1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2022 Oxide Computer Co. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/regset.h> 29 #include <sys/privregs.h> 30 #include <sys/pci_impl.h> 31 #include <sys/cpuvar.h> 32 #include <sys/x86_archext.h> 33 #include <sys/cmn_err.h> 34 #include <sys/systm.h> 35 #include <sys/sysmacros.h> 36 #include <sys/pghw.h> 37 #include <sys/cyclic.h> 38 #include <sys/sysevent.h> 39 #include <sys/smbios.h> 40 #include <sys/mca_x86.h> 41 #include <sys/mca_amd.h> 42 #include <sys/mc.h> 43 #include <sys/mc_amd.h> 44 #include <sys/psw.h> 45 #include <sys/ddi.h> 46 #include <sys/sunddi.h> 47 #include <sys/sdt.h> 48 #include <sys/fm/util.h> 49 #include <sys/fm/protocol.h> 50 #include <sys/fm/cpu/AMD.h> 51 #include <sys/fm/smb/fmsmb.h> 52 #include <sys/acpi/acpi.h> 53 #include <sys/acpi/acpi_pci.h> 54 #include <sys/acpica.h> 55 #include <sys/cpu_module.h> 56 57 #include "ao.h" 58 #include "ao_mca_disp.h" 59 60 #define AO_F_REVS_FG (X86_CHIPREV_AMD_LEGACY_F_REV_F | \ 61 X86_CHIPREV_AMD_LEGACY_F_REV_G) 62 63 int ao_mca_smi_disable = 1; /* attempt to disable SMI polling */ 64 65 extern int x86gentopo_legacy; /* x86 generic topology support */ 66 67 struct ao_ctl_init { 68 uint32_t ctl_revmask; /* rev(s) to which this applies */ 69 uint64_t ctl_bits; /* mca ctl reg bitmask to set */ 70 }; 71 72 /* 73 * Additional NB MCA ctl initialization for revs F and G 74 */ 75 static const struct ao_ctl_init ao_nb_ctl_init[] = { 76 { AO_F_REVS_FG, AMD_NB_CTL_INIT_REV_FG }, 77 { X86_CHIPREV_UNKNOWN, 0 } 78 }; 79 80 typedef struct ao_bank_cfg { 81 uint64_t bank_ctl_init_cmn; /* Common init value */ 82 const struct ao_ctl_init *bank_ctl_init_extra; /* Extra for each rev */ 83 void (*bank_misc_initfunc)(cmi_hdl_t, ao_ms_data_t *, uint32_t); 84 uint_t bank_ctl_mask; 85 } ao_bank_cfg_t; 86 87 static void nb_mcamisc_init(cmi_hdl_t, ao_ms_data_t *, uint32_t); 88 89 static const ao_bank_cfg_t ao_bank_cfgs[] = { 90 { AMD_DC_CTL_INIT_CMN, NULL, NULL, AMD_MSR_DC_MASK }, 91 { AMD_IC_CTL_INIT_CMN, NULL, NULL, AMD_MSR_IC_MASK }, 92 { AMD_BU_CTL_INIT_CMN, NULL, NULL, AMD_MSR_BU_MASK }, 93 { AMD_LS_CTL_INIT_CMN, NULL, NULL, AMD_MSR_LS_MASK }, 94 { AMD_NB_CTL_INIT_CMN, &ao_nb_ctl_init[0], nb_mcamisc_init, 95 AMD_MSR_NB_MASK }, 96 }; 97 98 static int ao_nbanks = sizeof (ao_bank_cfgs) / sizeof (ao_bank_cfgs[0]); 99 100 /* 101 * This is quite awful but necessary to work around x86 system vendor's view of 102 * the world. Other operating systems (you know who you are) don't understand 103 * Opteron-specific error handling, so BIOS and system vendors often hide these 104 * conditions from them by using SMI polling to copy out any errors from the 105 * machine-check registers. When Solaris runs on a system with this feature, 106 * we want to disable the SMI polling so we can use FMA instead. Sadly, there 107 * isn't even a standard self-describing way to express the whole situation, 108 * so we have to resort to hard-coded values. This should all be changed to 109 * be a self-describing vendor-specific SMBIOS structure in the future. 110 */ 111 static const struct ao_smi_disable { 112 const char *asd_sys_vendor; /* SMB_TYPE_SYSTEM vendor prefix */ 113 const char *asd_sys_product; /* SMB_TYPE_SYSTEM product prefix */ 114 const char *asd_bios_vendor; /* SMB_TYPE_BIOS vendor prefix */ 115 uint8_t asd_code; /* output code for SMI disable */ 116 } ao_smi_disable[] = { 117 { "Sun Microsystems", "Galaxy12", 118 "American Megatrends", 0x59 }, 119 { "Sun Microsystems", "Sun Fire X4100 Server", 120 "American Megatrends", 0x59 }, 121 { "Sun Microsystems", "Sun Fire X4200 Server", 122 "American Megatrends", 0x59 }, 123 { NULL, NULL, NULL, 