xref: /illumos-gate/usr/src/uts/common/vm/vm_swap.c (revision c5bab7026b8e0ac44b25ee08507ea360f177d844)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2015 Joyent, Inc.
24  */
25 
26 /*
27  * Copyright (c) 1987, 2010, Oracle and/or its affiliates. All rights reserved.
28  */
29 
30 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
31 /*	  All Rights Reserved  	*/
32 
33 /*
34  * University Copyright- Copyright (c) 1982, 1986, 1988
35  * The Regents of the University of California
36  * All Rights Reserved
37  *
38  * University Acknowledgment- Portions of this document are derived from
39  * software developed by the University of California, Berkeley, and its
40  * contributors.
41  */
42 
43 /*
44  * Each physical swap area has an associated bitmap representing
45  * its physical storage. The bitmap records which swap slots are
46  * currently allocated or freed.  Allocation is done by searching
47  * through the bitmap for the first free slot. Thus, there's
48  * no linear relation between offset within the swap device and the
49  * address (within its segment(s)) of the page that the slot backs;
50  * instead, it's an arbitrary one-to-one mapping.
51  *
52  * Associated with each swap area is a swapinfo structure.  These
53  * structures are linked into a linear list that determines the
54  * ordering of swap areas in the logical swap device.  Each contains a
55  * pointer to the corresponding bitmap, the area's size, and its
56  * associated vnode.
57  */
58 
59 #include <sys/types.h>
60 #include <sys/inttypes.h>
61 #include <sys/param.h>
62 #include <sys/t_lock.h>
63 #include <sys/sysmacros.h>
64 #include <sys/systm.h>
65 #include <sys/errno.h>
66 #include <sys/kmem.h>
67 #include <sys/vfs.h>
68 #include <sys/vnode.h>
69 #include <sys/pathname.h>
70 #include <sys/cmn_err.h>
71 #include <sys/vtrace.h>
72 #include <sys/swap.h>
73 #include <sys/dumphdr.h>
74 #include <sys/debug.h>
75 #include <sys/fs/snode.h>
76 #include <sys/fs/swapnode.h>
77 #include <sys/policy.h>
78 #include <sys/zone.h>
79 
80 #include <vm/as.h>
81 #include <vm/seg.h>
82 #include <vm/page.h>
83 #include <vm/seg_vn.h>
84 #include <vm/hat.h>
85 #include <vm/anon.h>
86 #include <vm/seg_map.h>
87 
88 /*
89  * To balance the load among multiple swap areas, we don't allow
90  * more than swap_maxcontig allocations to be satisfied from a
91  * single swap area before moving on to the next swap area.  This
92  * effectively "interleaves" allocations among the many swap areas.
93  */
94 int swap_maxcontig;	/* set by anon_init() to 1 Mb */
95 
96 #define	MINIROOTSIZE	12000	/* ~6 Meg XXX */
97 
98 /*
99  * XXX - this lock is a kludge. It serializes some aspects of swapadd() and
100  * swapdel() (namely VOP_OPEN, VOP_CLOSE, VN_RELE).  It protects against
101  * somebody swapadd'ing and getting swap slots from a vnode, while someone
102  * else is in the process of closing or rele'ing it.
103  */
104 static kmutex_t swap_lock;
105 
106 kmutex_t swapinfo_lock;
107 
108 /*
109  * protected by the swapinfo_lock
110  */
111 struct swapinfo	*swapinfo;
112 
113 static	struct	swapinfo *silast;
114 static	int	nswapfiles;
115 
116 static u_offset_t	swap_getoff(struct swapinfo *);
117 static int	swapadd(struct vnode *, ulong_t, ulong_t, char *);
118 static int	swapdel(struct vnode *, ulong_t);
119 static int	swapslot_free(struct vnode *, u_offset_t, struct swapinfo *);
120 
121 /*
122  * swap device bitmap allocation macros
123  */
124 #define	MAPSHIFT	5
125 #define	NBBW		(NBPW * NBBY)	/* number of bits per word */
126 #define	TESTBIT(map, i)		(((map)[(i) >> MAPSHIFT] & (1 << (i) % NBBW)))
127 #define	SETBIT(map, i)		(((map)[(i) >> MAPSHIFT] |= (1 << (i) % NBBW)))
128 #define	CLEARBIT(map, i)	(((map)[(i) >> MAPSHIFT] &= ~(1 << (i) % NBBW)))
129 
130 int swap_debug = 0;	/* set for debug printf's */
131 int swap_verify = 0;	/* set to verify slots when freeing and allocating */
132 
133 uint_t swapalloc_maxcontig;
134 
135 /*
136  * Allocate a range of up to *lenp contiguous slots (page) from a physical
137  * swap device. Flags are one of:
138  *	SA_NOT  Must have a slot from a physical swap device other than the
139  * 		the one containing input (*vpp, *offp).
140  * Less slots than requested may be returned. *lenp allocated slots are
141  * returned starting at *offp on *vpp.
142  * Returns 1 for a successful allocation, 0 for couldn't allocate any slots.
143  */
144 int
145 swap_phys_alloc(
146 	struct vnode **vpp,
147 	u_offset_t *offp,
148 	size_t *lenp,
149 	uint_t flags)
150 {
151 	struct swapinfo *sip;
152 	offset_t soff, noff;
153 	size_t len;
154 
155 	mutex_enter(&swapinfo_lock);
156 	sip = silast;
157 
158 	/* Find a desirable physical device and allocate from it. */
159 	do {
160 		if (sip == NULL)
161 			break;
162 		if (!(sip->si_flags & ST_INDEL) &&
163 		    (spgcnt_t)sip->si_nfpgs > 0) {
164 			/* Caller wants other than specified swap device */
165 			if (flags & SA_NOT) {
166 				if (*vpp != sip->si_vp ||
167 				    *offp < sip->si_soff ||
168 				    *offp >= sip->si_eoff)
169 					goto found;
170 			/* Caller is loose, will take anything */
171 			} else
172 				goto found;
173 		} else if (sip->si_nfpgs == 0)
174 			sip->si_allocs = 0;
175 		if ((sip = sip->si_next) == NULL)
176 			sip = swapinfo;
177 	} while (sip != silast);
178 	mutex_exit(&swapinfo_lock);
179 	return (0);
180 found:
181 	soff = swap_getoff(sip);
182 	sip->si_nfpgs--;
183 	if (soff == -1)
184 		panic("swap_alloc: swap_getoff failed!");
185 
186 	for (len = PAGESIZE; len < *lenp; len += PAGESIZE) {
187 		if (sip->si_nfpgs == 0)
188 			break;
189 		if (swapalloc_maxcontig && len >= swapalloc_maxcontig)
190 			break;
191 		noff = swap_getoff(sip);
192 		if (noff == -1) {
193 			break;
194 		} else if (noff != soff + len) {
195 			CLEARBIT(sip->si_swapslots, btop(noff - sip->si_soff));
196 			break;
197 		}
198 		sip->si_nfpgs--;
199 	}
200 	*vpp = sip->si_vp;
201 	*offp = soff;
202 	*lenp = len;
203 	ASSERT((spgcnt_t)sip->si_nfpgs >= 0);
204 	sip->si_allocs += btop(len);
205 	if (sip->si_allocs >= swap_maxcontig) {
206 		sip->si_allocs = 0;
207 		if ((silast = sip->si_next) == NULL)
208 			silast = swapinfo;
209 	}
210 	TRACE_2(TR_FAC_VM, TR_SWAP_ALLOC,
211 	    "swap_alloc:sip %p offset %lx", sip, soff);
212 	mutex_exit(&swapinfo_lock);
213 	return (1);
214 }
215 
216 int swap_backsearch = 0;
217 
218 /*
219  * Get a free offset on swap device sip.
220  * Return >=0 offset if succeeded, -1 for failure.
221  */
222 static u_offset_t
223 swap_getoff(struct swapinfo *sip)
224 {
225 	uint_t *sp, *ep;
226 	size_t aoff, boff, poff, slotnumber;
227 
228 	ASSERT(MUTEX_HELD(&swapinfo_lock));
229 
230 	sip->si_alloccnt++;
231 	for (sp = &sip->si_swapslots[sip->si_hint >> MAPSHIFT],
232 	    ep = &sip->si_swapslots[sip->si_mapsize / NBPW]; sp < ep; sp++) {
233 		if (*sp != (uint_t)0xffffffff)
234 			goto foundentry;
235 		else
236 			sip->si_checkcnt++;
237 	}
238 	SWAP_PRINT(SW_ALLOC,
239 	    "swap_getoff: couldn't find slot from hint %ld to end\n",
240 	    sip->si_hint, 0, 0, 0, 0);
241 	/*
242 	 * Go backwards? Check for faster method XXX
243 	 */
244 	if (swap_backsearch) {
245 		for (sp = &sip->si_swapslots[sip->si_hint >> MAPSHIFT],
246 		    ep = sip->si_swapslots; sp > ep; sp--) {
247 			if (*sp != (uint_t)0xffffffff)
248 				goto foundentry;
249 			else
250 				sip->si_checkcnt++;
251 		}
252 	} else {
253 		for (sp = sip->si_swapslots,
254 		    ep = &sip->si_swapslots[sip->si_hint >> MAPSHIFT];
255 		    sp < ep; sp++) {
256 			if (*sp != (uint_t)0xffffffff)
257 				goto foundentry;
258 			else
259 				sip->si_checkcnt++;
260 		}
261 	}
262 	if (*sp == 0xffffffff) {
263 		cmn_err(CE_WARN, "No free swap slots!");
264 		return ((u_offset_t)-1);
265 	}
266 
267 foundentry:
268 	/*
269 	 * aoff is the page number offset (in bytes) of the si_swapslots
270 	 * array element containing a free page
271 	 *
272 	 * boff is the page number offset of the free page
273 	 * (i.e. cleared bit) in si_swapslots[aoff].
