1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright 2020 Joyent, Inc. 27 */ 28 29 30 #include <sys/types.h> 31 #include <sys/machparam.h> 32 #include <sys/x86_archext.h> 33 #include <sys/systm.h> 34 #include <sys/mach_mmu.h> 35 #include <sys/multiboot.h> 36 #include <sys/multiboot2.h> 37 #include <sys/multiboot2_impl.h> 38 #include <sys/sysmacros.h> 39 #include <sys/framebuffer.h> 40 #include <sys/sha1.h> 41 #include <util/string.h> 42 #include <util/strtolctype.h> 43 #include <sys/efi.h> 44 45 /* 46 * Compile time debug knob. We do not have any early mechanism to control it 47 * as the boot is the earliest mechanism we have, and we do not want to have 48 * it being switched on by default. 49 */ 50 int dboot_debug = 0; 51 52 #if defined(__xpv) 53 54 #include <sys/hypervisor.h> 55 uintptr_t xen_virt_start; 56 pfn_t *mfn_to_pfn_mapping; 57 58 #else /* !__xpv */ 59 60 extern multiboot_header_t mb_header; 61 extern uint32_t mb2_load_addr; 62 extern int have_cpuid(void); 63 64 #endif /* !__xpv */ 65 66 #include <sys/inttypes.h> 67 #include <sys/bootinfo.h> 68 #include <sys/mach_mmu.h> 69 #include <sys/boot_console.h> 70 71 #include "dboot_asm.h" 72 #include "dboot_printf.h" 73 #include "dboot_xboot.h" 74 #include "dboot_elfload.h" 75 76 #define SHA1_ASCII_LENGTH (SHA1_DIGEST_LENGTH * 2) 77 78 /* 79 * This file contains code that runs to transition us from either a multiboot 80 * compliant loader (32 bit non-paging) or a XPV domain loader to 81 * regular kernel execution. Its task is to setup the kernel memory image 82 * and page tables. 83 * 84 * The code executes as: 85 * - 32 bits under GRUB (for 32 or 64 bit Solaris) 86 * - a 32 bit program for the 32-bit PV hypervisor 87 * - a 64 bit program for the 64-bit PV hypervisor (at least for now) 88 * 89 * Under the PV hypervisor, we must create mappings for any memory beyond the 90 * initial start of day allocation (such as the kernel itself). 91 * 92 * When on the metal, the mapping between maddr_t and paddr_t is 1:1. 93 * Since we are running in real mode, so all such memory is accessible. 94 */ 95 96 /* 97 * Standard bits used in PTE (page level) and PTP (internal levels) 98 */ 99 x86pte_t ptp_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_USER; 100 x86pte_t pte_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_MOD | PT_NOCONSIST; 101 102 /* 103 * This is the target addresses (physical) where the kernel text and data 104 * nucleus pages will be unpacked. On the hypervisor this is actually a 105 * virtual address. 106 */ 107 paddr_t ktext_phys; 108 uint32_t ksize = 2 * FOUR_MEG; /* kernel nucleus is 8Meg */ 109 110 static uint64_t target_kernel_text; /* value to use for KERNEL_TEXT */ 111 112 /* 113 * The stack is setup in assembler before entering startup_kernel() 114 */ 115 char stack_space[STACK_SIZE]; 116 117 /* 118 * Used to track physical memory allocation 119 */ 120 static paddr_t next_avail_addr = 0; 121 122 #if defined(__xpv) 123 /* 124 * Additional information needed for hypervisor memory allocation. 125 * Only memory up to scratch_end is mapped by page tables. 126 * mfn_base is the start of the hypervisor virtual image. It's ONE_GIG, so 127 * to derive a pfn from a pointer, you subtract mfn_base. 128 */ 129 130 static paddr_t scratch_end = 0; /* we can't write all of mem here */ 131 static paddr_t mfn_base; /* addr corresponding to mfn_list[0] */ 132 start_info_t *xen_info; 133 134 #else /* __xpv */ 135 136 /* 137 * If on the metal, then we have a multiboot loader. 138 */ 139 uint32_t mb_magic; /* magic from boot loader */ 140 uint32_t mb_addr; /* multiboot info package from loader */ 141 int multiboot_version; 142 multiboot_info_t *mb_info; 143 multiboot2_info_header_t *mb2_info; 144 int num_entries; /* mmap entry count */ 145 boolean_t num_entries_set; /* is mmap entry count set */ 146 uintptr_t load_addr; 147 static boot_framebuffer_t framebuffer __aligned(16); 148 static boot_framebuffer_t *fb; 149 150 /* can not be automatic variables because of alignment */ 151 static efi_guid_t smbios3 = SMBIOS3_TABLE_GUID; 152 static efi_guid_t smbios = SMBIOS_TABLE_GUID; 153 static efi_guid_t acpi2 = EFI_ACPI_TABLE_GUID; 154 static efi_guid_t acpi1 = ACPI_10_TABLE_GUID; 155 #endif /* __xpv */ 156 157 /* 158 * This contains information passed to the kernel 159 */ 160 struct xboot_info boot_info __aligned(16); 161 struct xboot_info *bi; 162 163 /* 164 * Page table and memory stuff. 165 */ 166 static paddr_t max_mem; /* maximum memory address */ 167 168 /* 169 * Information about processor MMU 170 */ 171 int amd64_support = 0; 172 int largepage_support = 0; 173 int pae_support = 0; 174 int pge_support = 0; 175 int NX_support = 0; 176 int PAT_support = 0; 177 178 /* 179 * Low 32 bits of kernel entry address passed back to assembler. 180 * When running a 64 bit kernel, the high 32 bits are 0xffffffff. 181 */ 182 uint32_t entry_addr_low; 183 184 /* 185 * Memlists for the kernel. We shouldn't need a lot of these. 186 */ 187 #define MAX_MEMLIST (50) 188 struct boot_memlist memlists[MAX_MEMLIST]; 189 uint_t memlists_used = 0; 190 struct boot_memlist pcimemlists[MAX_MEMLIST]; 191 uint_t pcimemlists_used = 0; 192 struct boot_memlist rsvdmemlists[MAX_MEMLIST]; 193 uint_t rsvdmemlists_used = 0; 194 195 /* 196 * This should match what's in the bootloader. It's arbitrary, but GRUB 197 * in particular has limitations on how much space it can use before it 198 * stops working properly. This should be enough. 199 */ 200 struct boot_modules modules[MAX_BOOT_MODULES]; 201 uint_t modules_used = 0; 202 203 #ifdef __xpv 204 /* 205 * Xen strips the size field out of the mb_memory_map_t, see struct e820entry 206 * definition in Xen source. 207 */ 208 typedef struct { 209 uint32_t base_addr_low; 210 uint32_t base_addr_high; 211 uint32_t length_low; 212 uint32_t length_high; 213 uint32_t type; 214 } mmap_t; 215 216 /* 217 * There is 512KB of scratch area after the boot stack page. 218 * We'll use that for everything except the kernel nucleus pages which are too 219 * big to fit there and are allocated last anyway. 220 */ 221 #define MAXMAPS 100 222 static mmap_t map_buffer[MAXMAPS]; 223 #else 224 typedef mb_memory_map_t mmap_t; 225 #endif 226 227 /* 228 * Debugging macros 229 */ 230 uint_t prom_debug = 0; 231 uint_t map_debug = 0; 232 233 static char noname[2] = "-"; 234 235 /* 236 * Either hypervisor-specific or grub-specific code builds the initial 237 * memlists. This code does the sort/merge/link for final use. 238 */ 239 static void 240 sort_physinstall(void) 241 { 242 int i; 243 #if !defined(__xpv) 244 int j; 245 struct boot_memlist tmp; 246 247 /* 248 * Now sort the memlists, in case they weren't in order. 249 * Yeah, this is a bubble sort; small, simple and easy to get right. 250 */ 251 DBG_MSG("Sorting phys-installed list\n"); 252 for (j = memlists_used - 1; j > 0; --j) { 253 for (i = 0; i < j; ++i) { 254 if (memlists[i].addr < memlists[i + 1].addr) 255 continue; 256 tmp = memlists[i]; 257 memlists[i] = memlists[i + 1]; 258 memlists[i + 1] = tmp; 259 } 260 } 261 262 /* 263 * Merge any memlists that don't have holes between them. 264 */ 265 for (i = 0; i <= memlists_used - 1; ++i) { 266 if (memlists[i].addr + memlists[i].size != memlists[i + 1].addr) 267 continue; 268 269 if (prom_debug) 270 dboot_printf( 271 "merging mem segs %" PRIx64 "...%" PRIx64 272 " w/ %" PRIx64 "...%" PRIx64 "\n", 273 memlists[i].addr, 274 memlists[i].addr + memlists[i].size, 275 memlists[i + 1].addr, 276 memlists[i + 1].addr + memlists[i + 1].size); 277 278 memlists[i].size += memlists[i + 1].size; 279 for (j = i + 1; j < memlists_used - 1; ++j) 280 memlists[j] = memlists[j + 1]; 281 --memlists_used; 282 DBG(memlists_used); 283 --i; /* after merging we need to reexamine, so do this */ 284 } 285 #endif /* __xpv */ 286 287 if (prom_debug) { 288 dboot_printf("\nFinal memlists:\n"); 289 for (i = 0; i < memlists_used; ++i) { 290 dboot_printf("\t%d: addr=%" PRIx64 " size=%" 291 PRIx64 "\n", i, memlists[i].addr, memlists[i].size); 292 } 293 } 294 295 /* 296 * link together the memlists with native size pointers 297 */ 298 memlists[0].next = 0; 299 memlists[0].prev = 0; 300 for (i = 1; i < memlists_used; ++i) { 301 memlists[i].prev = (native_ptr_t)(uintptr_t)(memlists + i - 1); 302 memlists[i].next = 0; 303 memlists[i - 1].next = (native_ptr_t)(uintptr_t)(memlists + i); 304 } 305 bi->bi_phys_install = (native_ptr_t)(uintptr_t)memlists; 306 DBG(bi->bi_phys_install); 307 } 308 309 /* 310 * build bios reserved memlists 311 */ 312 static void 313 build_rsvdmemlists(void) 314 { 315 int i; 316 317 rsvdmemlists[0].next = 0; 318 rsvdmemlists[0].prev = 0; 319 for (i = 1; i < rsvdmemlists_used; ++i) { 320 rsvdmemlists[i].prev = 321 (native_ptr_t)(uintptr_t)(rsvdmemlists + i - 1); 322 rsvdmemlists[i].next = 0; 323 rsvdmemlists[i - 1].next = 324 (native_ptr_t)(uintptr_t)(rsvdmemlists + i); 325 } 326 bi->bi_rsvdmem = (native_ptr_t)(uintptr_t)rsvdmemlists; 327 DBG(bi->bi_rsvdmem); 328 } 329 330 #if defined(__xpv) 331 332 /* 333 * halt on the hypervisor after a delay to drain console output 334 */ 335 __NORETURN void 336 dboot_halt(void) 337 { 338 uint_t i = 10000; 339 340 while (--i) 341 (void) HYPERVISOR_yield(); 342 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 343 /* never reached */ 344 for (;;) 345 ; 346 } 347 348 /* 349 * From a machine address, find the corresponding pseudo-physical address. 