mask | 1); 1610 } 1611 } 1612 1613 *result = 0; 1614 if ((newp = apix_rebind(vecp, new_cpu, 1)) == NULL) 1615 *result = EIO; 1616 1617 /* Restore mask bit */ 1618 if (msix_p != NULL) 1619 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, mask); 1620 1621 return (newp); 1622 } 1623 1624 /* 1625 * Set cpu for MSIs 1626 */ 1627 apix_vector_t * 1628 apix_grp_set_cpu(apix_vector_t *vecp, int new_cpu, int *result) 1629 { 1630 apix_vector_t *newp, *vp; 1631 uint32_t orig_cpu = vecp->v_cpuid; 1632 int orig_vect = vecp->v_vector; 1633 int i, num_vectors, cap_ptr, msi_mask_off = 0; 1634 uint32_t msi_pvm = 0; 1635 ushort_t msi_ctrl; 1636 ddi_acc_handle_t handle; 1637 dev_info_t *dip; 1638 1639 APIC_VERBOSE(INTR, (CE_CONT, "apix_grp_set_cpu: oldcpu: %x, vector: %x," 1640 " newcpu:%x\n", vecp->v_cpuid, vecp->v_vector, new_cpu)); 1641 1642 ASSERT(LOCK_HELD(&apix_lock)); 1643 1644 *result = ENXIO; 1645 1646 if (vecp->v_type != APIX_TYPE_MSI) { 1647 DDI_INTR_IMPLDBG((CE_WARN, "set_grp: intr not MSI\n")); 1648 return (NULL); 1649 } 1650 1651 if ((dip = APIX_GET_DIP(vecp)) == NULL) 1652 return (NULL); 1653 1654 num_vectors = i_ddi_intr_get_current_nintrs(dip); 1655 if ((num_vectors < 1) || ((num_vectors - 1) & orig_vect)) { 1656 APIC_VERBOSE(INTR, (CE_WARN, 1657 "set_grp: base vec not part of a grp or not aligned: " 1658 "vec:0x%x, num_vec:0x%x\n", orig_vect, num_vectors)); 1659 return (NULL); 1660 } 1661 1662 if (vecp->v_inum != apix_get_min_dev_inum(dip, vecp->v_type)) 1663 return (NULL); 1664 1665 *result = EIO; 1666 for (i = 1; i < num_vectors; i++) { 1667 if ((vp = xv_vector(orig_cpu, orig_vect + i)) == NULL) 1668 return (NULL); 1669 #ifdef DEBUG 1670 /* 1671 * Sanity check: CPU and dip is the same for all entries. 1672 * May be called when first msi to be enabled, at this time 1673 * add_avintr() is not called for other msi 1674 */ 1675 if ((vp->v_share != 0) && 1676 ((APIX_GET_DIP(vp) != dip) || 1677 (vp->v_cpuid != vecp->v_cpuid))) { 1678 APIC_VERBOSE(INTR, (CE_WARN, 1679 "set_grp: cpu or dip for vec 0x%x difft than for " 1680 "vec 0x%x\n", orig_vect, orig_vect + i)); 1681 APIC_VERBOSE(INTR, (CE_WARN, 1682 " cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu, 1683 vp->v_cpuid, (void *)dip, 1684 (void *)APIX_GET_DIP(vp))); 1685 return (NULL); 1686 } 1687 #endif /* DEBUG */ 1688 } 1689 1690 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip); 1691 handle = i_ddi_get_pci_config_handle(dip); 1692 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 1693 1694 /* MSI Per vector masking is supported. */ 1695 if (msi_ctrl & PCI_MSI_PVM_MASK) { 1696 if (msi_ctrl & PCI_MSI_64BIT_MASK) 1697 msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS; 1698 else 1699 msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK; 1700 msi_pvm = pci_config_get32(handle, msi_mask_off); 1701 pci_config_put32(handle, msi_mask_off, (uint32_t)-1); 1702 APIC_VERBOSE(INTR, (CE_CONT, 1703 "set_grp: pvm supported. Mask set to 0x%x\n", 1704 pci_config_get32(handle, msi_mask_off))); 1705 } 1706 1707 if ((newp = apix_rebind(vecp, new_cpu, num_vectors)) != NULL) 1708 *result = 0; 1709 1710 /* Reenable vectors if per vector masking is supported. */ 1711 if (msi_ctrl & PCI_MSI_PVM_MASK) { 1712 pci_config_put32(handle, msi_mask_off, msi_pvm); 1713 APIC_VERBOSE(INTR, (CE_CONT, 1714 "set_grp: pvm supported. Mask restored to 0x%x\n", 1715 pci_config_get32(handle, msi_mask_off))); 1716 } 1717 1718 return (newp); 1719 } 1720 1721 void 1722 apix_intx_set_vector(int irqno, uint32_t cpuid, uchar_t vector) 1723 { 1724 