274 	 */
275 	aoff = ((char *)sp - (char *)sip->si_swapslots) * NBBY;
276 
277 	for (boff = (sip->si_hint % NBBW); boff < NBBW; boff++) {
278 		if (!TESTBIT(sip->si_swapslots, aoff + boff))
279 			goto foundslot;
280 		else
281 			sip->si_checkcnt++;
282 	}
283 	for (boff = 0; boff < (sip->si_hint % NBBW); boff++) {
284 		if (!TESTBIT(sip->si_swapslots, aoff + boff))
285 			goto foundslot;
286 		else
287 			sip->si_checkcnt++;
288 	}
289 	panic("swap_getoff: didn't find slot in word hint %ld", sip->si_hint);
290 
291 foundslot:
292 	/*
293 	 * Return the offset of the free page in swap device.
294 	 * Convert page number of byte offset and add starting
295 	 * offset of swap device.
296 	 */
297 	slotnumber = aoff + boff;
298 	SWAP_PRINT(SW_ALLOC, "swap_getoff: allocating slot %ld\n",
299 	    slotnumber, 0, 0, 0, 0);
300 	poff = ptob(slotnumber);
301 	if (poff + sip->si_soff >= sip->si_eoff)
302 		printf("ptob(aoff(%ld) + boff(%ld))(%ld) >= eoff(%ld)\n",
303 		    aoff, boff, ptob(slotnumber), (long)sip->si_eoff);
304 	ASSERT(poff < sip->si_eoff);
305 	/*
306 	 * We could verify here that the slot isn't already allocated
307 	 * by looking through all the anon slots.
308 	 */
309 	SETBIT(sip->si_swapslots, slotnumber);
310 	sip->si_hint = slotnumber + 1;	/* hint = next slot */
311 	return (poff + sip->si_soff);
312 }
313 
314 /*
315  * Free a swap page.
316  */
317 void
318 swap_phys_free(struct vnode *vp, u_offset_t off, size_t len)
319 {
320 	struct swapinfo *sip;
321 	ssize_t pagenumber, npage;
322 
323 	mutex_enter(&swapinfo_lock);
324 	sip = swapinfo;
325 
326 	do {
327 		if (sip->si_vp == vp &&
328 		    sip->si_soff <= off && off < sip->si_eoff) {
329 			for (pagenumber = btop(off - sip->si_soff),
330 			    npage = btop(len) + pagenumber;
331 			    pagenumber < npage; pagenumber++) {
332 				SWAP_PRINT(SW_ALLOC,
333 				    "swap_phys_free: freeing slot %ld on "
334 				    "sip %p\n",
335 				    pagenumber, sip, 0, 0, 0);
336 				if (!TESTBIT(sip->si_swapslots, pagenumber)) {
337 					panic(
338 					    "swap_phys_free: freeing free slot "
339 					    "%p,%lx\n", (void *)vp,
340 					    ptob(pagenumber) + sip->si_soff);
341 				}
342 				CLEARBIT(sip->si_swapslots, pagenumber);
343 				sip->si_nfpgs++;
344 			}
345 			ASSERT(sip->si_nfpgs <= sip->si_npgs);
346 			mutex_exit(&swapinfo_lock);
347 			return;
348 		}
349 	} while ((sip = sip->si_next) != NULL);
350 	panic("swap_phys_free");
351 	/*NOTREACHED*/
352 }
353 
354 /*
355  * Return the anon struct corresponding for the given
356  * <vnode, off> if it is part of the virtual swap device.
357  * Return the anon struct if found, otherwise NULL.
358  */
359 struct anon *
360 swap_anon(struct vnode *vp, u_offset_t off)
361 {
362 	struct anon *ap;
363 
364 	ASSERT(MUTEX_HELD(AH_MUTEX(vp, off)));
365 
366 	for (ap = anon_hash[ANON_HASH(vp, off)]; ap != NULL; ap = ap->an_hash) {
367 		if (ap->an_vp == vp && ap->an_off == off)
368 			return (ap);
369 	}
370 	return (NULL);
371 }
372 
373 
374 /*
375  * Determine if the vp offset range overlap a swap device.
376  */
377 int
378 swap_in_range(struct vnode *vp, u_offset_t offset, size_t len)
379 {
380 	struct swapinfo *sip;
381 	u_offset_t eoff;
382 
383 	eoff = offset + len;
384 	ASSERT(eoff > offset);
385 
386 	mutex_enter(&swapinfo_lock);
387 	sip = swapinfo;
388 	if (vp && sip) {
389 		do {
390 			if (vp != sip->si_vp || eoff <= sip->si_soff ||
391 			    offset >= sip->si_eoff)
392 				continue;
393 			mutex_exit(&swapinfo_lock);
394 			return (1);
395 		} while ((sip = sip->si_next) != NULL);
396 	}
397 	mutex_exit(&swapinfo_lock);
398 	return (0);
399 }
400 
401 /*
402  * See if name is one of our swap files
403  * even though lookupname failed.
404  * This can be used by swapdel to delete
405  * swap resources on remote machines
406  * where the link has gone down.
407  */
408 static struct vnode *
409 swapdel_byname(
410 	char 	*name,			/* pathname to delete */
411 	ulong_t lowblk) 	/* Low block number of area to delete */
412 {
413 	struct swapinfo **sipp, *osip;
414 	u_offset_t soff;
415 
416 	/*
417 	 * Find the swap file entry for the file to
418 	 * be deleted. Skip any entries that are in
419 	 * transition.
420 	 */
421 
422 	soff = ptob(btopr(lowblk << SCTRSHFT)); /* must be page aligned */
423 
424 	mutex_enter(&swapinfo_lock);
425 	for (sipp = &swapinfo; (osip = *sipp) != NULL; sipp = &osip->si_next) {
426 		if ((strcmp(osip->si_pname, name) == 0) &&
427 		    (osip->si_soff == soff) && (osip->si_flags == 0)) {
428 			struct vnode *vp = osip->si_vp;
429 
430 			VN_HOLD(vp);
431 			mutex_exit(&swapinfo_lock);
432 			return (vp);
433 		}
434 	}
435 	mutex_exit(&swapinfo_lock);
436 	return (NULL);
437 }
438 
439 
440 /*
441  * New system call to manipulate swap files.
442  */
443 int
444 swapctl(int sc_cmd, void *sc_arg, int *rv)
445 {
446 	struct swapinfo *sip, *csip, *tsip;
447 	int error = 0;
448 	struct swapent st, *ust;
449 	struct swapres sr;
450 	struct vnode *vp;
451 	int cnt = 0;
452 	int tmp_nswapfiles;
453 	int nswap;
454 	int length, nlen;
455 	int gplen = 0, plen;
456 	char *swapname;
457 	char *pname;
458 	char *tpname;
459 	struct anoninfo ai;
460 	spgcnt_t avail;
461 	int global = INGLOBALZONE(curproc);
462 	struct zone *zp = curproc->p_zone;
463 
464 	/*
465 	 * When running in a zone we want to hide the details of the swap
466 	 * devices: we report there only being one swap device named "swap"
467 	 * having a size equal to the sum of the sizes of all real swap devices
468 	 * on the system.
469 	 */
470 	switch (sc_cmd) {
471 	case SC_GETNSWP:
472 		if (global)
473 			*rv = nswapfiles;
474 		else
475 			*rv = 1;
476 		return (0);
477 
478 	case SC_AINFO:
479 		/*
480 		 * Return anoninfo information with these changes:
481 		 * ani_max = maximum amount of swap space
482 		 *	(including potentially available physical memory)
483 		 * ani_free = amount of unallocated anonymous memory
484 		 *	(some of which might be reserved and including
485 		 *	 potentially available physical memory)
486 		 * ani_resv = amount of claimed (reserved) anonymous memory
487 		 */
488 		avail = MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
489 		ai.ani_max = (k_anoninfo.ani_max +
490 		    k_anoninfo.ani_mem_resv) + avail;
491 
492 		/* Update ani_free */
493 		set_anoninfo();
494 		ai.ani_free = k_anoninfo.ani_free + avail;
495 
496 		ai.ani_resv = k_anoninfo.ani_phys_resv +
497 		    k_anoninfo.ani_mem_resv;
498 
499 		if (!global && zp->zone_max_swap_ctl != UINT64_MAX) {
500 			/*
501 			 * We're in a non-global zone with a swap cap.  We
502 			 * always report the system-wide values for the global
503 			 * zone, even though it too can have a swap cap.
