1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright 2020 Joyent, Inc. 27 */ 28 29 30 #include <sys/types.h> 31 #include <sys/machparam.h> 32 #include <sys/x86_archext.h> 33 #include <sys/systm.h> 34 #include <sys/mach_mmu.h> 35 #include <sys/multiboot.h> 36 #include <sys/multiboot2.h> 37 #include <sys/multiboot2_impl.h> 38 #include <sys/sysmacros.h> 39 #include <sys/framebuffer.h> 40 #include <sys/sha1.h> 41 #include <util/string.h> 42 #include <util/strtolctype.h> 43 #include <sys/efi.h> 44 45 /* 46 * Compile time debug knob. We do not have any early mechanism to control it 47 * as the boot is the earliest mechanism we have, and we do not want to have 48 * it being switched on by default. 49 */ 50 int dboot_debug = 0; 51 52 #if defined(__xpv) 53 54 #include <sys/hypervisor.h> 55 uintptr_t xen_virt_start; 56 pfn_t *mfn_to_pfn_mapping; 57 58 #else /* !__xpv */ 59 60 extern multiboot_header_t mb_header; 61 extern uint32_t mb2_load_addr; 62 extern int have_cpuid(void); 63 64 #endif /* !__xpv */ 65 66 #include <sys/inttypes.h> 67 #include <sys/bootinfo.h> 68 #include <sys/mach_mmu.h> 69 #include <sys/boot_console.h> 70 71 #include "dboot_asm.h" 72 #include "dboot_printf.h" 73 #include "dboot_xboot.h" 74 #include "dboot_elfload.h" 75 76 #define SHA1_ASCII_LENGTH (SHA1_DIGEST_LENGTH * 2) 77 78 /* 79 * This file contains code that runs to transition us from either a multiboot 80 * compliant loader (32 bit non-paging) or a XPV domain loader to 81 * regular kernel execution. Its task is to setup the kernel memory image 82 * and page tables. 83 * 84 * The code executes as: 85 * - 32 bits under GRUB (for 32 or 64 bit Solaris) 86 * - a 32 bit program for the 32-bit PV hypervisor 87 * - a 64 bit program for the 64-bit PV hypervisor (at least for now) 88 * 89 * Under the PV hypervisor, we must create mappings for any memory beyond the 90 * initial start of day allocation (such as the kernel itself). 91 * 92 * When on the metal, the mapping between maddr_t and paddr_t is 1:1. 93 * Since we are running in real mode, so all such memory is accessible. 94 */ 95 96 /* 97 * Standard bits used in PTE (page level) and PTP (internal levels) 98 */ 99 x86pte_t ptp_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_USER; 100 x86pte_t pte_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_MOD | PT_NOCONSIST; 101 102 /* 103 * This is the target addresses (physical) where the kernel text and data 104 * nucleus pages will be unpacked. On the hypervisor this is actually a 105 * virtual address. 106 */ 107 paddr_t ktext_phys; 108 uint32_t ksize = 2 * FOUR_MEG; /* kernel nucleus is 8Meg */ 109 110 static uint64_t target_kernel_text; /* value to use for KERNEL_TEXT */ 111 112 /* 113 * The stack is setup in assembler before entering startup_kernel() 114 */ 115 char stack_space[STACK_SIZE]; 116 117 /* 118 * Used to track physical memory allocation 119 */ 120 static paddr_t next_avail_addr = 0; 121 122 #if defined(__xpv) 123 /* 124 * Additional information needed for hypervisor memory allocation. 125 * Only memory up to scratch_end is mapped by page tables. 126 * mfn_base is the start of the hypervisor virtual image. It's ONE_GIG, so 127 * to derive a pfn from a pointer, you subtract mfn_base. 128 */ 129 130 static paddr_t scratch_end = 0; /* we can't write all of mem here */ 131 static paddr_t mfn_base; /* addr corresponding to mfn_list[0] */ 132 start_info_t *xen_info; 133 134 #else /* __xpv */ 135 136 /* 137 * If on the metal, then we have a multiboot loader. 138 */ 139 uint32_t mb_magic; /* magic from boot loader */ 140 uint32_t mb_addr; /* multiboot info package from loader */ 141 int multiboot_version; 142 multiboot_info_t *mb_info; 143 multiboot2_info_header_t *mb2_info; 144 multiboot_tag_mmap_t *mb2_mmap_tagp; 145 int num_entries; /* mmap entry count */ 146 boolean_t num_entries_set; /* is mmap entry count set */ 147 uintptr_t load_addr; 148 static boot_framebuffer_t framebuffer __aligned(16); 149 static boot_framebuffer_t *fb; 150 151 /* can not be automatic variables because of alignment */ 152 static efi_guid_t smbios3 = SMBIOS3_TABLE_GUID; 153 static efi_guid_t smbios = SMBIOS_TABLE_GUID; 154 static efi_guid_t acpi2 = EFI_ACPI_TABLE_GUID; 155 static efi_guid_t acpi1 = ACPI_10_TABLE_GUID; 156 #endif /* __xpv */ 157 158 /* 159 * This contains information passed to the kernel 160 */ 161 struct xboot_info boot_info __aligned(16); 162 struct xboot_info *bi; 163 164 /* 165 * Page table and memory stuff. 166 */ 167 static paddr_t max_mem; /* maximum memory address */ 168 169 /* 170 * Information about processor MMU 171 */ 172 int amd64_support = 0; 173 int largepage_support = 0; 174 int pae_support = 0; 175 int pge_support = 0; 176 int NX_support = 0; 177 int PAT_support = 0; 178 179 /* 180 * Low 32 bits of kernel entry address passed back to assembler. 181 * When running a 64 bit kernel, the high 32 bits are 0xffffffff. 182 */ 183 uint32_t entry_addr_low; 184 185 /* 186 * Memlists for the kernel. We shouldn't need a lot of these. 187 */ 188 #define MAX_MEMLIST (50) 189 struct boot_memlist memlists[MAX_MEMLIST]; 190 uint_t memlists_used = 0; 191 struct boot_memlist pcimemlists[MAX_MEMLIST]; 192 uint_t pcimemlists_used = 0; 193 struct boot_memlist rsvdmemlists[MAX_MEMLIST]; 194 uint_t rsvdmemlists_used = 0; 195 196 /* 197 * This should match what's in the bootloader. It's arbitrary, but GRUB 198 * in particular has limitations on how much space it can use before it 199 * stops working properly. This should be enough. 200 */ 201 struct boot_modules modules[MAX_BOOT_MODULES]; 202 uint_t modules_used = 0; 203 204 #ifdef __xpv 205 /* 206 * Xen strips the size field out of the mb_memory_map_t, see struct e820entry 207 * definition in Xen source. 208 */ 209 typedef struct { 210 uint32_t base_addr_low; 211 uint32_t base_addr_high; 212 uint32_t length_low; 213 uint32_t length_high; 214 uint32_t type; 215 } mmap_t; 216 217 /* 218 * There is 512KB of scratch area after the boot stack page. 219 * We'll use that for everything except the kernel nucleus pages which are too 220 * big to fit there and are allocated last anyway. 221 */ 222 #define MAXMAPS 100 223 static mmap_t map_buffer[MAXMAPS]; 224 #else 225 typedef mb_memory_map_t mmap_t; 226 #endif 227 228 /* 229 * Debugging macros 230 */ 231 uint_t prom_debug = 0; 232 uint_t map_debug = 0; 233 234 static char noname[2] = "-"; 235 236 /* 237 * Either hypervisor-specific or grub-specific code builds the initial 238 * memlists. This code does the sort/merge/link for final use. 239 */ 240 static void 241 sort_physinstall(void) 242 { 243 int i; 244 #if !defined(__xpv) 245 int j; 246 struct boot_memlist tmp; 247 248 /* 249 * Now sort the memlists, in case they weren't in order. 250 * Yeah, this is a bubble sort; small, simple and easy to get right. 251 */ 252 DBG_MSG("Sorting phys-installed list\n"); 253 for (j = memlists_used - 1; j > 0; --j) { 254 for (i = 0; i < j; ++i) { 255 if (memlists[i].addr < memlists[i + 1].addr) 256 continue; 257 tmp = memlists[i]; 258 memlists[i] = memlists[i + 1]; 259 memlists[i + 1] = tmp; 260 } 261 } 262 263 /* 264 * Merge any memlists that don't have holes between them. 265 */ 266 for (i = 0; i <= memlists_used - 1; ++i) { 267 if (memlists[i].addr + memlists[i].size != memlists[i + 1].addr) 268 continue; 269 270 if (prom_debug) 271 dboot_printf( 272 "merging mem segs %" PRIx64 "...%" PRIx64 273 " w/ %" PRIx64 "...%" PRIx64 "\n", 274 memlists[i].addr, 275 memlists[i].addr + memlists[i].size, 276 memlists[i + 1].addr, 277 memlists[i + 1].addr + memlists[i + 1].size); 278 279 memlists[i].size += memlists[i + 1].size; 280 for (j = i + 1; j < memlists_used - 1; ++j) 281 memlists[j] = memlists[j + 1]; 282 --memlists_used; 283 DBG(memlists_used); 284 --i; /* after merging we need to reexamine, so do this */ 285 } 286 #endif /* __xpv */ 287 288 if (prom_debug) { 289 dboot_printf("\nFinal memlists:\n"); 290 for (i = 0; i < memlists_used; ++i) { 291 dboot_printf("\t%d: addr=%" PRIx64 " size=%" 292 PRIx64 "\n", i, memlists[i].addr, memlists[i].size); 293 } 294 } 295 296 /* 297 * link together the memlists with native size pointers 298 */ 299 memlists[0].next = 0; 300 memlists[0].prev = 0; 301 for (i = 1; i < memlists_used; ++i) { 302 memlists[i].prev = (native_ptr_t)(uintptr_t)(memlists + i - 1); 303 memlists[i].next = 0; 304 memlists[i - 1].next = (native_ptr_t)(uintptr_t)(memlists + i); 305 } 306 bi->bi_phys_install = (native_ptr_t)(uintptr_t)memlists; 307 DBG(bi->bi_phys_install); 308 } 309 310 /* 311 * build bios reserved memlists 312 */ 313 static void 314 build_rsvdmemlists(void) 315 { 316 int i; 317 318 rsvdmemlists[0].next = 0; 319 rsvdmemlists[0].prev = 0; 320 for (i = 1; i < rsvdmemlists_used; ++i) { 321 rsvdmemlists[i].prev = 322 (native_ptr_t)(uintptr_t)(rsvdmemlists + i - 1); 323 rsvdmemlists[i].next = 0; 324 rsvdmemlists[i - 1].next = 325 (native_ptr_t)(uintptr_t)(rsvdmemlists + i); 326 } 327 bi->bi_rsvdmem = (native_ptr_t)(uintptr_t)rsvdmemlists; 328 DBG(bi->bi_rsvdmem); 329 } 330 331 #if defined(__xpv) 332 333 /* 334 * halt on the hypervisor after a delay to drain console output 335 */ 336 void 337 dboot_halt(void) 338 { 339 uint_t i = 10000; 340 341 while (--i) 342 (void) HYPERVISOR_yield(); 343 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 344 } 345 346 /* 347 * From a machine address, find the corresponding pseudo-physical address. 