1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/mca_x86.h> 28 #include <sys/cpu_module_impl.h> 29 #include <sys/cpu_module_ms.h> 30 #include <sys/cmn_err.h> 31 #include <sys/cpuvar.h> 32 #include <sys/pghw.h> 33 #include <sys/x86_archext.h> 34 #include <sys/sysmacros.h> 35 #include <sys/regset.h> 36 #include <sys/privregs.h> 37 #include <sys/systm.h> 38 #include <sys/types.h> 39 #include <sys/log.h> 40 #include <sys/psw.h> 41 #include <sys/fm/protocol.h> 42 #include <sys/fm/util.h> 43 #include <sys/errorq.h> 44 #include <sys/mca_x86.h> 45 #include <sys/fm/cpu/GMCA.h> 46 #include <sys/sysevent.h> 47 #include <sys/ontrap.h> 48 49 #include "gcpu.h" 50 51 /* 52 * Clear to log telemetry found at initialization. While processor docs 53 * say you should process this telemetry on all but Intel family 0x6 54 * there are way too many exceptions and we want to avoid bogus 55 * diagnoses. 56 */ 57 int gcpu_suppress_log_on_init = 1; 58 59 /* 60 * gcpu_mca_stack_flag is a debug assist option to capture a stack trace at 61 * error logout time. The stack will be included in the ereport if the 62 * error type selects stack inclusion, or in all cases if 63 * gcpu_mca_stack_ereport_include is nonzero. 64 */ 65 int gcpu_mca_stack_flag = 0; 66 int gcpu_mca_stack_ereport_include = 0; 67 68 /* 69 * The number of times to re-read MCA telemetry to try to obtain a 70 * consistent snapshot if we find it to be changing under our feet. 71 */ 72 int gcpu_mca_telemetry_retries = 5; 73 74 #ifndef __xpv 75 int gcpu_mca_cmci_throttling_threshold = 10; 76 int gcpu_mca_cmci_reenable_threshold = 1000; 77 #endif 78 79 static gcpu_error_disp_t gcpu_errtypes[] = { 80 81 /* 82 * Unclassified 83 */ 84 { 85 FM_EREPORT_CPU_GENERIC_UNCLASSIFIED, 86 NULL, 87 FM_EREPORT_PAYLOAD_FLAGS_COMMON, 88 MCAX86_SIMPLE_UNCLASSIFIED_MASKON, 89 MCAX86_SIMPLE_UNCLASSIFIED_MASKOFF 90 }, 91 92 /* 93 * Microcode ROM Parity Error 94 */ 95 { 96 FM_EREPORT_CPU_GENERIC_MC_CODE_PARITY, 97 NULL, 98 FM_EREPORT_PAYLOAD_FLAGS_COMMON, 99 MCAX86_SIMPLE_MC_CODE_PARITY_MASKON, 100 MCAX86_SIMPLE_MC_CODE_PARITY_MASKOFF 101 }, 102 103 /* 104 * External - BINIT# from another processor during power-on config 105 */ 106 { 107 FM_EREPORT_CPU_GENERIC_EXTERNAL, 108 NULL, 109 FM_EREPORT_PAYLOAD_FLAGS_COMMON, 110 MCAX86_SIMPLE_EXTERNAL_MASKON, 111 MCAX86_SIMPLE_EXTERNAL_MASKOFF 112 }, 113 114 /* 115 * Functional redundancy check master/slave error 116 */ 117 { 118 FM_EREPORT_CPU_GENERIC_FRC, 119 NULL, 120 FM_EREPORT_PAYLOAD_FLAGS_COMMON, 121 MCAX86_SIMPLE_FRC_MASKON, 122 MCAX86_SIMPLE_FRC_MASKOFF 123 }, 124 125 /* 126 * Internal parity error 127 */ 128 { 129 FM_EREPORT_CPU_GENERIC_INTERNAL_PARITY, 130 NULL, 131 FM_EREPORT_PAYLOAD_FLAGS_COMMON, 132 MCAX86_SIMPLE_INTERNAL_PARITY_MASKON, 133 MCAX86_SIMPLE_INTERNAL_PARITY_MASKOFF 134 }, 135 136 137 /* 138 * Internal timer error 139 */ 140 { 141 FM_EREPORT_CPU_GENERIC_INTERNAL_TIMER, 142 NULL, 143 FM_EREPORT_PAYLOAD_FLAGS_COMMON, 144 MCAX86_SIMPLE_INTERNAL_TIMER_MASKON, 145 MCAX86_SIMPLE_INTERNAL_TIMER_MASKOFF 146 }, 147 148 /* 149 * Internal unclassified 150 */ 151 { 152 FM_EREPORT_CPU_GENERIC_INTERNAL_UNCLASS, 153 NULL, 154 FM_EREPORT_PAYLOAD_FLAGS_COMMON, 155 MCAX86_SIMPLE_INTERNAL_UNCLASS_MASK_MASKON, 156 MCAX86_SIMPLE_INTERNAL_UNCLASS_MASK_MASKOFF 157 }, 158 159 /* 160 * Compound error codes - generic memory hierarchy 161 */ 162 { 163 FM_EREPORT_CPU_GENERIC_GENMEMHIER, 164 NULL, 165 FM_EREPORT_PAYLOAD_FLAGS_COMMON, /* yes, no compound name */ 166 MCAX86_COMPOUND_GENERIC_MEMHIER_MASKON, 167 MCAX86_COMPOUND_GENERIC_MEMHIER_MASKOFF 168 }, 169 170 /* 171 * Compound error codes - TLB errors 172 */ 173 { 174 FM_EREPORT_CPU_GENERIC_TLB, 175 "%1$s" "TLB" "%2$s" "_ERR", 176 FM_EREPORT_PAYLOAD_FLAGS_COMPOUND_ERR, 177 MCAX86_COMPOUND_TLB_MASKON, 178 MCAX86_COMPOUND_TLB_MASKOFF 179 }, 180 181 /* 182 * Compound error codes - memory hierarchy 183 */ 184 { 185 FM_EREPORT_CPU_GENERIC_MEMHIER, 186 "%1$s" "CACHE" "%2$s" "_" "%3$s" "_ERR", 187 FM_EREPORT_PAYLOAD_FLAGS_COMPOUND_ERR, 188 MCAX86_COMPOUND_MEMHIER_MASKON, 189 MCAX86_COMPOUND_MEMHIER_MASKOFF 190 }, 191 192 /* 193 * Compound error codes - bus and interconnect errors 194 */ 195 { 196 FM_EREPORT_CPU_GENERIC_BUS_INTERCONNECT, 197 "BUS" "%2$s" "_" "%4$s" "_" "%3$s" "_" "%5$s" "_" "%6$s" "_ERR", 198 FM_EREPORT_PAYLOAD_FLAGS_COMPOUND_ERR, 199 MCAX86_COMPOUND_BUS_INTERCONNECT_MASKON, 200 MCAX86_COMPOUND_BUS_INTERCONNECT_MASKOFF 201 }, 202 /* 203 * Compound error codes - memory controller errors 204 */ 205 { 206 FM_EREPORT_CPU_GENERIC_MEMORY_CONTROLLER, 207 "MC" "_" "%8$s" "_" "%9$s" "_ERR", 208 FM_EREPORT_PAYLOAD_FLAGS_COMPOUND_ERR, 209 MCAX86_COMPOUND_MEMORY_CONTROLLER_MASKON, 210 MCAX86_COMPOUND_MEMORY_CONTROLLER_MASKOFF 211 }, 212 }; 213 214 static gcpu_error_disp_t gcpu_unknown = { 215 FM_EREPORT_CPU_GENERIC_UNKNOWN, 216 "UNKNOWN", 217 FM_EREPORT_PAYLOAD_FLAGS_COMMON, 218 0, 219 0 220 }; 221 222 static errorq_t *gcpu_mca_queue; 223 static kmutex_t gcpu_mca_queue_lock; 224 225 #ifdef __xpv 226 static int isxpv = 1; 227 #else 228 static int isxpv = 0; 229 #endif 230 231 static const gcpu_error_disp_t * 232 gcpu_disp_match(uint16_t code) 233 { 234 const gcpu_error_disp_t *ged = gcpu_errtypes; 235 int i; 236 237 for (i = 0; i < sizeof (gcpu_errtypes) / sizeof (gcpu_error_disp_t); 238 i++, ged++) { 239 uint16_t on = ged->ged_errcode_mask_on; 240 uint16_t off = ged->ged_errcode_mask_off; 241 242 if ((code & on) == on && (code & off) == 0) 243 return (ged); 244 } 245 246 return (NULL); 247 } 248 249 static uint8_t 250 bit_strip(uint16_t code, uint16_t mask, uint16_t shift) 251 { 252 return ((uint8_t)(code & mask) >> shift); 253 } 254 255 #define BIT_STRIP(code, name) \ 256 bit_strip(code, MCAX86_ERRCODE_##name##_MASK, \ 257 MCAX86_ERRCODE_##name##_SHIFT) 258 259 #define GCPU_MNEMONIC_UNDEF "undefined" 260 #define GCPU_MNEMONIC_RESVD "reserved" 261 262 /* 263 * Mappings of TT, LL, RRRR, PP, II and T values to compound error name 264 * mnemonics and to ereport class name components. 265 */ 266 267 struct gcpu_mnexp { 268 const char *mne_compound; /* used in expanding compound errname */ 269 const char *mne_ereport; /* used in expanding ereport class */ 270 }; 271 272 static struct gcpu_mnexp gcpu_TT_mnemonics[] = { /* MCAX86_ERRCODE_TT_* */ 273 { "I", FM_EREPORT_CPU_GENERIC_TT_INSTR }, /* INSTR */ 274 { "D", FM_EREPORT_CPU_GENERIC_TT_DATA }, /* DATA */ 275 { "G", FM_EREPORT_CPU_GENERIC_TT_GEN }, /* GEN */ 276 { GCPU_MNEMONIC_UNDEF, "" } 277 }; 278 279 static struct gcpu_mnexp gcpu_LL_mnemonics[] = { /* MCAX86_ERRCODE_LL_* */ 280 { "LO", FM_EREPORT_CPU_GENERIC_LL_L0 }, /* L0 */ 281 { "L1", FM_EREPORT_CPU_GENERIC_LL_L1 }, /* L1 */ 282 { "L2", FM_EREPORT_CPU_GENERIC_LL_L2 }, /* L2 */ 283 { "LG", FM_EREPORT_CPU_GENERIC_LL_LG } /* LG */ 284 }; 285 286 static struct gcpu_mnexp gcpu_RRRR_mnemonics[] = { /* MCAX86_ERRCODE_RRRR_* */ 287 { "ERR", FM_EREPORT_CPU_GENERIC_RRRR_ERR }, /* ERR */ 288 { "RD", FM_EREPORT_CPU_GENERIC_RRRR_RD }, /* RD */ 289 { "WR", FM_EREPORT_CPU_GENERIC_RRRR_WR }, /* WR */ 290 { "DRD", FM_EREPORT_CPU_GENERIC_RRRR_DRD }, /* DRD */ 291 { "DWR", FM_EREPORT_CPU_GENERIC_RRRR_DWR }, /* DWR */ 292 { "IRD", FM_EREPORT_CPU_GENERIC_RRRR_IRD }, /* IRD */ 293 { "PREFETCH", FM_EREPORT_CPU_GENERIC_RRRR_PREFETCH }, /* PREFETCH */ 294 { "EVICT", FM_EREPORT_CPU_GENERIC_RRRR_EVICT }, /* EVICT */ 295 { "SNOOP", FM_EREPORT_CPU_GENERIC_RRRR_SNOOP }, /* SNOOP */ 296 }; 297 298 static struct gcpu_mnexp gcpu_PP_mnemonics[] = { /* MCAX86_ERRCODE_PP_* */ 299 { "SRC", FM_EREPORT_CPU_GENERIC_PP_SRC }, /* SRC */ 300 { "RES", FM_EREPORT_CPU_GENERIC_PP_RES }, /* RES */ 301 { "OBS", FM_EREPORT_CPU_GENERIC_PP_OBS }, /* OBS */ 302 { "", FM_EREPORT_CPU_GENERIC_PP_GEN } /* GEN */ 303 }; 304 305 static struct gcpu_mnexp gcpu_II_mnemonics[] = { /* MCAX86_ERRCODE_II_* */ 306 { "M", FM_EREPORT_CPU_GENERIC_II_MEM }, /* MEM */ 307 { GCPU_MNEMONIC_RESVD, "" }, 308 { "IO", FM_EREPORT_CPU_GENERIC_II_IO }, /* IO */ 309 { "", FM_EREPORT_CPU_GENERIC_II_GEN } /* GEN */ 310 }; 311 312 static struct gcpu_mnexp gcpu_T_mnemonics[] = { /* MCAX86_ERRCODE_T_* */ 313 { "NOTIMEOUT", FM_EREPORT_CPU_GENERIC_T_NOTIMEOUT }, /* NONE */ 314 { "TIMEOUT", FM_EREPORT_CPU_GENERIC_T_TIMEOUT } /* TIMEOUT */ 315 }; 316 317 static struct gcpu_mnexp gcpu_CCCC_mnemonics[] = { /* MCAX86_ERRCODE_CCCC_* */ 318 { "CH0", FM_EREPORT_CPU_GENERIC_CCCC }, /* CH0 */ 319 { "CH1", FM_EREPORT_CPU_GENERIC_CCCC }, /* CH1 */ 320 { "CH2", FM_EREPORT_CPU_GENERIC_CCCC }, /* CH2 */ 321 { "CH3", FM_EREPORT_CPU_GENERIC_CCCC }, /* CH3 */ 322 { "CH4", FM_EREPORT_CPU_GENERIC_CCCC }, /* CH4 */ 323 { "CH5", FM_EREPORT_CPU_GENERIC_CCCC }, /* CH5 */ 324 { "CH6", FM_EREPORT_CPU_GENERIC_CCCC }, /* CH6 */ 325 { "CH7", FM_EREPORT_CPU_GENERIC_CCCC }, /* CH7 */ 326 { "CH8", FM_EREPORT_CPU_GENERIC_CCCC }, /* CH8 */ 327 { "CH9", FM_EREPORT_CPU_GENERIC_CCCC }, /* CH9 */ 328 { "CH10", FM_EREPORT_CPU_GENERIC_CCCC }, /* CH10 */ 329 { "CH11", FM_EREPORT_CPU_GENERIC_CCCC }, /* CH11 */ 330 { "CH12", FM_EREPORT_CPU_GENERIC_CCCC }, /* CH12 */ 331 { "CH13", FM_EREPORT_CPU_GENERIC_CCCC }, /* CH13 */ 332 { "CH14", FM_EREPORT_CPU_GENERIC_CCCC }, /* CH14 */ 333 { "CH", FM_EREPORT_CPU_GENERIC_CCCC } /* GEN */ 334 }; 335 336 static struct gcpu_mnexp gcpu_MMM_mnemonics[] = { /* MCAX86_ERRCODE_MMM_* */ 337 { "GEN", FM_EREPORT_CPU_GENERIC_MMM_ERR }, /* GEN ERR */ 338 { "RD", FM_EREPORT_CPU_GENERIC_MMM_RD }, /* READ */ 339 { "WR", FM_EREPORT_CPU_GENERIC_MMM_WR }, /* WRITE */ 340 { "ADDR_CMD", FM_EREPORT_CPU_GENERIC_MMM_ADRCMD }, /* ADDR, CMD */ 341 { GCPU_MNEMONIC_RESVD, ""}, /* RESERVED */ 342 { GCPU_MNEMONIC_RESVD, ""}, /* RESERVED */ 343 { GCPU_MNEMONIC_RESVD, ""}, /* RESERVED */ 344 { GCPU_MNEMONIC_RESVD, ""} /* RESERVED */ 345 }; 346 347 enum gcpu_mn_namespace { 348 GCPU_MN_NAMESPACE_COMPOUND, 349 GCPU_MN_NAMESPACE_EREPORT 350 }; 351 352 static const char * 353 gcpu_mnemonic(const struct gcpu_mnexp *tbl, size_t tbl_sz, uint8_t val, 354 enum gcpu_mn_namespace nspace) 355 { 356 if (val >= tbl_sz) 357 return (GCPU_MNEMONIC_UNDEF); /* for all namespaces */ 358 359 switch (nspace) { 360 case GCPU_MN_NAMESPACE_COMPOUND: 361 return (tbl[val].mne_compound); 362 /*NOTREACHED*/ 363 364 case GCPU_MN_NAMESPACE_EREPORT: 365 return (tbl[val].mne_ereport); 366 /*NOTREACHED*/ 367 368 default: 369 return (GCPU_MNEMONIC_UNDEF); 370 /*NOTREACHED*/ 371 } 372 } 373 374 /* 375 * The ereport class leaf component is either a simple string with no 376 * format specifiers, or a string with one or more embedded %n$s specifiers - 377 * positional selection for string arguments. The kernel snprintf does 378 * not support %n$ (and teaching it to do so is too big a headache) so 379 * we will expand this restricted format string ourselves. 380 */ 381 382 #define GCPU_CLASS_VARCOMPS 9 383 384 #define GCPU_MNEMONIC(code, name, nspace) \ 385 gcpu_mnemonic(gcpu_##name##_mnemonics, \ 386 sizeof (gcpu_##name##_mnemonics) / sizeof (struct gcpu_mnexp), \ 387 BIT_STRIP(code, name), nspace) 388 389 static void 390 gcpu_mn_fmt(const char *fmt, char *buf, size_t buflen, uint64_t status, 391 enum gcpu_mn_namespace nspace) 392 { 393 uint16_t code = MCAX86_ERRCODE(status); 394 const char *mn[GCPU_CLASS_VARCOMPS]; 395 char *p = buf; /* current position in buf */ 396 char *q = buf + buflen; /* pointer past last char in buf */ 397 int which, expfmtchar, error; 398 char c; 399 400 mn[0] = GCPU_MNEMONIC(code, TT, nspace); 401 mn[1] = GCPU_MNEMONIC(code, LL, nspace); 402 mn[2] = GCPU_MNEMONIC(code, RRRR, nspace); 403 mn[3] = GCPU_MNEMONIC(code, PP, nspace); 404 mn[4] = GCPU_MNEMONIC(code, II, nspace); 405 mn[5] = GCPU_MNEMONIC(code, T, nspace); 406 mn[6] = (status & MSR_MC_STATUS_UC) ? "_uc" : ""; 407 mn[7] = GCPU_MNEMONIC(code, CCCC, nspace); 408 mn[8] = GCPU_MNEMONIC(code, MMM, nspace); 409 410 while (p < q - 1 && (c = *fmt++) != '\0') { 411 if (c != '%') { 412 /* not the beginning of a format specifier - copy */ 413 *p++ = c; 414 continue; 415 } 416 417 error = 0; 418 which = -1; 419 expfmtchar = -1; 420 421 nextfmt: 422 if ((c = *fmt++) == '\0') 423 break; /* early termination of fmt specifier */ 424 425 switch (c) { 426 case '1': 427 case '2': 428 case '3': 429 case '4': 430 case '5': 431 case '6': 432 case '7': 433 case '8': 434 case '9': 435 if (which != -1) { /* allow only one positional digit */ 436 error++; 437 break; 438 } 439 which = c - '1'; 440 goto nextfmt; 441 /*NOTREACHED*/ 442 443 case '$': 444 if (which == -1) { /* no position specified */ 445 error++; 446 break; 447 } 448 expfmtchar = 's'; 449 goto nextfmt; 450 /*NOTREACHED*/ 451 452 case 's': 453 if (expfmtchar != 's') { 454 error++; 455 break; 456 } 457 (void) snprintf(p, (uintptr_t)q - (uintptr_t)p, "%s", 458 mn[which]); 459 p += strlen(p); 460 break; 461 462 default: 463 error++; 464 break; 465 } 466 467 if (error) 468 break; 469 } 470 471 *p = '\0'; /* NUL termination */ 472 } 473 474 static void 475 gcpu_erpt_clsfmt(const char *fmt, char *buf, size_t buflen, uint64_t status, 476 const char *cpuclass, const char *leafclass) 477 { 478 char *p = buf; /* current position in buf */ 479 char *q = buf + buflen; /* pointer past last char in buf */ 480 481 (void) snprintf(buf, (uintptr_t)q - (uintptr_t)p, "%s.%s.", 482 FM_ERROR_CPU, cpuclass ? cpuclass : FM_EREPORT_CPU_GENERIC); 483 484 p += strlen(p); 485 if (p >= q) 486 return; 487 488 if (leafclass == NULL) { 489 gcpu_mn_fmt(fmt, p, (uintptr_t)q - (uintptr_t)p, status, 490 GCPU_MN_NAMESPACE_EREPORT); 491 } else { 492 (void) snprintf(p, (uintptr_t)q - (uintptr_t)p, "%s", 493 leafclass); 494 } 495 } 496 497 /* 498 * Create an "hc" scheme FMRI identifying the given cpu with 499 * motherboard/chip/core/strand instance numbers. 500 */ 501 static nvlist_t * 502 gcpu_fmri_create(cmi_hdl_t hdl, nv_alloc_t *nva) 503 { 504 nvlist_t *nvl; 505 506 if ((nvl = fm_nvlist_create(nva)) == NULL) 507 return (NULL); 508 509 fm_fmri_hc_set(nvl, FM_HC_SCHEME_VERSION, NULL, NULL, 4, 510 "motherboard", 0, 511 "chip", cmi_hdl_chipid(hdl), 512 "core", cmi_hdl_coreid(hdl), 513 "strand", cmi_hdl_strandid(hdl)); 514 515 return (nvl); 516 } 517 518 int gcpu_bleat_count_thresh = 5; 519 hrtime_t gcpu_bleat_min_interval = 10 * 1000000000ULL; 520 521 /* 522 * Called when we are unable to propogate a logout structure onto an 523 * errorq for subsequent ereport preparation and logging etc. The caller 524 * should usually only decide to call this for severe errors - those we 525 * suspect we may need to panic for. 526 */ 527 static void 528 gcpu_bleat(cmi_hdl_t hdl, gcpu_logout_t *gcl) 529 { 530 hrtime_t now = gethrtime_waitfree(); 531 static hrtime_t gcpu_last_bleat; 532 gcpu_bank_logout_t *gbl; 533 static int bleatcount; 534 int i; 535 536 /* 537 * Throttle spamming of the console. The first gcpu_bleat_count_thresh 538 * can come as fast as we like, but once we've spammed that many 539 * to the console we require a minimum interval to pass before 540 * any more complaints. 