504 			 */
505 
506 			/*
507 			 * For a swap-capped zone, the numbers are contrived
508 			 * since we don't have a correct value of 'reserved'
509 			 * for the zone.
510 			 *
511 			 * The ani_max value is always the zone's swap cap.
512 			 *
513 			 * The ani_free value is always the difference between
514 			 * the cap and the amount of swap in use by the zone.
515 			 *
516 			 * The ani_resv value is typically set to be the amount
517 			 * of swap in use by the zone, but can be adjusted
518 			 * upwards to indicate how much swap is currently
519 			 * unavailable to that zone due to usage by entities
520 			 * outside the zone.
521 			 *
522 			 * This works as follows.
523 			 *
524 			 * In the 'swap -s' output, the data is displayed
525 			 * as follows:
526 			 *    allocated = ani_max  - ani_free
527 			 *    reserved  = ani_resv - allocated
528 			 *    available = ani_max  - ani_resv
529 			 *
530 			 * Taking a contrived example, if the swap cap is 100
531 			 * and the amount of swap used by the zone is 75, this
532 			 * gives:
533 			 *    allocated = ani_max  - ani_free  = 100 - 25 = 75
534 			 *    reserved  = ani_resv - allocated =  75 - 75 =  0
535 			 *    available = ani_max  - ani_resv  = 100 - 75 = 25
536 			 *
537 			 * In this typical case, you can see that the 'swap -s'
538 			 * 'reserved' will always be 0 inside a swap capped
539 			 * zone.
540 			 *
541 			 * However, if the system as a whole has less free
542 			 * swap than the zone limits allow, then we adjust
543 			 * the ani_resv value up so that it is the difference
544 			 * between the zone cap and the amount of free system
545 			 * swap.  Taking the above example, but when the
546 			 * system as a whole only has 20 of swap available, we
547 			 * get an ani_resv of 100 - 20 = 80.  This gives:
548 			 *    allocated = ani_max  - ani_free  = 100 - 25 = 75
549 			 *    reserved  = ani_resv - allocated =  80 - 75 =  5
550 			 *    available = ani_max  - ani_resv  = 100 - 80 = 20
551 			 *
552 			 * In this case, you can see how the ani_resv value is
553 			 * tweaked up to make the 'swap -s' numbers work inside
554 			 * the zone.
555 			 */
556 			rctl_qty_t cap, used;
557 			pgcnt_t pgcap, sys_avail;
558 
559 			mutex_enter(&zp->zone_mem_lock);
560 			cap = zp->zone_max_swap_ctl;
561 			used = zp->zone_max_swap;
562 			mutex_exit(&zp->zone_mem_lock);
563 
564 			pgcap = MIN(btop(cap), ai.ani_max);
565 			ai.ani_free = pgcap - btop(used);
566 
567 			/* Get the system-wide swap currently available. */
568 			sys_avail = ai.ani_max - ai.ani_resv;
569 			if (sys_avail < ai.ani_free)
570 				ai.ani_resv = pgcap - sys_avail;
571 			else
572 				ai.ani_resv = btop(used);
573 
574 			ai.ani_max = pgcap;
575 		}
576 
577 		if (copyout(&ai, sc_arg, sizeof (struct anoninfo)) != 0)
578 			return (EFAULT);
579 		return (0);
580 
581 	case SC_LIST:
582 		if (copyin(sc_arg, &length, sizeof (int)) != 0)
583 			return (EFAULT);
584 		if (!global) {
585 			struct swapent st;
586 			char *swappath = "swap";
587 
588 			if (length < 1)
589 				return (ENOMEM);
590 			ust = (swapent_t *)((swaptbl_t *)sc_arg)->swt_ent;
591 			if (copyin(ust, &st, sizeof (swapent_t)) != 0)
592 				return (EFAULT);
593 			st.ste_start = PAGESIZE >> SCTRSHFT;
594 			st.ste_length = (off_t)0;
595 			st.ste_pages = 0;
596 			st.ste_free = 0;
597 			st.ste_flags = 0;
598 
599 			mutex_enter(&swapinfo_lock);
600 			for (sip = swapinfo, nswap = 0;
601 			    sip != NULL && nswap < nswapfiles;
602 			    sip = sip->si_next, nswap++) {
603 				st.ste_length +=
604 				    (sip->si_eoff - sip->si_soff) >> SCTRSHFT;
605 				st.ste_pages += sip->si_npgs;
606 				st.ste_free += sip->si_nfpgs;
607 			}
608 			mutex_exit(&swapinfo_lock);
609 
610 			if (zp->zone_max_swap_ctl != UINT64_MAX) {
611 				rctl_qty_t cap, used;
612 
613 				mutex_enter(&zp->zone_mem_lock);
614 				cap = zp->zone_max_swap_ctl;
615 				used = zp->zone_max_swap;
616 				mutex_exit(&zp->zone_mem_lock);
617 
618 				st.ste_length = MIN(cap, st.ste_length);
619 				st.ste_pages = MIN(btop(cap), st.ste_pages);
620 				st.ste_free = MIN(st.ste_pages - btop(used),
621 				    st.ste_free);
622 			}
623 
624 			if (copyout(&st, ust, sizeof (swapent_t)) != 0 ||
625 			    copyout(swappath, st.ste_path,
626 			    strlen(swappath) + 1) != 0) {
627 				return (EFAULT);
628 			}
629 			*rv = 1;
630 			return (0);
631 		}
632 beginning:
633 		mutex_enter(&swapinfo_lock);
634 		tmp_nswapfiles = nswapfiles;
635 		mutex_exit(&swapinfo_lock);
636 
637 		/*
638 		 * Return early if there are no swap entries to report:
639 		 */
640 		if (tmp_nswapfiles < 1) {
641 			*rv = 0;
642 			return (0);
643 		}
644 
645 		/* Return an error if not enough space for the whole table. */
646 		if (length < tmp_nswapfiles)
647 			return (ENOMEM);
648 		/*
649 		 * Get memory to hold the swap entries and their names. We'll
650 		 * copy the real entries into these and then copy these out.
651 		 * Allocating the pathname memory is only a guess so we may
652 		 * find that we need more and have to do it again.
653 		 * All this is because we have to hold the anon lock while
654 		 * traversing the swapinfo list, and we can't be doing copyouts
655 		 * and/or kmem_alloc()s during this.