apic_irq_t *irqp; 1725 1726 mutex_enter(&airq_mutex); 1727 irqp = apic_irq_table[irqno]; 1728 irqp->airq_cpu = cpuid; 1729 irqp->airq_vector = vector; 1730 apic_record_rdt_entry(irqp, irqno); 1731 mutex_exit(&airq_mutex); 1732 } 1733 1734 apix_vector_t * 1735 apix_intx_get_vector(int irqno) 1736 { 1737 apic_irq_t *irqp; 1738 uint32_t cpuid; 1739 uchar_t vector; 1740 1741 mutex_enter(&airq_mutex); 1742 irqp = apic_irq_table[irqno & 0xff]; 1743 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) { 1744 mutex_exit(&airq_mutex); 1745 return (NULL); 1746 } 1747 cpuid = irqp->airq_cpu; 1748 vector = irqp->airq_vector; 1749 mutex_exit(&airq_mutex); 1750 1751 return (xv_vector(cpuid, vector)); 1752 } 1753 1754 /* 1755 * Must called with interrupts disabled and apic_ioapic_lock held 1756 */ 1757 void 1758 apix_intx_enable(int irqno) 1759 { 1760 uchar_t ioapicindex, intin; 1761 apic_irq_t *irqp = apic_irq_table[irqno]; 1762 ioapic_rdt_t irdt; 1763 apic_cpus_info_t *cpu_infop; 1764 apix_vector_t *vecp = xv_vector(irqp->airq_cpu, irqp->airq_vector); 1765 1766 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp)); 1767 1768 ioapicindex = irqp->airq_ioapicindex; 1769 intin = irqp->airq_intin_no; 1770 cpu_infop = &apic_cpus[irqp->airq_cpu]; 1771 1772 irdt.ir_lo = AV_PDEST | AV_FIXED | irqp->airq_rdt_entry; 1773 irdt.ir_hi = cpu_infop->aci_local_id; 1774 1775 apic_vt_ops->apic_intrmap_alloc_entry(&vecp->v_intrmap_private, NULL, 1776 vecp->v_type, 1, ioapicindex); 1777 apic_vt_ops->apic_intrmap_map_entry(vecp->v_intrmap_private, 1778 (void *)&irdt, vecp->v_type, 1); 1779 apic_vt_ops->apic_intrmap_record_rdt(vecp->v_intrmap_private, &irdt); 1780 1781 /* write RDT entry high dword - destination */ 1782 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin, 1783 irdt.ir_hi); 1784 1785 /* Write the vector, trigger, and polarity portion of the RDT */ 1786 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin, irdt.ir_lo); 1787 1788 vecp->v_state = APIX_STATE_ENABLED; 1789 1790 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_enable: ioapic 0x%x" 1791 " intin 0x%x rdt_low 0x%x rdt_high 0x%x\n", 1792 ioapicindex, intin, irdt.ir_lo, irdt.ir_hi)); 1793 } 1794 1795 /* 1796 * Must called with interrupts disabled and apic_ioapic_lock held 1797 */ 1798 void 1799 apix_intx_disable(int irqno) 1800 { 1801 apic_irq_t *irqp = apic_irq_table[irqno]; 1802 int ioapicindex, intin; 1803 1804 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp)); 1805 /* 1806 * The assumption here is that this is safe, even for 1807 * systems with IOAPICs that suffer from the hardware 1808 * erratum because all devices have been quiesced before 1809 * they unregister their interrupt handlers. If that 1810 * assumption turns out to be false, this mask operation 1811 * can induce the same erratum result we're trying to 1812 * avoid. 1813 */ 1814 ioapicindex = irqp->airq_ioapicindex; 1815 intin = irqp->airq_intin_no; 1816 ioapic_write(ioapicindex, APIC_RDT_CMD + 2 * intin, AV_MASK); 1817 1818 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_disable: ioapic 0x%x" 1819 " intin 0x%x\n", ioapicindex, intin)); 1820 } 1821 1822 void 1823 apix_intx_free(int irqno) 1824 { 1825 apic_irq_t *irqp; 1826 1827 mutex_enter(&airq_mutex); 1828 irqp = apic_irq_table[irqno]; 1829 1830 if (IS_IRQ_FREE(irqp)) { 1831 mutex_exit(&airq_mutex); 1832 return; 1833 } 1834 1835 irqp->airq_mps_intr_index = FREE_INDEX; 1836 irqp->airq_cpu = IRQ_UNINIT; 1837 irqp->airq_vector = APIX_INVALID_VECT; 1838 mutex_exit(&airq_mutex); 1839 } 1840 1841 #ifdef DEBUG 