541 */ 542 if (++bleatcount > gcpu_bleat_count_thresh) { 543 if (now - gcpu_last_bleat < gcpu_bleat_min_interval) 544 return; 545 else 546 bleatcount = 0; 547 } 548 gcpu_last_bleat = now; 549 550 cmn_err(CE_WARN, 551 "Machine-Check Errors unlogged on chip %d core %d strand %d, " 552 "raw dump follows", cmi_hdl_chipid(hdl), cmi_hdl_coreid(hdl), 553 cmi_hdl_strandid(hdl)); 554 cmn_err(CE_WARN, "MCG_STATUS 0x%016llx", 555 (u_longlong_t)gcl->gcl_mcg_status); 556 for (i = 0, gbl = &gcl->gcl_data[0]; i < gcl->gcl_nbanks; i++, gbl++) { 557 uint64_t status = gbl->gbl_status; 558 559 if (!(status & MSR_MC_STATUS_VAL)) 560 continue; 561 562 switch (status & (MSR_MC_STATUS_ADDRV | MSR_MC_STATUS_MISCV)) { 563 case MSR_MC_STATUS_ADDRV | MSR_MC_STATUS_MISCV: 564 cmn_err(CE_WARN, "Bank %d (offset 0x%llx) " 565 "STAT 0x%016llx ADDR 0x%016llx MISC 0x%016llx", 566 i, IA32_MSR_MC(i, STATUS), 567 (u_longlong_t)status, 568 (u_longlong_t)gbl->gbl_addr, 569 (u_longlong_t)gbl->gbl_misc); 570 break; 571 572 case MSR_MC_STATUS_ADDRV: 573 cmn_err(CE_WARN, "Bank %d (offset 0x%llx) " 574 "STAT 0x%016llx ADDR 0x%016llx", 575 i, IA32_MSR_MC(i, STATUS), 576 (u_longlong_t)status, 577 (u_longlong_t)gbl->gbl_addr); 578 break; 579 580 case MSR_MC_STATUS_MISCV: 581 cmn_err(CE_WARN, "Bank %d (offset 0x%llx) " 582 "STAT 0x%016llx MISC 0x%016llx", 583 i, IA32_MSR_MC(i, STATUS), 584 (u_longlong_t)status, 585 (u_longlong_t)gbl->gbl_misc); 586 break; 587 588 default: 589 cmn_err(CE_WARN, "Bank %d (offset 0x%llx) " 590 "STAT 0x%016llx", 591 i, IA32_MSR_MC(i, STATUS), 592 (u_longlong_t)status); 593 break; 594 595 } 596 } 597 } 598 599 #define _GCPU_BSTATUS(status, what) \ 600 FM_EREPORT_PAYLOAD_NAME_MC_STATUS_##what, DATA_TYPE_BOOLEAN_VALUE, \ 601 (status) & MSR_MC_STATUS_##what ? B_TRUE : B_FALSE 602 603 static void 604 gcpu_ereport_add_logout(nvlist_t *ereport, const gcpu_logout_t *gcl, 605 uint_t bankno, const gcpu_error_disp_t *ged, uint16_t code) 606 { 607 uint64_t members = ged ? ged->ged_ereport_members : 608 FM_EREPORT_PAYLOAD_FLAGS_COMMON; 609 uint64_t mcg = gcl->gcl_mcg_status; 610 int mcip = mcg & MCG_STATUS_MCIP; 611 const gcpu_bank_logout_t *gbl = &gcl->gcl_data[bankno]; 612 uint64_t bstat = gbl->gbl_status; 613 614 /* 615 * Include the compound error name if requested and if this 616 * is a compound error type. 617 */ 618 if (members & FM_EREPORT_PAYLOAD_FLAG_COMPOUND_ERR && ged && 619 ged->ged_compound_fmt != NULL) { 620 char buf[FM_MAX_CLASS]; 621 622 gcpu_mn_fmt(ged->ged_compound_fmt, buf, sizeof (buf), code, 623 GCPU_MN_NAMESPACE_COMPOUND); 624 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_NAME_COMPOUND_ERR, 625 DATA_TYPE_STRING, buf, NULL); 626 } 627 628 /* 629 * Include disposition information for this error 630 */ 631 if (members & FM_EREPORT_PAYLOAD_FLAG_DISP && 632 gbl->gbl_disp != 0) { 633 int i, empty = 1; 634 char buf[128]; 635 char *p = buf, *q = buf + 128; 636 static struct _gcpu_disp_name { 637 uint64_t dv; 638 const char *dn; 639 } disp_names[] = { 640 { CMI_ERRDISP_CURCTXBAD, 641 "processor_context_corrupt" }, 642 { CMI_ERRDISP_RIPV_INVALID, 643 "return_ip_invalid" }, 644 { CMI_ERRDISP_UC_UNCONSTRAINED, 645 "unconstrained" }, 646 { CMI_ERRDISP_FORCEFATAL, 647 "forcefatal" }, 648 { CMI_ERRDISP_IGNORED, 649 "ignored" }, 650 { CMI_ERRDISP_PCC_CLEARED, 651 "corrupt_context_cleared" }, 652 { CMI_ERRDISP_UC_CLEARED, 653 "uncorrected_data_cleared" }, 654 { CMI_ERRDISP_POISONED, 655 "poisoned" }, 656 { CMI_ERRDISP_INCONSISTENT, 657 "telemetry_unstable" }, 658 }; 659 660 for (i = 0; i < sizeof (disp_names) / 661 sizeof (struct _gcpu_disp_name); i++) { 662 if ((gbl->gbl_disp & disp_names[i].dv) == 0) 663 continue; 664 665 (void) snprintf(p, (uintptr_t)q - (uintptr_t)p, 666 "%s%s", empty ? "" : ",", disp_names[i].dn); 667 p += strlen(p); 668 empty = 0; 669 } 670 671 if (p != buf) 672 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_NAME_DISP, 673 DATA_TYPE_STRING, buf, NULL); 674 } 675 676 /* 677 * If MCG_STATUS is included add that and an indication of whether 678 * this ereport was the result of a machine check or poll. 679 */ 680 if (members & FM_EREPORT_PAYLOAD_FLAG_MCG_STATUS) { 681 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_NAME_MCG_STATUS, 682 DATA_TYPE_UINT64, mcg, NULL); 683 684 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_NAME_MCG_STATUS_MCIP, 685 DATA_TYPE_BOOLEAN_VALUE, mcip ? B_TRUE : B_FALSE, NULL); 686 } 687 688 /* 689 * If an instruction pointer is to be included add one provided 690 * MCG_STATUS indicated it is valid; meaningless for polled events. 691 */ 692 if (mcip && members & FM_EREPORT_PAYLOAD_FLAG_IP && 693 mcg & MCG_STATUS_EIPV) { 694 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_NAME_IP, 695 DATA_TYPE_UINT64, gcl->gcl_ip, NULL); 696 } 697 698 /* 699 * Add an indication of whether the trap occured during privileged code. 700 */ 701 if (mcip && members & FM_EREPORT_PAYLOAD_FLAG_PRIV) { 702 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_NAME_PRIV, 703 DATA_TYPE_BOOLEAN_VALUE, 704 gcl->gcl_flags & GCPU_GCL_F_PRIV ? B_TRUE : B_FALSE, NULL); 705 } 706 707 /* 708 * If requested, add the index of the MCA bank. This indicates the 709 * n'th bank of 4 MCA registers, and does not necessarily correspond 710 * to MCi_* - use the bank offset to correlate 711 */ 712 if (members & FM_EREPORT_PAYLOAD_FLAG_BANK_NUM) { 713 fm_payload_set(ereport, 714 /* Bank number */ 715 FM_EREPORT_PAYLOAD_NAME_BANK_NUM, DATA_TYPE_UINT8, bankno, 716 /* Offset of MCi_CTL */ 717 FM_EREPORT_PAYLOAD_NAME_BANK_MSR_OFFSET, DATA_TYPE_UINT64, 718 IA32_MSR_MC(bankno, CTL), 719 NULL); 720 } 721 722 /* 723 * Add MCi_STATUS if requested, and decode it. 724 */ 725 if (members & FM_EREPORT_PAYLOAD_FLAG_MC_STATUS) { 726 const char *tbes[] = { 727 "No tracking", /* 00 */ 728 "Green - below threshold", /* 01 */ 729 "Yellow - above threshold", /* 10 */ 730 "Reserved" /* 11 */ 731 }; 732 733 fm_payload_set(ereport, 734 /* Bank MCi_STATUS */ 735 FM_EREPORT_PAYLOAD_NAME_MC_STATUS, DATA_TYPE_UINT64, bstat, 736 /* Overflow? */ 737 _GCPU_BSTATUS(bstat, OVER), 738 /* Uncorrected? */ 739 _GCPU_BSTATUS(bstat, UC), 740 /* Enabled? */ 741 _GCPU_BSTATUS(bstat, EN), 742 /* Processor context corrupt? */ 743 _GCPU_BSTATUS(bstat, PCC), 744 /* Error code */ 745 FM_EREPORT_PAYLOAD_NAME_MC_STATUS_ERRCODE, 746 DATA_TYPE_UINT16, MCAX86_ERRCODE(bstat), 747 /* Model-specific error code */ 748 FM_EREPORT_PAYLOAD_NAME_MC_STATUS_EXTERRCODE, 749 DATA_TYPE_UINT16, MCAX86_MSERRCODE(bstat), 750 NULL); 751 752 /* 753 * If MCG_CAP.TES_P indicates that that thresholding info 754 * is present in the architural component of the bank status 755 * then include threshold information for this bank. 756 */ 757 if (gcl->gcl_flags & GCPU_GCL_F_TES_P) { 758 fm_payload_set(ereport, 759 FM_EREPORT_PAYLOAD_NAME_MC_STATUS_TES, 760 DATA_TYPE_STRING, tbes[MCAX86_TBES_VALUE(bstat)], 761 NULL); 762 } 763 } 764 765 /* 766 * MCi_ADDR info if requested and valid. 