1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/regset.h> 29 #include <sys/privregs.h> 30 #include <sys/pci_impl.h> 31 #include <sys/cpuvar.h> 32 #include <sys/x86_archext.h> 33 #include <sys/cmn_err.h> 34 #include <sys/systm.h> 35 #include <sys/sysmacros.h> 36 #include <sys/pghw.h> 37 #include <sys/cyclic.h> 38 #include <sys/sysevent.h> 39 #include <sys/smbios.h> 40 #include <sys/mca_x86.h> 41 #include <sys/mca_amd.h> 42 #include <sys/mc.h> 43 #include <sys/mc_amd.h> 44 #include <sys/psw.h> 45 #include <sys/ddi.h> 46 #include <sys/sunddi.h> 47 #include <sys/sdt.h> 48 #include <sys/fm/util.h> 49 #include <sys/fm/protocol.h> 50 #include <sys/fm/cpu/AMD.h> 51 #include <sys/fm/smb/fmsmb.h> 52 #include <sys/acpi/acpi.h> 53 #include <sys/acpi/acpi_pci.h> 54 #include <sys/acpica.h> 55 #include <sys/cpu_module.h> 56 57 #include "ao.h" 58 #include "ao_mca_disp.h" 59 60 #define AO_F_REVS_FG (X86_CHIPREV_AMD_F_REV_F | X86_CHIPREV_AMD_F_REV_G) 61 62 int ao_mca_smi_disable = 1; /* attempt to disable SMI polling */ 63 64 extern int x86gentopo_legacy; /* x86 generic topology support */ 65 66 struct ao_ctl_init { 67 uint32_t ctl_revmask; /* rev(s) to which this applies */ 68 uint64_t ctl_bits; /* mca ctl reg bitmask to set */ 69 }; 70 71 /* 72 * Additional NB MCA ctl initialization for revs F and G 73 */ 74 static const struct ao_ctl_init ao_nb_ctl_init[] = { 75 { AO_F_REVS_FG, AMD_NB_CTL_INIT_REV_FG }, 76 { X86_CHIPREV_UNKNOWN, 0 } 77 }; 78 79 typedef struct ao_bank_cfg { 80 uint64_t bank_ctl_init_cmn; /* Common init value */ 81 const struct ao_ctl_init *bank_ctl_init_extra; /* Extra for each rev */ 82 void (*bank_misc_initfunc)(cmi_hdl_t, ao_ms_data_t *, uint32_t); 83 uint_t bank_ctl_mask; 84 } ao_bank_cfg_t; 85 86 static void nb_mcamisc_init(cmi_hdl_t, ao_ms_data_t *, uint32_t); 87 88 static const ao_bank_cfg_t ao_bank_cfgs[] = { 89 { AMD_DC_CTL_INIT_CMN, NULL, NULL, AMD_MSR_DC_MASK }, 90 { AMD_IC_CTL_INIT_CMN, NULL, NULL, AMD_MSR_IC_MASK }, 91 { AMD_BU_CTL_INIT_CMN, NULL, NULL, AMD_MSR_BU_MASK }, 92 { AMD_LS_CTL_INIT_CMN, NULL, NULL, AMD_MSR_LS_MASK }, 93 { AMD_NB_CTL_INIT_CMN, &ao_nb_ctl_init[0], nb_mcamisc_init, 94 AMD_MSR_NB_MASK }, 95 }; 96 97 static int ao_nbanks = sizeof (ao_bank_cfgs) / sizeof (ao_bank_cfgs[0]); 98 99 /* 100 * This is quite awful but necessary to work around x86 system vendor's view of 101 * the world. Other operating systems (you know who you are) don't understand 102 * Opteron-specific error handling, so BIOS and system vendors often hide these 103 * conditions from them by using SMI polling to copy out any errors from the 104 * machine-check registers. When Solaris runs on a system with this feature, 105 * we want to disable the SMI polling so we can use FMA instead. Sadly, there 106 * isn't even a standard self-describing way to express the whole situation, 107 * so we have to resort to hard-coded values. This should all be changed to 108 * be a self-describing vendor-specific SMBIOS structure in the future. 109 */ 110 static const struct ao_smi_disable { 111 const char *asd_sys_vendor; /* SMB_TYPE_SYSTEM vendor prefix */ 112 const char *asd_sys_product; /* SMB_TYPE_SYSTEM product prefix */ 113 const char *asd_bios_vendor; /* SMB_TYPE_BIOS vendor prefix */ 114 uint8_t asd_code; /* output code for SMI disable */ 115 } ao_smi_disable[] = { 116 { "Sun Microsystems", "Galaxy12", 117 "American Megatrends", 0x59 }, 118 { "Sun Microsystems", "Sun Fire X4100 Server", 119 "American Megatrends", 0x59 }, 120 { "Sun Microsystems", "Sun Fire X4200 Server", 121 "American Megatrends", 0x59 }, 122 { NULL, NULL, NULL, 0 } 123 }; 124 125 static int 126 ao_disp_match_r4(uint16_t ref, uint8_t