xref: /illumos-gate/usr/src/uts/i86pc/dboot/dboot_startkern.c (revision 632cbd96e544a0a21f1a1f7ca071b145f379215d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright 2013 Joyent, Inc.  All rights reserved.
27  */
28 
29 
30 #include <sys/types.h>
31 #include <sys/machparam.h>
32 #include <sys/x86_archext.h>
33 #include <sys/systm.h>
34 #include <sys/mach_mmu.h>
35 #include <sys/multiboot.h>
36 #include <sys/multiboot2.h>
37 #include <sys/multiboot2_impl.h>
38 #include <sys/sysmacros.h>
39 #include <sys/framebuffer.h>
40 #include <sys/sha1.h>
41 #include <util/string.h>
42 #include <util/strtolctype.h>
43 #include <sys/efi.h>
44 
45 /*
46  * Compile time debug knob. We do not have any early mechanism to control it
47  * as the boot is the earliest mechanism we have, and we do not want to have
48  * it being switched on by default.
49  */
50 int dboot_debug = 0;
51 
52 #if defined(__xpv)
53 
54 #include <sys/hypervisor.h>
55 uintptr_t xen_virt_start;
56 pfn_t *mfn_to_pfn_mapping;
57 
58 #else /* !__xpv */
59 
60 extern multiboot_header_t mb_header;
61 extern uint32_t mb2_load_addr;
62 extern int have_cpuid(void);
63 
64 #endif /* !__xpv */
65 
66 #include <sys/inttypes.h>
67 #include <sys/bootinfo.h>
68 #include <sys/mach_mmu.h>
69 #include <sys/boot_console.h>
70 
71 #include "dboot_asm.h"
72 #include "dboot_printf.h"
73 #include "dboot_xboot.h"
74 #include "dboot_elfload.h"
75 
76 #define	SHA1_ASCII_LENGTH	(SHA1_DIGEST_LENGTH * 2)
77 
78 /*
79  * This file contains code that runs to transition us from either a multiboot
80  * compliant loader (32 bit non-paging) or a XPV domain loader to
81  * regular kernel execution. Its task is to setup the kernel memory image
82  * and page tables.
83  *
84  * The code executes as:
85  *	- 32 bits under GRUB (for 32 or 64 bit Solaris)
86  *	- a 32 bit program for the 32-bit PV hypervisor
87  *	- a 64 bit program for the 64-bit PV hypervisor (at least for now)
88  *
89  * Under the PV hypervisor, we must create mappings for any memory beyond the
90  * initial start of day allocation (such as the kernel itself).
91  *
92  * When on the metal, the mapping between maddr_t and paddr_t is 1:1.
93  * Since we are running in real mode, so all such memory is accessible.
94  */
95 
96 /*
97  * Standard bits used in PTE (page level) and PTP (internal levels)
98  */
99 x86pte_t ptp_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_USER;
100 x86pte_t pte_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_MOD | PT_NOCONSIST;
101 
102 /*
103  * This is the target addresses (physical) where the kernel text and data
104  * nucleus pages will be unpacked. On the hypervisor this is actually a
105  * virtual address.
106  */
107 paddr_t ktext_phys;
108 uint32_t ksize = 2 * FOUR_MEG;	/* kernel nucleus is 8Meg */
109 
110 static uint64_t target_kernel_text;	/* value to use for KERNEL_TEXT */
111 
112 /*
113  * The stack is setup in assembler before entering startup_kernel()
114  */
115 char stack_space[STACK_SIZE];
116 
117 /*
118  * Used to track physical memory allocation
119  */
120 static paddr_t next_avail_addr = 0;
121 
122 #if defined(__xpv)
123 /*
124  * Additional information needed for hypervisor memory allocation.
125  * Only memory up to scratch_end is mapped by page tables.
126  * mfn_base is the start of the hypervisor virtual image. It's ONE_GIG, so
127  * to derive a pfn from a pointer, you subtract mfn_base.
128  */
129 
130 static paddr_t scratch_end = 0;	/* we can't write all of mem here */
131 static paddr_t mfn_base;		/* addr corresponding to mfn_list[0] */
132 start_info_t *xen_info;
133 
134 #else	/* __xpv */
135 
136 /*
137  * If on the metal, then we have a multiboot loader.
138  */
139 uint32_t mb_magic;			/* magic from boot loader */
140 uint32_t mb_addr;			/* multiboot info package from loader */
141 int multiboot_version;
142 multiboot_info_t *mb_info;
143 multiboot2_info_header_t *mb2_info;
144 multiboot_tag_mmap_t *mb2_mmap_tagp;
145 int num_entries;			/* mmap entry count */
146 boolean_t num_entries_set;		/* is mmap entry count set */
147 uintptr_t load_addr;
148 static boot_framebuffer_t framebuffer __aligned(16);
149 static boot_framebuffer_t *fb;
150 
151 /* can not be automatic variables because of alignment */
152 static efi_guid_t smbios3 = SMBIOS3_TABLE_GUID;
153 static efi_guid_t smbios = SMBIOS_TABLE_GUID;
154 static efi_guid_t acpi2 = EFI_ACPI_TABLE_GUID;
155 static efi_guid_t acpi1 = ACPI_10_TABLE_GUID;
156 #endif	/* __xpv */
157 
158 /*
159  * This contains information passed to the kernel
160  */
161 struct xboot_info boot_info __aligned(16);
162 struct xboot_info *bi;
163 
164 /*
165  * Page table and memory stuff.
166  */
167 static paddr_t max_mem;			/* maximum memory address */
168 
169 /*
170  * Information about processor MMU
171  */
172 int amd64_support = 0;
173 int largepage_support = 0;
174 int pae_support = 0;
175 int pge_support = 0;
176 int NX_support = 0;
177 int PAT_support = 0;
178 
179 /*
180  * Low 32 bits of kernel entry address passed back to assembler.
181  * When running a 64 bit kernel, the high 32 bits are 0xffffffff.
182  */
183 uint32_t entry_addr_low;
184 
185 /*
186  * Memlists for the kernel. We shouldn't need a lot of these.
187  */
188 #define	MAX_MEMLIST (50)
189 struct boot_memlist memlists[MAX_MEMLIST];
190 uint_t memlists_used = 0;
191 struct boot_memlist pcimemlists[MAX_MEMLIST];
192 uint_t pcimemlists_used = 0;
193 struct boot_memlist rsvdmemlists[MAX_MEMLIST];
194 uint_t rsvdmemlists_used = 0;
195 
196 /*
197  * This should match what's in the bootloader.  It's arbitrary, but GRUB
198  * in particular has limitations on how much space it can use before it
199  * stops working properly.  This should be enough.
200  */
201 struct boot_modules modules[MAX_BOOT_MODULES];
202 uint_t modules_used = 0;
203 
204 #ifdef __xpv
205 /*
206  * Xen strips the size field out of the mb_memory_map_t, see struct e820entry
207  * definition in Xen source.
208  */
209 typedef struct {
210 	uint32_t	base_addr_low;
211 	uint32_t	base_addr_high;
212 	uint32_t	length_low;
213 	uint32_t	length_high;
214 	uint32_t	type;
215 } mmap_t;
216 
217 /*
218  * There is 512KB of scratch area after the boot stack page.
219  * We'll use that for everything except the kernel nucleus pages which are too
220  * big to fit there and are allocated last anyway.
221  */
222 #define	MAXMAPS	100
223 static mmap_t map_buffer[MAXMAPS];
224 #else
225 typedef mb_memory_map_t mmap_t;
226 #endif
227 
228 /*
229  * Debugging macros
230  */
231 uint_t prom_debug = 0;
232 uint_t map_debug = 0;
233 
234 static char noname[2] = "-";
235 
236 /*
237  * Either hypervisor-specific or grub-specific code builds the initial
238  * memlists. This code does the sort/merge/link for final use.
239  */
240 static void
241 sort_physinstall(void)
242 {
243 	int i;
244 #if !defined(__xpv)
245 	int j;
246 	struct boot_memlist tmp;
247 
248 	/*
249 	 * Now sort the memlists, in case they weren't in order.
250 	 * Yeah, this is a bubble sort; small, simple and easy to get right.
251 	 */
252 	DBG_MSG("Sorting phys-installed list\n");
253 	for (j = memlists_used - 1; j > 0; --j) {
254 		for (i = 0; i < j; ++i) {
255 			if (memlists[i].addr < memlists[i + 1].addr)
256 				continue;
257 			tmp = memlists[i];
258 			memlists[i] = memlists[i + 1];
259 			memlists[i + 1] = tmp;
260 		}
261 	}
262 
263 	/*
264 	 * Merge any memlists that don't have holes between them.
265 	 */
266 	for (i = 0; i <= memlists_used - 1; ++i) {
267 		if (memlists[i].addr + memlists[i].size != memlists[i + 1].addr)
268 			continue;
269 
270 		if (prom_debug)
271 			dboot_printf(
272 			    "merging mem segs %" PRIx64 "...%" PRIx64
273 			    " w/ %" PRIx64 "...%" PRIx64 "\n",
274 			    memlists[i].addr,
275 			    memlists[i].addr + memlists[i].size,
276 			    memlists[i + 1].addr,
277 			    memlists[i + 1].addr + memlists[i + 1].size);
278 
279 		memlists[i].size += memlists[i + 1].size;
280 		for (j = i + 1; j < memlists_used - 1; ++j)
281 			memlists[j] = memlists[j + 1];
282 		--memlists_used;
283 		DBG(memlists_used);
284 		--i;	/* after merging we need to reexamine, so do this */
285 	}
286 #endif	/* __xpv */
287 
288 	if (prom_debug) {
289 		dboot_printf("\nFinal memlists:\n");
290 		for (i = 0; i < memlists_used; ++i) {
291 			dboot_printf("\t%d: addr=%" PRIx64 " size=%"
292 			    PRIx64 "\n", i, memlists[i].addr, memlists[i].size);
293 		}
294 	}
295 
296 	/*
297 	 * link together the memlists with native size pointers
298 	 */
299 	memlists[0].next = 0;
300 	memlists[0].prev = 0;
301 	for (i = 1; i < memlists_used; ++i) {
302 		memlists[i].prev = (native_ptr_t)(uintptr_t)(memlists + i - 1);
303 		memlists[i].next = 0;
304 		memlists[i - 1].next = (native_ptr_t)(uintptr_t)(memlists + i);
305 	}
306 	bi->bi_phys_install = (native_ptr_t)(uintptr_t)memlists;
307 	DBG(bi->bi_phys_install);
308 }
309 
310 /*
311  * build bios reserved memlists
312  */
313 static void
314 build_rsvdmemlists(void)
315 {
316 	int i;
317 
318 	rsvdmemlists[0].next = 0;
319 	rsvdmemlists[0].prev = 0;
320 	for (i = 1; i < rsvdmemlists_used; ++i) {
321 		rsvdmemlists[i].prev =
322 		    (native_ptr_t)(uintptr_t)(rsvdmemlists + i - 1);
323 		rsvdmemlists[i].next = 0;
324 		rsvdmemlists[i - 1].next =
325 		    (native_ptr_t)(uintptr_t)(rsvdmemlists + i);
326 	}
327 	bi->bi_rsvdmem = (native_ptr_t)(uintptr_t)rsvdmemlists;
328 	DBG(bi->bi_rsvdmem);
329 }
330 
331 #if defined(__xpv)
332 
333 /*
334  * halt on the hypervisor after a delay to drain console output
335  */
336 void
337 dboot_halt(void)
338 {
339 	uint_t i = 10000;
340 
341 	while (--i)
342 		(void) HYPERVISOR_yield();
343 	(void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
344 }
345 
346 /*
347  * From a machine address, find the corresponding pseudo-physical address.
348  * Pseudo-physical address are contiguous and run from mfn_base in each VM.
349  * Machine addresses are the real underlying hardware addresses.
350  * These are needed for page table entries. Note that this routine is
351  * poorly protected. A bad value of "ma" will cause a page fault.