767 */ 768 if (members & FM_EREPORT_PAYLOAD_FLAG_MC_ADDR && 769 bstat & MSR_MC_STATUS_ADDRV) { 770 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_NAME_MC_ADDR, 771 DATA_TYPE_UINT64, gbl->gbl_addr, NULL); 772 } 773 774 /* 775 * MCi_MISC if requested and MCi_STATUS.MISCV). 776 */ 777 if (members & FM_EREPORT_PAYLOAD_FLAG_MC_MISC && 778 bstat & MSR_MC_STATUS_MISCV) { 779 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_NAME_MC_MISC, 780 DATA_TYPE_UINT64, gbl->gbl_misc, NULL); 781 } 782 783 } 784 785 /* 786 * Construct and post an ereport based on the logout information from a 787 * single MCA bank. We are not necessarily running on the cpu that 788 * detected the error. 789 */ 790 static void 791 gcpu_ereport_post(const gcpu_logout_t *gcl, int bankidx, 792 const gcpu_error_disp_t *ged, cms_cookie_t mscookie, uint64_t status) 793 { 794 gcpu_data_t *gcpu = gcl->gcl_gcpu; 795 cmi_hdl_t hdl = gcpu->gcpu_hdl; 796 const gcpu_bank_logout_t *gbl = &gcl->gcl_data[bankidx]; 797 const char *cpuclass = NULL, *leafclass = NULL; 798 uint16_t code = MCAX86_ERRCODE(status); 799 errorq_elem_t *eqep, *scr_eqep; 800 nvlist_t *ereport, *detector; 801 char buf[FM_MAX_CLASS]; 802 const char *classfmt; 803 nv_alloc_t *nva; 804 805 if (panicstr) { 806 if ((eqep = errorq_reserve(ereport_errorq)) == NULL) 807 return; 808 ereport = errorq_elem_nvl(ereport_errorq, eqep); 809 810 /* 811 * Allocate another element for scratch space, but fallback 812 * to the one we have if that fails. We'd like to use the 813 * additional scratch space for nvlist construction. 814 */ 815 if ((scr_eqep = errorq_reserve(ereport_errorq)) != NULL) 816 nva = errorq_elem_nva(ereport_errorq, scr_eqep); 817 else 818 nva = errorq_elem_nva(ereport_errorq, eqep); 819 } else { 820 ereport = fm_nvlist_create(NULL); 821 nva = NULL; 822 } 823 824 if (ereport == NULL) 825 return; 826 827 /* 828 * Common payload data required by the protocol: 829 * - ereport class 830 * - detector 831 * - ENA 832 */ 833 834 /* 835 * Ereport class - call into model-specific support to allow it to 836 * provide a cpu class or leaf class, otherwise calculate our own. 837 */ 838 cms_ereport_class(hdl, mscookie, &cpuclass, &leafclass); 839 classfmt = ged ? ged->ged_class_fmt : FM_EREPORT_CPU_GENERIC_UNKNOWN; 840 gcpu_erpt_clsfmt(classfmt, buf, sizeof (buf), status, cpuclass, 841 leafclass); 842 843 /* 844 * The detector FMRI. 845 */ 846 if ((detector = cms_ereport_detector(hdl, mscookie, nva)) == NULL) 847 detector = gcpu_fmri_create(hdl, nva); 848 849 /* 850 * Should we define a new ENA format 3?? for chip/core/strand? 851 * It will be better when virtualized. 852 */ 853 fm_ereport_set(ereport, FM_EREPORT_VERSION, buf, 854 fm_ena_generate_cpu(gcl->gcl_timestamp, 855 cmi_hdl_chipid(hdl) << 6 | cmi_hdl_coreid(hdl) << 3 | 856 cmi_hdl_strandid(hdl), FM_ENA_FMT1), detector, NULL); 857 858 if (panicstr) { 859 fm_nvlist_destroy(detector, FM_NVA_RETAIN); 860 nv_alloc_reset(nva); 861 } else { 862 fm_nvlist_destroy(detector, FM_NVA_FREE); 863 } 864 865 /* 866 * Add the architectural ereport class-specific payload data. 867 */ 868 gcpu_ereport_add_logout(ereport, gcl, bankidx, ged, code); 869 870 /* 871 * Allow model-specific code to add ereport members. 872 */ 873 cms_ereport_add_logout(hdl, ereport, nva, bankidx, gbl->gbl_status, 874 gbl->gbl_addr, gbl->gbl_misc, gcl->gcl_ms_logout, mscookie); 875 876 /* 877 * Include stack if options is turned on and either selected in 878 * the payload member bitmask or inclusion is forced. 879 */ 880 if (gcpu_mca_stack_flag && 881 (cms_ereport_includestack(hdl, mscookie) == 882 B_TRUE || gcpu_mca_stack_ereport_include)) { 883 fm_payload_stack_add(ereport, gcl->gcl_stack, 884 gcl->gcl_stackdepth); 885 } 886 887 /* 888 * If injection has taken place anytime in the past then note this 889 * on the ereport. 890 */ 891 if (cmi_inj_tainted() == B_TRUE) { 892 fm_payload_set(ereport, "__injected", DATA_TYPE_BOOLEAN_VALUE, 893 B_TRUE, NULL); 894 } 895 896 /* 897 * Post ereport. 898 */ 899 if (panicstr) { 900 errorq_commit(ereport_errorq, eqep, ERRORQ_SYNC); 901 if (scr_eqep) 902 errorq_cancel(ereport_errorq, scr_eqep); 903 } else { 904 (void) fm_ereport_post(ereport, EVCH_TRYHARD); 905 fm_nvlist_destroy(ereport, FM_NVA_FREE); 906 } 907 908 } 909 910 /*ARGSUSED*/ 911 void 912 gcpu_mca_drain(void *ignored, const void *data, const errorq_elem_t *eqe) 913 { 914 const gcpu_logout_t *gcl = data; 915 const gcpu_bank_logout_t *gbl; 916 int i; 917 918 for (i = 0, gbl = &gcl->gcl_data[0]; i < gcl->gcl_nbanks; i++, gbl++) { 919 const gcpu_error_disp_t *gened; 920 cms_cookie_t mscookie; 921 922 if (gbl->gbl_status & MSR_MC_STATUS_VAL && 923 !(gbl->gbl_disp & CMI_ERRDISP_INCONSISTENT)) { 924 uint16_t code = MCAX86_ERRCODE(gbl->gbl_status); 925 926 /* 927 * Perform a match based on IA32 MCA architectural 928 * components alone. 929 */ 930 gened = gcpu_disp_match(code); /* may be NULL */ 931 932 /* 933 * Now see if an model-specific match can be made. 934 */ 935 mscookie = cms_disp_match(gcl->gcl_gcpu->gcpu_hdl, i, 936 gbl->gbl_status, gbl->gbl_addr, gbl->gbl_misc, 937 gcl->gcl_ms_logout); 938 939 /* 940 * Prepare and dispatch an ereport for logging and 941 * diagnosis. 942 */ 943 gcpu_ereport_post(gcl, i, gened, mscookie, 944 gbl->gbl_status); 945 } else if (gbl->gbl_status & MSR_MC_STATUS_VAL && 946 (gbl->gbl_disp & CMI_ERRDISP_INCONSISTENT)) { 947 /* 948 * Telemetry kept changing as we tried to read 949 * it. Force an unknown ereport leafclass but 950 * keep the telemetry unchanged for logging. 951 */ 952 gcpu_ereport_post(gcl, i, &gcpu_unknown, NULL, 953 gbl->gbl_status); 954 } 955 } 956 } 957 958 static size_t gcpu_mca_queue_datasz = 0; 959 960 /* 961 * The following code is ready to make a weak attempt at growing the 962 * errorq structure size. Since it is not foolproof (we don't know 963 * who may already be producing to the outgoing errorq) our caller 964 * instead assures that we'll always be called with no greater data 965 * size than on our first call. 966 */ 967 static void 968 gcpu_errorq_init(size_t datasz) 969 { 970 int slots; 971 972 mutex_enter(&gcpu_mca_queue_lock); 973 974 if (gcpu_mca_queue_datasz >= datasz) { 975 mutex_exit(&gcpu_mca_queue_lock); 976 return; 977 } 978 979 membar_producer(); 980 if (gcpu_mca_queue) { 981 gcpu_mca_queue_datasz = 0; 982 errorq_destroy(gcpu_mca_queue); 983 } 984 985 slots = MAX(GCPU_MCA_ERRS_PERCPU * max_ncpus, GCPU_MCA_MIN_ERRORS); 986 slots = MIN(slots, GCPU_MCA_MAX_ERRORS); 987 988 gcpu_mca_queue = errorq_create("gcpu_mca_queue", gcpu_mca_drain, 989 NULL, slots, datasz, 1, ERRORQ_VITAL); 990 991 if (gcpu_mca_queue != NULL) 992 gcpu_mca_queue_datasz = datasz; 993 994 mutex_exit(&gcpu_mca_queue_lock); 995 } 996 997 /* 998 * Perform MCA initialization as described in section 14.6 of Intel 64 999 * and IA-32 Architectures Software Developer's Manual Volume 3A. 1000 */ 1001 1002 static uint_t global_nbanks; 1003 1004 void 1005 gcpu_mca_init(cmi_hdl_t hdl) 1006 { 1007 gcpu_data_t *gcpu = cmi_hdl_getcmidata(hdl); 1008 uint64_t cap; 1009 uint_t vendor = cmi_hdl_vendor(hdl); 1010 uint_t family = cmi_hdl_family(hdl); 1011 gcpu_mca_t *mca = &gcpu->gcpu_mca; 1012 int mcg_ctl_present; 1013 uint_t nbanks; 1014 uint32_t ctl_skip_mask = 0; 1015 uint32_t status_skip_mask = 0; 1016 size_t mslsz; 1017 int i; 1018 #ifndef __xpv 1019 int mcg_ctl2_present; 1020 uint32_t cmci_capable = 0; 1021 #endif 1022 1023 if (gcpu == NULL) 1024 return; 1025 1026 /* 1027 * Protect from some silly /etc/system settings. 