1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2015, Josef 'Jeff' Sipek <jeffpc@josefsipek.net> 24 * Copyright (c) 2015, 2016 by Delphix. All rights reserved. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 /* 41 * VM - physical page management. 42 */ 43 44 #include <sys/types.h> 45 #include <sys/t_lock.h> 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/errno.h> 49 #include <sys/time.h> 50 #include <sys/vnode.h> 51 #include <sys/vm.h> 52 #include <sys/vtrace.h> 53 #include <sys/swap.h> 54 #include <sys/cmn_err.h> 55 #include <sys/tuneable.h> 56 #include <sys/sysmacros.h> 57 #include <sys/cpuvar.h> 58 #include <sys/callb.h> 59 #include <sys/debug.h> 60 #include <sys/tnf_probe.h> 61 #include <sys/condvar_impl.h> 62 #include <sys/mem_config.h> 63 #include <sys/mem_cage.h> 64 #include <sys/kmem.h> 65 #include <sys/atomic.h> 66 #include <sys/strlog.h> 67 #include <sys/mman.h> 68 #include <sys/ontrap.h> 69 #include <sys/lgrp.h> 70 #include <sys/vfs.h> 71 72 #include <vm/hat.h> 73 #include <vm/anon.h> 74 #include <vm/page.h> 75 #include <vm/seg.h> 76 #include <vm/pvn.h> 77 #include <vm/seg_kmem.h> 78 #include <vm/vm_dep.h> 79 #include <sys/vm_usage.h> 80 #include <fs/fs_subr.h> 81 #include <sys/ddi.h> 82 #include <sys/modctl.h> 83 84 static pgcnt_t max_page_get; /* max page_get request size in pages */ 85 pgcnt_t total_pages = 0; /* total number of pages (used by /proc) */ 86 87 /* 88 * freemem_lock protects all freemem variables: 89 * availrmem. Also this lock protects the globals which track the 90 * availrmem changes for accurate kernel footprint calculation. 91 * See below for an explanation of these 92 * globals. 93 */ 94 kmutex_t freemem_lock; 95 pgcnt_t availrmem; 96 pgcnt_t availrmem_initial; 97 98 /* 99 * These globals track availrmem changes to get a more accurate 100 * estimate of tke kernel size. Historically pp_kernel is used for 101 * kernel size and is based on availrmem. But availrmem is adjusted for 102 * locked pages in the system not just for kernel locked pages. 103 * These new counters will track the pages locked through segvn and 104 * by explicit user locking. 105 * 106 * pages_locked : How many pages are locked because of user specified 107 * locking through mlock or plock. 108 * 109 * pages_useclaim,pages_claimed : These two variables track the 110 * claim adjustments because of the protection changes on a segvn segment. 111 * 112 * All these globals are protected by the same lock which protects availrmem. 113 */ 114 pgcnt_t pages_locked = 0; 115 pgcnt_t pages_useclaim = 0; 116 pgcnt_t pages_claimed = 0; 117 118 119 /* 120 * new_freemem_lock protects freemem, freemem_wait & freemem_cv. 121 */ 122 static kmutex_t new_freemem_lock; 123 static uint_t freemem_wait; /* someone waiting for freemem */ 124 static kcondvar_t freemem_cv; 125 126 /* 127 * The logical page free list is maintained as two lists, the 'free' 128 * and the 'cache' lists. 129 * The free list contains those pages that should be reused first. 130 * 131 * The implementation of the lists is machine dependent. 132 * page_get_freelist(), page_get_cachelist(), 133 * page_list_sub(), and page_list_add() 134 * form the interface to the machine dependent implementation. 135 * 136 * Pages with p_free set are on the cache list. 137 * Pages with p_free and p_age set are on the free list, 138 * 139 * A page may be locked while on either list. 140 */ 141 142 /* 143 * free list accounting stuff. 144 * 145 * 146 * Spread out the value for the number of pages on the 147 * page free and page cache lists. If there is just one 148 * value, then it must be under just one lock. 149 * The lock contention and cache traffic are a real bother. 150 * 151 * When we acquire and then drop a single pcf lock 152 * we can start in the middle of the array of pcf structures. 153 * If we acquire more than one pcf lock at a time, we need to 154 * start at the front to avoid deadlocking. 155 * 156 * pcf_count holds the number of pages in each pool. 157 * 158 * pcf_block is set when page_create_get_something() has asked the 159 * PSM page freelist and page cachelist routines without specifying 160 * a color and nothing came back. This is used to block anything 161 * else from moving pages from one list to the other while the 162 * lists are searched again. If a page is freeed while pcf_block is 163 * set, then pcf_reserve is incremented. pcgs_unblock() takes care 164 * of clearning pcf_block, doing the wakeups, etc. 165 */ 166 167 #define MAX_PCF_FANOUT NCPU 168 static uint_t pcf_fanout = 1; /* Will get changed at boot time */ 169 static uint_t pcf_fanout_mask = 0; 170 171 struct pcf { 172 kmutex_t pcf_lock; /* protects the structure */ 173 uint_t pcf_count; /* page count */ 174 uint_t pcf_wait; /* number of waiters */ 175 uint_t pcf_block; /* pcgs flag to page_free() */ 176 uint_t pcf_reserve; /* pages freed after pcf_block set */ 177 uint_t pcf_fill[10]; /* to line up on the caches */ 178 }; 179 180 /* 181 * PCF_INDEX hash needs to be dynamic (every so often the hash changes where 182 * it will hash the cpu to). This is done to prevent a drain condition 183 * from happening. This drain condition will occur when pcf_count decrement 184 * occurs on cpu A and the increment of pcf_count always occurs on cpu B. An 185 * example of this shows up with device interrupts. The dma buffer is allocated 186 * by the cpu requesting the IO thus the pcf_count is decremented based on that. 187 * When the memory is returned by the interrupt thread, the pcf_count will be 188 * incremented based on the cpu servicing the interrupt. 189 */ 190 static struct pcf pcf[MAX_PCF_FANOUT]; 191 #define PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \ 192 (randtick() >> 24)) & (pcf_fanout_mask)) 193 194 static int pcf_decrement_bucket(pgcnt_t); 195 static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int); 196 197 kmutex_t pcgs_lock; /* serializes page_create_get_ */ 198 kmutex_t pcgs_cagelock; /* serializes NOSLEEP cage allocs */ 199 kmutex_t pcgs_wait_lock; /* used for delay in pcgs */ 200 static kcondvar_t pcgs_cv; /* cv for delay in pcgs */ 201 202 #ifdef VM_STATS 203 204 /* 205 * No locks, but so what, they are only statistics. 206 */ 207 208 static struct page_tcnt { 209 int pc_free_cache; /* free's into cache list */ 210 int pc_free_dontneed; /* free's with dontneed */ 211 int pc_free_pageout; /* free's from pageout */ 212 int pc_free_free; /* free's into free list */ 213 int pc_free_pages; /* free's into large page free list */ 214 int pc_destroy_pages; /* large page destroy's */ 215 int pc_get_cache; /* get's from cache list */ 216 int pc_get_free; /* get's from free list */ 217 int pc_reclaim; /* reclaim's */ 218 int pc_abortfree; /* abort's of free pages */ 219 int pc_find_hit; /* find's that find page */ 220 int pc_find_miss; /* find's that don't find page */ 221 int pc_destroy_free; /* # of free pages destroyed */ 222 #define PC_HASH_CNT (4*PAGE_HASHAVELEN) 223 int pc_find_hashlen[PC_HASH_CNT+1]; 224 int pc_addclaim_pages; 225 int pc_subclaim_pages; 226 int pc_free_replacement_page[2]; 227 int pc_try_demote_pages[6]; 228 int pc_demote_pages[2]; 229 } pagecnt; 230 231 uint_t hashin_count; 232 uint_t hashin_not_held; 233 uint_t hashin_already; 234 235 uint_t hashout_count; 236 uint_t hashout_not_held; 237 238 uint_t page_create_count; 239 uint_t page_create_not_enough; 240 uint_t page_create_not_enough_again; 241 uint_t page_create_zero; 242 uint_t page_create_hashout; 243 uint_t page_create_page_lock_failed; 244 uint_t page_create_trylock_failed; 245 uint_t page_create_found_one; 246 uint_t page_create_hashin_failed; 247 uint_t page_create_dropped_phm; 248 249 uint_t page_create_new; 250 uint_t page_create_exists; 251 uint_t page_create_putbacks; 252 uint_t page_create_overshoot; 253 254 uint_t page_reclaim_zero; 255 uint_t page_reclaim_zero_locked; 256 257 uint_t page_rename_exists; 258 uint_t page_rename_count; 259 260 uint_t page_lookup_cnt[20]; 261 uint_t page_lookup_nowait_cnt[10]; 262 uint_t page_find_cnt; 263 uint_t page_exists_cnt; 264 uint_t page_exists_forreal_cnt; 265 uint_t page_lookup_dev_cnt; 266 uint_t get_cachelist_cnt; 267 uint_t page_create_cnt[10]; 268 uint_t alloc_pages[9]; 269 uint_t page_exphcontg[19]; 270 uint_t page_create_large_cnt[10]; 271 272 #endif 273 274 static inline page_t * 275 page_hash_search(ulong_t index, vnode_t *vnode, u_offset_t off) 276 { 277 uint_t mylen = 0; 278 page_t *page; 279 280 for (page = page_hash[index]; page; page = page->p_hash, mylen++) 281 if (page->p_vnode == vnode && page->p_offset == off) 282 break; 283 284 #ifdef VM_STATS 285 if (page != NULL) 286 pagecnt.pc_find_hit++; 287 else 288 pagecnt.pc_find_miss++; 289 290 pagecnt.pc_find_hashlen[MIN(mylen, PC_HASH_CNT)]++; 291 #endif 292 293 return (page); 294 } 295 296 297 #ifdef DEBUG 298 #define MEMSEG_SEARCH_STATS 299 #endif 300 301 #ifdef MEMSEG_SEARCH_STATS 302 struct memseg_stats { 303 uint_t nsearch; 304 uint_t nlastwon; 305 uint_t nhashwon; 306 uint_t nnotfound; 307 } memseg_stats; 308 309 #define MEMSEG_STAT_INCR(v) \ 310 atomic_inc_32(&memseg_stats.v) 311 #else 312 #define MEMSEG_STAT_INCR(x) 313 #endif 314 315 struct memseg *memsegs; /* list of memory segments */ 316 317 /* 318 * /etc/system tunable to control large page allocation hueristic. 319 * 320 * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup 321 * for large page allocation requests. If a large page is not readily 322 * avaliable on the local freelists we will go through additional effort 323 * to create a large page, potentially moving smaller pages around to coalesce 324 * larger pages in the local lgroup. 325 * Default value of LPAP_DEFAULT will go to remote freelists if large pages 326 * are not readily available in the local lgroup. 327 */ 328 enum lpap { 329 LPAP_DEFAULT, /* default large page allocation policy */ 330 LPAP_LOCAL /* local large page allocation policy */ 331 }; 332 333 enum lpap lpg_alloc_prefer = LPAP_DEFAULT; 334 335 static void page_init_mem_config(void); 336 static int page_do_hashin(page_t *, vnode_t *, u_offset_t); 337 static void page_do_hashout(page_t *); 338 static void page_capture_init(); 339 int page_capture_take_action(page_t *, uint_t, void *); 340 341 static void page_demote_vp_pages(page_t *); 342 343 344 void 345 pcf_init(void) 346 { 347 if (boot_ncpus != -1) { 348 pcf_fanout = boot_ncpus; 349 } else { 350 pcf_fanout = max_ncpus; 351 } 352 #ifdef sun4v 353 /* 354 * Force at least 4 buckets if possible for sun4v. 355 */ 356 pcf_fanout = MAX(pcf_fanout, 4); 357 #endif /* sun4v */ 358 359 /* 360 * Round up to the nearest power of 2. 361 */ 362 pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT); 363 if (!ISP2(pcf_fanout)) { 364 pcf_fanout = 1 << highbit(pcf_fanout); 365 366 if (pcf_fanout > MAX_PCF_FANOUT) { 367 pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1); 368 } 369 } 370 pcf_fanout_mask = pcf_fanout - 1; 371 } 372 373 /* 374 * vm subsystem related initialization 375 */ 376 void 377 vm_init(void) 378 { 379 boolean_t callb_vm_cpr(void *, int); 380 381 (void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm"); 382 page_init_mem_config(); 383 page_retire_init(); 384 vm_usage_init(); 385 page_capture_init(); 386 } 387 388 /* 389 * This function is called at startup and when memory is added or deleted. 390 */ 391 void 392 init_pages_pp_maximum() 393 { 394 static pgcnt_t p_min; 395 static pgcnt_t pages_pp_maximum_startup; 396 static pgcnt_t avrmem_delta; 397 static int init_done; 398 static int user_set; /* true if set in /etc/system */ 399 400 if (init_done == 0) { 401 402 /* If the user specified a value, save it */ 403 if (pages_pp_maximum != 0) { 404 user_set = 1; 405 pages_pp_maximum_startup = pages_pp_maximum; 406 } 407 408 /* 409 * Setting of pages_pp_maximum is based first time 410 * on the value of availrmem just after the start-up 411 * allocations. To preserve this relationship at run 412 * time, use a delta from availrmem_initial. 413 */ 414 ASSERT(availrmem_initial >= availrmem); 415 avrmem_delta = availrmem_initial - availrmem; 416 417 /* The allowable floor of pages_pp_maximum */ 418 p_min = tune.t_minarmem + 100; 419 420 /* Make sure we don't come through here again. */ 421 init_done = 1; 422 } 423 /* 424 * Determine pages_pp_maximum, the number of currently available 425 * pages (availrmem) that can't be `locked'. If not set by 426 * the user, we set it to 4% of the currently available memory 427 * plus 4MB. 428 * But we also insist that it be greater than tune.t_minarmem; 429 * otherwise a process could lock down a lot of memory, get swapped 430 * out, and never have enough to get swapped back in. 431 */ 432 if (user_set) 433 pages_pp_maximum = pages_pp_maximum_startup; 434 else 435 pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25) 436 + btop(4 * 1024 * 1024); 437 438 if (pages_pp_maximum <= p_min) { 439 pages_pp_maximum = p_min; 440 } 441 } 442 443 void 444 set_max_page_get(pgcnt_t target_total_pages) 445 { 446 max_page_get = target_total_pages / 2; 447 } 448 449 static pgcnt_t pending_delete; 450 451 /*ARGSUSED*/ 452 static void 453 page_mem_config_post_add( 454 void *arg, 455 pgcnt_t delta_pages) 456 { 457 set_max_page_get(total_pages - pending_delete); 458 init_pages_pp_maximum(); 459 } 460 461 /*ARGSUSED*/ 462 static int 463 page_mem_config_pre_del( 464 void *arg, 465 pgcnt_t delta_pages) 466 { 467 pgcnt_t nv; 468 469 nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages); 470 set_max_page_get(total_pages - nv); 471 return (0); 472 } 473 474 /*ARGSUSED*/ 475 static void 476 page_mem_config_post_del( 477 void *arg, 478 pgcnt_t delta_pages, 479 int cancelled) 480 { 481 pgcnt_t nv; 482 483 nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages); 484 set_max_page_get(total_pages - nv); 485 if (!cancelled) 486 init_pages_pp_maximum(); 487 } 488 489 static kphysm_setup_vector_t page_mem_config_vec = { 490 KPHYSM_SETUP_VECTOR_VERSION, 491 page_mem_config_post_add, 492 page_mem_config_pre_del, 493 page_mem_config_post_del, 494 }; 495 496 static void 497 page_init_mem_config(void) 498 { 499 int ret; 500 501 ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL); 502 ASSERT(ret == 0); 503 } 504 505 /* 506 * Evenly spread out the PCF counters for large free pages 507 */ 508 static void 509 page_free_large_ctr(pgcnt_t npages) 510 { 511 static struct pcf *p = pcf; 512 pgcnt_t lump; 513 514 freemem += npages; 515 516 lump = roundup(npages, pcf_fanout) / pcf_fanout; 517 518 while (npages > 0) { 519 520 ASSERT(!p->pcf_block); 521 522 if (lump < npages) { 523 p->pcf_count += (uint_t)lump; 524 npages -= lump; 525 } else { 526 p->pcf_count += (uint_t)npages; 527 npages = 0; 528 } 529 530 ASSERT(!p->pcf_wait); 531 532 if (++p > &pcf[pcf_fanout - 1]) 533 p = pcf; 534 } 535 536 ASSERT(npages == 0); 537 } 538 539 /* 540 * Add a physical chunk of memory to the system free lists during startup. 