350 * Pseudo-physical address are contiguous and run from mfn_base in each VM. 351 * Machine addresses are the real underlying hardware addresses. 352 * These are needed for page table entries. Note that this routine is 353 * poorly protected. A bad value of "ma" will cause a page fault. 354 */ 355 paddr_t 356 ma_to_pa(maddr_t ma) 357 { 358 ulong_t pgoff = ma & MMU_PAGEOFFSET; 359 ulong_t pfn = mfn_to_pfn_mapping[mmu_btop(ma)]; 360 paddr_t pa; 361 362 if (pfn >= xen_info->nr_pages) 363 return (-(paddr_t)1); 364 pa = mfn_base + mmu_ptob((paddr_t)pfn) + pgoff; 365 #ifdef DEBUG 366 if (ma != pa_to_ma(pa)) 367 dboot_printf("ma_to_pa(%" PRIx64 ") got %" PRIx64 ", " 368 "pa_to_ma() says %" PRIx64 "\n", ma, pa, pa_to_ma(pa)); 369 #endif 370 return (pa); 371 } 372 373 /* 374 * From a pseudo-physical address, find the corresponding machine address. 375 */ 376 maddr_t 377 pa_to_ma(paddr_t pa) 378 { 379 pfn_t pfn; 380 ulong_t mfn; 381 382 pfn = mmu_btop(pa - mfn_base); 383 if (pa < mfn_base || pfn >= xen_info->nr_pages) 384 dboot_panic("pa_to_ma(): illegal address 0x%lx", (ulong_t)pa); 385 mfn = ((ulong_t *)xen_info->mfn_list)[pfn]; 386 #ifdef DEBUG 387 if (mfn_to_pfn_mapping[mfn] != pfn) 388 dboot_printf("pa_to_ma(pfn=%lx) got %lx ma_to_pa() says %lx\n", 389 pfn, mfn, mfn_to_pfn_mapping[mfn]); 390 #endif 391 return (mfn_to_ma(mfn) | (pa & MMU_PAGEOFFSET)); 392 } 393 394 #endif /* __xpv */ 395 396 x86pte_t 397 get_pteval(paddr_t table, uint_t index) 398 { 399 if (pae_support) 400 return (((x86pte_t *)(uintptr_t)table)[index]); 401 return (((x86pte32_t *)(uintptr_t)table)[index]); 402 } 403 404 /*ARGSUSED*/ 405 void 406 set_pteval(paddr_t table, uint_t index, uint_t level, x86pte_t pteval) 407 { 408 #ifdef __xpv 409 mmu_update_t t; 410 maddr_t mtable = pa_to_ma(table); 411 int retcnt; 412 413 t.ptr = (mtable + index * pte_size) | MMU_NORMAL_PT_UPDATE; 414 t.val = pteval; 415 if (HYPERVISOR_mmu_update(&t, 1, &retcnt, DOMID_SELF) || retcnt != 1) 416 dboot_panic("HYPERVISOR_mmu_update() failed"); 417 #else /* __xpv */ 418 uintptr_t tab_addr = (uintptr_t)table; 419 420 if (pae_support) 421 ((x86pte_t *)tab_addr)[index] = pteval; 422 else 423 ((x86pte32_t *)tab_addr)[index] = (x86pte32_t)pteval; 424 if (level == top_level && level == 2) 425 reload_cr3(); 426 #endif /* __xpv */ 427 } 428 429 paddr_t 430 make_ptable(x86pte_t *pteval, uint_t level) 431 { 432 paddr_t new_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE); 433 434 if (level == top_level && level == 2) 435 *pteval = pa_to_ma((uintptr_t)new_table) | PT_VALID; 436 else 437 *pteval = pa_to_ma((uintptr_t)new_table) | ptp_bits; 438 439 #ifdef __xpv 440 /* Remove write permission to the new page table. */ 441 if (HYPERVISOR_update_va_mapping(new_table, 442 *pteval & ~(x86pte_t)PT_WRITABLE, UVMF_INVLPG | UVMF_LOCAL)) 443 dboot_panic("HYP_update_va_mapping error"); 444 #endif 445 446 if (map_debug) 447 dboot_printf("new page table lvl=%d paddr=0x%lx ptp=0x%" 448 PRIx64 "\n", level, (ulong_t)new_table, *pteval); 449 return (new_table); 450 } 451 452 x86pte_t * 453 map_pte(paddr_t table, uint_t index) 454 { 455 return ((x86pte_t *)(uintptr_t)(table + index * pte_size)); 456 } 457 458 /* 459 * dump out the contents of page tables... 460 */ 461 static void 462 dump_tables(void) 463 { 464 uint_t save_index[4]; /* for recursion */ 465 char *save_table[4]; /* for recursion */ 466 uint_t l; 467 uint64_t va; 468 uint64_t pgsize; 469 int index; 470 int i; 471 x86pte_t pteval; 472 char *table; 473 static char *tablist = "\t\t\t"; 474 char *tabs = tablist + 3 - top_level; 475 uint_t pa, pa1; 476 #if !defined(__xpv) 477 #define maddr_t paddr_t 478 #endif /* !__xpv */ 479 480 dboot_printf("Finished pagetables:\n"); 481 table = (char *)(uintptr_t)top_page_table; 482 l = top_level; 483 va = 0; 484 for (index = 0; index < ptes_per_table; ++index) { 485 pgsize = 1ull << shift_amt[l]; 486 if (pae_support) 487 pteval = ((x86pte_t *)table)[index]; 488 else 489 pteval = ((x86pte32_t *)table)[index]; 490 if (pteval == 0) 491 goto next_entry; 492 493 dboot_printf("%s %p[0x%x] = %" PRIx64 ", va=%" PRIx64, 494 tabs + l, (void *)table, index, (uint64_t)pteval, va); 495 pa = ma_to_pa(pteval & MMU_PAGEMASK); 496 dboot_printf(" physaddr=%x\n", pa); 497 498 /* 499 * Don't try to walk hypervisor private pagetables 500 */ 501 if ((l > 1 || (l == 1 && (pteval & PT_PAGESIZE) == 0))) { 502 save_table[l] = table; 503 save_index[l] = index; 504 --l; 505 index = -1; 506 table = (char *)(uintptr_t) 507 ma_to_pa(pteval & MMU_PAGEMASK); 508 goto recursion; 509 } 510 511 /* 512 * shorten dump for consecutive mappings 513 */ 514 for (i = 1; index + i < ptes_per_table; ++i) { 515 if (pae_support) 516 pteval = ((x86pte_t *)table)[index + i]; 517 else 518 pteval = ((x86pte32_t *)table)[index + i]; 519 if (pteval == 0) 520 break; 521 pa1 = ma_to_pa(pteval & MMU_PAGEMASK); 522 if (pa1 != pa + i * pgsize) 523 break; 524 } 525 if (i > 2) { 526 dboot_printf("%s...\n", tabs + l); 527 va += pgsize * (i - 2); 528 index += i - 2; 529 } 530 next_entry: 531 va += pgsize; 532 if (l == 3 && index == 255) /* VA hole */ 533 va = 0xffff800000000000ull; 534 recursion: 535 ; 536 } 537 if (l < top_level) { 538 ++l; 539 index = save_index[l]; 540 table = save_table[l]; 541 goto recursion; 542 } 543 } 544 545 /* 546 * Add a mapping for the machine page at the given virtual address. 547 */ 548 static void 549 map_ma_at_va(maddr_t ma, native_ptr_t va, uint_t level) 550 { 551 x86pte_t *ptep; 552 x86pte_t pteval; 553 554 pteval = ma | pte_bits; 555 if (level > 0) 556 pteval |= PT_PAGESIZE; 557 if (va >= target_kernel_text && pge_support) 558 pteval |= PT_GLOBAL; 559 560 if (map_debug && ma != va) 561 dboot_printf("mapping ma=0x%" PRIx64 " va=0x%" PRIx64 562 " pte=0x%" PRIx64 " l=%d\n", 563 (uint64_t)ma, (uint64_t)va, pteval, level); 564 565 #if defined(__xpv) 566 /* 567 * see if we can avoid find_pte() on the hypervisor 568 */ 569 if (HYPERVISOR_update_va_mapping(va, pteval, 570 UVMF_INVLPG | UVMF_LOCAL) == 0) 571 return; 572 #endif 573 574 /* 575 * Find the pte that will map this address. This creates any 576 * missing intermediate level page tables 577 */ 578 ptep = find_pte(va, NULL, level, 0); 579 580 /* 581 * When paravirtualized, we must use hypervisor calls to modify the 582 * PTE, since paging is active. On real hardware we just write to 583 * the pagetables which aren't in use yet. 584 */ 585 #if defined(__xpv) 586 ptep = ptep; /* shut lint up */ 587 if (HYPERVISOR_update_va_mapping(va, pteval, UVMF_INVLPG | UVMF_LOCAL)) 588 dboot_panic("mmu_update failed-map_pa_at_va va=0x%" PRIx64 589 " l=%d ma=0x%" PRIx64 ", pte=0x%" PRIx64 "", 590 (uint64_t)va, level, (uint64_t)ma, pteval); 591 #else 592 if (va < 1024 * 1024) 593 pteval |= PT_NOCACHE; /* for video RAM */ 594 if (pae_support) 595 *ptep = pteval; 596 else 597 *((x86pte32_t *)ptep) = (x86pte32_t)pteval; 598 #endif 599 } 600 601 /* 602 * Add a mapping for the physical page at the given virtual address. 603 */ 604 static void 605 map_pa_at_va(paddr_t pa, native_ptr_t va, uint_t level) 606 { 607 map_ma_at_va(pa_to_ma(pa), va, level); 608 } 609 610 /* 611 * This is called to remove start..end from the 612 * possible range of PCI addresses. 613 */ 614 const uint64_t pci_lo_limit = 0x00100000ul; 615 const uint64_t pci_hi_limit = 0xfff00000ul; 616 static void 617 exclude_from_pci(uint64_t start, uint64_t end) 618 { 619 int i; 620 int j; 621 struct boot_memlist *ml; 622 623 for (i = 0; i < pcimemlists_used; ++i) { 624 ml = &pcimemlists[i]; 625 626 /* delete the entire range? */ 627 if (start <= ml->addr && ml->addr + ml->size <= end) { 628 --pcimemlists_used; 629 for (j = i; j < pcimemlists_used; ++j) 630 pcimemlists[j] = pcimemlists[j + 1]; 631 --i; /* to revisit the new one at this index */ 632 } 633 634 /* split a range? */ 635 else if (ml->addr < start && end < ml->addr + ml->size) { 636 637 ++pcimemlists_used; 638 if (pcimemlists_used > MAX_MEMLIST) 639 dboot_panic("too many pcimemlists"); 640 641 for (j = pcimemlists_used - 1; j > i; --j) 642 pcimemlists[j] = pcimemlists[j - 1]; 643 ml->size = start - ml->addr; 644 645 ++ml; 646 ml->size = (ml->addr + ml->size) - end; 647 ml->addr = end; 648 ++i; /* skip on to next one */ 649 } 650 651 /* cut memory off the start? */ 652 else if (ml->addr < end && end < ml->addr + ml->size) { 653 ml->size -= end - ml->addr; 654 ml->addr = end; 655 } 656 657 /* cut memory off the end? */ 658 else if (ml->addr <= start && start < ml->addr + ml->size) { 659 ml->size = start - ml->addr; 660 } 661 } 662 } 663 664 /* 665 * During memory allocation, find the highest address not used yet. 666 */ 667 static void 668 check_higher(paddr_t a) 669 { 670 if (a < next_avail_addr) 671 return; 672 next_avail_addr = RNDUP(a + 1, MMU_PAGESIZE); 673 DBG(next_avail_addr); 674 } 675 676 static int 677 dboot_loader_mmap_entries(void) 678 { 679 #if !defined(__xpv) 680 if (num_entries_set == B_TRUE) 681 return (num_entries); 682 683 switch (multiboot_version) { 684 case 1: 685 DBG(mb_info->flags); 686 if (mb_info->flags & 0x40) { 687 mb_memory_map_t *mmap; 688 caddr32_t mmap_addr; 689 690 DBG(mb_info->mmap_addr); 691 DBG(mb_info->mmap_length); 692 check_higher(mb_info->mmap_addr + mb_info->mmap_length); 693 694 for (mmap_addr = mb_info->mmap_addr; 695 mmap_addr < mb_info->mmap_addr + 696 mb_info->mmap_length; 697 mmap_addr += mmap->size + sizeof (mmap->size)) { 698 mmap = (mb_memory_map_t *)(uintptr_t)mmap_addr; 699 ++num_entries; 700 } 701 702 num_entries_set = B_TRUE; 703 } 704 break; 705 case 2: 706 num_entries = dboot_multiboot2_efi_mmap_nentries(mb2_info); 707 if (num_entries == 0) 708 num_entries = dboot_multiboot2_mmap_nentries(mb2_info); 709 if (num_entries == 0) 710 dboot_panic("No memory map?