348 * Pseudo-physical address are contiguous and run from mfn_base in each VM. 349 * Machine addresses are the real underlying hardware addresses. 350 * These are needed for page table entries. Note that this routine is 351 * poorly protected. A bad value of "ma" will cause a page fault. 352 */ 353 paddr_t 354 ma_to_pa(maddr_t ma) 355 { 356 ulong_t pgoff = ma & MMU_PAGEOFFSET; 357 ulong_t pfn = mfn_to_pfn_mapping[mmu_btop(ma)]; 358 paddr_t pa; 359 360 if (pfn >= xen_info->nr_pages) 361 return (-(paddr_t)1); 362 pa = mfn_base + mmu_ptob((paddr_t)pfn) + pgoff; 363 #ifdef DEBUG 364 if (ma != pa_to_ma(pa)) 365 dboot_printf("ma_to_pa(%" PRIx64 ") got %" PRIx64 ", " 366 "pa_to_ma() says %" PRIx64 "\n", ma, pa, pa_to_ma(pa)); 367 #endif 368 return (pa); 369 } 370 371 /* 372 * From a pseudo-physical address, find the corresponding machine address. 373 */ 374 maddr_t 375 pa_to_ma(paddr_t pa) 376 { 377 pfn_t pfn; 378 ulong_t mfn; 379 380 pfn = mmu_btop(pa - mfn_base); 381 if (pa < mfn_base || pfn >= xen_info->nr_pages) 382 dboot_panic("pa_to_ma(): illegal address 0x%lx", (ulong_t)pa); 383 mfn = ((ulong_t *)xen_info->mfn_list)[pfn]; 384 #ifdef DEBUG 385 if (mfn_to_pfn_mapping[mfn] != pfn) 386 dboot_printf("pa_to_ma(pfn=%lx) got %lx ma_to_pa() says %lx\n", 387 pfn, mfn, mfn_to_pfn_mapping[mfn]); 388 #endif 389 return (mfn_to_ma(mfn) | (pa & MMU_PAGEOFFSET)); 390 } 391 392 #endif /* __xpv */ 393 394 x86pte_t 395 get_pteval(paddr_t table, uint_t index) 396 { 397 if (pae_support) 398 return (((x86pte_t *)(uintptr_t)table)[index]); 399 return (((x86pte32_t *)(uintptr_t)table)[index]); 400 } 401 402 /*ARGSUSED*/ 403 void 404 set_pteval(paddr_t table, uint_t index, uint_t level, x86pte_t pteval) 405 { 406 #ifdef __xpv 407 mmu_update_t t; 408 maddr_t mtable = pa_to_ma(table); 409 int retcnt; 410 411 t.ptr = (mtable + index * pte_size) | MMU_NORMAL_PT_UPDATE; 412 t.val = pteval; 413 if (HYPERVISOR_mmu_update(&t, 1, &retcnt, DOMID_SELF) || retcnt != 1) 414 dboot_panic("HYPERVISOR_mmu_update() failed"); 415 #else /* __xpv */ 416 uintptr_t tab_addr = (uintptr_t)table; 417 418 if (pae_support) 419 ((x86pte_t *)tab_addr)[index] = pteval; 420 else 421 ((x86pte32_t *)tab_addr)[index] = (x86pte32_t)pteval; 422 if (level == top_level && level == 2) 423 reload_cr3(); 424 #endif /* __xpv */ 425 } 426 427 paddr_t 428 make_ptable(x86pte_t *pteval, uint_t level) 429 { 430 paddr_t new_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE); 431 432 if (level == top_level && level == 2) 433 *pteval = pa_to_ma((uintptr_t)new_table) | PT_VALID; 434 else 435 *pteval = pa_to_ma((uintptr_t)new_table) | ptp_bits; 436 437 #ifdef __xpv 438 /* Remove write permission to the new page table. */ 439 if (HYPERVISOR_update_va_mapping(new_table, 440 *pteval & ~(x86pte_t)PT_WRITABLE, UVMF_INVLPG | UVMF_LOCAL)) 441 dboot_panic("HYP_update_va_mapping error"); 442 #endif 443 444 if (map_debug) 445 dboot_printf("new page table lvl=%d paddr=0x%lx ptp=0x%" 446 PRIx64 "\n", level, (ulong_t)new_table, *pteval); 447 return (new_table); 448 } 449 450 x86pte_t * 451 map_pte(paddr_t table, uint_t index) 452 { 453 return ((x86pte_t *)(uintptr_t)(table + index * pte_size)); 454 } 455 456 /* 457 * dump out the contents of page tables... 458 */ 459 static void 460 dump_tables(void) 461 { 462 uint_t save_index[4]; /* for recursion */ 463 char *save_table[4]; /* for recursion */ 464 uint_t l; 465 uint64_t va; 466 uint64_t pgsize; 467 int index; 468 int i; 469 x86pte_t pteval; 470 char *table; 471 static char *tablist = "\t\t\t"; 472 char *tabs = tablist + 3 - top_level; 473 uint_t pa, pa1; 474 #if !defined(__xpv) 475 #define maddr_t paddr_t 476 #endif /* !__xpv */ 477 478 dboot_printf("Finished pagetables:\n"); 479 table = (char *)(uintptr_t)top_page_table; 480 l = top_level; 481 va = 0; 482 for (index = 0; index < ptes_per_table; ++index) { 483 pgsize = 1ull << shift_amt[l]; 484 if (pae_support) 485 pteval = ((x86pte_t *)table)[index]; 486 else 487 pteval = ((x86pte32_t *)table)[index]; 488 if (pteval == 0) 489 goto next_entry; 490 491 dboot_printf("%s %p[0x%x] = %" PRIx64 ", va=%" PRIx64, 492 tabs + l, (void *)table, index, (uint64_t)pteval, va); 493 pa = ma_to_pa(pteval & MMU_PAGEMASK); 494 dboot_printf(" physaddr=%x\n", pa); 495 496 /* 497 * Don't try to walk hypervisor private pagetables 498 */ 499 if ((l > 1 || (l == 1 && (pteval & PT_PAGESIZE) == 0))) { 500 save_table[l] = table; 501 save_index[l] = index; 502 --l; 503 index = -1; 504 table = (char *)(uintptr_t) 505 ma_to_pa(pteval & MMU_PAGEMASK); 506 goto recursion; 507 } 508 509 /* 510 * shorten dump for consecutive mappings 511 */ 512 for (i = 1; index + i < ptes_per_table; ++i) { 513 if (pae_support) 514 pteval = ((x86pte_t *)table)[index + i]; 515 else 516 pteval = ((x86pte32_t *)table)[index + i]; 517 if (pteval == 0) 518 break; 519 pa1 = ma_to_pa(pteval & MMU_PAGEMASK); 520 if (pa1 != pa + i * pgsize) 521 break; 522 } 523 if (i > 2) { 524 dboot_printf("%s...\n", tabs + l); 525 va += pgsize * (i - 2); 526 index += i - 2; 527 } 528 next_entry: 529 va += pgsize; 530 if (l == 3 && index == 256) /* VA hole */ 531 va = 0xffff800000000000ull; 532 recursion: 533 ; 534 } 535 if (l < top_level) { 536 ++l; 537 index = save_index[l]; 538 table = save_table[l]; 539 goto recursion; 540 } 541 } 542 543 /* 544 * Add a mapping for the machine page at the given virtual address. 545 */ 546 static void 547 map_ma_at_va(maddr_t ma, native_ptr_t va, uint_t level) 548 { 549 x86pte_t *ptep; 550 x86pte_t pteval; 551 552 pteval = ma | pte_bits; 553 if (level > 0) 554 pteval |= PT_PAGESIZE; 555 if (va >= target_kernel_text && pge_support) 556 pteval |= PT_GLOBAL; 557 558 if (map_debug && ma != va) 559 dboot_printf("mapping ma=0x%" PRIx64 " va=0x%" PRIx64 560 " pte=0x%" PRIx64 " l=%d\n", 561 (uint64_t)ma, (uint64_t)va, pteval, level); 562 563 #if defined(__xpv) 564 /* 565 * see if we can avoid find_pte() on the hypervisor 566 */ 567 if (HYPERVISOR_update_va_mapping(va, pteval, 568 UVMF_INVLPG | UVMF_LOCAL) == 0) 569 return; 570 #endif 571 572 /* 573 * Find the pte that will map this address. This creates any 574 * missing intermediate level page tables 575 */ 576 ptep = find_pte(va, NULL, level, 0); 577 578 /* 579 * When paravirtualized, we must use hypervisor calls to modify the 580 * PTE, since paging is active. On real hardware we just write to 581 * the pagetables which aren't in use yet. 582 */ 583 #if defined(__xpv) 584 ptep = ptep; /* shut lint up */ 585 if (HYPERVISOR_update_va_mapping(va, pteval, UVMF_INVLPG | UVMF_LOCAL)) 586 dboot_panic("mmu_update failed-map_pa_at_va va=0x%" PRIx64 587 " l=%d ma=0x%" PRIx64 ", pte=0x%" PRIx64 "", 588 (uint64_t)va, level, (uint64_t)ma, pteval); 589 #else 590 if (va < 1024 * 1024) 591 pteval |= PT_NOCACHE; /* for video RAM */ 592 if (pae_support) 593 *ptep = pteval; 594 else 595 *((x86pte32_t *)ptep) = (x86pte32_t)pteval; 596 #endif 597 } 598 599 /* 600 * Add a mapping for the physical page at the given virtual address. 601 */ 602 static void 603 map_pa_at_va(paddr_t pa, native_ptr_t va, uint_t level) 604 { 605 map_ma_at_va(pa_to_ma(pa), va, level); 606 } 607 608 /* 609 * This is called to remove start..end from the 610 * possible range of PCI addresses. 611 */ 612 const uint64_t pci_lo_limit = 0x00100000ul; 613 const uint64_t pci_hi_limit = 0xfff00000ul; 614 static void 615 exclude_from_pci(uint64_t start, uint64_t end) 616 { 617 int i; 618 int j; 619 struct boot_memlist *ml; 620 621 for (i = 0; i < pcimemlists_used; ++i) { 622 ml = &pcimemlists[i]; 623 624 /* delete the entire range? */ 625 if (start <= ml->addr && ml->addr + ml->size <= end) { 626 --pcimemlists_used; 627 for (j = i; j < pcimemlists_used; ++j) 628 pcimemlists[j] = pcimemlists[j + 1]; 629 --i; /* to revisit the new one at this index */ 630 } 631 632 /* split a range? */ 633 else if (ml->addr < start && end < ml->addr + ml->size) { 634 635 ++pcimemlists_used; 636 if (pcimemlists_used > MAX_MEMLIST) 637 dboot_panic("too many pcimemlists"); 638 639 for (j = pcimemlists_used - 1; j > i; --j) 640 pcimemlists[j] = pcimemlists[j - 1]; 641 ml->size = start - ml->addr; 642 643 ++ml; 644 ml->size = (ml->addr + ml->size) - end; 645 ml->addr = end; 646 ++i; /* skip on to next one */ 647 } 648 649 /* cut memory off the start? */ 650 else if (ml->addr < end && end < ml->addr + ml->size) { 651 ml->size -= end - ml->addr; 652 ml->addr = end; 653 } 654 655 /* cut memory off the end? */ 656 else if (ml->addr <= start && start < ml->addr + ml->size) { 657 ml->size = start - ml->addr; 658 } 659 } 660 } 661 662 /* 663 * During memory allocation, find the highest address not used yet. 664 */ 665 static void 666 check_higher(paddr_t a) 667 { 668 if (a < next_avail_addr) 669 return; 670 next_avail_addr = RNDUP(a + 1, MMU_PAGESIZE); 671 DBG(next_avail_addr); 672 } 673 674 static int 675 dboot_loader_mmap_entries(void) 