656 		 */
657 		csip = kmem_zalloc(tmp_nswapfiles * sizeof (struct swapinfo),
658 		    KM_SLEEP);
659 retry:
660 		nlen = tmp_nswapfiles * (gplen += 100);
661 		pname = kmem_zalloc(nlen, KM_SLEEP);
662 
663 		mutex_enter(&swapinfo_lock);
664 
665 		if (tmp_nswapfiles != nswapfiles) {
666 			mutex_exit(&swapinfo_lock);
667 			kmem_free(pname, nlen);
668 			kmem_free(csip,
669 			    tmp_nswapfiles * sizeof (struct swapinfo));
670 			gplen = 0;
671 			goto beginning;
672 		}
673 		for (sip = swapinfo, tsip = csip, tpname = pname, nswap = 0;
674 		    sip && nswap < tmp_nswapfiles;
675 		    sip = sip->si_next, tsip++, tpname += plen, nswap++) {
676 			plen = sip->si_pnamelen;
677 			if (tpname + plen - pname > nlen) {
678 				mutex_exit(&swapinfo_lock);
679 				kmem_free(pname, nlen);
680 				goto retry;
681 			}
682 			*tsip = *sip;
683 			tsip->si_pname = tpname;
684 			(void) strcpy(tsip->si_pname, sip->si_pname);
685 		}
686 		mutex_exit(&swapinfo_lock);
687 
688 		if (sip) {
689 			error = ENOMEM;
690 			goto lout;
691 		}
692 		ust = (swapent_t *)((swaptbl_t *)sc_arg)->swt_ent;
693 		for (tsip = csip, cnt = 0; cnt < nswap;  tsip++, ust++, cnt++) {
694 			if (copyin(ust, &st, sizeof (swapent_t)) != 0) {
695 				error = EFAULT;
696 				goto lout;
697 			}
698 			st.ste_flags = tsip->si_flags;
699 			st.ste_length =
700 			    (tsip->si_eoff - tsip->si_soff) >> SCTRSHFT;
701 			st.ste_start = tsip->si_soff >> SCTRSHFT;
702 			st.ste_pages = tsip->si_npgs;
703 			st.ste_free = tsip->si_nfpgs;
704 			if (copyout(&st, ust, sizeof (swapent_t)) != 0) {
705 				error = EFAULT;
706 				goto lout;
707 			}
708 			if (!tsip->si_pnamelen)
709 				continue;
710 			if (copyout(tsip->si_pname, st.ste_path,
711 			    tsip->si_pnamelen) != 0) {
712 				error = EFAULT;
713 				goto lout;
714 			}
715 		}
716 		*rv = nswap;
717 lout:
718 		kmem_free(csip, tmp_nswapfiles * sizeof (struct swapinfo));
719 		kmem_free(pname, nlen);
720 		return (error);
721 
722 	case SC_ADD:
723 	case SC_REMOVE:
724 		break;
725 	default:
726 		return (EINVAL);
727 	}
728 	if ((error = secpolicy_swapctl(CRED())) != 0)
729 		return (error);
730 
731 	if (copyin(sc_arg, &sr, sizeof (swapres_t)))
732 		return (EFAULT);
733 
734 	/* Allocate the space to read in pathname */
735 	if ((swapname = kmem_alloc(MAXPATHLEN, KM_NOSLEEP)) == NULL)
736 		return (ENOMEM);
737 
738 	error = copyinstr(sr.sr_name, swapname, MAXPATHLEN, 0);
739 	if (error)
740 		goto out;
741 
742 	error = lookupname(swapname, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
743 	if (error) {
744 		if (sc_cmd == SC_ADD)
745 			goto out;
746 		/* see if we match by name */
747 		vp = swapdel_byname(swapname, (size_t)sr.sr_start);
748 		if (vp == NULL)
749 			goto out;
750 	}
751 
752 	if (vp->v_flag & (VNOMAP | VNOSWAP)) {
753 		VN_RELE(vp);
754 		error = ENOSYS;
755 		goto out;
756 	}
757 	switch (vp->v_type) {
758 	case VBLK:
759 		break;
760 
761 	case VREG:
762 		if (vp->v_vfsp && vn_is_readonly(vp))
763 			error = EROFS;
764 		else
765 			error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL);
766 		break;
767 
768 	case VDIR:
769 		error = EISDIR;
770 		break;
771 	default:
772 		error = ENOSYS;
773 		break;
774 	}
775 	if (error == 0) {
776 		if (sc_cmd == SC_REMOVE)
777 			error = swapdel(vp, sr.sr_start);
778 		else
779 			error = swapadd(vp, sr.sr_start,
780 			    sr.sr_length, swapname);
781 	}
782 	VN_RELE(vp);
783 out:
784 	kmem_free(swapname, MAXPATHLEN);
785 	return (error);
786 }
787 
788 #if defined(_LP64) && defined(_SYSCALL32)
789 
790 int
791 swapctl32(int sc_cmd, void *sc_arg, int *rv)
792 {
793 	struct swapinfo *sip, *csip, *tsip;
794 	int error = 0;
795 	struct swapent32 st, *ust;
796 	struct swapres32 sr;
797 	struct vnode *vp;
798 	int cnt = 0;
799 	int tmp_nswapfiles;
800 	int nswap;
801 	int length, nlen;
802 	int gplen = 0, plen;
803 	char *swapname;
804 	char *pname;
805 	char *tpname;
806 	struct anoninfo32 ai;
807 	size_t s;
808 	spgcnt_t avail;
809 	int global = INGLOBALZONE(curproc);
810 	struct zone *zp = curproc->p_zone;
811 
812 	/*
813 	 * When running in a zone we want to hide the details of the swap
814 	 * devices: we report there only being one swap device named "swap"
815 	 * having a size equal to the sum of the sizes of all real swap devices
816 	 * on the system.
817 	 */
818 	switch (sc_cmd) {
819 	case SC_GETNSWP:
820 		if (global)
821 			*rv = nswapfiles;
822 		else
823 			*rv = 1;
824 		return (0);
825 
826 	case SC_AINFO:
827 		/*
828 		 * Return anoninfo information with these changes:
829 		 * ani_max = maximum amount of swap space
830 		 *	(including potentially available physical memory)
831 		 * ani_free = amount of unallocated anonymous memory
832 		 *	(some of which might be reserved and including
833 		 *	 potentially available physical memory)
834 		 * ani_resv = amount of claimed (reserved) anonymous memory
835 		 */
836 		avail = MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
837 		s = (k_anoninfo.ani_max + k_anoninfo.ani_mem_resv) + avail;
838 		if (s > UINT32_MAX)
839 			return (EOVERFLOW);
840 		ai.ani_max = s;
841 
842 		/* Update ani_free */
843 		set_anoninfo();
844 		s = k_anoninfo.ani_free + avail;
845 		if (s > UINT32_MAX)
846 			return (EOVERFLOW);
847 		ai.ani_free = s;
848 
849 		s = k_anoninfo.ani_phys_resv + k_anoninfo.ani_mem_resv;
850 		if (s > UINT32_MAX)
851 			return (EOVERFLOW);
852 		ai.ani_resv = s;
853 
854 		if (!global && zp->zone_max_swap_ctl != UINT64_MAX) {
855 			/*
856 			 * We're in a non-global zone with a swap cap.  We
857 			 * always report the system-wide values for the global
858 			 * zone, even though it too can have a swap cap.
859 			 * See the comment for the SC_AINFO case in swapctl()
860 			 * which explains the following logic.
861 			 */
862 			rctl_qty_t cap, used;
863 			pgcnt_t pgcap, sys_avail;
864 
865 			mutex_enter(&zp->zone_mem_lock);
866 			cap = zp->zone_max_swap_ctl;
867 			used = zp->zone_max_swap;
868 			mutex_exit(&zp->zone_mem_lock);
869 
870 			pgcap = MIN(btop(cap), ai.ani_max);
871 			ai.ani_free = pgcap - btop(used);
872 
873 			/* Get the system-wide swap currently available. */
874 			sys_avail = ai.ani_max - ai.ani_resv;
875 			if (sys_avail < ai.ani_free)
876 				ai.ani_resv = pgcap - sys_avail;
877 			else
878 				ai.ani_resv = btop(used);
879 
880 			ai.ani_max = pgcap;
881 		}
882 
883 		if (copyout(&ai, sc_arg, sizeof (ai)) != 0)
884 			return (EFAULT);
885 		return (0);
886 
887 	case SC_LIST:
888 		if (copyin(sc_arg, &length, sizeof (int32_t)) != 0)
889 			return (EFAULT);
890 		if (!global) {
891 			struct swapent32 st;
892 			char *swappath = "swap";
893 
894 			if (length < 1)
895 				return (ENOMEM);
896 			ust = (swapent32_t *)((swaptbl32_t *)sc_arg)->swt_ent;
897 			if (copyin(ust, &st, sizeof (swapent32_t)) != 0)
898 				return (EFAULT);
899 			st.ste_start = PAGESIZE >> SCTRSHFT;
900 			st.ste_length = (off_t)0;
901 			st.ste_pages = 0;
902 			st.ste_free = 0;
903 			st.ste_flags = 0;
904 
905 			mutex_enter(&swapinfo_lock);
906 			for (sip = swapinfo, nswap = 0;
907 			    sip != NULL && nswap < nswapfiles;
908 			    sip = sip->si_next, nswap++) {
909 				st.ste_length +=
910 				    (sip->si_eoff - sip->si_soff) >> SCTRSHFT;
911 				st.ste_pages += sip->si_npgs;
912 				st.ste_free += sip->si_nfpgs;
913 			}
914 			mutex_exit(&swapinfo_lock);
915 
916 			if (zp->zone_max_swap_ctl != UINT64_MAX) {
917 				rctl_qty_t cap, used;
918 
919 				mutex_enter(&zp->zone_mem_lock);
920 				cap = zp->zone_max_swap_ctl;
921 				used = zp->zone_max_swap;
922 				mutex_exit(&zp->zone_mem_lock);
923 
924 				st.ste_length = MIN(cap, st.ste_length);
925 				st.ste_pages = MIN(btop(cap), st.ste_pages);
926 				st.ste_free = MIN(st.ste_pages - btop(used),
927 				    st.ste_free);
928 			}
929 
930 			if (copyout(&st, ust, sizeof (swapent32_t)) != 0 ||
931 			    copyout(swappath, (caddr_t)(uintptr_t)st.ste_path,
932 			    strlen(swappath) + 1) != 0) {
933 				return (EFAULT);
934 			}
935 			*rv = 1;
936 			return (0);
937 		}
938 beginning:
939 		mutex_enter(&swapinfo_lock);
940 		tmp_nswapfiles = nswapfiles;
941 		mutex_exit(&swapinfo_lock);
942 
943 		/*
944 		 * Return early if there are no swap entries to report:
945 		 */
946 		if (tmp_nswapfiles < 1) {
947 			*rv = 0;
948 			return (0);
949 		}
950 
951 		/* Return an error if not enough space for the whole table. */
952 		if (length < tmp_nswapfiles)
953 			return (ENOMEM);
954 		/*
955 		 * Get memory to hold the swap entries and their names. We'll
956 		 * copy the real entries into these and then copy these out.