541 * Platform specific startup() allocates the memory for the page structs. 542 * 543 * num - number of page structures 544 * base - page number (pfn) to be associated with the first page. 545 * 546 * Since we are doing this during startup (ie. single threaded), we will 547 * use shortcut routines to avoid any locking overhead while putting all 548 * these pages on the freelists. 549 * 550 * NOTE: Any changes performed to page_free(), must also be performed to 551 * add_physmem() since this is how we initialize all page_t's at 552 * boot time. 553 */ 554 void 555 add_physmem( 556 page_t *pp, 557 pgcnt_t num, 558 pfn_t pnum) 559 { 560 page_t *root = NULL; 561 uint_t szc = page_num_pagesizes() - 1; 562 pgcnt_t large = page_get_pagecnt(szc); 563 pgcnt_t cnt = 0; 564 565 TRACE_2(TR_FAC_VM, TR_PAGE_INIT, 566 "add_physmem:pp %p num %lu", pp, num); 567 568 /* 569 * Arbitrarily limit the max page_get request 570 * to 1/2 of the page structs we have. 571 */ 572 total_pages += num; 573 set_max_page_get(total_pages); 574 575 PLCNT_MODIFY_MAX(pnum, (long)num); 576 577 /* 578 * The physical space for the pages array 579 * representing ram pages has already been 580 * allocated. Here we initialize each lock 581 * in the page structure, and put each on 582 * the free list 583 */ 584 for (; num; pp++, pnum++, num--) { 585 586 /* 587 * this needs to fill in the page number 588 * and do any other arch specific initialization 589 */ 590 add_physmem_cb(pp, pnum); 591 592 pp->p_lckcnt = 0; 593 pp->p_cowcnt = 0; 594 pp->p_slckcnt = 0; 595 596 /* 597 * Initialize the page lock as unlocked, since nobody 598 * can see or access this page yet. 599 */ 600 pp->p_selock = 0; 601 602 /* 603 * Initialize IO lock 604 */ 605 page_iolock_init(pp); 606 607 /* 608 * initialize other fields in the page_t 609 */ 610 PP_SETFREE(pp); 611 page_clr_all_props(pp); 612 PP_SETAGED(pp); 613 pp->p_offset = (u_offset_t)-1; 614 pp->p_next = pp; 615 pp->p_prev = pp; 616 617 /* 618 * Simple case: System doesn't support large pages. 619 */ 620 if (szc == 0) { 621 pp->p_szc = 0; 622 page_free_at_startup(pp); 623 continue; 624 } 625 626 /* 627 * Handle unaligned pages, we collect them up onto 628 * the root page until we have a full large page. 629 */ 630 if (!IS_P2ALIGNED(pnum, large)) { 631 632 /* 633 * If not in a large page, 634 * just free as small page. 635 */ 636 if (root == NULL) { 637 pp->p_szc = 0; 638 page_free_at_startup(pp); 639 continue; 640 } 641 642 /* 643 * Link a constituent page into the large page. 644 */ 645 pp->p_szc = szc; 646 page_list_concat(&root, &pp); 647 648 /* 649 * When large page is fully formed, free it. 650 */ 651 if (++cnt == large) { 652 page_free_large_ctr(cnt); 653 page_list_add_pages(root, PG_LIST_ISINIT); 654 root = NULL; 655 cnt = 0; 656 } 657 continue; 658 } 659 660 /* 661 * At this point we have a page number which 662 * is aligned. We assert that we aren't already 663 * in a different large page. 664 */ 665 ASSERT(IS_P2ALIGNED(pnum, large)); 666 ASSERT(root == NULL && cnt == 0); 667 668 /* 669 * If insufficient number of pages left to form 670 * a large page, just free the small page. 671 */ 672 if (num < large) { 673 pp->p_szc = 0; 674 page_free_at_startup(pp); 675 continue; 676 } 677 678 /* 679 * Otherwise start a new large page. 680 */ 681 pp->p_szc = szc; 682 cnt++; 683 root = pp; 684 } 685 ASSERT(root == NULL && cnt == 0); 686 } 687 688 /* 689 * Find a page representing the specified [vp, offset]. 690 * If we find the page but it is intransit coming in, 691 * it will have an "exclusive" lock and we wait for 692 * the i/o to complete. A page found on the free list 693 * is always reclaimed and then locked. On success, the page 694 * is locked, its data is valid and it isn't on the free 695 * list, while a NULL is returned if the page doesn't exist. 696 */ 697 page_t * 698 page_lookup(vnode_t *vp, u_offset_t off, se_t se) 699 { 700 return (page_lookup_create(vp, off, se, NULL, NULL, 0)); 701 } 702 703 /* 704 * Find a page representing the specified [vp, offset]. 705 * We either return the one we found or, if passed in, 706 * create one with identity of [vp, offset] of the 707 * pre-allocated page. If we find existing page but it is 708 * intransit coming in, it will have an "exclusive" lock 709 * and we wait for the i/o to complete. A page found on 710 * the free list is always reclaimed and then locked. 711 * On success, the page is locked, its data is valid and 712 * it isn't on the free list, while a NULL is returned 713 * if the page doesn't exist and newpp is NULL; 714 */ 715 page_t * 716 page_lookup_create( 717 vnode_t *vp, 718 u_offset_t off, 719 se_t se, 720 page_t *newpp, 721 spgcnt_t *nrelocp, 722 int flags) 723 { 724 page_t *pp; 725 kmutex_t *phm; 726 ulong_t index; 727 uint_t hash_locked; 728 uint_t es; 729 730 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 731 VM_STAT_ADD(page_lookup_cnt[0]); 732 ASSERT(newpp ? PAGE_EXCL(newpp) : 1); 733 734 /* 735 * Acquire the appropriate page hash lock since 736 * we have to search the hash list. Pages that 737 * hash to this list can't change identity while 738 * this lock is held. 739 */ 740 hash_locked = 0; 741 index = PAGE_HASH_FUNC(vp, off); 742 phm = NULL; 743 top: 744 pp = page_hash_search(index, vp, off); 745 if (pp != NULL) { 746 VM_STAT_ADD(page_lookup_cnt[1]); 747 es = (newpp != NULL) ? 1 : 0; 748 es |= flags; 749 if (!hash_locked) { 750 VM_STAT_ADD(page_lookup_cnt[2]); 751 if (!page_try_reclaim_lock(pp, se, es)) { 752 /* 753 * On a miss, acquire the phm. Then 754 * next time, page_lock() will be called, 755 * causing a wait if the page is busy. 756 * just looping with page_trylock() would 757 * get pretty boring. 758 */ 759 VM_STAT_ADD(page_lookup_cnt[3]); 760 phm = PAGE_HASH_MUTEX(index); 761 mutex_enter(phm); 762 hash_locked = 1; 763 goto top; 764 } 765 } else { 766 VM_STAT_ADD(page_lookup_cnt[4]); 767 if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) { 768 VM_STAT_ADD(page_lookup_cnt[5]); 769 goto top; 770 } 771 } 772 773 /* 774 * Since `pp' is locked it can not change identity now. 775 * Reconfirm we locked the correct page. 776 * 777 * Both the p_vnode and p_offset *must* be cast volatile 778 * to force a reload of their values: The page_hash_search 779 * function will have stuffed p_vnode and p_offset into 780 * registers before calling page_trylock(); another thread, 781 * actually holding the hash lock, could have changed the 782 * page's identity in memory, but our registers would not 783 * be changed, fooling the reconfirmation. If the hash 784 * lock was held during the search, the casting would 785 * not be needed. 786 */ 787 VM_STAT_ADD(page_lookup_cnt[6]); 788 if (((volatile struct vnode *)(pp->p_vnode) != vp) || 789 ((volatile u_offset_t)(pp->p_offset) != off)) { 790 VM_STAT_ADD(page_lookup_cnt[7]); 791 if (hash_locked) { 792 panic("page_lookup_create: lost page %p", 793 (void *)pp); 794 /*NOTREACHED*/ 795 } 796 page_unlock(pp); 797 phm = PAGE_HASH_MUTEX(index); 798 mutex_enter(phm); 799 hash_locked = 1; 800 goto top; 801 } 802 803 /* 804 * If page_trylock() was called, then pp may still be on 805 * the cachelist (can't be on the free list, it would not 806 * have been found in the search). If it is on the 807 * cachelist it must be pulled now. To pull the page from 808 * the cachelist, it must be exclusively locked. 809 * 810 * The other big difference between page_trylock() and 811 * page_lock(), is that page_lock() will pull the 812 * page from whatever free list (the cache list in this 813 * case) the page is on. If page_trylock() was used 814 * above, then we have to do the reclaim ourselves. 815 */ 816 if ((!hash_locked) && (PP_ISFREE(pp))) { 817 ASSERT(PP_ISAGED(pp) == 0); 818 VM_STAT_ADD(page_lookup_cnt[8]); 819 820 /* 821 * page_relcaim will insure that we 822 * have this page exclusively 823 */ 824 825 if (!page_reclaim(pp, NULL)) { 826 /* 827 * Page_reclaim dropped whatever lock 828 * we held. 829 */ 830 VM_STAT_ADD(page_lookup_cnt[9]); 831 phm = PAGE_HASH_MUTEX(index); 832 mutex_enter(phm); 833 hash_locked = 1; 834 goto top; 835 } else if (se == SE_SHARED && newpp == NULL) { 836 VM_STAT_ADD(page_lookup_cnt[10]); 837 page_downgrade(pp); 838 } 839 } 840 841 if (hash_locked) { 842 mutex_exit(phm); 843 } 844 845 if (newpp != NULL && pp->p_szc < newpp->p_szc && 846 PAGE_EXCL(pp) && nrelocp != NULL) { 847 ASSERT(nrelocp != NULL); 848 (void) page_relocate(&pp, &newpp, 1, 1, nrelocp, 849 NULL); 850 if (*nrelocp > 0) { 851 VM_STAT_COND_ADD(*nrelocp == 1, 852 page_lookup_cnt[11]); 853 VM_STAT_COND_ADD(*nrelocp > 1, 854 page_lookup_cnt[12]); 855 pp = newpp; 856 se = SE_EXCL; 857 } else { 858 if (se == SE_SHARED) { 859 page_downgrade(pp); 860 } 861 VM_STAT_ADD(page_lookup_cnt[13]); 862 } 863 } else if (newpp != NULL && nrelocp != NULL) { 864 if (PAGE_EXCL(pp) && se == SE_SHARED) { 865 page_downgrade(pp); 866 } 867 VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc, 868 page_lookup_cnt[14]); 869 VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc, 870 page_lookup_cnt[15]); 871 VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc, 872 page_lookup_cnt[16]); 873 } else if (newpp != NULL && PAGE_EXCL(pp)) { 874 se = SE_EXCL; 875 } 876 } else if (!hash_locked) { 877 VM_STAT_ADD(page_lookup_cnt[17]); 878 phm = PAGE_HASH_MUTEX(index); 879 mutex_enter(phm); 880 hash_locked = 1; 881 goto top; 882 } else if (newpp != NULL) { 883 /* 884 * If we have a preallocated page then 885 * insert it now and basically behave like 886 * page_create. 887 */ 888 VM_STAT_ADD(page_lookup_cnt[18]); 889 /* 890 * Since we hold the page hash mutex and 891 * just searched for this page, page_hashin 892 * had better not fail. If it does, that 893 * means some thread did not follow the 894 * page hash mutex rules. Panic now and 895 * get it over with. As usual, go down 896 * holding all the locks. 897 */ 898 ASSERT(MUTEX_HELD(phm)); 899 if (!page_hashin(newpp, vp, off, phm)) { 900 ASSERT(MUTEX_HELD(phm)); 901 panic("page_lookup_create: hashin failed %p %p %llx %p", 902 (void *)newpp, (void *)vp, off, (void *)phm); 903 /*NOTREACHED*/ 904 } 905 ASSERT(MUTEX_HELD(phm)); 906 mutex_exit(phm); 907 phm = NULL; 908 page_set_props(newpp, P_REF); 909 page_io_lock(newpp); 910 pp = newpp; 911 se = SE_EXCL; 912 } else { 913 VM_STAT_ADD(page_lookup_cnt[19]); 914 mutex_exit(phm); 915 } 916 917 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1); 918 919 ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1); 920 921 return (pp); 922 } 923 924 /* 925 * Search the hash list for the page representing the 926 * specified [vp, offset] and return it locked. Skip 927 * free pages and pages that cannot be locked as requested. 928 * Used while attempting to kluster pages. 929 */ 930 page_t * 931 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se) 932 { 933 page_t *pp; 934 kmutex_t *phm; 935 ulong_t index; 936 uint_t locked; 937 938 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 939 VM_STAT_ADD(page_lookup_nowait_cnt[0]); 940 941 index = PAGE_HASH_FUNC(vp, off); 942 pp = page_hash_search(index, vp, off); 943 locked = 0; 944 if (pp == NULL) { 945 top: 946 VM_STAT_ADD(page_lookup_nowait_cnt[1]); 947 locked = 1; 948 phm = PAGE_HASH_MUTEX(index); 949 mutex_enter(phm); 950 pp = page_hash_search(index, vp, off); 951 } 952 953 if (pp == NULL || PP_ISFREE(pp)) { 954 VM_STAT_ADD(page_lookup_nowait_cnt[2]); 955 pp = NULL; 956 } else { 957 if (!page_trylock(pp, se)) { 958 VM_STAT_ADD(page_lookup_nowait_cnt[3]); 959 pp = NULL; 960 } else { 961 VM_STAT_ADD(page_lookup_nowait_cnt[4]); 962 /* 963 * See the comment in page_lookup() 964 */ 965 if (((volatile struct vnode *)(pp->p_vnode) != vp) || 966 ((u_offset_t)(pp->p_offset) != off)) { 967 VM_STAT_ADD(page_lookup_nowait_cnt[5]); 968 if (locked) { 969 panic("page_lookup_nowait %p", 970 (void *)pp); 971 /*NOTREACHED*/ 972 } 973 page_unlock(pp); 974 goto top; 975 } 976 if (PP_ISFREE(pp)) { 977 VM_STAT_ADD(page_lookup_nowait_cnt[6]); 978 page_unlock(pp); 979 pp = NULL; 980 } 981 } 982 } 983 if (locked) { 984 VM_STAT_ADD(page_lookup_nowait_cnt[7]); 985 mutex_exit(phm); 986 } 987 988 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1); 989 990 return (pp); 991 } 992 993 /* 994 * Search the hash list for a page with the specified [vp, off] 995 * that is known to exist and is already locked. This routine 996 * is typically used by segment SOFTUNLOCK routines. 997 */ 998 page_t * 999 page_find(vnode_t *vp, u_offset_t off) 1000 { 1001 page_t *pp; 1002 kmutex_t *phm; 1003 ulong_t index; 1004 1005 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 1006 VM_STAT_ADD(page_find_cnt); 1007 1008 index = PAGE_HASH_FUNC(vp, off); 1009 phm = PAGE_HASH_MUTEX(index); 1010 1011 mutex_enter(phm); 1012 pp = page_hash_search(index, vp, off); 1013 mutex_exit(phm); 1014 1015 ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr); 1016 return (pp); 1017 } 1018 1019 /* 1020 * Determine whether a page with the specified [vp, off] 1021 * currently exists in the system. Obviously this should 1022 * only be considered as a hint since nothing prevents the 1023 * page from disappearing or appearing immediately after 1024 * the return from this routine. Subsequently, we don't 1025 * even bother to lock the list. 1026 */ 1027 page_t * 1028 page_exists(vnode_t *vp, u_offset_t off) 1029 { 1030 ulong_t index; 1031 1032 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 1033 VM_STAT_ADD(page_exists_cnt); 1034 1035 index = PAGE_HASH_FUNC(vp, off); 1036 1037 return (page_hash_search(index, vp, off)); 1038 } 1039 1040 /* 1041 * Determine if physically contiguous pages exist for [vp, off] - [vp, off + 1042 * page_size(szc)) range. if they exist and ppa is not NULL fill ppa array 1043 * with these pages locked SHARED. If necessary reclaim pages from 1044 * freelist. Return 1 if contiguous pages exist and 0 otherwise. 1045 * 1046 * If we fail to lock pages still return 1 if pages exist and contiguous. 1047 * But in this case return value is just a hint. ppa array won't be filled. 1048 * Caller should initialize ppa[0] as NULL to distinguish return value. 1049 * 1050 * Returns 0 if pages don't exist or not physically contiguous. 1051 * 1052 * This routine doesn't work for anonymous(swapfs) pages. 