352  */
353 paddr_t
354 ma_to_pa(maddr_t ma)
355 {
356 	ulong_t pgoff = ma & MMU_PAGEOFFSET;
357 	ulong_t pfn = mfn_to_pfn_mapping[mmu_btop(ma)];
358 	paddr_t pa;
359 
360 	if (pfn >= xen_info->nr_pages)
361 		return (-(paddr_t)1);
362 	pa = mfn_base + mmu_ptob((paddr_t)pfn) + pgoff;
363 #ifdef DEBUG
364 	if (ma != pa_to_ma(pa))
365 		dboot_printf("ma_to_pa(%" PRIx64 ") got %" PRIx64 ", "
366 		    "pa_to_ma() says %" PRIx64 "\n", ma, pa, pa_to_ma(pa));
367 #endif
368 	return (pa);
369 }
370 
371 /*
372  * From a pseudo-physical address, find the corresponding machine address.
373  */
374 maddr_t
375 pa_to_ma(paddr_t pa)
376 {
377 	pfn_t pfn;
378 	ulong_t mfn;
379 
380 	pfn = mmu_btop(pa - mfn_base);
381 	if (pa < mfn_base || pfn >= xen_info->nr_pages)
382 		dboot_panic("pa_to_ma(): illegal address 0x%lx", (ulong_t)pa);
383 	mfn = ((ulong_t *)xen_info->mfn_list)[pfn];
384 #ifdef DEBUG
385 	if (mfn_to_pfn_mapping[mfn] != pfn)
386 		dboot_printf("pa_to_ma(pfn=%lx) got %lx ma_to_pa() says %lx\n",
387 		    pfn, mfn, mfn_to_pfn_mapping[mfn]);
388 #endif
389 	return (mfn_to_ma(mfn) | (pa & MMU_PAGEOFFSET));
390 }
391 
392 #endif	/* __xpv */
393 
394 x86pte_t
395 get_pteval(paddr_t table, uint_t index)
396 {
397 	if (pae_support)
398 		return (((x86pte_t *)(uintptr_t)table)[index]);
399 	return (((x86pte32_t *)(uintptr_t)table)[index]);
400 }
401 
402 /*ARGSUSED*/
403 void
404 set_pteval(paddr_t table, uint_t index, uint_t level, x86pte_t pteval)
405 {
406 #ifdef __xpv
407 	mmu_update_t t;
408 	maddr_t mtable = pa_to_ma(table);
409 	int retcnt;
410 
411 	t.ptr = (mtable + index * pte_size) | MMU_NORMAL_PT_UPDATE;
412 	t.val = pteval;
413 	if (HYPERVISOR_mmu_update(&t, 1, &retcnt, DOMID_SELF) || retcnt != 1)
414 		dboot_panic("HYPERVISOR_mmu_update() failed");
415 #else /* __xpv */
416 	uintptr_t tab_addr = (uintptr_t)table;
417 
418 	if (pae_support)
419 		((x86pte_t *)tab_addr)[index] = pteval;
420 	else
421 		((x86pte32_t *)tab_addr)[index] = (x86pte32_t)pteval;
422 	if (level == top_level && level == 2)
423 		reload_cr3();
424 #endif /* __xpv */
425 }
426 
427 paddr_t
428 make_ptable(x86pte_t *pteval, uint_t level)
429 {
430 	paddr_t new_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
431 
432 	if (level == top_level && level == 2)
433 		*pteval = pa_to_ma((uintptr_t)new_table) | PT_VALID;
434 	else
435 		*pteval = pa_to_ma((uintptr_t)new_table) | ptp_bits;
436 
437 #ifdef __xpv
438 	/* Remove write permission to the new page table. */
439 	if (HYPERVISOR_update_va_mapping(new_table,
440 	    *pteval & ~(x86pte_t)PT_WRITABLE, UVMF_INVLPG | UVMF_LOCAL))
441 		dboot_panic("HYP_update_va_mapping error");
442 #endif
443 
444 	if (map_debug)
445 		dboot_printf("new page table lvl=%d paddr=0x%lx ptp=0x%"
446 		    PRIx64 "\n", level, (ulong_t)new_table, *pteval);
447 	return (new_table);
448 }
449 
450 x86pte_t *
451 map_pte(paddr_t table, uint_t index)
452 {
453 	return ((x86pte_t *)(uintptr_t)(table + index * pte_size));
454 }
455 
456 /*
457  * dump out the contents of page tables...
458  */
459 static void
460 dump_tables(void)
461 {
462 	uint_t save_index[4];	/* for recursion */
463 	char *save_table[4];	/* for recursion */
464 	uint_t	l;
465 	uint64_t va;
466 	uint64_t pgsize;
467 	int index;
468 	int i;
469 	x86pte_t pteval;
470 	char *table;
471 	static char *tablist = "\t\t\t";
472 	char *tabs = tablist + 3 - top_level;
473 	uint_t pa, pa1;
474 #if !defined(__xpv)
475 #define	maddr_t paddr_t
476 #endif /* !__xpv */
477 
478 	dboot_printf("Finished pagetables:\n");
479 	table = (char *)(uintptr_t)top_page_table;
480 	l = top_level;
481 	va = 0;
482 	for (index = 0; index < ptes_per_table; ++index) {
483 		pgsize = 1ull << shift_amt[l];
484 		if (pae_support)
485 			pteval = ((x86pte_t *)table)[index];
486 		else
487 			pteval = ((x86pte32_t *)table)[index];
488 		if (pteval == 0)
489 			goto next_entry;
490 
491 		dboot_printf("%s %p[0x%x] = %" PRIx64 ", va=%" PRIx64,
492 		    tabs + l, (void *)table, index, (uint64_t)pteval, va);
493 		pa = ma_to_pa(pteval & MMU_PAGEMASK);
494 		dboot_printf(" physaddr=%x\n", pa);
495 
496 		/*
497 		 * Don't try to walk hypervisor private pagetables
498 		 */
499 		if ((l > 1 || (l == 1 && (pteval & PT_PAGESIZE) == 0))) {
500 			save_table[l] = table;
501 			save_index[l] = index;
502 			--l;
503 			index = -1;
504 			table = (char *)(uintptr_t)
505 			    ma_to_pa(pteval & MMU_PAGEMASK);
506 			goto recursion;
507 		}
508 
509 		/*
510 		 * shorten dump for consecutive mappings
511 		 */
512 		for (i = 1; index + i < ptes_per_table; ++i) {
513 			if (pae_support)
514 				pteval = ((x86pte_t *)table)[index + i];
515 			else
516 				pteval = ((x86pte32_t *)table)[index + i];
517 			if (pteval == 0)
518 				break;
519 			pa1 = ma_to_pa(pteval & MMU_PAGEMASK);
520 			if (pa1 != pa + i * pgsize)
521 				break;
522 		}
523 		if (i > 2) {
524 			dboot_printf("%s...\n", tabs + l);
525 			va += pgsize * (i - 2);
526 			index += i - 2;
527 		}
528 next_entry:
529 		va += pgsize;
530 		if (l == 3 && index == 256)	/* VA hole */
531 			va = 0xffff800000000000ull;
532 recursion:
533 		;
534 	}
535 	if (l < top_level) {
536 		++l;
537 		index = save_index[l];
538 		table = save_table[l];
539 		goto recursion;
540 	}
541 }
542 
543 /*
544  * Add a mapping for the machine page at the given virtual address.
545  */
546 static void
547 map_ma_at_va(maddr_t ma, native_ptr_t va, uint_t level)
548 {
549 	x86pte_t *ptep;
550 	x86pte_t pteval;
551 
552 	pteval = ma | pte_bits;
553 	if (level > 0)
554 		pteval |= PT_PAGESIZE;
555 	if (va >= target_kernel_text && pge_support)
556 		pteval |= PT_GLOBAL;
557 
558 	if (map_debug && ma != va)
559 		dboot_printf("mapping ma=0x%" PRIx64 " va=0x%" PRIx64
560 		    " pte=0x%" PRIx64 " l=%d\n",
561 		    (uint64_t)ma, (uint64_t)va, pteval, level);
562 
563 #if defined(__xpv)
564 	/*
565 	 * see if we can avoid find_pte() on the hypervisor
566 	 */
567 	if (HYPERVISOR_update_va_mapping(va, pteval,
568 	    UVMF_INVLPG | UVMF_LOCAL) == 0)
569 		return;
570 #endif
571 
572 	/*
573 	 * Find the pte that will map this address. This creates any
574 	 * missing intermediate level page tables
575 	 */
576 	ptep = find_pte(va, NULL, level, 0);
577 
578 	/*
579 	 * When paravirtualized, we must use hypervisor calls to modify the
580 	 * PTE, since paging is active. On real hardware we just write to
581 	 * the pagetables which aren't in use yet.
582 	 */
583 #if defined(__xpv)
584 	ptep = ptep;	/* shut lint up */
585 	if (HYPERVISOR_update_va_mapping(va, pteval, UVMF_INVLPG | UVMF_LOCAL))
586 		dboot_panic("mmu_update failed-map_pa_at_va va=0x%" PRIx64
587 		    " l=%d ma=0x%" PRIx64 ", pte=0x%" PRIx64 "",
588 		    (uint64_t)va, level, (uint64_t)ma, pteval);
589 #else
590 	if (va < 1024 * 1024)
591 		pteval |= PT_NOCACHE;		/* for video RAM */
592 	if (pae_support)
593 		*ptep = pteval;
594 	else
595 		*((x86pte32_t *)ptep) = (x86pte32_t)pteval;
596 #endif
597 }
598 
599 /*
600  * Add a mapping for the physical page at the given virtual address.
601  */
602 static void
603 map_pa_at_va(paddr_t pa, native_ptr_t va, uint_t level)
604 {
605 	map_ma_at_va(pa_to_ma(pa), va, level);
606 }
607 
608 /*
609  * This is called to remove start..end from the
610  * possible range of PCI addresses.
611  */
612 const uint64_t pci_lo_limit = 0x00100000ul;
613 const uint64_t pci_hi_limit = 0xfff00000ul;
614 static void
615 exclude_from_pci(uint64_t start, uint64_t end)
616 {
617 	int i;
618 	int j;
619 	struct boot_memlist *ml;
620 
621 	for (i = 0; i < pcimemlists_used; ++i) {
622 		ml = &pcimemlists[i];
623 
624 		/* delete the entire range? */
625 		if (start <= ml->addr && ml->addr + ml->size <= end) {
626 			--pcimemlists_used;
627 			for (j = i; j < pcimemlists_used; ++j)
628 				pcimemlists[j] = pcimemlists[j + 1];
629 			--i;	/* to revisit the new one at this index */
630 		}
631 
632 		/* split a range? */
633 		else if (ml->addr < start && end < ml->addr + ml->size) {
634 
635 			++pcimemlists_used;
636 			if (pcimemlists_used > MAX_MEMLIST)
637 				dboot_panic("too many pcimemlists");
638 
639 			for (j = pcimemlists_used - 1; j > i; --j)
640 				pcimemlists[j] = pcimemlists[j - 1];
641 			ml->size = start - ml->addr;
642 
643 			++ml;
644 			ml->size = (ml->addr + ml->size) - end;
645 			ml->addr = end;
646 			++i;	/* skip on to next one */
647 		}
648 
649 		/* cut memory off the start? */
650 		else if (ml->addr < end && end < ml->addr + ml->size) {
651 			ml->size -= end - ml->addr;
652 			ml->addr = end;
653 		}
654 
655 		/* cut memory off the end? */
656 		else if (ml->addr <= start && start < ml->addr + ml->size) {
657 			ml->size = start - ml->addr;
658 		}
659 	}
660 }
661 
662 /*
663  * During memory allocation, find the highest address not used yet.