0 } 124 }; 125 126 static int 127 ao_disp_match_r4(uint16_t ref, uint8_t r4) 128 { 129 static const uint16_t ao_r4_map[] = { 130 AO_MCA_R4_BIT_ERR, /* MCAX86_ERRCODE_RRRR_ERR */ 131 AO_MCA_R4_BIT_RD, /* MCAX86_ERRCODE_RRRR_RD */ 132 AO_MCA_R4_BIT_WR, /* MCAX86_ERRCODE_RRRR_WR */ 133 AO_MCA_R4_BIT_DRD, /* MCAX86_ERRCODE_RRRR_DRD */ 134 AO_MCA_R4_BIT_DWR, /* MCAX86_ERRCODE_RRRR_DWR */ 135 AO_MCA_R4_BIT_IRD, /* MCAX86_ERRCODE_RRRR_IRD */ 136 AO_MCA_R4_BIT_PREFETCH, /* MCAX86_ERRCODE_RRRR_PREFETCH */ 137 AO_MCA_R4_BIT_EVICT, /* MCAX86_ERRCODE_RRRR_EVICT */ 138 AO_MCA_R4_BIT_SNOOP /* MCAX86_ERRCODE_RRRR_SNOOP */ 139 }; 140 141 ASSERT(r4 < sizeof (ao_r4_map) / sizeof (uint16_t)); 142 143 return ((ref & ao_r4_map[r4]) != 0); 144 } 145 146 static int 147 ao_disp_match_pp(uint8_t ref, uint8_t pp) 148 { 149 static const uint8_t ao_pp_map[] = { 150 AO_MCA_PP_BIT_SRC, /* MCAX86_ERRCODE_PP_SRC */ 151 AO_MCA_PP_BIT_RES, /* MCAX86_ERRCODE_PP_RES */ 152 AO_MCA_PP_BIT_OBS, /* MCAX86_ERRCODE_PP_OBS */ 153 AO_MCA_PP_BIT_GEN /* MCAX86_ERRCODE_PP_GEN */ 154 }; 155 156 ASSERT(pp < sizeof (ao_pp_map) / sizeof (uint8_t)); 157 158 return ((ref & ao_pp_map[pp]) != 0); 159 } 160 161 static int 162 ao_disp_match_ii(uint8_t ref, uint8_t ii) 163 { 164 static const uint8_t ao_ii_map[] = { 165 AO_MCA_II_BIT_MEM, /* MCAX86_ERRCODE_II_MEM */ 166 0, 167 AO_MCA_II_BIT_IO, /* MCAX86_ERRCODE_II_IO */ 168 AO_MCA_II_BIT_GEN /* MCAX86_ERRCODE_II_GEN */ 169 }; 170 171 ASSERT(ii < sizeof (ao_ii_map) / sizeof (uint8_t)); 172 173 return ((ref & ao_ii_map[ii]) != 0); 174 } 175 176 static uint8_t 177 bit_strip(uint16_t *codep, uint16_t mask, uint16_t shift) 178 { 179 uint8_t val = (*codep & mask) >> shift; 180 *codep &= ~mask; 181 return (val); 182 } 183 184 #define BIT_STRIP(codep, name) \ 185 bit_strip(codep, MCAX86_ERRCODE_##name##_MASK, \ 186 MCAX86_ERRCODE_##name##_SHIFT) 187 188 /*ARGSUSED*/ 189 static int 190 ao_disp_match_one(const ao_error_disp_t *aed, uint64_t status, uint32_t rev, 191 int bankno) 192 { 193 uint16_t code = MCAX86_ERRCODE(status); 194 uint8_t extcode = AMD_EXT_ERRCODE(status); 195 uint64_t stat_mask = aed->aed_stat_mask; 196 uint64_t stat_mask_res = aed->aed_stat_mask_res; 197 198 /* 199 * If the bank's status register indicates overflow, then we can no 200 * longer rely on the value of CECC: our experience with actual fault 201 * injection has shown that multiple CE's overwriting each other shows 202 * AMD_BANK_STAT_CECC and AMD_BANK_STAT_UECC both set to zero. This 203 * should be clarified in a future BKDG or by the Revision Guide. 204 * This behaviour is fixed in revision F. 205 */ 206 if (bankno == AMD_MCA_BANK_NB && 207 !chiprev_at_least(rev, X86_CHIPREV_AMD_LEGACY_F_REV_F) && 208 status & MSR_MC_STATUS_OVER) { 209 stat_mask &= ~AMD_BANK_STAT_CECC; 210 stat_mask_res &= ~AMD_BANK_STAT_CECC; 211 } 212 213 if ((status & stat_mask) != stat_mask_res) 214 return (0); 215 216 /* 217 * r4 and pp bits are stored separately, so we mask off and compare them 218 * for the code types that use them. Once we've taken the r4 and pp 219 * bits out of the equation, we can directly compare the resulting code 220 * with the one stored in the ao_error_disp_t. 221 */ 222 if (AMD_ERRCODE_ISMEM(code)) { 223 uint8_t r4 = BIT_STRIP(&code, RRRR); 224 225 if (!ao_disp_match_r4(aed->aed_stat_r4_bits, r4)) 226 return (0); 227 228 } else if (AMD_ERRCODE_ISBUS(code)) { 229 uint8_t r4 = BIT_STRIP(&code, RRRR); 230 uint8_t pp = BIT_STRIP(&code, PP); 231 uint8_t ii = BIT_STRIP(&code, II); 232 233 if (!ao_disp_match_r4(aed->aed_stat_r4_bits, r4) || 234 !ao_disp_match_pp(aed->aed_stat_pp_bits, pp) || 235 !ao_disp_match_ii(aed->aed_stat_ii_bits, ii)) 236 