1053 */ 1054 int 1055 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[]) 1056 { 1057 pgcnt_t pages; 1058 pfn_t pfn; 1059 page_t *rootpp; 1060 pgcnt_t i; 1061 pgcnt_t j; 1062 u_offset_t save_off = off; 1063 ulong_t index; 1064 kmutex_t *phm; 1065 page_t *pp; 1066 uint_t pszc; 1067 int loopcnt = 0; 1068 1069 ASSERT(szc != 0); 1070 ASSERT(vp != NULL); 1071 ASSERT(!IS_SWAPFSVP(vp)); 1072 ASSERT(!VN_ISKAS(vp)); 1073 1074 again: 1075 if (++loopcnt > 3) { 1076 VM_STAT_ADD(page_exphcontg[0]); 1077 return (0); 1078 } 1079 1080 index = PAGE_HASH_FUNC(vp, off); 1081 phm = PAGE_HASH_MUTEX(index); 1082 1083 mutex_enter(phm); 1084 pp = page_hash_search(index, vp, off); 1085 mutex_exit(phm); 1086 1087 VM_STAT_ADD(page_exphcontg[1]); 1088 1089 if (pp == NULL) { 1090 VM_STAT_ADD(page_exphcontg[2]); 1091 return (0); 1092 } 1093 1094 pages = page_get_pagecnt(szc); 1095 rootpp = pp; 1096 pfn = rootpp->p_pagenum; 1097 1098 if ((pszc = pp->p_szc) >= szc && ppa != NULL) { 1099 VM_STAT_ADD(page_exphcontg[3]); 1100 if (!page_trylock(pp, SE_SHARED)) { 1101 VM_STAT_ADD(page_exphcontg[4]); 1102 return (1); 1103 } 1104 /* 1105 * Also check whether p_pagenum was modified by DR. 1106 */ 1107 if (pp->p_szc != pszc || pp->p_vnode != vp || 1108 pp->p_offset != off || pp->p_pagenum != pfn) { 1109 VM_STAT_ADD(page_exphcontg[5]); 1110 page_unlock(pp); 1111 off = save_off; 1112 goto again; 1113 } 1114 /* 1115 * szc was non zero and vnode and offset matched after we 1116 * locked the page it means it can't become free on us. 1117 */ 1118 ASSERT(!PP_ISFREE(pp)); 1119 if (!IS_P2ALIGNED(pfn, pages)) { 1120 page_unlock(pp); 1121 return (0); 1122 } 1123 ppa[0] = pp; 1124 pp++; 1125 off += PAGESIZE; 1126 pfn++; 1127 for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) { 1128 if (!page_trylock(pp, SE_SHARED)) { 1129 VM_STAT_ADD(page_exphcontg[6]); 1130 pp--; 1131 while (i-- > 0) { 1132 page_unlock(pp); 1133 pp--; 1134 } 1135 ppa[0] = NULL; 1136 return (1); 1137 } 1138 if (pp->p_szc != pszc) { 1139 VM_STAT_ADD(page_exphcontg[7]); 1140 page_unlock(pp); 1141 pp--; 1142 while (i-- > 0) { 1143 page_unlock(pp); 1144 pp--; 1145 } 1146 ppa[0] = NULL; 1147 off = save_off; 1148 goto again; 1149 } 1150 /* 1151 * szc the same as for previous already locked pages 1152 * with right identity. Since this page had correct 1153 * szc after we locked it can't get freed or destroyed 1154 * and therefore must have the expected identity. 1155 */ 1156 ASSERT(!PP_ISFREE(pp)); 1157 if (pp->p_vnode != vp || 1158 pp->p_offset != off) { 1159 panic("page_exists_physcontig: " 1160 "large page identity doesn't match"); 1161 } 1162 ppa[i] = pp; 1163 ASSERT(pp->p_pagenum == pfn); 1164 } 1165 VM_STAT_ADD(page_exphcontg[8]); 1166 ppa[pages] = NULL; 1167 return (1); 1168 } else if (pszc >= szc) { 1169 VM_STAT_ADD(page_exphcontg[9]); 1170 if (!IS_P2ALIGNED(pfn, pages)) { 1171 return (0); 1172 } 1173 return (1); 1174 } 1175 1176 if (!IS_P2ALIGNED(pfn, pages)) { 1177 VM_STAT_ADD(page_exphcontg[10]); 1178 return (0); 1179 } 1180 1181 if (page_numtomemseg_nolock(pfn) != 1182 page_numtomemseg_nolock(pfn + pages - 1)) { 1183 VM_STAT_ADD(page_exphcontg[11]); 1184 return (0); 1185 } 1186 1187 /* 1188 * We loop up 4 times across pages to promote page size. 1189 * We're extra cautious to promote page size atomically with respect 1190 * to everybody else. But we can probably optimize into 1 loop if 1191 * this becomes an issue. 1192 */ 1193 1194 for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) { 1195 if (!page_trylock(pp, SE_EXCL)) { 1196 VM_STAT_ADD(page_exphcontg[12]); 1197 break; 1198 } 1199 /* 1200 * Check whether p_pagenum was modified by DR. 1201 */ 1202 if (pp->p_pagenum != pfn) { 1203 page_unlock(pp); 1204 break; 1205 } 1206 if (pp->p_vnode != vp || 1207 pp->p_offset != off) { 1208 VM_STAT_ADD(page_exphcontg[13]); 1209 page_unlock(pp); 1210 break; 1211 } 1212 if (pp->p_szc >= szc) { 1213 ASSERT(i == 0); 1214 page_unlock(pp); 1215 off = save_off; 1216 goto again; 1217 } 1218 } 1219 1220 if (i != pages) { 1221 VM_STAT_ADD(page_exphcontg[14]); 1222 --pp; 1223 while (i-- > 0) { 1224 page_unlock(pp); 1225 --pp; 1226 } 1227 return (0); 1228 } 1229 1230 pp = rootpp; 1231 for (i = 0; i < pages; i++, pp++) { 1232 if (PP_ISFREE(pp)) { 1233 VM_STAT_ADD(page_exphcontg[15]); 1234 ASSERT(!PP_ISAGED(pp)); 1235 ASSERT(pp->p_szc == 0); 1236 if (!page_reclaim(pp, NULL)) { 1237 break; 1238 } 1239 } else { 1240 ASSERT(pp->p_szc < szc); 1241 VM_STAT_ADD(page_exphcontg[16]); 1242 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 1243 } 1244 } 1245 if (i < pages) { 1246 VM_STAT_ADD(page_exphcontg[17]); 1247 /* 1248 * page_reclaim failed because we were out of memory. 1249 * drop the rest of the locks and return because this page 1250 * must be already reallocated anyway. 1251 */ 1252 pp = rootpp; 1253 for (j = 0; j < pages; j++, pp++) { 1254 if (j != i) { 1255 page_unlock(pp); 1256 } 1257 } 1258 return (0); 1259 } 1260 1261 off = save_off; 1262 pp = rootpp; 1263 for (i = 0; i < pages; i++, pp++, off += PAGESIZE) { 1264 ASSERT(PAGE_EXCL(pp)); 1265 ASSERT(!PP_ISFREE(pp)); 1266 ASSERT(!hat_page_is_mapped(pp)); 1267 ASSERT(pp->p_vnode == vp); 1268 ASSERT(pp->p_offset == off); 1269 pp->p_szc = szc; 1270 } 1271 pp = rootpp; 1272 for (i = 0; i < pages; i++, pp++) { 1273 if (ppa == NULL) { 1274 page_unlock(pp); 1275 } else { 1276 ppa[i] = pp; 1277 page_downgrade(ppa[i]); 1278 } 1279 } 1280 if (ppa != NULL) { 1281 ppa[pages] = NULL; 1282 } 1283 VM_STAT_ADD(page_exphcontg[18]); 1284 ASSERT(vp->v_pages != NULL); 1285 return (1); 1286 } 1287 1288 /* 1289 * Determine whether a page with the specified [vp, off] 1290 * currently exists in the system and if so return its 1291 * size code. Obviously this should only be considered as 1292 * a hint since nothing prevents the page from disappearing 1293 * or appearing immediately after the return from this routine. 1294 */ 1295 int 1296 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc) 1297 { 1298 page_t *pp; 1299 kmutex_t *phm; 1300 ulong_t index; 1301 int rc = 0; 1302 1303 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 1304 ASSERT(szc != NULL); 1305 VM_STAT_ADD(page_exists_forreal_cnt); 1306 1307 index = PAGE_HASH_FUNC(vp, off); 1308 phm = PAGE_HASH_MUTEX(index); 1309 1310 mutex_enter(phm); 1311 pp = page_hash_search(index, vp, off); 1312 if (pp != NULL) { 1313 *szc = pp->p_szc; 1314 rc = 1; 1315 } 1316 mutex_exit(phm); 1317 return (rc); 1318 } 1319 1320 /* wakeup threads waiting for pages in page_create_get_something() */ 1321 void 1322 wakeup_pcgs(void) 1323 { 1324 if (!CV_HAS_WAITERS(&pcgs_cv)) 1325 return; 1326 cv_broadcast(&pcgs_cv); 1327 } 1328 1329 /* 1330 * 'freemem' is used all over the kernel as an indication of how many 1331 * pages are free (either on the cache list or on the free page list) 1332 * in the system. In very few places is a really accurate 'freemem' 1333 * needed. To avoid contention of the lock protecting a the 1334 * single freemem, it was spread out into NCPU buckets. Set_freemem 1335 * sets freemem to the total of all NCPU buckets. It is called from 1336 * clock() on each TICK. 1337 */ 1338 void 1339 set_freemem() 1340 { 1341 struct pcf *p; 1342 ulong_t t; 1343 uint_t i; 1344 1345 t = 0; 1346 p = pcf; 1347 for (i = 0; i < pcf_fanout; i++) { 1348 t += p->pcf_count; 1349 p++; 1350 } 1351 freemem = t; 1352 1353 /* 1354 * Don't worry about grabbing mutex. It's not that 1355 * critical if we miss a tick or two. This is 1356 * where we wakeup possible delayers in 1357 * page_create_get_something(). 1358 */ 1359 wakeup_pcgs(); 1360 } 1361 1362 ulong_t 1363 get_freemem() 1364 { 1365 struct pcf *p; 1366 ulong_t t; 1367 uint_t i; 1368 1369 t = 0; 1370 p = pcf; 1371 for (i = 0; i < pcf_fanout; i++) { 1372 t += p->pcf_count; 1373 p++; 1374 } 1375 /* 1376 * We just calculated it, might as well set it. 1377 */ 1378 freemem = t; 1379 return (t); 1380 } 1381 1382 /* 1383 * Acquire all of the page cache & free (pcf) locks. 1384 */ 1385 void 1386 pcf_acquire_all() 1387 { 1388 struct pcf *p; 1389 uint_t i; 1390 1391 p = pcf; 1392 for (i = 0; i < pcf_fanout; i++) { 1393 mutex_enter(&p->pcf_lock); 1394 p++; 1395 } 1396 } 1397 1398 /* 1399 * Release all the pcf_locks. 1400 */ 1401 void 1402 pcf_release_all() 1403 { 1404 struct pcf *p; 1405 uint_t i; 1406 1407 p = pcf; 1408 for (i = 0; i < pcf_fanout; i++) { 1409 mutex_exit(&p->pcf_lock); 1410 p++; 1411 } 1412 } 1413 1414 /* 1415 * Inform the VM system that we need some pages freed up. 1416 * Calls must be symmetric, e.g.: 1417 * 1418 * page_needfree(100); 1419 * wait a bit; 1420 * page_needfree(-100); 1421 */ 1422 void 1423 page_needfree(spgcnt_t npages) 1424 { 1425 mutex_enter(&new_freemem_lock); 1426 needfree += npages; 1427 mutex_exit(&new_freemem_lock); 1428 } 1429 1430 /* 1431 * Throttle for page_create(): try to prevent freemem from dropping 1432 * below throttlefree. We can't provide a 100% guarantee because 1433 * KM_NOSLEEP allocations, page_reclaim(), and various other things 1434 * nibble away at the freelist. However, we can block all PG_WAIT 1435 * allocations until memory becomes available. The motivation is 1436 * that several things can fall apart when there's no free memory: 1437 * 1438 * (1) If pageout() needs memory to push a page, the system deadlocks. 1439 * 1440 * (2) By (broken) specification, timeout(9F) can neither fail nor 1441 * block, so it has no choice but to panic the system if it 1442 * cannot allocate a callout structure. 1443 * 1444 * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block; 1445 * it panics if it cannot allocate a callback structure. 1446 * 1447 * (4) Untold numbers of third-party drivers have not yet been hardened 1448 * against KM_NOSLEEP and/or allocb() failures; they simply assume 1449 * success and panic the system with a data fault on failure. 1450 * (The long-term solution to this particular problem is to ship 1451 * hostile fault-injecting DEBUG kernels with the DDK.) 1452 * 1453 * It is theoretically impossible to guarantee success of non-blocking 1454 * allocations, but in practice, this throttle is very hard to break. 1455 */ 1456 static int 1457 page_create_throttle(pgcnt_t npages, int flags) 1458 { 1459 ulong_t fm; 1460 uint_t i; 1461 pgcnt_t tf; /* effective value of throttlefree */ 1462 1463 /* 1464 * Normal priority allocations. 1465 */ 1466 if ((flags & (PG_WAIT | PG_NORMALPRI)) == PG_NORMALPRI) { 1467 ASSERT(!(flags & (PG_PANIC | PG_PUSHPAGE))); 1468 return (freemem >= npages + throttlefree); 1469 } 1470 1471 /* 1472 * Never deny pages when: 1473 * - it's a thread that cannot block [NOMEMWAIT()] 1474 * - the allocation cannot block and must not fail 1475 * - the allocation cannot block and is pageout dispensated 1476 */ 1477 if (NOMEMWAIT() || 1478 ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) || 1479 ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE)) 1480 return (1); 1481 1482 /* 1483 * If the allocation can't block, we look favorably upon it 1484 * unless we're below pageout_reserve. In that case we fail 1485 * the allocation because we want to make sure there are a few 1486 * pages available for pageout. 1487 */ 1488 if ((flags & PG_WAIT) == 0) 1489 return (freemem >= npages + pageout_reserve); 1490 1491 /* Calculate the effective throttlefree value */ 1492 tf = throttlefree - 1493 ((flags & PG_PUSHPAGE) ? pageout_reserve : 0); 1494 1495 cv_signal(&proc_pageout->p_cv); 1496 1497 for (;;) { 1498 fm = 0; 1499 pcf_acquire_all(); 1500 mutex_enter(&new_freemem_lock); 1501 for (i = 0; i < pcf_fanout; i++) { 1502 fm += pcf[i].pcf_count; 1503 pcf[i].pcf_wait++; 1504 mutex_exit(&pcf[i].pcf_lock); 1505 } 1506 freemem = fm; 1507 if (freemem >= npages + tf) { 1508 mutex_exit(&new_freemem_lock); 1509 break; 1510 } 1511 needfree += npages; 1512 freemem_wait++; 1513 cv_wait(&freemem_cv, &new_freemem_lock); 1514 freemem_wait--; 1515 needfree -= npages; 1516 mutex_exit(&new_freemem_lock); 1517 } 1518 return (1); 1519 } 1520 1521 /* 1522 * page_create_wait() is called to either coalesce pages from the 1523 * different pcf buckets or to wait because there simply are not 1524 * enough pages to satisfy the caller's request. 1525 * 1526 * Sadly, this is called from platform/vm/vm_machdep.c 1527 */ 1528 int 1529 page_create_wait(pgcnt_t npages, uint_t flags) 1530 { 1531 pgcnt_t total; 1532 uint_t i; 1533 struct pcf *p; 1534 1535 /* 1536 * Wait until there are enough free pages to satisfy our 1537 * entire request. 1538 * We set needfree += npages before prodding pageout, to make sure 1539 * it does real work when npages > lotsfree > freemem. 1540 */ 1541 VM_STAT_ADD(page_create_not_enough); 1542 1543 ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1); 1544 checkagain: 1545 if ((flags & PG_NORELOC) && 1546 kcage_freemem < kcage_throttlefree + npages) 1547 (void) kcage_create_throttle(npages, flags); 1548 1549 if (freemem < npages + throttlefree) 1550 if (!page_create_throttle(npages, flags)) 1551 return (0); 1552 1553 if (pcf_decrement_bucket(npages) || 1554 pcf_decrement_multiple(&total, npages, 0)) 1555 return (1); 1556 1557 /* 1558 * All of the pcf locks are held, there are not enough pages 1559 * to satisfy the request (npages < total). 1560 * Be sure to acquire the new_freemem_lock before dropping 1561 * the pcf locks. This prevents dropping wakeups in page_free(). 1562 * The order is always pcf_lock then new_freemem_lock. 1563 * 1564 * Since we hold all the pcf locks, it is a good time to set freemem. 1565 * 1566 * If the caller does not want to wait, return now. 1567 * Else turn the pageout daemon loose to find something 1568 * and wait till it does. 1569 * 1570 */ 1571 freemem = total; 1572 1573 if ((flags & PG_WAIT) == 0) { 1574 pcf_release_all(); 1575 1576 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM, 1577 "page_create_nomem:npages %ld freemem %ld", npages, freemem); 1578 return (0); 1579 } 1580 1581 ASSERT(proc_pageout != NULL); 1582 cv_signal(&proc_pageout->p_cv); 1583 1584 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START, 1585 "page_create_sleep_start: freemem %ld needfree %ld", 1586 freemem, needfree); 1587 1588 /* 1589 * We are going to wait. 1590 * We currently hold all of the pcf_locks, 1591 * get the new_freemem_lock (it protects freemem_wait), 1592 * before dropping the pcf_locks. 1593 */ 1594 mutex_enter(&new_freemem_lock); 1595 1596 p = pcf; 1597 for (i = 0; i < pcf_fanout; i++) { 1598 p->pcf_wait++; 1599 mutex_exit(&p->pcf_lock); 1600 p++; 1601 } 1602 1603 needfree += npages; 1604 freemem_wait++; 1605 1606 cv_wait(&freemem_cv, &new_freemem_lock); 1607 1608 freemem_wait--; 1609 needfree -= npages; 1610 1611 mutex_exit(&new_freemem_lock); 1612 1613 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END, 1614 "page_create_sleep_end: freemem %ld needfree %ld", 1615 freemem, needfree); 1616 1617 VM_STAT_ADD(page_create_not_enough_again); 1618 goto checkagain; 1619 } 1620 /* 1621 * A routine to do the opposite of page_create_wait(). 