1028 */ 1029 if (gcpu_mca_telemetry_retries < 0 || gcpu_mca_telemetry_retries > 100) 1030 gcpu_mca_telemetry_retries = 5; 1031 1032 if (cmi_hdl_rdmsr(hdl, IA32_MSR_MCG_CAP, &cap) != CMI_SUCCESS) 1033 return; 1034 1035 /* 1036 * CPU startup code only calls cmi_mca_init if x86_feature indicates 1037 * both MCA and MCE support (i.e., X86_MCA). P5, K6, and earlier 1038 * processors, which have their own * more primitive way of doing 1039 * machine checks, will not have cmi_mca_init called since their 1040 * CPUID information will not indicate both MCA and MCE features. 1041 */ 1042 ASSERT(x86_feature & X86_MCA); 1043 1044 /* 1045 * Determine whether the IA32_MCG_CTL register is present. If it 1046 * is we will enable all features by writing -1 to it towards 1047 * the end of this initialization; if it is absent then volume 3A 1048 * says we must nonetheless continue to initialize the individual 1049 * banks. 1050 */ 1051 mcg_ctl_present = cap & MCG_CAP_CTL_P; 1052 #ifndef __xpv 1053 mcg_ctl2_present = cap & MCG_CAP_CTL2_P; 1054 #endif 1055 1056 /* 1057 * We squirell values away for inspection/debugging. 1058 */ 1059 mca->gcpu_mca_bioscfg.bios_mcg_cap = cap; 1060 if (mcg_ctl_present) 1061 (void) cmi_hdl_rdmsr(hdl, IA32_MSR_MCG_CTL, 1062 &mca->gcpu_mca_bioscfg.bios_mcg_ctl); 1063 1064 /* 1065 * Determine the number of error-reporting banks implemented. 1066 */ 1067 mca->gcpu_mca_nbanks = nbanks = cap & MCG_CAP_COUNT_MASK; 1068 1069 if (nbanks != 0 && global_nbanks == 0) 1070 global_nbanks = nbanks; /* no race - BSP will get here first */ 1071 1072 /* 1073 * If someone is hiding the number of banks (perhaps we are fully 1074 * virtualized?) or if this processor has more banks than the 1075 * first to set global_nbanks then bail. The latter requirement 1076 * is because we need to size our errorq data structure and we 1077 * don't want to have to grow the errorq (destroy and recreate) 1078 * which may just lose some telemetry. 1079 */ 1080 if (nbanks == 0 || nbanks > global_nbanks) 1081 return; 1082 1083 mca->gcpu_mca_bioscfg.bios_bankcfg = kmem_zalloc(nbanks * 1084 sizeof (struct gcpu_bios_bankcfg), KM_SLEEP); 1085 1086 /* 1087 * Calculate the size we need to allocate for a gcpu_logout_t 1088 * with a gcl_data array big enough for all banks of this cpu. 1089 * Add any space requested by the model-specific logout support. 1090 */ 1091 mslsz = cms_logout_size(hdl); 1092 mca->gcpu_mca_lgsz = sizeof (gcpu_logout_t) + 1093 (nbanks - 1) * sizeof (gcpu_bank_logout_t) + mslsz; 1094 1095 for (i = 0; i < GCPU_MCA_LOGOUT_NUM; i++) { 1096 gcpu_logout_t *gcl; 1097 1098 mca->gcpu_mca_logout[i] = gcl = 1099 kmem_zalloc(mca->gcpu_mca_lgsz, KM_SLEEP); 1100 gcl->gcl_gcpu = gcpu; 1101 gcl->gcl_nbanks = nbanks; 1102 gcl->gcl_ms_logout = (mslsz == 0) ? NULL : 1103 (char *)(&gcl->gcl_data[0]) + nbanks * 1104 sizeof (gcpu_bank_logout_t); 1105 1106 } 1107 1108 #ifdef __xpv 1109 gcpu_xpv_mca_init(nbanks); 1110 #endif 1111 1112 mca->gcpu_mca_nextpoll_idx = GCPU_MCA_LOGOUT_POLLER_1; 1113 1114 #ifndef __xpv 1115 mca->gcpu_bank_cmci = kmem_zalloc(sizeof (gcpu_mca_cmci_t) * nbanks, 1116 KM_SLEEP); 1117 #endif 1118 1119 /* 1120 * Create our errorq to transport the logout structures. This 1121 * can fail so users of gcpu_mca_queue must be prepared for NULL. 1122 */ 1123 gcpu_errorq_init(mca->gcpu_mca_lgsz); 1124 1125 /* 1126 * Not knowing which, if any, banks are shared between cores we 1127 * assure serialization of MCA bank initialization by each cpu 1128 * on the chip. On chip architectures in which some banks are 1129 * shared this will mean the shared resource is initialized more 1130 * than once - we're simply aiming to avoid simultaneous MSR writes 1131 * to the shared resource. 1132 * 1133 * Even with these precautions, some platforms may yield a GP fault 1134 * if a core other than a designated master tries to write anything 1135 * but all 0's to MCi_{STATUS,ADDR,CTL}. So we will perform 1136 * those writes under on_trap protection. 1137 */ 1138 mutex_enter(&gcpu->gcpu_shared->gcpus_cfglock); 1139 1140 /* 1141 * Initialize poller data, but don't start polling yet. 1142 */ 1143 gcpu_mca_poll_init(hdl); 1144 1145 /* 1146 * Work out which MCA banks we will initialize. In MCA logout 1147 * code we will only read those banks which we initialize here. 1148 */ 1149 for (i = 0; i < nbanks; i++) { 1150 boolean_t skipctl = cms_bankctl_skipinit(hdl, i); 1151 boolean_t skipstatus = cms_bankstatus_skipinit(hdl, i); 1152 1153 if (!cms_present(hdl)) { 1154 /* 1155 * Model-specific support is not present, try to use 1156 * sane defaults. 1157 * 1158 * On AMD family 6 processors, reports about spurious 1159 * machine checks indicate that bank 0 should be 1160 * skipped. 1161 * 1162 * On Intel family 6 processors, the documentation tells 1163 * us not to write to MC0_CTL. 1164 * 1165 */ 1166 if (i == 0 && family == 6) { 1167 switch (vendor) { 1168 case X86_VENDOR_AMD: 1169 skipstatus = B_TRUE; 1170 /*FALLTHRU*/ 1171 case X86_VENDOR_Intel: 1172 skipctl = B_TRUE; 1173 break; 1174 } 1175 } 1176 } 1177 1178 ctl_skip_mask |= skipctl << i; 1179 status_skip_mask |= skipstatus << i; 1180 1181 if (skipctl && skipstatus) 1182 continue; 1183 1184 /* 1185 * Record which MCA banks were enabled, from the point of view 1186 * of the whole chip (if some cores share a bank we must be 1187 * sure either can logout from it). 1188 */ 1189 atomic_or_32(&gcpu->gcpu_shared->gcpus_actv_banks, 1 << i); 1190 1191 #ifndef __xpv 1192 /* 1193 * check CMCI capability 1194 */ 1195 if (mcg_ctl2_present) { 1196 uint64_t ctl2; 1197 uint32_t cap = 0; 1198 (void) cmi_hdl_rdmsr(hdl, IA32_MSR_MC_CTL2(i), &ctl2); 1199 if (ctl2 & MSR_MC_CTL2_EN) 1200 continue; 1201 ctl2 |= MSR_MC_CTL2_EN; 1202 (void) cmi_hdl_wrmsr(hdl, IA32_MSR_MC_CTL2(i), ctl2); 1203 (void) cmi_hdl_rdmsr(hdl, IA32_MSR_MC_CTL2(i), &ctl2); 1204 mca->gcpu_bank_cmci[i].cmci_cap = cap = 1205 (ctl2 & MSR_MC_CTL2_EN) ? 1 : 0; 1206 if (cap) 1207 cmci_capable ++; 1208 /* 1209 * Set threshold to 1 while unset the en field, to avoid 1210 * CMCI trigged before APIC LVT entry init. 1211 */ 1212 ctl2 = ctl2 & (~MSR_MC_CTL2_EN) | 1; 1213 (void) cmi_hdl_wrmsr(hdl, IA32_MSR_MC_CTL2(i), ctl2); 1214 1215 /* 1216 * init cmci related count 1217 */ 1218 mca->gcpu_bank_cmci[i].cmci_enabled = 0; 1219 mca->gcpu_bank_cmci[i].drtcmci = 0; 1220 mca->gcpu_bank_cmci[i].ncmci = 0; 1221 } 1222 #endif 1223 } 1224 1225 #ifndef __xpv 1226 if (cmci_capable) 1227 cmi_enable_cmci = 1; 1228 #endif 1229 1230 #ifndef __xpv 1231 /* 1232 * Log any valid telemetry lurking in the MCA banks, but do not 1233 * clear the status registers. Ignore the disposition returned - 1234 * we have already paniced or reset for any nasty errors found here. 1235 * 1236 * Intel vol 3A says that we should not do this on family 0x6, 1237 * and that for any extended family the BIOS clears things 1238 * on power-on reset so you'll only potentially find valid telemetry 1239 * on warm reset (we do it for both - on power-on reset we should 1240 * just see zeroes). 