1842 int apix_intr_deliver_timeouts = 0; 1843 int apix_intr_rirr_timeouts = 0; 1844 int apix_intr_rirr_reset_failure = 0; 1845 #endif 1846 int apix_max_reps_irr_pending = 10; 1847 1848 #define GET_RDT_BITS(ioapic, intin, bits) \ 1849 (READ_IOAPIC_RDT_ENTRY_LOW_DWORD((ioapic), (intin)) & (bits)) 1850 #define APIX_CHECK_IRR_DELAY drv_usectohz(5000) 1851 1852 int 1853 apix_intx_rebind(int irqno, processorid_t cpuid, uchar_t vector) 1854 { 1855 apic_irq_t *irqp = apic_irq_table[irqno]; 1856 ulong_t iflag; 1857 int waited, ioapic_ix, intin_no, level, repeats, rdt_entry, masked; 1858 1859 ASSERT(irqp != NULL); 1860 1861 iflag = intr_clear(); 1862 lock_set(&apic_ioapic_lock); 1863 1864 ioapic_ix = irqp->airq_ioapicindex; 1865 intin_no = irqp->airq_intin_no; 1866 level = apic_level_intr[irqno]; 1867 1868 /* 1869 * Wait for the delivery status bit to be cleared. This should 1870 * be a very small amount of time. 1871 */ 1872 repeats = 0; 1873 do { 1874 repeats++; 1875 1876 for (waited = 0; waited < apic_max_reps_clear_pending; 1877 waited++) { 1878 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) == 0) 1879 break; 1880 } 1881 if (!level) 1882 break; 1883 1884 /* 1885 * Mask the RDT entry for level-triggered interrupts. 1886 */ 1887 irqp->airq_rdt_entry |= AV_MASK; 1888 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1889 intin_no); 1890 if ((masked = (rdt_entry & AV_MASK)) == 0) { 1891 /* Mask it */ 1892 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, 1893 AV_MASK | rdt_entry); 1894 } 1895 1896 /* 1897 * If there was a race and an interrupt was injected 1898 * just before we masked, check for that case here. 1899 * Then, unmask the RDT entry and try again. If we're 1900 * on our last try, don't unmask (because we want the 1901 * RDT entry to remain masked for the rest of the 1902 * function). 1903 */ 1904 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1905 intin_no); 1906 if ((masked == 0) && ((rdt_entry & AV_PENDING) != 0) && 1907 (repeats < apic_max_reps_clear_pending)) { 1908 /* Unmask it */ 1909 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1910 intin_no, rdt_entry & ~AV_MASK); 1911 irqp->airq_rdt_entry &= ~AV_MASK; 1912 } 1913 } while ((rdt_entry & AV_PENDING) && 1914 (repeats < apic_max_reps_clear_pending)); 1915 1916 #ifdef DEBUG 1917 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) != 0) 1918 apix_intr_deliver_timeouts++; 1919 #endif 1920 1921 if (!level || !APIX_IS_MASK_RDT(apix_mul_ioapic_method)) 1922 goto done; 1923 1924 /* 1925 * wait for remote IRR to be cleared for level-triggered 1926 * interrupts 1927 */ 1928 repeats = 0; 1929 do { 1930 repeats++; 1931 1932 for (waited = 0; waited < apic_max_reps_clear_pending; 1933 waited++) { 1934 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) 1935 == 0) 1936 break; 1937 } 1938 1939 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { 1940 lock_clear(&apic_ioapic_lock); 1941 intr_restore(iflag); 1942 1943 delay(APIX_CHECK_IRR_DELAY); 1944 1945 iflag = intr_clear(); 1946 lock_set(&apic_ioapic_lock); 1947 } 1948 } while (repeats < apix_max_reps_irr_pending); 1949 1950 if (repeats >= apix_max_reps_irr_pending) { 1951 #ifdef DEBUG 1952 apix_intr_rirr_timeouts++; 1953 #endif 1954 1955 /* 1956 * If we waited and the Remote IRR bit is still not cleared, 1957 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS 1958 * times for this interrupt, try the last-ditch workaround: 1959 */ 1960 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { 1961 /* 1962 * Trying to clear the bit through normal 1963 * channels has failed. So as a last-ditch 1964 * effort, try to set the trigger mode to 1965 * edge, then to level. This has been 1966 * observed to work on many systems. 