1622 */ 1623 void 1624 page_create_putback(spgcnt_t npages) 1625 { 1626 struct pcf *p; 1627 pgcnt_t lump; 1628 uint_t *which; 1629 1630 /* 1631 * When a contiguous lump is broken up, we have to 1632 * deal with lots of pages (min 64) so lets spread 1633 * the wealth around. 1634 */ 1635 lump = roundup(npages, pcf_fanout) / pcf_fanout; 1636 freemem += npages; 1637 1638 for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) { 1639 which = &p->pcf_count; 1640 1641 mutex_enter(&p->pcf_lock); 1642 1643 if (p->pcf_block) { 1644 which = &p->pcf_reserve; 1645 } 1646 1647 if (lump < npages) { 1648 *which += (uint_t)lump; 1649 npages -= lump; 1650 } else { 1651 *which += (uint_t)npages; 1652 npages = 0; 1653 } 1654 1655 if (p->pcf_wait) { 1656 mutex_enter(&new_freemem_lock); 1657 /* 1658 * Check to see if some other thread 1659 * is actually waiting. Another bucket 1660 * may have woken it up by now. If there 1661 * are no waiters, then set our pcf_wait 1662 * count to zero to avoid coming in here 1663 * next time. 1664 */ 1665 if (freemem_wait) { 1666 if (npages > 1) { 1667 cv_broadcast(&freemem_cv); 1668 } else { 1669 cv_signal(&freemem_cv); 1670 } 1671 p->pcf_wait--; 1672 } else { 1673 p->pcf_wait = 0; 1674 } 1675 mutex_exit(&new_freemem_lock); 1676 } 1677 mutex_exit(&p->pcf_lock); 1678 } 1679 ASSERT(npages == 0); 1680 } 1681 1682 /* 1683 * A helper routine for page_create_get_something. 1684 * The indenting got to deep down there. 1685 * Unblock the pcf counters. Any pages freed after 1686 * pcf_block got set are moved to pcf_count and 1687 * wakeups (cv_broadcast() or cv_signal()) are done as needed. 1688 */ 1689 static void 1690 pcgs_unblock(void) 1691 { 1692 int i; 1693 struct pcf *p; 1694 1695 /* Update freemem while we're here. */ 1696 freemem = 0; 1697 p = pcf; 1698 for (i = 0; i < pcf_fanout; i++) { 1699 mutex_enter(&p->pcf_lock); 1700 ASSERT(p->pcf_count == 0); 1701 p->pcf_count = p->pcf_reserve; 1702 p->pcf_block = 0; 1703 freemem += p->pcf_count; 1704 if (p->pcf_wait) { 1705 mutex_enter(&new_freemem_lock); 1706 if (freemem_wait) { 1707 if (p->pcf_reserve > 1) { 1708 cv_broadcast(&freemem_cv); 1709 p->pcf_wait = 0; 1710 } else { 1711 cv_signal(&freemem_cv); 1712 p->pcf_wait--; 1713 } 1714 } else { 1715 p->pcf_wait = 0; 1716 } 1717 mutex_exit(&new_freemem_lock); 1718 } 1719 p->pcf_reserve = 0; 1720 mutex_exit(&p->pcf_lock); 1721 p++; 1722 } 1723 } 1724 1725 /* 1726 * Called from page_create_va() when both the cache and free lists 1727 * have been checked once. 1728 * 1729 * Either returns a page or panics since the accounting was done 1730 * way before we got here. 1731 * 1732 * We don't come here often, so leave the accounting on permanently. 1733 */ 1734 1735 #define MAX_PCGS 100 1736 1737 #ifdef DEBUG 1738 #define PCGS_TRIES 100 1739 #else /* DEBUG */ 1740 #define PCGS_TRIES 10 1741 #endif /* DEBUG */ 1742 1743 #ifdef VM_STATS 1744 uint_t pcgs_counts[PCGS_TRIES]; 1745 uint_t pcgs_too_many; 1746 uint_t pcgs_entered; 1747 uint_t pcgs_entered_noreloc; 1748 uint_t pcgs_locked; 1749 uint_t pcgs_cagelocked; 1750 #endif /* VM_STATS */ 1751 1752 static page_t * 1753 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg, 1754 caddr_t vaddr, uint_t flags) 1755 { 1756 uint_t count; 1757 page_t *pp; 1758 uint_t locked, i; 1759 struct pcf *p; 1760 lgrp_t *lgrp; 1761 int cagelocked = 0; 1762 1763 VM_STAT_ADD(pcgs_entered); 1764 1765 /* 1766 * Tap any reserve freelists: if we fail now, we'll die 1767 * since the page(s) we're looking for have already been 1768 * accounted for. 1769 */ 1770 flags |= PG_PANIC; 1771 1772 if ((flags & PG_NORELOC) != 0) { 1773 VM_STAT_ADD(pcgs_entered_noreloc); 1774 /* 1775 * Requests for free pages from critical threads 1776 * such as pageout still won't throttle here, but 1777 * we must try again, to give the cageout thread 1778 * another chance to catch up. Since we already 1779 * accounted for the pages, we had better get them 1780 * this time. 1781 * 1782 * N.B. All non-critical threads acquire the pcgs_cagelock 1783 * to serialize access to the freelists. This implements a 1784 * turnstile-type synchornization to avoid starvation of 1785 * critical requests for PG_NORELOC memory by non-critical 1786 * threads: all non-critical threads must acquire a 'ticket' 1787 * before passing through, which entails making sure 1788 * kcage_freemem won't fall below minfree prior to grabbing 1789 * pages from the freelists. 1790 */ 1791 if (kcage_create_throttle(1, flags) == KCT_NONCRIT) { 1792 mutex_enter(&pcgs_cagelock); 1793 cagelocked = 1; 1794 VM_STAT_ADD(pcgs_cagelocked); 1795 } 1796 } 1797 1798 /* 1799 * Time to get serious. 1800 * We failed to get a `correctly colored' page from both the 1801 * free and cache lists. 1802 * We escalate in stage. 1803 * 1804 * First try both lists without worring about color. 1805 * 1806 * Then, grab all page accounting locks (ie. pcf[]) and 1807 * steal any pages that they have and set the pcf_block flag to 1808 * stop deletions from the lists. This will help because 1809 * a page can get added to the free list while we are looking 1810 * at the cache list, then another page could be added to the cache 1811 * list allowing the page on the free list to be removed as we 1812 * move from looking at the cache list to the free list. This 1813 * could happen over and over. We would never find the page 1814 * we have accounted for. 1815 * 1816 * Noreloc pages are a subset of the global (relocatable) page pool. 1817 * They are not tracked separately in the pcf bins, so it is 1818 * impossible to know when doing pcf accounting if the available 1819 * page(s) are noreloc pages or not. When looking for a noreloc page 1820 * it is quite easy to end up here even if the global (relocatable) 1821 * page pool has plenty of free pages but the noreloc pool is empty. 1822 * 1823 * When the noreloc pool is empty (or low), additional noreloc pages 1824 * are created by converting pages from the global page pool. This 1825 * process will stall during pcf accounting if the pcf bins are 1826 * already locked. Such is the case when a noreloc allocation is 1827 * looping here in page_create_get_something waiting for more noreloc 1828 * pages to appear. 1829 * 1830 * Short of adding a new field to the pcf bins to accurately track 1831 * the number of free noreloc pages, we instead do not grab the 1832 * pcgs_lock, do not set the pcf blocks and do not timeout when 1833 * allocating a noreloc page. This allows noreloc allocations to 1834 * loop without blocking global page pool allocations. 1835 * 1836 * NOTE: the behaviour of page_create_get_something has not changed 1837 * for the case of global page pool allocations. 1838 */ 1839 1840 flags &= ~PG_MATCH_COLOR; 1841 locked = 0; 1842 #if defined(__i386) || defined(__amd64) 1843 flags = page_create_update_flags_x86(flags); 1844 #endif 1845 1846 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE); 1847 1848 for (count = 0; kcage_on || count < MAX_PCGS; count++) { 1849 pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE, 1850 flags, lgrp); 1851 if (pp == NULL) { 1852 pp = page_get_cachelist(vp, off, seg, vaddr, 1853 flags, lgrp); 1854 } 1855 if (pp == NULL) { 1856 /* 1857 * Serialize. Don't fight with other pcgs(). 1858 */ 1859 if (!locked && (!kcage_on || !(flags & PG_NORELOC))) { 1860 mutex_enter(&pcgs_lock); 1861 VM_STAT_ADD(pcgs_locked); 1862 locked = 1; 1863 p = pcf; 1864 for (i = 0; i < pcf_fanout; i++) { 1865 mutex_enter(&p->pcf_lock); 1866 ASSERT(p->pcf_block == 0); 1867 p->pcf_block = 1; 1868 p->pcf_reserve = p->pcf_count; 1869 p->pcf_count = 0; 1870 mutex_exit(&p->pcf_lock); 1871 p++; 1872 } 1873 freemem = 0; 1874 } 1875 1876 if (count) { 1877 /* 1878 * Since page_free() puts pages on 1879 * a list then accounts for it, we 1880 * just have to wait for page_free() 1881 * to unlock any page it was working 1882 * with. The page_lock()-page_reclaim() 1883 * path falls in the same boat. 1884 * 1885 * We don't need to check on the 1886 * PG_WAIT flag, we have already 1887 * accounted for the page we are 1888 * looking for in page_create_va(). 1889 * 1890 * We just wait a moment to let any 1891 * locked pages on the lists free up, 1892 * then continue around and try again. 1893 * 1894 * Will be awakened by set_freemem(). 1895 */ 1896 mutex_enter(&pcgs_wait_lock); 1897 cv_wait(&pcgs_cv, &pcgs_wait_lock); 1898 mutex_exit(&pcgs_wait_lock); 1899 } 1900 } else { 1901 #ifdef VM_STATS 1902 if (count >= PCGS_TRIES) { 1903 VM_STAT_ADD(pcgs_too_many); 1904 } else { 1905 VM_STAT_ADD(pcgs_counts[count]); 1906 } 1907 #endif 1908 if (locked) { 1909 pcgs_unblock(); 1910 mutex_exit(&pcgs_lock); 1911 } 1912 if (cagelocked) 1913 mutex_exit(&pcgs_cagelock); 1914 return (pp); 1915 } 1916 } 1917 /* 1918 * we go down holding the pcf locks. 1919 */ 1920 panic("no %spage found %d", 1921 ((flags & PG_NORELOC) ? "non-reloc " : ""), count); 1922 /*NOTREACHED*/ 1923 } 1924 1925 /* 1926 * Create enough pages for "bytes" worth of data starting at 1927 * "off" in "vp". 1928 * 1929 * Where flag must be one of: 1930 * 1931 * PG_EXCL: Exclusive create (fail if any page already 1932 * exists in the page cache) which does not 1933 * wait for memory to become available. 1934 * 1935 * PG_WAIT: Non-exclusive create which can wait for 1936 * memory to become available. 1937 * 1938 * PG_PHYSCONTIG: Allocate physically contiguous pages. 1939 * (Not Supported) 1940 * 1941 * A doubly linked list of pages is returned to the caller. Each page 1942 * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock) 1943 * lock. 1944 * 1945 * Unable to change the parameters to page_create() in a minor release, 1946 * we renamed page_create() to page_create_va(), changed all known calls 1947 * from page_create() to page_create_va(), and created this wrapper. 1948 * 1949 * Upon a major release, we should break compatibility by deleting this 1950 * wrapper, and replacing all the strings "page_create_va", with "page_create". 1951 * 1952 * NOTE: There is a copy of this interface as page_create_io() in 1953 * i86/vm/vm_machdep.c. Any bugs fixed here should be applied 1954 * there. 1955 */ 1956 page_t * 1957 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags) 1958 { 1959 caddr_t random_vaddr; 1960 struct seg kseg; 1961 1962 #ifdef DEBUG 1963 cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p", 1964 (void *)caller()); 1965 #endif 1966 1967 random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^ 1968 (uintptr_t)(off >> PAGESHIFT)); 1969 kseg.s_as = &kas; 1970 1971 return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr)); 1972 } 1973 1974 #ifdef DEBUG 1975 uint32_t pg_alloc_pgs_mtbf = 0; 1976 #endif 1977 1978 /* 1979 * Used for large page support. It will attempt to allocate 1980 * a large page(s) off the freelist. 1981 * 1982 * Returns non zero on failure. 1983 */ 1984 int 1985 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr, 1986 page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags) 1987 { 1988 pgcnt_t npgs, curnpgs, totpgs; 1989 size_t pgsz; 1990 page_t *pplist = NULL, *pp; 1991 int err = 0; 1992 lgrp_t *lgrp; 1993 1994 ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1)); 1995 ASSERT(pgflags == 0 || pgflags == PG_LOCAL); 1996 1997 /* 1998 * Check if system heavily prefers local large pages over remote 1999 * on systems with multiple lgroups. 2000 */ 2001 if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) { 2002 pgflags = PG_LOCAL; 2003 } 2004 2005 VM_STAT_ADD(alloc_pages[0]); 2006 2007 #ifdef DEBUG 2008 if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) { 2009 return (ENOMEM); 2010 } 2011 #endif 2012 2013 /* 2014 * One must be NULL but not both. 2015 * And one must be non NULL but not both. 2016 */ 2017 ASSERT(basepp != NULL || ppa != NULL); 2018 ASSERT(basepp == NULL || ppa == NULL); 2019 2020 #if defined(__i386) || defined(__amd64) 2021 while (page_chk_freelist(szc) == 0) { 2022 VM_STAT_ADD(alloc_pages[8]); 2023 if (anypgsz == 0 || --szc == 0) 2024 return (ENOMEM); 2025 } 2026 #endif 2027 2028 pgsz = page_get_pagesize(szc); 2029 totpgs = curnpgs = npgs = pgsz >> PAGESHIFT; 2030 2031 ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0); 2032 2033 (void) page_create_wait(npgs, PG_WAIT); 2034 2035 while (npgs && szc) { 2036 lgrp = lgrp_mem_choose(seg, addr, pgsz); 2037 if (pgflags == PG_LOCAL) { 2038 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 2039 pgflags, lgrp); 2040 if (pp == NULL) { 2041 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 2042 0, lgrp); 2043 } 2044 } else { 2045 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 2046 0, lgrp); 2047 } 2048 if (pp != NULL) { 2049 VM_STAT_ADD(alloc_pages[1]); 2050 page_list_concat(&pplist, &pp); 2051 ASSERT(npgs >= curnpgs); 2052 npgs -= curnpgs; 2053 } else if (anypgsz) { 2054 VM_STAT_ADD(alloc_pages[2]); 2055 szc--; 2056 pgsz = page_get_pagesize(szc); 2057 curnpgs = pgsz >> PAGESHIFT; 2058 } else { 2059 VM_STAT_ADD(alloc_pages[3]); 2060 ASSERT(npgs == totpgs); 2061 page_create_putback(npgs); 2062 return (ENOMEM); 2063 } 2064 } 2065 if (szc == 0) { 2066 VM_STAT_ADD(alloc_pages[4]); 2067 ASSERT(npgs != 0); 2068 page_create_putback(npgs); 2069 err = ENOMEM; 2070 } else if (basepp != NULL) { 2071 ASSERT(npgs == 0); 2072 ASSERT(ppa == NULL); 2073 *basepp = pplist; 2074 } 2075 2076 npgs = totpgs - npgs; 2077 pp = pplist; 2078 2079 /* 2080 * Clear the free and age bits. Also if we were passed in a ppa then 2081 * fill it in with all the constituent pages from the large page. But 2082 * if we failed to allocate all the pages just free what we got. 2083 */ 2084 while (npgs != 0) { 2085 ASSERT(PP_ISFREE(pp)); 2086 ASSERT(PP_ISAGED(pp)); 2087 if (ppa != NULL || err != 0) { 2088 if (err == 0) { 2089 VM_STAT_ADD(alloc_pages[5]); 2090 PP_CLRFREE(pp); 2091 PP_CLRAGED(pp); 2092 page_sub(&pplist, pp); 2093 *ppa++ = pp; 2094 npgs--; 2095 } else { 2096 VM_STAT_ADD(alloc_pages[6]); 2097 ASSERT(pp->p_szc != 0); 2098 curnpgs = page_get_pagecnt(pp->p_szc); 2099 page_list_break(&pp, &pplist, curnpgs); 2100 page_list_add_pages(pp, 0); 2101 page_create_putback(curnpgs); 2102 ASSERT(npgs >= curnpgs); 2103 npgs -= curnpgs; 2104 } 2105 pp = pplist; 2106 } else { 2107 VM_STAT_ADD(alloc_pages[7]); 2108 PP_CLRFREE(pp); 2109 PP_CLRAGED(pp); 2110 pp = pp->p_next; 2111 npgs--; 2112 } 2113 } 2114 return (err); 2115 } 2116 2117 /* 2118 * Get a single large page off of the freelists, and set it up for use. 2119 * Number of bytes requested must be a supported page size. 2120 * 2121 * Note that this call may fail even if there is sufficient 2122 * memory available or PG_WAIT is set, so the caller must 2123 * be willing to fallback on page_create_va(), block and retry, 2124 * or fail the requester. 