676 { 677 #if !defined(__xpv) 678 if (num_entries_set == B_TRUE) 679 return (num_entries); 680 681 switch (multiboot_version) { 682 case 1: 683 DBG(mb_info->flags); 684 if (mb_info->flags & 0x40) { 685 mb_memory_map_t *mmap; 686 caddr32_t mmap_addr; 687 688 DBG(mb_info->mmap_addr); 689 DBG(mb_info->mmap_length); 690 check_higher(mb_info->mmap_addr + mb_info->mmap_length); 691 692 for (mmap_addr = mb_info->mmap_addr; 693 mmap_addr < mb_info->mmap_addr + 694 mb_info->mmap_length; 695 mmap_addr += mmap->size + sizeof (mmap->size)) { 696 mmap = (mb_memory_map_t *)(uintptr_t)mmap_addr; 697 ++num_entries; 698 } 699 700 num_entries_set = B_TRUE; 701 } 702 break; 703 case 2: 704 num_entries_set = B_TRUE; 705 num_entries = dboot_multiboot2_mmap_nentries(mb2_info, 706 mb2_mmap_tagp); 707 break; 708 default: 709 dboot_panic("Unknown multiboot version: %d\n", 710 multiboot_version); 711 break; 712 } 713 return (num_entries); 714 #else 715 return (MAXMAPS); 716 #endif 717 } 718 719 static uint32_t 720 dboot_loader_mmap_get_type(int index) 721 { 722 #if !defined(__xpv) 723 mb_memory_map_t *mp, *mpend; 724 int i; 725 726 switch (multiboot_version) { 727 case 1: 728 mp = (mb_memory_map_t *)(uintptr_t)mb_info->mmap_addr; 729 mpend = (mb_memory_map_t *)(uintptr_t) 730 (mb_info->mmap_addr + mb_info->mmap_length); 731 732 for (i = 0; mp < mpend && i != index; i++) 733 mp = (mb_memory_map_t *)((uintptr_t)mp + mp->size + 734 sizeof (mp->size)); 735 if (mp >= mpend) { 736 dboot_panic("dboot_loader_mmap_get_type(): index " 737 "out of bounds: %d\n", index); 738 } 739 return (mp->type); 740 741 case 2: 742 return (dboot_multiboot2_mmap_get_type(mb2_info, 743 mb2_mmap_tagp, index)); 744 745 default: 746 dboot_panic("Unknown multiboot version: %d\n", 747 multiboot_version); 748 break; 749 } 750 return (0); 751 #else 752 return (map_buffer[index].type); 753 #endif 754 } 755 756 static uint64_t 757 dboot_loader_mmap_get_base(int index) 758 { 759 #if !defined(__xpv) 760 mb_memory_map_t *mp, *mpend; 761 int i; 762 763 switch (multiboot_version) { 764 case 1: 765 mp = (mb_memory_map_t *)mb_info->mmap_addr; 766 mpend = (mb_memory_map_t *) 767 (mb_info->mmap_addr + mb_info->mmap_length); 768 769 for (i = 0; mp < mpend && i != index; i++) 770 mp = (mb_memory_map_t *)((uintptr_t)mp + mp->size + 771 sizeof (mp->size)); 772 if (mp >= mpend) { 773 dboot_panic("dboot_loader_mmap_get_base(): index " 774 "out of bounds: %d\n", index); 775 } 776 return (((uint64_t)mp->base_addr_high << 32) + 777 (uint64_t)mp->base_addr_low); 778 779 case 2: 780 return (dboot_multiboot2_mmap_get_base(mb2_info, 781 mb2_mmap_tagp, index)); 782 783 default: 784 dboot_panic("Unknown multiboot version: %d\n", 785 multiboot_version); 786 break; 787 } 788 return (0); 789 #else 790 return (((uint64_t)map_buffer[index].base_addr_high << 32) + 791 (uint64_t)map_buffer[index].base_addr_low); 792 #endif 793 } 794 795 static uint64_t 796 dboot_loader_mmap_get_length(int index) 797 { 798 #if !defined(__xpv) 799 mb_memory_map_t *mp, *mpend; 800 int i; 801 802 switch (multiboot_version) { 803 case 1: 804 mp = (mb_memory_map_t *)mb_info->mmap_addr; 805 mpend = (mb_memory_map_t *) 806 (mb_info->mmap_addr + mb_info->mmap_length); 807 808 for (i = 0; mp < mpend && i != index; i++) 809 mp = (mb_memory_map_t *)((uintptr_t)mp + mp->size + 810 sizeof (mp->size)); 811 if (mp >= mpend) { 812 dboot_panic("dboot_loader_mmap_get_length(): index " 813 "out of bounds: %d\n", index); 814 } 815 return (((uint64_t)mp->length_high << 32) + 816 (uint64_t)mp->length_low); 817 818 case 2: 819 return (dboot_multiboot2_mmap_get_length(mb2_info, 820 mb2_mmap_tagp, index)); 821 822 default: 823 dboot_panic("Unknown multiboot version: %d\n", 824 multiboot_version); 825 break; 826 } 827 return (0); 828 #else 829 return (((uint64_t)map_buffer[index].length_high << 32) + 830 (uint64_t)map_buffer[index].length_low); 831 #endif 832 } 833 834 static void 835 build_pcimemlists(void) 836 { 837 uint64_t page_offset = MMU_PAGEOFFSET; /* needs to be 64 bits */ 838 uint64_t start; 839 uint64_t end; 840 int i, num; 841 842 /* 843 * initialize 844 */ 845 pcimemlists[0].addr = pci_lo_limit; 846 pcimemlists[0].size = pci_hi_limit - pci_lo_limit; 847 pcimemlists_used = 1; 848 849 num = dboot_loader_mmap_entries(); 850 /* 851 * Fill in PCI memlists. 852 */ 853 for (i = 0; i < num; ++i) { 854 start = dboot_loader_mmap_get_base(i); 855 end = start + dboot_loader_mmap_get_length(i); 856 857 if (prom_debug) 858 dboot_printf("\ttype: %d %" PRIx64 "..%" 859 PRIx64 "\n", dboot_loader_mmap_get_type(i), 860 start, end); 861 862 /* 863 * page align start and end 864 */ 865 start = (start + page_offset) & ~page_offset; 866 end &= ~page_offset; 867 if (end <= start) 868 continue; 869 870 exclude_from_pci(start, end); 871 } 872 873 /* 874 * Finish off the pcimemlist 875 */ 876 if (prom_debug) { 877 for (i = 0; i < pcimemlists_used; ++i) { 878 dboot_printf("pcimemlist entry 0x%" PRIx64 "..0x%" 879 PRIx64 "\n", pcimemlists[i].addr, 880 pcimemlists[i].addr + pcimemlists[i].size); 881 } 882 } 883 pcimemlists[0].next = 0; 884 pcimemlists[0].prev = 0; 885 for (i = 1; i < pcimemlists_used; ++i) { 886 pcimemlists[i].prev = 887 (native_ptr_t)(uintptr_t)(pcimemlists + i - 1); 888 pcimemlists[i].next = 0; 889 pcimemlists[i - 1].next = 890 (native_ptr_t)(uintptr_t)(pcimemlists + i); 891 } 892 bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists; 893 DBG(bi->bi_pcimem); 894 } 895 896 #if defined(__xpv) 897 /* 898 * Initialize memory allocator stuff from hypervisor-supplied start info. 899 */ 900 static void 901 init_mem_alloc(void) 902 { 903 int local; /* variables needed to find start region */ 904 paddr_t scratch_start; 905 xen_memory_map_t map; 906 907 DBG_MSG("Entered init_mem_alloc()\n"); 908 909 /* 910 * Free memory follows the stack. There's at least 512KB of scratch 911 * space, rounded up to at least 2Mb alignment. That should be enough 912 * for the page tables we'll need to build. The nucleus memory is 913 * allocated last and will be outside the addressible range. We'll 914 * switch to new page tables before we unpack the kernel 915 */ 916 scratch_start = RNDUP((paddr_t)(uintptr_t)&local, MMU_PAGESIZE); 917 DBG(scratch_start); 918 scratch_end = RNDUP((paddr_t)scratch_start + 512 * 1024, TWO_MEG); 919 DBG(scratch_end); 920 921 /* 922 * For paranoia, leave some space between hypervisor data and ours. 923 * Use 500 instead of 512. 924 */ 925 next_avail_addr = scratch_end - 500 * 1024; 926 DBG(next_avail_addr); 927 928 /* 929 * The domain builder gives us at most 1 module 930 */ 931 DBG(xen_info->mod_len); 932 if (xen_info->mod_len > 0) { 933 DBG(xen_info->mod_start); 934 modules[0].bm_addr = 935 (native_ptr_t)(uintptr_t)xen_info->mod_start; 936 modules[0].bm_size = xen_info->mod_len; 937 bi->bi_module_cnt = 1; 938 bi->bi_modules = (native_ptr_t)(uintptr_t)modules; 939 } else { 940 bi->bi_module_cnt = 0; 941 bi->bi_modules = (native_ptr_t)(uintptr_t)NULL; 942 } 943 DBG(bi->bi_module_cnt); 944 DBG(bi->bi_modules); 945 946 DBG(xen_info->mfn_list); 947 DBG(xen_info->nr_pages); 948 max_mem = (paddr_t)xen_info->nr_pages << MMU_PAGESHIFT; 949 DBG(max_mem); 950 951 /* 952 * Using pseudo-physical addresses, so only 1 memlist element 953 */ 954 memlists[0].addr = 0; 955 DBG(memlists[0].addr); 956 memlists[0].size = max_mem; 957 DBG(memlists[0].size); 958 memlists_used = 1; 959 DBG(memlists_used); 960 961 /* 962 * finish building physinstall list 963 */ 964 sort_physinstall(); 965 966 /* 967 * build bios reserved memlists 968 */ 969 build_rsvdmemlists(); 970 971 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 972 /* 973 * build PCI Memory list 974 */ 975 map.nr_entries = MAXMAPS; 976 /*LINTED: constant in conditional context*/ 977 set_xen_guest_handle(map.buffer, map_buffer); 978 if (HYPERVISOR_memory_op(XENMEM_machine_memory_map, &map) != 0) 979 dboot_panic("getting XENMEM_machine_memory_map failed"); 980 build_pcimemlists(); 981 } 982 } 983 984 #else /* !__xpv */ 985 986 static void 987 dboot_multiboot1_xboot_consinfo(void) 988 { 989 fb->framebuffer = 0; 990 } 991 992 static void 993 dboot_multiboot2_xboot_consinfo(void) 994 { 995 multiboot_tag_framebuffer_t *fbtag; 996 fbtag = dboot_multiboot2_find_tag(mb2_info, 997 MULTIBOOT_TAG_TYPE_FRAMEBUFFER); 998 fb->framebuffer = (uint64_t)(uintptr_t)fbtag; 999 } 1000 1001 static int 1002 dboot_multiboot_modcount(void) 1003 { 1004 switch (multiboot_version) { 1005 case 1: 1006 return (mb_info->mods_count); 1007 1008 case 2: 1009 return (dboot_multiboot2_modcount(mb2_info)); 1010 1011 default: 1012 dboot_panic("Unknown multiboot version: %d\n", 1013 multiboot_version); 1014 break; 1015 } 1016 return (0); 1017 } 1018 1019 static uint32_t 1020 dboot_multiboot_modstart(int index) 1021 { 1022 switch (multiboot_version) { 1023 case 1: 1024 return (((mb_module_t *)mb_info->mods_addr)[index].mod_start); 1025 1026 case 2: 1027 return (dboot_multiboot2_modstart(mb2_info, index)); 1028 1029 default: 1030 dboot_panic("Unknown multiboot version: %d\n", 1031 multiboot_version); 1032 break; 1033 } 1034 return (0); 1035 } 1036 1037 static uint32_t 1038 dboot_multiboot_modend(int index) 1039 { 1040 switch (multiboot_version) { 1041 case 1: 1042 return (((mb_module_t *)mb_info->mods_addr)[index].mod_end); 1043 1044 case 2: 1045 return (dboot_multiboot2_modend(mb2_info, index)); 1046 1047 default: 1048 dboot_panic("Unknown multiboot version: %d\n", 1049 multiboot_version); 1050 break; 1051 } 1052 return (0); 1053 } 1054 1055 static char * 1056 dboot_multiboot_modcmdline(int index) 1057 { 1058 switch (multiboot_version) { 1059 case 1: 1060 return ((char *)((mb_module_t *) 1061 mb_info->mods_addr)[index].mod_name); 1062 1063 case 2: 1064 return (dboot_multiboot2_modcmdline(mb2_info, index)); 1065 1066 default: 1067 dboot_panic("Unknown multiboot version: %d\n", 1068 multiboot_version); 1069 break; 1070 } 1071 return (0); 1072 } 1073 1074 /* 1075 * Find the modules used by console setup. 