1967 */ 1968 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1969 intin_no, 1970 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1971 intin_no) & ~AV_LEVEL); 1972 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1973 intin_no, 1974 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1975 intin_no) | AV_LEVEL); 1976 } 1977 1978 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { 1979 #ifdef DEBUG 1980 apix_intr_rirr_reset_failure++; 1981 #endif 1982 lock_clear(&apic_ioapic_lock); 1983 intr_restore(iflag); 1984 prom_printf("apix: Remote IRR still " 1985 "not clear for IOAPIC %d intin %d.\n" 1986 "\tInterrupts to this pin may cease " 1987 "functioning.\n", ioapic_ix, intin_no); 1988 return (1); /* return failure */ 1989 } 1990 } 1991 1992 done: 1993 /* change apic_irq_table */ 1994 lock_clear(&apic_ioapic_lock); 1995 intr_restore(iflag); 1996 apix_intx_set_vector(irqno, cpuid, vector); 1997 iflag = intr_clear(); 1998 lock_set(&apic_ioapic_lock); 1999 2000 /* reprogramme IO-APIC RDT entry */ 2001 apix_intx_enable(irqno); 2002 2003 lock_clear(&apic_ioapic_lock); 2004 intr_restore(iflag); 2005 2006 return (0); 2007 } 2008 2009 static int 2010 apix_intx_get_pending(int irqno) 2011 { 2012 apic_irq_t *irqp; 2013 int intin, ioapicindex, pending; 2014 ulong_t iflag; 2015 2016 mutex_enter(&airq_mutex); 2017 irqp = apic_irq_table[irqno]; 2018 if (IS_IRQ_FREE(irqp)) { 2019 mutex_exit(&airq_mutex); 2020 return (0); 2021 } 2022 2023 /* check IO-APIC delivery status */ 2024 intin = irqp->airq_intin_no; 2025 ioapicindex = irqp->airq_ioapicindex; 2026 mutex_exit(&airq_mutex); 2027 2028 iflag = intr_clear(); 2029 lock_set(&apic_ioapic_lock); 2030 2031 pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin) & 2032 AV_PENDING) ? 1 : 0; 2033 2034 lock_clear(&apic_ioapic_lock); 2035 intr_restore(iflag); 2036 2037 return (pending); 2038 } 2039 2040 /* 2041 * This function will mask the interrupt on the I/O APIC 2042 */ 2043 static void 2044 apix_intx_set_mask(int irqno) 2045 { 2046 int intin, ioapixindex, rdt_entry; 2047 ulong_t iflag; 2048 apic_irq_t *irqp; 2049 2050 mutex_enter(&airq_mutex); 2051 irqp = apic_irq_table[irqno]; 2052 2053 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX); 2054 2055 intin = irqp->airq_intin_no; 2056 ioapixindex = irqp->airq_ioapicindex; 2057 mutex_exit(&airq_mutex); 2058 2059 iflag = intr_clear(); 2060 lock_set(&apic_ioapic_lock); 2061 2062 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin); 2063 2064 /* clear mask */ 2065 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin, 2066 (AV_MASK | rdt_entry)); 2067 2068 lock_clear(&apic_ioapic_lock); 2069 intr_restore(iflag); 2070 } 2071 2072 /* 2073 * This function will clear the mask for the interrupt on the I/O APIC 2074 */ 2075 static void 2076 apix_intx_clear_mask(int irqno) 2077 { 2078 int intin, ioapixindex, rdt_entry; 2079 ulong_t iflag; 2080 apic_irq_t *irqp; 2081 2082 mutex_enter(&airq_mutex); 2083 irqp = apic_irq_table[irqno]; 2084 2085 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX); 2086 2087 intin = irqp->airq_intin_no; 2088 ioapixindex = irqp->airq_ioapicindex; 2089 mutex_exit(&airq_mutex); 2090 2091 iflag = intr_clear(); 2092 lock_set(&apic_ioapic_lock); 2093 2094 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin); 2095 2096 /* clear mask */ 2097 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin, 