2125 */ 2126 page_t * 2127 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags, 2128 struct seg *seg, caddr_t vaddr, void *arg) 2129 { 2130 pgcnt_t npages; 2131 page_t *pp; 2132 page_t *rootpp; 2133 lgrp_t *lgrp; 2134 lgrp_id_t *lgrpid = (lgrp_id_t *)arg; 2135 2136 ASSERT(vp != NULL); 2137 2138 ASSERT((flags & ~(PG_EXCL | PG_WAIT | 2139 PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0); 2140 /* but no others */ 2141 2142 ASSERT((flags & PG_EXCL) == PG_EXCL); 2143 2144 npages = btop(bytes); 2145 2146 if (!kcage_on || panicstr) { 2147 /* 2148 * Cage is OFF, or we are single threaded in 2149 * panic, so make everything a RELOC request. 2150 */ 2151 flags &= ~PG_NORELOC; 2152 } 2153 2154 /* 2155 * Make sure there's adequate physical memory available. 2156 * Note: PG_WAIT is ignored here. 2157 */ 2158 if (freemem <= throttlefree + npages) { 2159 VM_STAT_ADD(page_create_large_cnt[1]); 2160 return (NULL); 2161 } 2162 2163 /* 2164 * If cage is on, dampen draw from cage when available 2165 * cage space is low. 2166 */ 2167 if ((flags & (PG_NORELOC | PG_WAIT)) == (PG_NORELOC | PG_WAIT) && 2168 kcage_freemem < kcage_throttlefree + npages) { 2169 2170 /* 2171 * The cage is on, the caller wants PG_NORELOC 2172 * pages and available cage memory is very low. 2173 * Call kcage_create_throttle() to attempt to 2174 * control demand on the cage. 2175 */ 2176 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) { 2177 VM_STAT_ADD(page_create_large_cnt[2]); 2178 return (NULL); 2179 } 2180 } 2181 2182 if (!pcf_decrement_bucket(npages) && 2183 !pcf_decrement_multiple(NULL, npages, 1)) { 2184 VM_STAT_ADD(page_create_large_cnt[4]); 2185 return (NULL); 2186 } 2187 2188 /* 2189 * This is where this function behaves fundamentally differently 2190 * than page_create_va(); since we're intending to map the page 2191 * with a single TTE, we have to get it as a physically contiguous 2192 * hardware pagesize chunk. If we can't, we fail. 2193 */ 2194 if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max && 2195 LGRP_EXISTS(lgrp_table[*lgrpid])) 2196 lgrp = lgrp_table[*lgrpid]; 2197 else 2198 lgrp = lgrp_mem_choose(seg, vaddr, bytes); 2199 2200 if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr, 2201 bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) { 2202 page_create_putback(npages); 2203 VM_STAT_ADD(page_create_large_cnt[5]); 2204 return (NULL); 2205 } 2206 2207 /* 2208 * if we got the page with the wrong mtype give it back this is a 2209 * workaround for CR 6249718. When CR 6249718 is fixed we never get 2210 * inside "if" and the workaround becomes just a nop 2211 */ 2212 if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) { 2213 page_list_add_pages(rootpp, 0); 2214 page_create_putback(npages); 2215 VM_STAT_ADD(page_create_large_cnt[6]); 2216 return (NULL); 2217 } 2218 2219 /* 2220 * If satisfying this request has left us with too little 2221 * memory, start the wheels turning to get some back. The 2222 * first clause of the test prevents waking up the pageout 2223 * daemon in situations where it would decide that there's 2224 * nothing to do. 2225 */ 2226 if (nscan < desscan && freemem < minfree) { 2227 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 2228 "pageout_cv_signal:freemem %ld", freemem); 2229 cv_signal(&proc_pageout->p_cv); 2230 } 2231 2232 pp = rootpp; 2233 while (npages--) { 2234 ASSERT(PAGE_EXCL(pp)); 2235 ASSERT(pp->p_vnode == NULL); 2236 ASSERT(!hat_page_is_mapped(pp)); 2237 PP_CLRFREE(pp); 2238 PP_CLRAGED(pp); 2239 if (!page_hashin(pp, vp, off, NULL)) 2240 panic("page_create_large: hashin failed: page %p", 2241 (void *)pp); 2242 page_io_lock(pp); 2243 off += PAGESIZE; 2244 pp = pp->p_next; 2245 } 2246 2247 VM_STAT_ADD(page_create_large_cnt[0]); 2248 return (rootpp); 2249 } 2250 2251 page_t * 2252 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags, 2253 struct seg *seg, caddr_t vaddr) 2254 { 2255 page_t *plist = NULL; 2256 pgcnt_t npages; 2257 pgcnt_t found_on_free = 0; 2258 pgcnt_t pages_req; 2259 page_t *npp = NULL; 2260 struct pcf *p; 2261 lgrp_t *lgrp; 2262 2263 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START, 2264 "page_create_start:vp %p off %llx bytes %lu flags %x", 2265 vp, off, bytes, flags); 2266 2267 ASSERT(bytes != 0 && vp != NULL); 2268 2269 if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) { 2270 panic("page_create: invalid flags"); 2271 /*NOTREACHED*/ 2272 } 2273 ASSERT((flags & ~(PG_EXCL | PG_WAIT | 2274 PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0); 2275 /* but no others */ 2276 2277 pages_req = npages = btopr(bytes); 2278 /* 2279 * Try to see whether request is too large to *ever* be 2280 * satisfied, in order to prevent deadlock. We arbitrarily 2281 * decide to limit maximum size requests to max_page_get. 2282 */ 2283 if (npages >= max_page_get) { 2284 if ((flags & PG_WAIT) == 0) { 2285 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG, 2286 "page_create_toobig:vp %p off %llx npages " 2287 "%lu max_page_get %lu", 2288 vp, off, npages, max_page_get); 2289 return (NULL); 2290 } else { 2291 cmn_err(CE_WARN, 2292 "Request for too much kernel memory " 2293 "(%lu bytes), will hang forever", bytes); 2294 for (;;) 2295 delay(1000000000); 2296 } 2297 } 2298 2299 if (!kcage_on || panicstr) { 2300 /* 2301 * Cage is OFF, or we are single threaded in 2302 * panic, so make everything a RELOC request. 2303 */ 2304 flags &= ~PG_NORELOC; 2305 } 2306 2307 if (freemem <= throttlefree + npages) 2308 if (!page_create_throttle(npages, flags)) 2309 return (NULL); 2310 2311 /* 2312 * If cage is on, dampen draw from cage when available 2313 * cage space is low. 2314 */ 2315 if ((flags & PG_NORELOC) && 2316 kcage_freemem < kcage_throttlefree + npages) { 2317 2318 /* 2319 * The cage is on, the caller wants PG_NORELOC 2320 * pages and available cage memory is very low. 2321 * Call kcage_create_throttle() to attempt to 2322 * control demand on the cage. 2323 */ 2324 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) 2325 return (NULL); 2326 } 2327 2328 VM_STAT_ADD(page_create_cnt[0]); 2329 2330 if (!pcf_decrement_bucket(npages)) { 2331 /* 2332 * Have to look harder. If npages is greater than 2333 * one, then we might have to coalesce the counters. 2334 * 2335 * Go wait. We come back having accounted 2336 * for the memory. 2337 */ 2338 VM_STAT_ADD(page_create_cnt[1]); 2339 if (!page_create_wait(npages, flags)) { 2340 VM_STAT_ADD(page_create_cnt[2]); 2341 return (NULL); 2342 } 2343 } 2344 2345 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS, 2346 "page_create_success:vp %p off %llx", vp, off); 2347 2348 /* 2349 * If satisfying this request has left us with too little 2350 * memory, start the wheels turning to get some back. The 2351 * first clause of the test prevents waking up the pageout 2352 * daemon in situations where it would decide that there's 2353 * nothing to do. 2354 */ 2355 if (nscan < desscan && freemem < minfree) { 2356 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 2357 "pageout_cv_signal:freemem %ld", freemem); 2358 cv_signal(&proc_pageout->p_cv); 2359 } 2360 2361 /* 2362 * Loop around collecting the requested number of pages. 2363 * Most of the time, we have to `create' a new page. With 2364 * this in mind, pull the page off the free list before 2365 * getting the hash lock. This will minimize the hash 2366 * lock hold time, nesting, and the like. If it turns 2367 * out we don't need the page, we put it back at the end. 2368 */ 2369 while (npages--) { 2370 page_t *pp; 2371 kmutex_t *phm = NULL; 2372 ulong_t index; 2373 2374 index = PAGE_HASH_FUNC(vp, off); 2375 top: 2376 ASSERT(phm == NULL); 2377 ASSERT(index == PAGE_HASH_FUNC(vp, off)); 2378 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 2379 2380 if (npp == NULL) { 2381 /* 2382 * Try to get a page from the freelist (ie, 2383 * a page with no [vp, off] tag). If that 2384 * fails, use the cachelist. 2385 * 2386 * During the first attempt at both the free 2387 * and cache lists we try for the correct color. 2388 */ 2389 /* 2390 * XXXX-how do we deal with virtual indexed 2391 * caches and and colors? 2392 */ 2393 VM_STAT_ADD(page_create_cnt[4]); 2394 /* 2395 * Get lgroup to allocate next page of shared memory 2396 * from and use it to specify where to allocate 2397 * the physical memory 2398 */ 2399 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE); 2400 npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE, 2401 flags | PG_MATCH_COLOR, lgrp); 2402 if (npp == NULL) { 2403 npp = page_get_cachelist(vp, off, seg, 2404 vaddr, flags | PG_MATCH_COLOR, lgrp); 2405 if (npp == NULL) { 2406 npp = page_create_get_something(vp, 2407 off, seg, vaddr, 2408 flags & ~PG_MATCH_COLOR); 2409 } 2410 2411 if (PP_ISAGED(npp) == 0) { 2412 /* 2413 * Since this page came from the 2414 * cachelist, we must destroy the 2415 * old vnode association. 2416 */ 2417 page_hashout(npp, NULL); 2418 } 2419 } 2420 } 2421 2422 /* 2423 * We own this page! 2424 */ 2425 ASSERT(PAGE_EXCL(npp)); 2426 ASSERT(npp->p_vnode == NULL); 2427 ASSERT(!hat_page_is_mapped(npp)); 2428 PP_CLRFREE(npp); 2429 PP_CLRAGED(npp); 2430 2431 /* 2432 * Here we have a page in our hot little mits and are 2433 * just waiting to stuff it on the appropriate lists. 2434 * Get the mutex and check to see if it really does 2435 * not exist. 2436 */ 2437 phm = PAGE_HASH_MUTEX(index); 2438 mutex_enter(phm); 2439 pp = page_hash_search(index, vp, off); 2440 if (pp == NULL) { 2441 VM_STAT_ADD(page_create_new); 2442 pp = npp; 2443 npp = NULL; 2444 if (!page_hashin(pp, vp, off, phm)) { 2445 /* 2446 * Since we hold the page hash mutex and 2447 * just searched for this page, page_hashin 2448 * had better not fail. If it does, that 2449 * means somethread did not follow the 2450 * page hash mutex rules. Panic now and 2451 * get it over with. As usual, go down 2452 * holding all the locks. 2453 */ 2454 ASSERT(MUTEX_HELD(phm)); 2455 panic("page_create: " 2456 "hashin failed %p %p %llx %p", 2457 (void *)pp, (void *)vp, off, (void *)phm); 2458 /*NOTREACHED*/ 2459 } 2460 ASSERT(MUTEX_HELD(phm)); 2461 mutex_exit(phm); 2462 phm = NULL; 2463 2464 /* 2465 * Hat layer locking need not be done to set 2466 * the following bits since the page is not hashed 2467 * and was on the free list (i.e., had no mappings). 2468 * 2469 * Set the reference bit to protect 2470 * against immediate pageout 2471 * 2472 * XXXmh modify freelist code to set reference 2473 * bit so we don't have to do it here. 2474 */ 2475 page_set_props(pp, P_REF); 2476 found_on_free++; 2477 } else { 2478 VM_STAT_ADD(page_create_exists); 2479 if (flags & PG_EXCL) { 2480 /* 2481 * Found an existing page, and the caller 2482 * wanted all new pages. Undo all of the work 2483 * we have done. 2484 */ 2485 mutex_exit(phm); 2486 phm = NULL; 2487 while (plist != NULL) { 2488 pp = plist; 2489 page_sub(&plist, pp); 2490 page_io_unlock(pp); 2491 /* large pages should not end up here */ 2492 ASSERT(pp->p_szc == 0); 2493 /*LINTED: constant in conditional ctx*/ 2494 VN_DISPOSE(pp, B_INVAL, 0, kcred); 2495 } 2496 VM_STAT_ADD(page_create_found_one); 2497 goto fail; 2498 } 2499 ASSERT(flags & PG_WAIT); 2500 if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) { 2501 /* 2502 * Start all over again if we blocked trying 2503 * to lock the page. 2504 */ 2505 mutex_exit(phm); 2506 VM_STAT_ADD(page_create_page_lock_failed); 2507 phm = NULL; 2508 goto top; 2509 } 2510 mutex_exit(phm); 2511 phm = NULL; 2512 2513 if (PP_ISFREE(pp)) { 2514 ASSERT(PP_ISAGED(pp) == 0); 2515 VM_STAT_ADD(pagecnt.pc_get_cache); 2516 page_list_sub(pp, PG_CACHE_LIST); 2517 PP_CLRFREE(pp); 2518 found_on_free++; 2519 } 2520 } 2521 2522 /* 2523 * Got a page! It is locked. Acquire the i/o 2524 * lock since we are going to use the p_next and 2525 * p_prev fields to link the requested pages together. 2526 */ 2527 page_io_lock(pp); 2528 page_add(&plist, pp); 2529 plist = plist->p_next; 2530 off += PAGESIZE; 2531 vaddr += PAGESIZE; 2532 } 2533 2534 ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1); 2535 fail: 2536 if (npp != NULL) { 2537 /* 2538 * Did not need this page after all. 2539 * Put it back on the free list. 2540 */ 2541 VM_STAT_ADD(page_create_putbacks); 2542 PP_SETFREE(npp); 2543 PP_SETAGED(npp); 2544 npp->p_offset = (u_offset_t)-1; 2545 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL); 2546 page_unlock(npp); 2547 2548 } 2549 2550 ASSERT(pages_req >= found_on_free); 2551 2552 { 2553 uint_t overshoot = (uint_t)(pages_req - found_on_free); 2554 2555 if (overshoot) { 2556 VM_STAT_ADD(page_create_overshoot); 2557 p = &pcf[PCF_INDEX()]; 2558 mutex_enter(&p->pcf_lock); 2559 if (p->pcf_block) { 2560 p->pcf_reserve += overshoot; 2561 } else { 2562 p->pcf_count += overshoot; 2563 if (p->pcf_wait) { 2564 mutex_enter(&new_freemem_lock); 2565 if (freemem_wait) { 2566 cv_signal(&freemem_cv); 2567 p->pcf_wait--; 2568 } else { 2569 p->pcf_wait = 0; 2570 } 2571 mutex_exit(&new_freemem_lock); 2572 } 2573 } 2574 mutex_exit(&p->pcf_lock); 2575 /* freemem is approximate, so this test OK */ 2576 if (!p->pcf_block) 2577 freemem += overshoot; 2578 } 2579 } 2580 2581 return (plist); 2582 } 2583 2584 /* 2585 * One or more constituent pages of this large page has been marked 2586 * toxic. Simply demote the large page to PAGESIZE pages and let 2587 * page_free() handle it. This routine should only be called by 2588 * large page free routines (page_free_pages() and page_destroy_pages(). 