1076 * Since we need the console to print early boot messages, the console is set up 1077 * before anything else and therefore we need to pick up the needed modules. 1078 * 1079 * Note, we just will search for and if found, will pass the modules 1080 * to console setup, the proper module list processing will happen later. 1081 * Currently used modules are boot environment and console font. 1082 */ 1083 static void 1084 dboot_find_console_modules(void) 1085 { 1086 int i, modcount; 1087 uint32_t mod_start, mod_end; 1088 char *cmdline; 1089 1090 modcount = dboot_multiboot_modcount(); 1091 bi->bi_module_cnt = 0; 1092 for (i = 0; i < modcount; ++i) { 1093 cmdline = dboot_multiboot_modcmdline(i); 1094 if (cmdline == NULL) 1095 continue; 1096 1097 if (strstr(cmdline, "type=console-font") != NULL) 1098 modules[bi->bi_module_cnt].bm_type = BMT_FONT; 1099 else if (strstr(cmdline, "type=environment") != NULL) 1100 modules[bi->bi_module_cnt].bm_type = BMT_ENV; 1101 else 1102 continue; 1103 1104 mod_start = dboot_multiboot_modstart(i); 1105 mod_end = dboot_multiboot_modend(i); 1106 modules[bi->bi_module_cnt].bm_addr = 1107 (native_ptr_t)(uintptr_t)mod_start; 1108 modules[bi->bi_module_cnt].bm_size = mod_end - mod_start; 1109 modules[bi->bi_module_cnt].bm_name = 1110 (native_ptr_t)(uintptr_t)NULL; 1111 modules[bi->bi_module_cnt].bm_hash = 1112 (native_ptr_t)(uintptr_t)NULL; 1113 bi->bi_module_cnt++; 1114 } 1115 if (bi->bi_module_cnt != 0) 1116 bi->bi_modules = (native_ptr_t)(uintptr_t)modules; 1117 } 1118 1119 static boolean_t 1120 dboot_multiboot_basicmeminfo(uint32_t *lower, uint32_t *upper) 1121 { 1122 boolean_t rv = B_FALSE; 1123 1124 switch (multiboot_version) { 1125 case 1: 1126 if (mb_info->flags & 0x01) { 1127 *lower = mb_info->mem_lower; 1128 *upper = mb_info->mem_upper; 1129 rv = B_TRUE; 1130 } 1131 break; 1132 1133 case 2: 1134 return (dboot_multiboot2_basicmeminfo(mb2_info, lower, upper)); 1135 1136 default: 1137 dboot_panic("Unknown multiboot version: %d\n", 1138 multiboot_version); 1139 break; 1140 } 1141 return (rv); 1142 } 1143 1144 static uint8_t 1145 dboot_a2h(char v) 1146 { 1147 if (v >= 'a') 1148 return (v - 'a' + 0xa); 1149 else if (v >= 'A') 1150 return (v - 'A' + 0xa); 1151 else if (v >= '0') 1152 return (v - '0'); 1153 else 1154 dboot_panic("bad ASCII hex character %c\n", v); 1155 1156 return (0); 1157 } 1158 1159 static void 1160 digest_a2h(const char *ascii, uint8_t *digest) 1161 { 1162 unsigned int i; 1163 1164 for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { 1165 digest[i] = dboot_a2h(ascii[i * 2]) << 4; 1166 digest[i] |= dboot_a2h(ascii[i * 2 + 1]); 1167 } 1168 } 1169 1170 /* 1171 * Generate a SHA-1 hash of the first len bytes of image, and compare it with 1172 * the ASCII-format hash found in the 40-byte buffer at ascii. If they 1173 * match, return 0, otherwise -1. This works only for images smaller than 1174 * 4 GB, which should not be a problem. 1175 */ 1176 static int 1177 check_image_hash(uint_t midx) 1178 { 1179 const char *ascii; 1180 const void *image; 1181 size_t len; 1182 SHA1_CTX ctx; 1183 uint8_t digest[SHA1_DIGEST_LENGTH]; 1184 uint8_t baseline[SHA1_DIGEST_LENGTH]; 1185 unsigned int i; 1186 1187 ascii = (const char *)(uintptr_t)modules[midx].bm_hash; 1188 image = (const void *)(uintptr_t)modules[midx].bm_addr; 1189 len = (size_t)modules[midx].bm_size; 1190 1191 digest_a2h(ascii, baseline); 1192 1193 SHA1Init(&ctx); 1194 SHA1Update(&ctx, image, len); 1195 SHA1Final(digest, &ctx); 1196 1197 for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { 1198 if (digest[i] != baseline[i]) 1199 return (-1); 1200 } 1201 1202 return (0); 1203 } 1204 1205 static const char * 1206 type_to_str(boot_module_type_t type) 1207 { 1208 switch (type) { 1209 case BMT_ROOTFS: 1210 return ("rootfs"); 1211 case BMT_FILE: 1212 return ("file"); 1213 case BMT_HASH: 1214 return ("hash"); 1215 case BMT_ENV: 1216 return ("environment"); 1217 case BMT_FONT: 1218 return ("console-font"); 1219 default: 1220 return ("unknown"); 1221 } 1222 } 1223 1224 static void 1225 check_images(void) 1226 { 1227 uint_t i; 1228 char displayhash[SHA1_ASCII_LENGTH + 1]; 1229 1230 for (i = 0; i < modules_used; i++) { 1231 if (prom_debug) { 1232 dboot_printf("module #%d: name %s type %s " 1233 "addr %lx size %lx\n", 1234 i, (char *)(uintptr_t)modules[i].bm_name, 1235 type_to_str(modules[i].bm_type), 1236 (ulong_t)modules[i].bm_addr, 1237 (ulong_t)modules[i].bm_size); 1238 } 1239 1240 if (modules[i].bm_type == BMT_HASH || 1241 modules[i].bm_hash == (native_ptr_t)(uintptr_t)NULL) { 1242 DBG_MSG("module has no hash; skipping check\n"); 1243 continue; 1244 } 1245 (void) memcpy(displayhash, 1246 (void *)(uintptr_t)modules[i].bm_hash, 1247 SHA1_ASCII_LENGTH); 1248 displayhash[SHA1_ASCII_LENGTH] = '\0'; 1249 if (prom_debug) { 1250 dboot_printf("checking expected hash [%s]: ", 1251 displayhash); 1252 } 1253 1254 if (check_image_hash(i) != 0) 1255 dboot_panic("hash mismatch!\n"); 1256 else 1257 DBG_MSG("OK\n"); 1258 } 1259 } 1260 1261 /* 1262 * Determine the module's starting address, size, name, and type, and fill the 1263 * boot_modules structure. This structure is used by the bop code, except for 1264 * hashes which are checked prior to transferring control to the kernel. 1265 */ 1266 static void 1267 process_module(int midx) 1268 { 1269 uint32_t mod_start = dboot_multiboot_modstart(midx); 1270 uint32_t mod_end = dboot_multiboot_modend(midx); 1271 char *cmdline = dboot_multiboot_modcmdline(midx); 1272 char *p, *q; 1273 1274 check_higher(mod_end); 1275 if (prom_debug) { 1276 dboot_printf("\tmodule #%d: '%s' at 0x%lx, end 0x%lx\n", 1277 midx, cmdline, (ulong_t)mod_start, (ulong_t)mod_end); 1278 } 1279 1280 if (mod_start > mod_end) { 1281 dboot_panic("module #%d: module start address 0x%lx greater " 1282 "than end address 0x%lx", midx, 1283 (ulong_t)mod_start, (ulong_t)mod_end); 1284 } 1285 1286 /* 1287 * A brief note on lengths and sizes: GRUB, for reasons unknown, passes 1288 * the address of the last valid byte in a module plus 1 as mod_end. 1289 * This is of course a bug; the multiboot specification simply states 1290 * that mod_start and mod_end "contain the start and end addresses of 1291 * the boot module itself" which is pretty obviously not what GRUB is 1292 * doing. However, fixing it requires that not only this code be 1293 * changed but also that other code consuming this value and values 1294 * derived from it be fixed, and that the kernel and GRUB must either 1295 * both have the bug or neither. While there are a lot of combinations 1296 * that will work, there are also some that won't, so for simplicity 1297 * we'll just cope with the bug. That means we won't actually hash the 1298 * byte at mod_end, and we will expect that mod_end for the hash file 1299 * itself is one greater than some multiple of 41 (40 bytes of ASCII 1300 * hash plus a newline for each module). We set bm_size to the true 1301 * correct number of bytes in each module, achieving exactly this. 1302 */ 1303 1304 modules[midx].bm_addr = (native_ptr_t)(uintptr_t)mod_start; 1305 modules[midx].bm_size = mod_end - mod_start; 1306 modules[midx].bm_name = (native_ptr_t)(uintptr_t)cmdline; 1307 modules[midx].bm_hash = (native_ptr_t)(uintptr_t)NULL; 1308 modules[midx].bm_type = BMT_FILE; 1309 1310 if (cmdline == NULL) { 1311 modules[midx].bm_name = (native_ptr_t)(uintptr_t)noname; 1312 return; 1313 } 1314 1315 p = cmdline; 1316 modules[midx].bm_name = 1317 (native_ptr_t)(uintptr_t)strsep(&p, " \t\f\n\r"); 1318 1319 while (p != NULL) { 1320 q = strsep(&p, " \t\f\n\r"); 1321 if (strncmp(q, "name=", 5) == 0) { 1322 if (q[5] != '\0' && !isspace(q[5])) { 1323 modules[midx].bm_name = 1324 (native_ptr_t)(uintptr_t)(q + 5); 1325 } 1326 continue; 1327 } 1328 1329 if (strncmp(q, "type=", 5) == 0) { 1330 if (q[5] == '\0' || isspace(q[5])) 1331 continue; 1332 q += 5; 1333 if (strcmp(q, "rootfs") == 0) { 1334 modules[midx].bm_type = BMT_ROOTFS; 1335 } else if (strcmp(q, "hash") == 0) { 1336 modules[midx].bm_type = BMT_HASH; 1337 } else if (strcmp(q, "environment") == 0) { 1338 modules[midx].bm_type = BMT_ENV; 1339 } else if (strcmp(q, "console-font") == 0) { 1340 modules[midx].bm_type = BMT_FONT; 1341 } else if (strcmp(q, "file") != 0) { 1342 dboot_printf("\tmodule #%d: unknown module " 1343 "type '%s'; defaulting to 'file'\n", 1344 midx, q); 1345 } 1346 continue; 1347 } 1348 1349 if (strncmp(q, "hash=", 5) == 0) { 1350 if (q[5] != '\0' && !isspace(q[5])) { 1351 modules[midx].bm_hash = 1352 (native_ptr_t)(uintptr_t)(q + 5); 1353 } 1354 continue; 1355 } 1356 1357 dboot_printf("ignoring unknown option '%s'\n", q); 1358 } 1359 } 1360 1361 /* 1362 * Backward compatibility: if there are exactly one or two modules, both 1363 * of type 'file' and neither with an embedded hash value, we have been 1364 * given the legacy style modules. In this case we need to treat the first 1365 * module as a rootfs and the second as a hash referencing that module. 