1241 * 1242 * AMD docs since K7 say we should process anything we find here. 1243 */ 1244 if (!gcpu_suppress_log_on_init && 1245 (vendor == X86_VENDOR_Intel && family >= 0xf || 1246 vendor == X86_VENDOR_AMD)) 1247 gcpu_mca_logout(hdl, NULL, -1ULL, NULL, B_FALSE, 1248 GCPU_MPT_WHAT_POKE_ERR); 1249 1250 /* 1251 * Initialize all MCi_CTL and clear all MCi_STATUS, allowing the 1252 * model-specific module the power of veto. 1253 */ 1254 for (i = 0; i < nbanks; i++) { 1255 struct gcpu_bios_bankcfg *bcfgp = 1256 mca->gcpu_mca_bioscfg.bios_bankcfg + i; 1257 1258 /* 1259 * Stash inherited bank MCA state, even for banks we will 1260 * not initialize ourselves. Do not read the MISC register 1261 * unconditionally - on some processors that will #GP on 1262 * banks that do not implement the MISC register (would be 1263 * caught by on_trap, anyway). 1264 */ 1265 (void) cmi_hdl_rdmsr(hdl, IA32_MSR_MC(i, CTL), 1266 &bcfgp->bios_bank_ctl); 1267 1268 (void) cmi_hdl_rdmsr(hdl, IA32_MSR_MC(i, STATUS), 1269 &bcfgp->bios_bank_status); 1270 1271 if (bcfgp->bios_bank_status & MSR_MC_STATUS_ADDRV) 1272 (void) cmi_hdl_rdmsr(hdl, IA32_MSR_MC(i, ADDR), 1273 &bcfgp->bios_bank_addr); 1274 1275 /* 1276 * In some old BIOS the status value after boot can indicate 1277 * MISCV when there is actually no MISC register for 1278 * that bank. The following read could therefore 1279 * aggravate a general protection fault. This should be 1280 * caught by on_trap, but the #GP fault handler is busted 1281 * and can suffer a double fault even before we get to 1282 * trap() to check for on_trap protection. Until that 1283 * issue is fixed we remove the one access that we know 1284 * can cause a #GP. 1285 * 1286 * if (bcfgp->bios_bank_status & MSR_MC_STATUS_MISCV) 1287 * (void) cmi_hdl_rdmsr(hdl, IA32_MSR_MC(i, MISC), 1288 * &bcfgp->bios_bank_misc); 1289 */ 1290 bcfgp->bios_bank_misc = 0; 1291 1292 if (!(ctl_skip_mask & (1 << i))) { 1293 (void) cmi_hdl_wrmsr(hdl, IA32_MSR_MC(i, CTL), 1294 cms_bankctl_val(hdl, i, -1ULL)); 1295 } 1296 1297 if (!(status_skip_mask & (1 << i))) { 1298 (void) cmi_hdl_wrmsr(hdl, IA32_MSR_MC(i, STATUS), 1299 cms_bankstatus_val(hdl, i, 0ULL)); 1300 } 1301 } 1302 #endif 1303 /* 1304 * Now let the model-specific support perform further initialization 1305 * of non-architectural features. 1306 */ 1307 cms_mca_init(hdl, nbanks); 1308 1309 #ifndef __xpv 1310 (void) cmi_hdl_wrmsr(hdl, IA32_MSR_MCG_STATUS, 0ULL); 1311 membar_producer(); 1312 1313 /* enable all machine-check features */ 1314 if (mcg_ctl_present) 1315 (void) cmi_hdl_wrmsr(hdl, IA32_MSR_MCG_CTL, 1316 cms_mcgctl_val(hdl, nbanks, -1ULL)); 1317 #endif 1318 1319 mutex_exit(&gcpu->gcpu_shared->gcpus_cfglock); 1320 1321 #ifndef __xpv 1322 /* enable machine-check exception in CR4 */ 1323 cmi_hdl_enable_mce(hdl); 1324 #endif 1325 } 1326 1327 static uint64_t 1328 gcpu_mca_process(cmi_hdl_t hdl, struct regs *rp, int nerr, gcpu_data_t *gcpu, 1329 gcpu_logout_t *gcl, int ismc, gcpu_mce_status_t *mcesp) 1330 { 1331 int curctxbad = 0, unconstrained = 0, forcefatal = 0; 1332 gcpu_mca_t *mca = &gcpu->gcpu_mca; 1333 int nbanks = mca->gcpu_mca_nbanks; 1334 gcpu_mce_status_t mce; 1335 gcpu_bank_logout_t *gbl; 1336 uint64_t disp = 0; 1337 int i; 1338 1339 if (mcesp == NULL) 1340 mcesp = &mce; 1341 1342 mcesp->mce_nerr = nerr; 1343 1344 mcesp->mce_npcc = mcesp->mce_npcc_ok = mcesp->mce_nuc = 1345 mcesp->mce_nuc_ok = mcesp->mce_nuc_poisoned = 1346 mcesp->mce_forcefatal = mcesp->mce_ignored = 0; 1347 1348 /* 1349 * If this a machine check then if the return instruction pointer 1350 * is not valid the current context is lost. 1351 */ 1352 if (ismc && !(gcl->gcl_mcg_status & MCG_STATUS_RIPV)) 1353 disp |= CMI_ERRDISP_RIPV_INVALID; 1354 1355 for (i = 0, gbl = &gcl->gcl_data[0]; i < nbanks; i++, gbl++) { 1356 uint64_t mcistatus = gbl->gbl_status; 1357 uint32_t ms_scope; 1358 int pcc, uc; 1359 int poisoned; 1360 1361 if (!(mcistatus & MSR_MC_STATUS_VAL)) 1362 continue; 1363 1364 if (gbl->gbl_disp & CMI_ERRDISP_INCONSISTENT) 1365 continue; 1366 1367 pcc = (mcistatus & MSR_MC_STATUS_PCC) != 0; 1368 uc = (mcistatus & MSR_MC_STATUS_UC) != 0; 1369 mcesp->mce_npcc += pcc; 1370 mcesp->mce_nuc += uc; 1371 1372 ms_scope = cms_error_action(hdl, ismc, i, mcistatus, 1373 gbl->gbl_addr, gbl->gbl_misc, gcl->gcl_ms_logout); 1374 1375 if (pcc && ms_scope & CMS_ERRSCOPE_CURCONTEXT_OK) { 1376 pcc = 0; 1377 mcesp->mce_npcc_ok++; 1378 gbl->gbl_disp |= CMI_ERRDISP_PCC_CLEARED; 1379 } 1380 1381 if (uc && ms_scope & CMS_ERRSCOPE_CLEARED_UC) { 1382 uc = 0; 1383 mcesp->mce_nuc_ok++; 1384 gbl->gbl_disp |= CMI_ERRDISP_UC_CLEARED; 1385 } 1386 1387 if (uc) { 1388 poisoned = (ms_scope & CMS_ERRSCOPE_POISONED) != 0; 1389 if (poisoned) { 1390 mcesp->mce_nuc_poisoned++; 1391 gbl->gbl_disp |= CMI_ERRDISP_POISONED; 1392 } 1393 } 1394 1395 if ((ms_scope & CMS_ERRSCOPE_IGNORE_ERR) == 0) { 1396 /* 1397 * We're not being instructed to ignore the error, 1398 * so apply our standard disposition logic to it. 1399 */ 1400 if (uc && !poisoned) { 1401 unconstrained++; 1402 gbl->gbl_disp |= disp | 1403 CMI_ERRDISP_UC_UNCONSTRAINED; 1404 } 1405 1406 if (pcc && ismc) { 1407 curctxbad++; 1408 gbl->gbl_disp |= disp | 1409 CMI_ERRDISP_CURCTXBAD; 1410 } 1411 1412 /* 1413 * Even if the above may not indicate that the error 1414 * is terminal, model-specific support may insist 1415 * that we treat it as such. Such errors wil be 1416 * fatal even if discovered via poll. 1417 */ 1418 if (ms_scope & CMS_ERRSCOPE_FORCE_FATAL) { 1419 forcefatal++; 1420 mcesp->mce_forcefatal++; 1421 gbl->gbl_disp |= disp | 1422 CMI_ERRDISP_FORCEFATAL; 1423 } 1424 } else { 1425 mcesp->mce_ignored++; 1426 gbl->gbl_disp |= disp | CMI_ERRDISP_IGNORED; 1427 } 1428 } 1429 1430 if (unconstrained > 0) 1431 disp |= CMI_ERRDISP_UC_UNCONSTRAINED; 1432 1433 if (curctxbad > 0) 1434 disp |= CMI_ERRDISP_CURCTXBAD; 1435 1436 if (forcefatal > 0) 1437 disp |= CMI_ERRDISP_FORCEFATAL; 1438 1439 if (gcpu_mca_queue != NULL) { 1440 int how; 1441 1442 if (ismc) { 1443 how = cmi_mce_response(rp, disp) ? 1444 ERRORQ_ASYNC : /* no panic, so arrange drain */ 1445 ERRORQ_SYNC; /* panic flow will drain */ 1446 } else { 1447 how = (disp & CMI_ERRDISP_FORCEFATAL && 1448 cmi_panic_on_ue()) ? 1449 ERRORQ_SYNC : /* poller will panic */ 1450 ERRORQ_ASYNC; /* no panic */ 1451 } 1452 1453 errorq_dispatch(gcpu_mca_queue, gcl, mca->gcpu_mca_lgsz, how); 1454 } else if (disp != 0) { 1455 gcpu_bleat(hdl, gcl); 1456 } 1457 1458 mcesp->mce_disp = disp; 1459 1460 return (disp); 1461 } 1462 1463 /* 1464 * Gather error telemetry from our source, and then submit it for 1465 * processing. 1466 */ 1467 1468 #define IS_MCE_CANDIDATE(status) (((status) & MSR_MC_STATUS_EN) != 0 && \ 1469 ((status) & (MSR_MC_STATUS_UC | MSR_MC_STATUS_PCC)) != 0) 1470 1471 #define STATUS_EQV(s1, s2) \ 1472 (((s1) & ~MSR_MC_STATUS_OVER) == ((s2) & ~MSR_MC_STATUS_OVER)) 1473 1474 static uint32_t gcpu_deferrred_polled_clears; 1475 1476 #ifndef __xpv 1477 static void 1478 gcpu_cmci_logout(cmi_hdl_t hdl, int bank, gcpu_mca_cmci_t *bank_cmci_p, 1479 uint64_t status, int what) 1480 { 1481 uint64_t ctl2; 1482 1483 if (bank_cmci_p->cmci_cap && (what == GCPU_MPT_WHAT_CYC_ERR) && 1484 (!