xref: /illumos-gate/usr/src/uts/i86pc/dboot/dboot_startkern.c (revision ddb365bfc9e868ad24ccdcb0dc91af18b10df082)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright 2020 Joyent, Inc.
27  */
28 
29 
30 #include <sys/types.h>
31 #include <sys/machparam.h>
32 #include <sys/x86_archext.h>
33 #include <sys/systm.h>
34 #include <sys/mach_mmu.h>
35 #include <sys/multiboot.h>
36 #include <sys/multiboot2.h>
37 #include <sys/multiboot2_impl.h>
38 #include <sys/sysmacros.h>
39 #include <sys/framebuffer.h>
40 #include <sys/sha1.h>
41 #include <util/string.h>
42 #include <util/strtolctype.h>
43 #include <sys/efi.h>
44 
45 /*
46  * Compile time debug knob. We do not have any early mechanism to control it
47  * as the boot is the earliest mechanism we have, and we do not want to have
48  * it being switched on by default.
49  */
50 int dboot_debug = 0;
51 
52 #if defined(__xpv)
53 
54 #include <sys/hypervisor.h>
55 uintptr_t xen_virt_start;
56 pfn_t *mfn_to_pfn_mapping;
57 
58 #else /* !__xpv */
59 
60 extern multiboot_header_t mb_header;
61 extern uint32_t mb2_load_addr;
62 extern int have_cpuid(void);
63 
64 #endif /* !__xpv */
65 
66 #include <sys/inttypes.h>
67 #include <sys/bootinfo.h>
68 #include <sys/mach_mmu.h>
69 #include <sys/boot_console.h>
70 
71 #include "dboot_asm.h"
72 #include "dboot_printf.h"
73 #include "dboot_xboot.h"
74 #include "dboot_elfload.h"
75 
76 #define	SHA1_ASCII_LENGTH	(SHA1_DIGEST_LENGTH * 2)
77 
78 /*
79  * This file contains code that runs to transition us from either a multiboot
80  * compliant loader (32 bit non-paging) or a XPV domain loader to
81  * regular kernel execution. Its task is to setup the kernel memory image
82  * and page tables.
83  *
84  * The code executes as:
85  *	- 32 bits under GRUB (for 32 or 64 bit Solaris)
86  *	- a 32 bit program for the 32-bit PV hypervisor
87  *	- a 64 bit program for the 64-bit PV hypervisor (at least for now)
88  *
89  * Under the PV hypervisor, we must create mappings for any memory beyond the
90  * initial start of day allocation (such as the kernel itself).
91  *
92  * When on the metal, the mapping between maddr_t and paddr_t is 1:1.
93  * Since we are running in real mode, so all such memory is accessible.
94  */
95 
96 /*
97  * Standard bits used in PTE (page level) and PTP (internal levels)
98  */
99 x86pte_t ptp_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_USER;
100 x86pte_t pte_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_MOD | PT_NOCONSIST;
101 
102 /*
103  * This is the target addresses (physical) where the kernel text and data
104  * nucleus pages will be unpacked. On the hypervisor this is actually a
105  * virtual address.
106  */
107 paddr_t ktext_phys;
108 uint32_t ksize = 2 * FOUR_MEG;	/* kernel nucleus is 8Meg */
109 
110 static uint64_t target_kernel_text;	/* value to use for KERNEL_TEXT */
111 
112 /*
113  * The stack is setup in assembler before entering startup_kernel()
114  */
115 char stack_space[STACK_SIZE];
116 
117 /*
118  * Used to track physical memory allocation
119  */
120 static paddr_t next_avail_addr = 0;
121 
122 #if defined(__xpv)
123 /*
124  * Additional information needed for hypervisor memory allocation.
125  * Only memory up to scratch_end is mapped by page tables.
126  * mfn_base is the start of the hypervisor virtual image. It's ONE_GIG, so
127  * to derive a pfn from a pointer, you subtract mfn_base.
128  */
129 
130 static paddr_t scratch_end = 0;	/* we can't write all of mem here */
131 static paddr_t mfn_base;		/* addr corresponding to mfn_list[0] */
132 start_info_t *xen_info;
133 
134 #else	/* __xpv */
135 
136 /*
137  * If on the metal, then we have a multiboot loader.
138  */
139 uint32_t mb_magic;			/* magic from boot loader */
140 uint32_t mb_addr;			/* multiboot info package from loader */
141 int multiboot_version;
142 multiboot_info_t *mb_info;
143 multiboot2_info_header_t *mb2_info;
144 multiboot_tag_mmap_t *mb2_mmap_tagp;
145 int num_entries;			/* mmap entry count */
146 boolean_t num_entries_set;		/* is mmap entry count set */
147 uintptr_t load_addr;
148 static boot_framebuffer_t framebuffer __aligned(16);
149 static boot_framebuffer_t *fb;
150 
151 /* can not be automatic variables because of alignment */
152 static efi_guid_t smbios3 = SMBIOS3_TABLE_GUID;
153 static efi_guid_t smbios = SMBIOS_TABLE_GUID;
154 static efi_guid_t acpi2 = EFI_ACPI_TABLE_GUID;
155 static efi_guid_t acpi1 = ACPI_10_TABLE_GUID;
156 #endif	/* __xpv */
157 
158 /*
159  * This contains information passed to the kernel
160  */
161 struct xboot_info boot_info __aligned(16);
162 struct xboot_info *bi;
163 
164 /*
165  * Page table and memory stuff.
166  */
167 static paddr_t max_mem;			/* maximum memory address */
168 
169 /*
170  * Information about processor MMU
171  */
172 int amd64_support = 0;
173 int largepage_support = 0;
174 int pae_support = 0;
175 int pge_support = 0;
176 int NX_support = 0;
177 int PAT_support = 0;
178 
179 /*
180  * Low 32 bits of kernel entry address passed back to assembler.
181  * When running a 64 bit kernel, the high 32 bits are 0xffffffff.
182  */
183 uint32_t entry_addr_low;
184 
185 /*
186  * Memlists for the kernel. We shouldn't need a lot of these.
187  */
188 #define	MAX_MEMLIST (50)
189 struct boot_memlist memlists[MAX_MEMLIST];
190 uint_t memlists_used = 0;
191 struct boot_memlist pcimemlists[MAX_MEMLIST];
192 uint_t pcimemlists_used = 0;
193 struct boot_memlist rsvdmemlists[MAX_MEMLIST];
194 uint_t rsvdmemlists_used = 0;
195 
196 /*
197  * This should match what's in the bootloader.  It's arbitrary, but GRUB
198  * in particular has limitations on how much space it can use before it
199  * stops working properly.  This should be enough.
200  */
201 struct boot_modules modules[MAX_BOOT_MODULES];
202 uint_t modules_used = 0;
203 
204 #ifdef __xpv
205 /*
206  * Xen strips the size field out of the mb_memory_map_t, see struct e820entry
207  * definition in Xen source.
208  */
209 typedef struct {
210 	uint32_t	base_addr_low;
211 	uint32_t	base_addr_high;
212 	uint32_t	length_low;
213 	uint32_t	length_high;
214 	uint32_t	type;
215 } mmap_t;
216 
217 /*
218  * There is 512KB of scratch area after the boot stack page.
219  * We'll use that for everything except the kernel nucleus pages which are too
220  * big to fit there and are allocated last anyway.
221  */
222 #define	MAXMAPS	100
223 static mmap_t map_buffer[MAXMAPS];
224 #else
225 typedef mb_memory_map_t mmap_t;
226 #endif
227 
228 /*
229  * Debugging macros
230  */
231 uint_t prom_debug = 0;
232 uint_t map_debug = 0;
233 
234 static char noname[2] = "-";
235 
236 /*
237  * Either hypervisor-specific or grub-specific code builds the initial
238  * memlists. This code does the sort/merge/link for final use.
239  */
240 static void
241 sort_physinstall(void)
242 {
243 	int i;
244 #if !defined(__xpv)
245 	int j;
246 	struct boot_memlist tmp;
247 
248 	/*
249 	 * Now sort the memlists, in case they weren't in order.
250 	 * Yeah, this is a bubble sort; small, simple and easy to get right.
251 	 */
252 	DBG_MSG("Sorting phys-installed list\n");
253 	for (j = memlists_used - 1; j > 0; --j) {
254 		for (i = 0; i < j; ++i) {
255 			if (memlists[i].addr < memlists[i + 1].addr)
256 				continue;
257 			tmp = memlists[i];
258 			memlists[i] = memlists[i + 1];
259 			memlists[i + 1] = tmp;
260 		}
261 	}
262 
263 	/*
264 	 * Merge any memlists that don't have holes between them.
265 	 */
266 	for (i = 0; i <= memlists_used - 1; ++i) {
267 		if (memlists[i].addr + memlists[i].size != memlists[i + 1].addr)
268 			continue;
269 
270 		if (prom_debug)
271 			dboot_printf(
272 			    "merging mem segs %" PRIx64 "...%" PRIx64
273 			    " w/ %" PRIx64 "...%" PRIx64 "\n",
274 			    memlists[i].addr,
275 			    memlists[i].addr + memlists[i].size,
276 			    memlists[i + 1].addr,
277 			    memlists[i + 1].addr + memlists[i + 1].size);
278 
279 		memlists[i].size += memlists[i + 1].size;
280 		for (j = i + 1; j < memlists_used - 1; ++j)
281 			memlists[j] = memlists[j + 1];
282 		--memlists_used;
283 		DBG(memlists_used);
284 		--i;	/* after merging we need to reexamine, so do this */
285 	}
286 #endif	/* __xpv */
287 
288 	if (prom_debug) {
289 		dboot_printf("\nFinal memlists:\n");
290 		for (i = 0; i < memlists_used; ++i) {
291 			dboot_printf("\t%d: addr=%" PRIx64 " size=%"
292 			    PRIx64 "\n", i, memlists[i].addr, memlists[i].size);
293 		}
294 	}
295 
296 	/*
297 	 * link together the memlists with native size pointers
298 	 */
299 	memlists[0].next = 0;
300 	memlists[0].prev = 0;
301 	for (i = 1; i < memlists_used; ++i) {
302 		memlists[i].prev = (native_ptr_t)(uintptr_t)(memlists + i - 1);
303 		memlists[i].next = 0;
304 		memlists[i - 1].next = (native_ptr_t)(uintptr_t)(memlists + i);
305 	}
306 	bi->bi_phys_install = (native_ptr_t)(uintptr_t)memlists;
307 	DBG(bi->bi_phys_install);
308 }
309 
310 /*
311  * build bios reserved memlists
312  */
313 static void
314 build_rsvdmemlists(void)
315 {
316 	int i;
317 
318 	rsvdmemlists[0].next = 0;
319 	rsvdmemlists[0].prev = 0;
320 	for (i = 1; i < rsvdmemlists_used; ++i) {
321 		rsvdmemlists[i].prev =
322 		    (native_ptr_t)(uintptr_t)(rsvdmemlists + i - 1);
323 		rsvdmemlists[i].next = 0;
324 		rsvdmemlists[i - 1].next =
325 		    (native_ptr_t)(uintptr_t)(rsvdmemlists + i);
326 	}
327 	bi->bi_rsvdmem = (native_ptr_t)(uintptr_t)rsvdmemlists;
328 	DBG(bi->bi_rsvdmem);
329 }
330 
331 #if defined(__xpv)
332 
333 /*
334  * halt on the hypervisor after a delay to drain console output
335  */
336 void
337 dboot_halt(void)
338 {
339 	uint_t i = 10000;
340 
341 	while (--i)
342 		(void) HYPERVISOR_yield();
343 	(void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
344 }
345 
346 /*
347  * From a machine address, find the corresponding pseudo-physical address.
348  * Pseudo-physical address are contiguous and run from mfn_base in each VM.
349  * Machine addresses are the real underlying hardware addresses.
350  * These are needed for page table entries. Note that this routine is
351  * poorly protected. A bad value of "ma" will cause a page fault.
352  */
353 paddr_t
354 ma_to_pa(maddr_t ma)
355 {
356 	ulong_t pgoff = ma & MMU_PAGEOFFSET;
357 	ulong_t pfn = mfn_to_pfn_mapping[mmu_btop(ma)];
358 	paddr_t pa;
359 
360 	if (pfn >= xen_info->nr_pages)
361 		return (-(paddr_t)1);
362 	pa = mfn_base + mmu_ptob((paddr_t)pfn) + pgoff;
363 #ifdef DEBUG
364 	if (ma != pa_to_ma(pa))
365 		dboot_printf("ma_to_pa(%" PRIx64 ") got %" PRIx64 ", "
366 		    "pa_to_ma() says %" PRIx64 "\n", ma, pa, pa_to_ma(pa));
367 #endif
368 	return (pa);
369 }
370 
371 /*
372  * From a pseudo-physical address, find the corresponding machine address.