1366 * Otherwise, even if the configuration is invalid, we assume that the 1367 * operator knows what he's doing or at least isn't being bitten by this 1368 * interface change. 1369 */ 1370 static void 1371 fixup_modules(void) 1372 { 1373 if (modules_used == 0 || modules_used > 2) 1374 return; 1375 1376 if (modules[0].bm_type != BMT_FILE || 1377 (modules_used > 1 && modules[1].bm_type != BMT_FILE)) { 1378 return; 1379 } 1380 1381 if (modules[0].bm_hash != (native_ptr_t)(uintptr_t)NULL || 1382 (modules_used > 1 && 1383 modules[1].bm_hash != (native_ptr_t)(uintptr_t)NULL)) { 1384 return; 1385 } 1386 1387 modules[0].bm_type = BMT_ROOTFS; 1388 if (modules_used > 1) { 1389 modules[1].bm_type = BMT_HASH; 1390 modules[1].bm_name = modules[0].bm_name; 1391 } 1392 } 1393 1394 /* 1395 * For modules that do not have assigned hashes but have a separate hash module, 1396 * find the assigned hash module and set the primary module's bm_hash to point 1397 * to the hash data from that module. We will then ignore modules of type 1398 * BMT_HASH from this point forward. 1399 */ 1400 static void 1401 assign_module_hashes(void) 1402 { 1403 uint_t i, j; 1404 1405 for (i = 0; i < modules_used; i++) { 1406 if (modules[i].bm_type == BMT_HASH || 1407 modules[i].bm_hash != (native_ptr_t)(uintptr_t)NULL) { 1408 continue; 1409 } 1410 1411 for (j = 0; j < modules_used; j++) { 1412 if (modules[j].bm_type != BMT_HASH || 1413 strcmp((char *)(uintptr_t)modules[j].bm_name, 1414 (char *)(uintptr_t)modules[i].bm_name) != 0) { 1415 continue; 1416 } 1417 1418 if (modules[j].bm_size < SHA1_ASCII_LENGTH) { 1419 dboot_printf("Short hash module of length " 1420 "0x%lx bytes; ignoring\n", 1421 (ulong_t)modules[j].bm_size); 1422 } else { 1423 modules[i].bm_hash = modules[j].bm_addr; 1424 } 1425 break; 1426 } 1427 } 1428 } 1429 1430 /* 1431 * Walk through the module information finding the last used address. 1432 * The first available address will become the top level page table. 1433 */ 1434 static void 1435 dboot_process_modules(void) 1436 { 1437 int i, modcount; 1438 extern char _end[]; 1439 1440 DBG_MSG("\nFinding Modules\n"); 1441 modcount = dboot_multiboot_modcount(); 1442 if (modcount > MAX_BOOT_MODULES) { 1443 dboot_panic("Too many modules (%d) -- the maximum is %d.", 1444 modcount, MAX_BOOT_MODULES); 1445 } 1446 /* 1447 * search the modules to find the last used address 1448 * we'll build the module list while we're walking through here 1449 */ 1450 check_higher((paddr_t)(uintptr_t)&_end); 1451 for (i = 0; i < modcount; ++i) { 1452 process_module(i); 1453 modules_used++; 1454 } 1455 bi->bi_modules = (native_ptr_t)(uintptr_t)modules; 1456 DBG(bi->bi_modules); 1457 bi->bi_module_cnt = modcount; 1458 DBG(bi->bi_module_cnt); 1459 1460 fixup_modules(); 1461 assign_module_hashes(); 1462 check_images(); 1463 } 1464 1465 /* 1466 * We then build the phys_install memlist from the multiboot information. 1467 */ 1468 static void 1469 dboot_process_mmap(void) 1470 { 1471 uint64_t start; 1472 uint64_t end; 1473 uint64_t page_offset = MMU_PAGEOFFSET; /* needs to be 64 bits */ 1474 uint32_t lower, upper; 1475 int i, mmap_entries; 1476 1477 /* 1478 * Walk through the memory map from multiboot and build our memlist 1479 * structures. Note these will have native format pointers. 1480 */ 1481 DBG_MSG("\nFinding Memory Map\n"); 1482 num_entries = 0; 1483 num_entries_set = B_FALSE; 1484 max_mem = 0; 1485 if ((mmap_entries = dboot_loader_mmap_entries()) > 0) { 1486 for (i = 0; i < mmap_entries; i++) { 1487 uint32_t type = dboot_loader_mmap_get_type(i); 1488 start = dboot_loader_mmap_get_base(i); 1489 end = start + dboot_loader_mmap_get_length(i); 1490 1491 if (prom_debug) 1492 dboot_printf("\ttype: %d %" PRIx64 "..%" 1493 PRIx64 "\n", type, start, end); 1494 1495 /* 1496 * page align start and end 1497 */ 1498 start = (start + page_offset) & ~page_offset; 1499 end &= ~page_offset; 1500 if (end <= start) 1501 continue; 1502 1503 /* 1504 * only type 1 is usable RAM 1505 */ 1506 switch (type) { 1507 case 1: 1508 if (end > max_mem) 1509 max_mem = end; 1510 memlists[memlists_used].addr = start; 1511 memlists[memlists_used].size = end - start; 1512 ++memlists_used; 1513 if (memlists_used > MAX_MEMLIST) 1514 dboot_panic("too many memlists"); 1515 break; 1516 case 2: 1517 rsvdmemlists[rsvdmemlists_used].addr = start; 1518 rsvdmemlists[rsvdmemlists_used].size = 1519 end - start; 1520 ++rsvdmemlists_used; 1521 if (rsvdmemlists_used > MAX_MEMLIST) 1522 dboot_panic("too many rsvdmemlists"); 1523 break; 1524 default: 1525 continue; 1526 } 1527 } 1528 build_pcimemlists(); 1529 } else if (dboot_multiboot_basicmeminfo(&lower, &upper)) { 1530 DBG(lower); 1531 memlists[memlists_used].addr = 0; 1532 memlists[memlists_used].size = lower * 1024; 1533 ++memlists_used; 1534 DBG(upper); 1535 memlists[memlists_used].addr = 1024 * 1024; 1536 memlists[memlists_used].size = upper * 1024; 1537 ++memlists_used; 1538 1539 /* 1540 * Old platform - assume I/O space at the end of memory. 1541 */ 1542 pcimemlists[0].addr = (upper * 1024) + (1024 * 1024); 1543 pcimemlists[0].size = pci_hi_limit - pcimemlists[0].addr; 1544 pcimemlists[0].next = 0; 1545 pcimemlists[0].prev = 0; 1546 bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists; 1547 DBG(bi->bi_pcimem); 1548 } else { 1549 dboot_panic("No memory info from boot loader!!!"); 1550 } 1551 1552 /* 1553 * finish processing the physinstall list 1554 */ 1555 sort_physinstall(); 1556 1557 /* 1558 * build bios reserved mem lists 1559 */ 1560 build_rsvdmemlists(); 1561 } 1562 1563 /* 1564 * The highest address is used as the starting point for dboot's simple 1565 * memory allocator. 1566 * 1567 * Finding the highest address in case of Multiboot 1 protocol is 1568 * quite painful in the sense that some information provided by 1569 * the multiboot info structure points to BIOS data, and some to RAM. 1570 * 1571 * The module list was processed and checked already by dboot_process_modules(), 1572 * so we will check the command line string and the memory map. 1573 * 1574 * This list of to be checked items is based on our current knowledge of 1575 * allocations made by grub1 and will need to be reviewed if there 1576 * are updates about the information provided by Multiboot 1. 1577 * 1578 * In the case of the Multiboot 2, our life is much simpler, as the MB2 1579 * information tag list is one contiguous chunk of memory. 1580 */ 1581 static paddr_t 1582 dboot_multiboot1_highest_addr(void) 1583 { 1584 paddr_t addr = (paddr_t)(uintptr_t)NULL; 1585 char *cmdl = (char *)mb_info->cmdline; 1586 1587 if (mb_info->flags & MB_INFO_CMDLINE) 1588 addr = ((paddr_t)((uintptr_t)cmdl + strlen(cmdl) + 1)); 1589 1590 if (mb_info->flags & MB_INFO_MEM_MAP) 1591 addr = MAX(addr, 1592 ((paddr_t)(mb_info->mmap_addr + mb_info->mmap_length))); 1593 return (addr); 1594 } 1595 1596 static void 1597 dboot_multiboot_highest_addr(void) 1598 { 1599 paddr_t addr; 1600 1601 switch (multiboot_version) { 1602 case 1: 1603 addr = dboot_multiboot1_highest_addr(); 1604 if (addr != (paddr_t)(uintptr_t)NULL) 1605 check_higher(addr); 1606 break; 1607 case 2: 1608 addr = dboot_multiboot2_highest_addr(mb2_info); 1609 if (addr != (paddr_t)(uintptr_t)NULL) 1610 check_higher(addr); 1611 break; 1612 default: 1613 dboot_panic("Unknown multiboot version: %d\n", 1614 multiboot_version); 1615 break; 1616 } 1617 } 1618 1619 /* 1620 * Walk the boot loader provided information and find the highest free address. 