\n"); 711 num_entries_set = B_TRUE; 712 break; 713 default: 714 dboot_panic("Unknown multiboot version: %d\n", 715 multiboot_version); 716 break; 717 } 718 return (num_entries); 719 #else 720 return (MAXMAPS); 721 #endif 722 } 723 724 #if !defined(__xpv) 725 static uint32_t 726 dboot_efi_to_smap_type(int index, uint32_t type) 727 { 728 uint64_t addr; 729 730 /* 731 * ACPI 6.1 tells the lower memory should be reported as 732 * normal memory, so we enforce page 0 type even as 733 * vmware maps it as acpi reclaimable. 734 */ 735 if (dboot_multiboot2_efi_mmap_get_base(mb2_info, index, &addr)) { 736 if (addr == 0) 737 return (1); 738 } 739 740 /* translate UEFI memory types to SMAP types */ 741 switch (type) { 742 case EfiLoaderCode: 743 case EfiLoaderData: 744 case EfiBootServicesCode: 745 case EfiBootServicesData: 746 case EfiConventionalMemory: 747 return (1); 748 case EfiReservedMemoryType: 749 case EfiRuntimeServicesCode: 750 case EfiRuntimeServicesData: 751 case EfiMemoryMappedIO: 752 case EfiMemoryMappedIOPortSpace: 753 case EfiPalCode: 754 case EfiUnusableMemory: 755 return (2); 756 case EfiACPIReclaimMemory: 757 return (3); 758 case EfiACPIMemoryNVS: 759 return (4); 760 } 761 762 return (2); 763 } 764 #endif 765 766 static uint32_t 767 dboot_loader_mmap_get_type(int index) 768 { 769 #if !defined(__xpv) 770 mb_memory_map_t *mp, *mpend; 771 uint32_t type; 772 int i; 773 774 switch (multiboot_version) { 775 case 1: 776 mp = (mb_memory_map_t *)(uintptr_t)mb_info->mmap_addr; 777 mpend = (mb_memory_map_t *)(uintptr_t) 778 (mb_info->mmap_addr + mb_info->mmap_length); 779 780 for (i = 0; mp < mpend && i != index; i++) 781 mp = (mb_memory_map_t *)((uintptr_t)mp + mp->size + 782 sizeof (mp->size)); 783 if (mp >= mpend) { 784 dboot_panic("dboot_loader_mmap_get_type(): index " 785 "out of bounds: %d\n", index); 786 } 787 return (mp->type); 788 789 case 2: 790 if (dboot_multiboot2_efi_mmap_get_type(mb2_info, index, &type)) 791 return (dboot_efi_to_smap_type(index, type)); 792 793 if (dboot_multiboot2_mmap_get_type(mb2_info, index, &type)) 794 return (type); 795 796 dboot_panic("Can not get memory type for %d\n", index); 797 798 default: 799 dboot_panic("Unknown multiboot version: %d\n", 800 multiboot_version); 801 break; 802 } 803 return (0); 804 #else 805 return (map_buffer[index].type); 806 #endif 807 } 808 809 static uint64_t 810 dboot_loader_mmap_get_base(int index) 811 { 812 #if !defined(__xpv) 813 mb_memory_map_t *mp, *mpend; 814 uint64_t base; 815 int i; 816 817 switch (multiboot_version) { 818 case 1: 819 mp = (mb_memory_map_t *)mb_info->mmap_addr; 820 mpend = (mb_memory_map_t *) 821 (mb_info->mmap_addr + mb_info->mmap_length); 822 823 for (i = 0; mp < mpend && i != index; i++) 824 mp = (mb_memory_map_t *)((uintptr_t)mp + mp->size + 825 sizeof (mp->size)); 826 if (mp >= mpend) { 827 dboot_panic("dboot_loader_mmap_get_base(): index " 828 "out of bounds: %d\n", index); 829 } 830 return (((uint64_t)mp->base_addr_high << 32) + 831 (uint64_t)mp->base_addr_low); 832 833 case 2: 834 if (dboot_multiboot2_efi_mmap_get_base(mb2_info, index, &base)) 835 return (base); 836 837 if (dboot_multiboot2_mmap_get_base(mb2_info, index, &base)) 838 return (base); 839 840 dboot_panic("Can not get memory address for %d\n", index); 841 842 default: 843 dboot_panic("Unknown multiboot version: %d\n", 844 multiboot_version); 845 break; 846 } 847 return (0); 848 #else 849 return (((uint64_t)map_buffer[index].base_addr_high << 32) + 850 (uint64_t)map_buffer[index].base_addr_low); 851 #endif 852 } 853 854 static uint64_t 855 dboot_loader_mmap_get_length(int index) 856 { 857 #if !defined(__xpv) 858 mb_memory_map_t *mp, *mpend; 859 uint64_t length; 860 int i; 861 862 switch (multiboot_version) { 863 case 1: 864 mp = (mb_memory_map_t *)mb_info->mmap_addr; 865 mpend = (mb_memory_map_t *) 866 (mb_info->mmap_addr + mb_info->mmap_length); 867 868 for (i = 0; mp < mpend && i != index; i++) 869 mp = (mb_memory_map_t *)((uintptr_t)mp + mp->size + 870 sizeof (mp->size)); 871 if (mp >= mpend) { 872 dboot_panic("dboot_loader_mmap_get_length(): index " 873 "out of bounds: %d\n", index); 874 } 875 return (((uint64_t)mp->length_high << 32) + 876 (uint64_t)mp->length_low); 877 878 case 2: 879 if (dboot_multiboot2_efi_mmap_get_length(mb2_info, 880 index, &length)) 881 return (length); 882 883 if (dboot_multiboot2_mmap_get_length(mb2_info, 884 index, &length)) 885 return (length); 886 887 dboot_panic("Can not get memory length for %d\n", index); 888 889 default: 890 dboot_panic("Unknown multiboot version: %d\n", 891 multiboot_version); 892 break; 893 } 894 return (0); 895 #else 896 return (((uint64_t)map_buffer[index].length_high << 32) + 897 (uint64_t)map_buffer[index].length_low); 898 #endif 899 } 900 901 static void 902 build_pcimemlists(void) 903 { 904 uint64_t page_offset = MMU_PAGEOFFSET; /* needs to be 64 bits */ 905 uint64_t start; 906 uint64_t end; 907 int i, num; 908 909 if (prom_debug) 910 dboot_printf("building pcimemlists:\n"); 911 /* 912 * initialize 913 */ 914 pcimemlists[0].addr = pci_lo_limit; 915 pcimemlists[0].size = pci_hi_limit - pci_lo_limit; 916 pcimemlists_used = 1; 917 918 num = dboot_loader_mmap_entries(); 919 /* 920 * Fill in PCI memlists. 921 */ 922 for (i = 0; i < num; ++i) { 923 start = dboot_loader_mmap_get_base(i); 924 end = start + dboot_loader_mmap_get_length(i); 925 926 if (prom_debug) 927 dboot_printf("\ttype: %d %" PRIx64 "..%" 928 PRIx64 "\n", dboot_loader_mmap_get_type(i), 929 start, end); 930 931 /* 932 * page align start and end 933 */ 934 start = (start + page_offset) & ~page_offset; 935 end &= ~page_offset; 936 if (end <= start) 937 continue; 938 939 exclude_from_pci(start, end); 940 } 941 942 /* 943 * Finish off the pcimemlist 944 */ 945 if (prom_debug) { 946 for (i = 0; i < pcimemlists_used; ++i) { 947 dboot_printf("pcimemlist entry 0x%" PRIx64 "..0x%" 948 PRIx64 "\n", pcimemlists[i].addr, 949 pcimemlists[i].addr + pcimemlists[i].size); 950 } 951 } 952 pcimemlists[0].next = 0; 953 pcimemlists[0].prev = 0; 954 for (i = 1; i < pcimemlists_used; ++i) { 955 pcimemlists[i].prev = 956 (native_ptr_t)(uintptr_t)(pcimemlists + i - 1); 957 pcimemlists[i].next = 0; 958 pcimemlists[i - 1].next = 959 (native_ptr_t)(uintptr_t)(pcimemlists + i); 960 } 961 bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists; 962 DBG(bi->bi_pcimem); 963 } 964 965 #if defined(__xpv) 966 /* 967 * Initialize memory allocator stuff from hypervisor-supplied start info. 968 */ 969 static void 970 init_mem_alloc(void) 971 { 972 int local; /* variables needed to find start region */ 973 paddr_t scratch_start; 974 xen_memory_map_t map; 975 976 DBG_MSG("Entered init_mem_alloc()\n"); 977 978 /* 979 * Free memory follows the stack. There's at least 512KB of scratch 980 * space, rounded up to at least 2Mb alignment. That should be enough 981 * for the page tables we'll need to build. The nucleus memory is 982 * allocated last and will be outside the addressible range. We'll 983 * switch to new page tables before we unpack the kernel 984 */ 985 scratch_start = RNDUP((paddr_t)(uintptr_t)&local, MMU_PAGESIZE); 986 DBG(scratch_start); 987 scratch_end = RNDUP((paddr_t)scratch_start + 512 * 1024, TWO_MEG); 988 DBG(scratch_end); 989 990 /* 991 * For paranoia, leave some space between hypervisor data and ours. 992 * Use 500 instead of 512. 993 */ 994 next_avail_addr = scratch_end - 500 * 1024; 995 DBG(next_avail_addr); 996 997 /* 998 * The domain builder gives us at most 1 module 999 */ 1000 DBG(xen_info->mod_len); 1001 if (xen_info->mod_len > 0) { 1002 DBG(xen_info->mod_start); 1003 modules[0].bm_addr = 1004 (native_ptr_t)(uintptr_t)xen_info->mod_start; 1005 modules[0].bm_size = xen_info->mod_len; 1006 bi->bi_module_cnt = 1; 1007 bi->bi_modules = (native_ptr_t)(uintptr_t)modules; 1008 } else { 1009 bi->bi_module_cnt = 0; 1010 bi->bi_modules = (native_ptr_t)(uintptr_t)NULL; 1011 } 1012 DBG(bi->bi_module_cnt); 1013 DBG(bi->bi_modules); 1014 1015 DBG(xen_info->mfn_list); 1016 DBG(xen_info->nr_pages); 1017 max_mem = (paddr_t)xen_info->nr_pages << MMU_PAGESHIFT; 1018 DBG(max_mem); 1019 1020 /* 1021 * Using pseudo-physical addresses, so only 1 memlist element 1022 */ 1023 memlists[0].addr = 0; 1024 DBG(memlists[0].addr); 1025 memlists[0].size = max_mem; 1026 DBG(memlists[0].size); 1027 memlists_used = 1; 1028 DBG(memlists_used); 1029 1030 /* 1031 * finish building physinstall list 1032 */ 1033 sort_physinstall(); 1034 1035 /* 1036 * build bios reserved memlists 1037 */ 1038 build_rsvdmemlists(); 1039 1040 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1041 /* 1042 * build PCI Memory list 1043 */ 1044 map.nr_entries = MAXMAPS; 1045 /*LINTED: constant in conditional context*/ 1046 set_xen_guest_handle(map.buffer, map_buffer); 1047 if (HYPERVISOR_memory_op(XENMEM_machine_memory_map, &map) != 0) 1048 dboot_panic("getting XENMEM_machine_memory_map failed"); 1049 build_pcimemlists(); 1050 } 1051 } 1052 1053 #else /* !