2589 * All pages are locked SE_EXCL and have already been marked free. 2590 */ 2591 static void 2592 page_free_toxic_pages(page_t *rootpp) 2593 { 2594 page_t *tpp; 2595 pgcnt_t i, pgcnt = page_get_pagecnt(rootpp->p_szc); 2596 uint_t szc = rootpp->p_szc; 2597 2598 for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) { 2599 ASSERT(tpp->p_szc == szc); 2600 ASSERT((PAGE_EXCL(tpp) && 2601 !page_iolock_assert(tpp)) || panicstr); 2602 tpp->p_szc = 0; 2603 } 2604 2605 while (rootpp != NULL) { 2606 tpp = rootpp; 2607 page_sub(&rootpp, tpp); 2608 ASSERT(PP_ISFREE(tpp)); 2609 PP_CLRFREE(tpp); 2610 page_free(tpp, 1); 2611 } 2612 } 2613 2614 /* 2615 * Put page on the "free" list. 2616 * The free list is really two lists maintained by 2617 * the PSM of whatever machine we happen to be on. 2618 */ 2619 void 2620 page_free(page_t *pp, int dontneed) 2621 { 2622 struct pcf *p; 2623 uint_t pcf_index; 2624 2625 ASSERT((PAGE_EXCL(pp) && 2626 !page_iolock_assert(pp)) || panicstr); 2627 2628 if (PP_ISFREE(pp)) { 2629 panic("page_free: page %p is free", (void *)pp); 2630 } 2631 2632 if (pp->p_szc != 0) { 2633 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) || 2634 PP_ISKAS(pp)) { 2635 panic("page_free: anon or kernel " 2636 "or no vnode large page %p", (void *)pp); 2637 } 2638 page_demote_vp_pages(pp); 2639 ASSERT(pp->p_szc == 0); 2640 } 2641 2642 /* 2643 * The page_struct_lock need not be acquired to examine these 2644 * fields since the page has an "exclusive" lock. 2645 */ 2646 if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 || 2647 pp->p_slckcnt != 0) { 2648 panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d " 2649 "slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt, 2650 pp->p_cowcnt, pp->p_slckcnt); 2651 /*NOTREACHED*/ 2652 } 2653 2654 ASSERT(!hat_page_getshare(pp)); 2655 2656 PP_SETFREE(pp); 2657 ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) || 2658 !hat_ismod(pp)); 2659 page_clr_all_props(pp); 2660 ASSERT(!hat_page_getshare(pp)); 2661 2662 /* 2663 * Now we add the page to the head of the free list. 2664 * But if this page is associated with a paged vnode 2665 * then we adjust the head forward so that the page is 2666 * effectively at the end of the list. 2667 */ 2668 if (pp->p_vnode == NULL) { 2669 /* 2670 * Page has no identity, put it on the free list. 2671 */ 2672 PP_SETAGED(pp); 2673 pp->p_offset = (u_offset_t)-1; 2674 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 2675 VM_STAT_ADD(pagecnt.pc_free_free); 2676 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE, 2677 "page_free_free:pp %p", pp); 2678 } else { 2679 PP_CLRAGED(pp); 2680 2681 if (!dontneed) { 2682 /* move it to the tail of the list */ 2683 page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL); 2684 2685 VM_STAT_ADD(pagecnt.pc_free_cache); 2686 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL, 2687 "page_free_cache_tail:pp %p", pp); 2688 } else { 2689 page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD); 2690 2691 VM_STAT_ADD(pagecnt.pc_free_dontneed); 2692 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD, 2693 "page_free_cache_head:pp %p", pp); 2694 } 2695 } 2696 page_unlock(pp); 2697 2698 /* 2699 * Now do the `freemem' accounting. 2700 */ 2701 pcf_index = PCF_INDEX(); 2702 p = &pcf[pcf_index]; 2703 2704 mutex_enter(&p->pcf_lock); 2705 if (p->pcf_block) { 2706 p->pcf_reserve += 1; 2707 } else { 2708 p->pcf_count += 1; 2709 if (p->pcf_wait) { 2710 mutex_enter(&new_freemem_lock); 2711 /* 2712 * Check to see if some other thread 2713 * is actually waiting. Another bucket 2714 * may have woken it up by now. If there 2715 * are no waiters, then set our pcf_wait 2716 * count to zero to avoid coming in here 2717 * next time. Also, since only one page 2718 * was put on the free list, just wake 2719 * up one waiter. 2720 */ 2721 if (freemem_wait) { 2722 cv_signal(&freemem_cv); 2723 p->pcf_wait--; 2724 } else { 2725 p->pcf_wait = 0; 2726 } 2727 mutex_exit(&new_freemem_lock); 2728 } 2729 } 2730 mutex_exit(&p->pcf_lock); 2731 2732 /* freemem is approximate, so this test OK */ 2733 if (!p->pcf_block) 2734 freemem += 1; 2735 } 2736 2737 /* 2738 * Put page on the "free" list during intial startup. 2739 * This happens during initial single threaded execution. 2740 */ 2741 void 2742 page_free_at_startup(page_t *pp) 2743 { 2744 struct pcf *p; 2745 uint_t pcf_index; 2746 2747 page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT); 2748 VM_STAT_ADD(pagecnt.pc_free_free); 2749 2750 /* 2751 * Now do the `freemem' accounting. 2752 */ 2753 pcf_index = PCF_INDEX(); 2754 p = &pcf[pcf_index]; 2755 2756 ASSERT(p->pcf_block == 0); 2757 ASSERT(p->pcf_wait == 0); 2758 p->pcf_count += 1; 2759 2760 /* freemem is approximate, so this is OK */ 2761 freemem += 1; 2762 } 2763 2764 void 2765 page_free_pages(page_t *pp) 2766 { 2767 page_t *tpp, *rootpp = NULL; 2768 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc); 2769 pgcnt_t i; 2770 uint_t szc = pp->p_szc; 2771 2772 VM_STAT_ADD(pagecnt.pc_free_pages); 2773 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE, 2774 "page_free_free:pp %p", pp); 2775 2776 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes()); 2777 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) { 2778 panic("page_free_pages: not root page %p", (void *)pp); 2779 /*NOTREACHED*/ 2780 } 2781 2782 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) { 2783 ASSERT((PAGE_EXCL(tpp) && 2784 !page_iolock_assert(tpp)) || panicstr); 2785 if (PP_ISFREE(tpp)) { 2786 panic("page_free_pages: page %p is free", (void *)tpp); 2787 /*NOTREACHED*/ 2788 } 2789 if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 || 2790 tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) { 2791 panic("page_free_pages %p", (void *)tpp); 2792 /*NOTREACHED*/ 2793 } 2794 2795 ASSERT(!hat_page_getshare(tpp)); 2796 ASSERT(tpp->p_vnode == NULL); 2797 ASSERT(tpp->p_szc == szc); 2798 2799 PP_SETFREE(tpp); 2800 page_clr_all_props(tpp); 2801 PP_SETAGED(tpp); 2802 tpp->p_offset = (u_offset_t)-1; 2803 ASSERT(tpp->p_next == tpp); 2804 ASSERT(tpp->p_prev == tpp); 2805 page_list_concat(&rootpp, &tpp); 2806 } 2807 ASSERT(rootpp == pp); 2808 2809 page_list_add_pages(rootpp, 0); 2810 page_create_putback(pgcnt); 2811 } 2812 2813 int free_pages = 1; 2814 2815 /* 2816 * This routine attempts to return pages to the cachelist via page_release(). 2817 * It does not *have* to be successful in all cases, since the pageout scanner 2818 * will catch any pages it misses. It does need to be fast and not introduce 2819 * too much overhead. 2820 * 2821 * If a page isn't found on the unlocked sweep of the page_hash bucket, we 2822 * don't lock and retry. This is ok, since the page scanner will eventually 2823 * find any page we miss in free_vp_pages(). 2824 */ 2825 void 2826 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len) 2827 { 2828 page_t *pp; 2829 u_offset_t eoff; 2830 extern int swap_in_range(vnode_t *, u_offset_t, size_t); 2831 2832 eoff = off + len; 2833 2834 if (free_pages == 0) 2835 return; 2836 if (swap_in_range(vp, off, len)) 2837 return; 2838 2839 for (; off < eoff; off += PAGESIZE) { 2840 2841 /* 2842 * find the page using a fast, but inexact search. It'll be OK 2843 * if a few pages slip through the cracks here. 2844 */ 2845 pp = page_exists(vp, off); 2846 2847 /* 2848 * If we didn't find the page (it may not exist), the page 2849 * is free, looks still in use (shared), or we can't lock it, 2850 * just give up. 2851 */ 2852 if (pp == NULL || 2853 PP_ISFREE(pp) || 2854 page_share_cnt(pp) > 0 || 2855 !page_trylock(pp, SE_EXCL)) 2856 continue; 2857 2858 /* 2859 * Once we have locked pp, verify that it's still the 2860 * correct page and not already free 2861 */ 2862 ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL)); 2863 if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) { 2864 page_unlock(pp); 2865 continue; 2866 } 2867 2868 /* 2869 * try to release the page... 2870 */ 2871 (void) page_release(pp, 1); 2872 } 2873 } 2874 2875 /* 2876 * Reclaim the given page from the free list. 2877 * If pp is part of a large pages, only the given constituent page is reclaimed 2878 * and the large page it belonged to will be demoted. This can only happen 2879 * if the page is not on the cachelist. 2880 * 2881 * Returns 1 on success or 0 on failure. 2882 * 2883 * The page is unlocked if it can't be reclaimed (when freemem == 0). 2884 * If `lock' is non-null, it will be dropped and re-acquired if 2885 * the routine must wait while freemem is 0. 2886 * 2887 * As it turns out, boot_getpages() does this. It picks a page, 2888 * based on where OBP mapped in some address, gets its pfn, searches 2889 * the memsegs, locks the page, then pulls it off the free list! 2890 */ 2891 int 2892 page_reclaim(page_t *pp, kmutex_t *lock) 2893 { 2894 struct pcf *p; 2895 struct cpu *cpup; 2896 int enough; 2897 uint_t i; 2898 2899 ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1); 2900 ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp)); 2901 2902 /* 2903 * If `freemem' is 0, we cannot reclaim this page from the 2904 * freelist, so release every lock we might hold: the page, 2905 * and the `lock' before blocking. 2906 * 2907 * The only way `freemem' can become 0 while there are pages 2908 * marked free (have their p->p_free bit set) is when the 2909 * system is low on memory and doing a page_create(). In 2910 * order to guarantee that once page_create() starts acquiring 2911 * pages it will be able to get all that it needs since `freemem' 2912 * was decreased by the requested amount. So, we need to release 2913 * this page, and let page_create() have it. 2914 * 2915 * Since `freemem' being zero is not supposed to happen, just 2916 * use the usual hash stuff as a starting point. If that bucket 2917 * is empty, then assume the worst, and start at the beginning 2918 * of the pcf array. If we always start at the beginning 2919 * when acquiring more than one pcf lock, there won't be any 2920 * deadlock problems. 2921 */ 2922 2923 /* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */ 2924 2925 if (freemem <= throttlefree && !page_create_throttle(1l, 0)) { 2926 pcf_acquire_all(); 2927 goto page_reclaim_nomem; 2928 } 2929 2930 enough = pcf_decrement_bucket(1); 2931 2932 if (!enough) { 2933 VM_STAT_ADD(page_reclaim_zero); 2934 /* 2935 * Check again. Its possible that some other thread 2936 * could have been right behind us, and added one 2937 * to a list somewhere. Acquire each of the pcf locks 2938 * until we find a page. 2939 */ 2940 p = pcf; 2941 for (i = 0; i < pcf_fanout; i++) { 2942 mutex_enter(&p->pcf_lock); 2943 if (p->pcf_count >= 1) { 2944 p->pcf_count -= 1; 2945 /* 2946 * freemem is not protected by any lock. Thus, 2947 * we cannot have any assertion containing 2948 * freemem here. 2949 */ 2950 freemem -= 1; 2951 enough = 1; 2952 break; 2953 } 2954 p++; 2955 } 2956 2957 if (!enough) { 2958 page_reclaim_nomem: 2959 /* 2960 * We really can't have page `pp'. 2961 * Time for the no-memory dance with 2962 * page_free(). This is just like 2963 * page_create_wait(). Plus the added 2964 * attraction of releasing whatever mutex 2965 * we held when we were called with in `lock'. 2966 * Page_unlock() will wakeup any thread 2967 * waiting around for this page. 2968 */ 2969 if (lock) { 2970 VM_STAT_ADD(page_reclaim_zero_locked); 2971 mutex_exit(lock); 2972 } 2973 page_unlock(pp); 2974 2975 /* 2976 * get this before we drop all the pcf locks. 2977 */ 2978 mutex_enter(&new_freemem_lock); 2979 2980 p = pcf; 2981 for (i = 0; i < pcf_fanout; i++) { 2982 p->pcf_wait++; 2983 mutex_exit(&p->pcf_lock); 2984 p++; 2985 } 2986 2987 freemem_wait++; 2988 cv_wait(&freemem_cv, &new_freemem_lock); 2989 freemem_wait--; 2990 2991 mutex_exit(&new_freemem_lock); 2992 2993 if (lock) { 2994 mutex_enter(lock); 2995 } 2996 return (0); 2997 } 2998 2999 /* 3000 * The pcf accounting has been done, 3001 * though none of the pcf_wait flags have been set, 3002 * drop the locks and continue on. 3003 */ 3004 while (p >= pcf) { 3005 mutex_exit(&p->pcf_lock); 3006 p--; 3007 } 3008 } 3009 3010 3011 VM_STAT_ADD(pagecnt.pc_reclaim); 3012 3013 /* 3014 * page_list_sub will handle the case where pp is a large page. 3015 * It's possible that the page was promoted while on the freelist 3016 */ 3017 if (PP_ISAGED(pp)) { 3018 page_list_sub(pp, PG_FREE_LIST); 3019 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE, 3020 "page_reclaim_free:pp %p", pp); 3021 } else { 3022 page_list_sub(pp, PG_CACHE_LIST); 3023 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE, 3024 "page_reclaim_cache:pp %p", pp); 3025 } 3026 3027 /* 3028 * clear the p_free & p_age bits since this page is no longer 3029 * on the free list. Notice that there was a brief time where 3030 * a page is marked as free, but is not on the list. 3031 * 3032 * Set the reference bit to protect against immediate pageout. 3033 */ 3034 PP_CLRFREE(pp); 3035 PP_CLRAGED(pp); 3036 page_set_props(pp, P_REF); 3037 3038 CPU_STATS_ENTER_K(); 3039 cpup = CPU; /* get cpup now that CPU cannot change */ 3040 CPU_STATS_ADDQ(cpup, vm, pgrec, 1); 3041 CPU_STATS_ADDQ(cpup, vm, pgfrec, 1); 3042 CPU_STATS_EXIT_K(); 3043 ASSERT(pp->p_szc == 0); 3044 3045 return (1); 3046 } 3047 3048 /* 3049 * Destroy identity of the page and put it back on 3050 * the page free list. Assumes that the caller has 3051 * acquired the "exclusive" lock on the page. 3052 */ 3053 void 3054 page_destroy(page_t *pp, int dontfree) 3055 { 3056 ASSERT((PAGE_EXCL(pp) && 3057 !page_iolock_assert(pp)) || panicstr); 3058 ASSERT(pp->p_slckcnt == 0 || panicstr); 3059 3060 if (pp->p_szc != 0) { 3061 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) || 3062 PP_ISKAS(pp)) { 3063 panic("page_destroy: anon or kernel or no vnode " 3064 "large page %p", (void *)pp); 3065 } 3066 page_demote_vp_pages(pp); 3067 ASSERT(pp->p_szc == 0); 3068 } 3069 3070 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp); 3071 3072 /* 3073 * Unload translations, if any, then hash out the 3074 * page to erase its identity. 3075 */ 3076 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 3077 page_hashout(pp, NULL); 3078 3079 if (!dontfree) { 3080 /* 3081 * Acquire the "freemem_lock" for availrmem. 3082 * The page_struct_lock need not be acquired for lckcnt 3083 * and cowcnt since the page has an "exclusive" lock. 3084 * We are doing a modified version of page_pp_unlock here. 3085 */ 3086 if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) { 3087 mutex_enter(&freemem_lock); 3088 if (pp->p_lckcnt != 0) { 3089 availrmem++; 3090 pages_locked--; 3091 pp->p_lckcnt = 0; 3092 } 3093 if (pp->p_cowcnt != 0) { 3094 availrmem += pp->p_cowcnt; 3095 pages_locked -= pp->p_cowcnt; 3096 pp->p_cowcnt = 0; 3097 } 3098 mutex_exit(&freemem_lock); 3099 } 3100 /* 3101 * Put the page on the "free" list. 3102 */ 3103 page_free(pp, 0); 3104 } 3105 } 3106 3107 void 3108 page_destroy_pages(page_t *pp) 3109 { 3110 3111 page_t *tpp, *rootpp = NULL; 3112 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc); 3113 pgcnt_t i, pglcks = 0; 3114 uint_t szc = pp->p_szc; 3115 3116 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes()); 3117 3118 VM_STAT_ADD(pagecnt.pc_destroy_pages); 3119 3120 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp); 3121 3122 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) { 3123 panic("page_destroy_pages: not root page %p", (void *)pp); 3124 /*NOTREACHED*/ 3125 } 3126 3127 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) { 3128 ASSERT((PAGE_EXCL(tpp) && 3129 !page_iolock_assert(tpp)) || panicstr); 3130 ASSERT(tpp->p_slckcnt == 0 || panicstr); 3131 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD); 3132 page_hashout(tpp, NULL); 3133 ASSERT(tpp->p_offset == (u_offset_t)-1); 3134 if (tpp->p_lckcnt != 0) { 3135 pglcks++; 3136 tpp->p_lckcnt = 0; 3137 } else if (tpp->p_cowcnt != 0) { 3138 pglcks += tpp->p_cowcnt; 3139 tpp->p_cowcnt = 0; 3140 } 3141 ASSERT(!hat_page_getshare(tpp)); 3142 ASSERT(tpp->p_vnode == NULL); 3143 ASSERT(tpp->p_szc == szc); 3144 3145 PP_SETFREE(tpp); 3146 page_clr_all_props(tpp); 3147 PP_SETAGED(tpp); 3148 ASSERT(tpp->p_next == tpp); 3149 ASSERT(tpp->p_prev == tpp); 3150 page_list_concat(&rootpp, &tpp); 3151 } 3152 3153 ASSERT(rootpp == pp); 3154 if (pglcks != 0) { 3155 mutex_enter(&freemem_lock); 3156 availrmem += pglcks; 3157 mutex_exit(&freemem_lock); 3158 } 3159 3160 page_list_add_pages(rootpp, 0); 3161 page_create_putback(pgcnt); 3162 } 3163 3164 /* 3165 * Similar to page_destroy(), but destroys pages which are 3166 * locked and known to be on the page free list. Since 3167 * the page is known to be free and locked, no one can access 3168 * it. 3169 * 3170 * Also, the number of free pages does not change. 