664  */
665 static void
666 check_higher(paddr_t a)
667 {
668 	if (a < next_avail_addr)
669 		return;
670 	next_avail_addr = RNDUP(a + 1, MMU_PAGESIZE);
671 	DBG(next_avail_addr);
672 }
673 
674 static int
675 dboot_loader_mmap_entries(void)
676 {
677 #if !defined(__xpv)
678 	if (num_entries_set == B_TRUE)
679 		return (num_entries);
680 
681 	switch (multiboot_version) {
682 	case 1:
683 		DBG(mb_info->flags);
684 		if (mb_info->flags & 0x40) {
685 			mb_memory_map_t *mmap;
686 
687 			DBG(mb_info->mmap_addr);
688 			DBG(mb_info->mmap_length);
689 			check_higher(mb_info->mmap_addr + mb_info->mmap_length);
690 
691 			for (mmap = (mb_memory_map_t *)mb_info->mmap_addr;
692 			    (uint32_t)mmap < mb_info->mmap_addr +
693 			    mb_info->mmap_length;
694 			    mmap = (mb_memory_map_t *)((uint32_t)mmap +
695 			    mmap->size + sizeof (mmap->size)))
696 				++num_entries;
697 
698 			num_entries_set = B_TRUE;
699 		}
700 		break;
701 	case 2:
702 		num_entries_set = B_TRUE;
703 		num_entries = dboot_multiboot2_mmap_nentries(mb2_info,
704 		    mb2_mmap_tagp);
705 		break;
706 	default:
707 		dboot_panic("Unknown multiboot version: %d\n",
708 		    multiboot_version);
709 		break;
710 	}
711 	return (num_entries);
712 #else
713 	return (MAXMAPS);
714 #endif
715 }
716 
717 static uint32_t
718 dboot_loader_mmap_get_type(int index)
719 {
720 #if !defined(__xpv)
721 	mb_memory_map_t *mp, *mpend;
722 	int i;
723 
724 	switch (multiboot_version) {
725 	case 1:
726 		mp = (mb_memory_map_t *)mb_info->mmap_addr;
727 		mpend = (mb_memory_map_t *)
728 		    (mb_info->mmap_addr + mb_info->mmap_length);
729 
730 		for (i = 0; mp < mpend && i != index; i++)
731 			mp = (mb_memory_map_t *)((uint32_t)mp + mp->size +
732 			    sizeof (mp->size));
733 		if (mp >= mpend) {
734 			dboot_panic("dboot_loader_mmap_get_type(): index "
735 			    "out of bounds: %d\n", index);
736 		}
737 		return (mp->type);
738 
739 	case 2:
740 		return (dboot_multiboot2_mmap_get_type(mb2_info,
741 		    mb2_mmap_tagp, index));
742 
743 	default:
744 		dboot_panic("Unknown multiboot version: %d\n",
745 		    multiboot_version);
746 		break;
747 	}
748 	return (0);
749 #else
750 	return (map_buffer[index].type);
751 #endif
752 }
753 
754 static uint64_t
755 dboot_loader_mmap_get_base(int index)
756 {
757 #if !defined(__xpv)
758 	mb_memory_map_t *mp, *mpend;
759 	int i;
760 
761 	switch (multiboot_version) {
762 	case 1:
763 		mp = (mb_memory_map_t *)mb_info->mmap_addr;
764 		mpend = (mb_memory_map_t *)
765 		    (mb_info->mmap_addr + mb_info->mmap_length);
766 
767 		for (i = 0; mp < mpend && i != index; i++)
768 			mp = (mb_memory_map_t *)((uint32_t)mp + mp->size +
769 			    sizeof (mp->size));
770 		if (mp >= mpend) {
771 			dboot_panic("dboot_loader_mmap_get_base(): index "
772 			    "out of bounds: %d\n", index);
773 		}
774 		return (((uint64_t)mp->base_addr_high << 32) +
775 		    (uint64_t)mp->base_addr_low);
776 
777 	case 2:
778 		return (dboot_multiboot2_mmap_get_base(mb2_info,
779 		    mb2_mmap_tagp, index));
780 
781 	default:
782 		dboot_panic("Unknown multiboot version: %d\n",
783 		    multiboot_version);
784 		break;
785 	}
786 	return (0);
787 #else
788 	return (((uint64_t)map_buffer[index].base_addr_high << 32) +
789 	    (uint64_t)map_buffer[index].base_addr_low);
790 #endif
791 }
792 
793 static uint64_t
794 dboot_loader_mmap_get_length(int index)
795 {
796 #if !defined(__xpv)
797 	mb_memory_map_t *mp, *mpend;
798 	int i;
799 
800 	switch (multiboot_version) {
801 	case 1:
802 		mp = (mb_memory_map_t *)mb_info->mmap_addr;
803 		mpend = (mb_memory_map_t *)
804 		    (mb_info->mmap_addr + mb_info->mmap_length);
805 
806 		for (i = 0; mp < mpend && i != index; i++)
807 			mp = (mb_memory_map_t *)((uint32_t)mp + mp->size +
808 			    sizeof (mp->size));
809 		if (mp >= mpend) {
810 			dboot_panic("dboot_loader_mmap_get_length(): index "
811 			    "out of bounds: %d\n", index);
812 		}
813 		return (((uint64_t)mp->length_high << 32) +
814 		    (uint64_t)mp->length_low);
815 
816 	case 2:
817 		return (dboot_multiboot2_mmap_get_length(mb2_info,
818 		    mb2_mmap_tagp, index));
819 
820 	default:
821 		dboot_panic("Unknown multiboot version: %d\n",
822 		    multiboot_version);
823 		break;
824 	}
825 	return (0);
826 #else
827 	return (((uint64_t)map_buffer[index].length_high << 32) +
828 	    (uint64_t)map_buffer[index].length_low);
829 #endif
830 }
831 
832 static void
833 build_pcimemlists(void)
834 {
835 	uint64_t page_offset = MMU_PAGEOFFSET;	/* needs to be 64 bits */
836 	uint64_t start;
837 	uint64_t end;
838 	int i, num;
839 
840 	/*
841 	 * initialize
842 	 */
843 	pcimemlists[0].addr = pci_lo_limit;
844 	pcimemlists[0].size = pci_hi_limit - pci_lo_limit;
845 	pcimemlists_used = 1;
846 
847 	num = dboot_loader_mmap_entries();
848 	/*
849 	 * Fill in PCI memlists.
850 	 */
851 	for (i = 0; i < num; ++i) {
852 		start = dboot_loader_mmap_get_base(i);
853 		end = start + dboot_loader_mmap_get_length(i);
854 
855 		if (prom_debug)
856 			dboot_printf("\ttype: %d %" PRIx64 "..%"
857 			    PRIx64 "\n", dboot_loader_mmap_get_type(i),
858 			    start, end);
859 
860 		/*
861 		 * page align start and end
862 		 */
863 		start = (start + page_offset) & ~page_offset;
864 		end &= ~page_offset;
865 		if (end <= start)
866 			continue;
867 
868 		exclude_from_pci(start, end);
869 	}
870 
871 	/*
872 	 * Finish off the pcimemlist
873 	 */
874 	if (prom_debug) {
875 		for (i = 0; i < pcimemlists_used; ++i) {
876 			dboot_printf("pcimemlist entry 0x%" PRIx64 "..0x%"
877 			    PRIx64 "\n", pcimemlists[i].addr,
878 			    pcimemlists[i].addr + pcimemlists[i].size);
879 		}
880 	}
881 	pcimemlists[0].next = 0;
882 	pcimemlists[0].prev = 0;
883 	for (i = 1; i < pcimemlists_used; ++i) {
884 		pcimemlists[i].prev =
885 		    (native_ptr_t)(uintptr_t)(pcimemlists + i - 1);
886 		pcimemlists[i].next = 0;
887 		pcimemlists[i - 1].next =
888 		    (native_ptr_t)(uintptr_t)(pcimemlists + i);
889 	}
890 	bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists;
891 	DBG(bi->bi_pcimem);
892 }
893 
894 #if defined(__xpv)
895 /*
896  * Initialize memory allocator stuff from hypervisor-supplied start info.
897  */
898 static void
899 init_mem_alloc(void)
900 {
901 	int	local;	/* variables needed to find start region */
902 	paddr_t	scratch_start;
903 	xen_memory_map_t map;
904 
905 	DBG_MSG("Entered init_mem_alloc()\n");
906 
907 	/*
908 	 * Free memory follows the stack. There's at least 512KB of scratch
909 	 * space, rounded up to at least 2Mb alignment.  That should be enough
910 	 * for the page tables we'll need to build.  The nucleus memory is
911 	 * allocated last and will be outside the addressible range.  We'll
912 	 * switch to new page tables before we unpack the kernel
913 	 */
914 	scratch_start = RNDUP((paddr_t)(uintptr_t)&local, MMU_PAGESIZE);
915 	DBG(scratch_start);
916 	scratch_end = RNDUP((paddr_t)scratch_start + 512 * 1024, TWO_MEG);
917 	DBG(scratch_end);
918 
919 	/*
920 	 * For paranoia, leave some space between hypervisor data and ours.
921 	 * Use 500 instead of 512.
922 	 */
923 	next_avail_addr = scratch_end - 500 * 1024;
924 	DBG(next_avail_addr);
925 
926 	/*
927 	 * The domain builder gives us at most 1 module
928 	 */
929 	DBG(xen_info->mod_len);
930 	if (xen_info->mod_len > 0) {
931 		DBG(xen_info->mod_start);
932 		modules[0].bm_addr =
933 		    (native_ptr_t)(uintptr_t)xen_info->mod_start;
934 		modules[0].bm_size = xen_info->mod_len;
935 		bi->bi_module_cnt = 1;
936 		bi->bi_modules = (native_ptr_t)(uintptr_t)modules;
937 	} else {
938 		bi->bi_module_cnt = 0;
939 		bi->bi_modules = (native_ptr_t)(uintptr_t)NULL;
940 	}
941 	DBG(bi->bi_module_cnt);
942 	DBG(bi->bi_modules);
943 
944 	DBG(xen_info->mfn_list);
945 	DBG(xen_info->nr_pages);
946 	max_mem = (paddr_t)xen_info->nr_pages << MMU_PAGESHIFT;
947 	DBG(max_mem);
948 
949 	/*
950 	 * Using pseudo-physical addresses, so only 1 memlist element
951 	 */
952 	memlists[0].addr = 0;
953 	DBG(memlists[0].addr);
954 	memlists[0].size = max_mem;
955 	DBG(memlists[0].size);
956 	memlists_used = 1;
957 	DBG(memlists_used);
958 
959 	/*
960 	 * finish building physinstall list
961 	 */
962 	sort_physinstall();
963 
964 	/*
965 	 * build bios reserved memlists
966 	 */
967 	build_rsvdmemlists();
968 
969 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
970 		/*
971 		 * build PCI Memory list
972 		 */
973 		map.nr_entries = MAXMAPS;
974 		/*LINTED: constant in conditional context*/
975 		set_xen_guest_handle(map.buffer, map_buffer);
976 		if (HYPERVISOR_memory_op(XENMEM_machine_memory_map, &map) != 0)
977 			dboot_panic("getting XENMEM_machine_memory_map failed");
978 		build_pcimemlists();
979 	}
980 }
981 
982 #else	/* !__xpv */
983 
984 static void
985 dboot_multiboot1_xboot_consinfo(void)
986 {
987 	fb->framebuffer = 0;
988 }
989 
990 static void
991 dboot_multiboot2_xboot_consinfo(void)
992 {
993 	multiboot_tag_framebuffer_t *fbtag;
994 	fbtag = dboot_multiboot2_find_tag(mb2_info,
995 	    MULTIBOOT_TAG_TYPE_FRAMEBUFFER);
996 	fb->framebuffer = (uint64_t)(uintptr_t)fbtag;
997 }
998 
999 static int
1000 dboot_multiboot_modcount(void)
1001 {
1002 	switch (multiboot_version) {
1003 	case 1:
1004 		return (mb_info->mods_count);
1005 
1006 	case 2:
1007 		return (dboot_multiboot2_modcount(mb2_info));
1008 
1009 	default:
1010 		dboot_panic("Unknown multiboot version: %d\n",
1011 		    multiboot_version);
1012 		break;
1013 	}
1014 	return (0);
1015 }
1016 
1017 static uint32_t
1018 dboot_multiboot_modstart(int index)
1019 {
1020 	switch (multiboot_version) {
1021 	case 1:
1022 		return (((mb_module_t *)mb_info->mods_addr)[index].mod_start);
1023 
1024 	case 2:
1025 		return (dboot_multiboot2_modstart(mb2_info, index));
1026 
1027 	default:
1028 		dboot_panic("Unknown multiboot version: %d\n",
1029 		    multiboot_version);
1030 		break;
1031 	}
1032 	return (0);
1033 }
1034 
1035 static uint32_t
1036 dboot_multiboot_modend(int index)
1037 {
1038 	switch (multiboot_version) {
1039 	case 1:
1040 		return (((mb_module_t *)mb_info->mods_addr)[index].mod_end);
1041 
1042 	case 2:
1043 		return (dboot_multiboot2_modend(mb2_info, index));
1044 
1045 	default:
1046 		dboot_panic("Unknown multiboot version: %d\n",
1047 		    multiboot_version);
1048 		break;
1049 	}
1050 	return (0);
1051 }
1052 
1053 static char *
1054 dboot_multiboot_modcmdline(int index)
1055 {
1056 	switch (multiboot_version) {
1057 	case 1:
1058 		return ((char *)((mb_module_t *)
1059 		    mb_info->mods_addr)[index].mod_name);
1060 
1061 	case 2:
1062 		return (dboot_multiboot2_modcmdline(mb2_info, index));
1063 
1064 	default:
1065 		dboot_panic("Unknown multiboot version: %d\n",
1066 		    multiboot_version);
1067 		break;
1068 	}
1069 	return (0);
1070 }
1071 
1072 /*
1073  * Find the environment module for console setup.