__xpv */ 1054 1055 static void 1056 dboot_multiboot1_xboot_consinfo(void) 1057 { 1058 fb->framebuffer = 0; 1059 } 1060 1061 static void 1062 dboot_multiboot2_xboot_consinfo(void) 1063 { 1064 multiboot_tag_framebuffer_t *fbtag; 1065 fbtag = dboot_multiboot2_find_tag(mb2_info, 1066 MULTIBOOT_TAG_TYPE_FRAMEBUFFER); 1067 fb->framebuffer = (uint64_t)(uintptr_t)fbtag; 1068 } 1069 1070 static int 1071 dboot_multiboot_modcount(void) 1072 { 1073 switch (multiboot_version) { 1074 case 1: 1075 return (mb_info->mods_count); 1076 1077 case 2: 1078 return (dboot_multiboot2_modcount(mb2_info)); 1079 1080 default: 1081 dboot_panic("Unknown multiboot version: %d\n", 1082 multiboot_version); 1083 break; 1084 } 1085 return (0); 1086 } 1087 1088 static uint32_t 1089 dboot_multiboot_modstart(int index) 1090 { 1091 switch (multiboot_version) { 1092 case 1: 1093 return (((mb_module_t *)mb_info->mods_addr)[index].mod_start); 1094 1095 case 2: 1096 return (dboot_multiboot2_modstart(mb2_info, index)); 1097 1098 default: 1099 dboot_panic("Unknown multiboot version: %d\n", 1100 multiboot_version); 1101 break; 1102 } 1103 return (0); 1104 } 1105 1106 static uint32_t 1107 dboot_multiboot_modend(int index) 1108 { 1109 switch (multiboot_version) { 1110 case 1: 1111 return (((mb_module_t *)mb_info->mods_addr)[index].mod_end); 1112 1113 case 2: 1114 return (dboot_multiboot2_modend(mb2_info, index)); 1115 1116 default: 1117 dboot_panic("Unknown multiboot version: %d\n", 1118 multiboot_version); 1119 break; 1120 } 1121 return (0); 1122 } 1123 1124 static char * 1125 dboot_multiboot_modcmdline(int index) 1126 { 1127 switch (multiboot_version) { 1128 case 1: 1129 return ((char *)((mb_module_t *) 1130 mb_info->mods_addr)[index].mod_name); 1131 1132 case 2: 1133 return (dboot_multiboot2_modcmdline(mb2_info, index)); 1134 1135 default: 1136 dboot_panic("Unknown multiboot version: %d\n", 1137 multiboot_version); 1138 break; 1139 } 1140 return (0); 1141 } 1142 1143 /* 1144 * Find the modules used by console setup. 1145 * Since we need the console to print early boot messages, the console is set up 1146 * before anything else and therefore we need to pick up the needed modules. 1147 * 1148 * Note, we just will search for and if found, will pass the modules 1149 * to console setup, the proper module list processing will happen later. 1150 * Currently used modules are boot environment and console font. 1151 */ 1152 static void 1153 dboot_find_console_modules(void) 1154 { 1155 int i, modcount; 1156 uint32_t mod_start, mod_end; 1157 char *cmdline; 1158 1159 modcount = dboot_multiboot_modcount(); 1160 bi->bi_module_cnt = 0; 1161 for (i = 0; i < modcount; ++i) { 1162 cmdline = dboot_multiboot_modcmdline(i); 1163 if (cmdline == NULL) 1164 continue; 1165 1166 if (strstr(cmdline, "type=console-font") != NULL) 1167 modules[bi->bi_module_cnt].bm_type = BMT_FONT; 1168 else if (strstr(cmdline, "type=environment") != NULL) 1169 modules[bi->bi_module_cnt].bm_type = BMT_ENV; 1170 else 1171 continue; 1172 1173 mod_start = dboot_multiboot_modstart(i); 1174 mod_end = dboot_multiboot_modend(i); 1175 modules[bi->bi_module_cnt].bm_addr = 1176 (native_ptr_t)(uintptr_t)mod_start; 1177 modules[bi->bi_module_cnt].bm_size = mod_end - mod_start; 1178 modules[bi->bi_module_cnt].bm_name = 1179 (native_ptr_t)(uintptr_t)NULL; 1180 modules[bi->bi_module_cnt].bm_hash = 1181 (native_ptr_t)(uintptr_t)NULL; 1182 bi->bi_module_cnt++; 1183 } 1184 if (bi->bi_module_cnt != 0) 1185 bi->bi_modules = (native_ptr_t)(uintptr_t)modules; 1186 } 1187 1188 static boolean_t 1189 dboot_multiboot_basicmeminfo(uint32_t *lower, uint32_t *upper) 1190 { 1191 boolean_t rv = B_FALSE; 1192 1193 switch (multiboot_version) { 1194 case 1: 1195 if (mb_info->flags & 0x01) { 1196 *lower = mb_info->mem_lower; 1197 *upper = mb_info->mem_upper; 1198 rv = B_TRUE; 1199 } 1200 break; 1201 1202 case 2: 1203 return (dboot_multiboot2_basicmeminfo(mb2_info, lower, upper)); 1204 1205 default: 1206 dboot_panic("Unknown multiboot version: %d\n", 1207 multiboot_version); 1208 break; 1209 } 1210 return (rv); 1211 } 1212 1213 static uint8_t 1214 dboot_a2h(char v) 1215 { 1216 if (v >= 'a') 1217 return (v - 'a' + 0xa); 1218 else if (v >= 'A') 1219 return (v - 'A' + 0xa); 1220 else if (v >= '0') 1221 return (v - '0'); 1222 else 1223 dboot_panic("bad ASCII hex character %c\n", v); 1224 1225 return (0); 1226 } 1227 1228 static void 1229 digest_a2h(const char *ascii, uint8_t *digest) 1230 { 1231 unsigned int i; 1232 1233 for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { 1234 digest[i] = dboot_a2h(ascii[i * 2]) << 4; 1235 digest[i] |= dboot_a2h(ascii[i * 2 + 1]); 1236 } 1237 } 1238 1239 /* 1240 * Generate a SHA-1 hash of the first len bytes of image, and compare it with 1241 * the ASCII-format hash found in the 40-byte buffer at ascii. If they 1242 * match, return 0, otherwise -1. This works only for images smaller than 1243 * 4 GB, which should not be a problem. 1244 */ 1245 static int 1246 check_image_hash(uint_t midx) 1247 { 1248 const char *ascii; 1249 const void *image; 1250 size_t len; 1251 SHA1_CTX ctx; 1252 uint8_t digest[SHA1_DIGEST_LENGTH]; 1253 uint8_t baseline[SHA1_DIGEST_LENGTH]; 1254 unsigned int i; 1255 1256 ascii = (const char *)(uintptr_t)modules[midx].bm_hash; 1257 image = (const void *)(uintptr_t)modules[midx].bm_addr; 1258 len = (size_t)modules[midx].bm_size; 1259 1260 digest_a2h(ascii, baseline); 1261 1262 SHA1Init(&ctx); 1263 SHA1Update(&ctx, image, len); 1264 SHA1Final(digest, &ctx); 1265 1266 for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { 1267 if (digest[i] != baseline[i]) 1268 return (-1); 1269 } 1270 1271 return (0); 1272 } 1273 1274 static const char * 1275 type_to_str(boot_module_type_t type) 1276 { 1277 switch (type) { 1278 case BMT_ROOTFS: 1279 return ("rootfs"); 1280 case BMT_FILE: 1281 return ("file"); 1282 case BMT_HASH: 1283 return ("hash"); 1284 case BMT_ENV: 1285 return ("environment"); 1286 case BMT_FONT: 1287 return ("console-font"); 1288 default: 1289 return ("unknown"); 1290 } 1291 } 1292 1293 static void 1294 check_images(void) 1295 { 1296 uint_t i; 1297 char displayhash[SHA1_ASCII_LENGTH + 1]; 1298 1299 for (i = 0; i < modules_used; i++) { 1300 if (prom_debug) { 1301 dboot_printf("module #%d: name %s type %s " 1302 "addr %lx size %lx\n", 1303 i, (char *)(uintptr_t)modules[i].bm_name, 1304 type_to_str(modules[i].bm_type), 1305 (ulong_t)modules[i].bm_addr, 1306 (ulong_t)modules[i].bm_size); 1307 } 1308 1309 if (modules[i].bm_type == BMT_HASH || 1310 modules[i].bm_hash == (native_ptr_t)(uintptr_t)NULL) { 1311 DBG_MSG("module has no hash; skipping check\n"); 1312 continue; 1313 } 1314 (void) memcpy(displayhash, 1315 (void *)(uintptr_t)modules[i].bm_hash, 1316 SHA1_ASCII_LENGTH); 1317 displayhash[SHA1_ASCII_LENGTH] = '\0'; 1318 if (prom_debug) { 1319 dboot_printf("checking expected hash [%s]: ", 1320 displayhash); 1321 } 1322 1323 if (check_image_hash(i) != 0) 1324 dboot_panic("hash mismatch!\n"); 1325 else 1326 DBG_MSG("OK\n"); 1327 } 1328 } 1329 1330 /* 1331 * Determine the module's starting address, size, name, and type, and fill the 1332 * boot_modules structure. This structure is used by the bop code, except for 1333 * hashes which are checked prior to transferring control to the kernel. 1334 */ 1335 static void 1336 process_module(int midx) 1337 { 1338 uint32_t mod_start = dboot_multiboot_modstart(midx); 1339 uint32_t mod_end = dboot_multiboot_modend(midx); 1340 char *cmdline = dboot_multiboot_modcmdline(midx); 1341 char *p, *q; 1342 1343 check_higher(mod_end); 1344 if (prom_debug) { 1345 dboot_printf("\tmodule #%d: '%s' at 0x%lx, end 0x%lx\n", 1346 midx, cmdline, (ulong_t)mod_start, (ulong_t)mod_end); 1347 } 1348 1349 if (mod_start > mod_end) { 1350 dboot_panic("module #%d: module start address 0x%lx greater " 1351 "than end address 0x%lx", midx, 1352 (ulong_t)mod_start, (ulong_t)mod_end); 1353 } 1354 1355 /* 1356 * A brief note on lengths and sizes: GRUB, for reasons unknown, passes 1357 * the address of the last valid byte in a module plus 1 as mod_end. 1358 * This is of course a bug; the multiboot specification simply states 1359 * that mod_start and mod_end "contain the start and end addresses of 1360 * the boot module itself" which is pretty obviously not what GRUB is 1361 * doing. However, fixing it requires that not only this code be 1362 * changed but also that other code consuming this value and values 1363 * derived from it be fixed, and that the kernel and GRUB must either 1364 * both have the bug or neither. While there are a lot of combinations 1365 * that will work, there are also some that won't, so for simplicity 1366 * we'll just cope with the bug. That means we won't actually hash the 1367 * byte at mod_end, and we will expect that mod_end for the hash file 1368 * itself is one greater than some multiple of 41 (40 bytes of ASCII 1369 * hash plus a newline for each module). We set bm_size to the true 1370 * correct number of bytes in each module, achieving exactly this. 1371 */ 1372 1373 modules[midx].bm_addr = (native_ptr_t)(uintptr_t)mod_start; 1374 modules[midx].bm_size = mod_end - mod_start; 1375 modules[midx].bm_name = (native_ptr_t)(uintptr_t)cmdline; 1376 modules[midx].bm_hash = (native_ptr_t)(uintptr_t)NULL; 1377 modules[midx].bm_type = BMT_FILE; 1378 1379 if (cmdline == NULL) { 1380 modules[midx].bm_name = (native_ptr_t)(uintptr_t)noname; 1381 return; 1382 } 1383 1384 p = cmdline; 1385 modules[midx].bm_name = 1386 (native_ptr_t)(uintptr_t)strsep(&p, " \t\f\n\r"); 1387 1388 while (p != NULL) { 1389 q = strsep(&p, " \t\f\n\r"); 1390 if (strncmp(q, "name=", 5) == 0) { 1391 if (q[5] != '\0' && !isspace(q[5])) { 1392 modules[midx].bm_name = 1393 (native_ptr_t)(uintptr_t)(q + 5); 1394 } 1395 continue; 1396 } 1397 1398 if (strncmp(q, "type=", 5) == 0) { 1399 if (q[5] == '\0' || isspace(q[5])) 1400 continue; 1401 q += 5; 1402 if (strcmp(q, "rootfs") == 0) { 1403 modules[midx].bm_type = BMT_ROOTFS; 1404 } else if (strcmp(q, "hash") == 0) { 1405 modules[midx].bm_type = BMT_HASH; 1406 } else if (strcmp(q, "environment") == 0) { 1407 modules[midx].bm_type = BMT_ENV; 1408 } else if (strcmp(q, "console-font") == 0) { 1409 modules[midx].bm_type = BMT_FONT; 1410 } else if (strcmp(q, "file") != 0) { 1411 dboot_printf("\tmodule #%d: unknown module " 1412 "type '%s'; defaulting to 'file'\n", 1413 midx, q); 1414 } 1415 continue; 1416 } 1417 1418 if (strncmp(q, "hash=", 5) == 0) { 1419 if (q[5] != '\0' && !isspace(q[5])) { 1420 modules[midx].bm_hash = 1421 (native_ptr_t)(uintptr_t)(q + 5); 1422 } 1423 continue; 1424 } 1425 1426 dboot_printf("ignoring unknown option '%s'\n", q); 1427 } 1428 } 1429 1430 /* 1431 * Backward compatibility: if there are exactly one or two modules, both 1432 * of type 'file' and neither with an embedded hash value, we have been 1433 * given the legacy style modules. In this case we need to treat the first 1434 * module as a rootfs and the second as a hash referencing that module. 