return (0); 237 } 238 239 return (code == aed->aed_stat_code && extcode == aed->aed_stat_extcode); 240 } 241 242 /*ARGSUSED*/ 243 cms_cookie_t 244 ao_ms_disp_match(cmi_hdl_t hdl, int ismc, int banknum, uint64_t status, 245 uint64_t addr, uint64_t misc, void *mslogout) 246 { 247 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl); 248 x86_chiprev_t rev = ao->ao_ms_shared->aos_chiprev; 249 const ao_error_disp_t *aed; 250 251 for (aed = ao_error_disp[banknum]; aed->aed_stat_mask != 0; aed++) { 252 if (ao_disp_match_one(aed, status, rev, banknum)) 253 return ((cms_cookie_t)aed); 254 } 255 256 return (NULL); 257 } 258 259 /*ARGSUSED*/ 260 void 261 ao_ms_ereport_class(cmi_hdl_t hdl, cms_cookie_t mscookie, 262 const char **cpuclsp, const char **leafclsp) 263 { 264 const ao_error_disp_t *aed = mscookie; 265 266 if (aed != NULL) { 267 *cpuclsp = FM_EREPORT_CPU_AMD; 268 *leafclsp = aed->aed_class; 269 } 270 } 271 272 static int 273 ao_chip_once(ao_ms_data_t *ao, enum ao_cfgonce_bitnum what) 274 { 275 return (atomic_set_long_excl(&ao->ao_ms_shared->aos_cfgonce, 276 what) == 0 ? B_TRUE : B_FALSE); 277 } 278 279 /* 280 * This knob exists in case any platform has a problem with our default 281 * policy of disabling any interrupt registered in the NB MC4_MISC 282 * register. Setting this may cause Solaris and external entities 283 * who also have an interest in this register to argue over available 284 * telemetry (so setting it is generally not recommended). 285 */ 286 int ao_nb_cfg_mc4misc_noseize = 0; 287 288 /* 289 * The BIOS may have setup to receive SMI on counter overflow. It may also 290 * have locked various fields or made them read-only. We will clear any 291 * SMI request and leave the register locked. We will also clear the 292 * counter and enable counting - while we don't use the counter it is nice 293 * to have it enabled for verification and debug work. 294 */ 295 static void 296 nb_mcamisc_init(cmi_hdl_t hdl, ao_ms_data_t *ao, uint32_t rev) 297 { 298 uint64_t val, nval; 299 300 if (!chiprev_matches(rev, AO_F_REVS_FG)) 301 return; 302 303 if (cmi_hdl_rdmsr(hdl, AMD_MSR_NB_MISC, &val) != CMI_SUCCESS) 304 return; 305 306 ao->ao_ms_shared->aos_bcfg_nb_misc = val; 307 308 if (ao_nb_cfg_mc4misc_noseize) 309 return; /* stash BIOS value, but no changes */ 310 311 312 /* 313 * The Valid bit tells us whether the CtrP bit is defined; if it 314 * is the CtrP bit tells us whether an ErrCount field is present. 315 * If not then there is nothing for us to do. 316 */ 317 if (!(val & AMD_NB_MISC_VALID) || !(val & AMD_NB_MISC_CTRP)) 318 return; 319 320 321 nval = val; 322 nval |= AMD_NB_MISC_CNTEN; /* enable ECC error counting */ 323 nval &= ~AMD_NB_MISC_ERRCOUNT_MASK; /* clear ErrCount */ 324 nval &= ~AMD_NB_MISC_OVRFLW; /* clear Ovrflw */ 325 nval &= ~AMD_NB_MISC_INTTYPE_MASK; /* no interrupt on overflow */ 326 nval |= AMD_NB_MISC_LOCKED; 327 328 if (nval != val) { 329 uint64_t locked = val & AMD_NB_MISC_LOCKED; 330 331 if (locked) 332 ao_bankstatus_prewrite(hdl, ao); 333 334 (void) cmi_hdl_wrmsr(hdl, AMD_MSR_NB_MISC, nval); 335 336 if (locked) 337 ao_bankstatus_postwrite(hdl, ao); 338 } 339 } 340 341 /* 342 * NorthBridge (NB) MCA Configuration. 343 * 344 * We add and remove bits from the BIOS-configured value, rather than 345 * writing an absolute value. The variables ao_nb_cfg_{add,remove}_cmn and 346 * ap_nb_cfg_{add,remove}_revFG are available for modification via kmdb 347 * and /etc/system. The revision-specific adds and removes are applied 348 * after the common changes, and one write is made to the config register. 349 * These are not intended for watchdog configuration via these variables - 350 * use the watchdog policy below. 