r4) 127 { 128 static const uint16_t ao_r4_map[] = { 129 AO_MCA_R4_BIT_ERR, /* MCAX86_ERRCODE_RRRR_ERR */ 130 AO_MCA_R4_BIT_RD, /* MCAX86_ERRCODE_RRRR_RD */ 131 AO_MCA_R4_BIT_WR, /* MCAX86_ERRCODE_RRRR_WR */ 132 AO_MCA_R4_BIT_DRD, /* MCAX86_ERRCODE_RRRR_DRD */ 133 AO_MCA_R4_BIT_DWR, /* MCAX86_ERRCODE_RRRR_DWR */ 134 AO_MCA_R4_BIT_IRD, /* MCAX86_ERRCODE_RRRR_IRD */ 135 AO_MCA_R4_BIT_PREFETCH, /* MCAX86_ERRCODE_RRRR_PREFETCH */ 136 AO_MCA_R4_BIT_EVICT, /* MCAX86_ERRCODE_RRRR_EVICT */ 137 AO_MCA_R4_BIT_SNOOP /* MCAX86_ERRCODE_RRRR_SNOOP */ 138 }; 139 140 ASSERT(r4 < sizeof (ao_r4_map) / sizeof (uint16_t)); 141 142 return ((ref & ao_r4_map[r4]) != 0); 143 } 144 145 static int 146 ao_disp_match_pp(uint8_t ref, uint8_t pp) 147 { 148 static const uint8_t ao_pp_map[] = { 149 AO_MCA_PP_BIT_SRC, /* MCAX86_ERRCODE_PP_SRC */ 150 AO_MCA_PP_BIT_RES, /* MCAX86_ERRCODE_PP_RES */ 151 AO_MCA_PP_BIT_OBS, /* MCAX86_ERRCODE_PP_OBS */ 152 AO_MCA_PP_BIT_GEN /* MCAX86_ERRCODE_PP_GEN */ 153 }; 154 155 ASSERT(pp < sizeof (ao_pp_map) / sizeof (uint8_t)); 156 157 return ((ref & ao_pp_map[pp]) != 0); 158 } 159 160 static int 161 ao_disp_match_ii(uint8_t ref, uint8_t ii) 162 { 163 static const uint8_t ao_ii_map[] = { 164 AO_MCA_II_BIT_MEM, /* MCAX86_ERRCODE_II_MEM */ 165 0, 166 AO_MCA_II_BIT_IO, /* MCAX86_ERRCODE_II_IO */ 167 AO_MCA_II_BIT_GEN /* MCAX86_ERRCODE_II_GEN */ 168 }; 169 170 ASSERT(ii < sizeof (ao_ii_map) / sizeof (uint8_t)); 171 172 return ((ref & ao_ii_map[ii]) != 0); 173 } 174 175 static uint8_t 176 bit_strip(uint16_t *codep, uint16_t mask, uint16_t shift) 177 { 178 uint8_t val = (*codep & mask) >> shift; 179 *codep &= ~mask; 180 return (val); 181 } 182 183 #define BIT_STRIP(codep, name) \ 184 bit_strip(codep, MCAX86_ERRCODE_##name##_MASK, \ 185 MCAX86_ERRCODE_##name##_SHIFT) 186 187 /*ARGSUSED*/ 188 static int 189 ao_disp_match_one(const ao_error_disp_t *aed, uint64_t status, uint32_t rev, 190 int bankno) 191 { 192 uint16_t code = MCAX86_ERRCODE(status); 193 uint8_t extcode = AMD_EXT_ERRCODE(status); 194 uint64_t stat_mask = aed->aed_stat_mask; 195 uint64_t stat_mask_res = aed->aed_stat_mask_res; 196 197 /* 198 * If the bank's status register indicates overflow, then we can no 199 * longer rely on the value of CECC: our experience with actual fault 200 * injection has shown that multiple CE's overwriting each other shows 201 * AMD_BANK_STAT_CECC and AMD_BANK_STAT_UECC both set to zero. This 202 * should be clarified in a future BKDG or by the Revision Guide. 203 * This behaviour is fixed in revision F. 204 */ 205 if (bankno == AMD_MCA_BANK_NB && 206 !X86_CHIPREV_ATLEAST(rev, X86_CHIPREV_AMD_F_REV_F) && 207 status & MSR_MC_STATUS_OVER) { 208 stat_mask &= ~AMD_BANK_STAT_CECC; 209 stat_mask_res &= ~AMD_BANK_STAT_CECC; 210 } 211 212 if ((status & stat_mask) != stat_mask_res) 213 return (0); 214 215 /* 216 * r4 and pp bits are stored separately, so we mask off and compare them 217 * for the code types that use them. Once we've taken the r4 and pp 218 * bits out of the equation, we can directly compare the resulting code 219 * with the one stored in the ao_error_disp_t. 220 */ 221 if (AMD_ERRCODE_ISMEM(code)) { 222 uint8_t r4 = BIT_STRIP(&code, RRRR); 223 224 if (!ao_disp_match_r4(aed->aed_stat_r4_bits, r4)) 225 return (0); 226 227 } else if (AMD_ERRCODE_ISBUS(code)) { 228 uint8_t r4 = BIT_STRIP(&code, RRRR); 229 uint8_t pp = BIT_STRIP(&code, PP); 230 uint8_t ii = BIT_STRIP(&code, II); 231 232 if (!ao_disp_match_r4(aed->aed_stat_r4_bits, r4) || 233 !ao_disp_match_pp(aed->aed_stat_pp_bits, pp) || 234 !ao_disp_match_ii(aed->aed_stat_ii_bits, ii)) 235 return (0); 236 } 237 238 return (code == aed->aed_stat_code && extcode == aed->aed_stat_extcode); 239 } 240 241 /*ARGSUSED*/ 242 cms_cookie_t 243 ao_ms_disp_match(cmi_hdl_t hdl, int banknum, uint64_t status, 244 uint64_t addr, uint64_t misc, void *mslogout) 245 { 246 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl); 247 uint32_t rev = ao->ao_ms_shared->aos_chiprev; 248 const ao_error_disp_t *aed; 249 250 for (aed = ao_error_disp[banknum]; aed->aed_stat_mask != 0; aed++) { 251 if (ao_disp_match_one(aed, status, rev, banknum)) 252 return ((cms_cookie_t)aed); 253 } 254 255 return (NULL); 256 } 257 258 /*ARGSUSED*/ 259 void 260 ao_ms_ereport_class(cmi_hdl_t hdl, cms_cookie_t mscookie, 261 const char **cpuclsp, const char **leafclsp) 262 { 263 const ao_error_disp_t *aed = mscookie; 264 265 if (aed != NULL) { 266 *cpuclsp = FM_EREPORT_CPU_AMD; 267 *leafclsp = aed->aed_class; 268 } 269 } 270 271 static int 272 ao_chip_once(ao_ms_data_t *ao, enum ao_cfgonce_bitnum what) 273 { 274 return (atomic_set_long_excl(&ao->ao_ms_shared->aos_cfgonce, 275 what) == 0 ? B_TRUE : B_FALSE); 276 } 277 278 /* 279 * This knob exists in case any platform has a problem with our default 280 * policy of disabling any interrupt registered in the NB MC4_MISC 281 * register. Setting this may cause Solaris and external entities 282 * who also have an interest in this register to argue over available 283 * telemetry (so setting it is generally not recommended). 284 */ 285 int ao_nb_cfg_mc4misc_noseize = 0; 286 287 /* 288 * The BIOS may have setup to receive SMI on counter overflow. It may also 289 * have locked various fields or made them read-only. We will clear any 290 * SMI request and leave the register locked. We will also clear the 291 * counter and enable counting - while we don't use the counter it is nice 292 * to have it enabled for verification and debug work. 293 */ 294 static void 295 nb_mcamisc_init(cmi_hdl_t hdl, ao_ms_data_t *ao, uint32_t rev) 296 { 297 uint64_t val, nval; 298 299 if (!X86_CHIPREV_MATCH(rev, AO_F_REVS_FG)) 300 return; 301 302 if (cmi_hdl_rdmsr(hdl, AMD_MSR_NB_MISC, &val) != CMI_SUCCESS) 303 return; 304 305 ao->ao_ms_shared->aos_bcfg_nb_misc = val; 306 307 if (ao_nb_cfg_mc4misc_noseize) 308 return; /* stash BIOS value, but no changes */ 309 310 311 /* 312 * The Valid bit tells us whether the CtrP bit is defined; if it 313 * is the CtrP bit tells us whether an ErrCount field is present. 314 * If not then there is nothing for us to do. 315 */ 316 if (!(val & AMD_NB_MISC_VALID) || !(val & AMD_NB_MISC_CTRP)) 317 return; 318 319 320 nval = val; 321 nval |= AMD_NB_MISC_CNTEN; /* enable ECC error counting */ 322 nval &= ~AMD_NB_MISC_ERRCOUNT_MASK; /* clear ErrCount */ 323 nval &= ~AMD_NB_MISC_OVRFLW; /* clear Ovrflw */ 324 nval &= ~AMD_NB_MISC_INTTYPE_MASK; /* no interrupt on overflow */ 325 nval |= AMD_NB_MISC_LOCKED; 326 327 if (nval != val) { 328 uint64_t locked = val & AMD_NB_MISC_LOCKED; 329 330 if (locked) 331 ao_bankstatus_prewrite(hdl, ao); 332 333 (void) cmi_hdl_wrmsr(hdl, AMD_MSR_NB_MISC, nval); 334 335 if (locked) 336 ao_bankstatus_postwrite(hdl, ao); 337 } 338 } 339 340 /* 341 * NorthBridge (NB) MCA Configuration. 342 * 343 * We add and remove bits from the BIOS-configured value, rather than 344 * writing an absolute value. The variables ao_nb_cfg_{add,remove}_cmn and 345 * ap_nb_cfg_{add,remove}_revFG are available for modification via kmdb 346 * and /etc/system. The revision-specific adds and removes are applied 347 * after the common changes, and one write is made to the config register. 348 * These are not intended for watchdog configuration via these variables - 349 * use the watchdog policy below. 