xref: /illumos-gate/usr/src/uts/common/xen/io/xnbo.c (revision dc25fd745d311a1cf9d98d7b7897caa0877adff0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Xen network backend - mac client edition.
29  *
30  * A driver that sits above an existing GLDv3/Nemo MAC driver and
31  * relays packets to/from that driver from/to a guest domain.
32  */
33 
34 #include "xnb.h"
35 
36 #include <sys/sunddi.h>
37 #include <sys/ddi.h>
38 #include <sys/modctl.h>
39 #include <sys/strsubr.h>
40 #include <sys/mac_client.h>
41 #include <sys/mac_provider.h>
42 #include <sys/mac_client_priv.h>
43 #include <sys/mac.h>
44 #include <net/if.h>
45 #include <sys/dlpi.h>
46 #include <sys/pattr.h>
47 #include <xen/sys/xenbus_impl.h>
48 #include <xen/sys/xendev.h>
49 #include <sys/sdt.h>
50 #include <sys/note.h>
51 
52 /* Track multicast addresses. */
53 typedef struct xmca {
54 	struct xmca *next;
55 	ether_addr_t addr;
56 } xmca_t;
57 
58 /* State about this device instance. */
59 typedef struct xnbo {
60 	mac_handle_t		o_mh;
61 	mac_client_handle_t	o_mch;
62 	mac_unicast_handle_t	o_mah;
63 	mac_promisc_handle_t	o_mphp;
64 	boolean_t		o_running;
65 	boolean_t		o_promiscuous;
66 	uint32_t		o_hcksum_capab;
67 	xmca_t			*o_mca;
68 	char			o_link_name[LIFNAMSIZ];
69 	boolean_t		o_need_rx_filter;
70 	boolean_t		o_need_setphysaddr;
71 	boolean_t		o_multicast_control;
72 } xnbo_t;
73 
74 static void xnbo_close_mac(xnb_t *);
75 static void i_xnbo_close_mac(xnb_t *, boolean_t);
76 
77 /*
78  * Packets from the peer come here.  We pass them to the mac device.
79  */
80 static void
81 xnbo_to_mac(xnb_t *xnbp, mblk_t *mp)
82 {
83 	xnbo_t *xnbop = xnbp->xnb_flavour_data;
84 
85 	ASSERT(mp != NULL);
86 
87 	if (!xnbop->o_running) {
88 		xnbp->xnb_stat_tx_too_early++;
89 		goto fail;
90 	}
91 
92 	if (mac_tx(xnbop->o_mch, mp, 0,
93 	    MAC_DROP_ON_NO_DESC, NULL) != NULL) {
94 		xnbp->xnb_stat_mac_full++;
95 	}
96 
97 	return;
98 
99 fail:
100 	freemsgchain(mp);
101 }
102 
103 /*
104  * Process the checksum flags `flags' provided by the peer for the
105  * packet `mp'.
106  */
107 static mblk_t *
108 xnbo_cksum_from_peer(xnb_t *xnbp, mblk_t *mp, uint16_t flags)
109 {
110 	xnbo_t *xnbop = xnbp->xnb_flavour_data;
111 
112 	ASSERT(mp->b_next == NULL);
113 
114 	if ((flags & NETTXF_csum_blank) != 0) {
115 		/*
116 		 * The checksum in the packet is blank.  Determine
117 		 * whether we can do hardware offload and, if so,
118 		 * update the flags on the mblk according.  If not,
119 		 * calculate and insert the checksum using software.
120 		 */
121 		mp = xnb_process_cksum_flags(xnbp, mp,
122 		    xnbop->o_hcksum_capab);
123 	}
124 
125 	return (mp);
126 }
127 
128 /*
129  * Calculate the checksum flags to be relayed to the peer for the
130  * packet `mp'.
131  */
132 static uint16_t
133 xnbo_cksum_to_peer(xnb_t *xnbp, mblk_t *mp)
134 {
135 	_NOTE(ARGUNUSED(xnbp));
136 	uint16_t r = 0;
137 	uint32_t pflags, csum;
138 
139 	/*
140 	 * We might also check for HCK_PARTIALCKSUM here and,
141 	 * providing that the partial checksum covers the TCP/UDP
142 	 * payload, return NETRXF_data_validated.