1074  * Since we need the console to print early boot messages, the console is set up
1075  * before anything else and therefore we need to pick up the environment module
1076  * early too.
1077  *
1078  * Note, we just will search for and if found, will pass the env
1079  * module to console setup, the proper module list processing will happen later.
1080  */
1081 static void
1082 dboot_find_env(void)
1083 {
1084 	int i, modcount;
1085 	uint32_t mod_start, mod_end;
1086 	char *cmdline;
1087 
1088 	modcount = dboot_multiboot_modcount();
1089 
1090 	for (i = 0; i < modcount; ++i) {
1091 		cmdline = dboot_multiboot_modcmdline(i);
1092 		if (cmdline == NULL)
1093 			continue;
1094 
1095 		if (strstr(cmdline, "type=environment") == NULL)
1096 			continue;
1097 
1098 		mod_start = dboot_multiboot_modstart(i);
1099 		mod_end = dboot_multiboot_modend(i);
1100 		modules[0].bm_addr = (native_ptr_t)(uintptr_t)mod_start;
1101 		modules[0].bm_size = mod_end - mod_start;
1102 		modules[0].bm_name = (native_ptr_t)(uintptr_t)NULL;
1103 		modules[0].bm_hash = (native_ptr_t)(uintptr_t)NULL;
1104 		modules[0].bm_type = BMT_ENV;
1105 		bi->bi_modules = (native_ptr_t)(uintptr_t)modules;
1106 		bi->bi_module_cnt = 1;
1107 		return;
1108 	}
1109 }
1110 
1111 static boolean_t
1112 dboot_multiboot_basicmeminfo(uint32_t *lower, uint32_t *upper)
1113 {
1114 	boolean_t rv = B_FALSE;
1115 
1116 	switch (multiboot_version) {
1117 	case 1:
1118 		if (mb_info->flags & 0x01) {
1119 			*lower = mb_info->mem_lower;
1120 			*upper = mb_info->mem_upper;
1121 			rv = B_TRUE;
1122 		}
1123 		break;
1124 
1125 	case 2:
1126 		return (dboot_multiboot2_basicmeminfo(mb2_info, lower, upper));
1127 
1128 	default:
1129 		dboot_panic("Unknown multiboot version: %d\n",
1130 		    multiboot_version);
1131 		break;
1132 	}
1133 	return (rv);
1134 }
1135 
1136 static uint8_t
1137 dboot_a2h(char v)
1138 {
1139 	if (v >= 'a')
1140 		return (v - 'a' + 0xa);
1141 	else if (v >= 'A')
1142 		return (v - 'A' + 0xa);
1143 	else if (v >= '0')
1144 		return (v - '0');
1145 	else
1146 		dboot_panic("bad ASCII hex character %c\n", v);
1147 
1148 	return (0);
1149 }
1150 
1151 static void
1152 digest_a2h(const char *ascii, uint8_t *digest)
1153 {
1154 	unsigned int i;
1155 
1156 	for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
1157 		digest[i] = dboot_a2h(ascii[i * 2]) << 4;
1158 		digest[i] |= dboot_a2h(ascii[i * 2 + 1]);
1159 	}
1160 }
1161 
1162 /*
1163  * Generate a SHA-1 hash of the first len bytes of image, and compare it with
1164  * the ASCII-format hash found in the 40-byte buffer at ascii.  If they
1165  * match, return 0, otherwise -1.  This works only for images smaller than
1166  * 4 GB, which should not be a problem.
1167  */
1168 static int
1169 check_image_hash(uint_t midx)
1170 {
1171 	const char *ascii;
1172 	const void *image;
1173 	size_t len;
1174 	SHA1_CTX ctx;
1175 	uint8_t digest[SHA1_DIGEST_LENGTH];
1176 	uint8_t baseline[SHA1_DIGEST_LENGTH];
1177 	unsigned int i;
1178 
1179 	ascii = (const char *)(uintptr_t)modules[midx].bm_hash;
1180 	image = (const void *)(uintptr_t)modules[midx].bm_addr;
1181 	len = (size_t)modules[midx].bm_size;
1182 
1183 	digest_a2h(ascii, baseline);
1184 
1185 	SHA1Init(&ctx);
1186 	SHA1Update(&ctx, image, len);
1187 	SHA1Final(digest, &ctx);
1188 
1189 	for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
1190 		if (digest[i] != baseline[i])
1191 			return (-1);
1192 	}
1193 
1194 	return (0);
1195 }
1196 
1197 static const char *
1198 type_to_str(boot_module_type_t type)
1199 {
1200 	switch (type) {
1201 	case BMT_ROOTFS:
1202 		return ("rootfs");
1203 	case BMT_FILE:
1204 		return ("file");
1205 	case BMT_HASH:
1206 		return ("hash");
1207 	case BMT_ENV:
1208 		return ("environment");
1209 	default:
1210 		return ("unknown");
1211 	}
1212 }
1213 
1214 static void
1215 check_images(void)
1216 {
1217 	uint_t i;
1218 	char displayhash[SHA1_ASCII_LENGTH + 1];
1219 
1220 	for (i = 0; i < modules_used; i++) {
1221 		if (prom_debug) {
1222 			dboot_printf("module #%d: name %s type %s "
1223 			    "addr %lx size %lx\n",
1224 			    i, (char *)(uintptr_t)modules[i].bm_name,
1225 			    type_to_str(modules[i].bm_type),
1226 			    (ulong_t)modules[i].bm_addr,
1227 			    (ulong_t)modules[i].bm_size);
1228 		}
1229 
1230 		if (modules[i].bm_type == BMT_HASH ||
1231 		    modules[i].bm_hash == (native_ptr_t)(uintptr_t)NULL) {
1232 			DBG_MSG("module has no hash; skipping check\n");
1233 			continue;
1234 		}
1235 		(void) memcpy(displayhash,
1236 		    (void *)(uintptr_t)modules[i].bm_hash,
1237 		    SHA1_ASCII_LENGTH);
1238 		displayhash[SHA1_ASCII_LENGTH] = '\0';
1239 		if (prom_debug) {
1240 			dboot_printf("checking expected hash [%s]: ",
1241 			    displayhash);
1242 		}
1243 
1244 		if (check_image_hash(i) != 0)
1245 			dboot_panic("hash mismatch!\n");
1246 		else
1247 			DBG_MSG("OK\n");
1248 	}
1249 }
1250 
1251 /*
1252  * Determine the module's starting address, size, name, and type, and fill the
1253  * boot_modules structure.  This structure is used by the bop code, except for
1254  * hashes which are checked prior to transferring control to the kernel.
1255  */
1256 static void
1257 process_module(int midx)
1258 {
1259 	uint32_t mod_start = dboot_multiboot_modstart(midx);
1260 	uint32_t mod_end = dboot_multiboot_modend(midx);
1261 	char *cmdline = dboot_multiboot_modcmdline(midx);
1262 	char *p, *q;
1263 
1264 	check_higher(mod_end);
1265 	if (prom_debug) {
1266 		dboot_printf("\tmodule #%d: '%s' at 0x%lx, end 0x%lx\n",
1267 		    midx, cmdline, (ulong_t)mod_start, (ulong_t)mod_end);
1268 	}
1269 
1270 	if (mod_start > mod_end) {
1271 		dboot_panic("module #%d: module start address 0x%lx greater "
1272 		    "than end address 0x%lx", midx,
1273 		    (ulong_t)mod_start, (ulong_t)mod_end);
1274 	}
1275 
1276 	/*
1277 	 * A brief note on lengths and sizes: GRUB, for reasons unknown, passes
1278 	 * the address of the last valid byte in a module plus 1 as mod_end.
1279 	 * This is of course a bug; the multiboot specification simply states
1280 	 * that mod_start and mod_end "contain the start and end addresses of
1281 	 * the boot module itself" which is pretty obviously not what GRUB is
1282 	 * doing.  However, fixing it requires that not only this code be
1283 	 * changed but also that other code consuming this value and values
1284 	 * derived from it be fixed, and that the kernel and GRUB must either
1285 	 * both have the bug or neither.  While there are a lot of combinations
1286 	 * that will work, there are also some that won't, so for simplicity
1287 	 * we'll just cope with the bug.  That means we won't actually hash the
1288 	 * byte at mod_end, and we will expect that mod_end for the hash file
1289 	 * itself is one greater than some multiple of 41 (40 bytes of ASCII
1290 	 * hash plus a newline for each module).  We set bm_size to the true
1291 	 * correct number of bytes in each module, achieving exactly this.
1292 	 */
1293 
1294 	modules[midx].bm_addr = (native_ptr_t)(uintptr_t)mod_start;
1295 	modules[midx].bm_size = mod_end - mod_start;
1296 	modules[midx].bm_name = (native_ptr_t)(uintptr_t)cmdline;
1297 	modules[midx].bm_hash = (native_ptr_t)(uintptr_t)NULL;
1298 	modules[midx].bm_type = BMT_FILE;
1299 
1300 	if (cmdline == NULL) {
1301 		modules[midx].bm_name = (native_ptr_t)(uintptr_t)noname;
1302 		return;
1303 	}
1304 
1305 	p = cmdline;
1306 	modules[midx].bm_name =
1307 	    (native_ptr_t)(uintptr_t)strsep(&p, " \t\f\n\r");
1308 
1309 	while (p != NULL) {
1310 		q = strsep(&p, " \t\f\n\r");
1311 		if (strncmp(q, "name=", 5) == 0) {
1312 			if (q[5] != '\0' && !isspace(q[5])) {
1313 				modules[midx].bm_name =
1314 				    (native_ptr_t)(uintptr_t)(q + 5);
1315 			}
1316 			continue;
1317 		}
1318 
1319 		if (strncmp(q, "type=", 5) == 0) {
1320 			if (q[5] == '\0' || isspace(q[5]))
1321 				continue;
1322 			q += 5;
1323 			if (strcmp(q, "rootfs") == 0) {
1324 				modules[midx].bm_type = BMT_ROOTFS;
1325 			} else if (strcmp(q, "hash") == 0) {
1326 				modules[midx].bm_type = BMT_HASH;
1327 			} else if (strcmp(q, "environment") == 0) {
1328 				modules[midx].bm_type = BMT_ENV;
1329 			} else if (strcmp(q, "file") != 0) {
1330 				dboot_printf("\tmodule #%d: unknown module "
1331 				    "type '%s'; defaulting to 'file'\n",
1332 				    midx, q);
1333 			}
1334 			continue;
1335 		}
1336 
1337 		if (strncmp(q, "hash=", 5) == 0) {
1338 			if (q[5] != '\0' && !isspace(q[5])) {
1339 				modules[midx].bm_hash =
1340 				    (native_ptr_t)(uintptr_t)(q + 5);
1341 			}
1342 			continue;
1343 		}
1344 
1345 		dboot_printf("ignoring unknown option '%s'\n", q);
1346 	}
1347 }
1348 
1349 /*
1350  * Backward compatibility: if there are exactly one or two modules, both
1351  * of type 'file' and neither with an embedded hash value, we have been
1352  * given the legacy style modules.  In this case we need to treat the first
1353  * module as a rootfs and the second as a hash referencing that module.
1354  * Otherwise, even if the configuration is invalid, we assume that the
1355  * operator knows what he's doing or at least isn't being bitten by this
1356  * interface change.