(status & MSR_MC_STATUS_VAL) || ((status & MSR_MC_STATUS_VAL) && 1485 !(status & MSR_MC_STATUS_CEC_MASK)))) { 1486 1487 if (!(bank_cmci_p->cmci_enabled)) { 1488 /* 1489 * when cmci is disabled, and the bank has no error or 1490 * no corrected error for 1491 * gcpu_mca_cmci_reenable_threshold consecutive polls, 1492 * turn on this bank's cmci. 1493 */ 1494 1495 bank_cmci_p->drtcmci ++; 1496 1497 if (bank_cmci_p->drtcmci >= 1498 gcpu_mca_cmci_reenable_threshold) { 1499 1500 /* turn on cmci */ 1501 1502 (void) cmi_hdl_rdmsr(hdl, 1503 IA32_MSR_MC_CTL2(bank), &ctl2); 1504 ctl2 |= MSR_MC_CTL2_EN; 1505 (void) cmi_hdl_wrmsr(hdl, 1506 IA32_MSR_MC_CTL2(bank), ctl2); 1507 1508 /* reset counter and set flag */ 1509 bank_cmci_p->drtcmci = 0; 1510 bank_cmci_p->cmci_enabled = 1; 1511 } 1512 } else { 1513 /* 1514 * when cmci is enabled,if is in cyclic poll and the 1515 * bank has no error or no corrected error, reset ncmci 1516 * counter 1517 */ 1518 bank_cmci_p->ncmci = 0; 1519 } 1520 } 1521 } 1522 1523 static void 1524 gcpu_cmci_throttle(cmi_hdl_t hdl, int bank, gcpu_mca_cmci_t *bank_cmci_p, 1525 int what) 1526 { 1527 uint64_t ctl2 = 0; 1528 1529 /* 1530 * if cmci of this bank occurred beyond 1531 * gcpu_mca_cmci_throttling_threshold between 2 polls, 1532 * turn off this bank's CMCI; 1533 */ 1534 if (bank_cmci_p->cmci_enabled && what == GCPU_MPT_WHAT_CMCI_ERR) { 1535 1536 /* if it is cmci trap, increase the count */ 1537 bank_cmci_p->ncmci++; 1538 1539 if (bank_cmci_p->ncmci >= gcpu_mca_cmci_throttling_threshold) { 1540 1541 /* turn off cmci */ 1542 1543 (void) cmi_hdl_rdmsr(hdl, IA32_MSR_MC_CTL2(bank), 1544 &ctl2); 1545 ctl2 &= ~MSR_MC_CTL2_EN; 1546 (void) cmi_hdl_wrmsr(hdl, IA32_MSR_MC_CTL2(bank), 1547 ctl2); 1548 1549 /* clear the flag and count */ 1550 1551 bank_cmci_p->cmci_enabled = 0; 1552 bank_cmci_p->ncmci = 0; 1553 } 1554 } 1555 } 1556 #endif 1557 1558 static void 1559 clear_mc(int first, int last, int ismc, boolean_t clrstatus, 1560 cmi_hdl_t hdl, gcpu_logout_t *gcl, gcpu_logout_t *pgcl) 1561 { 1562 int i; 1563 gcpu_bank_logout_t *gbl, *pgbl; 1564 uint64_t status; 1565 1566 for (i = first, gbl = &gcl->gcl_data[first]; i < last; i++, gbl++) { 1567 status = gbl->gbl_status; 1568 if (status == 0) 1569 continue; 1570 if (clrstatus == B_FALSE) 1571 goto serialize; 1572 1573 /* 1574 * For i86xpv we always clear status in order to invalidate 1575 * the interposed telemetry. 1576 * 1577 * For native machine checks we always clear status here. For 1578 * native polls we must be a little more cautious since there 1579 * is an outside chance that we may clear telemetry from a 1580 * shared MCA bank on which a sibling core is machine checking. 1581 * 1582 * For polled observations of errors that look like they may 1583 * produce a machine check (UC/PCC and ENabled, although these 1584 * do not guarantee a machine check on error occurence) 1585 * we will not clear the status at this wakeup unless 1586 * we saw the same status at the previous poll. We will 1587 * always process and log the current observations - it 1588 * is only the clearing of MCi_STATUS which may be 1589 * deferred until the next wakeup. 1590 */ 1591 if (isxpv || ismc || !IS_MCE_CANDIDATE(status)) { 1592 (void) cmi_hdl_wrmsr(hdl, IA32_MSR_MC(i, STATUS), 0ULL); 1593 goto serialize; 1594 } 1595 1596 /* 1597 * We have a polled observation of a machine check 1598 * candidate. If we saw essentially the same status at the 1599 * last poll then clear the status now since this appears 1600 * not to be a #MC candidate after all. If we see quite 1601 * different status now then do not clear, but reconsider at 1602 * the next poll. In no actual machine check clears 1603 * the status in the interim then the status should not 1604 * keep changing forever (meaning we'd never clear it) 1605 * since before long we'll simply have latched the highest- 1606 * priority error and set the OVerflow bit. Nonetheless 1607 * we count how many times we defer clearing and after 1608 * a while insist on clearing the status. 1609 */ 1610 pgbl = &pgcl->gcl_data[i]; 1611 if (pgbl->gbl_clrdefcnt != 0) { 1612 /* We deferred clear on this bank at last wakeup */ 1613 if (STATUS_EQV(status, pgcl->gcl_data[i].gbl_status) || 1614 pgbl->gbl_clrdefcnt > 5) { 1615 /* 1616 * Status is unchanged so clear it now and, 1617 * since we have already logged this info, 1618 * avoid logging it again. 1619 */ 1620 gbl->gbl_status = 0; 1621 (void) cmi_hdl_wrmsr(hdl, 1622 IA32_MSR_MC(i, STATUS), 0ULL); 1623 } else { 1624 /* Record deferral for next wakeup */ 1625 gbl->gbl_clrdefcnt = pgbl->gbl_clrdefcnt + 1; 1626 } 1627 } else { 1628 /* Record initial deferral for next wakeup */ 1629 gbl->gbl_clrdefcnt = 1; 1630 gcpu_deferrred_polled_clears++; 1631 } 1632 1633 serialize: 1634 { 1635 #ifdef __xpv 1636 ; 1637 #else 1638 /* 1639 * Intel Vol 3A says to execute a serializing 1640 * instruction here, ie CPUID. Well WRMSR is also 1641 * defined to be serializing, so the status clear above 1642 * should suffice. To be a good citizen, and since 1643 * some clears are deferred, we'll execute a CPUID 1644 * instruction here. 1645 */ 1646 struct cpuid_regs tmp; 1647 (void) __cpuid_insn(&tmp); 1648 #endif 1649 } 1650 } 1651 } 1652 1653 /*ARGSUSED5*/ 1654 void 1655 gcpu_mca_logout(cmi_hdl_t hdl, struct regs *rp, uint64_t bankmask, 1656 gcpu_mce_status_t *mcesp, boolean_t clrstatus, int what) 1657 { 1658 gcpu_data_t *gcpu = cmi_hdl_getcmidata(hdl); 1659 gcpu_mca_t *mca = &gcpu->gcpu_mca; 1660 int nbanks = mca->gcpu_mca_nbanks; 1661 gcpu_bank_logout_t *gbl; 1662 gcpu_logout_t *gcl, *pgcl; 1663 int ismc = (rp != NULL); 1664 int ispoll = !ismc; 1665 int i, nerr = 0; 1666 cmi_errno_t err; 1667 uint64_t mcg_status; 1668 uint64_t disp; 1669 uint64_t cap; 1670 int first = 0; 1671 int last = 0; 1672 int willpanic = 0; 1673 1674 if (cmi_hdl_rdmsr(hdl, IA32_MSR_MCG_STATUS, &mcg_status) != 1675 CMI_SUCCESS || cmi_hdl_rdmsr(hdl, IA32_MSR_MCG_CAP, &cap) != 1676 CMI_SUCCESS) { 1677 if (mcesp != NULL) 1678 mcesp->mce_nerr = mcesp->mce_disp = 0; 1679 return; 1680 } 1681 1682 if (ismc) { 1683 gcl = mca->gcpu_mca_logout[GCPU_MCA_LOGOUT_EXCEPTION]; 1684 } else { 1685 int pidx = mca->gcpu_mca_nextpoll_idx; 1686 int ppidx = (pidx == GCPU_MCA_LOGOUT_POLLER_1) ? 1687 GCPU_MCA_LOGOUT_POLLER_2 : GCPU_MCA_LOGOUT_POLLER_1; 1688 1689 gcl = mca->gcpu_mca_logout[pidx]; /* current logout */ 1690 pgcl = mca->gcpu_mca_logout[ppidx]; /* previous logout */ 1691 mca->gcpu_mca_nextpoll_idx = ppidx; /* switch next time */ 1692 } 1693 1694 gcl->gcl_timestamp = gethrtime_waitfree(); 1695 gcl->gcl_mcg_status = mcg_status; 1696 gcl->gcl_ip = rp ? rp->r_pc : 0; 1697 1698 gcl->gcl_flags = (rp && USERMODE(rp->r_cs)) ? GCPU_GCL_F_PRIV : 0; 1699 if (cap & MCG_CAP_TES_P) 1700 gcl->gcl_flags |= GCPU_GCL_F_TES_P; 1701 1702 for (i = 0, gbl = &gcl->gcl_data[0]; i < nbanks; i++, gbl++) { 1703 uint64_t status, status2, addr, misc; 1704 int retries = gcpu_mca_telemetry_retries; 1705 1706 gbl->gbl_status = 0; 1707 gbl->gbl_disp = 0; 1708 gbl->gbl_clrdefcnt = 0; 1709 1710 /* 1711 * Only logout from MCA banks we have initialized from at 1712 * least one core. If a core shares an MCA bank with another 1713 * but perhaps lost the race to initialize it, then it must 1714 * still be allowed to logout from the shared bank. 1715 */ 1716 if (!