957 		 * Allocating the pathname memory is only a guess so we may
958 		 * find that we need more and have to do it again.
959 		 * All this is because we have to hold the anon lock while
960 		 * traversing the swapinfo list, and we can't be doing copyouts
961 		 * and/or kmem_alloc()s during this.
962 		 */
963 		csip = kmem_zalloc(tmp_nswapfiles * sizeof (*csip), KM_SLEEP);
964 retry:
965 		nlen = tmp_nswapfiles * (gplen += 100);
966 		pname = kmem_zalloc(nlen, KM_SLEEP);
967 
968 		mutex_enter(&swapinfo_lock);
969 
970 		if (tmp_nswapfiles != nswapfiles) {
971 			mutex_exit(&swapinfo_lock);
972 			kmem_free(pname, nlen);
973 			kmem_free(csip, tmp_nswapfiles * sizeof (*csip));
974 			gplen = 0;
975 			goto beginning;
976 		}
977 		for (sip = swapinfo, tsip = csip, tpname = pname, nswap = 0;
978 		    (sip != NULL) && (nswap < tmp_nswapfiles);
979 		    sip = sip->si_next, tsip++, tpname += plen, nswap++) {
980 			plen = sip->si_pnamelen;
981 			if (tpname + plen - pname > nlen) {
982 				mutex_exit(&swapinfo_lock);
983 				kmem_free(pname, nlen);
984 				goto retry;
985 			}
986 			*tsip = *sip;
987 			tsip->si_pname = tpname;
988 			(void) strcpy(tsip->si_pname, sip->si_pname);
989 		}
990 		mutex_exit(&swapinfo_lock);
991 
992 		if (sip != NULL) {
993 			error = ENOMEM;
994 			goto lout;
995 		}
996 		ust = (swapent32_t *)((swaptbl32_t *)sc_arg)->swt_ent;
997 		for (tsip = csip, cnt = 0; cnt < nswap;  tsip++, ust++, cnt++) {
998 			if (copyin(ust, &st, sizeof (*ust)) != 0) {
999 				error = EFAULT;
1000 				goto lout;
1001 			}
1002 			st.ste_flags = tsip->si_flags;
1003 			st.ste_length =
1004 			    (tsip->si_eoff - tsip->si_soff) >> SCTRSHFT;
1005 			st.ste_start = tsip->si_soff >> SCTRSHFT;
1006 			st.ste_pages = tsip->si_npgs;
1007 			st.ste_free = tsip->si_nfpgs;
1008 			if (copyout(&st, ust, sizeof (st)) != 0) {
1009 				error = EFAULT;
1010 				goto lout;
1011 			}
1012 			if (!tsip->si_pnamelen)
1013 				continue;
1014 			if (copyout(tsip->si_pname,
1015 			    (caddr_t)(uintptr_t)st.ste_path,
1016 			    tsip->si_pnamelen) != 0) {
1017 				error = EFAULT;
1018 				goto lout;
1019 			}
1020 		}
1021 		*rv = nswap;
1022 lout:
1023 		kmem_free(csip, tmp_nswapfiles * sizeof (*csip));
1024 		kmem_free(pname, nlen);
1025 		return (error);
1026 
1027 	case SC_ADD:
1028 	case SC_REMOVE:
1029 		break;
1030 	default:
1031 		return (EINVAL);
1032 	}
1033 	if ((error = secpolicy_swapctl(CRED())) != 0)
1034 		return (error);
1035 
1036 	if (copyin(sc_arg, &sr, sizeof (sr)))
1037 		return (EFAULT);
1038 
1039 	/* Allocate the space to read in pathname */
1040 	if ((swapname = kmem_alloc(MAXPATHLEN, KM_NOSLEEP)) == NULL)
1041 		return (ENOMEM);
1042 
1043 	error = copyinstr((caddr_t)(uintptr_t)sr.sr_name,
1044 	    swapname, MAXPATHLEN, NULL);
1045 	if (error)
1046 		goto out;
1047 
1048 	error = lookupname(swapname, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
1049 	if (error) {
1050 		if (sc_cmd == SC_ADD)
1051 			goto out;
1052 		/* see if we match by name */
1053 		vp = swapdel_byname(swapname, (uint_t)sr.sr_start);
1054 		if (vp == NULL)
1055 			goto out;
1056 	}
1057 
1058 	if (vp->v_flag & (VNOMAP | VNOSWAP)) {
1059 		VN_RELE(vp);
1060 		error = ENOSYS;
1061 		goto out;
1062 	}
1063 	switch (vp->v_type) {
1064 	case VBLK:
1065 		break;
1066 
1067 	case VREG:
1068 		if (vp->v_vfsp && vn_is_readonly(vp))
1069 			error = EROFS;
1070 		else
1071 			error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL);
1072 		break;
1073 
1074 	case VDIR:
1075 		error = EISDIR;
1076 		break;
1077 	default:
1078 		error = ENOSYS;
1079 		break;
1080 	}
1081 	if (error == 0) {
1082 		if (sc_cmd == SC_REMOVE)
1083 			error = swapdel(vp, sr.sr_start);
1084 		else
1085 			error = swapadd(vp, sr.sr_start, sr.sr_length,
1086 			    swapname);
1087 	}
1088 	VN_RELE(vp);
1089 out:
1090 	kmem_free(swapname, MAXPATHLEN);
1091 	return (error);
1092 }
1093 
1094 #endif /* _LP64 && _SYSCALL32 */
1095 
1096 /*
1097  * Add a new swap file.
1098  */
1099 int
1100 swapadd(struct vnode *vp, ulong_t lowblk, ulong_t nblks, char *swapname)
1101 {
1102 	struct swapinfo **sipp, *nsip = NULL, *esip = NULL;
1103 	struct vnode *cvp;
1104 	struct vattr vattr;
1105 	pgcnt_t pages;
1106 	u_offset_t soff, eoff;
1107 	int error;
1108 	ssize_t i, start, end;
1109 	ushort_t wasswap;
1110 	ulong_t startblk;
1111 	size_t	returned_mem;
1112 
1113 	SWAP_PRINT(SW_CTL, "swapadd: vp %p lowblk %ld nblks %ld swapname %s\n",
1114 	    vp, lowblk, nblks, swapname, 0);
1115 	/*
1116 	 * Get the real vnode. (If vp is not a specnode it just returns vp, so
1117 	 * it does the right thing, but having this code know about specnodes
1118 	 * violates the spirit of having it be indepedent of vnode type.)
1119 	 */
1120 	cvp = common_specvp(vp);
1121 
1122 	/*
1123 	 * Or in VISSWAP so file system has chance to deny swap-ons during open.
1124 	 */
1125 	mutex_enter(&cvp->v_lock);
1126 	wasswap = cvp->v_flag & VISSWAP;
1127 	cvp->v_flag |= VISSWAP;
1128 	mutex_exit(&cvp->v_lock);
1129 
1130 	mutex_enter(&swap_lock);
1131 	if (error = VOP_OPEN(&cvp, FREAD|FWRITE, CRED(), NULL)) {
1132 		mutex_exit(&swap_lock);
1133 		/* restore state of v_flag */
1134 		if (!wasswap) {
1135 			mutex_enter(&cvp->v_lock);
1136 			cvp->v_flag &= ~VISSWAP;
1137 			mutex_exit(&cvp->v_lock);
1138 		}
1139 		return (error);
1140 	}
1141 	mutex_exit(&swap_lock);
1142 
1143 	/*
1144 	 * Get partition size. Return error if empty partition,
1145 	 * or if request does not fit within the partition.
1146 	 * If this is the first swap device, we can reduce
1147 	 * the size of the swap area to match what is
1148 	 * available.  This can happen if the system was built
1149 	 * on a machine with a different size swap partition.
1150 	 */
1151 	vattr.va_mask = AT_SIZE;
1152 	if (error = VOP_GETATTR(cvp, &vattr, ATTR_COMM, CRED(), NULL))
1153 		goto out;
1154 
1155 	/*
1156 	 * Specfs returns a va_size of MAXOFFSET_T (UNKNOWN_SIZE) when the
1157 	 * size of the device can't be determined.
1158 	 */
1159 	if ((vattr.va_size == 0) || (vattr.va_size == MAXOFFSET_T)) {
1160 		error = EINVAL;
1161 		goto out;
1162 	}
1163 
1164 #ifdef	_ILP32
1165 	/*
1166 	 * No support for large swap in 32-bit OS, if the size of the swap is
1167 	 * bigger than MAXOFF32_T then the size used by swapfs must be limited.
1168 	 * This limitation is imposed by the swap subsystem itself, a D_64BIT
1169 	 * driver as the target of swap operation should be able to field
1170 	 * the IO.