1357  */
1358 static void
1359 fixup_modules(void)
1360 {
1361 	if (modules_used == 0 || modules_used > 2)
1362 		return;
1363 
1364 	if (modules[0].bm_type != BMT_FILE ||
1365 	    modules_used > 1 && modules[1].bm_type != BMT_FILE) {
1366 		return;
1367 	}
1368 
1369 	if (modules[0].bm_hash != (native_ptr_t)(uintptr_t)NULL ||
1370 	    modules_used > 1 &&
1371 	    modules[1].bm_hash != (native_ptr_t)(uintptr_t)NULL) {
1372 		return;
1373 	}
1374 
1375 	modules[0].bm_type = BMT_ROOTFS;
1376 	if (modules_used > 1) {
1377 		modules[1].bm_type = BMT_HASH;
1378 		modules[1].bm_name = modules[0].bm_name;
1379 	}
1380 }
1381 
1382 /*
1383  * For modules that do not have assigned hashes but have a separate hash module,
1384  * find the assigned hash module and set the primary module's bm_hash to point
1385  * to the hash data from that module.  We will then ignore modules of type
1386  * BMT_HASH from this point forward.
1387  */
1388 static void
1389 assign_module_hashes(void)
1390 {
1391 	uint_t i, j;
1392 
1393 	for (i = 0; i < modules_used; i++) {
1394 		if (modules[i].bm_type == BMT_HASH ||
1395 		    modules[i].bm_hash != (native_ptr_t)(uintptr_t)NULL) {
1396 			continue;
1397 		}
1398 
1399 		for (j = 0; j < modules_used; j++) {
1400 			if (modules[j].bm_type != BMT_HASH ||
1401 			    strcmp((char *)(uintptr_t)modules[j].bm_name,
1402 			    (char *)(uintptr_t)modules[i].bm_name) != 0) {
1403 				continue;
1404 			}
1405 
1406 			if (modules[j].bm_size < SHA1_ASCII_LENGTH) {
1407 				dboot_printf("Short hash module of length "
1408 				    "0x%lx bytes; ignoring\n",
1409 				    (ulong_t)modules[j].bm_size);
1410 			} else {
1411 				modules[i].bm_hash = modules[j].bm_addr;
1412 			}
1413 			break;
1414 		}
1415 	}
1416 }
1417 
1418 /*
1419  * Walk through the module information finding the last used address.
1420  * The first available address will become the top level page table.
1421  */
1422 static void
1423 dboot_process_modules(void)
1424 {
1425 	int i, modcount;
1426 	extern char _end[];
1427 
1428 	DBG_MSG("\nFinding Modules\n");
1429 	modcount = dboot_multiboot_modcount();
1430 	if (modcount > MAX_BOOT_MODULES) {
1431 		dboot_panic("Too many modules (%d) -- the maximum is %d.",
1432 		    modcount, MAX_BOOT_MODULES);
1433 	}
1434 	/*
1435 	 * search the modules to find the last used address
1436 	 * we'll build the module list while we're walking through here
1437 	 */
1438 	check_higher((paddr_t)(uintptr_t)&_end);
1439 	for (i = 0; i < modcount; ++i) {
1440 		process_module(i);
1441 		modules_used++;
1442 	}
1443 	bi->bi_modules = (native_ptr_t)(uintptr_t)modules;
1444 	DBG(bi->bi_modules);
1445 	bi->bi_module_cnt = modcount;
1446 	DBG(bi->bi_module_cnt);
1447 
1448 	fixup_modules();
1449 	assign_module_hashes();
1450 	check_images();
1451 }
1452 
1453 /*
1454  * We then build the phys_install memlist from the multiboot information.
1455  */
1456 static void
1457 dboot_process_mmap(void)
1458 {
1459 	uint64_t start;
1460 	uint64_t end;
1461 	uint64_t page_offset = MMU_PAGEOFFSET;	/* needs to be 64 bits */
1462 	uint32_t lower, upper;
1463 	int i, mmap_entries;
1464 
1465 	/*
1466 	 * Walk through the memory map from multiboot and build our memlist
1467 	 * structures. Note these will have native format pointers.
1468 	 */
1469 	DBG_MSG("\nFinding Memory Map\n");
1470 	num_entries = 0;
1471 	num_entries_set = B_FALSE;
1472 	max_mem = 0;
1473 	if ((mmap_entries = dboot_loader_mmap_entries()) > 0) {
1474 		for (i = 0; i < mmap_entries; i++) {
1475 			uint32_t type = dboot_loader_mmap_get_type(i);
1476 			start = dboot_loader_mmap_get_base(i);
1477 			end = start + dboot_loader_mmap_get_length(i);
1478 
1479 			if (prom_debug)
1480 				dboot_printf("\ttype: %d %" PRIx64 "..%"
1481 				    PRIx64 "\n", type, start, end);
1482 
1483 			/*
1484 			 * page align start and end
1485 			 */
1486 			start = (start + page_offset) & ~page_offset;
1487 			end &= ~page_offset;
1488 			if (end <= start)
1489 				continue;
1490 
1491 			/*
1492 			 * only type 1 is usable RAM
1493 			 */
1494 			switch (type) {
1495 			case 1:
1496 				if (end > max_mem)
1497 					max_mem = end;
1498 				memlists[memlists_used].addr = start;
1499 				memlists[memlists_used].size = end - start;
1500 				++memlists_used;
1501 				if (memlists_used > MAX_MEMLIST)
1502 					dboot_panic("too many memlists");
1503 				break;
1504 			case 2:
1505 				rsvdmemlists[rsvdmemlists_used].addr = start;
1506 				rsvdmemlists[rsvdmemlists_used].size =
1507 				    end - start;
1508 				++rsvdmemlists_used;
1509 				if (rsvdmemlists_used > MAX_MEMLIST)
1510 					dboot_panic("too many rsvdmemlists");
1511 				break;
1512 			default:
1513 				continue;
1514 			}
1515 		}
1516 		build_pcimemlists();
1517 	} else if (dboot_multiboot_basicmeminfo(&lower, &upper)) {
1518 		DBG(lower);
1519 		memlists[memlists_used].addr = 0;
1520 		memlists[memlists_used].size = lower * 1024;
1521 		++memlists_used;
1522 		DBG(upper);
1523 		memlists[memlists_used].addr = 1024 * 1024;
1524 		memlists[memlists_used].size = upper * 1024;
1525 		++memlists_used;
1526 
1527 		/*
1528 		 * Old platform - assume I/O space at the end of memory.
1529 		 */
1530 		pcimemlists[0].addr = (upper * 1024) + (1024 * 1024);
1531 		pcimemlists[0].size = pci_hi_limit - pcimemlists[0].addr;
1532 		pcimemlists[0].next = 0;
1533 		pcimemlists[0].prev = 0;
1534 		bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists;
1535 		DBG(bi->bi_pcimem);
1536 	} else {
1537 		dboot_panic("No memory info from boot loader!!!");
1538 	}
1539 
1540 	/*
1541 	 * finish processing the physinstall list
1542 	 */
1543 	sort_physinstall();
1544 
1545 	/*
1546 	 * build bios reserved mem lists
1547 	 */
1548 	build_rsvdmemlists();
1549 }
1550 
1551 /*
1552  * The highest address is used as the starting point for dboot's simple
1553  * memory allocator.
1554  *
1555  * Finding the highest address in case of Multiboot 1 protocol is
1556  * quite painful in the sense that some information provided by
1557  * the multiboot info structure points to BIOS data, and some to RAM.
1558  *
1559  * The module list was processed and checked already by dboot_process_modules(),
1560  * so we will check the command line string and the memory map.
1561  *
1562  * This list of to be checked items is based on our current knowledge of
1563  * allocations made by grub1 and will need to be reviewed if there
1564  * are updates about the information provided by Multiboot 1.
1565  *
1566  * In the case of the Multiboot 2, our life is much simpler, as the MB2
1567  * information tag list is one contiguous chunk of memory.
1568  */
1569 static paddr_t
1570 dboot_multiboot1_highest_addr(void)
1571 {
1572 	paddr_t addr = (paddr_t)(uintptr_t)NULL;
1573 	char *cmdl = (char *)mb_info->cmdline;
1574 
1575 	if (mb_info->flags & MB_INFO_CMDLINE)
1576 		addr = ((paddr_t)((uintptr_t)cmdl + strlen(cmdl) + 1));
1577 
1578 	if (mb_info->flags & MB_INFO_MEM_MAP)
1579 		addr = MAX(addr,
1580 		    ((paddr_t)(mb_info->mmap_addr + mb_info->mmap_length)));
1581 	return (addr);
1582 }
1583 
1584 static void
1585 dboot_multiboot_highest_addr(void)
1586 {
1587 	paddr_t addr;
1588 
1589 	switch (multiboot_version) {
1590 	case 1:
1591 		addr = dboot_multiboot1_highest_addr();
1592 		if (addr != (paddr_t)(uintptr_t)NULL)
1593 			check_higher(addr);
1594 		break;
1595 	case 2:
1596 		addr = dboot_multiboot2_highest_addr(mb2_info);
1597 		if (addr != (paddr_t)(uintptr_t)NULL)
1598 			check_higher(addr);
1599 		break;
1600 	default:
1601 		dboot_panic("Unknown multiboot version: %d\n",
1602 		    multiboot_version);
1603 		break;
1604 	}
1605 }
1606 
1607 /*
1608  * Walk the boot loader provided information and find the highest free address.
1609  */
1610 static void
1611 init_mem_alloc(void)
1612 {
1613 	DBG_MSG("Entered init_mem_alloc()\n");
1614 	dboot_process_modules();
1615 	dboot_process_mmap();
1616 	dboot_multiboot_highest_addr();
1617 }
1618 
1619 static int
1620 dboot_same_guids(efi_guid_t *g1, efi_guid_t *g2)
1621 {
1622 	int i;
1623 
1624 	if (g1->time_low != g2->time_low)
1625 		return (0);
1626 	if (g1->time_mid != g2->time_mid)
1627 		return (0);
1628 	if (g1->time_hi_and_version != g2->time_hi_and_version)
1629 		return (0);
1630 	if (g1->clock_seq_hi_and_reserved != g2->clock_seq_hi_and_reserved)
1631 		return (0);
1632 	if (g1->clock_seq_low != g2->clock_seq_low)
1633 		return (0);
1634 
1635 	for (i = 0; i < 6; i++) {
1636 		if (g1->node_addr[i] != g2->node_addr[i])
1637 			return (0);
1638 	}
1639 	return (1);
1640 }
1641 
1642 static void
1643 process_efi32(EFI_SYSTEM_TABLE32 *efi)
1644 {
1645 	uint32_t entries;
1646 	EFI_CONFIGURATION_TABLE32 *config;
1647 	int i;
1648 
1649 	entries = efi->NumberOfTableEntries;
1650 	config = (EFI_CONFIGURATION_TABLE32 *)(uintptr_t)
1651 	    efi->ConfigurationTable;
1652 
1653 	for (i = 0; i < entries; i++) {
1654 		if (dboot_same_guids(&config[i].VendorGuid, &smbios3)) {
1655 			bi->bi_smbios = (native_ptr_t)(uintptr_t)
1656 			    config[i].VendorTable;
1657 		}
1658 		if (bi->bi_smbios == NULL &&
1659 		    dboot_same_guids(&config[i].VendorGuid, &smbios)) {
1660 			bi->bi_smbios = (native_ptr_t)(uintptr_t)
1661 			    config[i].VendorTable;
1662 		}
1663 		if (dboot_same_guids(&config[i].VendorGuid, &acpi2)) {
1664 			bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1665 			    config[i].VendorTable;
1666 		}
1667 		if (bi->bi_acpi_rsdp == NULL &&
1668 		    dboot_same_guids(&config[i].VendorGuid, &acpi1)) {
1669 			bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1670 			    config[i].VendorTable;
1671 		}
1672 	}
1673 }
1674 
1675 static void
1676 process_efi64(EFI_SYSTEM_TABLE64 *efi)
1677 {
1678 	uint64_t entries;
1679 	EFI_CONFIGURATION_TABLE64 *config;
1680 	int i;
1681 
1682 	entries = efi->NumberOfTableEntries;
1683 	config = (EFI_CONFIGURATION_TABLE64 *)(uintptr_t)
1684 	    efi->ConfigurationTable;
1685 
1686 	for (i = 0; i < entries; i++) {
1687 		if (dboot_same_guids(&config[i].VendorGuid, &smbios3)) {
1688 			bi->bi_smbios = (native_ptr_t)(uintptr_t)
1689 			    config[i].VendorTable;
1690 		}
1691 		if (bi->bi_smbios == NULL &&
1692 		    dboot_same_guids(&config[i].VendorGuid, &smbios)) {
1693 			bi->bi_smbios = (native_ptr_t)(uintptr_t)
1694 			    config[i].VendorTable;
1695 		}
1696 		/* Prefer acpi v2+ over v1. */
1697 		if (dboot_same_guids(&config[i].VendorGuid, &acpi2)) {
1698 			bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1699 			    config[i].VendorTable;
1700 		}
1701 		if (bi->bi_acpi_rsdp == NULL &&
1702 		    dboot_same_guids(&config[i].VendorGuid, &acpi1)) {
1703 			bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1704 			    config[i].VendorTable;
1705 		}
1706 	}
1707 }
1708 
1709 static void
1710 dboot_multiboot_get_fwtables(void)
1711 {
1712 	multiboot_tag_new_acpi_t *nacpitagp;
1713 	multiboot_tag_old_acpi_t *oacpitagp;
1714 	multiboot_tag_efi64_t *efi64tagp = NULL;
1715 	multiboot_tag_efi32_t *efi32tagp = NULL;
1716 
1717 	/* no fw tables from multiboot 1 */
1718 	if (multiboot_version != 2)
1719 		return;
1720 
1721 	efi64tagp = (multiboot_tag_efi64_t *)
1722 	    dboot_multiboot2_find_tag(mb2_info, MULTIBOOT_TAG_TYPE_EFI64);
1723 	if (efi64tagp != NULL) {
1724 		bi->bi_uefi_arch = XBI_UEFI_ARCH_64;
1725 		bi->bi_uefi_systab = (native_ptr_t)(uintptr_t)
1726 		    efi64tagp->mb_pointer;
1727 		process_efi64((EFI_SYSTEM_TABLE64 *)(uintptr_t)
1728 		    efi64tagp->mb_pointer);
1729 	} else {
1730 		efi32tagp = (multiboot_tag_efi32_t *)
1731 		    dboot_multiboot2_find_tag(mb2_info,
1732 		    MULTIBOOT_TAG_TYPE_EFI32);
1733 		if (efi32tagp != NULL) {
1734 			bi->bi_uefi_arch = XBI_UEFI_ARCH_32;
1735 			bi->bi_uefi_systab = (native_ptr_t)(uintptr_t)
1736 			    efi32tagp->mb_pointer;
1737 			process_efi32((EFI_SYSTEM_TABLE32 *)(uintptr_t)
1738 			    efi32tagp->mb_pointer);
1739 		}
1740 	}
1741 
1742 	/*
1743 	 * The ACPI RSDP can be found by scanning the BIOS memory areas or
1744 	 * from the EFI system table. The boot loader may pass in the address
1745 	 * it found the ACPI tables at.