(gcpu->gcpu_shared->gcpus_actv_banks & 1 << i)) 1717 continue; 1718 1719 /* 1720 * On a poll look only at the banks we've been asked to check. 1721 */ 1722 if (rp == NULL && !(bankmask & 1 << i)) 1723 continue; 1724 1725 1726 if (cmi_hdl_rdmsr(hdl, IA32_MSR_MC(i, STATUS), &status) != 1727 CMI_SUCCESS) 1728 continue; 1729 1730 #ifndef __xpv 1731 gcpu_cmci_logout(hdl, i, &mca->gcpu_bank_cmci[i], status, what); 1732 #endif 1733 1734 retry: 1735 if (!(status & MSR_MC_STATUS_VAL)) 1736 continue; 1737 1738 if (first == 0) 1739 first = i; 1740 last = i; 1741 1742 addr = -1; 1743 misc = 0; 1744 1745 if (status & MSR_MC_STATUS_ADDRV) 1746 (void) cmi_hdl_rdmsr(hdl, IA32_MSR_MC(i, ADDR), &addr); 1747 1748 if (status & MSR_MC_STATUS_MISCV) 1749 (void) cmi_hdl_rdmsr(hdl, IA32_MSR_MC(i, MISC), &misc); 1750 1751 #ifndef __xpv 1752 gcpu_cmci_throttle(hdl, i, &mca->gcpu_bank_cmci[i], what); 1753 #endif 1754 1755 /* 1756 * Allow the model-specific code to extract bank telemetry. 1757 */ 1758 cms_bank_logout(hdl, i, status, addr, misc, gcl->gcl_ms_logout); 1759 1760 /* 1761 * Not all cpu models assure us that the status/address/misc 1762 * data will not change during the above sequence of MSR reads, 1763 * or that it can only change by the addition of the OVerflow 1764 * bit to the status register. If the status has changed 1765 * other than in the overflow bit then we attempt to reread 1766 * for a consistent snapshot, but eventually give up and 1767 * go with what we've got. We only perform this check 1768 * for a poll - a further #MC during a #MC will reset, and 1769 * polled errors should not overwrite higher-priority 1770 * trapping errors (but could set the overflow bit). 1771 */ 1772 if (ispoll && (err = cmi_hdl_rdmsr(hdl, IA32_MSR_MC(i, STATUS), 1773 &status2)) == CMI_SUCCESS) { 1774 if (!STATUS_EQV(status, status2)) { 1775 if (retries-- > 0) { 1776 status = status2; 1777 goto retry; 1778 } else { 1779 gbl->gbl_disp |= 1780 CMI_ERRDISP_INCONSISTENT; 1781 } 1782 } 1783 } else if (ispoll && err != CMI_SUCCESS) { 1784 gbl->gbl_disp |= CMI_ERRDISP_INCONSISTENT; 1785 } 1786 1787 nerr++; 1788 gbl->gbl_status = status; 1789 gbl->gbl_addr = addr; 1790 gbl->gbl_misc = misc; 1791 } 1792 1793 if (gcpu_mca_stack_flag) 1794 gcl->gcl_stackdepth = getpcstack(gcl->gcl_stack, FM_STK_DEPTH); 1795 else 1796 gcl->gcl_stackdepth = 0; 1797 1798 /* 1799 * Decide our disposition for this error or errors, and submit for 1800 * logging and subsequent diagnosis. 1801 */ 1802 if (nerr != 0) { 1803 disp = gcpu_mca_process(hdl, rp, nerr, gcpu, gcl, ismc, mcesp); 1804 1805 willpanic = (ismc && cmi_mce_response(rp, disp) == 0); 1806 1807 if (!willpanic) 1808 clear_mc(first, last, ismc, clrstatus, hdl, gcl, pgcl); 1809 } else { 1810 disp = 0; 1811 if (mcesp) { 1812 mcesp->mce_nerr = mcesp->mce_disp = 0; 1813 } 1814 } 1815 1816 /* 1817 * Clear MCG_STATUS if MCIP is set (machine check in progress). 1818 * If a second #MC had occured before now the system would have 1819 * reset. We can only do thise once gcpu_mca_process has copied 1820 * the logout structure. 1821 */ 1822 if (ismc && mcg_status & MCG_STATUS_MCIP) 1823 (void) cmi_hdl_wrmsr(hdl, IA32_MSR_MCG_STATUS, 0); 1824 1825 /* 1826 * At this point we have read and logged all telemetry that is visible 1827 * under the MCA. On architectures for which the NorthBridge is 1828 * on-chip this may include NB-observed errors, but where the NB 1829 * is off chip it may have been the source of the #MC request and 1830 * so we must call into the memory-controller driver to give it 1831 * a chance to log errors. 1832 */ 1833 if (ismc) { 1834 cmi_mc_logout(hdl, 1, willpanic); 1835 } 1836 } 1837 1838 #ifndef __xpv 1839 int gcpu_mca_trap_vomit_summary = 0; 1840 1841 /* 1842 * On a native machine check exception we come here from mcetrap via 1843 * cmi_mca_trap. A machine check on one cpu of a chip does not trap others 1844 * cpus of the chip, so it is possible that another cpu on this chip could 1845 * initiate a poll while we're in the #mc handler; it is also possible that 1846 * this trap has occured during a poll on this cpu. So we must acquire 1847 * the chip-wide poll lock, but be careful to avoid deadlock. 1848 * 1849 * The 'data' pointer cannot be NULL due to init order. 1850 */ 1851 uint64_t 1852 gcpu_mca_trap(cmi_hdl_t hdl, struct regs *rp) 1853 { 1854 gcpu_data_t *gcpu = cmi_hdl_getcmidata(hdl); 1855 kmutex_t *poll_lock = NULL; 1856 gcpu_mce_status_t mce; 1857 uint64_t mcg_status; 1858 int tooklock = 0; 1859 1860 if (cmi_hdl_rdmsr(hdl, IA32_MSR_MCG_STATUS, &mcg_status) != 1861 CMI_SUCCESS || !(mcg_status & MCG_STATUS_MCIP)) 1862 return (0); 1863 1864 /* 1865 * Synchronize with any poller from another core that may happen 1866 * to share access to one or more of the MCA banks. 1867 */ 1868 if (gcpu->gcpu_shared != NULL) 1869 poll_lock = &gcpu->gcpu_shared->gcpus_poll_lock; 1870 1871 if (poll_lock != NULL && !mutex_owned(poll_lock)) { 1872 /* 1873 * The lock is not owned by the thread we have 1874 * interrupted. Spin for this adaptive lock. 1875 */ 1876 while (!mutex_tryenter(poll_lock)) { 1877 while (mutex_owner(poll_lock) != NULL) 1878 ; 1879 } 1880 tooklock = 1; 1881 } 1882 1883 gcpu_mca_logout(hdl, rp, 0, &mce, B_TRUE, GCPU_MPT_WHAT_MC_ERR); 1884 1885 if (tooklock) 1886 mutex_exit(poll_lock); 1887 1888 /* 1889 * gcpu_mca_trap_vomit_summary may be set for debug assistance. 1890 */ 1891 if (mce.mce_nerr != 0 && gcpu_mca_trap_vomit_summary) { 1892 cmn_err(CE_WARN, "MCE: %u errors, disp=0x%llx, " 1893 "%u PCC (%u ok), " 1894 "%u UC (%d ok, %u poisoned), " 1895 "%u forcefatal, %u ignored", 1896 mce.mce_nerr, (u_longlong_t)mce.mce_disp, 1897 mce.mce_npcc, mce.mce_npcc_ok, 1898 mce.mce_nuc, mce.mce_nuc_ok, mce.mce_nuc_poisoned, 1899 mce.mce_forcefatal, mce.mce_ignored); 1900 } 1901 1902 return (mce.mce_disp); 1903 } 1904 #endif 1905 1906 /*ARGSUSED*/ 1907 void 1908 gcpu_faulted_enter(cmi_hdl_t hdl) 1909 { 1910 /* Nothing to do here */ 1911 } 1912 1913 /*ARGSUSED*/ 1914 void 1915 gcpu_faulted_exit(cmi_hdl_t hdl) 1916 { 1917 gcpu_data_t *gcpu = cmi_hdl_getcmidata(hdl); 1918 1919 gcpu->gcpu_mca.gcpu_mca_flags |= GCPU_MCA_F_UNFAULTING; 1920 } 1921 1922 /* 1923 * Write the requested values to the indicated MSRs. Having no knowledge 1924 * of the model-specific requirements for writing to these model-specific 1925 * registers, we will only blindly write to those MSRs if the 'force' 1926 * argument is nonzero. That option should only be used in prototyping 1927 * and debugging. 1928 */ 1929 /*ARGSUSED*/ 1930 cmi_errno_t 1931 gcpu_msrinject(cmi_hdl_t hdl, cmi_mca_regs_t *regs, uint_t nregs, 1932 int force) 1933 { 1934 int i, errs = 0; 1935 1936 for (i = 0; i < nregs; i++) { 1937 uint_t msr = regs[i].cmr_msrnum; 1938 uint64_t val = regs[i].cmr_msrval; 1939 1940 if (cms_present(hdl)) { 1941 if (cms_msrinject(hdl, msr, val) != CMS_SUCCESS) 1942 errs++; 1943 } else if (force) { 1944 errs += (cmi_hdl_wrmsr(hdl, msr, val) != CMI_SUCCESS); 1945 } else { 1946 errs++; 1947 } 1948 } 1949 1950 return (errs == 0 ? CMI_SUCCESS : CMIERR_UNKNOWN); 1951 } 1952