350 */ 351 352 /* 353 * Bits to be added to the NB configuration register - all revs. 354 */ 355 uint32_t ao_nb_cfg_add_cmn = AMD_NB_CFG_ADD_CMN; 356 357 /* 358 * Bits to be cleared from the NB configuration register - all revs. 359 */ 360 uint32_t ao_nb_cfg_remove_cmn = AMD_NB_CFG_REMOVE_CMN; 361 362 /* 363 * Bits to be added to the NB configuration register - revs F and G. 364 */ 365 uint32_t ao_nb_cfg_add_revFG = AMD_NB_CFG_ADD_REV_FG; 366 367 /* 368 * Bits to be cleared from the NB configuration register - revs F and G. 369 */ 370 uint32_t ao_nb_cfg_remove_revFG = AMD_NB_CFG_REMOVE_REV_FG; 371 372 struct ao_nb_cfg { 373 uint32_t cfg_revmask; 374 uint32_t *cfg_add_p; 375 uint32_t *cfg_remove_p; 376 }; 377 378 static const struct ao_nb_cfg ao_cfg_extra[] = { 379 { AO_F_REVS_FG, &ao_nb_cfg_add_revFG, &ao_nb_cfg_remove_revFG }, 380 { X86_CHIPREV_UNKNOWN, NULL, NULL } 381 }; 382 383 /* 384 * Bits to be used if we configure the NorthBridge (NB) Watchdog. The watchdog 385 * triggers a machine check exception when no response to an NB system access 386 * occurs within a specified time interval. 387 */ 388 uint32_t ao_nb_cfg_wdog = 389 AMD_NB_CFG_WDOGTMRCNTSEL_4095 | 390 AMD_NB_CFG_WDOGTMRBASESEL_1MS; 391 392 /* 393 * The default watchdog policy is to enable it (at the above rate) if it 394 * is disabled; if it is enabled then we leave it enabled at the rate 395 * chosen by the BIOS. 396 */ 397 enum { 398 AO_NB_WDOG_LEAVEALONE, /* Don't touch watchdog config */ 399 AO_NB_WDOG_DISABLE, /* Always disable watchdog */ 400 AO_NB_WDOG_ENABLE_IF_DISABLED, /* If disabled, enable at our rate */ 401 AO_NB_WDOG_ENABLE_FORCE_RATE /* Enable and set our rate */ 402 } ao_nb_watchdog_policy = AO_NB_WDOG_ENABLE_IF_DISABLED; 403 404 static void 405 ao_nb_cfg(ao_ms_data_t *ao, uint32_t rev) 406 { 407 const struct ao_nb_cfg *nbcp = &ao_cfg_extra[0]; 408 uint_t procnodeid = pg_plat_hw_instance_id(CPU, PGHW_PROCNODE); 409 uint32_t val; 410 411 /* 412 * Read the NorthBridge (NB) configuration register in PCI space, 413 * modify the settings accordingly, and store the new value back. 414 * Note that the stashed BIOS config value aos_bcfg_nb_cfg is used 415 * in ereport payload population to determine ECC syndrome type for 416 * memory errors. 417 */ 418 ao->ao_ms_shared->aos_bcfg_nb_cfg = val = 419 ao_pcicfg_read(procnodeid, MC_FUNC_MISCCTL, MC_CTL_REG_NBCFG); 420 421 switch (ao_nb_watchdog_policy) { 422 case AO_NB_WDOG_LEAVEALONE: 423 break; 424 425 case AO_NB_WDOG_DISABLE: 426 val &= ~AMD_NB_CFG_WDOGTMRBASESEL_MASK; 427 val &= ~AMD_NB_CFG_WDOGTMRCNTSEL_MASK; 428 val |= AMD_NB_CFG_WDOGTMRDIS; 429 break; 430 431 default: 432 cmn_err(CE_NOTE, "ao_nb_watchdog_policy=%d unrecognised, " 433 "using default policy", ao_nb_watchdog_policy); 434 /*FALLTHRU*/ 435 436 case AO_NB_WDOG_ENABLE_IF_DISABLED: 437 if (!(val & AMD_NB_CFG_WDOGTMRDIS)) 438 break; /* if enabled leave rate intact */ 439 /*FALLTHRU*/ 440 441 case AO_NB_WDOG_ENABLE_FORCE_RATE: 442 val &= ~AMD_NB_CFG_WDOGTMRBASESEL_MASK; 443 val &= ~AMD_NB_CFG_WDOGTMRCNTSEL_MASK; 444 val &= ~AMD_NB_CFG_WDOGTMRDIS; 445 val |= ao_nb_cfg_wdog; 446 break; 447 } 448 449 /* 450 * Now apply bit adds and removes, first those common to all revs 451 * and then the revision-specific ones. 452 */ 453 val &= ~ao_nb_cfg_remove_cmn; 454 val |= ao_nb_cfg_add_cmn; 455 456 while (nbcp->cfg_revmask != X86_CHIPREV_UNKNOWN) { 457 if (X86_CHIPREV_MATCH(rev, nbcp->cfg_revmask)) { 458 val &= ~(*nbcp->cfg_remove_p); 459 val |= *nbcp->cfg_add_p; 460 } 461 nbcp++; 462 } 463 464 ao_pcicfg_write(procnodeid, MC_FUNC_MISCCTL, MC_CTL_REG_NBCFG, val); 465 } 466 467 static void 468 ao_dram_cfg(ao_ms_data_t *ao, uint32_t rev) 469 { 470 uint_t procnodeid = pg_plat_hw_instance_id(CPU, PGHW_PROCNODE); 471 union mcreg_dramcfg_lo dcfglo; 472 473 ao->ao_ms_shared->aos_bcfg_dcfg_lo = MCREG_VAL32(&dcfglo) = 474 ao_pcicfg_read(procnodeid, MC_FUNC_DRAMCTL, MC_DC_REG_DRAMCFGLO); 475 ao->ao_ms_shared->aos_bcfg_dcfg_hi = 476 ao_pcicfg_read(procnodeid, MC_FUNC_DRAMCTL, MC_DC_REG_DRAMCFGHI); 477 #ifdef OPTERON_ERRATUM_172 478 if (X86_CHIPREV_MATCH(rev, AO_F_REVS_FG) && 479 MCREG_FIELD_F_revFG(&dcfglo, ParEn)) { 480 MCREG_FIELD_F_revFG(&dcfglo, ParEn) = 0; 481 ao_pcicfg_write(procnodeid, MC_FUNC_DRAMCTL, 482 MC_DC_REG_DRAMCFGLO, MCREG_VAL32(&dcfglo)); 483 } 484 #endif 485 } 486 487 /* 488 * This knob exists in case any platform has a problem with our default 489 * policy of disabling any interrupt registered in the online spare 490 * control register. Setting this may cause Solaris and external entities 491 * who also have an interest in this register to argue over available 492 * telemetry (so setting it is generally not recommended). 493 */ 494 int ao_nb_cfg_sparectl_noseize = 0; 495 496 /* 497 * Setup the online spare control register (revs F and G). We disable 498 * any interrupt registered by the BIOS and zero all error counts. 499 */ 500 static void 501 ao_sparectl_cfg(ao_ms_data_t *ao) 502 { 503 uint_t procnodeid = pg_plat_hw_instance_id(CPU, PGHW_PROCNODE); 504 union mcreg_sparectl sparectl; 505 int chan, cs; 506 507 ao->ao_ms_shared->aos_bcfg_nb_sparectl = MCREG_VAL32(&sparectl) = 508 ao_pcicfg_read(procnodeid, MC_FUNC_MISCCTL, MC_CTL_REG_SPARECTL); 509 510 if (ao_nb_cfg_sparectl_noseize) 511 return; /* stash BIOS value, but no changes */ 512 513 /* 514 * If the BIOS has requested SMI interrupt type for ECC count 515 * overflow for a chip-select or channel force those off. 516 */ 517 MCREG_FIELD_F_revFG(&sparectl, EccErrInt) = 0; 518 MCREG_FIELD_F_revFG(&sparectl, SwapDoneInt) = 0; 519 520 /* 521 * Zero EccErrCnt and write this back to all chan/cs combinations. 522 */ 523 MCREG_FIELD_F_revFG(&sparectl, EccErrCntWrEn) = 1; 524 MCREG_FIELD_F_revFG(&sparectl, EccErrCnt) = 0; 525 for (chan = 0; chan < MC_CHIP_NDRAMCHAN; chan++) { 526 MCREG_FIELD_F_revFG(&sparectl, EccErrCntDramChan) = chan; 527 528 for (cs = 0; cs < MC_CHIP_NCS; cs++) { 529 MCREG_FIELD_F_revFG(&sparectl, EccErrCntDramCs) = cs; 530 ao_pcicfg_write(procnodeid, MC_FUNC_MISCCTL, 531 MC_CTL_REG_SPARECTL, MCREG_VAL32(&sparectl)); 532 } 533 } 534 } 535 536 int ao_forgive_uc = 0; /* For test/debug only */ 537 int ao_forgive_pcc = 0; /* For test/debug only */ 538 int ao_fake_poison = 0; /* For test/debug only */ 539 540 uint32_t 541 ao_ms_error_action(cmi_hdl_t hdl, int ismc, int banknum, 542 uint64_t status, uint64_t addr, uint64_t misc, void *mslogout) 543 { 544 const ao_error_disp_t *aed; 545 uint32_t retval = 0; 546 uint8_t when; 547 int en; 548 549 if (ao_forgive_uc) 550 retval |= CMS_ERRSCOPE_CLEARED_UC; 551 552 if (ao_forgive_pcc) 553 retval |= CMS_ERRSCOPE_CURCONTEXT_OK; 554 555 if (ao_fake_poison && status & MSR_MC_STATUS_UC) 556 retval |= CMS_ERRSCOPE_POISONED; 557 558 if (retval) 559 return (retval); 560 561 aed = ao_ms_disp_match(hdl, banknum, status, addr, misc, mslogout); 562 563 /* 564 * If we do not recognise the error let the cpu module apply 565 * the generic criteria to decide how to react. 