373  */
374 maddr_t
375 pa_to_ma(paddr_t pa)
376 {
377 	pfn_t pfn;
378 	ulong_t mfn;
379 
380 	pfn = mmu_btop(pa - mfn_base);
381 	if (pa < mfn_base || pfn >= xen_info->nr_pages)
382 		dboot_panic("pa_to_ma(): illegal address 0x%lx", (ulong_t)pa);
383 	mfn = ((ulong_t *)xen_info->mfn_list)[pfn];
384 #ifdef DEBUG
385 	if (mfn_to_pfn_mapping[mfn] != pfn)
386 		dboot_printf("pa_to_ma(pfn=%lx) got %lx ma_to_pa() says %lx\n",
387 		    pfn, mfn, mfn_to_pfn_mapping[mfn]);
388 #endif
389 	return (mfn_to_ma(mfn) | (pa & MMU_PAGEOFFSET));
390 }
391 
392 #endif	/* __xpv */
393 
394 x86pte_t
395 get_pteval(paddr_t table, uint_t index)
396 {
397 	if (pae_support)
398 		return (((x86pte_t *)(uintptr_t)table)[index]);
399 	return (((x86pte32_t *)(uintptr_t)table)[index]);
400 }
401 
402 /*ARGSUSED*/
403 void
404 set_pteval(paddr_t table, uint_t index, uint_t level, x86pte_t pteval)
405 {
406 #ifdef __xpv
407 	mmu_update_t t;
408 	maddr_t mtable = pa_to_ma(table);
409 	int retcnt;
410 
411 	t.ptr = (mtable + index * pte_size) | MMU_NORMAL_PT_UPDATE;
412 	t.val = pteval;
413 	if (HYPERVISOR_mmu_update(&t, 1, &retcnt, DOMID_SELF) || retcnt != 1)
414 		dboot_panic("HYPERVISOR_mmu_update() failed");
415 #else /* __xpv */
416 	uintptr_t tab_addr = (uintptr_t)table;
417 
418 	if (pae_support)
419 		((x86pte_t *)tab_addr)[index] = pteval;
420 	else
421 		((x86pte32_t *)tab_addr)[index] = (x86pte32_t)pteval;
422 	if (level == top_level && level == 2)
423 		reload_cr3();
424 #endif /* __xpv */
425 }
426 
427 paddr_t
428 make_ptable(x86pte_t *pteval, uint_t level)
429 {
430 	paddr_t new_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
431 
432 	if (level == top_level && level == 2)
433 		*pteval = pa_to_ma((uintptr_t)new_table) | PT_VALID;
434 	else
435 		*pteval = pa_to_ma((uintptr_t)new_table) | ptp_bits;
436 
437 #ifdef __xpv
438 	/* Remove write permission to the new page table. */
439 	if (HYPERVISOR_update_va_mapping(new_table,
440 	    *pteval & ~(x86pte_t)PT_WRITABLE, UVMF_INVLPG | UVMF_LOCAL))
441 		dboot_panic("HYP_update_va_mapping error");
442 #endif
443 
444 	if (map_debug)
445 		dboot_printf("new page table lvl=%d paddr=0x%lx ptp=0x%"
446 		    PRIx64 "\n", level, (ulong_t)new_table, *pteval);
447 	return (new_table);
448 }
449 
450 x86pte_t *
451 map_pte(paddr_t table, uint_t index)
452 {
453 	return ((x86pte_t *)(uintptr_t)(table + index * pte_size));
454 }
455 
456 /*
457  * dump out the contents of page tables...
458  */
459 static void
460 dump_tables(void)
461 {
462 	uint_t save_index[4];	/* for recursion */
463 	char *save_table[4];	/* for recursion */
464 	uint_t	l;
465 	uint64_t va;
466 	uint64_t pgsize;
467 	int index;
468 	int i;
469 	x86pte_t pteval;
470 	char *table;
471 	static char *tablist = "\t\t\t";
472 	char *tabs = tablist + 3 - top_level;
473 	uint_t pa, pa1;
474 #if !defined(__xpv)
475 #define	maddr_t paddr_t
476 #endif /* !__xpv */
477 
478 	dboot_printf("Finished pagetables:\n");
479 	table = (char *)(uintptr_t)top_page_table;
480 	l = top_level;
481 	va = 0;
482 	for (index = 0; index < ptes_per_table; ++index) {
483 		pgsize = 1ull << shift_amt[l];
484 		if (pae_support)
485 			pteval = ((x86pte_t *)table)[index];
486 		else
487 			pteval = ((x86pte32_t *)table)[index];
488 		if (pteval == 0)
489 			goto next_entry;
490 
491 		dboot_printf("%s %p[0x%x] = %" PRIx64 ", va=%" PRIx64,
492 		    tabs + l, (void *)table, index, (uint64_t)pteval, va);
493 		pa = ma_to_pa(pteval & MMU_PAGEMASK);
494 		dboot_printf(" physaddr=%x\n", pa);
495 
496 		/*
497 		 * Don't try to walk hypervisor private pagetables
498 		 */
499 		if ((l > 1 || (l == 1 && (pteval & PT_PAGESIZE) == 0))) {
500 			save_table[l] = table;
501 			save_index[l] = index;
502 			--l;
503 			index = -1;
504 			table = (char *)(uintptr_t)
505 			    ma_to_pa(pteval & MMU_PAGEMASK);
506 			goto recursion;
507 		}
508 
509 		/*
510 		 * shorten dump for consecutive mappings
511 		 */
512 		for (i = 1; index + i < ptes_per_table; ++i) {
513 			if (pae_support)
514 				pteval = ((x86pte_t *)table)[index + i];
515 			else
516 				pteval = ((x86pte32_t *)table)[index + i];
517 			if (pteval == 0)
518 				break;
519 			pa1 = ma_to_pa(pteval & MMU_PAGEMASK);
520 			if (pa1 != pa + i * pgsize)
521 				break;
522 		}
523 		if (i > 2) {
524 			dboot_printf("%s...\n", tabs + l);
525 			va += pgsize * (i - 2);
526 			index += i - 2;
527 		}
528 next_entry:
529 		va += pgsize;
530 		if (l == 3 && index == 256)	/* VA hole */
531 			va = 0xffff800000000000ull;
532 recursion:
533 		;
534 	}
535 	if (l < top_level) {
536 		++l;
537 		index = save_index[l];
538 		table = save_table[l];
539 		goto recursion;
540 	}
541 }
542 
543 /*
544  * Add a mapping for the machine page at the given virtual address.
545  */
546 static void
547 map_ma_at_va(maddr_t ma, native_ptr_t va, uint_t level)
548 {
549 	x86pte_t *ptep;
550 	x86pte_t pteval;
551 
552 	pteval = ma | pte_bits;
553 	if (level > 0)
554 		pteval |= PT_PAGESIZE;
555 	if (va >= target_kernel_text && pge_support)
556 		pteval |= PT_GLOBAL;
557 
558 	if (map_debug && ma != va)
559 		dboot_printf("mapping ma=0x%" PRIx64 " va=0x%" PRIx64
560 		    " pte=0x%" PRIx64 " l=%d\n",
561 		    (uint64_t)ma, (uint64_t)va, pteval, level);
562 
563 #if defined(__xpv)
564 	/*
565 	 * see if we can avoid find_pte() on the hypervisor
566 	 */
567 	if (HYPERVISOR_update_va_mapping(va, pteval,
568 	    UVMF_INVLPG | UVMF_LOCAL) == 0)
569 		return;
570 #endif
571 
572 	/*
573 	 * Find the pte that will map this address. This creates any
574 	 * missing intermediate level page tables
575 	 */
576 	ptep = find_pte(va, NULL, level, 0);
577 
578 	/*
579 	 * When paravirtualized, we must use hypervisor calls to modify the
580 	 * PTE, since paging is active. On real hardware we just write to
581 	 * the pagetables which aren't in use yet.
582 	 */
583 #if defined(__xpv)
584 	ptep = ptep;	/* shut lint up */
585 	if (HYPERVISOR_update_va_mapping(va, pteval, UVMF_INVLPG | UVMF_LOCAL))
586 		dboot_panic("mmu_update failed-map_pa_at_va va=0x%" PRIx64
587 		    " l=%d ma=0x%" PRIx64 ", pte=0x%" PRIx64 "",
588 		    (uint64_t)va, level, (uint64_t)ma, pteval);
589 #else
590 	if (va < 1024 * 1024)
591 		pteval |= PT_NOCACHE;		/* for video RAM */
592 	if (pae_support)
593 		*ptep = pteval;
594 	else
595 		*((x86pte32_t *)ptep) = (x86pte32_t)pteval;
596 #endif
597 }
598 
599 /*
600  * Add a mapping for the physical page at the given virtual address.
601  */
602 static void
603 map_pa_at_va(paddr_t pa, native_ptr_t va, uint_t level)
604 {
605 	map_ma_at_va(pa_to_ma(pa), va, level);
606 }
607 
608 /*
609  * This is called to remove start..end from the
610  * possible range of PCI addresses.
611  */
612 const uint64_t pci_lo_limit = 0x00100000ul;
613 const uint64_t pci_hi_limit = 0xfff00000ul;
614 static void
615 exclude_from_pci(uint64_t start, uint64_t end)
616 {
617 	int i;
618 	int j;
619 	struct boot_memlist *ml;
620 
621 	for (i = 0; i < pcimemlists_used; ++i) {
622 		ml = &pcimemlists[i];
623 
624 		/* delete the entire range? */
625 		if (start <= ml->addr && ml->addr + ml->size <= end) {
626 			--pcimemlists_used;
627 			for (j = i; j < pcimemlists_used; ++j)
628 				pcimemlists[j] = pcimemlists[j + 1];
629 			--i;	/* to revisit the new one at this index */
630 		}
631 
632 		/* split a range? */
633 		else if (ml->addr < start && end < ml->addr + ml->size) {
634 
635 			++pcimemlists_used;
636 			if (pcimemlists_used > MAX_MEMLIST)
637 				dboot_panic("too many pcimemlists");
638 
639 			for (j = pcimemlists_used - 1; j > i; --j)
640 				pcimemlists[j] = pcimemlists[j - 1];
641 			ml->size = start - ml->addr;
642 
643 			++ml;
644 			ml->size = (ml->addr + ml->size) - end;
645 			ml->addr = end;
646 			++i;	/* skip on to next one */
647 		}
648 
649 		/* cut memory off the start? */
650 		else if (ml->addr < end && end < ml->addr + ml->size) {
651 			ml->size -= end - ml->addr;
652 			ml->addr = end;
653 		}
654 
655 		/* cut memory off the end? */
656 		else if (ml->addr <= start && start < ml->addr + ml->size) {
657 			ml->size = start - ml->addr;
658 		}
659 	}
660 }
661 
662 /*
663  * During memory allocation, find the highest address not used yet.