1621 */ 1622 static void 1623 init_mem_alloc(void) 1624 { 1625 DBG_MSG("Entered init_mem_alloc()\n"); 1626 dboot_process_modules(); 1627 dboot_process_mmap(); 1628 dboot_multiboot_highest_addr(); 1629 } 1630 1631 static int 1632 dboot_same_guids(efi_guid_t *g1, efi_guid_t *g2) 1633 { 1634 int i; 1635 1636 if (g1->time_low != g2->time_low) 1637 return (0); 1638 if (g1->time_mid != g2->time_mid) 1639 return (0); 1640 if (g1->time_hi_and_version != g2->time_hi_and_version) 1641 return (0); 1642 if (g1->clock_seq_hi_and_reserved != g2->clock_seq_hi_and_reserved) 1643 return (0); 1644 if (g1->clock_seq_low != g2->clock_seq_low) 1645 return (0); 1646 1647 for (i = 0; i < 6; i++) { 1648 if (g1->node_addr[i] != g2->node_addr[i]) 1649 return (0); 1650 } 1651 return (1); 1652 } 1653 1654 static void 1655 process_efi32(EFI_SYSTEM_TABLE32 *efi) 1656 { 1657 uint32_t entries; 1658 EFI_CONFIGURATION_TABLE32 *config; 1659 efi_guid_t VendorGuid; 1660 int i; 1661 1662 entries = efi->NumberOfTableEntries; 1663 config = (EFI_CONFIGURATION_TABLE32 *)(uintptr_t) 1664 efi->ConfigurationTable; 1665 1666 for (i = 0; i < entries; i++) { 1667 (void) memcpy(&VendorGuid, &config[i].VendorGuid, 1668 sizeof (VendorGuid)); 1669 if (dboot_same_guids(&VendorGuid, &smbios3)) { 1670 bi->bi_smbios = (native_ptr_t)(uintptr_t) 1671 config[i].VendorTable; 1672 } 1673 if (bi->bi_smbios == 0 && 1674 dboot_same_guids(&VendorGuid, &smbios)) { 1675 bi->bi_smbios = (native_ptr_t)(uintptr_t) 1676 config[i].VendorTable; 1677 } 1678 if (dboot_same_guids(&VendorGuid, &acpi2)) { 1679 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t) 1680 config[i].VendorTable; 1681 } 1682 if (bi->bi_acpi_rsdp == 0 && 1683 dboot_same_guids(&VendorGuid, &acpi1)) { 1684 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t) 1685 config[i].VendorTable; 1686 } 1687 } 1688 } 1689 1690 static void 1691 process_efi64(EFI_SYSTEM_TABLE64 *efi) 1692 { 1693 uint64_t entries; 1694 EFI_CONFIGURATION_TABLE64 *config; 1695 efi_guid_t VendorGuid; 1696 int i; 1697 1698 entries = efi->NumberOfTableEntries; 1699 config = (EFI_CONFIGURATION_TABLE64 *)(uintptr_t) 1700 efi->ConfigurationTable; 1701 1702 for (i = 0; i < entries; i++) { 1703 (void) memcpy(&VendorGuid, &config[i].VendorGuid, 1704 sizeof (VendorGuid)); 1705 if (dboot_same_guids(&VendorGuid, &smbios3)) { 1706 bi->bi_smbios = (native_ptr_t)(uintptr_t) 1707 config[i].VendorTable; 1708 } 1709 if (bi->bi_smbios == 0 && 1710 dboot_same_guids(&VendorGuid, &smbios)) { 1711 bi->bi_smbios = (native_ptr_t)(uintptr_t) 1712 config[i].VendorTable; 1713 } 1714 /* Prefer acpi v2+ over v1. */ 1715 if (dboot_same_guids(&VendorGuid, &acpi2)) { 1716 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t) 1717 config[i].VendorTable; 1718 } 1719 if (bi->bi_acpi_rsdp == 0 && 1720 dboot_same_guids(&VendorGuid, &acpi1)) { 1721 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t) 1722 config[i].VendorTable; 1723 } 1724 } 1725 } 1726 1727 static void 1728 dboot_multiboot_get_fwtables(void) 1729 { 1730 multiboot_tag_new_acpi_t *nacpitagp; 1731 multiboot_tag_old_acpi_t *oacpitagp; 1732 multiboot_tag_efi64_t *efi64tagp = NULL; 1733 multiboot_tag_efi32_t *efi32tagp = NULL; 1734 1735 /* no fw tables from multiboot 1 */ 1736 if (multiboot_version != 2) 1737 return; 1738 1739 efi64tagp = (multiboot_tag_efi64_t *) 1740 dboot_multiboot2_find_tag(mb2_info, MULTIBOOT_TAG_TYPE_EFI64); 1741 if (efi64tagp != NULL) { 1742 bi->bi_uefi_arch = XBI_UEFI_ARCH_64; 1743 bi->bi_uefi_systab = (native_ptr_t)(uintptr_t) 1744 efi64tagp->mb_pointer; 1745 process_efi64((EFI_SYSTEM_TABLE64 *)(uintptr_t) 1746 efi64tagp->mb_pointer); 1747 } else { 1748 efi32tagp = (multiboot_tag_efi32_t *) 1749 dboot_multiboot2_find_tag(mb2_info, 1750 MULTIBOOT_TAG_TYPE_EFI32); 1751 if (efi32tagp != NULL) { 1752 bi->bi_uefi_arch = XBI_UEFI_ARCH_32; 1753 bi->bi_uefi_systab = (native_ptr_t)(uintptr_t) 1754 efi32tagp->mb_pointer; 1755 process_efi32((EFI_SYSTEM_TABLE32 *)(uintptr_t) 1756 efi32tagp->mb_pointer); 1757 } 1758 } 1759 1760 /* 1761 * The multiboot2 info contains a copy of the RSDP; stash a pointer to 1762 * it (see find_rsdp() in fakebop). 1763 */ 1764 nacpitagp = (multiboot_tag_new_acpi_t *) 1765 dboot_multiboot2_find_tag(mb2_info, MULTIBOOT_TAG_TYPE_ACPI_NEW); 1766 oacpitagp = (multiboot_tag_old_acpi_t *) 1767 dboot_multiboot2_find_tag(mb2_info, MULTIBOOT_TAG_TYPE_ACPI_OLD); 1768 1769 if (nacpitagp != NULL) { 1770 bi->bi_acpi_rsdp_copy = (native_ptr_t)(uintptr_t) 1771 &nacpitagp->mb_rsdp[0]; 1772 } else if (oacpitagp != NULL) { 1773 bi->bi_acpi_rsdp_copy = (native_ptr_t)(uintptr_t) 1774 &oacpitagp->mb_rsdp[0]; 1775 } 1776 } 1777 1778 /* print out EFI version string with newline */ 1779 static void 1780 dboot_print_efi_version(uint32_t ver) 1781 { 1782 int rev; 1783 1784 dboot_printf("%d.", EFI_REV_MAJOR(ver)); 1785 1786 rev = EFI_REV_MINOR(ver); 1787 if ((rev % 10) != 0) { 1788 dboot_printf("%d.%d\n", rev / 10, rev % 10); 1789 } else { 1790 dboot_printf("%d\n", rev / 10); 1791 } 1792 } 1793 1794 static void 1795 print_efi32(EFI_SYSTEM_TABLE32 *efi) 1796 { 1797 uint16_t *data; 1798 EFI_CONFIGURATION_TABLE32 *conf; 1799 int i; 1800 1801 dboot_printf("EFI32 signature: %llx\n", 1802 (unsigned long long)efi->Hdr.Signature); 1803 dboot_printf("EFI system version: "); 1804 dboot_print_efi_version(efi->Hdr.Revision); 1805 dboot_printf("EFI system vendor: "); 1806 data = (uint16_t *)(uintptr_t)efi->FirmwareVendor; 1807 for (i = 0; data[i] != 0; i++) 1808 dboot_printf("%c", (char)data[i]); 1809 dboot_printf("\nEFI firmware revision: "); 1810 dboot_print_efi_version(efi->FirmwareRevision); 1811 dboot_printf("EFI system table number of entries: %d\n", 1812 efi->NumberOfTableEntries); 1813 conf = (EFI_CONFIGURATION_TABLE32 *)(uintptr_t) 1814 efi->ConfigurationTable; 1815 for (i = 0; i < (int)efi->NumberOfTableEntries; i++) { 1816 dboot_printf("%d: 0x%x 0x%x 0x%x 0x%x 0x%x", i, 1817 conf[i].VendorGuid.time_low, 1818 conf[i].VendorGuid.time_mid, 1819 conf[i].VendorGuid.time_hi_and_version, 1820 conf[i].VendorGuid.clock_seq_hi_and_reserved, 1821 conf[i].VendorGuid.clock_seq_low); 1822 dboot_printf(" 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n", 1823 conf[i].VendorGuid.node_addr[0], 1824 conf[i].VendorGuid.node_addr[1], 1825 conf[i].VendorGuid.node_addr[2], 1826 conf[i].VendorGuid.node_addr[3], 1827 conf[i].VendorGuid.node_addr[4], 1828 conf[i].VendorGuid.node_addr[5]); 1829 } 1830 } 1831 1832 static void 1833 print_efi64(EFI_SYSTEM_TABLE64 *efi) 1834 { 1835 uint16_t *data; 1836 EFI_CONFIGURATION_TABLE64 *conf; 1837 int i; 1838 1839 dboot_printf("EFI64 signature: %llx\n", 1840 (unsigned long long)efi->Hdr.Signature); 1841 dboot_printf("EFI system version: "); 1842 dboot_print_efi_version(efi->Hdr.Revision); 1843 dboot_printf("EFI system vendor: "); 1844 data = (uint16_t *)(uintptr_t)efi->FirmwareVendor; 1845 for (i = 0; data[i] != 0; i++) 1846 dboot_printf("%c", (char)data[i]); 1847 dboot_printf("\nEFI firmware revision: "); 1848 dboot_print_efi_version(efi->FirmwareRevision); 1849 dboot_printf("EFI system table number of entries: %" PRIu64 "\n", 1850 efi->NumberOfTableEntries); 1851 conf = (EFI_CONFIGURATION_TABLE64 *)(uintptr_t) 1852 efi->ConfigurationTable; 1853 for (i = 0; i < (int)efi->NumberOfTableEntries; i++) { 1854 dboot_printf("%d: 0x%x 0x%x 0x%x 0x%x 0x%x", i, 1855 conf[i].VendorGuid.time_low, 1856 conf[i].VendorGuid.time_mid, 1857 conf[i].VendorGuid.time_hi_and_version, 1858 conf[i].VendorGuid.clock_seq_hi_and_reserved, 1859 conf[i].VendorGuid.clock_seq_low); 1860 dboot_printf(" 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n", 1861 conf[i].VendorGuid.node_addr[0], 1862 conf[i].VendorGuid.node_addr[1], 1863 conf[i].VendorGuid.node_addr[2], 1864 conf[i].VendorGuid.node_addr[3], 1865 conf[i].VendorGuid.node_addr[4], 1866 conf[i].VendorGuid.node_addr[5]); 1867 } 1868 } 1869 #endif /* !__xpv */ 1870 1871 /* 1872 * Simple memory allocator, allocates aligned physical memory. 1873 * Note that startup_kernel() only allocates memory, never frees. 1874 * Memory usage just grows in an upward direction. 1875 */ 1876 static void * 1877 do_mem_alloc(uint32_t size, uint32_t align) 1878 { 1879 uint_t i; 1880 uint64_t best; 1881 uint64_t start; 1882 uint64_t end; 1883 1884 /* 1885 * make sure size is a multiple of pagesize 1886 */ 1887 size = RNDUP(size, MMU_PAGESIZE); 1888 next_avail_addr = RNDUP(next_avail_addr, align); 1889 1890 /* 1891 * XXPV fixme joe 1892 * 1893 * a really large bootarchive that causes you to run out of memory 1894 * may cause this to blow up 1895 */ 1896 /* LINTED E_UNEXPECTED_UINT_PROMOTION */ 1897 best = (uint64_t)-size; 1898 for (i = 0; i < memlists_used; ++i) { 1899 start = memlists[i].addr; 1900 #if defined(__xpv) 1901 start += mfn_base; 1902 #endif 1903 end = start + memlists[i].size; 1904 1905 /* 1906 * did we find the desired address? 1907 */ 1908 if (start <= next_avail_addr && next_avail_addr + size <= end) { 1909 best = next_avail_addr; 1910 goto done; 1911 } 1912 1913 /* 1914 * if not is this address the best so far? 1915 */ 1916 if (start > next_avail_addr && start < best && 1917 RNDUP(start, align) + size <= end) 1918 best = RNDUP(start, align); 1919 } 1920 1921 /* 1922 * We didn't find exactly the address we wanted, due to going off the 1923 * end of a memory region. Return the best found memory address. 1924 */ 1925 done: 1926 next_avail_addr = best + size; 1927 #if defined(__xpv) 1928 if (next_avail_addr > scratch_end) 1929 dboot_panic("Out of mem next_avail: 0x%lx, scratch_end: " 1930 "0x%lx", (ulong_t)next_avail_addr, 1931 (ulong_t)scratch_end); 1932 #endif 1933 (void) memset((void *)(uintptr_t)best, 0, size); 1934 return ((void *)(uintptr_t)best); 1935 } 1936 1937 void * 1938 mem_alloc(uint32_t size) 1939 { 1940 return (do_mem_alloc(size, MMU_PAGESIZE)); 1941 } 1942 1943 1944 /* 1945 * Build page tables to map all of memory used so far as well as the kernel. 