566 */ 567 if (aed == NULL) 568 return (0); 569 570 en = (status & MSR_MC_STATUS_EN) != 0; 571 572 if ((when = aed->aed_panic_when) == AO_AED_PANIC_NEVER) 573 retval |= CMS_ERRSCOPE_IGNORE_ERR; 574 575 if ((when & AO_AED_PANIC_ALWAYS) || 576 ((when & AO_AED_PANIC_IFMCE) && (en || ismc))) 577 retval |= CMS_ERRSCOPE_FORCE_FATAL; 578 579 /* 580 * The original AMD implementation would panic on a machine check 581 * (not a poll) if the status overflow bit was set, with an 582 * exception for the case of rev F or later with an NB error 583 * indicating CECC. This came from the perception that the 584 * overflow bit was not correctly managed on rev E and earlier, for 585 * example that repeated correctable memeory errors did not set 586 * OVER but somehow clear CECC. 587 * 588 * We will leave the generic support to evaluate overflow errors 589 * and decide to panic on their individual merits, e.g., if PCC 590 * is set and so on. The AMD docs do say (as Intel does) that 591 * the status information is *all* from the higher-priority 592 * error in the case of an overflow, so it is at least as serious 593 * as the original and we can decide panic etc based on it. 594 */ 595 596 return (retval); 597 } 598 599 /* 600 * Will need to change for family 0x10 601 */ 602 static uint_t 603 ao_ereport_synd(ao_ms_data_t *ao, uint64_t status, uint_t *typep, 604 int is_nb) 605 { 606 if (is_nb) { 607 if (ao->ao_ms_shared->aos_bcfg_nb_cfg & 608 AMD_NB_CFG_CHIPKILLECCEN) { 609 *typep = AMD_SYNDTYPE_CHIPKILL; 610 return (AMD_NB_STAT_CKSYND(status)); 611 } else { 612 *typep = AMD_SYNDTYPE_ECC; 613 return (AMD_BANK_SYND(status)); 614 } 615 } else { 616 *typep = AMD_SYNDTYPE_ECC; 617 return (AMD_BANK_SYND(status)); 618 } 619 } 620 621 static nvlist_t * 622 ao_ereport_create_resource_elem(cmi_hdl_t hdl, nv_alloc_t *nva, 623 mc_unum_t *unump, int dimmnum) 624 { 625 nvlist_t *nvl, *snvl; 626 nvlist_t *board_list = NULL; 627 628 if ((nvl = fm_nvlist_create(nva)) == NULL) /* freed by caller */ 629 return (NULL); 630 631 if ((snvl = fm_nvlist_create(nva)) == NULL) { 632 fm_nvlist_destroy(nvl, nva ? FM_NVA_RETAIN : FM_NVA_FREE); 633 return (NULL); 634 } 635 636 (void) nvlist_add_uint64(snvl, FM_FMRI_HC_SPECIFIC_OFFSET, 637 unump->unum_offset); 638 639 if (!x86gentopo_legacy) { 640 board_list = cmi_hdl_smb_bboard(hdl); 641 642 if (board_list == NULL) { 643 fm_nvlist_destroy(nvl, 644 nva ? FM_NVA_RETAIN : FM_NVA_FREE); 645 fm_nvlist_destroy(snvl, 646 nva ? FM_NVA_RETAIN : FM_NVA_FREE); 647 return (NULL); 648 } 649 650 fm_fmri_hc_create(nvl, FM_HC_SCHEME_VERSION, NULL, snvl, 651 board_list, 4, 652 "chip", cmi_hdl_smb_chipid(hdl), 653 "memory-controller", unump->unum_mc, 654 "dimm", unump->unum_dimms[dimmnum], 655 "rank", unump->unum_rank); 656 } else { 657 fm_fmri_hc_set(nvl, FM_HC_SCHEME_VERSION, NULL, snvl, 5, 658 "motherboard", unump->unum_board, 659 "chip", unump->unum_chip, 660 "memory-controller", unump->unum_mc, 661 "dimm", unump->unum_dimms[dimmnum], 662 "rank", unump->unum_rank); 663 } 664 665 fm_nvlist_destroy(snvl, nva ? FM_NVA_RETAIN : FM_NVA_FREE); 666 667 return (nvl); 668 } 669 670 static void 671 ao_ereport_add_resource(cmi_hdl_t hdl, nvlist_t *payload, nv_alloc_t *nva, 672 mc_unum_t *unump) 673 { 674 675 nvlist_t *elems[MC_UNUM_NDIMM]; 676 int nelems = 0; 677 int i; 678 679 for (i = 0; i < MC_UNUM_NDIMM; i++) { 680 if (unump->unum_dimms[i] == MC_INVALNUM) 681 break; 682 683 if ((elems[nelems] = ao_ereport_create_resource_elem(hdl, nva, 684 unump, i)) == NULL) 685 break; 686 687 nelems++; 688 } 689 690 if (nelems == 0) 691 return; 692 693 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_RESOURCE, 694 DATA_TYPE_NVLIST_ARRAY, nelems, elems, NULL); 695 696 for (i = 0; i < nelems; i++) 697 fm_nvlist_destroy(elems[i], nva ? FM_NVA_RETAIN : FM_NVA_FREE); 698 } 699 700 /*ARGSUSED*/ 701 void 702 ao_ms_ereport_add_logout(cmi_hdl_t hdl, nvlist_t *ereport, 703 nv_alloc_t *nva, int banknum, uint64_t status, uint64_t addr, 704 uint64_t misc, void *mslogout, cms_cookie_t mscookie) 705 { 706 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl); 