143 	 *
144 	 * It seems that it's probably not worthwhile, as even MAC
145 	 * devices which advertise HCKSUM_INET_PARTIAL in their
146 	 * capabilities tend to use HCK_FULLCKSUM on the receive side
147 	 * - they are actually saying that in the output path the
148 	 * caller must use HCK_PARTIALCKSUM.
149 	 *
150 	 * Then again, if a NIC supports HCK_PARTIALCKSUM in its'
151 	 * output path, the host IP stack will use it. If such packets
152 	 * are destined for the peer (i.e. looped around) we would
153 	 * gain some advantage.
154 	 */
155 
156 	hcksum_retrieve(mp, NULL, NULL, NULL, NULL,
157 	    NULL, &csum, &pflags);
158 
159 	/*
160 	 * If the MAC driver has asserted that the checksum is
161 	 * good, let the peer know.
162 	 */
163 	if (((pflags & HCK_FULLCKSUM) != 0) &&
164 	    (((pflags & HCK_FULLCKSUM_OK) != 0) ||
165 	    (csum == 0xffff)))
166 		r |= NETRXF_data_validated;
167 
168 	return (r);
169 }
170 
171 /*
172  * Packets from the mac device come here.  We pass them to the peer.
173  */
174 /*ARGSUSED*/
175 static void
176 xnbo_from_mac(void *arg, mac_resource_handle_t mrh, mblk_t *mp,
177     boolean_t loopback)
178 {
179 	xnb_t *xnbp = arg;
180 
181 	mp = xnb_copy_to_peer(xnbp, mp);
182 
183 	if (mp != NULL)
184 		freemsgchain(mp);
185 }
186 
187 /*
188  * Packets from the mac device come here. We pass them to the peer if
189  * the destination mac address matches or it's a multicast/broadcast
190  * address.
191  */
192 static void
193 xnbo_from_mac_filter(void *arg, mac_resource_handle_t mrh, mblk_t *mp,
194     boolean_t loopback)
195 {
196 	_NOTE(ARGUNUSED(loopback));
197 	xnb_t *xnbp = arg;
198 	xnbo_t *xnbop = xnbp->xnb_flavour_data;
199 	mblk_t *next, *keep, *keep_head, *free, *free_head;
200 
201 	keep = keep_head = free = free_head = NULL;
202 
203 #define	ADD(list, bp)				\
204 	if (list != NULL)			\
205 		list->b_next = bp;		\
206 	else					\
207 		list##_head = bp;		\
208 	list = bp;
209 
210 	for (; mp != NULL; mp = next) {
211 		mac_header_info_t hdr_info;
212 
213 		next = mp->b_next;
214 		mp->b_next = NULL;
215 
216 		if (mac_header_info(xnbop->o_mh, mp, &hdr_info) != 0) {
217 			ADD(free, mp);
218 			continue;
219 		}
220 
221 		if ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) ||
222 		    (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST)) {
223 			ADD(keep, mp);
224 			continue;
225 		}
226 
227 		if (bcmp(hdr_info.mhi_daddr, xnbp->xnb_mac_addr,
228 		    sizeof (xnbp->xnb_mac_addr)) == 0) {
229 			ADD(keep, mp);
230 			continue;
231 		}
232 
233 		ADD(free, mp);
234 	}
235 #undef	ADD
236 
237 	if (keep_head != NULL)
238 		xnbo_from_mac(xnbp, mrh, keep_head, B_FALSE);
239 
240 	if (free_head != NULL)
241 		freemsgchain(free_head);
242 }
243 
244 static boolean_t
245 xnbo_open_mac(xnb_t *xnbp, char *mac)
246 {
247 	xnbo_t *xnbop = xnbp->xnb_flavour_data;
248 	int err;
249 	const mac_info_t *mi;
250 	void (*rx_fn)(void *, mac_resource_handle_t, mblk_t *, boolean_t);
251 	struct ether_addr ea;
252 	uint_t max_sdu;
253 	mac_diag_t diag;
254 
255 	if ((err = mac_open_by_linkname(mac, &xnbop->o_mh)) != 0) {
256 		cmn_err(CE_WARN, "xnbo_open_mac: "