664  */
665 static void
666 check_higher(paddr_t a)
667 {
668 	if (a < next_avail_addr)
669 		return;
670 	next_avail_addr = RNDUP(a + 1, MMU_PAGESIZE);
671 	DBG(next_avail_addr);
672 }
673 
674 static int
675 dboot_loader_mmap_entries(void)
676 {
677 #if !defined(__xpv)
678 	if (num_entries_set == B_TRUE)
679 		return (num_entries);
680 
681 	switch (multiboot_version) {
682 	case 1:
683 		DBG(mb_info->flags);
684 		if (mb_info->flags & 0x40) {
685 			mb_memory_map_t *mmap;
686 			caddr32_t mmap_addr;
687 
688 			DBG(mb_info->mmap_addr);
689 			DBG(mb_info->mmap_length);
690 			check_higher(mb_info->mmap_addr + mb_info->mmap_length);
691 
692 			for (mmap_addr = mb_info->mmap_addr;
693 			    mmap_addr < mb_info->mmap_addr +
694 			    mb_info->mmap_length;
695 			    mmap_addr += mmap->size + sizeof (mmap->size)) {
696 				mmap = (mb_memory_map_t *)(uintptr_t)mmap_addr;
697 				++num_entries;
698 			}
699 
700 			num_entries_set = B_TRUE;
701 		}
702 		break;
703 	case 2:
704 		num_entries_set = B_TRUE;
705 		num_entries = dboot_multiboot2_mmap_nentries(mb2_info,
706 		    mb2_mmap_tagp);
707 		break;
708 	default:
709 		dboot_panic("Unknown multiboot version: %d\n",
710 		    multiboot_version);
711 		break;
712 	}
713 	return (num_entries);
714 #else
715 	return (MAXMAPS);
716 #endif
717 }
718 
719 static uint32_t
720 dboot_loader_mmap_get_type(int index)
721 {
722 #if !defined(__xpv)
723 	mb_memory_map_t *mp, *mpend;
724 	int i;
725 
726 	switch (multiboot_version) {
727 	case 1:
728 		mp = (mb_memory_map_t *)(uintptr_t)mb_info->mmap_addr;
729 		mpend = (mb_memory_map_t *)(uintptr_t)
730 		    (mb_info->mmap_addr + mb_info->mmap_length);
731 
732 		for (i = 0; mp < mpend && i != index; i++)
733 			mp = (mb_memory_map_t *)((uintptr_t)mp + mp->size +
734 			    sizeof (mp->size));
735 		if (mp >= mpend) {
736 			dboot_panic("dboot_loader_mmap_get_type(): index "
737 			    "out of bounds: %d\n", index);
738 		}
739 		return (mp->type);
740 
741 	case 2:
742 		return (dboot_multiboot2_mmap_get_type(mb2_info,
743 		    mb2_mmap_tagp, index));
744 
745 	default:
746 		dboot_panic("Unknown multiboot version: %d\n",
747 		    multiboot_version);
748 		break;
749 	}
750 	return (0);
751 #else
752 	return (map_buffer[index].type);
753 #endif
754 }
755 
756 static uint64_t
757 dboot_loader_mmap_get_base(int index)
758 {
759 #if !defined(__xpv)
760 	mb_memory_map_t *mp, *mpend;
761 	int i;
762 
763 	switch (multiboot_version) {
764 	case 1:
765 		mp = (mb_memory_map_t *)mb_info->mmap_addr;
766 		mpend = (mb_memory_map_t *)
767 		    (mb_info->mmap_addr + mb_info->mmap_length);
768 
769 		for (i = 0; mp < mpend && i != index; i++)
770 			mp = (mb_memory_map_t *)((uintptr_t)mp + mp->size +
771 			    sizeof (mp->size));
772 		if (mp >= mpend) {
773 			dboot_panic("dboot_loader_mmap_get_base(): index "
774 			    "out of bounds: %d\n", index);
775 		}
776 		return (((uint64_t)mp->base_addr_high << 32) +
777 		    (uint64_t)mp->base_addr_low);
778 
779 	case 2:
780 		return (dboot_multiboot2_mmap_get_base(mb2_info,
781 		    mb2_mmap_tagp, index));
782 
783 	default:
784 		dboot_panic("Unknown multiboot version: %d\n",
785 		    multiboot_version);
786 		break;
787 	}
788 	return (0);
789 #else
790 	return (((uint64_t)map_buffer[index].base_addr_high << 32) +
791 	    (uint64_t)map_buffer[index].base_addr_low);
792 #endif
793 }
794 
795 static uint64_t
796 dboot_loader_mmap_get_length(int index)
797 {
798 #if !defined(__xpv)
799 	mb_memory_map_t *mp, *mpend;
800 	int i;
801 
802 	switch (multiboot_version) {
803 	case 1:
804 		mp = (mb_memory_map_t *)mb_info->mmap_addr;
805 		mpend = (mb_memory_map_t *)
806 		    (mb_info->mmap_addr + mb_info->mmap_length);
807 
808 		for (i = 0; mp < mpend && i != index; i++)
809 			mp = (mb_memory_map_t *)((uintptr_t)mp + mp->size +
810 			    sizeof (mp->size));
811 		if (mp >= mpend) {
812 			dboot_panic("dboot_loader_mmap_get_length(): index "
813 			    "out of bounds: %d\n", index);
814 		}
815 		return (((uint64_t)mp->length_high << 32) +
816 		    (uint64_t)mp->length_low);
817 
818 	case 2:
819 		return (dboot_multiboot2_mmap_get_length(mb2_info,
820 		    mb2_mmap_tagp, index));
821 
822 	default:
823 		dboot_panic("Unknown multiboot version: %d\n",
824 		    multiboot_version);
825 		break;
826 	}
827 	return (0);
828 #else
829 	return (((uint64_t)map_buffer[index].length_high << 32) +
830 	    (uint64_t)map_buffer[index].length_low);
831 #endif
832 }
833 
834 static void
835 build_pcimemlists(void)
836 {
837 	uint64_t page_offset = MMU_PAGEOFFSET;	/* needs to be 64 bits */
838 	uint64_t start;
839 	uint64_t end;
840 	int i, num;
841 
842 	/*
843 	 * initialize
844 	 */
845 	pcimemlists[0].addr = pci_lo_limit;
846 	pcimemlists[0].size = pci_hi_limit - pci_lo_limit;
847 	pcimemlists_used = 1;
848 
849 	num = dboot_loader_mmap_entries();
850 	/*
851 	 * Fill in PCI memlists.
852 	 */
853 	for (i = 0; i < num; ++i) {
854 		start = dboot_loader_mmap_get_base(i);
855 		end = start + dboot_loader_mmap_get_length(i);
856 
857 		if (prom_debug)
858 			dboot_printf("\ttype: %d %" PRIx64 "..%"
859 			    PRIx64 "\n", dboot_loader_mmap_get_type(i),
860 			    start, end);
861 
862 		/*
863 		 * page align start and end
864 		 */
865 		start = (start + page_offset) & ~page_offset;
866 		end &= ~page_offset;
867 		if (end <= start)
868 			continue;
869 
870 		exclude_from_pci(start, end);
871 	}
872 
873 	/*
874 	 * Finish off the pcimemlist
875 	 */
876 	if (prom_debug) {
877 		for (i = 0; i < pcimemlists_used; ++i) {
878 			dboot_printf("pcimemlist entry 0x%" PRIx64 "..0x%"
879 			    PRIx64 "\n", pcimemlists[i].addr,
880 			    pcimemlists[i].addr + pcimemlists[i].size);
881 		}
882 	}
883 	pcimemlists[0].next = 0;
884 	pcimemlists[0].prev = 0;
885 	for (i = 1; i < pcimemlists_used; ++i) {
886 		pcimemlists[i].prev =
887 		    (native_ptr_t)(uintptr_t)(pcimemlists + i - 1);
888 		pcimemlists[i].next = 0;
889 		pcimemlists[i - 1].next =
890 		    (native_ptr_t)(uintptr_t)(pcimemlists + i);
891 	}
892 	bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists;
893 	DBG(bi->bi_pcimem);
894 }
895 
896 #if defined(__xpv)
897 /*
898  * Initialize memory allocator stuff from hypervisor-supplied start info.
899  */
900 static void
901 init_mem_alloc(void)
902 {
903 	int	local;	/* variables needed to find start region */
904 	paddr_t	scratch_start;
905 	xen_memory_map_t map;
906 
907 	DBG_MSG("Entered init_mem_alloc()\n");
908 
909 	/*
910 	 * Free memory follows the stack. There's at least 512KB of scratch
911 	 * space, rounded up to at least 2Mb alignment.  That should be enough
912 	 * for the page tables we'll need to build.  The nucleus memory is
913 	 * allocated last and will be outside the addressible range.  We'll
914 	 * switch to new page tables before we unpack the kernel
915 	 */
916 	scratch_start = RNDUP((paddr_t)(uintptr_t)&local, MMU_PAGESIZE);
917 	DBG(scratch_start);
918 	scratch_end = RNDUP((paddr_t)scratch_start + 512 * 1024, TWO_MEG);
919 	DBG(scratch_end);
920 
921 	/*
922 	 * For paranoia, leave some space between hypervisor data and ours.
923 	 * Use 500 instead of 512.
924 	 */
925 	next_avail_addr = scratch_end - 500 * 1024;
926 	DBG(next_avail_addr);
927 
928 	/*
929 	 * The domain builder gives us at most 1 module
930 	 */
931 	DBG(xen_info->mod_len);
932 	if (xen_info->mod_len > 0) {
933 		DBG(xen_info->mod_start);
934 		modules[0].bm_addr =
935 		    (native_ptr_t)(uintptr_t)xen_info->mod_start;
936 		modules[0].bm_size = xen_info->mod_len;
937 		bi->bi_module_cnt = 1;
938 		bi->bi_modules = (native_ptr_t)(uintptr_t)modules;
939 	} else {
940 		bi->bi_module_cnt = 0;
941 		bi->bi_modules = (native_ptr_t)(uintptr_t)NULL;
942 	}
943 	DBG(bi->bi_module_cnt);
944 	DBG(bi->bi_modules);
945 
946 	DBG(xen_info->mfn_list);
947 	DBG(xen_info->nr_pages);
948 	max_mem = (paddr_t)xen_info->nr_pages << MMU_PAGESHIFT;
949 	DBG(max_mem);
950 
951 	/*
952 	 * Using pseudo-physical addresses, so only 1 memlist element
953 	 */
954 	memlists[0].addr = 0;
955 	DBG(memlists[0].addr);
956 	memlists[0].size = max_mem;
957 	DBG(memlists[0].size);
958 	memlists_used = 1;
959 	DBG(memlists_used);
960 
961 	/*
962 	 * finish building physinstall list
963 	 */
964 	sort_physinstall();
965 
966 	/*
967 	 * build bios reserved memlists
968 	 */
969 	build_rsvdmemlists();
970 
971 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
972 		/*
973 		 * build PCI Memory list
974 		 */
975 		map.nr_entries = MAXMAPS;
976 		/*LINTED: constant in conditional context*/
977 		set_xen_guest_handle(map.buffer, map_buffer);
978 		if (HYPERVISOR_memory_op(XENMEM_machine_memory_map, &map) != 0)
979 			dboot_panic("getting XENMEM_machine_memory_map failed");
980 		build_pcimemlists();
981 	}
982 }
983 
984 #else	/* !__xpv */
985 
986 static void
987 dboot_multiboot1_xboot_consinfo(void)
988 {
989 	fb->framebuffer = 0;
990 }
991 
992 static void
993 dboot_multiboot2_xboot_consinfo(void)
994 {
995 	multiboot_tag_framebuffer_t *fbtag;
996 	fbtag = dboot_multiboot2_find_tag(mb2_info,
997 	    MULTIBOOT_TAG_TYPE_FRAMEBUFFER);
998 	fb->framebuffer = (uint64_t)(uintptr_t)fbtag;
999 }
1000 
1001 static int
1002 dboot_multiboot_modcount(void)
1003 {
1004 	switch (multiboot_version) {
1005 	case 1:
1006 		return (mb_info->mods_count);
1007 
1008 	case 2:
1009 		return (dboot_multiboot2_modcount(mb2_info));
1010 
1011 	default:
1012 		dboot_panic("Unknown multiboot version: %d\n",
1013 		    multiboot_version);
1014 		break;
1015 	}
1016 	return (0);
1017 }
1018 
1019 static uint32_t
1020 dboot_multiboot_modstart(int index)
1021 {
1022 	switch (multiboot_version) {
1023 	case 1:
1024 		return (((mb_module_t *)mb_info->mods_addr)[index].mod_start);
1025 
1026 	case 2:
1027 		return (dboot_multiboot2_modstart(mb2_info, index));
1028 
1029 	default:
1030 		dboot_panic("Unknown multiboot version: %d\n",
1031 		    multiboot_version);
1032 		break;
1033 	}
1034 	return (0);
1035 }
1036 
1037 static uint32_t
1038 dboot_multiboot_modend(int index)
1039 {
1040 	switch (multiboot_version) {
1041 	case 1:
1042 		return (((mb_module_t *)mb_info->mods_addr)[index].mod_end);
1043 
1044 	case 2:
1045 		return (dboot_multiboot2_modend(mb2_info, index));
1046 
1047 	default:
1048 		dboot_panic("Unknown multiboot version: %d\n",
1049 		    multiboot_version);
1050 		break;
1051 	}
1052 	return (0);
1053 }
1054 
1055 static char *
1056 dboot_multiboot_modcmdline(int index)
1057 {
1058 	switch (multiboot_version) {
1059 	case 1:
1060 		return ((char *)((mb_module_t *)
1061 		    mb_info->mods_addr)[index].mod_name);
1062 
1063 	case 2:
1064 		return (dboot_multiboot2_modcmdline(mb2_info, index));
1065 
1066 	default:
1067 		dboot_panic("Unknown multiboot version: %d\n",
1068 		    multiboot_version);
1069 		break;
1070 	}
1071 	return (0);
1072 }
1073 
1074 /*
1075  * Find the modules used by console setup.