351 */ 352 353 /* 354 * Bits to be added to the NB configuration register - all revs. 355 */ 356 uint32_t ao_nb_cfg_add_cmn = AMD_NB_CFG_ADD_CMN; 357 358 /* 359 * Bits to be cleared from the NB configuration register - all revs. 360 */ 361 uint32_t ao_nb_cfg_remove_cmn = AMD_NB_CFG_REMOVE_CMN; 362 363 /* 364 * Bits to be added to the NB configuration register - revs F and G. 365 */ 366 uint32_t ao_nb_cfg_add_revFG = AMD_NB_CFG_ADD_REV_FG; 367 368 /* 369 * Bits to be cleared from the NB configuration register - revs F and G. 370 */ 371 uint32_t ao_nb_cfg_remove_revFG = AMD_NB_CFG_REMOVE_REV_FG; 372 373 struct ao_nb_cfg { 374 uint32_t cfg_revmask; 375 uint32_t *cfg_add_p; 376 uint32_t *cfg_remove_p; 377 }; 378 379 static const struct ao_nb_cfg ao_cfg_extra[] = { 380 { AO_F_REVS_FG, &ao_nb_cfg_add_revFG, &ao_nb_cfg_remove_revFG }, 381 { X86_CHIPREV_UNKNOWN, NULL, NULL } 382 }; 383 384 /* 385 * Bits to be used if we configure the NorthBridge (NB) Watchdog. The watchdog 386 * triggers a machine check exception when no response to an NB system access 387 * occurs within a specified time interval. 388 */ 389 uint32_t ao_nb_cfg_wdog = 390 AMD_NB_CFG_WDOGTMRCNTSEL_4095 | 391 AMD_NB_CFG_WDOGTMRBASESEL_1MS; 392 393 /* 394 * The default watchdog policy is to enable it (at the above rate) if it 395 * is disabled; if it is enabled then we leave it enabled at the rate 396 * chosen by the BIOS. 397 */ 398 enum { 399 AO_NB_WDOG_LEAVEALONE, /* Don't touch watchdog config */ 400 AO_NB_WDOG_DISABLE, /* Always disable watchdog */ 401 AO_NB_WDOG_ENABLE_IF_DISABLED, /* If disabled, enable at our rate */ 402 AO_NB_WDOG_ENABLE_FORCE_RATE /* Enable and set our rate */ 403 } ao_nb_watchdog_policy = AO_NB_WDOG_ENABLE_IF_DISABLED; 404 405 static void 406 ao_nb_cfg(ao_ms_data_t *ao, uint32_t rev) 407 { 408 const struct ao_nb_cfg *nbcp = &ao_cfg_extra[0]; 409 uint_t procnodeid = pg_plat_hw_instance_id(CPU, PGHW_PROCNODE); 410 uint32_t val; 411 412 /* 413 * Read the NorthBridge (NB) configuration register in PCI space, 414 * modify the settings accordingly, and store the new value back. 415 * Note that the stashed BIOS config value aos_bcfg_nb_cfg is used 416 * in ereport payload population to determine ECC syndrome type for 417 * memory errors. 418 */ 419 ao->ao_ms_shared->aos_bcfg_nb_cfg = val = 420 ao_pcicfg_read(procnodeid, MC_FUNC_MISCCTL, MC_CTL_REG_NBCFG); 421 422 switch (ao_nb_watchdog_policy) { 423 case AO_NB_WDOG_LEAVEALONE: 424 break; 425 426 case AO_NB_WDOG_DISABLE: 427 val &= ~AMD_NB_CFG_WDOGTMRBASESEL_MASK; 428 val &= ~AMD_NB_CFG_WDOGTMRCNTSEL_MASK; 429 val |= AMD_NB_CFG_WDOGTMRDIS; 430 break; 431 432 default: 433 cmn_err(CE_NOTE, "ao_nb_watchdog_policy=%d unrecognised, " 434 "using default policy", ao_nb_watchdog_policy); 435 /*FALLTHRU*/ 436 437 case AO_NB_WDOG_ENABLE_IF_DISABLED: 438 if (!(val & AMD_NB_CFG_WDOGTMRDIS)) 439 break; /* if enabled leave rate intact */ 440 /*FALLTHRU*/ 441 442 case AO_NB_WDOG_ENABLE_FORCE_RATE: 443 val &= ~AMD_NB_CFG_WDOGTMRBASESEL_MASK; 444 val &= ~AMD_NB_CFG_WDOGTMRCNTSEL_MASK; 445 val &= ~AMD_NB_CFG_WDOGTMRDIS; 446 val |= ao_nb_cfg_wdog; 447 break; 448 } 449 450 /* 451 * Now apply bit adds and removes, first those common to all revs 452 * and then the revision-specific ones. 453 */ 454 val &= ~ao_nb_cfg_remove_cmn; 455 val |= ao_nb_cfg_add_cmn; 456 457 while (nbcp->cfg_revmask != X86_CHIPREV_UNKNOWN) { 458 if (chiprev_matches(rev, nbcp->cfg_revmask)) { 459 val &= ~(*nbcp->cfg_remove_p); 460 val |= *nbcp->cfg_add_p; 461 } 462 nbcp++; 463 } 464 465 ao_pcicfg_write(procnodeid, MC_FUNC_MISCCTL, MC_CTL_REG_NBCFG, val); 466 } 467 468 static void 469 ao_dram_cfg(ao_ms_data_t *ao, uint32_t rev) 