257 		    "cannot open mac for link %s (%d)", mac, err);
258 		return (B_FALSE);
259 	}
260 	ASSERT(xnbop->o_mh != NULL);
261 
262 	mi = mac_info(xnbop->o_mh);
263 	ASSERT(mi != NULL);
264 
265 	if (mi->mi_media != DL_ETHER) {
266 		cmn_err(CE_WARN, "xnbo_open_mac: "
267 		    "device is not DL_ETHER (%d)", mi->mi_media);
268 		i_xnbo_close_mac(xnbp, B_TRUE);
269 		return (B_FALSE);
270 	}
271 	if (mi->mi_media != mi->mi_nativemedia) {
272 		cmn_err(CE_WARN, "xnbo_open_mac: "
273 		    "device media and native media mismatch (%d != %d)",
274 		    mi->mi_media, mi->mi_nativemedia);
275 		i_xnbo_close_mac(xnbp, B_TRUE);
276 		return (B_FALSE);
277 	}
278 
279 	mac_sdu_get(xnbop->o_mh, NULL, &max_sdu);
280 	if (max_sdu > XNBMAXPKT) {
281 		cmn_err(CE_WARN, "xnbo_open_mac: mac device SDU too big (%d)",
282 		    max_sdu);
283 		i_xnbo_close_mac(xnbp, B_TRUE);
284 		return (B_FALSE);
285 	}
286 
287 	/*
288 	 * MAC_OPEN_FLAGS_MULTI_PRIMARY is relevant when we are migrating a
289 	 * guest on the localhost itself. In this case we would have the MAC
290 	 * client open for the guest being migrated *and* also for the
291 	 * migrated guest (i.e. the former will be active till the migration
292 	 * is complete when the latter will be activated). This flag states
293 	 * that it is OK for mac_unicast_add to add the primary MAC unicast
294 	 * address multiple times.
295 	 */
296 	if (mac_client_open(xnbop->o_mh, &xnbop->o_mch, NULL,
297 	    MAC_OPEN_FLAGS_USE_DATALINK_NAME |
298 	    MAC_OPEN_FLAGS_MULTI_PRIMARY) != 0) {
299 		cmn_err(CE_WARN, "xnbo_open_mac: "
300 		    "error (%d) opening mac client", err);
301 		i_xnbo_close_mac(xnbp, B_TRUE);
302 		return (B_FALSE);
303 	}
304 
305 	if (xnbop->o_need_rx_filter)
306 		rx_fn = xnbo_from_mac_filter;
307 	else
308 		rx_fn = xnbo_from_mac;
309 
310 	err = mac_unicast_add_set_rx(xnbop->o_mch, NULL, MAC_UNICAST_PRIMARY,
311 	    &xnbop->o_mah, 0, &diag, xnbop->o_multicast_control ? rx_fn : NULL,
312 	    xnbp);
313 	if (err != 0) {
314 		cmn_err(CE_WARN, "xnbo_open_mac: failed to get the primary "
315 		    "MAC address of %s: %d", mac, err);
316 		i_xnbo_close_mac(xnbp, B_TRUE);
317 		return (B_FALSE);
318 	}
319 	if (!xnbop->o_multicast_control) {
320 		err = mac_promisc_add(xnbop->o_mch, MAC_CLIENT_PROMISC_ALL,
321 		    rx_fn, xnbp, &xnbop->o_mphp, MAC_PROMISC_FLAGS_NO_TX_LOOP |
322 		    MAC_PROMISC_FLAGS_VLAN_TAG_STRIP);
323 		if (err != 0) {
324 			cmn_err(CE_WARN, "xnbo_open_mac: "
325 			    "cannot enable promiscuous mode of %s: %d",
326 			    mac, err);
327 			i_xnbo_close_mac(xnbp, B_TRUE);
328 			return (B_FALSE);
329 		}
330 		xnbop->o_promiscuous = B_TRUE;
331 	}
332 
333 	if (xnbop->o_need_setphysaddr) {
334 		err = mac_unicast_primary_set(xnbop->o_mh, xnbp->xnb_mac_addr);
335 		/* Warn, but continue on. */
336 		if (err != 0) {
337 			bcopy(xnbp->xnb_mac_addr, ea.ether_addr_octet,
338 			    ETHERADDRL);
339 			cmn_err(CE_WARN, "xnbo_open_mac: "
340 			    "cannot set MAC address of %s to "
341 			    "%s: %d", mac, ether_sprintf(&ea), err);
342 		}
343 	}
344 
345 	if (!mac_capab_get(xnbop->o_mh, MAC_CAPAB_HCKSUM,