1435 * Otherwise, even if the configuration is invalid, we assume that the 1436 * operator knows what he's doing or at least isn't being bitten by this 1437 * interface change. 1438 */ 1439 static void 1440 fixup_modules(void) 1441 { 1442 if (modules_used == 0 || modules_used > 2) 1443 return; 1444 1445 if (modules[0].bm_type != BMT_FILE || 1446 (modules_used > 1 && modules[1].bm_type != BMT_FILE)) { 1447 return; 1448 } 1449 1450 if (modules[0].bm_hash != (native_ptr_t)(uintptr_t)NULL || 1451 (modules_used > 1 && 1452 modules[1].bm_hash != (native_ptr_t)(uintptr_t)NULL)) { 1453 return; 1454 } 1455 1456 modules[0].bm_type = BMT_ROOTFS; 1457 if (modules_used > 1) { 1458 modules[1].bm_type = BMT_HASH; 1459 modules[1].bm_name = modules[0].bm_name; 1460 } 1461 } 1462 1463 /* 1464 * For modules that do not have assigned hashes but have a separate hash module, 1465 * find the assigned hash module and set the primary module's bm_hash to point 1466 * to the hash data from that module. We will then ignore modules of type 1467 * BMT_HASH from this point forward. 1468 */ 1469 static void 1470 assign_module_hashes(void) 1471 { 1472 uint_t i, j; 1473 1474 for (i = 0; i < modules_used; i++) { 1475 if (modules[i].bm_type == BMT_HASH || 1476 modules[i].bm_hash != (native_ptr_t)(uintptr_t)NULL) { 1477 continue; 1478 } 1479 1480 for (j = 0; j < modules_used; j++) { 1481 if (modules[j].bm_type != BMT_HASH || 1482 strcmp((char *)(uintptr_t)modules[j].bm_name, 1483 (char *)(uintptr_t)modules[i].bm_name) != 0) { 1484 continue; 1485 } 1486 1487 if (modules[j].bm_size < SHA1_ASCII_LENGTH) { 1488 dboot_printf("Short hash module of length " 1489 "0x%lx bytes; ignoring\n", 1490 (ulong_t)modules[j].bm_size); 1491 } else { 1492 modules[i].bm_hash = modules[j].bm_addr; 1493 } 1494 break; 1495 } 1496 } 1497 } 1498 1499 /* 1500 * Walk through the module information finding the last used address. 1501 * The first available address will become the top level page table. 1502 */ 1503 static void 1504 dboot_process_modules(void) 1505 { 1506 int i, modcount; 1507 extern char _end[]; 1508 1509 DBG_MSG("\nFinding Modules\n"); 1510 modcount = dboot_multiboot_modcount(); 1511 if (modcount > MAX_BOOT_MODULES) { 1512 dboot_panic("Too many modules (%d) -- the maximum is %d.", 1513 modcount, MAX_BOOT_MODULES); 1514 } 1515 /* 1516 * search the modules to find the last used address 1517 * we'll build the module list while we're walking through here 1518 */ 1519 check_higher((paddr_t)(uintptr_t)&_end); 1520 for (i = 0; i < modcount; ++i) { 1521 process_module(i); 1522 modules_used++; 1523 } 1524 bi->bi_modules = (native_ptr_t)(uintptr_t)modules; 1525 DBG(bi->bi_modules); 1526 bi->bi_module_cnt = modcount; 1527 DBG(bi->bi_module_cnt); 1528 1529 fixup_modules(); 1530 assign_module_hashes(); 1531 check_images(); 1532 } 1533 1534 /* 1535 * We then build the phys_install memlist from the multiboot information. 1536 */ 1537 static void 1538 dboot_process_mmap(void) 1539 { 1540 uint64_t start; 1541 uint64_t end; 1542 uint64_t page_offset = MMU_PAGEOFFSET; /* needs to be 64 bits */ 1543 uint32_t lower, upper, type, t; 1544 int i, mmap_entries; 1545 1546 /* 1547 * Walk through the memory map from multiboot and build our memlist 1548 * structures. Note these will have native format pointers. 1549 */ 1550 DBG_MSG("\nFinding Memory Map\n"); 1551 num_entries = 0; 1552 num_entries_set = B_FALSE; 1553 max_mem = 0; 1554 t = 0; 1555 if ((mmap_entries = dboot_loader_mmap_entries()) > 0) { 1556 struct boot_memlist *mlist; 1557 uint_t *indexp; 1558 1559 for (i = 0; i < mmap_entries; i++) { 1560 start = dboot_loader_mmap_get_base(i); 1561 end = start + dboot_loader_mmap_get_length(i); 1562 type = dboot_loader_mmap_get_type(i); 1563 1564 if (prom_debug) 1565 dboot_printf("\ttype: %u %" PRIx64 "..%" 1566 PRIx64 "\n", type, start, end); 1567 1568 /* 1569 * page align start and end 1570 */ 1571 start = (start + page_offset) & ~page_offset; 1572 end &= ~page_offset; 1573 if (end <= start) 1574 continue; 1575 1576 /* 1577 * only type 1 is usable RAM 1578 */ 1579 switch (type) { 1580 case 1: 1581 if (end > max_mem) 1582 max_mem = end; 1583 mlist = memlists; 1584 indexp = &memlists_used; 1585 break; 1586 case 2: 1587 mlist = rsvdmemlists; 1588 indexp = &rsvdmemlists_used; 1589 break; 1590 default: 1591 continue; 1592 } 1593 1594 if (memlists_used > MAX_MEMLIST) 1595 dboot_panic("too many memlists"); 1596 if (rsvdmemlists_used > MAX_MEMLIST) 1597 dboot_panic("too many rsvdmemlists"); 1598 1599 if (mlist[*indexp].size != 0 && 1600 type == t && 1601 (mlist[*indexp].addr + 1602 mlist[*indexp].size) == start) { 1603 mlist[*indexp].size = 1604 end - mlist[*indexp].addr; 1605 continue; 1606 } 1607 /* do we need new entry? */ 1608 if (mlist[*indexp].size != 0) { 1609 *indexp = *indexp + 1; 1610 if (*indexp > MAX_MEMLIST) 1611 continue; 1612 } 1613 1614 t = type; 1615 mlist[*indexp].addr = start; 1616 mlist[*indexp].size = end - start; 1617 } 1618 1619 if (memlists[memlists_used].size != 0) { 1620 memlists_used++; 1621 } 1622 if (rsvdmemlists[rsvdmemlists_used].size != 0) { 1623 rsvdmemlists_used++; 1624 } 1625 1626 if (prom_debug) { 1627 for (i = 0; i < memlists_used; i++) { 1628 dboot_printf("memlists[%u] %" 1629 PRIx64 "..%" PRIx64 "\n", 1630 i, 1631 memlists[i].addr, 1632 memlists[i].size); 1633 } 1634 for (i = 0; i < rsvdmemlists_used; i++) { 1635 dboot_printf("rsvdmemlists[%u] %" 1636 PRIx64 "..%" PRIx64 "\n", 1637 i, 1638 rsvdmemlists[i].addr, 1639 rsvdmemlists[i].size); 1640 } 1641 } 1642 1643 build_pcimemlists(); 1644 } else if (dboot_multiboot_basicmeminfo(&lower, &upper)) { 1645 DBG(lower); 1646 memlists[memlists_used].addr = 0; 1647 memlists[memlists_used].size = lower * 1024; 1648 ++memlists_used; 1649 DBG(upper); 1650 memlists[memlists_used].addr = 1024 * 1024; 1651 memlists[memlists_used].size = upper * 1024; 1652 ++memlists_used; 1653 1654 /* 1655 * Old platform - assume I/O space at the end of memory. 1656 */ 1657 pcimemlists[0].addr = (upper * 1024) + (1024 * 1024); 1658 pcimemlists[0].size = pci_hi_limit - pcimemlists[0].addr; 1659 pcimemlists[0].next = 0; 1660 pcimemlists[0].prev = 0; 1661 bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists; 1662 DBG(bi->bi_pcimem); 1663 } else { 1664 dboot_panic("No memory info from boot loader!!!"); 1665 } 1666 1667 /* 1668 * finish processing the physinstall list 1669 */ 1670 sort_physinstall(); 1671 1672 /* 1673 * build bios reserved mem lists 1674 */ 1675 build_rsvdmemlists(); 1676 } 1677 1678 /* 1679 * The highest address is used as the starting point for dboot's simple 1680 * memory allocator. 1681 * 1682 * Finding the highest address in case of Multiboot 1 protocol is 1683 * quite painful in the sense that some information provided by 1684 * the multiboot info structure points to BIOS data, and some to RAM. 1685 * 1686 * The module list was processed and checked already by dboot_process_modules(), 1687 * so we will check the command line string and the memory map. 1688 * 1689 * This list of to be checked items is based on our current knowledge of 1690 * allocations made by grub1 and will need to be reviewed if there 1691 * are updates about the information provided by Multiboot 1. 1692 * 1693 * In the case of the Multiboot 2, our life is much simpler, as the MB2 1694 * information tag list is one contiguous chunk of memory. 1695 */ 1696 static paddr_t 1697 dboot_multiboot1_highest_addr(void) 1698 { 1699 paddr_t addr = (paddr_t)(uintptr_t)NULL; 1700 char *cmdl = (char *)mb_info->cmdline; 1701 1702 if (mb_info->flags & MB_INFO_CMDLINE) 1703 addr = ((paddr_t)((uintptr_t)cmdl + strlen(cmdl) + 1)); 1704 1705 if (mb_info->flags & MB_INFO_MEM_MAP) 1706 addr = MAX(addr, 1707 ((paddr_t)(mb_info->mmap_addr + mb_info->mmap_length))); 1708 return (addr); 1709 } 1710 1711 static void 1712 dboot_multiboot_highest_addr(void) 1713 { 1714 paddr_t addr; 1715 1716 switch (multiboot_version) { 1717 case 1: 1718 addr = dboot_multiboot1_highest_addr(); 1719 if (addr != (paddr_t)(uintptr_t)NULL) 1720 check_higher(addr); 1721 break; 1722 case 2: 1723 addr = dboot_multiboot2_highest_addr(mb2_info); 1724 if (addr != (paddr_t)(uintptr_t)NULL) 1725 check_higher(addr); 1726 break; 1727 default: 1728 dboot_panic("Unknown multiboot version: %d\n", 1729 multiboot_version); 1730 break; 1731 } 1732 } 1733 1734 /* 1735 * Walk the boot loader provided information and find the highest free address. 