2098 ((~AV_MASK) & rdt_entry)); 2099 2100 lock_clear(&apic_ioapic_lock); 2101 intr_restore(iflag); 2102 } 2103 2104 /* 2105 * For level-triggered interrupt, mask the IRQ line. Mask means 2106 * new interrupts will not be delivered. The interrupt already 2107 * accepted by a local APIC is not affected 2108 */ 2109 void 2110 apix_level_intr_pre_eoi(int irq) 2111 { 2112 apic_irq_t *irqp = apic_irq_table[irq]; 2113 int apic_ix, intin_ix; 2114 2115 if (irqp == NULL) 2116 return; 2117 2118 ASSERT(apic_level_intr[irq] == TRIGGER_MODE_LEVEL); 2119 2120 lock_set(&apic_ioapic_lock); 2121 2122 intin_ix = irqp->airq_intin_no; 2123 apic_ix = irqp->airq_ioapicindex; 2124 2125 if (irqp->airq_cpu != CPU->cpu_id) { 2126 if (!APIX_IS_MASK_RDT(apix_mul_ioapic_method)) 2127 ioapic_write_eoi(apic_ix, irqp->airq_vector); 2128 lock_clear(&apic_ioapic_lock); 2129 return; 2130 } 2131 2132 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) { 2133 /* 2134 * This is a IOxAPIC and there is EOI register: 2135 * Change the vector to reserved unused vector, so that 2136 * the EOI from Local APIC won't clear the Remote IRR for 2137 * this level trigger interrupt. Instead, we'll manually 2138 * clear it in apix_post_hardint() after ISR handling. 2139 */ 2140 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, 2141 (irqp->airq_rdt_entry & (~0xff)) | APIX_RESV_VECTOR); 2142 } else { 2143 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, 2144 AV_MASK | irqp->airq_rdt_entry); 2145 } 2146 2147 lock_clear(&apic_ioapic_lock); 2148 } 2149 2150 /* 2151 * For level-triggered interrupt, unmask the IRQ line 2152 * or restore the original vector number. 2153 */ 2154 void 2155 apix_level_intr_post_dispatch(int irq) 2156 { 2157 apic_irq_t *irqp = apic_irq_table[irq]; 2158 int apic_ix, intin_ix; 2159 2160 if (irqp == NULL) 2161 return; 2162 2163 lock_set(&apic_ioapic_lock); 2164 2165 intin_ix = irqp->airq_intin_no; 2166 apic_ix = irqp->airq_ioapicindex; 2167 2168 if (APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method)) { 2169 /* 2170 * Already sent EOI back to Local APIC. 2171 * Send EOI to IO-APIC 2172 */ 2173 ioapic_write_eoi(apic_ix, irqp->airq_vector); 2174 } else { 2175 /* clear the mask or restore the vector */ 2176 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, 2177 irqp->airq_rdt_entry); 2178 2179 /* send EOI to IOxAPIC */ 2180 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) 2181 ioapic_write_eoi(apic_ix, irqp->airq_vector); 2182 } 2183 2184 lock_clear(&apic_ioapic_lock); 2185 } 2186 2187 static int 2188 apix_intx_get_shared(int irqno) 2189 { 2190 apic_irq_t *irqp; 2191 int share; 2192 2193 mutex_enter(&airq_mutex); 2194 irqp = apic_irq_table[irqno]; 2195 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) { 2196 mutex_exit(&airq_mutex); 2197 return (0); 2198 } 2199 share = irqp->airq_share; 2200 mutex_exit(&airq_mutex); 2201 2202 return (share); 2203 } 2204 2205 static void 2206 apix_intx_set_shared(int irqno, int delta) 2207 { 2208 apic_irq_t *irqp; 2209 2210 mutex_enter(&airq_mutex); 2211 irqp = apic_irq_table[irqno]; 2212 if (IS_IRQ_FREE(irqp)) { 2213 mutex_exit(&airq_mutex); 2214 return; 2215 } 2216 irqp->airq_share += delta; 2217 mutex_exit(&airq_mutex); 2218 } 2219 2220 /* 2221 * Setup IRQ table. Return IRQ no or -1 on failure 2222 */ 2223 static int 2224 apix_intx_setup(dev_info_t *dip, int inum, int irqno, 2225 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *iflagp) 2226 { 2227 int origirq = ispec->intrspec_vec; 2228 int newirq; 2229 short intr_index; 2230 uchar_t