470 { 471 uint_t procnodeid = pg_plat_hw_instance_id(CPU, PGHW_PROCNODE); 472 union mcreg_dramcfg_lo dcfglo; 473 474 ao->ao_ms_shared->aos_bcfg_dcfg_lo = MCREG_VAL32(&dcfglo) = 475 ao_pcicfg_read(procnodeid, MC_FUNC_DRAMCTL, MC_DC_REG_DRAMCFGLO); 476 ao->ao_ms_shared->aos_bcfg_dcfg_hi = 477 ao_pcicfg_read(procnodeid, MC_FUNC_DRAMCTL, MC_DC_REG_DRAMCFGHI); 478 #ifdef OPTERON_ERRATUM_172 479 if (chiprev_matches(rev, AO_F_REVS_FG) && 480 MCREG_FIELD_F_revFG(&dcfglo, ParEn)) { 481 MCREG_FIELD_F_revFG(&dcfglo, ParEn) = 0; 482 ao_pcicfg_write(procnodeid, MC_FUNC_DRAMCTL, 483 MC_DC_REG_DRAMCFGLO, MCREG_VAL32(&dcfglo)); 484 } 485 #endif 486 } 487 488 /* 489 * This knob exists in case any platform has a problem with our default 490 * policy of disabling any interrupt registered in the online spare 491 * control register. Setting this may cause Solaris and external entities 492 * who also have an interest in this register to argue over available 493 * telemetry (so setting it is generally not recommended). 494 */ 495 int ao_nb_cfg_sparectl_noseize = 0; 496 497 /* 498 * Setup the online spare control register (revs F and G). We disable 499 * any interrupt registered by the BIOS and zero all error counts. 500 */ 501 static void 502 ao_sparectl_cfg(ao_ms_data_t *ao) 503 { 504 uint_t procnodeid = pg_plat_hw_instance_id(CPU, PGHW_PROCNODE); 505 union mcreg_sparectl sparectl; 506 int chan, cs; 507 508 ao->ao_ms_shared->aos_bcfg_nb_sparectl = MCREG_VAL32(&sparectl) = 509 ao_pcicfg_read(procnodeid, MC_FUNC_MISCCTL, MC_CTL_REG_SPARECTL); 510 511 if (ao_nb_cfg_sparectl_noseize) 512 return; /* stash BIOS value, but no changes */ 513 514 /* 515 * If the BIOS has requested SMI interrupt type for ECC count 516 * overflow for a chip-select or channel force those off. 517 */ 518 MCREG_FIELD_F_revFG(&sparectl, EccErrInt) = 0; 519 MCREG_FIELD_F_revFG(&sparectl, SwapDoneInt) = 0; 520 521 /* 522 * Zero EccErrCnt and write this back to all chan/cs combinations. 523 */ 524 MCREG_FIELD_F_revFG(&sparectl, EccErrCntWrEn) = 1; 525 MCREG_FIELD_F_revFG(&sparectl, EccErrCnt) = 0; 526 for (chan = 0; chan < MC_CHIP_NDRAMCHAN; chan++) { 527 MCREG_FIELD_F_revFG(&sparectl, EccErrCntDramChan) = chan; 528 529 for (cs = 0; cs < MC_CHIP_NCS; cs++) { 530 MCREG_FIELD_F_revFG(&sparectl, EccErrCntDramCs) = cs; 531 ao_pcicfg_write(procnodeid, MC_FUNC_MISCCTL, 532 MC_CTL_REG_SPARECTL, MCREG_VAL32(&sparectl)); 533 } 534 } 535 } 536 537 int ao_forgive_uc = 0; /* For test/debug only */ 538 int ao_forgive_pcc = 0; /* For test/debug only */ 539 int ao_fake_poison = 0; /* For test/debug only */ 540 541 uint32_t 542 ao_ms_error_action(cmi_hdl_t hdl, int ismc, int banknum, 543 uint64_t status, uint64_t addr, uint64_t misc, void *mslogout) 544 { 545 const ao_error_disp_t *aed; 546 uint32_t retval = 0; 547 uint8_t when; 548 int en; 549 550 if (ao_forgive_uc) 551 retval |= CMS_ERRSCOPE_CLEARED_UC; 552 553 if (ao_forgive_pcc) 554 retval |= CMS_ERRSCOPE_CURCONTEXT_OK; 555 556 if (ao_fake_poison && status & MSR_MC_STATUS_UC) 557 retval |= CMS_ERRSCOPE_POISONED; 558 559 if (retval) 560 return (retval); 561 562 aed = ao_ms_disp_match(hdl, ismc, banknum, status, addr, misc, 563 mslogout); 564 565 /* 566 * If we do not recognise the error let the cpu module apply 567 * the generic criteria to decide how to react. 