1746 	 */
1747 	nacpitagp = (multiboot_tag_new_acpi_t *)
1748 	    dboot_multiboot2_find_tag(mb2_info,
1749 	    MULTIBOOT_TAG_TYPE_ACPI_NEW);
1750 	oacpitagp = (multiboot_tag_old_acpi_t *)
1751 	    dboot_multiboot2_find_tag(mb2_info,
1752 	    MULTIBOOT_TAG_TYPE_ACPI_OLD);
1753 
1754 	if (nacpitagp != NULL) {
1755 		bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1756 		    &nacpitagp->mb_rsdp[0];
1757 	} else if (oacpitagp != NULL) {
1758 		bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1759 		    &oacpitagp->mb_rsdp[0];
1760 	}
1761 }
1762 
1763 /* print out EFI version string with newline */
1764 static void
1765 dboot_print_efi_version(uint32_t ver)
1766 {
1767 	int rev;
1768 
1769 	dboot_printf("%d.", EFI_REV_MAJOR(ver));
1770 
1771 	rev = EFI_REV_MINOR(ver);
1772 	if ((rev % 10) != 0) {
1773 		dboot_printf("%d.%d\n", rev / 10, rev % 10);
1774 	} else {
1775 		dboot_printf("%d\n", rev / 10);
1776 	}
1777 }
1778 
1779 static void
1780 print_efi32(EFI_SYSTEM_TABLE32 *efi)
1781 {
1782 	uint16_t *data;
1783 	EFI_CONFIGURATION_TABLE32 *conf;
1784 	int i;
1785 
1786 	dboot_printf("EFI32 signature: %llx\n",
1787 	    (unsigned long long)efi->Hdr.Signature);
1788 	dboot_printf("EFI system version: ");
1789 	dboot_print_efi_version(efi->Hdr.Revision);
1790 	dboot_printf("EFI system vendor: ");
1791 	data = (uint16_t *)(uintptr_t)efi->FirmwareVendor;
1792 	for (i = 0; data[i] != 0; i++)
1793 		dboot_printf("%c", (char)data[i]);
1794 	dboot_printf("\nEFI firmware revision: ");
1795 	dboot_print_efi_version(efi->FirmwareRevision);
1796 	dboot_printf("EFI system table number of entries: %d\n",
1797 	    efi->NumberOfTableEntries);
1798 	conf = (EFI_CONFIGURATION_TABLE32 *)(uintptr_t)
1799 	    efi->ConfigurationTable;
1800 	for (i = 0; i < (int)efi->NumberOfTableEntries; i++) {
1801 		dboot_printf("%d: 0x%x 0x%x 0x%x 0x%x 0x%x", i,
1802 		    conf[i].VendorGuid.time_low,
1803 		    conf[i].VendorGuid.time_mid,
1804 		    conf[i].VendorGuid.time_hi_and_version,
1805 		    conf[i].VendorGuid.clock_seq_hi_and_reserved,
1806 		    conf[i].VendorGuid.clock_seq_low);
1807 		dboot_printf(" 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
1808 		    conf[i].VendorGuid.node_addr[0],
1809 		    conf[i].VendorGuid.node_addr[1],
1810 		    conf[i].VendorGuid.node_addr[2],
1811 		    conf[i].VendorGuid.node_addr[3],
1812 		    conf[i].VendorGuid.node_addr[4],
1813 		    conf[i].VendorGuid.node_addr[5]);
1814 	}
1815 }
1816 
1817 static void
1818 print_efi64(EFI_SYSTEM_TABLE64 *efi)
1819 {
1820 	uint16_t *data;
1821 	EFI_CONFIGURATION_TABLE64 *conf;
1822 	int i;
1823 
1824 	dboot_printf("EFI64 signature: %llx\n",
1825 	    (unsigned long long)efi->Hdr.Signature);
1826 	dboot_printf("EFI system version: ");
1827 	dboot_print_efi_version(efi->Hdr.Revision);
1828 	dboot_printf("EFI system vendor: ");
1829 	data = (uint16_t *)(uintptr_t)efi->FirmwareVendor;
1830 	for (i = 0; data[i] != 0; i++)
1831 		dboot_printf("%c", (char)data[i]);
1832 	dboot_printf("\nEFI firmware revision: ");
1833 	dboot_print_efi_version(efi->FirmwareRevision);
1834 	dboot_printf("EFI system table number of entries: %lld\n",
1835 	    efi->NumberOfTableEntries);
1836 	conf = (EFI_CONFIGURATION_TABLE64 *)(uintptr_t)
1837 	    efi->ConfigurationTable;
1838 	for (i = 0; i < (int)efi->NumberOfTableEntries; i++) {
1839 		dboot_printf("%d: 0x%x 0x%x 0x%x 0x%x 0x%x", i,
1840 		    conf[i].VendorGuid.time_low,
1841 		    conf[i].VendorGuid.time_mid,
1842 		    conf[i].VendorGuid.time_hi_and_version,
1843 		    conf[i].VendorGuid.clock_seq_hi_and_reserved,
1844 		    conf[i].VendorGuid.clock_seq_low);
1845 		dboot_printf(" 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
1846 		    conf[i].VendorGuid.node_addr[0],
1847 		    conf[i].VendorGuid.node_addr[1],
1848 		    conf[i].VendorGuid.node_addr[2],
1849 		    conf[i].VendorGuid.node_addr[3],
1850 		    conf[i].VendorGuid.node_addr[4],
1851 		    conf[i].VendorGuid.node_addr[5]);
1852 	}
1853 }
1854 #endif /* !__xpv */
1855 
1856 /*
1857  * Simple memory allocator, allocates aligned physical memory.
1858  * Note that startup_kernel() only allocates memory, never frees.
1859  * Memory usage just grows in an upward direction.
1860  */
1861 static void *
1862 do_mem_alloc(uint32_t size, uint32_t align)
1863 {
1864 	uint_t i;
1865 	uint64_t best;
1866 	uint64_t start;
1867 	uint64_t end;
1868 
1869 	/*
1870 	 * make sure size is a multiple of pagesize
1871 	 */
1872 	size = RNDUP(size, MMU_PAGESIZE);
1873 	next_avail_addr = RNDUP(next_avail_addr, align);
1874 
1875 	/*
1876 	 * XXPV fixme joe
1877 	 *
1878 	 * a really large bootarchive that causes you to run out of memory
1879 	 * may cause this to blow up
1880 	 */
1881 	/* LINTED E_UNEXPECTED_UINT_PROMOTION */
1882 	best = (uint64_t)-size;
1883 	for (i = 0; i < memlists_used; ++i) {
1884 		start = memlists[i].addr;
1885 #if defined(__xpv)
1886 		start += mfn_base;
1887 #endif
1888 		end = start + memlists[i].size;
1889 
1890 		/*
1891 		 * did we find the desired address?
1892 		 */
1893 		if (start <= next_avail_addr && next_avail_addr + size <= end) {
1894 			best = next_avail_addr;
1895 			goto done;
1896 		}
1897 
1898 		/*
1899 		 * if not is this address the best so far?
1900 		 */
1901 		if (start > next_avail_addr && start < best &&
1902 		    RNDUP(start, align) + size <= end)
1903 			best = RNDUP(start, align);
1904 	}
1905 
1906 	/*
1907 	 * We didn't find exactly the address we wanted, due to going off the
1908 	 * end of a memory region. Return the best found memory address.
1909 	 */
1910 done:
1911 	next_avail_addr = best + size;
1912 #if defined(__xpv)
1913 	if (next_avail_addr > scratch_end)
1914 		dboot_panic("Out of mem next_avail: 0x%lx, scratch_end: "
1915 		    "0x%lx", (ulong_t)next_avail_addr,
1916 		    (ulong_t)scratch_end);
1917 #endif
1918 	(void) memset((void *)(uintptr_t)best, 0, size);
1919 	return ((void *)(uintptr_t)best);
1920 }
1921 
1922 void *
1923 mem_alloc(uint32_t size)
1924 {
1925 	return (do_mem_alloc(size, MMU_PAGESIZE));
1926 }
1927 
1928 
1929 /*
1930  * Build page tables to map all of memory used so far as well as the kernel.
1931  */
1932 static void
1933 build_page_tables(void)
1934 {
1935 	uint32_t psize;
1936 	uint32_t level;
1937 	uint32_t off;
1938 	uint64_t start;
1939 #if !defined(__xpv)
1940 	uint32_t i;
1941 	uint64_t end;
1942 #endif	/* __xpv */
1943 
1944 	/*
1945 	 * If we're on metal, we need to create the top level pagetable.
1946 	 */
1947 #if defined(__xpv)
1948 	top_page_table = (paddr_t)(uintptr_t)xen_info->pt_base;
1949 #else /* __xpv */
1950 	top_page_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
1951 #endif /* __xpv */
1952 	DBG((uintptr_t)top_page_table);
1953 
1954 	/*
1955 	 * Determine if we'll use large mappings for kernel, then map it.