ipin, ioapic, ioapicindex; 2231 apic_irq_t *irqp; 2232 2233 UNREFERENCED_1PARAMETER(inum); 2234 2235 if (intrp != NULL) { 2236 intr_index = (short)(intrp - apic_io_intrp); 2237 ioapic = intrp->intr_destid; 2238 ipin = intrp->intr_destintin; 2239 2240 /* Find ioapicindex. If destid was ALL, we will exit with 0. */ 2241 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--) 2242 if (apic_io_id[ioapicindex] == ioapic) 2243 break; 2244 ASSERT((ioapic == apic_io_id[ioapicindex]) || 2245 (ioapic == INTR_ALL_APIC)); 2246 2247 /* check whether this intin# has been used by another irqno */ 2248 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) 2249 return (newirq); 2250 2251 } else if (iflagp != NULL) { /* ACPI */ 2252 intr_index = ACPI_INDEX; 2253 ioapicindex = acpi_find_ioapic(irqno); 2254 ASSERT(ioapicindex != 0xFF); 2255 ioapic = apic_io_id[ioapicindex]; 2256 ipin = irqno - apic_io_vectbase[ioapicindex]; 2257 2258 if (apic_irq_table[irqno] && 2259 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) { 2260 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin && 2261 apic_irq_table[irqno]->airq_ioapicindex == 2262 ioapicindex); 2263 return (irqno); 2264 } 2265 2266 } else { /* default configuration */ 2267 intr_index = DEFAULT_INDEX; 2268 ioapicindex = 0; 2269 ioapic = apic_io_id[ioapicindex]; 2270 ipin = (uchar_t)irqno; 2271 } 2272 2273 /* allocate a new IRQ no */ 2274 if ((irqp = apic_irq_table[irqno]) == NULL) { 2275 irqp = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); 2276 apic_irq_table[irqno] = irqp; 2277 } else { 2278 if (irqp->airq_mps_intr_index != FREE_INDEX) { 2279 newirq = apic_allocate_irq(apic_first_avail_irq); 2280 if (newirq == -1) { 2281 return (-1); 2282 } 2283 irqno = newirq; 2284 irqp = apic_irq_table[irqno]; 2285 ASSERT(irqp != NULL); 2286 } 2287 } 2288 apic_max_device_irq = max(irqno, apic_max_device_irq); 2289 apic_min_device_irq = min(irqno, apic_min_device_irq); 2290 2291 irqp->airq_mps_intr_index = intr_index; 2292 irqp->airq_ioapicindex = ioapicindex; 2293 irqp->airq_intin_no = ipin; 2294 irqp->airq_dip = dip; 2295 irqp->airq_origirq = (uchar_t)origirq; 2296 if (iflagp != NULL) 2297 irqp->airq_iflag = *iflagp; 2298 irqp->airq_cpu = IRQ_UNINIT; 2299 irqp->airq_vector = 0; 2300 2301 return (irqno); 2302 } 2303 2304 /* 2305 * Setup IRQ table for non-pci devices. Return IRQ no or -1 on error 2306 */ 2307 static int 2308 apix_intx_setup_nonpci(dev_info_t *dip, int inum, int bustype, 2309 struct intrspec *ispec) 2310 { 2311 int irqno = ispec->intrspec_vec; 2312 int newirq, i; 2313 iflag_t intr_flag; 2314 ACPI_SUBTABLE_HEADER *hp; 2315 ACPI_MADT_INTERRUPT_OVERRIDE *isop; 2316 struct apic_io_intr *intrp; 2317 2318 if (!apic_enable_acpi || apic_use_acpi_madt_only) { 2319 int busid; 2320 2321 if (bustype == 0) 2322 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA; 2323 2324 /* loop checking BUS_ISA/BUS_EISA */ 2325 for (i = 0; i < 2; i++) { 2326 if (((busid = apic_find_bus_id(bustype)) != -1) && 2327 ((intrp = apic_find_io_intr_w_busid(irqno, busid)) 2328 != NULL)) { 2329 return (apix_intx_setup(dip, inum, irqno, 2330 intrp, ispec, NULL)); 2331 } 2332 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA; 2333 } 2334 2335 /* fall back to default configuration */ 2336 return (-1); 2337 } 2338 2339 /* search iso entries first */ 2340 if (acpi_iso_cnt != 0) { 2341 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop; 2342 i = 0; 2343 while (i < acpi_iso_cnt) { 2344 if (hp->Type == ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) { 2345 isop = (ACPI_MADT_INTERRUPT_OVERRIDE *) hp; 2346 if (isop->Bus == 0 && 2347 isop->SourceIrq == irqno) { 2348 newirq = isop->GlobalIrq; 2349 intr_flag.intr_po = isop->IntiFlags & 2350 ACPI_MADT_POLARITY_MASK; 2351 intr_flag.intr_el = (isop->IntiFlags & 2352 ACPI_MADT_TRIGGER_MASK) >> 2; 2353 intr_flag.bustype = BUS_ISA; 2354 2355 return (apix_intx_setup(dip, inum, 2356 newirq, NULL, ispec, &intr_flag)); 2357 } 2358 i++; 2359 } 2360 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) + 2361 hp->Length); 2362 } 2363 } 2364 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH; 2365 intr_flag.intr_el = INTR_EL_EDGE; 2366 intr_flag.bustype = BUS_ISA; 2367 return (apix_intx_setup(dip, inum, irqno, NULL, ispec, &intr_flag)); 2368 } 2369 2370 2371 /* 2372 * Setup IRQ table for pci devices. Return IRQ no or -1 on error 2373 */ 2374 static int 2375 apix_intx_setup_pci(dev_info_t *dip, int inum, int bustype, 2376 struct intrspec *ispec) 2377 { 2378 int busid, devid, pci_irq; 2379 ddi_acc_handle_t cfg_handle; 2380 uchar_t ipin; 2381 iflag_t intr_flag; 2382 struct apic_io_intr *intrp; 2383 2384 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0) 2385 return (-1); 2386 2387 if (busid == 0 && apic_pci_bus_total == 1) 2388 busid = (int)apic_single_pci_busid; 2389 2390 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS) 2391 return (-1); 2392 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA; 2393 pci_config_teardown(&cfg_handle); 2394 2395 if (apic_enable_acpi && !apic_use_acpi_madt_only) { /* ACPI */ 2396 if (apic_acpi_translate_pci_irq(dip, busid, devid, 2397 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS) 2398 return (-1); 2399 2400 intr_flag.bustype = (uchar_t)bustype; 2401 return (apix_intx_setup(dip, inum, pci_irq, NULL, ispec, 2402 &intr_flag)); 2403 } 2404 2405 /* MP configuration table */ 2406 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3); 2407 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) == NULL) { 2408 pci_irq = apic_handle_pci_pci_bridge(dip, devid, ipin, &intrp); 2409 if (pci_irq == -1) 2410 return (-1); 2411 } 2412 2413 return (apix_intx_setup(dip, inum, pci_irq, intrp, ispec, NULL)); 2414 } 2415 2416 /* 2417 * Translate and return IRQ no 2418 */ 2419 static int 2420 apix_intx_xlate_irq(dev_info_t *dip, int inum, struct intrspec *ispec) 2421 { 2422 int newirq, irqno = ispec->intrspec_vec; 2423 int parent_is_pci_or_pciex = 0, child_is_pciex = 0; 2424 int bustype = 0, dev_len; 2425 char dev_type[16]; 2426 2427 if (apic_defconf) { 2428 mutex_enter(&airq_mutex); 2429 goto defconf; 2430 } 2431 2432 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) { 2433 mutex_enter(&airq_mutex); 2434 goto nonpci; 2435 } 2436 2437 /* 2438 * use ddi_getlongprop_buf() instead of ddi_prop_lookup_string() 2439 * to avoid extra buffer allocation. 2440 */ 2441 dev_len = sizeof (dev_type); 2442 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip), 2443 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type, 2444 &dev_len) == DDI_PROP_SUCCESS) { 2445 if ((strcmp(dev_type, "pci") == 0) || 2446 (strcmp(dev_type, "pciex") == 0)) 2447 parent_is_pci_or_pciex = 1; 2448 } 2449 2450 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 2451 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type, 2452 &dev_len) == DDI_PROP_SUCCESS) { 2453 if (strstr(dev_type, "pciex")) 2454 child_is_pciex = 1; 2455 } 2456 2457 mutex_enter(&airq_mutex); 2458 2459 if (parent_is_pci_or_pciex) { 2460 bustype = child_is_pciex ? BUS_PCIE : BUS_PCI; 2461 newirq = apix_intx_setup_pci(dip, inum, bustype, ispec); 