1076  * Since we need the console to print early boot messages, the console is set up
1077  * before anything else and therefore we need to pick up the needed modules.
1078  *
1079  * Note, we just will search for and if found, will pass the modules
1080  * to console setup, the proper module list processing will happen later.
1081  * Currently used modules are boot environment and console font.
1082  */
1083 static void
1084 dboot_find_console_modules(void)
1085 {
1086 	int i, modcount;
1087 	uint32_t mod_start, mod_end;
1088 	char *cmdline;
1089 
1090 	modcount = dboot_multiboot_modcount();
1091 	bi->bi_module_cnt = 0;
1092 	for (i = 0; i < modcount; ++i) {
1093 		cmdline = dboot_multiboot_modcmdline(i);
1094 		if (cmdline == NULL)
1095 			continue;
1096 
1097 		if (strstr(cmdline, "type=console-font") != NULL)
1098 			modules[bi->bi_module_cnt].bm_type = BMT_FONT;
1099 		else if (strstr(cmdline, "type=environment") != NULL)
1100 			modules[bi->bi_module_cnt].bm_type = BMT_ENV;
1101 		else
1102 			continue;
1103 
1104 		mod_start = dboot_multiboot_modstart(i);
1105 		mod_end = dboot_multiboot_modend(i);
1106 		modules[bi->bi_module_cnt].bm_addr =
1107 		    (native_ptr_t)(uintptr_t)mod_start;
1108 		modules[bi->bi_module_cnt].bm_size = mod_end - mod_start;
1109 		modules[bi->bi_module_cnt].bm_name =
1110 		    (native_ptr_t)(uintptr_t)NULL;
1111 		modules[bi->bi_module_cnt].bm_hash =
1112 		    (native_ptr_t)(uintptr_t)NULL;
1113 		bi->bi_module_cnt++;
1114 	}
1115 	if (bi->bi_module_cnt != 0)
1116 		bi->bi_modules = (native_ptr_t)(uintptr_t)modules;
1117 }
1118 
1119 static boolean_t
1120 dboot_multiboot_basicmeminfo(uint32_t *lower, uint32_t *upper)
1121 {
1122 	boolean_t rv = B_FALSE;
1123 
1124 	switch (multiboot_version) {
1125 	case 1:
1126 		if (mb_info->flags & 0x01) {
1127 			*lower = mb_info->mem_lower;
1128 			*upper = mb_info->mem_upper;
1129 			rv = B_TRUE;
1130 		}
1131 		break;
1132 
1133 	case 2:
1134 		return (dboot_multiboot2_basicmeminfo(mb2_info, lower, upper));
1135 
1136 	default:
1137 		dboot_panic("Unknown multiboot version: %d\n",
1138 		    multiboot_version);
1139 		break;
1140 	}
1141 	return (rv);
1142 }
1143 
1144 static uint8_t
1145 dboot_a2h(char v)
1146 {
1147 	if (v >= 'a')
1148 		return (v - 'a' + 0xa);
1149 	else if (v >= 'A')
1150 		return (v - 'A' + 0xa);
1151 	else if (v >= '0')
1152 		return (v - '0');
1153 	else
1154 		dboot_panic("bad ASCII hex character %c\n", v);
1155 
1156 	return (0);
1157 }
1158 
1159 static void
1160 digest_a2h(const char *ascii, uint8_t *digest)
1161 {
1162 	unsigned int i;
1163 
1164 	for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
1165 		digest[i] = dboot_a2h(ascii[i * 2]) << 4;
1166 		digest[i] |= dboot_a2h(ascii[i * 2 + 1]);
1167 	}
1168 }
1169 
1170 /*
1171  * Generate a SHA-1 hash of the first len bytes of image, and compare it with
1172  * the ASCII-format hash found in the 40-byte buffer at ascii.  If they
1173  * match, return 0, otherwise -1.  This works only for images smaller than
1174  * 4 GB, which should not be a problem.
1175  */
1176 static int
1177 check_image_hash(uint_t midx)
1178 {
1179 	const char *ascii;
1180 	const void *image;
1181 	size_t len;
1182 	SHA1_CTX ctx;
1183 	uint8_t digest[SHA1_DIGEST_LENGTH];
1184 	uint8_t baseline[SHA1_DIGEST_LENGTH];
1185 	unsigned int i;
1186 
1187 	ascii = (const char *)(uintptr_t)modules[midx].bm_hash;
1188 	image = (const void *)(uintptr_t)modules[midx].bm_addr;
1189 	len = (size_t)modules[midx].bm_size;
1190 
1191 	digest_a2h(ascii, baseline);
1192 
1193 	SHA1Init(&ctx);
1194 	SHA1Update(&ctx, image, len);
1195 	SHA1Final(digest, &ctx);
1196 
1197 	for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
1198 		if (digest[i] != baseline[i])
1199 			return (-1);
1200 	}
1201 
1202 	return (0);
1203 }
1204 
1205 static const char *
1206 type_to_str(boot_module_type_t type)
1207 {
1208 	switch (type) {
1209 	case BMT_ROOTFS:
1210 		return ("rootfs");
1211 	case BMT_FILE:
1212 		return ("file");
1213 	case BMT_HASH:
1214 		return ("hash");
1215 	case BMT_ENV:
1216 		return ("environment");
1217 	case BMT_FONT:
1218 		return ("console-font");
1219 	default:
1220 		return ("unknown");
1221 	}
1222 }
1223 
1224 static void
1225 check_images(void)
1226 {
1227 	uint_t i;
1228 	char displayhash[SHA1_ASCII_LENGTH + 1];
1229 
1230 	for (i = 0; i < modules_used; i++) {
1231 		if (prom_debug) {
1232 			dboot_printf("module #%d: name %s type %s "
1233 			    "addr %lx size %lx\n",
1234 			    i, (char *)(uintptr_t)modules[i].bm_name,
1235 			    type_to_str(modules[i].bm_type),
1236 			    (ulong_t)modules[i].bm_addr,
1237 			    (ulong_t)modules[i].bm_size);
1238 		}
1239 
1240 		if (modules[i].bm_type == BMT_HASH ||
1241 		    modules[i].bm_hash == (native_ptr_t)(uintptr_t)NULL) {
1242 			DBG_MSG("module has no hash; skipping check\n");
1243 			continue;
1244 		}
1245 		(void) memcpy(displayhash,
1246 		    (void *)(uintptr_t)modules[i].bm_hash,
1247 		    SHA1_ASCII_LENGTH);
1248 		displayhash[SHA1_ASCII_LENGTH] = '\0';
1249 		if (prom_debug) {
1250 			dboot_printf("checking expected hash [%s]: ",
1251 			    displayhash);
1252 		}
1253 
1254 		if (check_image_hash(i) != 0)
1255 			dboot_panic("hash mismatch!\n");
1256 		else
1257 			DBG_MSG("OK\n");
1258 	}
1259 }
1260 
1261 /*
1262  * Determine the module's starting address, size, name, and type, and fill the
1263  * boot_modules structure.  This structure is used by the bop code, except for
1264  * hashes which are checked prior to transferring control to the kernel.
1265  */
1266 static void
1267 process_module(int midx)
1268 {
1269 	uint32_t mod_start = dboot_multiboot_modstart(midx);
1270 	uint32_t mod_end = dboot_multiboot_modend(midx);
1271 	char *cmdline = dboot_multiboot_modcmdline(midx);
1272 	char *p, *q;
1273 
1274 	check_higher(mod_end);
1275 	if (prom_debug) {
1276 		dboot_printf("\tmodule #%d: '%s' at 0x%lx, end 0x%lx\n",
1277 		    midx, cmdline, (ulong_t)mod_start, (ulong_t)mod_end);
1278 	}
1279 
1280 	if (mod_start > mod_end) {
1281 		dboot_panic("module #%d: module start address 0x%lx greater "
1282 		    "than end address 0x%lx", midx,
1283 		    (ulong_t)mod_start, (ulong_t)mod_end);
1284 	}
1285 
1286 	/*
1287 	 * A brief note on lengths and sizes: GRUB, for reasons unknown, passes
1288 	 * the address of the last valid byte in a module plus 1 as mod_end.
1289 	 * This is of course a bug; the multiboot specification simply states
1290 	 * that mod_start and mod_end "contain the start and end addresses of
1291 	 * the boot module itself" which is pretty obviously not what GRUB is
1292 	 * doing.  However, fixing it requires that not only this code be
1293 	 * changed but also that other code consuming this value and values
1294 	 * derived from it be fixed, and that the kernel and GRUB must either
1295 	 * both have the bug or neither.  While there are a lot of combinations
1296 	 * that will work, there are also some that won't, so for simplicity
1297 	 * we'll just cope with the bug.  That means we won't actually hash the
1298 	 * byte at mod_end, and we will expect that mod_end for the hash file
1299 	 * itself is one greater than some multiple of 41 (40 bytes of ASCII
1300 	 * hash plus a newline for each module).  We set bm_size to the true
1301 	 * correct number of bytes in each module, achieving exactly this.
1302 	 */
1303 
1304 	modules[midx].bm_addr = (native_ptr_t)(uintptr_t)mod_start;
1305 	modules[midx].bm_size = mod_end - mod_start;
1306 	modules[midx].bm_name = (native_ptr_t)(uintptr_t)cmdline;
1307 	modules[midx].bm_hash = (native_ptr_t)(uintptr_t)NULL;
1308 	modules[midx].bm_type = BMT_FILE;
1309 
1310 	if (cmdline == NULL) {
1311 		modules[midx].bm_name = (native_ptr_t)(uintptr_t)noname;
1312 		return;
1313 	}
1314 
1315 	p = cmdline;
1316 	modules[midx].bm_name =
1317 	    (native_ptr_t)(uintptr_t)strsep(&p, " \t\f\n\r");
1318 
1319 	while (p != NULL) {
1320 		q = strsep(&p, " \t\f\n\r");
1321 		if (strncmp(q, "name=", 5) == 0) {
1322 			if (q[5] != '\0' && !isspace(q[5])) {
1323 				modules[midx].bm_name =
1324 				    (native_ptr_t)(uintptr_t)(q + 5);
1325 			}
1326 			continue;
1327 		}
1328 
1329 		if (strncmp(q, "type=", 5) == 0) {
1330 			if (q[5] == '\0' || isspace(q[5]))
1331 				continue;
1332 			q += 5;
1333 			if (strcmp(q, "rootfs") == 0) {
1334 				modules[midx].bm_type = BMT_ROOTFS;
1335 			} else if (strcmp(q, "hash") == 0) {
1336 				modules[midx].bm_type = BMT_HASH;
1337 			} else if (strcmp(q, "environment") == 0) {
1338 				modules[midx].bm_type = BMT_ENV;
1339 			} else if (strcmp(q, "console-font") == 0) {
1340 				modules[midx].bm_type = BMT_FONT;
1341 			} else if (strcmp(q, "file") != 0) {
1342 				dboot_printf("\tmodule #%d: unknown module "
1343 				    "type '%s'; defaulting to 'file'\n",
1344 				    midx, q);
1345 			}
1346 			continue;
1347 		}
1348 
1349 		if (strncmp(q, "hash=", 5) == 0) {
1350 			if (q[5] != '\0' && !isspace(q[5])) {
1351 				modules[midx].bm_hash =
1352 				    (native_ptr_t)(uintptr_t)(q + 5);
1353 			}
1354 			continue;
1355 		}
1356 
1357 		dboot_printf("ignoring unknown option '%s'\n", q);
1358 	}
1359 }
1360 
1361 /*
1362  * Backward compatibility: if there are exactly one or two modules, both
1363  * of type 'file' and neither with an embedded hash value, we have been
1364  * given the legacy style modules.  In this case we need to treat the first
1365  * module as a rootfs and the second as a hash referencing that module.