1956 	 */
1957 	if (largepage_support) {
1958 		psize = lpagesize;
1959 		level = 1;
1960 	} else {
1961 		psize = MMU_PAGESIZE;
1962 		level = 0;
1963 	}
1964 
1965 	DBG_MSG("Mapping kernel\n");
1966 	DBG(ktext_phys);
1967 	DBG(target_kernel_text);
1968 	DBG(ksize);
1969 	DBG(psize);
1970 	for (off = 0; off < ksize; off += psize)
1971 		map_pa_at_va(ktext_phys + off, target_kernel_text + off, level);
1972 
1973 	/*
1974 	 * The kernel will need a 1 page window to work with page tables
1975 	 */
1976 	bi->bi_pt_window = (native_ptr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
1977 	DBG(bi->bi_pt_window);
1978 	bi->bi_pte_to_pt_window =
1979 	    (native_ptr_t)(uintptr_t)find_pte(bi->bi_pt_window, NULL, 0, 0);
1980 	DBG(bi->bi_pte_to_pt_window);
1981 
1982 #if defined(__xpv)
1983 	if (!DOMAIN_IS_INITDOMAIN(xen_info)) {
1984 		/* If this is a domU we're done. */
1985 		DBG_MSG("\nPage tables constructed\n");
1986 		return;
1987 	}
1988 #endif /* __xpv */
1989 
1990 	/*
1991 	 * We need 1:1 mappings for the lower 1M of memory to access
1992 	 * BIOS tables used by a couple of drivers during boot.
1993 	 *
1994 	 * The following code works because our simple memory allocator
1995 	 * only grows usage in an upwards direction.
1996 	 *
1997 	 * Note that by this point in boot some mappings for low memory
1998 	 * may already exist because we've already accessed device in low
1999 	 * memory.  (Specifically the video frame buffer and keyboard
2000 	 * status ports.)  If we're booting on raw hardware then GRUB
2001 	 * created these mappings for us.  If we're booting under a
2002 	 * hypervisor then we went ahead and remapped these devices into
2003 	 * memory allocated within dboot itself.
2004 	 */
2005 	if (map_debug)
2006 		dboot_printf("1:1 map pa=0..1Meg\n");
2007 	for (start = 0; start < 1024 * 1024; start += MMU_PAGESIZE) {
2008 #if defined(__xpv)
2009 		map_ma_at_va(start, start, 0);
2010 #else /* __xpv */
2011 		map_pa_at_va(start, start, 0);
2012 #endif /* __xpv */
2013 	}
2014 
2015 #if !defined(__xpv)
2016 
2017 	for (i = 0; i < memlists_used; ++i) {
2018 		start = memlists[i].addr;
2019 		end = start + memlists[i].size;
2020 
2021 		if (map_debug)
2022 			dboot_printf("1:1 map pa=%" PRIx64 "..%" PRIx64 "\n",
2023 			    start, end);
2024 		while (start < end && start < next_avail_addr) {
2025 			map_pa_at_va(start, start, 0);
2026 			start += MMU_PAGESIZE;
2027 		}
2028 		if (start >= next_avail_addr)
2029 			break;
2030 	}
2031 
2032 	/*
2033 	 * Map framebuffer memory as PT_NOCACHE as this is memory from a
2034 	 * device and therefore must not be cached.
2035 	 */
2036 	if (bi->bi_framebuffer != NULL && fb->framebuffer != 0) {
2037 		multiboot_tag_framebuffer_t *fb_tagp;
2038 		fb_tagp = (multiboot_tag_framebuffer_t *)(uintptr_t)
2039 		    fb->framebuffer;
2040 
2041 		start = fb_tagp->framebuffer_common.framebuffer_addr;
2042 		end = start + fb_tagp->framebuffer_common.framebuffer_height *
2043 		    fb_tagp->framebuffer_common.framebuffer_pitch;
2044 
2045 		if (map_debug)
2046 			dboot_printf("FB 1:1 map pa=%" PRIx64 "..%" PRIx64 "\n",
2047 			    start, end);
2048 		pte_bits |= PT_NOCACHE;
2049 		if (PAT_support != 0)
2050 			pte_bits |= PT_PAT_4K;
2051 
2052 		while (start < end) {
2053 			map_pa_at_va(start, start, 0);
2054 			start += MMU_PAGESIZE;
2055 		}
2056 		pte_bits &= ~PT_NOCACHE;
2057 		if (PAT_support != 0)
2058 			pte_bits &= ~PT_PAT_4K;
2059 	}
2060 #endif /* !__xpv */
2061 
2062 	DBG_MSG("\nPage tables constructed\n");
2063 }
2064 
2065 #define	NO_MULTIBOOT	\
2066 "multiboot is no longer used to boot the Solaris Operating System.\n\
2067 The grub entry should be changed to:\n\
2068 kernel$ /platform/i86pc/kernel/$ISADIR/unix\n\
2069 module$ /platform/i86pc/$ISADIR/boot_archive\n\
2070 See http://illumos.org/msg/SUNOS-8000-AK for details.\n"
2071 
2072 static void
2073 dboot_init_xboot_consinfo(void)
2074 {
2075 	bi = &boot_info;
2076 
2077 #if !defined(__xpv)
2078 	fb = &framebuffer;
2079 	bi->bi_framebuffer = (native_ptr_t)(uintptr_t)fb;
2080 
2081 	switch (multiboot_version) {
2082 	case 1:
2083 		dboot_multiboot1_xboot_consinfo();
2084 		break;
2085 	case 2:
2086 		dboot_multiboot2_xboot_consinfo();
2087 		break;
2088 	default:
2089 		dboot_panic("Unknown multiboot version: %d\n",
2090 		    multiboot_version);
2091 		break;
2092 	}
2093 	/*
2094 	 * Lookup environment module for the console. Complete module list
2095 	 * will be built after console setup.
2096 	 */
2097 	dboot_find_env();
2098 #endif
2099 }
2100 
2101 /*
2102  * Set up basic data from the boot loader.
2103  * The load_addr is part of AOUT kludge setup in dboot_grub.s, to support
2104  * 32-bit dboot code setup used to set up and start 64-bit kernel.
2105  * AOUT kludge does allow 32-bit boot loader, such as grub1, to load and
2106  * start 64-bit illumos kernel.
2107  */
2108 static void
2109 dboot_loader_init(void)
2110 {
2111 #if !defined(__xpv)
2112 	mb_info = NULL;
2113 	mb2_info = NULL;
2114 
2115 	switch (mb_magic) {
2116 	case MB_BOOTLOADER_MAGIC:
2117 		multiboot_version = 1;
2118 		mb_info = (multiboot_info_t *)(uintptr_t)mb_addr;
2119 #if defined(_BOOT_TARGET_amd64)
2120 		load_addr = mb_header.load_addr;
2121 #endif
2122 		break;
2123 
2124 	case MULTIBOOT2_BOOTLOADER_MAGIC:
2125 		multiboot_version = 2;
2126 		mb2_info = (multiboot2_info_header_t *)(uintptr_t)mb_addr;
2127 		mb2_mmap_tagp = dboot_multiboot2_get_mmap_tagp(mb2_info);
2128 #if defined(_BOOT_TARGET_amd64)
2129 		load_addr = mb2_load_addr;
2130 #endif
2131 		break;
2132 
2133 	default:
2134 		dboot_panic("Unknown bootloader magic: 0x%x\n", mb_magic);
2135 		break;
2136 	}
2137 #endif	/* !defined(__xpv) */
2138 }
2139 
2140 /* Extract the kernel command line from [multi]boot information. */
2141 static char *
2142 dboot_loader_cmdline(void)
2143 {
2144 	char *line = NULL;
2145 
2146 #if defined(__xpv)
2147 	line = (char *)xen_info->cmd_line;
2148 #else /* __xpv */
2149 
2150 	switch (multiboot_version) {
2151 	case 1:
2152 		if (mb_info->flags & MB_INFO_CMDLINE)
2153 			line = (char *)mb_info->cmdline;
2154 		break;
2155 
2156 	case 2:
2157 		line = dboot_multiboot2_cmdline(mb2_info);
2158 		break;
2159 
2160 	default:
2161 		dboot_panic("Unknown multiboot version: %d\n",
2162 		    multiboot_version);
2163 		break;
2164 	}
2165 
2166 #endif /* __xpv */
2167 
2168 	/*
2169 	 * Make sure we have valid pointer so the string operations
2170 	 * will not crash us.
2171 	 */
2172 	if (line == NULL)
2173 		line = "";
2174 
2175 	return (line);
2176 }
2177 
2178 static char *
2179 dboot_loader_name(void)
2180 {
2181 #if defined(__xpv)
2182 	return (NULL);
2183 #else /* __xpv */
2184 	multiboot_tag_string_t *tag;
2185 
2186 	switch (multiboot_version) {
2187 	case 1:
2188 		return ((char *)mb_info->boot_loader_name);
2189 
2190 	case 2:
2191 		tag = dboot_multiboot2_find_tag(mb2_info,
2192 		    MULTIBOOT_TAG_TYPE_BOOT_LOADER_NAME);
2193 		return (tag->mb_string);
2194 	default:
2195 		dboot_panic("Unknown multiboot version: %d\n",
2196 		    multiboot_version);
2197 		break;
2198 	}
2199 
2200 	return (NULL);
2201 #endif /* __xpv */
2202 }
2203 
2204 /*
2205  * startup_kernel has a pretty simple job. It builds pagetables which reflect
2206  * 1:1 mappings for all memory in use. It then also adds mappings for
2207  * the kernel nucleus at virtual address of target_kernel_text using large page
2208  * mappings. The page table pages are also accessible at 1:1 mapped
2209  * virtual addresses.
2210  */
2211 /*ARGSUSED*/
2212 void
2213 startup_kernel(void)
2214 {
2215 	char *cmdline;
2216 	char *bootloader;
2217 #if defined(__xpv)
2218 	physdev_set_iopl_t set_iopl;
2219 #endif /* __xpv */
2220 
2221 	if (dboot_debug == 1)
2222 		bcons_init(NULL);	/* Set very early console to ttya. */
2223 	dboot_loader_init();
2224 	/*
2225 	 * At this point we are executing in a 32 bit real mode.
2226 	 */
2227 
2228 	bootloader = dboot_loader_name();
2229 	cmdline = dboot_loader_cmdline();
2230 
2231 #if defined(__xpv)
2232 	/*
2233 	 * For dom0, before we initialize the console subsystem we'll
2234 	 * need to enable io operations, so set I/O priveldge level to 1.
2235 	 */
2236 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2237 		set_iopl.iopl = 1;
2238 		(void) HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
2239 	}
2240 #endif /* __xpv */
2241 
2242 	dboot_init_xboot_consinfo();
2243 	bi->bi_cmdline = (native_ptr_t)(uintptr_t)cmdline;
2244 	bcons_init(bi);		/* Now we can set the real console. */
2245 
2246 	prom_debug = (find_boot_prop("prom_debug") != NULL);
2247 	map_debug = (find_boot_prop("map_debug") != NULL);
2248 
2249 #if !defined(__xpv)
2250 	dboot_multiboot_get_fwtables();
2251 #endif
2252 	DBG_MSG("\n\nillumos prekernel set: ");
2253 	DBG_MSG(cmdline);
2254 	DBG_MSG("\n");
2255 
2256 	if (bootloader != NULL && prom_debug) {
2257 		dboot_printf("Kernel loaded by: %s\n", bootloader);
2258 #if !defined(__xpv)
2259 		dboot_printf("Using multiboot %d boot protocol.\n",
2260 		    multiboot_version);
2261 #endif
2262 	}
2263 
2264 	if (strstr(cmdline, "multiboot") != NULL) {
2265 		dboot_panic(NO_MULTIBOOT);
2266 	}
2267 
2268 	DBG((uintptr_t)bi);
2269 #if !defined(__xpv)
2270 	DBG((uintptr_t)mb_info);
2271 	DBG((uintptr_t)mb2_info);
2272 	if (mb2_info != NULL)
2273 		DBG(mb2_info->mbi_total_size);
2274 	DBG(bi->bi_acpi_rsdp);
2275 	DBG(bi->bi_smbios);
2276 	DBG(bi->bi_uefi_arch);
2277 	DBG(bi->bi_uefi_systab);
2278 
2279 	if (bi->bi_uefi_systab && prom_debug) {
2280 		if (bi->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2281 			print_efi64((EFI_SYSTEM_TABLE64 *)(uintptr_t)
2282 			    bi->bi_uefi_systab);
2283 		} else {
2284 			print_efi32((EFI_SYSTEM_TABLE32 *)(uintptr_t)
2285 			    bi->bi_uefi_systab);
2286 		}
2287 	}
2288 #endif
2289 
2290 	/*
2291 	 * Need correct target_kernel_text value
2292 	 */
2293 #if defined(_BOOT_TARGET_amd64)
2294 	target_kernel_text = KERNEL_TEXT_amd64;
2295 #elif defined(__xpv)
2296 	target_kernel_text = KERNEL_TEXT_i386_xpv;
2297 #else
2298 	target_kernel_text = KERNEL_TEXT_i386;
2299 #endif
2300 	DBG(target_kernel_text);
2301 
2302 #if defined(__xpv)
2303 
2304 	/*
2305 	 * XXPV	Derive this stuff from CPUID / what the hypervisor has enabled
2306 	 */
2307 
2308 #if defined(_BOOT_TARGET_amd64)
2309 	/*
2310 	 * 64-bit hypervisor.