568 */ 569 if (aed == NULL) 570 return (0); 571 572 en = (status & MSR_MC_STATUS_EN) != 0; 573 574 if ((when = aed->aed_panic_when) == AO_AED_PANIC_NEVER) 575 retval |= CMS_ERRSCOPE_IGNORE_ERR; 576 577 if ((when & AO_AED_PANIC_ALWAYS) || 578 ((when & AO_AED_PANIC_IFMCE) && (en || ismc))) 579 retval |= CMS_ERRSCOPE_FORCE_FATAL; 580 581 /* 582 * The original AMD implementation would panic on a machine check 583 * (not a poll) if the status overflow bit was set, with an 584 * exception for the case of rev F or later with an NB error 585 * indicating CECC. This came from the perception that the 586 * overflow bit was not correctly managed on rev E and earlier, for 587 * example that repeated correctable memeory errors did not set 588 * OVER but somehow clear CECC. 589 * 590 * We will leave the generic support to evaluate overflow errors 591 * and decide to panic on their individual merits, e.g., if PCC 592 * is set and so on. The AMD docs do say (as Intel does) that 593 * the status information is *all* from the higher-priority 594 * error in the case of an overflow, so it is at least as serious 595 * as the original and we can decide panic etc based on it. 596 */ 597 598 return (retval); 599 } 600 601 /* 602 * Will need to change for family 0x10 603 */ 604 static uint_t 605 ao_ereport_synd(ao_ms_data_t *ao, uint64_t status, uint_t *typep, 606 int is_nb) 607 { 608 if (is_nb) { 609 if (ao->ao_ms_shared->aos_bcfg_nb_cfg & 610 AMD_NB_CFG_CHIPKILLECCEN) { 611 *typep = AMD_SYNDTYPE_CHIPKILL; 612 return (AMD_NB_STAT_CKSYND(status)); 613 } else { 614 *typep = AMD_SYNDTYPE_ECC; 615 return (AMD_BANK_SYND(status)); 616 } 617 } else { 618 *typep = AMD_SYNDTYPE_ECC; 619 return (AMD_BANK_SYND(status)); 620 } 621 } 622 623 static nvlist_t * 624 ao_ereport_create_resource_elem(cmi_hdl_t hdl, nv_alloc_t *nva, 625 mc_unum_t *unump, int dimmnum) 626 { 627 nvlist_t *nvl, *snvl; 628 nvlist_t *board_list = NULL; 629 630 if ((nvl = fm_nvlist_create(nva)) == NULL) /* freed by caller */ 631 return (NULL); 632 633 if ((snvl = fm_nvlist_create(nva)) == NULL) { 634 fm_nvlist_destroy(nvl, nva ? FM_NVA_RETAIN : FM_NVA_FREE); 635 return (NULL); 636 } 637 638 (void) nvlist_add_uint64(snvl, FM_FMRI_HC_SPECIFIC_OFFSET, 639 unump->unum_offset); 640 641 if (!x86gentopo_legacy) { 642 board_list = cmi_hdl_smb_bboard(hdl); 643 644 if (board_list == NULL) { 645 fm_nvlist_destroy(nvl, 646 nva ? FM_NVA_RETAIN : FM_NVA_FREE); 647 fm_nvlist_destroy(snvl, 648 nva ? FM_NVA_RETAIN : FM_NVA_FREE); 649 return (NULL); 650 } 651 652 fm_fmri_hc_create(nvl, FM_HC_SCHEME_VERSION, NULL, snvl, 653 board_list, 4, 654 "chip", cmi_hdl_smb_chipid(hdl), 655 "memory-controller", unump->unum_mc, 656 "dimm", unump->unum_dimms[dimmnum], 657 "rank", unump->unum_rank); 658 } else { 659 fm_fmri_hc_set(nvl, FM_HC_SCHEME_VERSION, NULL, snvl, 5, 660 "motherboard", unump->unum_board, 661 "chip", unump->unum_chip, 662 "memory-controller", unump->unum_mc, 663 "dimm", unump->unum_dimms[dimmnum], 664 "rank", unump->unum_rank); 665 } 666 667 fm_nvlist_destroy(snvl, nva ? FM_NVA_RETAIN : FM_NVA_FREE); 668 669 return (nvl); 670 } 671 672 static void 673 ao_ereport_add_resource(cmi_hdl_t hdl, nvlist_t *payload, nv_alloc_t *nva, 674 mc_unum_t *unump) 675 { 676 677 nvlist_t *elems[MC_UNUM_NDIMM]; 678 int nelems = 0; 679 int i; 680 681 for (i = 0; i < MC_UNUM_NDIMM; i++) { 682 if (unump->unum_dimms[i] == MC_INVALNUM) 683 break; 684 685 if ((elems[nelems] = ao_ereport_create_resource_elem(hdl, nva, 686 unump, i)) == NULL) 687 break; 688 689 nelems++; 690 } 691 692 if (nelems == 0) 693 return; 694 695 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_RESOURCE, 696 DATA_TYPE_NVLIST_ARRAY, nelems, elems, NULL); 697 698 for (i = 0; i < nelems; i++) 699 fm_nvlist_destroy(elems[i], nva ? FM_NVA_RETAIN : FM_NVA_FREE); 700 } 701 702 /*ARGSUSED*/ 703 void 704 ao_ms_ereport_add_logout(cmi_hdl_t hdl, nvlist_t *ereport, 705 nv_alloc_t *nva, int banknum, uint64_t status, uint64_t addr, 706 uint64_t misc, void *mslogout, cms_cookie_t mscookie) 707 { 708 