1366  * Otherwise, even if the configuration is invalid, we assume that the
1367  * operator knows what he's doing or at least isn't being bitten by this
1368  * interface change.
1369  */
1370 static void
1371 fixup_modules(void)
1372 {
1373 	if (modules_used == 0 || modules_used > 2)
1374 		return;
1375 
1376 	if (modules[0].bm_type != BMT_FILE ||
1377 	    (modules_used > 1 && modules[1].bm_type != BMT_FILE)) {
1378 		return;
1379 	}
1380 
1381 	if (modules[0].bm_hash != (native_ptr_t)(uintptr_t)NULL ||
1382 	    (modules_used > 1 &&
1383 	    modules[1].bm_hash != (native_ptr_t)(uintptr_t)NULL)) {
1384 		return;
1385 	}
1386 
1387 	modules[0].bm_type = BMT_ROOTFS;
1388 	if (modules_used > 1) {
1389 		modules[1].bm_type = BMT_HASH;
1390 		modules[1].bm_name = modules[0].bm_name;
1391 	}
1392 }
1393 
1394 /*
1395  * For modules that do not have assigned hashes but have a separate hash module,
1396  * find the assigned hash module and set the primary module's bm_hash to point
1397  * to the hash data from that module.  We will then ignore modules of type
1398  * BMT_HASH from this point forward.
1399  */
1400 static void
1401 assign_module_hashes(void)
1402 {
1403 	uint_t i, j;
1404 
1405 	for (i = 0; i < modules_used; i++) {
1406 		if (modules[i].bm_type == BMT_HASH ||
1407 		    modules[i].bm_hash != (native_ptr_t)(uintptr_t)NULL) {
1408 			continue;
1409 		}
1410 
1411 		for (j = 0; j < modules_used; j++) {
1412 			if (modules[j].bm_type != BMT_HASH ||
1413 			    strcmp((char *)(uintptr_t)modules[j].bm_name,
1414 			    (char *)(uintptr_t)modules[i].bm_name) != 0) {
1415 				continue;
1416 			}
1417 
1418 			if (modules[j].bm_size < SHA1_ASCII_LENGTH) {
1419 				dboot_printf("Short hash module of length "
1420 				    "0x%lx bytes; ignoring\n",
1421 				    (ulong_t)modules[j].bm_size);
1422 			} else {
1423 				modules[i].bm_hash = modules[j].bm_addr;
1424 			}
1425 			break;
1426 		}
1427 	}
1428 }
1429 
1430 /*
1431  * Walk through the module information finding the last used address.
1432  * The first available address will become the top level page table.
1433  */
1434 static void
1435 dboot_process_modules(void)
1436 {
1437 	int i, modcount;
1438 	extern char _end[];
1439 
1440 	DBG_MSG("\nFinding Modules\n");
1441 	modcount = dboot_multiboot_modcount();
1442 	if (modcount > MAX_BOOT_MODULES) {
1443 		dboot_panic("Too many modules (%d) -- the maximum is %d.",
1444 		    modcount, MAX_BOOT_MODULES);
1445 	}
1446 	/*
1447 	 * search the modules to find the last used address
1448 	 * we'll build the module list while we're walking through here
1449 	 */
1450 	check_higher((paddr_t)(uintptr_t)&_end);
1451 	for (i = 0; i < modcount; ++i) {
1452 		process_module(i);
1453 		modules_used++;
1454 	}
1455 	bi->bi_modules = (native_ptr_t)(uintptr_t)modules;
1456 	DBG(bi->bi_modules);
1457 	bi->bi_module_cnt = modcount;
1458 	DBG(bi->bi_module_cnt);
1459 
1460 	fixup_modules();
1461 	assign_module_hashes();
1462 	check_images();
1463 }
1464 
1465 /*
1466  * We then build the phys_install memlist from the multiboot information.
1467  */
1468 static void
1469 dboot_process_mmap(void)
1470 {
1471 	uint64_t start;
1472 	uint64_t end;
1473 	uint64_t page_offset = MMU_PAGEOFFSET;	/* needs to be 64 bits */
1474 	uint32_t lower, upper;
1475 	int i, mmap_entries;
1476 
1477 	/*
1478 	 * Walk through the memory map from multiboot and build our memlist
1479 	 * structures. Note these will have native format pointers.
1480 	 */
1481 	DBG_MSG("\nFinding Memory Map\n");
1482 	num_entries = 0;
1483 	num_entries_set = B_FALSE;
1484 	max_mem = 0;
1485 	if ((mmap_entries = dboot_loader_mmap_entries()) > 0) {
1486 		for (i = 0; i < mmap_entries; i++) {
1487 			uint32_t type = dboot_loader_mmap_get_type(i);
1488 			start = dboot_loader_mmap_get_base(i);
1489 			end = start + dboot_loader_mmap_get_length(i);
1490 
1491 			if (prom_debug)
1492 				dboot_printf("\ttype: %d %" PRIx64 "..%"
1493 				    PRIx64 "\n", type, start, end);
1494 
1495 			/*
1496 			 * page align start and end
1497 			 */
1498 			start = (start + page_offset) & ~page_offset;
1499 			end &= ~page_offset;
1500 			if (end <= start)
1501 				continue;
1502 
1503 			/*
1504 			 * only type 1 is usable RAM
1505 			 */
1506 			switch (type) {
1507 			case 1:
1508 				if (end > max_mem)
1509 					max_mem = end;
1510 				memlists[memlists_used].addr = start;
1511 				memlists[memlists_used].size = end - start;
1512 				++memlists_used;
1513 				if (memlists_used > MAX_MEMLIST)
1514 					dboot_panic("too many memlists");
1515 				break;
1516 			case 2:
1517 				rsvdmemlists[rsvdmemlists_used].addr = start;
1518 				rsvdmemlists[rsvdmemlists_used].size =
1519 				    end - start;
1520 				++rsvdmemlists_used;
1521 				if (rsvdmemlists_used > MAX_MEMLIST)
1522 					dboot_panic("too many rsvdmemlists");
1523 				break;
1524 			default:
1525 				continue;
1526 			}
1527 		}
1528 		build_pcimemlists();
1529 	} else if (dboot_multiboot_basicmeminfo(&lower, &upper)) {
1530 		DBG(lower);
1531 		memlists[memlists_used].addr = 0;
1532 		memlists[memlists_used].size = lower * 1024;
1533 		++memlists_used;
1534 		DBG(upper);
1535 		memlists[memlists_used].addr = 1024 * 1024;
1536 		memlists[memlists_used].size = upper * 1024;
1537 		++memlists_used;
1538 
1539 		/*
1540 		 * Old platform - assume I/O space at the end of memory.
1541 		 */
1542 		pcimemlists[0].addr = (upper * 1024) + (1024 * 1024);
1543 		pcimemlists[0].size = pci_hi_limit - pcimemlists[0].addr;
1544 		pcimemlists[0].next = 0;
1545 		pcimemlists[0].prev = 0;
1546 		bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists;
1547 		DBG(bi->bi_pcimem);
1548 	} else {
1549 		dboot_panic("No memory info from boot loader!!!");
1550 	}
1551 
1552 	/*
1553 	 * finish processing the physinstall list
1554 	 */
1555 	sort_physinstall();
1556 
1557 	/*
1558 	 * build bios reserved mem lists
1559 	 */
1560 	build_rsvdmemlists();
1561 }
1562 
1563 /*
1564  * The highest address is used as the starting point for dboot's simple
1565  * memory allocator.
1566  *
1567  * Finding the highest address in case of Multiboot 1 protocol is
1568  * quite painful in the sense that some information provided by
1569  * the multiboot info structure points to BIOS data, and some to RAM.
1570  *
1571  * The module list was processed and checked already by dboot_process_modules(),
1572  * so we will check the command line string and the memory map.
1573  *
1574  * This list of to be checked items is based on our current knowledge of
1575  * allocations made by grub1 and will need to be reviewed if there
1576  * are updates about the information provided by Multiboot 1.
1577  *
1578  * In the case of the Multiboot 2, our life is much simpler, as the MB2
1579  * information tag list is one contiguous chunk of memory.
1580  */
1581 static paddr_t
1582 dboot_multiboot1_highest_addr(void)
1583 {
1584 	paddr_t addr = (paddr_t)(uintptr_t)NULL;
1585 	char *cmdl = (char *)mb_info->cmdline;
1586 
1587 	if (mb_info->flags & MB_INFO_CMDLINE)
1588 		addr = ((paddr_t)((uintptr_t)cmdl + strlen(cmdl) + 1));
1589 
1590 	if (mb_info->flags & MB_INFO_MEM_MAP)
1591 		addr = MAX(addr,
1592 		    ((paddr_t)(mb_info->mmap_addr + mb_info->mmap_length)));
1593 	return (addr);
1594 }
1595 
1596 static void
1597 dboot_multiboot_highest_addr(void)
1598 {
1599 	paddr_t addr;
1600 
1601 	switch (multiboot_version) {
1602 	case 1:
1603 		addr = dboot_multiboot1_highest_addr();
1604 		if (addr != (paddr_t)(uintptr_t)NULL)
1605 			check_higher(addr);
1606 		break;
1607 	case 2:
1608 		addr = dboot_multiboot2_highest_addr(mb2_info);
1609 		if (addr != (paddr_t)(uintptr_t)NULL)
1610 			check_higher(addr);
1611 		break;
1612 	default:
1613 		dboot_panic("Unknown multiboot version: %d\n",
1614 		    multiboot_version);
1615 		break;
1616 	}
1617 }
1618 
1619 /*
1620  * Walk the boot loader provided information and find the highest free address.