2311 	 */
2312 	amd64_support = 1;
2313 	pae_support = 1;
2314 
2315 #else	/* _BOOT_TARGET_amd64 */
2316 
2317 	/*
2318 	 * See if we are running on a PAE Hypervisor
2319 	 */
2320 	{
2321 		xen_capabilities_info_t caps;
2322 
2323 		if (HYPERVISOR_xen_version(XENVER_capabilities, &caps) != 0)
2324 			dboot_panic("HYPERVISOR_xen_version(caps) failed");
2325 		caps[sizeof (caps) - 1] = 0;
2326 		if (prom_debug)
2327 			dboot_printf("xen capabilities %s\n", caps);
2328 		if (strstr(caps, "x86_32p") != NULL)
2329 			pae_support = 1;
2330 	}
2331 
2332 #endif	/* _BOOT_TARGET_amd64 */
2333 	{
2334 		xen_platform_parameters_t p;
2335 
2336 		if (HYPERVISOR_xen_version(XENVER_platform_parameters, &p) != 0)
2337 			dboot_panic("HYPERVISOR_xen_version(parms) failed");
2338 		DBG(p.virt_start);
2339 		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2340 	}
2341 
2342 	/*
2343 	 * The hypervisor loads stuff starting at 1Gig
2344 	 */
2345 	mfn_base = ONE_GIG;
2346 	DBG(mfn_base);
2347 
2348 	/*
2349 	 * enable writable page table mode for the hypervisor
2350 	 */
2351 	if (HYPERVISOR_vm_assist(VMASST_CMD_enable,
2352 	    VMASST_TYPE_writable_pagetables) < 0)
2353 		dboot_panic("HYPERVISOR_vm_assist(writable_pagetables) failed");
2354 
2355 	/*
2356 	 * check for NX support
2357 	 */
2358 	if (pae_support) {
2359 		uint32_t eax = 0x80000000;
2360 		uint32_t edx = get_cpuid_edx(&eax);
2361 
2362 		if (eax >= 0x80000001) {
2363 			eax = 0x80000001;
2364 			edx = get_cpuid_edx(&eax);
2365 			if (edx & CPUID_AMD_EDX_NX)
2366 				NX_support = 1;
2367 		}
2368 	}
2369 
2370 	/*
2371 	 * check for PAT support
2372 	 */
2373 	{
2374 		uint32_t eax = 1;
2375 		uint32_t edx = get_cpuid_edx(&eax);
2376 
2377 		if (edx & CPUID_INTC_EDX_PAT)
2378 			PAT_support = 1;
2379 	}
2380 #if !defined(_BOOT_TARGET_amd64)
2381 
2382 	/*
2383 	 * The 32-bit hypervisor uses segmentation to protect itself from
2384 	 * guests. This means when a guest attempts to install a flat 4GB
2385 	 * code or data descriptor the 32-bit hypervisor will protect itself
2386 	 * by silently shrinking the segment such that if the guest attempts
2387 	 * any access where the hypervisor lives a #gp fault is generated.
2388 	 * The problem is that some applications expect a full 4GB flat
2389 	 * segment for their current thread pointer and will use negative
2390 	 * offset segment wrap around to access data. TLS support in linux
2391 	 * brand is one example of this.
2392 	 *
2393 	 * The 32-bit hypervisor can catch the #gp fault in these cases
2394 	 * and emulate the access without passing the #gp fault to the guest
2395 	 * but only if VMASST_TYPE_4gb_segments is explicitly turned on.
2396 	 * Seems like this should have been the default.
2397 	 * Either way, we want the hypervisor -- and not Solaris -- to deal
2398 	 * to deal with emulating these accesses.
2399 	 */
2400 	if (HYPERVISOR_vm_assist(VMASST_CMD_enable,
2401 	    VMASST_TYPE_4gb_segments) < 0)
2402 		dboot_panic("HYPERVISOR_vm_assist(4gb_segments) failed");
2403 #endif	/* !_BOOT_TARGET_amd64 */
2404 
2405 #else	/* __xpv */
2406 
2407 	/*
2408 	 * use cpuid to enable MMU features
2409 	 */
2410 	if (have_cpuid()) {
2411 		uint32_t eax, edx;
2412 
2413 		eax = 1;
2414 		edx = get_cpuid_edx(&eax);
2415 		if (edx & CPUID_INTC_EDX_PSE)
2416 			largepage_support = 1;
2417 		if (edx & CPUID_INTC_EDX_PGE)
2418 			pge_support = 1;
2419 		if (edx & CPUID_INTC_EDX_PAE)
2420 			pae_support = 1;
2421 		if (edx & CPUID_INTC_EDX_PAT)
2422 			PAT_support = 1;
2423 
2424 		eax = 0x80000000;
2425 		edx = get_cpuid_edx(&eax);
2426 		if (eax >= 0x80000001) {
2427 			eax = 0x80000001;
2428 			edx = get_cpuid_edx(&eax);
2429 			if (edx & CPUID_AMD_EDX_LM)
2430 				amd64_support = 1;
2431 			if (edx & CPUID_AMD_EDX_NX)
2432 				NX_support = 1;
2433 		}
2434 	} else {
2435 		dboot_printf("cpuid not supported\n");
2436 	}
2437 #endif /* __xpv */
2438 
2439 
2440 #if defined(_BOOT_TARGET_amd64)
2441 	if (amd64_support == 0)
2442 		dboot_panic("long mode not supported, rebooting");
2443 	else if (pae_support == 0)
2444 		dboot_panic("long mode, but no PAE; rebooting");
2445 #else
2446 	/*
2447 	 * Allow the command line to over-ride use of PAE for 32 bit.
2448 	 */
2449 	if (strstr(cmdline, "disablePAE=true") != NULL) {
2450 		pae_support = 0;
2451 		NX_support = 0;
2452 		amd64_support = 0;
2453 	}
2454 #endif
2455 
2456 	/*
2457 	 * initialize the simple memory allocator
2458 	 */
2459 	init_mem_alloc();
2460 
2461 #if !defined(__xpv) && !defined(_BOOT_TARGET_amd64)
2462 	/*
2463 	 * disable PAE on 32 bit h/w w/o NX and < 4Gig of memory
2464 	 */
2465 	if (max_mem < FOUR_GIG && NX_support == 0)
2466 		pae_support = 0;
2467 #endif
2468 
2469 	/*
2470 	 * configure mmu information
2471 	 */
2472 	if (pae_support) {
2473 		shift_amt = shift_amt_pae;
2474 		ptes_per_table = 512;
2475 		pte_size = 8;
2476 		lpagesize = TWO_MEG;
2477 #if defined(_BOOT_TARGET_amd64)
2478 		top_level = 3;
2479 #else
2480 		top_level = 2;
2481 #endif
2482 	} else {
2483 		pae_support = 0;
2484 		NX_support = 0;
2485 		shift_amt = shift_amt_nopae;
2486 		ptes_per_table = 1024;
2487 		pte_size = 4;
2488 		lpagesize = FOUR_MEG;
2489 		top_level = 1;
2490 	}
2491 
2492 	DBG(PAT_support);
2493 	DBG(pge_support);
2494 	DBG(NX_support);
2495 	DBG(largepage_support);
2496 	DBG(amd64_support);
2497 	DBG(top_level);
2498 	DBG(pte_size);
2499 	DBG(ptes_per_table);
2500 	DBG(lpagesize);
2501 
2502 #if defined(__xpv)
2503 	ktext_phys = ONE_GIG;		/* from UNIX Mapfile */
2504 #else
2505 	ktext_phys = FOUR_MEG;		/* from UNIX Mapfile */
2506 #endif
2507 
2508 #if !defined(__xpv) && defined(_BOOT_TARGET_amd64)
2509 	/*
2510 	 * For grub, copy kernel bits from the ELF64 file to final place.
2511 	 */
2512 	DBG_MSG("\nAllocating nucleus pages.\n");
2513 	ktext_phys = (uintptr_t)do_mem_alloc(ksize, FOUR_MEG);
2514 
2515 	if (ktext_phys == 0)
2516 		dboot_panic("failed to allocate aligned kernel memory");
2517 	DBG(load_addr);
2518 	if (dboot_elfload64(load_addr) != 0)
2519 		dboot_panic("failed to parse kernel ELF image, rebooting");
2520 #endif
2521 
2522 	DBG(ktext_phys);
2523 
2524 	/*
2525 	 * Allocate page tables.
2526 	 */
2527 	build_page_tables();
2528 
2529 	/*
2530 	 * return to assembly code to switch to running kernel
2531 	 */
2532 	entry_addr_low = (uint32_t)target_kernel_text;
2533 	DBG(entry_addr_low);
2534 	bi->bi_use_largepage = largepage_support;
2535 	bi->bi_use_pae = pae_support;
2536 	bi->bi_use_pge = pge_support;
2537 	bi->bi_use_nx = NX_support;
2538 
2539 #if defined(__xpv)
2540 
2541 	bi->bi_next_paddr = next_avail_addr - mfn_base;
2542 	DBG(bi->bi_next_paddr);
2543 	bi->bi_next_vaddr = (native_ptr_t)(uintptr_t)next_avail_addr;
2544 	DBG(bi->bi_next_vaddr);
2545 
2546 	/*
2547 	 * unmap unused pages in start area to make them available for DMA
2548 	 */
2549 	while (next_avail_addr < scratch_end) {
2550 		(void) HYPERVISOR_update_va_mapping(next_avail_addr,
2551 		    0, UVMF_INVLPG | UVMF_LOCAL);
2552 		next_avail_addr += MMU_PAGESIZE;
2553 	}
2554 
2555 	bi->bi_xen_start_info = (native_ptr_t)(uintptr_t)xen_info;
2556 	DBG((uintptr_t)HYPERVISOR_shared_info);
2557 	bi->bi_shared_info = (native_ptr_t)HYPERVISOR_shared_info;
2558 	bi->bi_top_page_table = (uintptr_t)top_page_table - mfn_base;
2559 
2560 #else /* __xpv */
2561 
2562 	bi->bi_next_paddr = next_avail_addr;
2563 	DBG(bi->bi_next_paddr);
2564 	bi->bi_next_vaddr = (native_ptr_t)(uintptr_t)next_avail_addr;
2565 	DBG(bi->bi_next_vaddr);
2566 	bi->bi_mb_version = multiboot_version;
2567 
2568 	switch (multiboot_version) {
2569 	case 1:
2570 		bi->bi_mb_info = (native_ptr_t)(uintptr_t)mb_info;
2571 		break;
2572 	case 2:
2573 		bi->bi_mb_info = (native_ptr_t)(uintptr_t)mb2_info;
2574 		break;
2575 	default:
2576 		dboot_panic("Unknown multiboot version: %d\n",
2577 		    multiboot_version);
2578 		break;
2579 	}
2580 	bi->bi_top_page_table = (uintptr_t)top_page_table;
2581 
2582 #endif /* __xpv */
2583 
2584 	bi->bi_kseg_size = FOUR_MEG;
2585 	DBG(bi->bi_kseg_size);
2586 
2587 #ifndef __xpv
2588 	if (map_debug)
2589 		dump_tables();
2590 #endif
2591 
2592 	DBG_MSG("\n\n*** DBOOT DONE -- back to asm to jump to kernel\n\n");
2593 
2594 #ifndef __xpv
2595 	/* Update boot info with FB data */
2596 	fb->cursor.origin.x = fb_info.cursor.origin.x;
2597 	fb->cursor.origin.y = fb_info.cursor.origin.y;
2598 	fb->cursor.pos.x = fb_info.cursor.pos.x;
2599 	fb->cursor.pos.y = fb_info.cursor.pos.y;
2600 	fb->cursor.visible = fb_info.cursor.visible;
2601 #endif
2602 }
2603