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl); 709 const ao_error_disp_t *aed = mscookie; 710 uint_t synd, syndtype; 711 uint64_t members; 712 713 if (aed == NULL) 714 return; 715 716 members = aed->aed_ereport_members; 717 718 synd = ao_ereport_synd(ao, status, &syndtype, 719 banknum == AMD_MCA_BANK_NB); 720 721 if (members & FM_EREPORT_PAYLOAD_FLAG_SYND) { 722 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_NAME_SYND, 723 DATA_TYPE_UINT16, synd, NULL); 724 } 725 726 if (members & FM_EREPORT_PAYLOAD_FLAG_SYND_TYPE) { 727 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_NAME_SYND_TYPE, 728 DATA_TYPE_STRING, (syndtype == AMD_SYNDTYPE_CHIPKILL ? 729 "C4" : "E"), NULL); 730 } 731 732 if (members & FM_EREPORT_PAYLOAD_FLAG_RESOURCE) { 733 mc_unum_t unum; 734 735 if (((aed->aed_flags & AO_AED_FLAGS_ADDRTYPE) == 736 AO_AED_F_PHYSICAL) && (status & MSR_MC_STATUS_ADDRV) && 737 cmi_mc_patounum(addr, aed->aed_addrvalid_hi, 738 aed->aed_addrvalid_lo, synd, syndtype, &unum) == 739 CMI_SUCCESS) 740 ao_ereport_add_resource(hdl, ereport, nva, &unum); 741 } 742 } 743 744 /*ARGSUSED*/ 745 boolean_t 746 ao_ms_ereport_includestack(cmi_hdl_t hdl, cms_cookie_t mscookie) 747 { 748 const ao_error_disp_t *aed = mscookie; 749 750 if (aed == NULL) 751 return (0); 752 753 return ((aed->aed_ereport_members & 754 FM_EREPORT_PAYLOAD_FLAG_STACK) != 0); 755 } 756 757 cms_errno_t 758 ao_ms_msrinject(cmi_hdl_t hdl, uint_t msr, uint64_t val) 759 { 760 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl); 761 cms_errno_t rv = CMSERR_BADMSRWRITE; 762 763 ao_bankstatus_prewrite(hdl, ao); 764 if (cmi_hdl_wrmsr(hdl, msr, val) == CMI_SUCCESS) 765 rv = CMS_SUCCESS; 766 ao_bankstatus_postwrite(hdl, ao); 767 768 return (rv); 769 } 770 771 /*ARGSUSED*/ 772 uint64_t 773 ao_ms_mcgctl_val(cmi_hdl_t hdl, int nbanks, uint64_t def) 774 { 775 return ((1ULL << nbanks) - 1); 776 } 777 778 boolean_t 779 ao_ms_bankctl_skipinit(cmi_hdl_t hdl, int banknum) 780 { 781 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl); 782 783 if (banknum != AMD_MCA_BANK_NB) 784 return (B_FALSE); 785 786 /* 787 * If we are the first to atomically set the "I'll do it" bit 788 * then return B_FALSE (do not skip), otherwise skip with B_TRUE. 789 */ 790 return (ao_chip_once(ao, AO_CFGONCE_NBMCA) == B_TRUE ? 791 B_FALSE : B_TRUE); 792 } 793 794 uint64_t 795 ao_ms_bankctl_val(cmi_hdl_t hdl, int banknum, uint64_t def) 796 { 797 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl); 798 const struct ao_ctl_init *extrap; 799 const ao_bank_cfg_t *bankcfg; 800 uint64_t mcictl; 801 x86_chiprev_t rev = ao->ao_ms_shared->aos_chiprev; 802 803 if (banknum >= sizeof (ao_bank_cfgs) / sizeof (ao_bank_cfgs[0])) 804 return (def); 805 806 bankcfg = &ao_bank_cfgs[banknum]; 807 extrap = bankcfg->bank_ctl_init_extra; 808 809 mcictl = bankcfg->bank_ctl_init_cmn; 810 811 while (extrap != NULL && extrap->ctl_revmask != X86_CHIPREV_UNKNOWN) { 812 if (chiprev_matches(rev, extrap->ctl_revmask)) 813 mcictl |= extrap->ctl_bits; 814 extrap++; 815 } 816 817 return (mcictl); 818 } 819 820 /*ARGSUSED*/ 821 void 822 ao_bankstatus_prewrite(cmi_hdl_t hdl, ao_ms_data_t *ao) 823 { 824 #ifndef __xpv 825 uint64_t hwcr; 826 827 if (cmi_hdl_rdmsr(hdl, MSR_AMD_HWCR, &hwcr) != CMI_SUCCESS) 828 return; 829 830 ao->ao_ms_hwcr_val = hwcr; 831 832 if (!(hwcr & AMD_HWCR_MCI_STATUS_WREN)) { 833 hwcr |= AMD_HWCR_MCI_STATUS_WREN; 834 (void) cmi_hdl_wrmsr(hdl, MSR_AMD_HWCR, hwcr); 835 } 836 #endif 837 } 838 839 /*ARGSUSED*/ 840 void 841 ao_bankstatus_postwrite(cmi_hdl_t hdl, ao_ms_data_t *ao) 842 { 843 #ifndef __xpv 844 uint64_t hwcr = ao->ao_ms_hwcr_val; 845 846 if (!