346 	    &xnbop->o_hcksum_capab))
347 		xnbop->o_hcksum_capab = 0;
348 
349 	xnbop->o_running = B_TRUE;
350 
351 	return (B_TRUE);
352 }
353 
354 static void
355 xnbo_close_mac(xnb_t *xnbp)
356 {
357 	i_xnbo_close_mac(xnbp, B_FALSE);
358 }
359 
360 static void
361 i_xnbo_close_mac(xnb_t *xnbp, boolean_t locked)
362 {
363 	xnbo_t *xnbop = xnbp->xnb_flavour_data;
364 	xmca_t *loop;
365 
366 	ASSERT(!locked || MUTEX_HELD(&xnbp->xnb_state_lock));
367 
368 	if (xnbop->o_mh == NULL)
369 		return;
370 
371 	if (xnbop->o_running)
372 		xnbop->o_running = B_FALSE;
373 
374 	if (!locked)
375 		mutex_enter(&xnbp->xnb_state_lock);
376 	loop = xnbop->o_mca;
377 	xnbop->o_mca = NULL;
378 	if (!locked)
379 		mutex_exit(&xnbp->xnb_state_lock);
380 
381 	while (loop != NULL) {
382 		xmca_t *next = loop->next;
383 
384 		DTRACE_PROBE3(mcast_remove,
385 		    (char *), "close",
386 		    (void *), xnbp,
387 		    (etheraddr_t *), loop->addr);
388 		(void) mac_multicast_remove(xnbop->o_mch, loop->addr);
389 		kmem_free(loop, sizeof (*loop));
390 		loop = next;
391 	}
392 
393 	if (xnbop->o_promiscuous) {
394 		if (xnbop->o_mphp != NULL) {
395 			mac_promisc_remove(xnbop->o_mphp);
396 			xnbop->o_mphp = NULL;
397 		}
398 		xnbop->o_promiscuous = B_FALSE;
399 	} else {
400 		if (xnbop->o_mch != NULL)
401 			mac_rx_clear(xnbop->o_mch);
402 	}
403 
404 	if (xnbop->o_mah != NULL) {
405 		(void) mac_unicast_remove(xnbop->o_mch, xnbop->o_mah);
406 		xnbop->o_mah = NULL;
407 	}
408 
409 	if (xnbop->o_mch != NULL) {
410 		mac_client_close(xnbop->o_mch, 0);
411 		xnbop->o_mch = NULL;
412 	}
413 
414 	mac_close(xnbop->o_mh);
415 	xnbop->o_mh = NULL;
416 }
417 
418 /*
419  * Hotplug has completed and we are connected to the peer. We have all
420  * the information we need to exchange traffic, so open the MAC device
421  * and configure it appropriately.
422  */
423 static boolean_t
424 xnbo_start_connect(xnb_t *xnbp)
425 {
426 	xnbo_t *xnbop = xnbp->xnb_flavour_data;
427 
428 	return (xnbo_open_mac(xnbp, xnbop->o_link_name));
429 }
430 
431 /*
432  * The guest has successfully synchronize with this instance. We read
433  * the configuration of the guest from xenstore to check whether the
434  * guest requests multicast control. If not (the default) we make a
435  * note that the MAC device needs to be used in promiscious mode.
436  */
437 static boolean_t
438 xnbo_peer_connected(xnb_t *xnbp)
439 {
440 	char *oename;
441 	int request;
442 	xnbo_t *xnbop = xnbp->xnb_flavour_data;
443 
444 	oename = xvdi_get_oename(xnbp->xnb_devinfo);
445 
446 	if (xenbus_scanf(XBT_NULL, oename,
447 	    "request-multicast-control", "%d", &request) != 0)
448 		request = 0;
449 	xnbop->o_multicast_control = (request > 0);
450 
451 	return (B_TRUE);
452 }
453 
454 /*
455  * The guest domain has closed down the inter-domain connection. We
456  * close the underlying MAC device.
457  */
458 static void
459 xnbo_peer_disconnected(xnb_t *xnbp)
460 {
461 	xnbo_close_mac(xnbp);
462 }
463 
464 /*
465  * The hotplug script has completed. We read information from xenstore
466  * about our configuration, most notably the name of the MAC device we
467  * should use.