1736 */ 1737 static void 1738 init_mem_alloc(void) 1739 { 1740 DBG_MSG("Entered init_mem_alloc()\n"); 1741 dboot_process_modules(); 1742 dboot_process_mmap(); 1743 dboot_multiboot_highest_addr(); 1744 } 1745 1746 static int 1747 dboot_same_guids(efi_guid_t *g1, efi_guid_t *g2) 1748 { 1749 int i; 1750 1751 if (g1->time_low != g2->time_low) 1752 return (0); 1753 if (g1->time_mid != g2->time_mid) 1754 return (0); 1755 if (g1->time_hi_and_version != g2->time_hi_and_version) 1756 return (0); 1757 if (g1->clock_seq_hi_and_reserved != g2->clock_seq_hi_and_reserved) 1758 return (0); 1759 if (g1->clock_seq_low != g2->clock_seq_low) 1760 return (0); 1761 1762 for (i = 0; i < 6; i++) { 1763 if (g1->node_addr[i] != g2->node_addr[i]) 1764 return (0); 1765 } 1766 return (1); 1767 } 1768 1769 static void 1770 process_efi32(EFI_SYSTEM_TABLE32 *efi) 1771 { 1772 uint32_t entries; 1773 EFI_CONFIGURATION_TABLE32 *config; 1774 efi_guid_t VendorGuid; 1775 int i; 1776 1777 entries = efi->NumberOfTableEntries; 1778 config = (EFI_CONFIGURATION_TABLE32 *)(uintptr_t) 1779 efi->ConfigurationTable; 1780 1781 for (i = 0; i < entries; i++) { 1782 (void) memcpy(&VendorGuid, &config[i].VendorGuid, 1783 sizeof (VendorGuid)); 1784 if (dboot_same_guids(&VendorGuid, &smbios3)) { 1785 bi->bi_smbios = (native_ptr_t)(uintptr_t) 1786 config[i].VendorTable; 1787 } 1788 if (bi->bi_smbios == 0 && 1789 dboot_same_guids(&VendorGuid, &smbios)) { 1790 bi->bi_smbios = (native_ptr_t)(uintptr_t) 1791 config[i].VendorTable; 1792 } 1793 if (dboot_same_guids(&VendorGuid, &acpi2)) { 1794 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t) 1795 config[i].VendorTable; 1796 } 1797 if (bi->bi_acpi_rsdp == 0 && 1798 dboot_same_guids(&VendorGuid, &acpi1)) { 1799 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t) 1800 config[i].VendorTable; 1801 } 1802 } 1803 } 1804 1805 static void 1806 process_efi64(EFI_SYSTEM_TABLE64 *efi) 1807 { 1808 uint64_t entries; 1809 EFI_CONFIGURATION_TABLE64 *config; 1810 efi_guid_t VendorGuid; 1811 int i; 1812 1813 entries = efi->NumberOfTableEntries; 1814 config = (EFI_CONFIGURATION_TABLE64 *)(uintptr_t) 1815 efi->ConfigurationTable; 1816 1817 for (i = 0; i < entries; i++) { 1818 (void) memcpy(&VendorGuid, &config[i].VendorGuid, 1819 sizeof (VendorGuid)); 1820 if (dboot_same_guids(&VendorGuid, &smbios3)) { 1821 bi->bi_smbios = (native_ptr_t)(uintptr_t) 1822 config[i].VendorTable; 1823 } 1824 if (bi->bi_smbios == 0 && 1825 dboot_same_guids(&VendorGuid, &smbios)) { 1826 bi->bi_smbios = (native_ptr_t)(uintptr_t) 1827 config[i].VendorTable; 1828 } 1829 /* Prefer acpi v2+ over v1. */ 1830 if (dboot_same_guids(&VendorGuid, &acpi2)) { 1831 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t) 1832 config[i].VendorTable; 1833 } 1834 if (bi->bi_acpi_rsdp == 0 && 1835 dboot_same_guids(&VendorGuid, &acpi1)) { 1836 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t) 1837 config[i].VendorTable; 1838 } 1839 } 1840 } 1841 1842 static void 1843 dboot_multiboot_get_fwtables(void) 1844 { 1845 multiboot_tag_new_acpi_t *nacpitagp; 1846 multiboot_tag_old_acpi_t *oacpitagp; 1847 multiboot_tag_efi64_t *efi64tagp = NULL; 1848 multiboot_tag_efi32_t *efi32tagp = NULL; 1849 1850 /* no fw tables from multiboot 1 */ 1851 if (multiboot_version != 2) 1852 return; 1853 1854 efi64tagp = (multiboot_tag_efi64_t *) 1855 dboot_multiboot2_find_tag(mb2_info, MULTIBOOT_TAG_TYPE_EFI64); 1856 if (efi64tagp != NULL) { 1857 bi->bi_uefi_arch = XBI_UEFI_ARCH_64; 1858 bi->bi_uefi_systab = (native_ptr_t)(uintptr_t) 1859 efi64tagp->mb_pointer; 1860 process_efi64((EFI_SYSTEM_TABLE64 *)(uintptr_t) 1861 efi64tagp->mb_pointer); 1862 } else { 1863 efi32tagp = (multiboot_tag_efi32_t *) 1864 dboot_multiboot2_find_tag(mb2_info, 1865 MULTIBOOT_TAG_TYPE_EFI32); 1866 if (efi32tagp != NULL) { 1867 bi->bi_uefi_arch = XBI_UEFI_ARCH_32; 1868 bi->bi_uefi_systab = (native_ptr_t)(uintptr_t) 1869 efi32tagp->mb_pointer; 1870 process_efi32((EFI_SYSTEM_TABLE32 *)(uintptr_t) 1871 efi32tagp->mb_pointer); 1872 } 1873 } 1874 1875 /* 1876 * The multiboot2 info contains a copy of the RSDP; stash a pointer to 1877 * it (see find_rsdp() in fakebop). 1878 */ 1879 nacpitagp = (multiboot_tag_new_acpi_t *) 1880 dboot_multiboot2_find_tag(mb2_info, MULTIBOOT_TAG_TYPE_ACPI_NEW); 1881 oacpitagp = (multiboot_tag_old_acpi_t *) 1882 dboot_multiboot2_find_tag(mb2_info, MULTIBOOT_TAG_TYPE_ACPI_OLD); 1883 1884 if (nacpitagp != NULL) { 1885 bi->bi_acpi_rsdp_copy = (native_ptr_t)(uintptr_t) 1886 &nacpitagp->mb_rsdp[0]; 1887 } else if (oacpitagp != NULL) { 1888 bi->bi_acpi_rsdp_copy = (native_ptr_t)(uintptr_t) 1889 &oacpitagp->mb_rsdp[0]; 1890 } 1891 } 1892 1893 /* print out EFI version string with newline */ 1894 static void 1895 dboot_print_efi_version(uint32_t ver) 1896 { 1897 int rev; 1898 1899 dboot_printf("%d.", EFI_REV_MAJOR(ver)); 1900 1901 rev = EFI_REV_MINOR(ver); 1902 if ((rev % 10) != 0) { 1903 dboot_printf("%d.%d\n", rev / 10, rev % 10); 1904 } else { 1905 dboot_printf("%d\n", rev / 10); 1906 } 1907 } 1908 1909 static void 1910 print_efi32(EFI_SYSTEM_TABLE32 *efi) 1911 { 1912 uint16_t *data; 1913 EFI_CONFIGURATION_TABLE32 *conf; 1914 int i; 1915 1916 dboot_printf("EFI32 signature: %llx\n", 1917 (unsigned long long)efi->Hdr.Signature); 1918 dboot_printf("EFI system version: "); 1919 dboot_print_efi_version(efi->Hdr.Revision); 1920 dboot_printf("EFI system vendor: "); 1921 data = (uint16_t *)(uintptr_t)efi->FirmwareVendor; 1922 for (i = 0; data[i] != 0; i++) 1923 dboot_printf("%c", (char)data[i]); 1924 dboot_printf("\nEFI firmware revision: "); 1925 dboot_print_efi_version(efi->FirmwareRevision); 1926 dboot_printf("EFI system table number of entries: %d\n", 1927 efi->NumberOfTableEntries); 1928 conf = (EFI_CONFIGURATION_TABLE32 *)(uintptr_t) 1929 efi->ConfigurationTable; 1930 for (i = 0; i < (int)efi->NumberOfTableEntries; i++) { 1931 dboot_printf("%d: 0x%x 0x%x 0x%x 0x%x 0x%x", i, 1932 conf[i].VendorGuid.time_low, 1933 conf[i].VendorGuid.time_mid, 1934 conf[i].VendorGuid.time_hi_and_version, 1935 conf[i].VendorGuid.clock_seq_hi_and_reserved, 1936 conf[i].VendorGuid.clock_seq_low); 1937 dboot_printf(" 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n", 1938 conf[i].VendorGuid.node_addr[0], 1939 conf[i].VendorGuid.node_addr[1], 1940 conf[i].VendorGuid.node_addr[2], 1941 conf[i].VendorGuid.node_addr[3], 1942 conf[i].VendorGuid.node_addr[4], 1943 conf[i].VendorGuid.node_addr[5]); 1944 } 1945 } 1946 1947 static void 1948 print_efi64(EFI_SYSTEM_TABLE64 *efi) 1949 { 1950 uint16_t *data; 1951 EFI_CONFIGURATION_TABLE64 *conf; 1952 int i; 1953 1954 dboot_printf("EFI64 signature: %llx\n", 1955 (unsigned long long)efi->Hdr.Signature); 1956 dboot_printf("EFI system version: "); 1957 dboot_print_efi_version(efi->Hdr.Revision); 1958 dboot_printf("EFI system vendor: "); 1959 data = (uint16_t *)(uintptr_t)efi->FirmwareVendor; 1960 for (i = 0; data[i] != 0; i++) 1961 dboot_printf("%c", (char)data[i]); 1962 dboot_printf("\nEFI firmware revision: "); 1963 dboot_print_efi_version(efi->FirmwareRevision); 1964 dboot_printf("EFI system table number of entries: %" PRIu64 "\n", 1965 efi->NumberOfTableEntries); 1966 conf = (EFI_CONFIGURATION_TABLE64 *)(uintptr_t) 1967 efi->ConfigurationTable; 1968 for (i = 0; i < (int)efi->NumberOfTableEntries; i++) { 1969 dboot_printf("%d: 0x%x 0x%x 0x%x 0x%x 0x%x", i, 1970 conf[i].VendorGuid.time_low, 1971 conf[i].VendorGuid.time_mid, 1972 conf[i].VendorGuid.time_hi_and_version, 1973 conf[i].VendorGuid.clock_seq_hi_and_reserved, 1974 conf[i].VendorGuid.clock_seq_low); 1975 dboot_printf(" 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n", 1976 conf[i].VendorGuid.node_addr[0], 1977 conf[i].VendorGuid.node_addr[1], 1978 conf[i].VendorGuid.node_addr[2], 1979 conf[i].VendorGuid.node_addr[3], 1980 conf[i].VendorGuid.node_addr[4], 1981 conf[i].VendorGuid.node_addr[5]); 1982 } 1983 } 1984 #endif /* !__xpv */ 1985 1986 /* 1987 * Simple memory allocator, allocates aligned physical memory. 1988 * Note that startup_kernel() only allocates memory, never frees. 1989 * Memory usage just grows in an upward direction. 1990 */ 1991 static void * 1992 do_mem_alloc(uint32_t size, uint32_t align) 1993 { 1994 uint_t i; 1995 uint64_t best; 1996 uint64_t start; 1997 uint64_t end; 1998 1999 /* 2000 * make sure size is a multiple of pagesize 2001 */ 2002 size = RNDUP(size, MMU_PAGESIZE); 2003 next_avail_addr = RNDUP(next_avail_addr, align); 2004 2005 /* 2006 * XXPV fixme joe 2007 * 2008 * a really large bootarchive that causes you to run out of memory 2009 * may cause this to blow up 2010 */ 2011 /* LINTED E_UNEXPECTED_UINT_PROMOTION */ 2012 best = (uint64_t)-size; 2013 for (i = 0; i < memlists_used; ++i) { 2014 start = memlists[i].addr; 2015 #if defined(__xpv) 2016 start += mfn_base; 2017 #endif 2018 end = start + memlists[i].size; 2019 2020 /* 2021 * did we find the desired address? 2022 */ 2023 if (start <= next_avail_addr && next_avail_addr + size <= end) { 2024 best = next_avail_addr; 2025 goto done; 2026 } 2027 2028 /* 2029 * if not is this address the best so far? 2030 */ 2031 if (start > next_avail_addr && start < best && 2032 RNDUP(start, align) + size <= end) 2033 best = RNDUP(start, align); 2034 } 2035 2036 /* 2037 * We didn't find exactly the address we wanted, due to going off the 2038 * end of a memory region. Return the best found memory address. 