1621  */
1622 static void
1623 init_mem_alloc(void)
1624 {
1625 	DBG_MSG("Entered init_mem_alloc()\n");
1626 	dboot_process_modules();
1627 	dboot_process_mmap();
1628 	dboot_multiboot_highest_addr();
1629 }
1630 
1631 static int
1632 dboot_same_guids(efi_guid_t *g1, efi_guid_t *g2)
1633 {
1634 	int i;
1635 
1636 	if (g1->time_low != g2->time_low)
1637 		return (0);
1638 	if (g1->time_mid != g2->time_mid)
1639 		return (0);
1640 	if (g1->time_hi_and_version != g2->time_hi_and_version)
1641 		return (0);
1642 	if (g1->clock_seq_hi_and_reserved != g2->clock_seq_hi_and_reserved)
1643 		return (0);
1644 	if (g1->clock_seq_low != g2->clock_seq_low)
1645 		return (0);
1646 
1647 	for (i = 0; i < 6; i++) {
1648 		if (g1->node_addr[i] != g2->node_addr[i])
1649 			return (0);
1650 	}
1651 	return (1);
1652 }
1653 
1654 static void
1655 process_efi32(EFI_SYSTEM_TABLE32 *efi)
1656 {
1657 	uint32_t entries;
1658 	EFI_CONFIGURATION_TABLE32 *config;
1659 	efi_guid_t VendorGuid;
1660 	int i;
1661 
1662 	entries = efi->NumberOfTableEntries;
1663 	config = (EFI_CONFIGURATION_TABLE32 *)(uintptr_t)
1664 	    efi->ConfigurationTable;
1665 
1666 	for (i = 0; i < entries; i++) {
1667 		(void) memcpy(&VendorGuid, &config[i].VendorGuid,
1668 		    sizeof (VendorGuid));
1669 		if (dboot_same_guids(&VendorGuid, &smbios3)) {
1670 			bi->bi_smbios = (native_ptr_t)(uintptr_t)
1671 			    config[i].VendorTable;
1672 		}
1673 		if (bi->bi_smbios == 0 &&
1674 		    dboot_same_guids(&VendorGuid, &smbios)) {
1675 			bi->bi_smbios = (native_ptr_t)(uintptr_t)
1676 			    config[i].VendorTable;
1677 		}
1678 		if (dboot_same_guids(&VendorGuid, &acpi2)) {
1679 			bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1680 			    config[i].VendorTable;
1681 		}
1682 		if (bi->bi_acpi_rsdp == 0 &&
1683 		    dboot_same_guids(&VendorGuid, &acpi1)) {
1684 			bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1685 			    config[i].VendorTable;
1686 		}
1687 	}
1688 }
1689 
1690 static void
1691 process_efi64(EFI_SYSTEM_TABLE64 *efi)
1692 {
1693 	uint64_t entries;
1694 	EFI_CONFIGURATION_TABLE64 *config;
1695 	efi_guid_t VendorGuid;
1696 	int i;
1697 
1698 	entries = efi->NumberOfTableEntries;
1699 	config = (EFI_CONFIGURATION_TABLE64 *)(uintptr_t)
1700 	    efi->ConfigurationTable;
1701 
1702 	for (i = 0; i < entries; i++) {
1703 		(void) memcpy(&VendorGuid, &config[i].VendorGuid,
1704 		    sizeof (VendorGuid));
1705 		if (dboot_same_guids(&VendorGuid, &smbios3)) {
1706 			bi->bi_smbios = (native_ptr_t)(uintptr_t)
1707 			    config[i].VendorTable;
1708 		}
1709 		if (bi->bi_smbios == 0 &&
1710 		    dboot_same_guids(&VendorGuid, &smbios)) {
1711 			bi->bi_smbios = (native_ptr_t)(uintptr_t)
1712 			    config[i].VendorTable;
1713 		}
1714 		/* Prefer acpi v2+ over v1. */
1715 		if (dboot_same_guids(&VendorGuid, &acpi2)) {
1716 			bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1717 			    config[i].VendorTable;
1718 		}
1719 		if (bi->bi_acpi_rsdp == 0 &&
1720 		    dboot_same_guids(&VendorGuid, &acpi1)) {
1721 			bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1722 			    config[i].VendorTable;
1723 		}
1724 	}
1725 }
1726 
1727 static void
1728 dboot_multiboot_get_fwtables(void)
1729 {
1730 	multiboot_tag_new_acpi_t *nacpitagp;
1731 	multiboot_tag_old_acpi_t *oacpitagp;
1732 	multiboot_tag_efi64_t *efi64tagp = NULL;
1733 	multiboot_tag_efi32_t *efi32tagp = NULL;
1734 
1735 	/* no fw tables from multiboot 1 */
1736 	if (multiboot_version != 2)
1737 		return;
1738 
1739 	efi64tagp = (multiboot_tag_efi64_t *)
1740 	    dboot_multiboot2_find_tag(mb2_info, MULTIBOOT_TAG_TYPE_EFI64);
1741 	if (efi64tagp != NULL) {
1742 		bi->bi_uefi_arch = XBI_UEFI_ARCH_64;
1743 		bi->bi_uefi_systab = (native_ptr_t)(uintptr_t)
1744 		    efi64tagp->mb_pointer;
1745 		process_efi64((EFI_SYSTEM_TABLE64 *)(uintptr_t)
1746 		    efi64tagp->mb_pointer);
1747 	} else {
1748 		efi32tagp = (multiboot_tag_efi32_t *)
1749 		    dboot_multiboot2_find_tag(mb2_info,
1750 		    MULTIBOOT_TAG_TYPE_EFI32);
1751 		if (efi32tagp != NULL) {
1752 			bi->bi_uefi_arch = XBI_UEFI_ARCH_32;
1753 			bi->bi_uefi_systab = (native_ptr_t)(uintptr_t)
1754 			    efi32tagp->mb_pointer;
1755 			process_efi32((EFI_SYSTEM_TABLE32 *)(uintptr_t)
1756 			    efi32tagp->mb_pointer);
1757 		}
1758 	}
1759 
1760 	/*
1761 	 * The multiboot2 info contains a copy of the RSDP; stash a pointer to
1762 	 * it (see find_rsdp() in fakebop).
1763 	 */
1764 	nacpitagp = (multiboot_tag_new_acpi_t *)
1765 	    dboot_multiboot2_find_tag(mb2_info, MULTIBOOT_TAG_TYPE_ACPI_NEW);
1766 	oacpitagp = (multiboot_tag_old_acpi_t *)
1767 	    dboot_multiboot2_find_tag(mb2_info, MULTIBOOT_TAG_TYPE_ACPI_OLD);
1768 
1769 	if (nacpitagp != NULL) {
1770 		bi->bi_acpi_rsdp_copy = (native_ptr_t)(uintptr_t)
1771 		    &nacpitagp->mb_rsdp[0];
1772 	} else if (oacpitagp != NULL) {
1773 		bi->bi_acpi_rsdp_copy = (native_ptr_t)(uintptr_t)
1774 		    &oacpitagp->mb_rsdp[0];
1775 	}
1776 }
1777 
1778 /* print out EFI version string with newline */
1779 static void
1780 dboot_print_efi_version(uint32_t ver)
1781 {
1782 	int rev;
1783 
1784 	dboot_printf("%d.", EFI_REV_MAJOR(ver));
1785 
1786 	rev = EFI_REV_MINOR(ver);
1787 	if ((rev % 10) != 0) {
1788 		dboot_printf("%d.%d\n", rev / 10, rev % 10);
1789 	} else {
1790 		dboot_printf("%d\n", rev / 10);
1791 	}
1792 }
1793 
1794 static void
1795 print_efi32(EFI_SYSTEM_TABLE32 *efi)
1796 {
1797 	uint16_t *data;
1798 	EFI_CONFIGURATION_TABLE32 *conf;
1799 	int i;
1800 
1801 	dboot_printf("EFI32 signature: %llx\n",
1802 	    (unsigned long long)efi->Hdr.Signature);
1803 	dboot_printf("EFI system version: ");
1804 	dboot_print_efi_version(efi->Hdr.Revision);
1805 	dboot_printf("EFI system vendor: ");
1806 	data = (uint16_t *)(uintptr_t)efi->FirmwareVendor;
1807 	for (i = 0; data[i] != 0; i++)
1808 		dboot_printf("%c", (char)data[i]);
1809 	dboot_printf("\nEFI firmware revision: ");
1810 	dboot_print_efi_version(efi->FirmwareRevision);
1811 	dboot_printf("EFI system table number of entries: %d\n",
1812 	    efi->NumberOfTableEntries);
1813 	conf = (EFI_CONFIGURATION_TABLE32 *)(uintptr_t)
1814 	    efi->ConfigurationTable;
1815 	for (i = 0; i < (int)efi->NumberOfTableEntries; i++) {
1816 		dboot_printf("%d: 0x%x 0x%x 0x%x 0x%x 0x%x", i,
1817 		    conf[i].VendorGuid.time_low,
1818 		    conf[i].VendorGuid.time_mid,
1819 		    conf[i].VendorGuid.time_hi_and_version,
1820 		    conf[i].VendorGuid.clock_seq_hi_and_reserved,
1821 		    conf[i].VendorGuid.clock_seq_low);
1822 		dboot_printf(" 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
1823 		    conf[i].VendorGuid.node_addr[0],
1824 		    conf[i].VendorGuid.node_addr[1],
1825 		    conf[i].VendorGuid.node_addr[2],
1826 		    conf[i].VendorGuid.node_addr[3],
1827 		    conf[i].VendorGuid.node_addr[4],
1828 		    conf[i].VendorGuid.node_addr[5]);
1829 	}
1830 }
1831 
1832 static void
1833 print_efi64(EFI_SYSTEM_TABLE64 *efi)
1834 {
1835 	uint16_t *data;
1836 	EFI_CONFIGURATION_TABLE64 *conf;
1837 	int i;
1838 
1839 	dboot_printf("EFI64 signature: %llx\n",
1840 	    (unsigned long long)efi->Hdr.Signature);
1841 	dboot_printf("EFI system version: ");
1842 	dboot_print_efi_version(efi->Hdr.Revision);
1843 	dboot_printf("EFI system vendor: ");
1844 	data = (uint16_t *)(uintptr_t)efi->FirmwareVendor;
1845 	for (i = 0; data[i] != 0; i++)
1846 		dboot_printf("%c", (char)data[i]);
1847 	dboot_printf("\nEFI firmware revision: ");
1848 	dboot_print_efi_version(efi->FirmwareRevision);
1849 	dboot_printf("EFI system table number of entries: %" PRIu64 "\n",
1850 	    efi->NumberOfTableEntries);
1851 	conf = (EFI_CONFIGURATION_TABLE64 *)(uintptr_t)
1852 	    efi->ConfigurationTable;
1853 	for (i = 0; i < (int)efi->NumberOfTableEntries; i++) {
1854 		dboot_printf("%d: 0x%x 0x%x 0x%x 0x%x 0x%x", i,
1855 		    conf[i].VendorGuid.time_low,
1856 		    conf[i].VendorGuid.time_mid,
1857 		    conf[i].VendorGuid.time_hi_and_version,
1858 		    conf[i].VendorGuid.clock_seq_hi_and_reserved,
1859 		    conf[i].VendorGuid.clock_seq_low);
1860 		dboot_printf(" 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
1861 		    conf[i].VendorGuid.node_addr[0],
1862 		    conf[i].VendorGuid.node_addr[1],
1863 		    conf[i].VendorGuid.node_addr[2],
1864 		    conf[i].VendorGuid.node_addr[3],
1865 		    conf[i].VendorGuid.node_addr[4],
1866 		    conf[i].VendorGuid.node_addr[5]);
1867 	}
1868 }
1869 #endif /* !__xpv */
1870 
1871 /*
1872  * Simple memory allocator, allocates aligned physical memory.
1873  * Note that startup_kernel() only allocates memory, never frees.
1874  * Memory usage just grows in an upward direction.
1875  */
1876 static void *
1877 do_mem_alloc(uint32_t size, uint32_t align)
1878 {
1879 	uint_t i;
1880 	uint64_t best;
1881 	uint64_t start;
1882 	uint64_t end;
1883 
1884 	/*
1885 	 * make sure size is a multiple of pagesize
1886 	 */
1887 	size = RNDUP(size, MMU_PAGESIZE);
1888 	next_avail_addr = RNDUP(next_avail_addr, align);
1889 
1890 	/*
1891 	 * XXPV fixme joe
1892 	 *
1893 	 * a really large bootarchive that causes you to run out of memory
1894 	 * may cause this to blow up
1895 	 */
1896 	/* LINTED E_UNEXPECTED_UINT_PROMOTION */
1897 	best = (uint64_t)-size;
1898 	for (i = 0; i < memlists_used; ++i) {
1899 		start = memlists[i].addr;
1900 #if defined(__xpv)
1901 		start += mfn_base;
1902 #endif
1903 		end = start + memlists[i].size;
1904 
1905 		/*
1906 		 * did we find the desired address?
1907 		 */
1908 		if (start <= next_avail_addr && next_avail_addr + size <= end) {
1909 			best = next_avail_addr;
1910 			goto done;
1911 		}
1912 
1913 		/*
1914 		 * if not is this address the best so far?
1915 		 */
1916 		if (start > next_avail_addr && start < best &&
1917 		    RNDUP(start, align) + size <= end)
1918 			best = RNDUP(start, align);
1919 	}
1920 
1921 	/*
1922 	 * We didn't find exactly the address we wanted, due to going off the
1923 	 * end of a memory region. Return the best found memory address.
1924 	 */
1925 done:
1926 	next_avail_addr = best + size;
1927 #if defined(__xpv)
1928 	if (next_avail_addr > scratch_end)
1929 		dboot_panic("Out of mem next_avail: 0x%lx, scratch_end: "
1930 		    "0x%lx", (ulong_t)next_avail_addr,
1931 		    (ulong_t)scratch_end);
1932 #endif
1933 	(void) memset((void *)(uintptr_t)best, 0, size);
1934 	return ((void *)(uintptr_t)best);
1935 }
1936 
1937 void *
1938 mem_alloc(uint32_t size)
1939 {
1940 	return (do_mem_alloc(size, MMU_PAGESIZE));
1941 }
1942 
1943 
1944 /*
1945  * Build page tables to map all of memory used so far as well as the kernel.
1946  */
1947 static void
1948 build_page_tables(void)
1949 {
1950 	uint32_t psize;
1951 	uint32_t level;
1952 	uint32_t off;
1953 	uint64_t start;
1954 #if !defined(__xpv)
1955 	uint32_t i;
1956 	uint64_t end;
1957 #endif	/* __xpv */
1958 
1959 	/*
1960 	 * If we're on metal, we need to create the top level pagetable.
1961 	 */
1962 #if defined(__xpv)
1963 	top_page_table = (paddr_t)(uintptr_t)xen_info->pt_base;
1964 #else /* __xpv */
1965 	top_page_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
1966 #endif /* __xpv */
1967 	DBG((uintptr_t)top_page_table);
1968 
1969 	/*
1970 	 * Determine if we'll use large mappings for kernel, then map it.