1946 */ 1947 static void 1948 build_page_tables(void) 1949 { 1950 uint32_t psize; 1951 uint32_t level; 1952 uint32_t off; 1953 uint64_t start; 1954 #if !defined(__xpv) 1955 uint32_t i; 1956 uint64_t end; 1957 #endif /* __xpv */ 1958 1959 /* 1960 * If we're on metal, we need to create the top level pagetable. 1961 */ 1962 #if defined(__xpv) 1963 top_page_table = (paddr_t)(uintptr_t)xen_info->pt_base; 1964 #else /* __xpv */ 1965 top_page_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE); 1966 #endif /* __xpv */ 1967 DBG((uintptr_t)top_page_table); 1968 1969 /* 1970 * Determine if we'll use large mappings for kernel, then map it. 1971 */ 1972 if (largepage_support) { 1973 psize = lpagesize; 1974 level = 1; 1975 } else { 1976 psize = MMU_PAGESIZE; 1977 level = 0; 1978 } 1979 1980 DBG_MSG("Mapping kernel\n"); 1981 DBG(ktext_phys); 1982 DBG(target_kernel_text); 1983 DBG(ksize); 1984 DBG(psize); 1985 for (off = 0; off < ksize; off += psize) 1986 map_pa_at_va(ktext_phys + off, target_kernel_text + off, level); 1987 1988 /* 1989 * The kernel will need a 1 page window to work with page tables 1990 */ 1991 bi->bi_pt_window = (native_ptr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE); 1992 DBG(bi->bi_pt_window); 1993 bi->bi_pte_to_pt_window = 1994 (native_ptr_t)(uintptr_t)find_pte(bi->bi_pt_window, NULL, 0, 0); 1995 DBG(bi->bi_pte_to_pt_window); 1996 1997 #if defined(__xpv) 1998 if (!DOMAIN_IS_INITDOMAIN(xen_info)) { 1999 /* If this is a domU we're done. */ 2000 DBG_MSG("\nPage tables constructed\n"); 2001 return; 2002 } 2003 #endif /* __xpv */ 2004 2005 /* 2006 * We need 1:1 mappings for the lower 1M of memory to access 2007 * BIOS tables used by a couple of drivers during boot. 2008 * 2009 * The following code works because our simple memory allocator 2010 * only grows usage in an upwards direction. 2011 * 2012 * Note that by this point in boot some mappings for low memory 2013 * may already exist because we've already accessed device in low 2014 * memory. (Specifically the video frame buffer and keyboard 2015 * status ports.) If we're booting on raw hardware then GRUB 2016 * created these mappings for us. If we're booting under a 2017 * hypervisor then we went ahead and remapped these devices into 2018 * memory allocated within dboot itself. 2019 */ 2020 if (map_debug) 2021 dboot_printf("1:1 map pa=0..1Meg\n"); 2022 for (start = 0; start < 1024 * 1024; start += MMU_PAGESIZE) { 2023 #if defined(__xpv) 2024 map_ma_at_va(start, start, 0); 2025 #else /* __xpv */ 2026 map_pa_at_va(start, start, 0); 2027 #endif /* __xpv */ 2028 } 2029 2030 #if !defined(__xpv) 2031 2032 for (i = 0; i < memlists_used; ++i) { 2033 start = memlists[i].addr; 2034 end = start + memlists[i].size; 2035 2036 if (map_debug) 2037 dboot_printf("1:1 map pa=%" PRIx64 "..%" PRIx64 "\n", 2038 start, end); 2039 while (start < end && start < next_avail_addr) { 2040 map_pa_at_va(start, start, 0); 2041 start += MMU_PAGESIZE; 2042 } 2043 if (start >= next_avail_addr) 2044 break; 2045 } 2046 2047 /* 2048 * Map framebuffer memory as PT_NOCACHE as this is memory from a 2049 * device and therefore must not be cached. 2050 */ 2051 if (fb != NULL && fb->framebuffer != 0) { 2052 multiboot_tag_framebuffer_t *fb_tagp; 2053 fb_tagp = (multiboot_tag_framebuffer_t *)(uintptr_t) 2054 fb->framebuffer; 2055 2056 start = fb_tagp->framebuffer_common.framebuffer_addr; 2057 end = start + fb_tagp->framebuffer_common.framebuffer_height * 2058 fb_tagp->framebuffer_common.framebuffer_pitch; 2059 2060 if (map_debug) 2061 dboot_printf("FB 1:1 map pa=%" PRIx64 "..%" PRIx64 "\n", 2062 start, end); 2063 pte_bits |= PT_NOCACHE; 2064 if (PAT_support != 0) 2065 pte_bits |= PT_PAT_4K; 2066 2067 while (start < end) { 2068 map_pa_at_va(start, start, 0); 2069 start += MMU_PAGESIZE; 2070 } 2071 pte_bits &= ~PT_NOCACHE; 2072 if (PAT_support != 0) 2073 pte_bits &= ~PT_PAT_4K; 2074 } 2075 #endif /* !__xpv */ 2076 2077 DBG_MSG("\nPage tables constructed\n"); 2078 } 2079 2080 #define NO_MULTIBOOT \ 2081 "multiboot is no longer used to boot the Solaris Operating System.\n\ 2082 The grub entry should be changed to:\n\ 2083 kernel$ /platform/i86pc/kernel/$ISADIR/unix\n\ 2084 module$ /platform/i86pc/$ISADIR/boot_archive\n\ 2085 See http://illumos.org/msg/SUNOS-8000-AK for details.\n" 2086 2087 static void 2088 dboot_init_xboot_consinfo(void) 2089 { 2090 bi = &boot_info; 2091 2092 #if !defined(__xpv) 2093 fb = &framebuffer; 2094 bi->bi_framebuffer = (native_ptr_t)(uintptr_t)fb; 2095 2096 switch (multiboot_version) { 2097 case 1: 2098 dboot_multiboot1_xboot_consinfo(); 2099 break; 2100 case 2: 2101 dboot_multiboot2_xboot_consinfo(); 2102 break; 2103 default: 2104 dboot_panic("Unknown multiboot version: %d\n", 2105 multiboot_version); 2106 break; 2107 } 2108 dboot_find_console_modules(); 2109 #endif 2110 } 2111 2112 /* 2113 * Set up basic data from the boot loader. 2114 * The load_addr is part of AOUT kludge setup in dboot_grub.s, to support 2115 * 32-bit dboot code setup used to set up and start 64-bit kernel. 2116 * AOUT kludge does allow 32-bit boot loader, such as grub1, to load and 2117 * start 64-bit illumos kernel. 2118 */ 2119 static void 2120 dboot_loader_init(void) 2121 { 2122 #if !defined(__xpv) 2123 mb_info = NULL; 2124 mb2_info = NULL; 2125 2126 switch (mb_magic) { 2127 case MB_BOOTLOADER_MAGIC: 2128 multiboot_version = 1; 2129 mb_info = (multiboot_info_t *)(uintptr_t)mb_addr; 2130 #if defined(_BOOT_TARGET_amd64) 2131 load_addr = mb_header.load_addr; 2132 #endif 2133 break; 2134 2135 case MULTIBOOT2_BOOTLOADER_MAGIC: 2136 multiboot_version = 2; 2137 mb2_info = (multiboot2_info_header_t *)(uintptr_t)mb_addr; 2138 mb2_mmap_tagp = dboot_multiboot2_get_mmap_tagp(mb2_info); 2139 #if defined(_BOOT_TARGET_amd64) 2140 load_addr = mb2_load_addr; 2141 #endif 2142 break; 2143 2144 default: 2145 dboot_panic("Unknown bootloader magic: 0x%x\n", mb_magic); 2146 break; 2147 } 2148 #endif /* !defined(__xpv) */ 2149 } 2150 2151 /* Extract the kernel command line from [multi]boot information. */ 2152 static char * 2153 dboot_loader_cmdline(void) 2154 { 2155 char *line = NULL; 2156 2157 #if defined(__xpv) 2158 line = (char *)xen_info->cmd_line; 2159 #else /* __xpv */ 2160 2161 switch (multiboot_version) { 2162 case 1: 2163 if (mb_info->flags & MB_INFO_CMDLINE) 2164 line = (char *)mb_info->cmdline; 2165 break; 2166 2167 case 2: 2168 line = dboot_multiboot2_cmdline(mb2_info); 2169 break; 2170 2171 default: 2172 dboot_panic("Unknown multiboot version: %d\n", 2173 multiboot_version); 2174 break; 2175 } 2176 2177 #endif /* __xpv */ 2178 2179 /* 2180 * Make sure we have valid pointer so the string operations 2181 * will not crash us. 2182 */ 2183 if (line == NULL) 2184 line = ""; 2185 2186 return (line); 2187 } 2188 2189 static char * 2190 dboot_loader_name(void) 2191 { 2192 #if defined(__xpv) 2193 return (NULL); 2194 #else /* __xpv */ 2195 multiboot_tag_string_t *tag; 2196 2197 switch (multiboot_version) { 2198 case 1: 2199 return ((char *)(uintptr_t)mb_info->boot_loader_name); 2200 2201 case 2: 2202 tag = dboot_multiboot2_find_tag(mb2_info, 2203 MULTIBOOT_TAG_TYPE_BOOT_LOADER_NAME); 2204 return (tag->mb_string); 2205 default: 2206 dboot_panic("Unknown multiboot version: %d\n", 2207 multiboot_version); 2208 break; 2209 } 2210 2211 return (NULL); 2212 #endif /* __xpv */ 2213 } 2214 2215 /* 2216 * startup_kernel has a pretty simple job. It builds pagetables which reflect 2217 * 1:1 mappings for all memory in use. It then also adds mappings for 2218 * the kernel nucleus at virtual address of target_kernel_text using large page 2219 * mappings. The page table pages are also accessible at 1:1 mapped 2220 * virtual addresses. 2221 */ 2222 /*ARGSUSED*/ 2223 void 2224 startup_kernel(void) 2225 { 2226 char *cmdline; 2227 char *bootloader; 2228 #if defined(__xpv) 2229 physdev_set_iopl_t set_iopl; 2230 #endif /* __xpv */ 2231 2232 if (dboot_debug == 1) 2233 bcons_init(NULL); /* Set very early console to ttya. */ 2234 dboot_loader_init(); 2235 /* 2236 * At this point we are executing in a 32 bit real mode. 2237 */ 2238 2239 bootloader = dboot_loader_name(); 2240 cmdline = dboot_loader_cmdline(); 2241 2242 #if defined(__xpv) 2243 /* 2244 * For dom0, before we initialize the console subsystem we'll 2245 * need to enable io operations, so set I/O priveldge level to 1. 2246 */ 2247 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2248 set_iopl.iopl = 1; 2249 (void) HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 2250 } 2251 #endif /* __xpv */ 2252 2253 dboot_init_xboot_consinfo(); 2254 bi->bi_cmdline = (native_ptr_t)(uintptr_t)cmdline; 2255 bcons_init(bi); /* Now we can set the real console. */ 2256 2257 prom_debug = (find_boot_prop("prom_debug") != NULL); 2258 map_debug = (find_boot_prop("map_debug") != NULL); 2259 2260 #if !defined(__xpv) 2261 dboot_multiboot_get_fwtables(); 2262 #endif 2263 DBG_MSG("\n\nillumos prekernel set: "); 2264 DBG_MSG(cmdline); 2265 DBG_MSG("\n"); 2266 2267 if (bootloader != NULL && prom_debug) { 2268 dboot_printf("Kernel loaded by: %s\n", bootloader); 2269 #if !defined(__xpv) 2270 dboot_printf("Using multiboot %d boot protocol.