468  */
469 static boolean_t
470 xnbo_hotplug_connected(xnb_t *xnbp)
471 {
472 	char *xsname;
473 	xnbo_t *xnbop = xnbp->xnb_flavour_data;
474 	int need;
475 
476 	xsname = xvdi_get_xsname(xnbp->xnb_devinfo);
477 
478 	if (xenbus_scanf(XBT_NULL, xsname,
479 	    "nic", "%s", xnbop->o_link_name) != 0) {
480 		cmn_err(CE_WARN, "xnbo_connect: "
481 		    "cannot read nic name from %s", xsname);
482 		return (B_FALSE);
483 	}
484 
485 	if (xenbus_scanf(XBT_NULL, xsname,
486 	    "SUNW-need-rx-filter", "%d", &need) != 0)
487 		need = 0;
488 	xnbop->o_need_rx_filter = (need > 0);
489 
490 	if (xenbus_scanf(XBT_NULL, xsname,
491 	    "SUNW-need-set-physaddr", "%d", &need) != 0)
492 		need = 0;
493 	xnbop->o_need_setphysaddr = (need > 0);
494 
495 	return (B_TRUE);
496 }
497 
498 /*
499  * Find the multicast address `addr', return B_TRUE if it is one that
500  * we receive. If `remove', remove it from the set received.
501  */
502 static boolean_t
503 xnbo_mcast_find(xnb_t *xnbp, ether_addr_t *addr, boolean_t remove)
504 {
505 	xnbo_t *xnbop = xnbp->xnb_flavour_data;
506 	xmca_t *prev, *del, *this;
507 
508 	ASSERT(MUTEX_HELD(&xnbp->xnb_state_lock));
509 	ASSERT(xnbop->o_promiscuous == B_FALSE);
510 
511 	prev = del = NULL;
512 
513 	this = xnbop->o_mca;
514 
515 	while (this != NULL) {
516 		if (bcmp(&this->addr, addr, sizeof (this->addr)) == 0) {
517 			del = this;
518 			if (remove) {
519 				if (prev == NULL)
520 					xnbop->o_mca = this->next;
521 				else
522 					prev->next = this->next;
523 			}
524 			break;
525 		}
526 
527 		prev = this;
528 		this = this->next;
529 	}
530 
531 	if (del == NULL)
532 		return (B_FALSE);
533 
534 	if (remove) {
535 		DTRACE_PROBE3(mcast_remove,
536 		    (char *), "remove",
537 		    (void *), xnbp,
538 		    (etheraddr_t *), del->addr);
539 		mac_multicast_remove(xnbop->o_mch, del->addr);
540 		kmem_free(del, sizeof (*del));
541 	}
542 
543 	return (B_TRUE);
544 }
545 
546 /*
547  * Add the multicast address `addr' to the set received.
548  */
549 static boolean_t
550 xnbo_mcast_add(xnb_t *xnbp, ether_addr_t *addr)
551 {
552 	xnbo_t *xnbop = xnbp->xnb_flavour_data;
553 	boolean_t r = B_FALSE;
554 
555 	ASSERT(xnbop->o_promiscuous == B_FALSE);
556 
557 	mutex_enter(&xnbp->xnb_state_lock);
558 
559 	if (xnbo_mcast_find(xnbp, addr, B_FALSE)) {
560 		r = B_TRUE;
561 	} else if (mac_multicast_add(xnbop->o_mch,
562 	    (const uint8_t *)addr) == 0) {
563 		xmca_t *mca;
564 
565 		DTRACE_PROBE3(mcast_add,
566 		    (char *), "add",
567 		    (void *), xnbp,
568 		    (etheraddr_t *), addr);
569 
570 		mca = kmem_alloc(sizeof (*mca), KM_SLEEP);
571 		bcopy(addr, &mca->addr, sizeof (mca->addr));
572 
573 		mca->next = xnbop->o_mca;
574 		xnbop->o_mca = mca;
575 
576 		r = B_TRUE;
577 	}
578 
579 	mutex_exit(&xnbp->xnb_state_lock);
580 
581 	return (r);
582 }
583 
584 /*
585  * Remove the multicast address `addr' from the set received.