1971 	 */
1972 	if (largepage_support) {
1973 		psize = lpagesize;
1974 		level = 1;
1975 	} else {
1976 		psize = MMU_PAGESIZE;
1977 		level = 0;
1978 	}
1979 
1980 	DBG_MSG("Mapping kernel\n");
1981 	DBG(ktext_phys);
1982 	DBG(target_kernel_text);
1983 	DBG(ksize);
1984 	DBG(psize);
1985 	for (off = 0; off < ksize; off += psize)
1986 		map_pa_at_va(ktext_phys + off, target_kernel_text + off, level);
1987 
1988 	/*
1989 	 * The kernel will need a 1 page window to work with page tables
1990 	 */
1991 	bi->bi_pt_window = (native_ptr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
1992 	DBG(bi->bi_pt_window);
1993 	bi->bi_pte_to_pt_window =
1994 	    (native_ptr_t)(uintptr_t)find_pte(bi->bi_pt_window, NULL, 0, 0);
1995 	DBG(bi->bi_pte_to_pt_window);
1996 
1997 #if defined(__xpv)
1998 	if (!DOMAIN_IS_INITDOMAIN(xen_info)) {
1999 		/* If this is a domU we're done. */
2000 		DBG_MSG("\nPage tables constructed\n");
2001 		return;
2002 	}
2003 #endif /* __xpv */
2004 
2005 	/*
2006 	 * We need 1:1 mappings for the lower 1M of memory to access
2007 	 * BIOS tables used by a couple of drivers during boot.
2008 	 *
2009 	 * The following code works because our simple memory allocator
2010 	 * only grows usage in an upwards direction.
2011 	 *
2012 	 * Note that by this point in boot some mappings for low memory
2013 	 * may already exist because we've already accessed device in low
2014 	 * memory.  (Specifically the video frame buffer and keyboard
2015 	 * status ports.)  If we're booting on raw hardware then GRUB
2016 	 * created these mappings for us.  If we're booting under a
2017 	 * hypervisor then we went ahead and remapped these devices into
2018 	 * memory allocated within dboot itself.
2019 	 */
2020 	if (map_debug)
2021 		dboot_printf("1:1 map pa=0..1Meg\n");
2022 	for (start = 0; start < 1024 * 1024; start += MMU_PAGESIZE) {
2023 #if defined(__xpv)
2024 		map_ma_at_va(start, start, 0);
2025 #else /* __xpv */
2026 		map_pa_at_va(start, start, 0);
2027 #endif /* __xpv */
2028 	}
2029 
2030 #if !defined(__xpv)
2031 
2032 	for (i = 0; i < memlists_used; ++i) {
2033 		start = memlists[i].addr;
2034 		end = start + memlists[i].size;
2035 
2036 		if (map_debug)
2037 			dboot_printf("1:1 map pa=%" PRIx64 "..%" PRIx64 "\n",
2038 			    start, end);
2039 		while (start < end && start < next_avail_addr) {
2040 			map_pa_at_va(start, start, 0);
2041 			start += MMU_PAGESIZE;
2042 		}
2043 		if (start >= next_avail_addr)
2044 			break;
2045 	}
2046 
2047 	/*
2048 	 * Map framebuffer memory as PT_NOCACHE as this is memory from a
2049 	 * device and therefore must not be cached.
2050 	 */
2051 	if (fb != NULL && fb->framebuffer != 0) {
2052 		multiboot_tag_framebuffer_t *fb_tagp;
2053 		fb_tagp = (multiboot_tag_framebuffer_t *)(uintptr_t)
2054 		    fb->framebuffer;
2055 
2056 		start = fb_tagp->framebuffer_common.framebuffer_addr;
2057 		end = start + fb_tagp->framebuffer_common.framebuffer_height *
2058 		    fb_tagp->framebuffer_common.framebuffer_pitch;
2059 
2060 		if (map_debug)
2061 			dboot_printf("FB 1:1 map pa=%" PRIx64 "..%" PRIx64 "\n",
2062 			    start, end);
2063 		pte_bits |= PT_NOCACHE;
2064 		if (PAT_support != 0)
2065 			pte_bits |= PT_PAT_4K;
2066 
2067 		while (start < end) {
2068 			map_pa_at_va(start, start, 0);
2069 			start += MMU_PAGESIZE;
2070 		}
2071 		pte_bits &= ~PT_NOCACHE;
2072 		if (PAT_support != 0)
2073 			pte_bits &= ~PT_PAT_4K;
2074 	}
2075 #endif /* !__xpv */
2076 
2077 	DBG_MSG("\nPage tables constructed\n");
2078 }
2079 
2080 #define	NO_MULTIBOOT	\
2081 "multiboot is no longer used to boot the Solaris Operating System.\n\
2082 The grub entry should be changed to:\n\
2083 kernel$ /platform/i86pc/kernel/$ISADIR/unix\n\
2084 module$ /platform/i86pc/$ISADIR/boot_archive\n\
2085 See http://illumos.org/msg/SUNOS-8000-AK for details.\n"
2086 
2087 static void
2088 dboot_init_xboot_consinfo(void)
2089 {
2090 	bi = &boot_info;
2091 
2092 #if !defined(__xpv)
2093 	fb = &framebuffer;
2094 	bi->bi_framebuffer = (native_ptr_t)(uintptr_t)fb;
2095 
2096 	switch (multiboot_version) {
2097 	case 1:
2098 		dboot_multiboot1_xboot_consinfo();
2099 		break;
2100 	case 2:
2101 		dboot_multiboot2_xboot_consinfo();
2102 		break;
2103 	default:
2104 		dboot_panic("Unknown multiboot version: %d\n",
2105 		    multiboot_version);
2106 		break;
2107 	}
2108 	dboot_find_console_modules();
2109 #endif
2110 }
2111 
2112 /*
2113  * Set up basic data from the boot loader.
2114  * The load_addr is part of AOUT kludge setup in dboot_grub.s, to support
2115  * 32-bit dboot code setup used to set up and start 64-bit kernel.
2116  * AOUT kludge does allow 32-bit boot loader, such as grub1, to load and
2117  * start 64-bit illumos kernel.
2118  */
2119 static void
2120 dboot_loader_init(void)
2121 {
2122 #if !defined(__xpv)
2123 	mb_info = NULL;
2124 	mb2_info = NULL;
2125 
2126 	switch (mb_magic) {
2127 	case MB_BOOTLOADER_MAGIC:
2128 		multiboot_version = 1;
2129 		mb_info = (multiboot_info_t *)(uintptr_t)mb_addr;
2130 #if defined(_BOOT_TARGET_amd64)
2131 		load_addr = mb_header.load_addr;
2132 #endif
2133 		break;
2134 
2135 	case MULTIBOOT2_BOOTLOADER_MAGIC:
2136 		multiboot_version = 2;
2137 		mb2_info = (multiboot2_info_header_t *)(uintptr_t)mb_addr;
2138 		mb2_mmap_tagp = dboot_multiboot2_get_mmap_tagp(mb2_info);
2139 #if defined(_BOOT_TARGET_amd64)
2140 		load_addr = mb2_load_addr;
2141 #endif
2142 		break;
2143 
2144 	default:
2145 		dboot_panic("Unknown bootloader magic: 0x%x\n", mb_magic);
2146 		break;
2147 	}
2148 #endif	/* !defined(__xpv) */
2149 }
2150 
2151 /* Extract the kernel command line from [multi]boot information. */
2152 static char *
2153 dboot_loader_cmdline(void)
2154 {
2155 	char *line = NULL;
2156 
2157 #if defined(__xpv)
2158 	line = (char *)xen_info->cmd_line;
2159 #else /* __xpv */
2160 
2161 	switch (multiboot_version) {
2162 	case 1:
2163 		if (mb_info->flags & MB_INFO_CMDLINE)
2164 			line = (char *)mb_info->cmdline;
2165 		break;
2166 
2167 	case 2:
2168 		line = dboot_multiboot2_cmdline(mb2_info);
2169 		break;
2170 
2171 	default:
2172 		dboot_panic("Unknown multiboot version: %d\n",
2173 		    multiboot_version);
2174 		break;
2175 	}
2176 
2177 #endif /* __xpv */
2178 
2179 	/*
2180 	 * Make sure we have valid pointer so the string operations
2181 	 * will not crash us.
2182 	 */
2183 	if (line == NULL)
2184 		line = "";
2185 
2186 	return (line);
2187 }
2188 
2189 static char *
2190 dboot_loader_name(void)
2191 {
2192 #if defined(__xpv)
2193 	return (NULL);
2194 #else /* __xpv */
2195 	multiboot_tag_string_t *tag;
2196 
2197 	switch (multiboot_version) {
2198 	case 1:
2199 		return ((char *)(uintptr_t)mb_info->boot_loader_name);
2200 
2201 	case 2:
2202 		tag = dboot_multiboot2_find_tag(mb2_info,
2203 		    MULTIBOOT_TAG_TYPE_BOOT_LOADER_NAME);
2204 		return (tag->mb_string);
2205 	default:
2206 		dboot_panic("Unknown multiboot version: %d\n",
2207 		    multiboot_version);
2208 		break;
2209 	}
2210 
2211 	return (NULL);
2212 #endif /* __xpv */
2213 }
2214 
2215 /*
2216  * startup_kernel has a pretty simple job. It builds pagetables which reflect
2217  * 1:1 mappings for all memory in use. It then also adds mappings for
2218  * the kernel nucleus at virtual address of target_kernel_text using large page
2219  * mappings. The page table pages are also accessible at 1:1 mapped
2220  * virtual addresses.
2221  */
2222 /*ARGSUSED*/
2223 void
2224 startup_kernel(void)
2225 {
2226 	char *cmdline;
2227 	char *bootloader;
2228 #if defined(__xpv)
2229 	physdev_set_iopl_t set_iopl;
2230 #endif /* __xpv */
2231 
2232 	if (dboot_debug == 1)
2233 		bcons_init(NULL);	/* Set very early console to ttya. */
2234 	dboot_loader_init();
2235 	/*
2236 	 * At this point we are executing in a 32 bit real mode.
2237 	 */
2238 
2239 	bootloader = dboot_loader_name();
2240 	cmdline = dboot_loader_cmdline();
2241 
2242 #if defined(__xpv)
2243 	/*
2244 	 * For dom0, before we initialize the console subsystem we'll
2245 	 * need to enable io operations, so set I/O priveldge level to 1.
2246 	 */
2247 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2248 		set_iopl.iopl = 1;
2249 		(void) HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
2250 	}
2251 #endif /* __xpv */
2252 
2253 	dboot_init_xboot_consinfo();
2254 	bi->bi_cmdline = (native_ptr_t)(uintptr_t)cmdline;
2255 	bcons_init(bi);		/* Now we can set the real console. */
2256 
2257 	prom_debug = (find_boot_prop("prom_debug") != NULL);
2258 	map_debug = (find_boot_prop("map_debug") != NULL);
2259 
2260 #if !defined(__xpv)
2261 	dboot_multiboot_get_fwtables();
2262 #endif
2263 	DBG_MSG("\n\nillumos prekernel set: ");
2264 	DBG_MSG(cmdline);
2265 	DBG_MSG("\n");
2266 
2267 	if (bootloader != NULL && prom_debug) {
2268 		dboot_printf("Kernel loaded by: %s\n", bootloader);
2269 #if !defined(__xpv)
2270 		dboot_printf("Using multiboot %d boot protocol.\n",
2271 		    multiboot_version);
2272 #endif
2273 	}
2274 
2275 	if (strstr(cmdline, "multiboot") != NULL) {
2276 		dboot_panic(NO_MULTIBOOT);
2277 	}
2278 
2279 	DBG((uintptr_t)bi);
2280 #if !defined(__xpv)
2281 	DBG((uintptr_t)mb_info);
2282 	DBG((uintptr_t)mb2_info);
2283 	if (mb2_info != NULL)
2284 		DBG(mb2_info->mbi_total_size);
2285 	DBG(bi->bi_acpi_rsdp);
2286 	DBG(bi->bi_acpi_rsdp_copy);
2287 	DBG(bi->bi_smbios);
2288 	DBG(bi->bi_uefi_arch);
2289 	DBG(bi->bi_uefi_systab);
2290 
2291 	if (bi->bi_uefi_systab && prom_debug) {
2292 		if (bi->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2293 			print_efi64((EFI_SYSTEM_TABLE64 *)(uintptr_t)
2294 			    bi->bi_uefi_systab);
2295 		} else {
2296 			print_efi32((EFI_SYSTEM_TABLE32 *)(uintptr_t)
2297 			    bi->bi_uefi_systab);
2298 		}
2299 	}
2300 #endif
2301 
2302 	/*
2303 	 * Need correct target_kernel_text value
2304 	 */
2305 	target_kernel_text = KERNEL_TEXT;
2306 	DBG(target_kernel_text);
2307 
2308 #if defined(__xpv)
2309 
2310 	/*
2311 	 * XXPV	Derive this stuff from CPUID / what the hypervisor has enabled
2312 	 */
2313 
2314 #if defined(_BOOT_TARGET_amd64)
2315 	/*
2316 	 * 64-bit hypervisor.