707 const ao_error_disp_t *aed = mscookie; 708 uint_t synd, syndtype; 709 uint64_t members; 710 711 if (aed == NULL) 712 return; 713 714 members = aed->aed_ereport_members; 715 716 synd = ao_ereport_synd(ao, status, &syndtype, 717 banknum == AMD_MCA_BANK_NB); 718 719 if (members & FM_EREPORT_PAYLOAD_FLAG_SYND) { 720 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_NAME_SYND, 721 DATA_TYPE_UINT16, synd, NULL); 722 } 723 724 if (members & FM_EREPORT_PAYLOAD_FLAG_SYND_TYPE) { 725 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_NAME_SYND_TYPE, 726 DATA_TYPE_STRING, (syndtype == AMD_SYNDTYPE_CHIPKILL ? 727 "C" : "E"), NULL); 728 } 729 730 if (members & FM_EREPORT_PAYLOAD_FLAG_RESOURCE) { 731 mc_unum_t unum; 732 733 if (((aed->aed_flags & AO_AED_FLAGS_ADDRTYPE) == 734 AO_AED_F_PHYSICAL) && (status & MSR_MC_STATUS_ADDRV) && 735 cmi_mc_patounum(addr, aed->aed_addrvalid_hi, 736 aed->aed_addrvalid_lo, synd, syndtype, &unum) == 737 CMI_SUCCESS) 738 ao_ereport_add_resource(hdl, ereport, nva, &unum); 739 } 740 } 741 742 /*ARGSUSED*/ 743 boolean_t 744 ao_ms_ereport_includestack(cmi_hdl_t hdl, cms_cookie_t mscookie) 745 { 746 const ao_error_disp_t *aed = mscookie; 747 748 if (aed == NULL) 749 return (0); 750 751 return ((aed->aed_ereport_members & 752 FM_EREPORT_PAYLOAD_FLAG_STACK) != 0); 753 } 754 755 cms_errno_t 756 ao_ms_msrinject(cmi_hdl_t hdl, uint_t msr, uint64_t val) 757 { 758 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl); 759 cms_errno_t rv = CMSERR_BADMSRWRITE; 760 761 ao_bankstatus_prewrite(hdl, ao); 762 if (cmi_hdl_wrmsr(hdl, msr, val) == CMI_SUCCESS) 763 rv = CMS_SUCCESS; 764 ao_bankstatus_postwrite(hdl, ao); 765 766 return (rv); 767 } 768 769 /*ARGSUSED*/ 770 uint64_t 771 ao_ms_mcgctl_val(cmi_hdl_t hdl, int nbanks, uint64_t def) 772 { 773 return ((1ULL << nbanks) - 1); 774 } 775 776 boolean_t 777 ao_ms_bankctl_skipinit(cmi_hdl_t hdl, int banknum) 778 { 779 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl); 780 781 if (banknum != AMD_MCA_BANK_NB) 782 return (B_FALSE); 783 784 /* 785 * If we are the first to atomically set the "I'll do it" bit 786 * then return B_FALSE (do not skip), otherwise skip with B_TRUE. 787 */ 788 return (ao_chip_once(ao, AO_CFGONCE_NBMCA) == B_TRUE ? 789 B_FALSE : B_TRUE); 790 } 791 792 uint64_t 793 ao_ms_bankctl_val(cmi_hdl_t hdl, int banknum, uint64_t def) 794 { 795 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl); 796 const struct ao_ctl_init *extrap; 797 const ao_bank_cfg_t *bankcfg; 798 uint64_t mcictl; 799 uint32_t rev = ao->ao_ms_shared->aos_chiprev; 800 801 if (banknum >= sizeof (ao_bank_cfgs) / sizeof (ao_bank_cfgs[0])) 802 return (def); 803 804 bankcfg = &ao_bank_cfgs[banknum]; 805 extrap = bankcfg->bank_ctl_init_extra; 806 807 mcictl = bankcfg->bank_ctl_init_cmn; 808 809 while (extrap != NULL && extrap->ctl_revmask != X86_CHIPREV_UNKNOWN) { 810 if (X86_CHIPREV_MATCH(rev, extrap->ctl_revmask)) 811 mcictl |= extrap->ctl_bits; 812 extrap++; 813 } 814 815 return (mcictl); 816 } 817 818 /*ARGSUSED*/ 819 void 820 ao_bankstatus_prewrite(cmi_hdl_t hdl, ao_ms_data_t *ao) 821 { 822 #ifndef __xpv 823 uint64_t hwcr; 824 825 if (cmi_hdl_rdmsr(hdl, MSR_AMD_HWCR, &hwcr) != CMI_SUCCESS) 826 return; 827 828 ao->ao_ms_hwcr_val = hwcr; 829 830 if (!(hwcr & AMD_HWCR_MCI_STATUS_WREN)) { 831 hwcr |= AMD_HWCR_MCI_STATUS_WREN; 832 (void) cmi_hdl_wrmsr(hdl, MSR_AMD_HWCR, hwcr); 833 } 834 #endif 835 } 836 837 /*ARGSUSED*/ 838 void 839 ao_bankstatus_postwrite(cmi_hdl_t hdl, ao_ms_data_t *ao) 840 { 841 #ifndef __xpv 842 uint64_t hwcr = ao->ao_ms_hwcr_val; 843 844 if (!