1171 	 */
1172 	if (vattr.va_size > MAXOFF32_T) {
1173 		cmn_err(CE_NOTE,
1174 		    "!swap device %s truncated from 0x%llx to 0x%x bytes",
1175 		    swapname, vattr.va_size, MAXOFF32_T);
1176 		vattr.va_size = MAXOFF32_T;
1177 	}
1178 #endif	/* _ILP32 */
1179 
1180 	/* Fail if file not writeable (try to set size to current size) */
1181 	vattr.va_mask = AT_SIZE;
1182 	if (error = VOP_SETATTR(cvp, &vattr, 0, CRED(), NULL))
1183 		goto out;
1184 
1185 	/* Fail if fs does not support VOP_PAGEIO */
1186 	error = VOP_PAGEIO(cvp, (page_t *)NULL, (u_offset_t)0, 0, 0, CRED(),
1187 	    NULL);
1188 
1189 	if (error == ENOSYS)
1190 		goto out;
1191 	else
1192 		error = 0;
1193 	/*
1194 	 * If swapping on the root filesystem don't put swap blocks that
1195 	 * correspond to the miniroot filesystem on the swap free list.
1196 	 */
1197 	if (cvp == rootdir)
1198 		startblk = roundup(MINIROOTSIZE<<SCTRSHFT, klustsize)>>SCTRSHFT;
1199 	else				/* Skip 1st page (disk label) */
1200 		startblk = (ulong_t)(lowblk ? lowblk : 1);
1201 
1202 	soff = startblk << SCTRSHFT;
1203 	if (soff >= vattr.va_size) {
1204 		error = EINVAL;
1205 		goto out;
1206 	}
1207 
1208 	/*
1209 	 * If user specified 0 blks, use the size of the device
1210 	 */
1211 	eoff = nblks ?  soff + (nblks - (startblk - lowblk) << SCTRSHFT) :
1212 	    vattr.va_size;
1213 
1214 	SWAP_PRINT(SW_CTL, "swapadd: va_size %ld soff %ld eoff %ld\n",
1215 	    vattr.va_size, soff, eoff, 0, 0);
1216 
1217 	if (eoff > vattr.va_size) {
1218 		error = EINVAL;
1219 		goto out;
1220 	}
1221 
1222 	/*
1223 	 * The starting and ending offsets must be page aligned.
1224 	 * Round soff up to next page boundary, round eoff
1225 	 * down to previous page boundary.
1226 	 */
1227 	soff = ptob(btopr(soff));
1228 	eoff = ptob(btop(eoff));
1229 	if (soff >= eoff) {
1230 		SWAP_PRINT(SW_CTL, "swapadd: soff %ld >= eoff %ld\n",
1231 		    soff, eoff, 0, 0, 0);
1232 		error = EINVAL;
1233 		goto out;
1234 	}
1235 
1236 	pages = btop(eoff - soff);
1237 
1238 	/* Allocate and partially set up the new swapinfo */
1239 	nsip = kmem_zalloc(sizeof (struct swapinfo), KM_SLEEP);
1240 	nsip->si_vp = cvp;
1241 
1242 	nsip->si_soff = soff;
1243 	nsip->si_eoff = eoff;
1244 	nsip->si_hint = 0;
1245 	nsip->si_checkcnt = nsip->si_alloccnt = 0;
1246 
1247 	nsip->si_pnamelen = (int)strlen(swapname) + 1;
1248 	nsip->si_pname = (char *)kmem_zalloc(nsip->si_pnamelen, KM_SLEEP);
1249 	bcopy(swapname, nsip->si_pname, nsip->si_pnamelen - 1);
1250 	SWAP_PRINT(SW_CTL, "swapadd: allocating swapinfo for %s, %ld pages\n",
1251 	    swapname, pages, 0, 0, 0);
1252 	/*
1253 	 * Size of swapslots map in bytes
1254 	 */
1255 	nsip->si_mapsize = P2ROUNDUP(pages, NBBW) / NBBY;
1256 	nsip->si_swapslots = kmem_zalloc(nsip->si_mapsize, KM_SLEEP);
1257 
1258 	/*
1259 	 * Permanently set the bits that can't ever be allocated,
1260 	 * i.e. those from the ending offset to the round up slot for the
1261 	 * swapslots bit map.
1262 	 */
1263 	start = pages;
1264 	end = P2ROUNDUP(pages, NBBW);
1265 	for (i = start; i < end; i++) {
1266 		SWAP_PRINT(SW_CTL, "swapadd: set bit for page %ld\n", i,
1267 		    0, 0, 0, 0);
1268 		SETBIT(nsip->si_swapslots, i);
1269 	}
1270 	nsip->si_npgs = nsip->si_nfpgs = pages;
1271 	/*
1272 	 * Now check to see if we can add it. We wait til now to check because
1273 	 * we need the swapinfo_lock and we don't want sleep with it (e.g.,
1274 	 * during kmem_alloc()) while we're setting up the swapinfo.
1275 	 */
1276 	mutex_enter(&swapinfo_lock);
1277 	for (sipp = &swapinfo; (esip = *sipp) != NULL; sipp = &esip->si_next) {
1278 		if (esip->si_vp == cvp) {
1279 			if (esip->si_soff == soff && esip->si_npgs == pages &&
1280 			    (esip->si_flags & ST_DOINGDEL)) {
1281 				/*
1282 				 * We are adding a device that we are in the
1283 				 * middle of deleting. Just clear the
1284 				 * ST_DOINGDEL flag to signal this and
1285 				 * the deletion routine will eventually notice
1286 				 * it and add it back.
1287 				 */
1288 				esip->si_flags &= ~ST_DOINGDEL;
1289 				mutex_exit(&swapinfo_lock);
1290 				goto out;
1291 			}
1292 			/* disallow overlapping swap files */
1293 			if ((soff < esip->si_eoff) && (eoff > esip->si_soff)) {
1294 				error = EEXIST;
1295 				mutex_exit(&swapinfo_lock);
1296 				goto out;
1297 			}
1298 		}
1299 	}
1300 
1301 	nswapfiles++;
1302 
1303 	/*
1304 	 * add new swap device to list and shift allocations to it
1305 	 * before updating the anoninfo counters
1306 	 */
1307 	*sipp = nsip;
1308 	silast = nsip;
1309 
1310 	/*
1311 	 * Update the total amount of reservable swap space
1312 	 * accounting properly for swap space from physical memory
1313 	 */
1314 	/* New swap device soaks up currently reserved memory swap */
1315 	mutex_enter(&anoninfo_lock);
1316 
1317 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
1318 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
1319 
1320 	k_anoninfo.ani_max += pages;
1321 	ANI_ADD(pages);
1322 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
1323 		returned_mem = MIN(k_anoninfo.ani_mem_resv -
1324 		    k_anoninfo.ani_locked_swap,
1325 		    k_anoninfo.ani_max - k_anoninfo.ani_phys_resv);
1326 
1327 		ANI_ADD(-returned_mem);
1328 		k_anoninfo.ani_free -= returned_mem;
1329 		k_anoninfo.ani_mem_resv -= returned_mem;
1330 		k_anoninfo.ani_phys_resv += returned_mem;
1331 
1332 		mutex_enter(&freemem_lock);
1333 		availrmem += returned_mem;
1334 		mutex_exit(&freemem_lock);
1335 	}
1336 	/*
1337 	 * At boot time, to permit booting small memory machines using
1338 	 * only physical memory as swap space, we allowed a dangerously
1339 	 * large amount of memory to be used as swap space; now that
1340 	 * more physical backing store is available bump down the amount
1341 	 * we can get from memory to a safer size.
1342 	 */
1343 	if (swapfs_minfree < swapfs_desfree) {
1344 		mutex_enter(&freemem_lock);
1345 		if (availrmem > swapfs_desfree || !k_anoninfo.ani_mem_resv)
1346 			swapfs_minfree = swapfs_desfree;
1347 		mutex_exit(&freemem_lock);
1348 	}
1349 
1350 	SWAP_PRINT(SW_CTL, "swapadd: ani_max %ld ani_free %ld\n",
1351 	    k_anoninfo.ani_free, k_anoninfo.ani_free, 0, 0, 0);
1352 
1353 	mutex_exit(&anoninfo_lock);
1354 
1355 	mutex_exit(&swapinfo_lock);
1356 
1357 	/* Initialize the dump device */
1358 	mutex_enter(&dump_lock);
1359 	if (dumpvp == NULL)
1360 		(void) dumpinit(vp, swapname, 0);
1361 	mutex_exit(&dump_lock);
1362 
1363 	VN_HOLD(cvp);
1364 out:
1365 	if (error || esip) {
1366 		SWAP_PRINT(SW_CTL, "swapadd: error (%d)\n", error, 0, 0, 0, 0);
1367 
1368 		if (!wasswap) {
1369 			mutex_enter(&cvp->v_lock);
1370 			cvp->v_flag &= ~VISSWAP;
1371 			mutex_exit(&cvp->v_lock);
1372 		}
1373 		if (nsip) {
1374 			kmem_free(nsip->si_swapslots, (size_t)nsip->si_mapsize);
1375 			kmem_free(nsip->si_pname, nsip->si_pnamelen);
1376 			kmem_free(nsip, sizeof (*nsip));
1377 		}
1378 		mutex_enter(&swap_lock);
1379 		(void) VOP_CLOSE(cvp, FREAD|FWRITE, 1, (offset_t)0, CRED(),
1380 		    NULL);
1381 		mutex_exit(&swap_lock);
1382 	}
1383 	return (error);
1384 }
1385 
1386 /*
1387  * Delete a swap file.