2039 */ 2040 done: 2041 next_avail_addr = best + size; 2042 #if defined(__xpv) 2043 if (next_avail_addr > scratch_end) 2044 dboot_panic("Out of mem next_avail: 0x%lx, scratch_end: " 2045 "0x%lx", (ulong_t)next_avail_addr, 2046 (ulong_t)scratch_end); 2047 #endif 2048 (void) memset((void *)(uintptr_t)best, 0, size); 2049 return ((void *)(uintptr_t)best); 2050 } 2051 2052 void * 2053 mem_alloc(uint32_t size) 2054 { 2055 return (do_mem_alloc(size, MMU_PAGESIZE)); 2056 } 2057 2058 2059 /* 2060 * Build page tables to map all of memory used so far as well as the kernel. 2061 */ 2062 static void 2063 build_page_tables(void) 2064 { 2065 uint32_t psize; 2066 uint32_t level; 2067 uint32_t off; 2068 uint64_t start; 2069 #if !defined(__xpv) 2070 uint32_t i; 2071 uint64_t end; 2072 #endif /* __xpv */ 2073 2074 /* 2075 * If we're on metal, we need to create the top level pagetable. 2076 */ 2077 #if defined(__xpv) 2078 top_page_table = (paddr_t)(uintptr_t)xen_info->pt_base; 2079 #else /* __xpv */ 2080 top_page_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE); 2081 #endif /* __xpv */ 2082 DBG((uintptr_t)top_page_table); 2083 2084 /* 2085 * Determine if we'll use large mappings for kernel, then map it. 2086 */ 2087 if (largepage_support) { 2088 psize = lpagesize; 2089 level = 1; 2090 } else { 2091 psize = MMU_PAGESIZE; 2092 level = 0; 2093 } 2094 2095 DBG_MSG("Mapping kernel\n"); 2096 DBG(ktext_phys); 2097 DBG(target_kernel_text); 2098 DBG(ksize); 2099 DBG(psize); 2100 for (off = 0; off < ksize; off += psize) 2101 map_pa_at_va(ktext_phys + off, target_kernel_text + off, level); 2102 2103 /* 2104 * The kernel will need a 1 page window to work with page tables 2105 */ 2106 bi->bi_pt_window = (native_ptr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE); 2107 DBG(bi->bi_pt_window); 2108 bi->bi_pte_to_pt_window = 2109 (native_ptr_t)(uintptr_t)find_pte(bi->bi_pt_window, NULL, 0, 0); 2110 DBG(bi->bi_pte_to_pt_window); 2111 2112 #if defined(__xpv) 2113 if (!DOMAIN_IS_INITDOMAIN(xen_info)) { 2114 /* If this is a domU we're done. */ 2115 DBG_MSG("\nPage tables constructed\n"); 2116 return; 2117 } 2118 #endif /* __xpv */ 2119 2120 /* 2121 * We need 1:1 mappings for the lower 1M of memory to access 2122 * BIOS tables used by a couple of drivers during boot. 2123 * 2124 * The following code works because our simple memory allocator 2125 * only grows usage in an upwards direction. 2126 * 2127 * Note that by this point in boot some mappings for low memory 2128 * may already exist because we've already accessed device in low 2129 * memory. (Specifically the video frame buffer and keyboard 2130 * status ports.) If we're booting on raw hardware then GRUB 2131 * created these mappings for us. If we're booting under a 2132 * hypervisor then we went ahead and remapped these devices into 2133 * memory allocated within dboot itself. 2134 */ 2135 if (map_debug) 2136 dboot_printf("1:1 map pa=0..1Meg\n"); 2137 for (start = 0; start < 1024 * 1024; start += MMU_PAGESIZE) { 2138 #if defined(__xpv) 2139 map_ma_at_va(start, start, 0); 2140 #else /* __xpv */ 2141 map_pa_at_va(start, start, 0); 2142 #endif /* __xpv */ 2143 } 2144 2145 #if !defined(__xpv) 2146 2147 for (i = 0; i < memlists_used; ++i) { 2148 start = memlists[i].addr; 2149 end = start + memlists[i].size; 2150 2151 if (map_debug) 2152 dboot_printf("1:1 map pa=%" PRIx64 "..%" PRIx64 "\n", 2153 start, end); 2154 while (start < end && start < next_avail_addr) { 2155 map_pa_at_va(start, start, 0); 2156 start += MMU_PAGESIZE; 2157 } 2158 if (start >= next_avail_addr) 2159 break; 2160 } 2161 2162 /* 2163 * Map framebuffer memory as PT_NOCACHE as this is memory from a 2164 * device and therefore must not be cached. 2165 */ 2166 if (fb != NULL && fb->framebuffer != 0) { 2167 multiboot_tag_framebuffer_t *fb_tagp; 2168 fb_tagp = (multiboot_tag_framebuffer_t *)(uintptr_t) 2169 fb->framebuffer; 2170 2171 start = fb_tagp->framebuffer_common.framebuffer_addr; 2172 end = start + fb_tagp->framebuffer_common.framebuffer_height * 2173 fb_tagp->framebuffer_common.framebuffer_pitch; 2174 2175 if (map_debug) 2176 dboot_printf("FB 1:1 map pa=%" PRIx64 "..%" PRIx64 "\n", 2177 start, end); 2178 pte_bits |= PT_NOCACHE; 2179 if (PAT_support != 0) 2180 pte_bits |= PT_PAT_4K; 2181 2182 while (start < end) { 2183 map_pa_at_va(start, start, 0); 2184 start += MMU_PAGESIZE; 2185 } 2186 pte_bits &= ~PT_NOCACHE; 2187 if (PAT_support != 0) 2188 pte_bits &= ~PT_PAT_4K; 2189 } 2190 #endif /* !__xpv */ 2191 2192 DBG_MSG("\nPage tables constructed\n"); 2193 } 2194 2195 #define NO_MULTIBOOT \ 2196 "multiboot is no longer used to boot the Solaris Operating System.\n\ 2197 The grub entry should be changed to:\n\ 2198 kernel$ /platform/i86pc/kernel/$ISADIR/unix\n\ 2199 module$ /platform/i86pc/$ISADIR/boot_archive\n\ 2200 See http://illumos.org/msg/SUNOS-8000-AK for details.\n" 2201 2202 static void 2203 dboot_init_xboot_consinfo(void) 2204 { 2205 bi = &boot_info; 2206 2207 #if !defined(__xpv) 2208 fb = &framebuffer; 2209 bi->bi_framebuffer = (native_ptr_t)(uintptr_t)fb; 2210 2211 switch (multiboot_version) { 2212 case 1: 2213 dboot_multiboot1_xboot_consinfo(); 2214 break; 2215 case 2: 2216 dboot_multiboot2_xboot_consinfo(); 2217 break; 2218 default: 2219 dboot_panic("Unknown multiboot version: %d\n", 2220 multiboot_version); 2221 break; 2222 } 2223 dboot_find_console_modules(); 2224 #endif 2225 } 2226 2227 /* 2228 * Set up basic data from the boot loader. 2229 * The load_addr is part of AOUT kludge setup in dboot_grub.s, to support 2230 * 32-bit dboot code setup used to set up and start 64-bit kernel. 2231 * AOUT kludge does allow 32-bit boot loader, such as grub1, to load and 2232 * start 64-bit illumos kernel. 2233 */ 2234 static void 2235 dboot_loader_init(void) 2236 { 2237 #if !defined(__xpv) 2238 mb_info = NULL; 2239 mb2_info = NULL; 2240 2241 switch (mb_magic) { 2242 case MB_BOOTLOADER_MAGIC: 2243 multiboot_version = 1; 2244 mb_info = (multiboot_info_t *)(uintptr_t)mb_addr; 2245 #if defined(_BOOT_TARGET_amd64) 2246 load_addr = mb_header.load_addr; 2247 #endif 2248 break; 2249 2250 case MULTIBOOT2_BOOTLOADER_MAGIC: 2251 multiboot_version = 2; 2252 mb2_info = (multiboot2_info_header_t *)(uintptr_t)mb_addr; 2253 #if defined(_BOOT_TARGET_amd64) 2254 load_addr = mb2_load_addr; 2255 #endif 2256 break; 2257 2258 default: 2259 dboot_panic("Unknown bootloader magic: 0x%x\n", mb_magic); 2260 break; 2261 } 2262 #endif /* !defined(__xpv) */ 2263 } 2264 2265 /* Extract the kernel command line from [multi]boot information. */ 2266 static char * 2267 dboot_loader_cmdline(void) 2268 { 2269 char *line = NULL; 2270 2271 #if defined(__xpv) 2272 line = (char *)xen_info->cmd_line; 2273 #else /* __xpv */ 2274 2275 switch (multiboot_version) { 2276 case 1: 2277 if (mb_info->flags & MB_INFO_CMDLINE) 2278 line = (char *)mb_info->cmdline; 2279 break; 2280 2281 case 2: 2282 line = dboot_multiboot2_cmdline(mb2_info); 2283 break; 2284 2285 default: 2286 dboot_panic("Unknown multiboot version: %d\n", 2287 multiboot_version); 2288 break; 2289 } 2290 2291 #endif /* __xpv */ 2292 2293 /* 2294 * Make sure we have valid pointer so the string operations 2295 * will not crash us. 2296 */ 2297 if (line == NULL) 2298 line = ""; 2299 2300 return (line); 2301 } 2302 2303 static char * 2304 dboot_loader_name(void) 2305 { 2306 #if defined(__xpv) 2307 return (NULL); 2308 #else /* __xpv */ 2309 multiboot_tag_string_t *tag; 2310 2311 switch (multiboot_version) { 2312 case 1: 2313 return ((char *)(uintptr_t)mb_info->boot_loader_name); 2314 2315 case 2: 2316 tag = dboot_multiboot2_find_tag(mb2_info, 2317 MULTIBOOT_TAG_TYPE_BOOT_LOADER_NAME); 2318 return (tag->mb_string); 2319 default: 2320 dboot_panic("Unknown multiboot version: %d\n", 2321 multiboot_version); 2322 break; 2323 } 2324 2325 return (NULL); 2326 #endif /* __xpv */ 2327 } 2328 2329 /* 2330 * startup_kernel has a pretty simple job. It builds pagetables which reflect 2331 * 1:1 mappings for all memory in use. It then also adds mappings for 2332 * the kernel nucleus at virtual address of target_kernel_text using large page 2333 * mappings. The page table pages are also accessible at 1:1 mapped 2334 * virtual addresses. 2335 */ 2336 /*ARGSUSED*/ 2337 void 2338 startup_kernel(void) 2339 { 2340 char *cmdline; 2341 char *bootloader; 2342 #if defined(__xpv) 2343 physdev_set_iopl_t set_iopl; 2344 #endif /* __xpv */ 2345 2346 if (dboot_debug == 1) 2347 bcons_init(NULL); /* Set very early console to ttya. */ 2348 dboot_loader_init(); 2349 /* 2350 * At this point we are executing in a 32 bit real mode. 2351 */ 2352 2353 bootloader = dboot_loader_name(); 2354 cmdline = dboot_loader_cmdline(); 2355 2356 #if defined(__xpv) 2357 /* 2358 * For dom0, before we initialize the console subsystem we'll 2359 * need to enable io operations, so set I/O priveldge level to 1. 2360 */ 2361 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2362 set_iopl.iopl = 1; 2363 (void) HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 2364 } 2365 #endif /* __xpv */ 2366 2367 dboot_init_xboot_consinfo(); 2368 bi->bi_cmdline = (native_ptr_t)(uintptr_t)cmdline; 2369 bcons_init(bi); /* Now we can set the real console. */ 2370 2371 prom_debug = (find_boot_prop("prom_debug") != NULL); 2372 map_debug = (find_boot_prop("map_debug") != NULL); 2373 2374 #if !defined(__xpv) 2375 dboot_multiboot_get_fwtables(); 2376 #endif 2377 DBG_MSG("\n\nillumos prekernel set: "); 2378 DBG_MSG(cmdline); 2379 DBG_MSG("\n"); 2380 2381 if (bootloader != NULL && prom_debug) { 2382 dboot_printf("Kernel loaded by: %s\n", bootloader); 2383 #if !defined(__xpv) 2384 dboot_printf("Using multiboot %d boot protocol.