\n", 2271 multiboot_version); 2272 #endif 2273 } 2274 2275 if (strstr(cmdline, "multiboot") != NULL) { 2276 dboot_panic(NO_MULTIBOOT); 2277 } 2278 2279 DBG((uintptr_t)bi); 2280 #if !defined(__xpv) 2281 DBG((uintptr_t)mb_info); 2282 DBG((uintptr_t)mb2_info); 2283 if (mb2_info != NULL) 2284 DBG(mb2_info->mbi_total_size); 2285 DBG(bi->bi_acpi_rsdp); 2286 DBG(bi->bi_acpi_rsdp_copy); 2287 DBG(bi->bi_smbios); 2288 DBG(bi->bi_uefi_arch); 2289 DBG(bi->bi_uefi_systab); 2290 2291 if (bi->bi_uefi_systab && prom_debug) { 2292 if (bi->bi_uefi_arch == XBI_UEFI_ARCH_64) { 2293 print_efi64((EFI_SYSTEM_TABLE64 *)(uintptr_t) 2294 bi->bi_uefi_systab); 2295 } else { 2296 print_efi32((EFI_SYSTEM_TABLE32 *)(uintptr_t) 2297 bi->bi_uefi_systab); 2298 } 2299 } 2300 #endif 2301 2302 /* 2303 * Need correct target_kernel_text value 2304 */ 2305 target_kernel_text = KERNEL_TEXT; 2306 DBG(target_kernel_text); 2307 2308 #if defined(__xpv) 2309 2310 /* 2311 * XXPV Derive this stuff from CPUID / what the hypervisor has enabled 2312 */ 2313 2314 #if defined(_BOOT_TARGET_amd64) 2315 /* 2316 * 64-bit hypervisor. 2317 */ 2318 amd64_support = 1; 2319 pae_support = 1; 2320 2321 #else /* _BOOT_TARGET_amd64 */ 2322 2323 /* 2324 * See if we are running on a PAE Hypervisor 2325 */ 2326 { 2327 xen_capabilities_info_t caps; 2328 2329 if (HYPERVISOR_xen_version(XENVER_capabilities, &caps) != 0) 2330 dboot_panic("HYPERVISOR_xen_version(caps) failed"); 2331 caps[sizeof (caps) - 1] = 0; 2332 if (prom_debug) 2333 dboot_printf("xen capabilities %s\n", caps); 2334 if (strstr(caps, "x86_32p") != NULL) 2335 pae_support = 1; 2336 } 2337 2338 #endif /* _BOOT_TARGET_amd64 */ 2339 { 2340 xen_platform_parameters_t p; 2341 2342 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &p) != 0) 2343 dboot_panic("HYPERVISOR_xen_version(parms) failed"); 2344 DBG(p.virt_start); 2345 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 2346 } 2347 2348 /* 2349 * The hypervisor loads stuff starting at 1Gig 2350 */ 2351 mfn_base = ONE_GIG; 2352 DBG(mfn_base); 2353 2354 /* 2355 * enable writable page table mode for the hypervisor 2356 */ 2357 if (HYPERVISOR_vm_assist(VMASST_CMD_enable, 2358 VMASST_TYPE_writable_pagetables) < 0) 2359 dboot_panic("HYPERVISOR_vm_assist(writable_pagetables) failed"); 2360 2361 /* 2362 * check for NX support 2363 */ 2364 if (pae_support) { 2365 uint32_t eax = 0x80000000; 2366 uint32_t edx = get_cpuid_edx(&eax); 2367 2368 if (eax >= 0x80000001) { 2369 eax = 0x80000001; 2370 edx = get_cpuid_edx(&eax); 2371 if (edx & CPUID_AMD_EDX_NX) 2372 NX_support = 1; 2373 } 2374 } 2375 2376 /* 2377 * check for PAT support 2378 */ 2379 { 2380 uint32_t eax = 1; 2381 uint32_t edx = get_cpuid_edx(&eax); 2382 2383 if (edx & CPUID_INTC_EDX_PAT) 2384 PAT_support = 1; 2385 } 2386 #if !defined(_BOOT_TARGET_amd64) 2387 2388 /* 2389 * The 32-bit hypervisor uses segmentation to protect itself from 2390 * guests. This means when a guest attempts to install a flat 4GB 2391 * code or data descriptor the 32-bit hypervisor will protect itself 2392 * by silently shrinking the segment such that if the guest attempts 2393 * any access where the hypervisor lives a #gp fault is generated. 2394 * The problem is that some applications expect a full 4GB flat 2395 * segment for their current thread pointer and will use negative 2396 * offset segment wrap around to access data. TLS support in linux 2397 * brand is one example of this. 2398 * 2399 * The 32-bit hypervisor can catch the #gp fault in these cases 2400 * and emulate the access without passing the #gp fault to the guest 2401 * but only if VMASST_TYPE_4gb_segments is explicitly turned on. 2402 * Seems like this should have been the default. 2403 * Either way, we want the hypervisor -- and not Solaris -- to deal 2404 * to deal with emulating these accesses. 2405 */ 2406 if (HYPERVISOR_vm_assist(VMASST_CMD_enable, 2407 VMASST_TYPE_4gb_segments) < 0) 2408 dboot_panic("HYPERVISOR_vm_assist(4gb_segments) failed"); 2409 #endif /* !_BOOT_TARGET_amd64 */ 2410 2411 #else /* __xpv */ 2412 2413 /* 2414 * use cpuid to enable MMU features 2415 */ 2416 if (have_cpuid()) { 2417 uint32_t eax, edx; 2418 2419 eax = 1; 2420 edx = get_cpuid_edx(&eax); 2421 if (edx & CPUID_INTC_EDX_PSE) 2422 largepage_support = 1; 2423 if (edx & CPUID_INTC_EDX_PGE) 2424 pge_support = 1; 2425 if (edx & CPUID_INTC_EDX_PAE) 2426 pae_support = 1; 2427 if (edx & CPUID_INTC_EDX_PAT) 2428 PAT_support = 1; 2429 2430 eax = 0x80000000; 2431 edx = get_cpuid_edx(&eax); 2432 if (eax >= 0x80000001) { 2433 eax = 0x80000001; 2434 edx = get_cpuid_edx(&eax); 2435 if (edx & CPUID_AMD_EDX_LM) 2436 amd64_support = 1; 2437 if (edx & CPUID_AMD_EDX_NX) 2438 NX_support = 1; 2439 } 2440 } else { 2441 dboot_printf("cpuid not supported\n"); 2442 } 2443 #endif /* __xpv */ 2444 2445 2446 #if defined(_BOOT_TARGET_amd64) 2447 if (amd64_support == 0) 2448 dboot_panic("long mode not supported, rebooting"); 2449 else if (pae_support == 0) 2450 dboot_panic("long mode, but no PAE; rebooting"); 2451 #else 2452 /* 2453 * Allow the command line to over-ride use of PAE for 32 bit. 2454 */ 2455 if (strstr(cmdline, "disablePAE=true") != NULL) { 2456 pae_support = 0; 2457 NX_support = 0; 2458 amd64_support = 0; 2459 } 2460 #endif 2461 2462 /* 2463 * initialize the simple memory allocator 2464 */ 2465 init_mem_alloc(); 2466 2467 #if !defined(__xpv) && !defined(_BOOT_TARGET_amd64) 2468 /* 2469 * disable PAE on 32 bit h/w w/o NX and < 4Gig of memory 2470 */ 2471 if (max_mem < FOUR_GIG && NX_support == 0) 2472 pae_support = 0; 2473 #endif 2474 2475 /* 2476 * configure mmu information 2477 */ 2478 if (pae_support) { 2479 shift_amt = shift_amt_pae; 2480 ptes_per_table = 512; 2481 pte_size = 8; 2482 lpagesize = TWO_MEG; 2483 #if defined(_BOOT_TARGET_amd64) 2484 top_level = 3; 2485 #else 2486 top_level = 2; 2487 #endif 2488 } else { 2489 pae_support = 0; 2490 NX_support = 0; 2491 shift_amt = shift_amt_nopae; 2492 ptes_per_table = 1024; 2493 pte_size = 4; 2494 lpagesize = FOUR_MEG; 2495 top_level = 1; 2496 } 2497 2498 DBG(PAT_support); 2499 DBG(pge_support); 2500 DBG(NX_support); 2501 DBG(largepage_support); 2502 DBG(amd64_support); 2503 DBG(top_level); 2504 DBG(pte_size); 2505 DBG(ptes_per_table); 2506 DBG(lpagesize); 2507 2508 #if defined(__xpv) 2509 ktext_phys = ONE_GIG; /* from UNIX Mapfile */ 2510 #else 2511 ktext_phys = FOUR_MEG; /* from UNIX Mapfile */ 2512 #endif 2513 2514 #if !defined(__xpv) && defined(_BOOT_TARGET_amd64) 2515 /* 2516 * For grub, copy kernel bits from the ELF64 file to final place. 2517 */ 2518 DBG_MSG("\nAllocating nucleus pages.\n"); 2519 ktext_phys = (uintptr_t)do_mem_alloc(ksize, FOUR_MEG); 2520 2521 if (ktext_phys == 0) 2522 dboot_panic("failed to allocate aligned kernel memory"); 2523 DBG(load_addr); 2524 if (dboot_elfload64(load_addr) != 0) 2525 dboot_panic("failed to parse kernel ELF image, rebooting"); 2526 #endif 2527 2528 DBG(ktext_phys); 2529 2530 /* 2531 * Allocate page tables. 2532 */ 2533 build_page_tables(); 2534 2535 /* 2536 * return to assembly code to switch to running kernel 2537 */ 2538 entry_addr_low = (uint32_t)target_kernel_text; 2539 DBG(entry_addr_low); 2540 bi->bi_use_largepage = largepage_support; 2541 bi->bi_use_pae = pae_support; 2542 bi->bi_use_pge = pge_support; 2543 bi->bi_use_nx = NX_support; 2544 2545 #if defined(__xpv) 2546 2547 bi->bi_next_paddr = next_avail_addr - mfn_base; 2548 DBG(bi->bi_next_paddr); 2549 bi->bi_next_vaddr = (native_ptr_t)(uintptr_t)next_avail_addr; 2550 DBG(bi->bi_next_vaddr); 2551 2552 /* 2553 * unmap unused pages in start area to make them available for DMA 2554 */ 2555 while (next_avail_addr < scratch_end) { 2556 (void) HYPERVISOR_update_va_mapping(next_avail_addr, 2557 0, UVMF_INVLPG | UVMF_LOCAL); 2558 next_avail_addr += MMU_PAGESIZE; 2559 } 2560 2561 bi->bi_xen_start_info = (native_ptr_t)(uintptr_t)xen_info; 2562 DBG((uintptr_t)HYPERVISOR_shared_info); 2563 bi->bi_shared_info = (native_ptr_t)HYPERVISOR_shared_info; 2564 bi->bi_top_page_table = (uintptr_t)top_page_table - mfn_base; 2565 2566 #else /* __xpv */ 2567 2568 bi->bi_next_paddr = next_avail_addr; 2569 DBG(bi->bi_next_paddr); 2570 bi->bi_next_vaddr = (native_ptr_t)(uintptr_t)next_avail_addr; 2571 DBG(bi->bi_next_vaddr); 2572 bi->bi_mb_version = multiboot_version; 2573 2574 switch (multiboot_version) { 2575 case 1: 2576 bi->bi_mb_info = (native_ptr_t)(uintptr_t)mb_info; 2577 break; 2578 case 2: 2579 bi->bi_mb_info = (native_ptr_t)(uintptr_t)mb2_info; 2580 break; 2581 default: 2582 dboot_panic("Unknown multiboot version: %d\n", 2583 multiboot_version); 2584 break; 2585 } 2586 bi->bi_top_page_table = (uintptr_t)top_page_table; 2587 2588 #endif /* __xpv */ 2589 2590 bi->bi_kseg_size = FOUR_MEG; 2591 DBG(bi->bi_kseg_size); 2592 2593 #ifndef __xpv 2594 if (map_debug) 2595 dump_tables(); 2596 #endif 2597 2598 DBG_MSG("\n\n*** DBOOT DONE -- back to asm to jump to kernel\n\n"); 2599 2600 #ifndef __xpv 2601 /* Update boot info with FB data */ 2602 fb->cursor.origin.x = fb_info.cursor.origin.x; 2603 fb->cursor.origin.y = fb_info.cursor.origin.y; 2604 fb->cursor.pos.x = fb_info.cursor.pos.x; 2605 fb->cursor.pos.y = fb_info.cursor.pos.y; 2606 fb->cursor.visible = fb_info.cursor.visible; 2607 #endif 2608 } 2609