1388  */
1389 static int
1390 swapdel(
1391 	struct vnode *vp,
1392 	ulong_t lowblk) /* Low block number of area to delete. */
1393 {
1394 	struct swapinfo **sipp, *osip = NULL;
1395 	struct vnode *cvp;
1396 	u_offset_t soff;
1397 	int error = 0;
1398 	u_offset_t toff = 0;
1399 	struct vnode *tvp = NULL;
1400 	spgcnt_t pages;
1401 	struct anon **app, *ap;
1402 	kmutex_t *ahm;
1403 	pgcnt_t adjust_swap = 0;
1404 
1405 	/* Find the swap file entry for the file to be deleted */
1406 	cvp = common_specvp(vp);
1407 
1408 
1409 	lowblk = lowblk ? lowblk : 1; 	/* Skip first page (disk label) */
1410 	soff = ptob(btopr(lowblk << SCTRSHFT)); /* must be page aligned */
1411 
1412 	mutex_enter(&swapinfo_lock);
1413 	for (sipp = &swapinfo; (osip = *sipp) != NULL; sipp = &osip->si_next) {
1414 		if ((osip->si_vp == cvp) &&
1415 		    (osip->si_soff == soff) && (osip->si_flags == 0))
1416 			break;
1417 	}
1418 
1419 	/* If the file was not found, error.  */
1420 	if (osip == NULL) {
1421 		error = EINVAL;
1422 		mutex_exit(&swapinfo_lock);
1423 		goto out;
1424 	}
1425 
1426 	pages = osip->si_npgs;
1427 
1428 	/*
1429 	 * Do not delete if we will be low on swap pages.
1430 	 */
1431 	mutex_enter(&anoninfo_lock);
1432 
1433 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
1434 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
1435 
1436 	mutex_enter(&freemem_lock);
1437 	if (((k_anoninfo.ani_max - k_anoninfo.ani_phys_resv) +
1438 	    MAX((spgcnt_t)(availrmem - swapfs_minfree), 0)) < pages) {
1439 		mutex_exit(&freemem_lock);
1440 		mutex_exit(&anoninfo_lock);
1441 		error = ENOMEM;
1442 		cmn_err(CE_WARN, "swapdel - too few free pages");
1443 		mutex_exit(&swapinfo_lock);
1444 		goto out;
1445 	}
1446 	mutex_exit(&freemem_lock);
1447 
1448 	k_anoninfo.ani_max -= pages;
1449 
1450 	/* If needed, reserve memory swap to replace old device */
1451 	if (k_anoninfo.ani_phys_resv > k_anoninfo.ani_max) {
1452 		adjust_swap = k_anoninfo.ani_phys_resv - k_anoninfo.ani_max;
1453 		k_anoninfo.ani_phys_resv -= adjust_swap;
1454 		k_anoninfo.ani_mem_resv += adjust_swap;
1455 		mutex_enter(&freemem_lock);
1456 		availrmem -= adjust_swap;
1457 		mutex_exit(&freemem_lock);
1458 		ANI_ADD(adjust_swap);
1459 	}
1460 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
1461 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
1462 	mutex_exit(&anoninfo_lock);
1463 
1464 	ANI_ADD(-pages);
1465 
1466 	/*
1467 	 * Set the delete flag.  This prevents anyone from allocating more
1468 	 * pages from this file. Also set ST_DOINGDEL. Someone who wants to
1469 	 * add the file back while we're deleting it will signify by clearing
1470 	 * this flag.
1471 	 */
1472 	osip->si_flags |= ST_INDEL|ST_DOINGDEL;
1473 	mutex_exit(&swapinfo_lock);
1474 
1475 	/*
1476 	 * Free all the allocated physical slots for this file. We do this
1477 	 * by walking through the entire anon hash array, because we need
1478 	 * to update all the anon slots that have physical swap slots on
1479 	 * this file, and this is the only way to find them all. We go back
1480 	 * to the beginning of a bucket after each slot is freed because the
1481 	 * anonhash_lock is not held during the free and thus the hash table
1482 	 * may change under us.
1483 	 */
1484 	for (app = anon_hash; app < &anon_hash[ANON_HASH_SIZE]; app++) {
1485 		ahm = &anonhash_lock[(app - anon_hash) &
1486 		    (AH_LOCK_SIZE - 1)].pad_mutex;
1487 		mutex_enter(ahm);
1488 top:
1489 		for (ap = *app; ap != NULL; ap = ap->an_hash) {
1490 			if (ap->an_pvp == cvp &&
1491 			    ap->an_poff >= osip->si_soff &&
1492 			    ap->an_poff < osip->si_eoff) {
1493 				ASSERT(TESTBIT(osip->si_swapslots,
1494 				    btop((size_t)(ap->an_poff -
1495 				    osip->si_soff))));
1496 				tvp = ap->an_vp;
1497 				toff = ap->an_off;
1498 				VN_HOLD(tvp);
1499 				mutex_exit(ahm);
1500 
1501 				error = swapslot_free(tvp, toff, osip);
1502 
1503 				VN_RELE(tvp);
1504 				mutex_enter(ahm);
1505 				if (!error && (osip->si_flags & ST_DOINGDEL)) {
1506 					goto top;
1507 				} else {
1508 					if (error) {
1509 						cmn_err(CE_WARN,
1510 						    "swapslot_free failed %d",
1511 						    error);
1512 					}
1513 
1514 					/*
1515 					 * Add device back before making it
1516 					 * visible.
1517 					 */
1518 					mutex_enter(&swapinfo_lock);
1519 					osip->si_flags &=
1520 					    ~(ST_INDEL | ST_DOINGDEL);
1521 					mutex_exit(&swapinfo_lock);
1522 
1523 					/*
1524 					 * Update the anon space available
1525 					 */
1526 					mutex_enter(&anoninfo_lock);
1527 
1528 					k_anoninfo.ani_phys_resv += adjust_swap;
1529 					k_anoninfo.ani_mem_resv -= adjust_swap;
1530 					k_anoninfo.ani_max += pages;
1531 
1532 					mutex_enter(&freemem_lock);
1533 					availrmem += adjust_swap;
1534 					mutex_exit(&freemem_lock);
1535 
1536 					mutex_exit(&anoninfo_lock);
1537 
1538 					ANI_ADD(pages);
1539 
1540 					mutex_exit(ahm);
1541 					goto out;
1542 				}
1543 			}
1544 		}
1545 		mutex_exit(ahm);
1546 	}
1547 
1548 	/* All done, they'd better all be free! */
1549 	mutex_enter(&swapinfo_lock);
1550 	ASSERT(osip->si_nfpgs == osip->si_npgs);
1551 
1552 	/* Now remove it from the swapinfo list */
1553 	for (sipp = &swapinfo; *sipp != NULL; sipp = &(*sipp)->si_next) {
1554 		if (*sipp == osip)
1555 			break;
1556 	}
1557 	ASSERT(*sipp);
1558 	*sipp = osip->si_next;
1559 	if (silast == osip)
1560 		if ((silast = osip->si_next) == NULL)
1561 			silast = swapinfo;
1562 	nswapfiles--;
1563 	mutex_exit(&swapinfo_lock);
1564 
1565 	kmem_free(osip->si_swapslots, osip->si_mapsize);
1566 	kmem_free(osip->si_pname, osip->si_pnamelen);
1567 	kmem_free(osip, sizeof (*osip));
1568 
1569 	mutex_enter(&dump_lock);
1570 	if (cvp == dumpvp)
1571 		dumpfini();
1572 	mutex_exit(&dump_lock);
1573 
1574 	/* Release the vnode */
1575 
1576 	mutex_enter(&swap_lock);
1577 	(void) VOP_CLOSE(cvp, FREAD|FWRITE, 1, (offset_t)0, CRED(), NULL);
1578 	mutex_enter(&cvp->v_lock);
1579 	cvp->v_flag &= ~VISSWAP;
1580 	mutex_exit(&cvp->v_lock);
1581 	VN_RELE(cvp);
1582 	mutex_exit(&swap_lock);
1583 out:
1584 	return (error);
1585 }
1586 
1587 /*
1588  * Free up a physical swap slot on swapinfo sip, currently in use by the
1589  * anonymous page whose name is (vp, off).
1590  */
1591 static int
1592 swapslot_free(
1593 	struct vnode *vp,
1594 	u_offset_t off,
1595 	struct swapinfo *sip)
1596 {
1597 	struct page *pp = NULL;
1598 	struct anon *ap = NULL;
1599 	int error = 0;
1600 	kmutex_t *ahm;
1601 	struct vnode *pvp = NULL;
1602 	u_offset_t poff;
1603 	int	alloc_pg = 0;
1604 
1605 	ASSERT(sip->si_vp != NULL);
1606 	/*
1607 	 * Get the page for the old swap slot if exists or create a new one.