\n", 2385 multiboot_version); 2386 #endif 2387 } 2388 2389 if (strstr(cmdline, "multiboot") != NULL) { 2390 dboot_panic(NO_MULTIBOOT); 2391 } 2392 2393 DBG((uintptr_t)bi); 2394 #if !defined(__xpv) 2395 DBG((uintptr_t)mb_info); 2396 DBG((uintptr_t)mb2_info); 2397 if (mb2_info != NULL) 2398 DBG(mb2_info->mbi_total_size); 2399 DBG(bi->bi_acpi_rsdp); 2400 DBG(bi->bi_acpi_rsdp_copy); 2401 DBG(bi->bi_smbios); 2402 DBG(bi->bi_uefi_arch); 2403 DBG(bi->bi_uefi_systab); 2404 2405 if (bi->bi_uefi_systab && prom_debug) { 2406 if (bi->bi_uefi_arch == XBI_UEFI_ARCH_64) { 2407 print_efi64((EFI_SYSTEM_TABLE64 *)(uintptr_t) 2408 bi->bi_uefi_systab); 2409 } else { 2410 print_efi32((EFI_SYSTEM_TABLE32 *)(uintptr_t) 2411 bi->bi_uefi_systab); 2412 } 2413 } 2414 #endif 2415 2416 /* 2417 * Need correct target_kernel_text value 2418 */ 2419 target_kernel_text = KERNEL_TEXT; 2420 DBG(target_kernel_text); 2421 2422 #if defined(__xpv) 2423 2424 /* 2425 * XXPV Derive this stuff from CPUID / what the hypervisor has enabled 2426 */ 2427 2428 #if defined(_BOOT_TARGET_amd64) 2429 /* 2430 * 64-bit hypervisor. 2431 */ 2432 amd64_support = 1; 2433 pae_support = 1; 2434 2435 #else /* _BOOT_TARGET_amd64 */ 2436 2437 /* 2438 * See if we are running on a PAE Hypervisor 2439 */ 2440 { 2441 xen_capabilities_info_t caps; 2442 2443 if (HYPERVISOR_xen_version(XENVER_capabilities, &caps) != 0) 2444 dboot_panic("HYPERVISOR_xen_version(caps) failed"); 2445 caps[sizeof (caps) - 1] = 0; 2446 if (prom_debug) 2447 dboot_printf("xen capabilities %s\n", caps); 2448 if (strstr(caps, "x86_32p") != NULL) 2449 pae_support = 1; 2450 } 2451 2452 #endif /* _BOOT_TARGET_amd64 */ 2453 { 2454 xen_platform_parameters_t p; 2455 2456 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &p) != 0) 2457 dboot_panic("HYPERVISOR_xen_version(parms) failed"); 2458 DBG(p.virt_start); 2459 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 2460 } 2461 2462 /* 2463 * The hypervisor loads stuff starting at 1Gig 2464 */ 2465 mfn_base = ONE_GIG; 2466 DBG(mfn_base); 2467 2468 /* 2469 * enable writable page table mode for the hypervisor 2470 */ 2471 if (HYPERVISOR_vm_assist(VMASST_CMD_enable, 2472 VMASST_TYPE_writable_pagetables) < 0) 2473 dboot_panic("HYPERVISOR_vm_assist(writable_pagetables) failed"); 2474 2475 /* 2476 * check for NX support 2477 */ 2478 if (pae_support) { 2479 uint32_t eax = 0x80000000; 2480 uint32_t edx = get_cpuid_edx(&eax); 2481 2482 if (eax >= 0x80000001) { 2483 eax = 0x80000001; 2484 edx = get_cpuid_edx(&eax); 2485 if (edx & CPUID_AMD_EDX_NX) 2486 NX_support = 1; 2487 } 2488 } 2489 2490 /* 2491 * check for PAT support 2492 */ 2493 { 2494 uint32_t eax = 1; 2495 uint32_t edx = get_cpuid_edx(&eax); 2496 2497 if (edx & CPUID_INTC_EDX_PAT) 2498 PAT_support = 1; 2499 } 2500 #if !defined(_BOOT_TARGET_amd64) 2501 2502 /* 2503 * The 32-bit hypervisor uses segmentation to protect itself from 2504 * guests. This means when a guest attempts to install a flat 4GB 2505 * code or data descriptor the 32-bit hypervisor will protect itself 2506 * by silently shrinking the segment such that if the guest attempts 2507 * any access where the hypervisor lives a #gp fault is generated. 2508 * The problem is that some applications expect a full 4GB flat 2509 * segment for their current thread pointer and will use negative 2510 * offset segment wrap around to access data. TLS support in linux 2511 * brand is one example of this. 2512 * 2513 * The 32-bit hypervisor can catch the #gp fault in these cases 2514 * and emulate the access without passing the #gp fault to the guest 2515 * but only if VMASST_TYPE_4gb_segments is explicitly turned on. 2516 * Seems like this should have been the default. 2517 * Either way, we want the hypervisor -- and not Solaris -- to deal 2518 * to deal with emulating these accesses. 2519 */ 2520 if (HYPERVISOR_vm_assist(VMASST_CMD_enable, 2521 VMASST_TYPE_4gb_segments) < 0) 2522 dboot_panic("HYPERVISOR_vm_assist(4gb_segments) failed"); 2523 #endif /* !_BOOT_TARGET_amd64 */ 2524 2525 #else /* __xpv */ 2526 2527 /* 2528 * use cpuid to enable MMU features 2529 */ 2530 if (have_cpuid()) { 2531 uint32_t eax, edx; 2532 2533 eax = 1; 2534 edx = get_cpuid_edx(&eax); 2535 if (edx & CPUID_INTC_EDX_PSE) 2536 largepage_support = 1; 2537 if (edx & CPUID_INTC_EDX_PGE) 2538 pge_support = 1; 2539 if (edx & CPUID_INTC_EDX_PAE) 2540 pae_support = 1; 2541 if (edx & CPUID_INTC_EDX_PAT) 2542 PAT_support = 1; 2543 2544 eax = 0x80000000; 2545 edx = get_cpuid_edx(&eax); 2546 if (eax >= 0x80000001) { 2547 eax = 0x80000001; 2548 edx = get_cpuid_edx(&eax); 2549 if (edx & CPUID_AMD_EDX_LM) 2550 amd64_support = 1; 2551 if (edx & CPUID_AMD_EDX_NX) 2552 NX_support = 1; 2553 } 2554 } else { 2555 dboot_printf("cpuid not supported\n"); 2556 } 2557 #endif /* __xpv */ 2558 2559 2560 #if defined(_BOOT_TARGET_amd64) 2561 if (amd64_support == 0) 2562 dboot_panic("long mode not supported, rebooting"); 2563 else if (pae_support == 0) 2564 dboot_panic("long mode, but no PAE; rebooting"); 2565 #else 2566 /* 2567 * Allow the command line to over-ride use of PAE for 32 bit. 2568 */ 2569 if (strstr(cmdline, "disablePAE=true") != NULL) { 2570 pae_support = 0; 2571 NX_support = 0; 2572 amd64_support = 0; 2573 } 2574 #endif 2575 2576 /* 2577 * initialize the simple memory allocator 2578 */ 2579 init_mem_alloc(); 2580 2581 #if !defined(__xpv) && !defined(_BOOT_TARGET_amd64) 2582 /* 2583 * disable PAE on 32 bit h/w w/o NX and < 4Gig of memory 2584 */ 2585 if (max_mem < FOUR_GIG && NX_support == 0) 2586 pae_support = 0; 2587 #endif 2588 2589 /* 2590 * configure mmu information 2591 */ 2592 if (pae_support) { 2593 shift_amt = shift_amt_pae; 2594 ptes_per_table = 512; 2595 pte_size = 8; 2596 lpagesize = TWO_MEG; 2597 #if defined(_BOOT_TARGET_amd64) 2598 top_level = 3; 2599 #else 2600 top_level = 2; 2601 #endif 2602 } else { 2603 pae_support = 0; 2604 NX_support = 0; 2605 shift_amt = shift_amt_nopae; 2606 ptes_per_table = 1024; 2607 pte_size = 4; 2608 lpagesize = FOUR_MEG; 2609 top_level = 1; 2610 } 2611 2612 DBG(PAT_support); 2613 DBG(pge_support); 2614 DBG(NX_support); 2615 DBG(largepage_support); 2616 DBG(amd64_support); 2617 DBG(top_level); 2618 DBG(pte_size); 2619 DBG(ptes_per_table); 2620 DBG(lpagesize); 2621 2622 #if defined(__xpv) 2623 ktext_phys = ONE_GIG; /* from UNIX Mapfile */ 2624 #else 2625 ktext_phys = FOUR_MEG; /* from UNIX Mapfile */ 2626 #endif 2627 2628 #if !defined(__xpv) && defined(_BOOT_TARGET_amd64) 2629 /* 2630 * For grub, copy kernel bits from the ELF64 file to final place. 2631 */ 2632 DBG_MSG("\nAllocating nucleus pages.\n"); 2633 ktext_phys = (uintptr_t)do_mem_alloc(ksize, FOUR_MEG); 2634 2635 if (ktext_phys == 0) 2636 dboot_panic("failed to allocate aligned kernel memory"); 2637 DBG(load_addr); 2638 if (dboot_elfload64(load_addr) != 0) 2639 dboot_panic("failed to parse kernel ELF image, rebooting"); 2640 #endif 2641 2642 DBG(ktext_phys); 2643 2644 /* 2645 * Allocate page tables. 2646 */ 2647 build_page_tables(); 2648 2649 /* 2650 * return to assembly code to switch to running kernel 2651 */ 2652 entry_addr_low = (uint32_t)target_kernel_text; 2653 DBG(entry_addr_low); 2654 bi->bi_use_largepage = largepage_support; 2655 bi->bi_use_pae = pae_support; 2656 bi->bi_use_pge = pge_support; 2657 bi->bi_use_nx = NX_support; 2658 2659 #if defined(__xpv) 2660 2661 bi->bi_next_paddr = next_avail_addr - mfn_base; 2662 DBG(bi->bi_next_paddr); 2663 bi->bi_next_vaddr = (native_ptr_t)(uintptr_t)next_avail_addr; 2664 DBG(bi->bi_next_vaddr); 2665 2666 /* 2667 * unmap unused pages in start area to make them available for DMA 2668 */ 2669 while (next_avail_addr < scratch_end) { 2670 (void) HYPERVISOR_update_va_mapping(next_avail_addr, 2671 0, UVMF_INVLPG | UVMF_LOCAL); 2672 next_avail_addr += MMU_PAGESIZE; 2673 } 2674 2675 bi->bi_xen_start_info = (native_ptr_t)(uintptr_t)xen_info; 2676 DBG((uintptr_t)HYPERVISOR_shared_info); 2677 bi->bi_shared_info = (native_ptr_t)HYPERVISOR_shared_info; 2678 bi->bi_top_page_table = (uintptr_t)top_page_table - mfn_base; 2679 2680 #else /* __xpv */ 2681 2682 bi->bi_next_paddr = next_avail_addr; 2683 DBG(bi->bi_next_paddr); 2684 bi->bi_next_vaddr = (native_ptr_t)(uintptr_t)next_avail_addr; 2685 DBG(bi->bi_next_vaddr); 2686 bi->bi_mb_version = multiboot_version; 2687 2688 switch (multiboot_version) { 2689 case 1: 2690 bi->bi_mb_info = (native_ptr_t)(uintptr_t)mb_info; 2691 break; 2692 case 2: 2693 bi->bi_mb_info = (native_ptr_t)(uintptr_t)mb2_info; 2694 break; 2695 default: 2696 dboot_panic("Unknown multiboot version: %d\n", 2697 multiboot_version); 2698 break; 2699 } 2700 bi->bi_top_page_table = (uintptr_t)top_page_table; 2701 2702 #endif /* __xpv */ 2703 2704 bi->bi_kseg_size = FOUR_MEG; 2705 DBG(bi->bi_kseg_size); 2706 2707 #ifndef __xpv 2708 if (map_debug) 2709 dump_tables(); 2710 #endif 2711 2712 DBG_MSG("\n\n*** DBOOT DONE -- back to asm to jump to kernel\n\n"); 2713 2714 #ifndef __xpv 2715 /* Update boot info with FB data */ 2716 fb->cursor.origin.x = fb_info.cursor.origin.x; 2717 fb->cursor.origin.y = fb_info.cursor.origin.y; 2718 fb->cursor.pos.x = fb_info.cursor.pos.x; 2719 fb->cursor.pos.y = fb_info.cursor.pos.y; 2720 fb->cursor.visible = fb_info.cursor.visible; 2721 #endif 2722 } 2723