(hwcr & AMD_HWCR_MCI_STATUS_WREN)) { 847 hwcr &= ~AMD_HWCR_MCI_STATUS_WREN; 848 (void) cmi_hdl_wrmsr(hdl, MSR_AMD_HWCR, hwcr); 849 } 850 #endif 851 } 852 853 void 854 ao_ms_mca_init(cmi_hdl_t hdl, int nbanks) 855 { 856 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl); 857 x86_chiprev_t rev = ao->ao_ms_shared->aos_chiprev; 858 ao_ms_mca_t *mca = &ao->ao_ms_mca; 859 uint64_t *maskp; 860 int i; 861 862 maskp = mca->ao_mca_bios_cfg.bcfg_bank_mask = kmem_zalloc(nbanks * 863 sizeof (uint64_t), KM_SLEEP); 864 865 /* 866 * Read the bank ctl mask MSRs, but only as many as we know 867 * certainly exist - don't calculate the register address. 868 * Also initialize the MCi_MISC register where required. 869 */ 870 for (i = 0; i < MIN(nbanks, ao_nbanks); i++) { 871 (void) cmi_hdl_rdmsr(hdl, ao_bank_cfgs[i].bank_ctl_mask, 872 maskp++); 873 if (ao_bank_cfgs[i].bank_misc_initfunc != NULL) 874 ao_bank_cfgs[i].bank_misc_initfunc(hdl, ao, rev); 875 876 } 877 878 if (ao_chip_once(ao, AO_CFGONCE_NBCFG) == B_TRUE) { 879 ao_nb_cfg(ao, rev); 880 881 if (chiprev_matches(rev, AO_F_REVS_FG)) 882 ao_sparectl_cfg(ao); 883 } 884 885 if (ao_chip_once(ao, AO_CFGONCE_DRAMCFG) == B_TRUE) 886 ao_dram_cfg(ao, rev); 887 888 ao_procnode_scrubber_enable(hdl, ao); 889 } 890 891 /* 892 * Note that although this cpu module is loaded before the PSMs are 893 * loaded (and hence before acpica is loaded), this function is 894 * called from post_startup(), after PSMs are initialized and acpica 895 * is loaded. 896 */ 897 static int 898 ao_acpi_find_smicmd(int *asd_port) 899 { 900 ACPI_TABLE_FADT *fadt = NULL; 901 902 /* 903 * AcpiGetTable works even if ACPI is disabled, so a failure 904 * here means we weren't able to retreive a pointer to the FADT. 905 */ 906 if (AcpiGetTable(ACPI_SIG_FADT, 1, (ACPI_TABLE_HEADER **)&fadt) != 907 AE_OK) 908 return (-1); 909 910 ASSERT(fadt != NULL); 911 912 *asd_port = fadt->SmiCommand; 913 return (0); 914 } 915 916 /*ARGSUSED*/ 917 void 918 ao_ms_post_startup(cmi_hdl_t hdl) 919 { 920 const struct ao_smi_disable *asd; 921 id_t id; 922 int rv = -1, asd_port; 923 924 smbios_system_t sy; 925 smbios_bios_t sb; 926 smbios_info_t si; 927 928 /* 929 * Fetch the System and BIOS vendor strings from SMBIOS and see if they 930 * match a value in our table. If so, disable SMI error polling. This 931 * is grotesque and should be replaced by self-describing vendor- 932 * specific SMBIOS data or a specification enhancement instead. 933 */ 934 if (ao_mca_smi_disable && ksmbios != NULL && 935 smbios_info_bios(ksmbios, &sb) != SMB_ERR && 936 (id = smbios_info_system(ksmbios, &sy)) != SMB_ERR && 937 smbios_info_common(ksmbios, id, &si) != SMB_ERR) { 938 939 for (asd = ao_smi_disable; asd->asd_sys_vendor != NULL; asd++) { 940 if (strncmp(asd->asd_sys_vendor, si.smbi_manufacturer, 941 strlen(asd->asd_sys_vendor)) != 0 || 942 strncmp(asd->asd_sys_product, si.smbi_product, 943 strlen(asd->asd_sys_product)) != 0 || 944 strncmp(asd->asd_bios_vendor, sb.smbb_vendor, 945 strlen(asd->asd_bios_vendor)) != 0) 946 continue; 947 948 /* 949 * Look for the SMI_CMD port in the ACPI FADT, 950 * if the port is 0, this platform doesn't support 951 * SMM, so there is no SMI error polling to disable. 952 */ 953 if ((rv = ao_acpi_find_smicmd(&asd_port)) == 0 && 954 asd_port != 0) { 955 cmn_err(CE_CONT, "?SMI polling disabled in " 956 "favor of Solaris Fault Management for " 957 "AMD Processors\n"); 958 959 outb(asd_port, asd->asd_code); 960 961 } else if (rv < 0) { 962 cmn_err(CE_CONT, "?Solaris Fault Management " 963 "for AMD Processors could not disable SMI " 964 "polling because an error occurred while " 965 "trying to determine the SMI command port " 966 "from the ACPI FADT table\n"); 967 } 968 break; 969 } 970 } 971 } 972