(hwcr & AMD_HWCR_MCI_STATUS_WREN)) { 845 hwcr &= ~AMD_HWCR_MCI_STATUS_WREN; 846 (void) cmi_hdl_wrmsr(hdl, MSR_AMD_HWCR, hwcr); 847 } 848 #endif 849 } 850 851 void 852 ao_ms_mca_init(cmi_hdl_t hdl, int nbanks) 853 { 854 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl); 855 uint32_t rev = ao->ao_ms_shared->aos_chiprev; 856 ao_ms_mca_t *mca = &ao->ao_ms_mca; 857 uint64_t *maskp; 858 int i; 859 860 maskp = mca->ao_mca_bios_cfg.bcfg_bank_mask = kmem_zalloc(nbanks * 861 sizeof (uint64_t), KM_SLEEP); 862 863 /* 864 * Read the bank ctl mask MSRs, but only as many as we know 865 * certainly exist - don't calculate the register address. 866 * Also initialize the MCi_MISC register where required. 867 */ 868 for (i = 0; i < MIN(nbanks, ao_nbanks); i++) { 869 (void) cmi_hdl_rdmsr(hdl, ao_bank_cfgs[i].bank_ctl_mask, 870 maskp++); 871 if (ao_bank_cfgs[i].bank_misc_initfunc != NULL) 872 ao_bank_cfgs[i].bank_misc_initfunc(hdl, ao, rev); 873 874 } 875 876 if (ao_chip_once(ao, AO_CFGONCE_NBCFG) == B_TRUE) { 877 ao_nb_cfg(ao, rev); 878 879 if (X86_CHIPREV_MATCH(rev, AO_F_REVS_FG)) 880 ao_sparectl_cfg(ao); 881 } 882 883 if (ao_chip_once(ao, AO_CFGONCE_DRAMCFG) == B_TRUE) 884 ao_dram_cfg(ao, rev); 885 886 ao_procnode_scrubber_enable(hdl, ao); 887 } 888 889 /* 890 * Note that although this cpu module is loaded before the PSMs are 891 * loaded (and hence before acpica is loaded), this function is 892 * called from post_startup(), after PSMs are initialized and acpica 893 * is loaded. 894 */ 895 static int 896 ao_acpi_find_smicmd(int *asd_port) 897 { 898 ACPI_TABLE_FADT *fadt = NULL; 899 900 /* 901 * AcpiGetTable works even if ACPI is disabled, so a failure 902 * here means we weren't able to retreive a pointer to the FADT. 903 */ 904 if (AcpiGetTable(ACPI_SIG_FADT, 1, (ACPI_TABLE_HEADER **)&fadt) != 905 AE_OK) 906 return (-1); 907 908 ASSERT(fadt != NULL); 909 910 *asd_port = fadt->SmiCommand; 911 return (0); 912 } 913 914 /*ARGSUSED*/ 915 void 916 ao_ms_post_startup(cmi_hdl_t hdl) 917 { 918 const struct ao_smi_disable *asd; 919 id_t id; 920 int rv = -1, asd_port; 921 922 smbios_system_t sy; 923 smbios_bios_t sb; 924 smbios_info_t si; 925 926 /* 927 * Fetch the System and BIOS vendor strings from SMBIOS and see if they 928 * match a value in our table. If so, disable SMI error polling. This 929 * is grotesque and should be replaced by self-describing vendor- 930 * specific SMBIOS data or a specification enhancement instead. 931 */ 932 if (ao_mca_smi_disable && ksmbios != NULL && 933 smbios_info_bios(ksmbios, &sb) != SMB_ERR && 934 (id = smbios_info_system(ksmbios, &sy)) != SMB_ERR && 935 smbios_info_common(ksmbios, id, &si) != SMB_ERR) { 936 937 for (asd = ao_smi_disable; asd->asd_sys_vendor != NULL; asd++) { 938 if (strncmp(asd->asd_sys_vendor, si.smbi_manufacturer, 939 strlen(asd->asd_sys_vendor)) != 0 || 940 strncmp(asd->asd_sys_product, si.smbi_product, 941 strlen(asd->asd_sys_product)) != 0 || 942 strncmp(asd->asd_bios_vendor, sb.smbb_vendor, 943 strlen(asd->asd_bios_vendor)) != 0) 944 continue; 945 946 /* 947 * Look for the SMI_CMD port in the ACPI FADT, 948 * if the port is 0, this platform doesn't support 949 * SMM, so there is no SMI error polling to disable. 950 */ 951 if ((rv = ao_acpi_find_smicmd(&asd_port)) == 0 && 952 asd_port != 0) { 953 cmn_err(CE_CONT, "?SMI polling disabled in " 954 "favor of Solaris Fault Management for " 955 "AMD Processors\n"); 956 957 outb(asd_port, asd->asd_code); 958 959 } else if (rv < 0) { 960 cmn_err(CE_CONT, "?Solaris Fault Management " 961 "for AMD Processors could not disable SMI " 962 "polling because an error occurred while " 963 "trying to determine the SMI command port " 964 "from the ACPI FADT table\n"); 965 } 966 break; 967 } 968 } 969 } 970