2317 	 */
2318 	amd64_support = 1;
2319 	pae_support = 1;
2320 
2321 #else	/* _BOOT_TARGET_amd64 */
2322 
2323 	/*
2324 	 * See if we are running on a PAE Hypervisor
2325 	 */
2326 	{
2327 		xen_capabilities_info_t caps;
2328 
2329 		if (HYPERVISOR_xen_version(XENVER_capabilities, &caps) != 0)
2330 			dboot_panic("HYPERVISOR_xen_version(caps) failed");
2331 		caps[sizeof (caps) - 1] = 0;
2332 		if (prom_debug)
2333 			dboot_printf("xen capabilities %s\n", caps);
2334 		if (strstr(caps, "x86_32p") != NULL)
2335 			pae_support = 1;
2336 	}
2337 
2338 #endif	/* _BOOT_TARGET_amd64 */
2339 	{
2340 		xen_platform_parameters_t p;
2341 
2342 		if (HYPERVISOR_xen_version(XENVER_platform_parameters, &p) != 0)
2343 			dboot_panic("HYPERVISOR_xen_version(parms) failed");
2344 		DBG(p.virt_start);
2345 		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2346 	}
2347 
2348 	/*
2349 	 * The hypervisor loads stuff starting at 1Gig
2350 	 */
2351 	mfn_base = ONE_GIG;
2352 	DBG(mfn_base);
2353 
2354 	/*
2355 	 * enable writable page table mode for the hypervisor
2356 	 */
2357 	if (HYPERVISOR_vm_assist(VMASST_CMD_enable,
2358 	    VMASST_TYPE_writable_pagetables) < 0)
2359 		dboot_panic("HYPERVISOR_vm_assist(writable_pagetables) failed");
2360 
2361 	/*
2362 	 * check for NX support
2363 	 */
2364 	if (pae_support) {
2365 		uint32_t eax = 0x80000000;
2366 		uint32_t edx = get_cpuid_edx(&eax);
2367 
2368 		if (eax >= 0x80000001) {
2369 			eax = 0x80000001;
2370 			edx = get_cpuid_edx(&eax);
2371 			if (edx & CPUID_AMD_EDX_NX)
2372 				NX_support = 1;
2373 		}
2374 	}
2375 
2376 	/*
2377 	 * check for PAT support
2378 	 */
2379 	{
2380 		uint32_t eax = 1;
2381 		uint32_t edx = get_cpuid_edx(&eax);
2382 
2383 		if (edx & CPUID_INTC_EDX_PAT)
2384 			PAT_support = 1;
2385 	}
2386 #if !defined(_BOOT_TARGET_amd64)
2387 
2388 	/*
2389 	 * The 32-bit hypervisor uses segmentation to protect itself from
2390 	 * guests. This means when a guest attempts to install a flat 4GB
2391 	 * code or data descriptor the 32-bit hypervisor will protect itself
2392 	 * by silently shrinking the segment such that if the guest attempts
2393 	 * any access where the hypervisor lives a #gp fault is generated.
2394 	 * The problem is that some applications expect a full 4GB flat
2395 	 * segment for their current thread pointer and will use negative
2396 	 * offset segment wrap around to access data. TLS support in linux
2397 	 * brand is one example of this.
2398 	 *
2399 	 * The 32-bit hypervisor can catch the #gp fault in these cases
2400 	 * and emulate the access without passing the #gp fault to the guest
2401 	 * but only if VMASST_TYPE_4gb_segments is explicitly turned on.
2402 	 * Seems like this should have been the default.
2403 	 * Either way, we want the hypervisor -- and not Solaris -- to deal
2404 	 * to deal with emulating these accesses.
2405 	 */
2406 	if (HYPERVISOR_vm_assist(VMASST_CMD_enable,
2407 	    VMASST_TYPE_4gb_segments) < 0)
2408 		dboot_panic("HYPERVISOR_vm_assist(4gb_segments) failed");
2409 #endif	/* !_BOOT_TARGET_amd64 */
2410 
2411 #else	/* __xpv */
2412 
2413 	/*
2414 	 * use cpuid to enable MMU features
2415 	 */
2416 	if (have_cpuid()) {
2417 		uint32_t eax, edx;
2418 
2419 		eax = 1;
2420 		edx = get_cpuid_edx(&eax);
2421 		if (edx & CPUID_INTC_EDX_PSE)
2422 			largepage_support = 1;
2423 		if (edx & CPUID_INTC_EDX_PGE)
2424 			pge_support = 1;
2425 		if (edx & CPUID_INTC_EDX_PAE)
2426 			pae_support = 1;
2427 		if (edx & CPUID_INTC_EDX_PAT)
2428 			PAT_support = 1;
2429 
2430 		eax = 0x80000000;
2431 		edx = get_cpuid_edx(&eax);
2432 		if (eax >= 0x80000001) {
2433 			eax = 0x80000001;
2434 			edx = get_cpuid_edx(&eax);
2435 			if (edx & CPUID_AMD_EDX_LM)
2436 				amd64_support = 1;
2437 			if (edx & CPUID_AMD_EDX_NX)
2438 				NX_support = 1;
2439 		}
2440 	} else {
2441 		dboot_printf("cpuid not supported\n");
2442 	}
2443 #endif /* __xpv */
2444 
2445 
2446 #if defined(_BOOT_TARGET_amd64)
2447 	if (amd64_support == 0)
2448 		dboot_panic("long mode not supported, rebooting");
2449 	else if (pae_support == 0)
2450 		dboot_panic("long mode, but no PAE; rebooting");
2451 #else
2452 	/*
2453 	 * Allow the command line to over-ride use of PAE for 32 bit.
2454 	 */
2455 	if (strstr(cmdline, "disablePAE=true") != NULL) {
2456 		pae_support = 0;
2457 		NX_support = 0;
2458 		amd64_support = 0;
2459 	}
2460 #endif
2461 
2462 	/*
2463 	 * initialize the simple memory allocator
2464 	 */
2465 	init_mem_alloc();
2466 
2467 #if !defined(__xpv) && !defined(_BOOT_TARGET_amd64)
2468 	/*
2469 	 * disable PAE on 32 bit h/w w/o NX and < 4Gig of memory
2470 	 */
2471 	if (max_mem < FOUR_GIG && NX_support == 0)
2472 		pae_support = 0;
2473 #endif
2474 
2475 	/*
2476 	 * configure mmu information
2477 	 */
2478 	if (pae_support) {
2479 		shift_amt = shift_amt_pae;
2480 		ptes_per_table = 512;
2481 		pte_size = 8;
2482 		lpagesize = TWO_MEG;
2483 #if defined(_BOOT_TARGET_amd64)
2484 		top_level = 3;
2485 #else
2486 		top_level = 2;
2487 #endif
2488 	} else {
2489 		pae_support = 0;
2490 		NX_support = 0;
2491 		shift_amt = shift_amt_nopae;
2492 		ptes_per_table = 1024;
2493 		pte_size = 4;
2494 		lpagesize = FOUR_MEG;
2495 		top_level = 1;
2496 	}
2497 
2498 	DBG(PAT_support);
2499 	DBG(pge_support);
2500 	DBG(NX_support);
2501 	DBG(largepage_support);
2502 	DBG(amd64_support);
2503 	DBG(top_level);
2504 	DBG(pte_size);
2505 	DBG(ptes_per_table);
2506 	DBG(lpagesize);
2507 
2508 #if defined(__xpv)
2509 	ktext_phys = ONE_GIG;		/* from UNIX Mapfile */
2510 #else
2511 	ktext_phys = FOUR_MEG;		/* from UNIX Mapfile */
2512 #endif
2513 
2514 #if !defined(__xpv) && defined(_BOOT_TARGET_amd64)
2515 	/*
2516 	 * For grub, copy kernel bits from the ELF64 file to final place.
2517 	 */
2518 	DBG_MSG("\nAllocating nucleus pages.\n");
2519 	ktext_phys = (uintptr_t)do_mem_alloc(ksize, FOUR_MEG);
2520 
2521 	if (ktext_phys == 0)
2522 		dboot_panic("failed to allocate aligned kernel memory");
2523 	DBG(load_addr);
2524 	if (dboot_elfload64(load_addr) != 0)
2525 		dboot_panic("failed to parse kernel ELF image, rebooting");
2526 #endif
2527 
2528 	DBG(ktext_phys);
2529 
2530 	/*
2531 	 * Allocate page tables.
2532 	 */
2533 	build_page_tables();
2534 
2535 	/*
2536 	 * return to assembly code to switch to running kernel
2537 	 */
2538 	entry_addr_low = (uint32_t)target_kernel_text;
2539 	DBG(entry_addr_low);
2540 	bi->bi_use_largepage = largepage_support;
2541 	bi->bi_use_pae = pae_support;
2542 	bi->bi_use_pge = pge_support;
2543 	bi->bi_use_nx = NX_support;
2544 
2545 #if defined(__xpv)
2546 
2547 	bi->bi_next_paddr = next_avail_addr - mfn_base;
2548 	DBG(bi->bi_next_paddr);
2549 	bi->bi_next_vaddr = (native_ptr_t)(uintptr_t)next_avail_addr;
2550 	DBG(bi->bi_next_vaddr);
2551 
2552 	/*
2553 	 * unmap unused pages in start area to make them available for DMA
2554 	 */
2555 	while (next_avail_addr < scratch_end) {
2556 		(void) HYPERVISOR_update_va_mapping(next_avail_addr,
2557 		    0, UVMF_INVLPG | UVMF_LOCAL);
2558 		next_avail_addr += MMU_PAGESIZE;
2559 	}
2560 
2561 	bi->bi_xen_start_info = (native_ptr_t)(uintptr_t)xen_info;
2562 	DBG((uintptr_t)HYPERVISOR_shared_info);
2563 	bi->bi_shared_info = (native_ptr_t)HYPERVISOR_shared_info;
2564 	bi->bi_top_page_table = (uintptr_t)top_page_table - mfn_base;
2565 
2566 #else /* __xpv */
2567 
2568 	bi->bi_next_paddr = next_avail_addr;
2569 	DBG(bi->bi_next_paddr);
2570 	bi->bi_next_vaddr = (native_ptr_t)(uintptr_t)next_avail_addr;
2571 	DBG(bi->bi_next_vaddr);
2572 	bi->bi_mb_version = multiboot_version;
2573 
2574 	switch (multiboot_version) {
2575 	case 1:
2576 		bi->bi_mb_info = (native_ptr_t)(uintptr_t)mb_info;
2577 		break;
2578 	case 2:
2579 		bi->bi_mb_info = (native_ptr_t)(uintptr_t)mb2_info;
2580 		break;
2581 	default:
2582 		dboot_panic("Unknown multiboot version: %d\n",
2583 		    multiboot_version);
2584 		break;
2585 	}
2586 	bi->bi_top_page_table = (uintptr_t)top_page_table;
2587 
2588 #endif /* __xpv */
2589 
2590 	bi->bi_kseg_size = FOUR_MEG;
2591 	DBG(bi->bi_kseg_size);
2592 
2593 #ifndef __xpv
2594 	if (map_debug)
2595 		dump_tables();
2596 #endif
2597 
2598 	DBG_MSG("\n\n*** DBOOT DONE -- back to asm to jump to kernel\n\n");
2599 
2600 #ifndef __xpv
2601 	/* Update boot info with FB data */
2602 	fb->cursor.origin.x = fb_info.cursor.origin.x;
2603 	fb->cursor.origin.y = fb_info.cursor.origin.y;
2604 	fb->cursor.pos.x = fb_info.cursor.pos.x;
2605 	fb->cursor.pos.y = fb_info.cursor.pos.y;
2606 	fb->cursor.visible = fb_info.cursor.visible;
2607 #endif
2608 }
2609