3171 */ 3172 void 3173 page_destroy_free(page_t *pp) 3174 { 3175 ASSERT(PAGE_EXCL(pp)); 3176 ASSERT(PP_ISFREE(pp)); 3177 ASSERT(pp->p_vnode); 3178 ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0); 3179 ASSERT(!hat_page_is_mapped(pp)); 3180 ASSERT(PP_ISAGED(pp) == 0); 3181 ASSERT(pp->p_szc == 0); 3182 3183 VM_STAT_ADD(pagecnt.pc_destroy_free); 3184 page_list_sub(pp, PG_CACHE_LIST); 3185 3186 page_hashout(pp, NULL); 3187 ASSERT(pp->p_vnode == NULL); 3188 ASSERT(pp->p_offset == (u_offset_t)-1); 3189 ASSERT(pp->p_hash == NULL); 3190 3191 PP_SETAGED(pp); 3192 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 3193 page_unlock(pp); 3194 3195 mutex_enter(&new_freemem_lock); 3196 if (freemem_wait) { 3197 cv_signal(&freemem_cv); 3198 } 3199 mutex_exit(&new_freemem_lock); 3200 } 3201 3202 /* 3203 * Rename the page "opp" to have an identity specified 3204 * by [vp, off]. If a page already exists with this name 3205 * it is locked and destroyed. Note that the page's 3206 * translations are not unloaded during the rename. 3207 * 3208 * This routine is used by the anon layer to "steal" the 3209 * original page and is not unlike destroying a page and 3210 * creating a new page using the same page frame. 3211 * 3212 * XXX -- Could deadlock if caller 1 tries to rename A to B while 3213 * caller 2 tries to rename B to A. 3214 */ 3215 void 3216 page_rename(page_t *opp, vnode_t *vp, u_offset_t off) 3217 { 3218 page_t *pp; 3219 int olckcnt = 0; 3220 int ocowcnt = 0; 3221 kmutex_t *phm; 3222 ulong_t index; 3223 3224 ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp)); 3225 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3226 ASSERT(PP_ISFREE(opp) == 0); 3227 3228 VM_STAT_ADD(page_rename_count); 3229 3230 TRACE_3(TR_FAC_VM, TR_PAGE_RENAME, 3231 "page rename:pp %p vp %p off %llx", opp, vp, off); 3232 3233 /* 3234 * CacheFS may call page_rename for a large NFS page 3235 * when both CacheFS and NFS mount points are used 3236 * by applications. Demote this large page before 3237 * renaming it, to ensure that there are no "partial" 3238 * large pages left lying around. 3239 */ 3240 if (opp->p_szc != 0) { 3241 vnode_t *ovp = opp->p_vnode; 3242 ASSERT(ovp != NULL); 3243 ASSERT(!IS_SWAPFSVP(ovp)); 3244 ASSERT(!VN_ISKAS(ovp)); 3245 page_demote_vp_pages(opp); 3246 ASSERT(opp->p_szc == 0); 3247 } 3248 3249 page_hashout(opp, NULL); 3250 PP_CLRAGED(opp); 3251 3252 /* 3253 * Acquire the appropriate page hash lock, since 3254 * we're going to rename the page. 3255 */ 3256 index = PAGE_HASH_FUNC(vp, off); 3257 phm = PAGE_HASH_MUTEX(index); 3258 mutex_enter(phm); 3259 top: 3260 /* 3261 * Look for an existing page with this name and destroy it if found. 3262 * By holding the page hash lock all the way to the page_hashin() 3263 * call, we are assured that no page can be created with this 3264 * identity. In the case when the phm lock is dropped to undo any 3265 * hat layer mappings, the existing page is held with an "exclusive" 3266 * lock, again preventing another page from being created with 3267 * this identity. 3268 */ 3269 pp = page_hash_search(index, vp, off); 3270 if (pp != NULL) { 3271 VM_STAT_ADD(page_rename_exists); 3272 3273 /* 3274 * As it turns out, this is one of only two places where 3275 * page_lock() needs to hold the passed in lock in the 3276 * successful case. In all of the others, the lock could 3277 * be dropped as soon as the attempt is made to lock 3278 * the page. It is tempting to add yet another arguement, 3279 * PL_KEEP or PL_DROP, to let page_lock know what to do. 3280 */ 3281 if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) { 3282 /* 3283 * Went to sleep because the page could not 3284 * be locked. We were woken up when the page 3285 * was unlocked, or when the page was destroyed. 3286 * In either case, `phm' was dropped while we 3287 * slept. Hence we should not just roar through 3288 * this loop. 3289 */ 3290 goto top; 3291 } 3292 3293 /* 3294 * If an existing page is a large page, then demote 3295 * it to ensure that no "partial" large pages are 3296 * "created" after page_rename. An existing page 3297 * can be a CacheFS page, and can't belong to swapfs. 3298 */ 3299 if (hat_page_is_mapped(pp)) { 3300 /* 3301 * Unload translations. Since we hold the 3302 * exclusive lock on this page, the page 3303 * can not be changed while we drop phm. 3304 * This is also not a lock protocol violation, 3305 * but rather the proper way to do things. 3306 */ 3307 mutex_exit(phm); 3308 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 3309 if (pp->p_szc != 0) { 3310 ASSERT(!IS_SWAPFSVP(vp)); 3311 ASSERT(!VN_ISKAS(vp)); 3312 page_demote_vp_pages(pp); 3313 ASSERT(pp->p_szc == 0); 3314 } 3315 mutex_enter(phm); 3316 } else if (pp->p_szc != 0) { 3317 ASSERT(!IS_SWAPFSVP(vp)); 3318 ASSERT(!VN_ISKAS(vp)); 3319 mutex_exit(phm); 3320 page_demote_vp_pages(pp); 3321 ASSERT(pp->p_szc == 0); 3322 mutex_enter(phm); 3323 } 3324 page_hashout(pp, phm); 3325 } 3326 /* 3327 * Hash in the page with the new identity. 3328 */ 3329 if (!page_hashin(opp, vp, off, phm)) { 3330 /* 3331 * We were holding phm while we searched for [vp, off] 3332 * and only dropped phm if we found and locked a page. 3333 * If we can't create this page now, then some thing 3334 * is really broken. 3335 */ 3336 panic("page_rename: Can't hash in page: %p", (void *)pp); 3337 /*NOTREACHED*/ 3338 } 3339 3340 ASSERT(MUTEX_HELD(phm)); 3341 mutex_exit(phm); 3342 3343 /* 3344 * Now that we have dropped phm, lets get around to finishing up 3345 * with pp. 3346 */ 3347 if (pp != NULL) { 3348 ASSERT(!hat_page_is_mapped(pp)); 3349 /* for now large pages should not end up here */ 3350 ASSERT(pp->p_szc == 0); 3351 /* 3352 * Save the locks for transfer to the new page and then 3353 * clear them so page_free doesn't think they're important. 3354 * The page_struct_lock need not be acquired for lckcnt and 3355 * cowcnt since the page has an "exclusive" lock. 3356 */ 3357 olckcnt = pp->p_lckcnt; 3358 ocowcnt = pp->p_cowcnt; 3359 pp->p_lckcnt = pp->p_cowcnt = 0; 3360 3361 /* 3362 * Put the page on the "free" list after we drop 3363 * the lock. The less work under the lock the better. 3364 */ 3365 /*LINTED: constant in conditional context*/ 3366 VN_DISPOSE(pp, B_FREE, 0, kcred); 3367 } 3368 3369 /* 3370 * Transfer the lock count from the old page (if any). 3371 * The page_struct_lock need not be acquired for lckcnt and 3372 * cowcnt since the page has an "exclusive" lock. 3373 */ 3374 opp->p_lckcnt += olckcnt; 3375 opp->p_cowcnt += ocowcnt; 3376 } 3377 3378 /* 3379 * low level routine to add page `pp' to the hash and vp chains for [vp, offset] 3380 * 3381 * Pages are normally inserted at the start of a vnode's v_pages list. 3382 * If the vnode is VMODSORT and the page is modified, it goes at the end. 3383 * This can happen when a modified page is relocated for DR. 3384 * 3385 * Returns 1 on success and 0 on failure. 3386 */ 3387 static int 3388 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset) 3389 { 3390 page_t **listp; 3391 page_t *tp; 3392 ulong_t index; 3393 3394 ASSERT(PAGE_EXCL(pp)); 3395 ASSERT(vp != NULL); 3396 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 3397 3398 /* 3399 * Be sure to set these up before the page is inserted on the hash 3400 * list. As soon as the page is placed on the list some other 3401 * thread might get confused and wonder how this page could 3402 * possibly hash to this list. 3403 */ 3404 pp->p_vnode = vp; 3405 pp->p_offset = offset; 3406 3407 /* 3408 * record if this page is on a swap vnode 3409 */ 3410 if ((vp->v_flag & VISSWAP) != 0) 3411 PP_SETSWAP(pp); 3412 3413 index = PAGE_HASH_FUNC(vp, offset); 3414 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index))); 3415 listp = &page_hash[index]; 3416 3417 /* 3418 * If this page is already hashed in, fail this attempt to add it. 3419 */ 3420 for (tp = *listp; tp != NULL; tp = tp->p_hash) { 3421 if (tp->p_vnode == vp && tp->p_offset == offset) { 3422 pp->p_vnode = NULL; 3423 pp->p_offset = (u_offset_t)(-1); 3424 return (0); 3425 } 3426 } 3427 pp->p_hash = *listp; 3428 *listp = pp; 3429 3430 /* 3431 * Add the page to the vnode's list of pages 3432 */ 3433 if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp)) 3434 listp = &vp->v_pages->p_vpprev->p_vpnext; 3435 else 3436 listp = &vp->v_pages; 3437 3438 page_vpadd(listp, pp); 3439 3440 return (1); 3441 } 3442 3443 /* 3444 * Add page `pp' to both the hash and vp chains for [vp, offset]. 3445 * 3446 * Returns 1 on success and 0 on failure. 3447 * If hold is passed in, it is not dropped. 3448 */ 3449 int 3450 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold) 3451 { 3452 kmutex_t *phm = NULL; 3453 kmutex_t *vphm; 3454 int rc; 3455 3456 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3457 ASSERT(pp->p_fsdata == 0 || panicstr); 3458 3459 TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN, 3460 "page_hashin:pp %p vp %p offset %llx", 3461 pp, vp, offset); 3462 3463 VM_STAT_ADD(hashin_count); 3464 3465 if (hold != NULL) 3466 phm = hold; 3467 else { 3468 VM_STAT_ADD(hashin_not_held); 3469 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset)); 3470 mutex_enter(phm); 3471 } 3472 3473 vphm = page_vnode_mutex(vp); 3474 mutex_enter(vphm); 3475 rc = page_do_hashin(pp, vp, offset); 3476 mutex_exit(vphm); 3477 if (hold == NULL) 3478 mutex_exit(phm); 3479 if (rc == 0) 3480 VM_STAT_ADD(hashin_already); 3481 return (rc); 3482 } 3483 3484 /* 3485 * Remove page ``pp'' from the hash and vp chains and remove vp association. 3486 * All mutexes must be held 3487 */ 3488 static void 3489 page_do_hashout(page_t *pp) 3490 { 3491 page_t **hpp; 3492 page_t *hp; 3493 vnode_t *vp = pp->p_vnode; 3494 3495 ASSERT(vp != NULL); 3496 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 3497 3498 /* 3499 * First, take pp off of its hash chain. 3500 */ 3501 hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)]; 3502 3503 for (;;) { 3504 hp = *hpp; 3505 if (hp == pp) 3506 break; 3507 if (hp == NULL) { 3508 panic("page_do_hashout"); 3509 /*NOTREACHED*/ 3510 } 3511 hpp = &hp->p_hash; 3512 } 3513 *hpp = pp->p_hash; 3514 3515 /* 3516 * Now remove it from its associated vnode. 3517 */ 3518 if (vp->v_pages) 3519 page_vpsub(&vp->v_pages, pp); 3520 3521 pp->p_hash = NULL; 3522 page_clr_all_props(pp); 3523 PP_CLRSWAP(pp); 3524 pp->p_vnode = NULL; 3525 pp->p_offset = (u_offset_t)-1; 3526 pp->p_fsdata = 0; 3527 } 3528 3529 /* 3530 * Remove page ``pp'' from the hash and vp chains and remove vp association. 3531 * 3532 * When `phm' is non-NULL it contains the address of the mutex protecting the 3533 * hash list pp is on. It is not dropped. 3534 */ 3535 void 3536 page_hashout(page_t *pp, kmutex_t *phm) 3537 { 3538 vnode_t *vp; 3539 ulong_t index; 3540 kmutex_t *nphm; 3541 kmutex_t *vphm; 3542 kmutex_t *sep; 3543 3544 ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1); 3545 ASSERT(pp->p_vnode != NULL); 3546 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 3547 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode))); 3548 3549 vp = pp->p_vnode; 3550 3551 TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT, 3552 "page_hashout:pp %p vp %p", pp, vp); 3553 3554 /* Kernel probe */ 3555 TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */, 3556 tnf_opaque, vnode, vp, 3557 tnf_offset, offset, pp->p_offset); 3558 3559 /* 3560 * 3561 */ 3562 VM_STAT_ADD(hashout_count); 3563 index = PAGE_HASH_FUNC(vp, pp->p_offset); 3564 if (phm == NULL) { 3565 VM_STAT_ADD(hashout_not_held); 3566 nphm = PAGE_HASH_MUTEX(index); 3567 mutex_enter(nphm); 3568 } 3569 ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1); 3570 3571 3572 /* 3573 * grab page vnode mutex and remove it... 3574 */ 3575 vphm = page_vnode_mutex(vp); 3576 mutex_enter(vphm); 3577 3578 page_do_hashout(pp); 3579 3580 mutex_exit(vphm); 3581 if (phm == NULL) 3582 mutex_exit(nphm); 3583 3584 /* 3585 * Wake up processes waiting for this page. The page's 3586 * identity has been changed, and is probably not the 3587 * desired page any longer. 3588 */ 3589 sep = page_se_mutex(pp); 3590 mutex_enter(sep); 3591 pp->p_selock &= ~SE_EWANTED; 3592 if (CV_HAS_WAITERS(&pp->p_cv)) 3593 cv_broadcast(&pp->p_cv); 3594 mutex_exit(sep); 3595 } 3596 3597 /* 3598 * Add the page to the front of a linked list of pages 3599 * using the p_next & p_prev pointers for the list. 3600 * The caller is responsible for protecting the list pointers. 3601 */ 3602 void 3603 page_add(page_t **ppp, page_t *pp) 3604 { 3605 ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp))); 3606 3607 page_add_common(ppp, pp); 3608 } 3609 3610 3611 3612 /* 3613 * Common code for page_add() and mach_page_add() 3614 */ 3615 void 3616 page_add_common(page_t **ppp, page_t *pp) 3617 { 3618 if (*ppp == NULL) { 3619 pp->p_next = pp->p_prev = pp; 3620 } else { 3621 pp->p_next = *ppp; 3622 pp->p_prev = (*ppp)->p_prev; 3623 (*ppp)->p_prev = pp; 3624 pp->p_prev->p_next = pp; 3625 } 3626 *ppp = pp; 3627 } 3628 3629 3630 /* 3631 * Remove this page from a linked list of pages 3632 * using the p_next & p_prev pointers for the list. 3633 * 3634 * The caller is responsible for protecting the list pointers. 3635 */ 3636 void 3637 page_sub(page_t **ppp, page_t *pp) 3638 { 3639 ASSERT((PP_ISFREE(pp)) ? 