586  */
587 static boolean_t
588 xnbo_mcast_del(xnb_t *xnbp, ether_addr_t *addr)
589 {
590 	boolean_t r;
591 
592 	mutex_enter(&xnbp->xnb_state_lock);
593 	r = xnbo_mcast_find(xnbp, addr, B_TRUE);
594 	mutex_exit(&xnbp->xnb_state_lock);
595 
596 	return (r);
597 }
598 
599 static int
600 xnbo_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
601 {
602 	static xnb_flavour_t flavour = {
603 		xnbo_to_mac, xnbo_peer_connected, xnbo_peer_disconnected,
604 		xnbo_hotplug_connected, xnbo_start_connect,
605 		xnbo_cksum_from_peer, xnbo_cksum_to_peer,
606 		xnbo_mcast_add, xnbo_mcast_del,
607 	};
608 	xnbo_t *xnbop;
609 
610 	switch (cmd) {
611 	case DDI_ATTACH:
612 		break;
613 	case DDI_RESUME:
614 		return (DDI_SUCCESS);
615 	default:
616 		return (DDI_FAILURE);
617 	}
618 
619 	xnbop = kmem_zalloc(sizeof (*xnbop), KM_SLEEP);
620 
621 	if (xnb_attach(dip, &flavour, xnbop) != DDI_SUCCESS) {
622 		kmem_free(xnbop, sizeof (*xnbop));
623 		return (DDI_FAILURE);
624 	}
625 
626 	return (DDI_SUCCESS);
627 }
628 
629 static int
630 xnbo_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
631 {
632 	xnb_t *xnbp = ddi_get_driver_private(dip);
633 	xnbo_t *xnbop = xnbp->xnb_flavour_data;
634 
635 	switch (cmd) {
636 	case DDI_DETACH:
637 		break;
638 	case DDI_SUSPEND:
639 		return (DDI_SUCCESS);
640 	default:
641 		return (DDI_FAILURE);
642 	}
643 
644 	mutex_enter(&xnbp->xnb_tx_lock);
645 	mutex_enter(&xnbp->xnb_rx_lock);
646 
647 	if (!xnbp->xnb_detachable || xnbp->xnb_connected ||
648 	    (xnbp->xnb_tx_buf_count > 0)) {
649 		mutex_exit(&xnbp->xnb_rx_lock);
650 		mutex_exit(&xnbp->xnb_tx_lock);
651 
652 		return (DDI_FAILURE);
653 	}
654 
655 	mutex_exit(&xnbp->xnb_rx_lock);
656 	mutex_exit(&xnbp->xnb_tx_lock);
657 
658 	xnbo_close_mac(xnbp);
659 	kmem_free(xnbop, sizeof (*xnbop));
660 
661 	xnb_detach(dip);
662 
663 	return (DDI_SUCCESS);
664 }
665 
666 static struct cb_ops cb_ops = {
667 	nulldev,		/* open */
668 	nulldev,		/* close */
669 	nodev,			/* strategy */
670 	nodev,			/* print */
671 	nodev,			/* dump */
672 	nodev,			/* read */
673 	nodev,			/* write */
674 	nodev,			/* ioctl */
675 	nodev,			/* devmap */
676 	nodev,			/* mmap */
677 	nodev,			/* segmap */
678 	nochpoll,		/* poll */
679 	ddi_prop_op,		/* cb_prop_op */
680 	0,			/* streamtab  */
681 	D_NEW | D_MP | D_64BIT	/* Driver compatibility flag */
682 };
683 
684 static struct dev_ops ops = {
685 	DEVO_REV,		/* devo_rev */
686 	0,			/* devo_refcnt  */
687 	nulldev,		/* devo_getinfo */
688 	nulldev,		/* devo_identify */
689 	nulldev,		/* devo_probe */
690 	xnbo_attach,		/* devo_attach */
691 	xnbo_detach,		/* devo_detach */
692 	nodev,			/* devo_reset */
693 	&cb_ops,		/* devo_cb_ops */
694 	(struct bus_ops *)0,	/* devo_bus_ops */
695 	NULL,			/* devo_power */
696 	ddi_quiesce_not_needed,		/* devo_quiesce */
697 };
698 
699 static struct modldrv modldrv = {
700 	&mod_driverops, "xnbo driver", &ops,
701 };
702 
703 static struct modlinkage modlinkage = {
704 	MODREV_1, &modldrv, NULL
705 };
706 
707 int
708 _init(void)
709 {
710 	return (mod_install(&modlinkage));
711 }
712 
713 int
714 _info(struct modinfo *modinfop)
715 {
716 	return (mod_info(&modlinkage, modinfop));
717 }
718 
719 int
720 _fini(void)
721 {
722 	return (mod_remove(&modlinkage));
723 }
724