1608 	 */
1609 again:
1610 	if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) {
1611 		pp = page_create_va(vp, off, PAGESIZE, PG_WAIT | PG_EXCL,
1612 		    segkmap, NULL);
1613 		if (pp == NULL)
1614 			goto again;
1615 		alloc_pg = 1;
1616 
1617 		error = swap_getphysname(vp, off, &pvp, &poff);
1618 		if (error || pvp != sip->si_vp || poff < sip->si_soff ||
1619 		    poff >= sip->si_eoff) {
1620 			page_io_unlock(pp);
1621 			/*LINTED: constant in conditional context*/
1622 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
1623 			return (0);
1624 		}
1625 
1626 		error = VOP_PAGEIO(pvp, pp, poff, PAGESIZE, B_READ,
1627 		    CRED(), NULL);
1628 		if (error) {
1629 			page_io_unlock(pp);
1630 			if (error == EFAULT)
1631 				error = 0;
1632 			/*LINTED: constant in conditional context*/
1633 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
1634 			return (error);
1635 		}
1636 	}
1637 
1638 	/*
1639 	 * The anon could have been removed by anon_decref* and/or reallocated
1640 	 * by anon layer (an_pvp == NULL) with the same vp, off.
1641 	 * In this case the page which has been allocated needs to
1642 	 * be freed.
1643 	 */
1644 	if (!alloc_pg)
1645 		page_io_lock(pp);
1646 	ahm = AH_MUTEX(vp, off);
1647 	mutex_enter(ahm);
1648 	ap = swap_anon(vp, off);
1649 	if ((ap == NULL || ap->an_pvp == NULL) && alloc_pg) {
1650 		mutex_exit(ahm);
1651 		page_io_unlock(pp);
1652 		/*LINTED: constant in conditional context*/
1653 		VN_DISPOSE(pp, B_INVAL, 0, kcred);
1654 		return (0);
1655 	}
1656 
1657 	/*
1658 	 * Free the physical slot. It may have been freed up and replaced with
1659 	 * another one while we were getting the page so we have to re-verify
1660 	 * that this is really one we want. If we do free the slot we have
1661 	 * to mark the page modified, as its backing store is now gone.
1662 	 */
1663 	if ((ap != NULL) && (ap->an_pvp == sip->si_vp && ap->an_poff >=
1664 	    sip->si_soff && ap->an_poff < sip->si_eoff)) {
1665 		swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
1666 		ap->an_pvp = NULL;
1667 		ap->an_poff = 0;
1668 		mutex_exit(ahm);
1669 		hat_setmod(pp);
1670 	} else {
1671 		mutex_exit(ahm);
1672 	}
1673 	page_io_unlock(pp);
1674 	page_unlock(pp);
1675 	return (0);
1676 }
1677 
1678 
1679 /*
1680  * Get contig physical backing store for vp, in the range
1681  * [*offp, *offp + *lenp), May back a subrange of this, but must
1682  * always include the requested offset or fail. Returns the offsets
1683  * backed as [*offp, *offp + *lenp) and the physical offsets used to
1684  * back them from *pvpp in the range [*pstartp, *pstartp + *lenp).
1685  * Returns 	0 for success
1686  * 		SE_NOANON -- no anon slot for requested paged
1687  *		SE_NOSWAP -- no physical swap space available
1688  */
1689 int
1690 swap_newphysname(
1691 	struct vnode *vp,
1692 	u_offset_t offset,
1693 	u_offset_t *offp,
1694 	size_t *lenp,
1695 	struct vnode **pvpp,
1696 	u_offset_t *poffp)
1697 {
1698 	struct anon *ap = NULL;		/* anon slot for vp, off */
1699 	int error = 0;
1700 	struct vnode *pvp;
1701 	u_offset_t poff, pstart, prem;
1702 	size_t plen;
1703 	u_offset_t off, start;
1704 	kmutex_t *ahm;
1705 
1706 	ASSERT(*offp <= offset && offset < *offp + *lenp);
1707 
1708 	/* Get new physical swap slots. */
1709 	plen = *lenp;
1710 	if (!swap_phys_alloc(&pvp, &pstart, &plen, 0)) {
1711 		/*
1712 		 * No swap available so return error unless requested
1713 		 * offset is already backed in which case return that.
1714 		 */
1715 		ahm = AH_MUTEX(vp, offset);
1716 		mutex_enter(ahm);
1717 		if ((ap = swap_anon(vp, offset)) == NULL) {
1718 			error = SE_NOANON;
1719 			mutex_exit(ahm);
1720 			return (error);
1721 		}
1722 		error = (ap->an_pvp ? 0 : SE_NOSWAP);
1723 		*offp = offset;
1724 		*lenp = PAGESIZE;
1725 		*pvpp = ap->an_pvp;
1726 		*poffp = ap->an_poff;
1727 		mutex_exit(ahm);
1728 		return (error);
1729 	}
1730 
1731 	/*
1732 	 * We got plen (<= *lenp) contig slots. Use these to back a
1733 	 * subrange of [*offp, *offp + *lenp) which includes offset.
1734 	 * For now we just put offset at the end of the kluster.
1735 	 * Clearly there are other possible choices - which is best?
1736 	 */
1737 	start = MAX(*offp,
1738 	    (offset + PAGESIZE > plen) ? (offset + PAGESIZE - plen) : 0);
1739 	ASSERT(start + plen <= *offp + *lenp);
1740 
1741 	for (off = start, poff = pstart; poff < pstart + plen;
1742 	    off += PAGESIZE, poff += PAGESIZE) {
1743 		ahm = AH_MUTEX(vp, off);
1744 		mutex_enter(ahm);
1745 		if ((ap = swap_anon(vp, off)) != NULL) {
1746 			/* Free old slot if any, and assign new one */
1747 			if (ap->an_pvp)
1748 				swap_phys_free(ap->an_pvp, ap->an_poff,
1749 				    PAGESIZE);
1750 			ap->an_pvp = pvp;
1751 			ap->an_poff = poff;
1752 		} else {	/* No anon slot for a klustered page, quit. */
1753 			prem = (pstart + plen) - poff;
1754 			/* Already did requested page, do partial kluster */
1755 			if (off > offset) {
1756 				plen = poff - pstart;
1757 				error = 0;
1758 			/* Fail on requested page, error */
1759 			} else if (off == offset)  {
1760 				error = SE_NOANON;
1761 			/* Fail on prior page, fail on requested page, error */
1762 			} else if ((ap = swap_anon(vp, offset)) == NULL) {
1763 				error = SE_NOANON;
1764 			/* Fail on prior page, got requested page, do only it */
1765 			} else {
1766 				/* Free old slot if any, and assign new one */
1767 				if (ap->an_pvp)
1768 					swap_phys_free(ap->an_pvp, ap->an_poff,
1769 					    PAGESIZE);
1770 				ap->an_pvp = pvp;
1771 				ap->an_poff = poff;
1772 				/* One page kluster */
1773 				start = offset;
1774 				plen = PAGESIZE;
1775 				pstart = poff;
1776 				poff += PAGESIZE;
1777 				prem -= PAGESIZE;
1778 			}
1779 			/* Free unassigned slots */
1780 			swap_phys_free(pvp, poff, prem);
1781 			mutex_exit(ahm);
1782 			break;
1783 		}
1784 		mutex_exit(ahm);
1785 	}
1786 	ASSERT(*offp <= start && start + plen <= *offp + *lenp);
1787 	ASSERT(start <= offset && offset < start + plen);
1788 	*offp = start;
1789 	*lenp = plen;
1790 	*pvpp = pvp;
1791 	*poffp = pstart;
1792 	return (error);
1793 }
1794 
1795 
1796 /*
1797  * Get the physical swap backing store location for a given anonymous page
1798  * named (vp, off). The backing store name is returned in (*pvpp, *poffp).
1799  * Returns	0 		success
1800  *		EIDRM --	no anon slot (page is not allocated)
1801  */
1802 int
1803 swap_getphysname(
1804 	struct vnode *vp,
1805 	u_offset_t off,
1806 	struct vnode **pvpp,
1807 	u_offset_t *poffp)
1808 {
1809 	struct anon *ap;
1810 	int error = 0;
1811 	kmutex_t *ahm;
1812 
1813 	ahm = AH_MUTEX(vp, off);
1814 	mutex_enter(ahm);
1815 
1816 	/* Get anon slot for vp, off */
1817 	ap = swap_anon(vp, off);
1818 	if (ap == NULL) {
1819 		error = EIDRM;
1820 		goto out;
1821 	}
1822 	*pvpp = ap->an_pvp;
1823 	*poffp = ap->an_poff;
1824 out:
1825 	mutex_exit(ahm);
1826 	return (error);
1827 }
1828