2462 if (newirq != -1) 2463 goto done; 2464 bustype = 0; 2465 } else if (strcmp(dev_type, "isa") == 0) 2466 bustype = BUS_ISA; 2467 else if (strcmp(dev_type, "eisa") == 0) 2468 bustype = BUS_EISA; 2469 2470 nonpci: 2471 newirq = apix_intx_setup_nonpci(dip, inum, bustype, ispec); 2472 if (newirq != -1) 2473 goto done; 2474 2475 defconf: 2476 newirq = apix_intx_setup(dip, inum, irqno, NULL, ispec, NULL); 2477 if (newirq == -1) { 2478 mutex_exit(&airq_mutex); 2479 return (-1); 2480 } 2481 done: 2482 ASSERT(apic_irq_table[newirq]); 2483 mutex_exit(&airq_mutex); 2484 return (newirq); 2485 } 2486 2487 static int 2488 apix_intx_alloc_vector(dev_info_t *dip, int inum, struct intrspec *ispec) 2489 { 2490 int irqno; 2491 apix_vector_t *vecp; 2492 2493 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1) 2494 return (0); 2495 2496 if ((vecp = apix_alloc_intx(dip, inum, irqno)) == NULL) 2497 return (0); 2498 2499 DDI_INTR_IMPLDBG((CE_CONT, "apix_intx_alloc_vector: dip=0x%p name=%s " 2500 "irqno=0x%x cpuid=%d vector=0x%x\n", 2501 (void *)dip, ddi_driver_name(dip), irqno, 2502 vecp->v_cpuid, vecp->v_vector)); 2503 2504 return (1); 2505 } 2506 2507 /* 2508 * Return the vector number if the translated IRQ for this device 2509 * has a vector mapping setup. If no IRQ setup exists or no vector is 2510 * allocated to it then return 0. 2511 */ 2512 static apix_vector_t * 2513 apix_intx_xlate_vector(dev_info_t *dip, int inum, struct intrspec *ispec) 2514 { 2515 int irqno; 2516 apix_vector_t *vecp; 2517 2518 /* get the IRQ number */ 2519 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1) 2520 return (NULL); 2521 2522 /* get the vector number if a vector is allocated to this irqno */ 2523 vecp = apix_intx_get_vector(irqno); 2524 2525 return (vecp); 2526 } 2527 2528 /* 2529 * Switch between safe and x2APIC IPI sending method. 2530 * The CPU may power on in xapic mode or x2apic mode. If the CPU needs to send 2531 * an IPI to other CPUs before entering x2APIC mode, it still needs to use the 2532 * xAPIC method. Before sending a StartIPI to the target CPU, psm_send_ipi will 2533 * be changed to apic_common_send_ipi, which detects current local APIC mode and 2534 * use the right method to send an IPI. If some CPUs fail to start up, 2535 * apic_poweron_cnt won't return to zero, so apic_common_send_ipi will always be 2536 * used. psm_send_ipi can't be simply changed back to x2apic_send_ipi if some 2537 * CPUs failed to start up because those failed CPUs may recover itself later at 2538 * unpredictable time. 2539 */ 2540 void 2541 apic_switch_ipi_callback(boolean_t enter) 2542 { 2543 ulong_t iflag; 2544 struct psm_ops *pops = psmops; 2545 2546 iflag = intr_clear(); 2547 lock_set(&apic_mode_switch_lock); 2548 if (enter) { 2549 ASSERT(apic_poweron_cnt >= 0); 2550 if (apic_poweron_cnt == 0) { 2551 pops->psm_send_ipi = apic_common_send_ipi; 2552 send_dirintf = pops->psm_send_ipi; 2553 pops->psm_send_pir_ipi = apic_common_send_pir_ipi; 2554 psm_send_pir_ipi = pops->psm_send_pir_ipi; 2555 } 2556 apic_poweron_cnt++; 2557 } else { 2558 ASSERT(apic_poweron_cnt > 0); 2559 apic_poweron_cnt--; 2560 if (apic_poweron_cnt == 0) { 2561 pops->psm_send_ipi = x2apic_send_ipi; 2562 send_dirintf = pops->psm_send_ipi; 2563 pops->psm_send_pir_ipi = x2apic_send_pir_ipi; 2564 psm_send_pir_ipi = pops->psm_send_pir_ipi; 2565 } 2566 } 2567 lock_clear(&apic_mode_switch_lock); 2568 intr_restore(iflag); 2569 } 2570 2571 /* stub function */ 2572 int 2573 apix_loaded(void) 2574 { 2575 return (apix_is_enabled); 2576 } 2577