1 : 3640 (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp))); 3641 3642 if (*ppp == NULL || pp == NULL) { 3643 panic("page_sub: bad arg(s): pp %p, *ppp %p", 3644 (void *)pp, (void *)(*ppp)); 3645 /*NOTREACHED*/ 3646 } 3647 3648 page_sub_common(ppp, pp); 3649 } 3650 3651 3652 /* 3653 * Common code for page_sub() and mach_page_sub() 3654 */ 3655 void 3656 page_sub_common(page_t **ppp, page_t *pp) 3657 { 3658 if (*ppp == pp) 3659 *ppp = pp->p_next; /* go to next page */ 3660 3661 if (*ppp == pp) 3662 *ppp = NULL; /* page list is gone */ 3663 else { 3664 pp->p_prev->p_next = pp->p_next; 3665 pp->p_next->p_prev = pp->p_prev; 3666 } 3667 pp->p_prev = pp->p_next = pp; /* make pp a list of one */ 3668 } 3669 3670 3671 /* 3672 * Break page list cppp into two lists with npages in the first list. 3673 * The tail is returned in nppp. 3674 */ 3675 void 3676 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages) 3677 { 3678 page_t *s1pp = *oppp; 3679 page_t *s2pp; 3680 page_t *e1pp, *e2pp; 3681 long n = 0; 3682 3683 if (s1pp == NULL) { 3684 *nppp = NULL; 3685 return; 3686 } 3687 if (npages == 0) { 3688 *nppp = s1pp; 3689 *oppp = NULL; 3690 return; 3691 } 3692 for (n = 0, s2pp = *oppp; n < npages; n++) { 3693 s2pp = s2pp->p_next; 3694 } 3695 /* Fix head and tail of new lists */ 3696 e1pp = s2pp->p_prev; 3697 e2pp = s1pp->p_prev; 3698 s1pp->p_prev = e1pp; 3699 e1pp->p_next = s1pp; 3700 s2pp->p_prev = e2pp; 3701 e2pp->p_next = s2pp; 3702 3703 /* second list empty */ 3704 if (s2pp == s1pp) { 3705 *oppp = s1pp; 3706 *nppp = NULL; 3707 } else { 3708 *oppp = s1pp; 3709 *nppp = s2pp; 3710 } 3711 } 3712 3713 /* 3714 * Concatenate page list nppp onto the end of list ppp. 3715 */ 3716 void 3717 page_list_concat(page_t **ppp, page_t **nppp) 3718 { 3719 page_t *s1pp, *s2pp, *e1pp, *e2pp; 3720 3721 if (*nppp == NULL) { 3722 return; 3723 } 3724 if (*ppp == NULL) { 3725 *ppp = *nppp; 3726 return; 3727 } 3728 s1pp = *ppp; 3729 e1pp = s1pp->p_prev; 3730 s2pp = *nppp; 3731 e2pp = s2pp->p_prev; 3732 s1pp->p_prev = e2pp; 3733 e2pp->p_next = s1pp; 3734 e1pp->p_next = s2pp; 3735 s2pp->p_prev = e1pp; 3736 } 3737 3738 /* 3739 * return the next page in the page list 3740 */ 3741 page_t * 3742 page_list_next(page_t *pp) 3743 { 3744 return (pp->p_next); 3745 } 3746 3747 3748 /* 3749 * Add the page to the front of the linked list of pages 3750 * using p_vpnext/p_vpprev pointers for the list. 3751 * 3752 * The caller is responsible for protecting the lists. 3753 */ 3754 void 3755 page_vpadd(page_t **ppp, page_t *pp) 3756 { 3757 if (*ppp == NULL) { 3758 pp->p_vpnext = pp->p_vpprev = pp; 3759 } else { 3760 pp->p_vpnext = *ppp; 3761 pp->p_vpprev = (*ppp)->p_vpprev; 3762 (*ppp)->p_vpprev = pp; 3763 pp->p_vpprev->p_vpnext = pp; 3764 } 3765 *ppp = pp; 3766 } 3767 3768 /* 3769 * Remove this page from the linked list of pages 3770 * using p_vpnext/p_vpprev pointers for the list. 3771 * 3772 * The caller is responsible for protecting the lists. 3773 */ 3774 void 3775 page_vpsub(page_t **ppp, page_t *pp) 3776 { 3777 if (*ppp == NULL || pp == NULL) { 3778 panic("page_vpsub: bad arg(s): pp %p, *ppp %p", 3779 (void *)pp, (void *)(*ppp)); 3780 /*NOTREACHED*/ 3781 } 3782 3783 if (*ppp == pp) 3784 *ppp = pp->p_vpnext; /* go to next page */ 3785 3786 if (*ppp == pp) 3787 *ppp = NULL; /* page list is gone */ 3788 else { 3789 pp->p_vpprev->p_vpnext = pp->p_vpnext; 3790 pp->p_vpnext->p_vpprev = pp->p_vpprev; 3791 } 3792 pp->p_vpprev = pp->p_vpnext = pp; /* make pp a list of one */ 3793 } 3794 3795 /* 3796 * Lock a physical page into memory "long term". Used to support "lock 3797 * in memory" functions. Accepts the page to be locked, and a cow variable 3798 * to indicate whether a the lock will travel to the new page during 3799 * a potential copy-on-write. 3800 */ 3801 int 3802 page_pp_lock( 3803 page_t *pp, /* page to be locked */ 3804 int cow, /* cow lock */ 3805 int kernel) /* must succeed -- ignore checking */ 3806 { 3807 int r = 0; /* result -- assume failure */ 3808 3809 ASSERT(PAGE_LOCKED(pp)); 3810 3811 page_struct_lock(pp); 3812 /* 3813 * Acquire the "freemem_lock" for availrmem. 3814 */ 3815 if (cow) { 3816 mutex_enter(&freemem_lock); 3817 if ((availrmem > pages_pp_maximum) && 3818 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) { 3819 availrmem--; 3820 pages_locked++; 3821 mutex_exit(&freemem_lock); 3822 r = 1; 3823 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 3824 cmn_err(CE_WARN, 3825 "COW lock limit reached on pfn 0x%lx", 3826 page_pptonum(pp)); 3827 } 3828 } else 3829 mutex_exit(&freemem_lock); 3830 } else { 3831 if (pp->p_lckcnt) { 3832 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 3833 r = 1; 3834 if (++pp->p_lckcnt == 3835 (ushort_t)PAGE_LOCK_MAXIMUM) { 3836 cmn_err(CE_WARN, "Page lock limit " 3837 "reached on pfn 0x%lx", 3838 page_pptonum(pp)); 3839 } 3840 } 3841 } else { 3842 if (kernel) { 3843 /* availrmem accounting done by caller */ 3844 ++pp->p_lckcnt; 3845 r = 1; 3846 } else { 3847 mutex_enter(&freemem_lock); 3848 if (availrmem > pages_pp_maximum) { 3849 availrmem--; 3850 pages_locked++; 3851 ++pp->p_lckcnt; 3852 r = 1; 3853 } 3854 mutex_exit(&freemem_lock); 3855 } 3856 } 3857 } 3858 page_struct_unlock(pp); 3859 return (r); 3860 } 3861 3862 /* 3863 * Decommit a lock on a physical page frame. Account for cow locks if 3864 * appropriate. 3865 */ 3866 void 3867 page_pp_unlock( 3868 page_t *pp, /* page to be unlocked */ 3869 int cow, /* expect cow lock */ 3870 int kernel) /* this was a kernel lock */ 3871 { 3872 ASSERT(PAGE_LOCKED(pp)); 3873 3874 page_struct_lock(pp); 3875 /* 3876 * Acquire the "freemem_lock" for availrmem. 3877 * If cowcnt or lcknt is already 0 do nothing; i.e., we 3878 * could be called to unlock even if nothing is locked. This could 3879 * happen if locked file pages were truncated (removing the lock) 3880 * and the file was grown again and new pages faulted in; the new 3881 * pages are unlocked but the segment still thinks they're locked. 3882 */ 3883 if (cow) { 3884 if (pp->p_cowcnt) { 3885 mutex_enter(&freemem_lock); 3886 pp->p_cowcnt--; 3887 availrmem++; 3888 pages_locked--; 3889 mutex_exit(&freemem_lock); 3890 } 3891 } else { 3892 if (pp->p_lckcnt && --pp->p_lckcnt == 0) { 3893 if (!kernel) { 3894 mutex_enter(&freemem_lock); 3895 availrmem++; 3896 pages_locked--; 3897 mutex_exit(&freemem_lock); 3898 } 3899 } 3900 } 3901 page_struct_unlock(pp); 3902 } 3903 3904 /* 3905 * This routine reserves availrmem for npages; 3906 * flags: KM_NOSLEEP or KM_SLEEP 3907 * returns 1 on success or 0 on failure 3908 */ 3909 int 3910 page_resv(pgcnt_t npages, uint_t flags) 3911 { 3912 mutex_enter(&freemem_lock); 3913 while (availrmem < tune.t_minarmem + npages) { 3914 if (flags & KM_NOSLEEP) { 3915 mutex_exit(&freemem_lock); 3916 return (0); 3917 } 3918 mutex_exit(&freemem_lock); 3919 page_needfree(npages); 3920 kmem_reap(); 3921 delay(hz >> 2); 3922 page_needfree(-(spgcnt_t)npages); 3923 mutex_enter(&freemem_lock); 3924 } 3925 availrmem -= npages; 3926 mutex_exit(&freemem_lock); 3927 return (1); 3928 } 3929 3930 /* 3931 * This routine unreserves availrmem for npages; 3932 */ 3933 void 3934 page_unresv(pgcnt_t npages) 3935 { 3936 mutex_enter(&freemem_lock); 3937 availrmem += npages; 3938 mutex_exit(&freemem_lock); 3939 } 3940 3941 /* 3942 * See Statement at the beginning of segvn_lockop() regarding 3943 * the way we handle cowcnts and lckcnts. 3944 * 3945 * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage 3946 * that breaks COW has PROT_WRITE. 3947 * 3948 * Note that, we may also break COW in case we are softlocking 3949 * on read access during physio; 3950 * in this softlock case, the vpage may not have PROT_WRITE. 3951 * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp' 3952 * if the vpage doesn't have PROT_WRITE. 3953 * 3954 * This routine is never called if we are stealing a page 3955 * in anon_private. 3956 * 3957 * The caller subtracted from availrmem for read only mapping. 3958 * if lckcnt is 1 increment availrmem. 3959 */ 3960 void 3961 page_pp_useclaim( 3962 page_t *opp, /* original page frame losing lock */ 3963 page_t *npp, /* new page frame gaining lock */ 3964 uint_t write_perm) /* set if vpage has PROT_WRITE */ 3965 { 3966 int payback = 0; 3967 int nidx, oidx; 3968 3969 ASSERT(PAGE_LOCKED(opp)); 3970 ASSERT(PAGE_LOCKED(npp)); 3971 3972 /* 3973 * Since we have two pages we probably have two locks. We need to take 3974 * them in a defined order to avoid deadlocks. It's also possible they 3975 * both hash to the same lock in which case this is a non-issue. 3976 */ 3977 nidx = PAGE_LLOCK_HASH(PP_PAGEROOT(npp)); 3978 oidx = PAGE_LLOCK_HASH(PP_PAGEROOT(opp)); 3979 if (nidx < oidx) { 3980 page_struct_lock(npp); 3981 page_struct_lock(opp); 3982 } else if (oidx < nidx) { 3983 page_struct_lock(opp); 3984 page_struct_lock(npp); 3985 } else { /* The pages hash to the same lock */ 3986 page_struct_lock(npp); 3987 } 3988 3989 ASSERT(npp->p_cowcnt == 0); 3990 ASSERT(npp->p_lckcnt == 0); 3991 3992 /* Don't use claim if nothing is locked (see page_pp_unlock above) */ 3993 if ((write_perm && opp->p_cowcnt != 0) || 3994 (!write_perm && opp->p_lckcnt != 0)) { 3995 3996 if (write_perm) { 3997 npp->p_cowcnt++; 3998 ASSERT(opp->p_cowcnt != 0); 3999 opp->p_cowcnt--; 4000 } else { 4001 4002 ASSERT(opp->p_lckcnt != 0); 4003 4004 /* 4005 * We didn't need availrmem decremented if p_lckcnt on 4006 * original page is 1. Here, we are unlocking 4007 * read-only copy belonging to original page and 4008 * are locking a copy belonging to new page. 4009 */ 4010 if (opp->p_lckcnt == 1) 4011 payback = 1; 4012 4013 npp->p_lckcnt++; 4014 opp->p_lckcnt--; 4015 } 4016 } 4017 if (payback) { 4018 mutex_enter(&freemem_lock); 4019 availrmem++; 4020 pages_useclaim--; 4021 mutex_exit(&freemem_lock); 4022 } 4023 4024 if (nidx < oidx) { 4025 page_struct_unlock(opp); 4026 page_struct_unlock(npp); 4027 } else if (oidx < nidx) { 4028 page_struct_unlock(npp); 4029 page_struct_unlock(opp); 4030 } else { /* The pages hash to the same lock */ 4031 page_struct_unlock(npp); 4032 } 4033 } 4034 4035 /* 4036 * Simple claim adjust functions -- used to support changes in 4037 * claims due to changes in access permissions. Used by segvn_setprot(). 4038 */ 4039 int 4040 page_addclaim(page_t *pp) 4041 { 4042 int r = 0; /* result */ 4043 4044 ASSERT(PAGE_LOCKED(pp)); 4045 4046 page_struct_lock(pp); 4047 ASSERT(pp->p_lckcnt != 0); 4048 4049 if (pp->p_lckcnt == 1) { 4050 if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 4051 --pp->p_lckcnt; 4052 r = 1; 4053 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4054 cmn_err(CE_WARN, 4055 "COW lock limit reached on pfn 0x%lx", 4056 page_pptonum(pp)); 4057 } 4058 } 4059 } else { 4060 mutex_enter(&freemem_lock); 4061 if ((availrmem > pages_pp_maximum) && 4062 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) { 4063 --availrmem; 4064 ++pages_claimed; 4065 mutex_exit(&freemem_lock); 4066 --pp->p_lckcnt; 4067 r = 1; 4068 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4069 cmn_err(CE_WARN, 4070 "COW lock limit reached on pfn 0x%lx", 4071 page_pptonum(pp)); 4072 } 4073 } else 4074 mutex_exit(&freemem_lock); 4075 } 4076 page_struct_unlock(pp); 4077 return (r); 4078 } 4079 4080 int 4081 page_subclaim(page_t *pp) 4082 { 4083 int r = 0; 4084 4085 ASSERT(PAGE_LOCKED(pp)); 4086 4087 page_struct_lock(pp); 4088 ASSERT(pp->p_cowcnt != 0); 4089 4090 if (pp->p_lckcnt) { 4091 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 4092 r = 1; 4093 /* 4094 * for availrmem 4095 */ 4096 mutex_enter(&freemem_lock); 4097 availrmem++; 4098 pages_claimed--; 4099 mutex_exit(&freemem_lock); 4100 4101 pp->p_cowcnt--; 4102 4103 if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4104 cmn_err(CE_WARN, 4105 "Page lock limit reached on pfn 0x%lx", 4106 page_pptonum(pp)); 4107 } 4108 } 4109 } else { 4110 r = 1; 4111 pp->p_cowcnt--; 4112 pp->p_lckcnt++; 4113 } 4114 page_struct_unlock(pp); 4115 return (r); 4116 } 4117 4118 /* 4119 * Variant of page_addclaim(), where ppa[] contains the pages of a single large 4120 * page. 4121 */ 4122 int 4123 page_addclaim_pages(page_t **ppa) 4124 { 4125 pgcnt_t lckpgs = 0, pg_idx; 4126 4127 VM_STAT_ADD(pagecnt.pc_addclaim_pages); 4128 4129 /* 4130 * Only need to take the page struct lock on the large page root. 4131 */ 4132 page_struct_lock(ppa[0]); 4133 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4134 4135 ASSERT(PAGE_LOCKED(ppa[pg_idx])); 4136 ASSERT(ppa[pg_idx]->p_lckcnt != 0); 4137 if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4138 page_struct_unlock(ppa[0]); 4139 return (0); 4140 } 4141 if (ppa[pg_idx]->p_lckcnt > 1) 4142 lckpgs++; 4143 } 4144 4145 if (lckpgs != 0) { 4146 mutex_enter(&freemem_lock); 4147 if (availrmem >= pages_pp_maximum + lckpgs) { 4148 availrmem -= lckpgs; 4149 pages_claimed += lckpgs; 4150 } else { 4151 mutex_exit(&freemem_lock); 4152 page_struct_unlock(ppa[0]); 4153 return (0); 4154 } 4155 mutex_exit(&freemem_lock); 4156 } 4157 4158 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4159 ppa[pg_idx]->p_lckcnt--; 4160 ppa[pg_idx]->p_cowcnt++; 4161 } 4162 page_struct_unlock(ppa[0]); 4163 return (1); 4164 } 4165 4166 /* 4167 * Variant of page_subclaim(), where ppa[] contains the pages of a single large 4168 * page. 4169 */ 4170 int 4171 page_subclaim_pages(page_t **ppa) 4172 { 4173 pgcnt_t ulckpgs = 0, pg_idx; 4174 4175 VM_STAT_ADD(pagecnt.pc_subclaim_pages); 4176 4177 /* 4178 * Only need to take the page struct lock on the large page root. 4179 */ 4180 page_struct_lock(ppa[0]); 4181 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4182 4183 ASSERT(PAGE_LOCKED(ppa[pg_idx])); 4184 ASSERT(ppa[pg_idx]->p_cowcnt != 0); 4185 if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4186 page_struct_unlock(ppa[0]); 4187 return (0); 4188 } 4189 if (ppa[pg_idx]->p_lckcnt != 0) 4190 ulckpgs++; 4191 } 4192 4193 if (ulckpgs != 0) { 4194 mutex_enter(&freemem_lock); 4195 availrmem += ulckpgs; 4196 pages_claimed -= ulckpgs; 4197 mutex_exit(&freemem_lock); 4198 } 4199 4200 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4201 ppa[pg_idx]->p_cowcnt--; 4202 ppa[pg_idx]->p_lckcnt++; 4203 4204 } 4205 page_struct_unlock(ppa[0]); 4206 return (1); 4207 } 4208 4209 page_t * 4210 page_numtopp(pfn_t pfnum, se_t se) 4211 { 4212 page_t *pp; 4213 4214 retry: 4215 pp = page_numtopp_nolock(pfnum); 4216 if (pp == NULL) { 4217 return ((page_t *)NULL); 4218 } 4219 4220 /* 4221 * Acquire the appropriate lock on the page. 4222 */ 4223 while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) { 4224 if (page_pptonum(pp) != pfnum) 4225 goto retry; 4226 continue; 4227 } 4228 4229 if (page_pptonum(pp) != pfnum) { 4230 page_unlock(pp); 4231 goto retry; 4232 } 4233 4234 return (pp); 4235 } 4236 4237 page_t * 4238 page_numtopp_noreclaim(pfn_t pfnum, se_t se) 4239 { 4240 page_t *pp; 4241 4242 retry: 4243 pp = page_numtopp_nolock(pfnum); 4244 if (pp == NULL) { 4245 return ((page_t *)NULL); 4246 } 4247 4248 /* 4249 * Acquire the appropriate lock on the page. 4250 */ 4251 while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) { 4252 if (page_pptonum(pp) != pfnum) 4253 goto retry; 4254 continue; 4255 } 4256 4257 if (page_pptonum(pp) != pfnum) { 4258 page_unlock(pp); 4259 goto retry; 4260 } 4261 4262 return (pp); 4263 } 4264 4265 /* 4266 * This routine is like page_numtopp, but will only return page structs 4267 * for pages which are ok for loading into hardware using the page struct. 4268 */ 4269 page_t * 4270 page_numtopp_nowait(pfn_t pfnum, se_t se) 4271 { 4272 page_t *pp; 4273 4274 retry: 4275 pp = page_numtopp_nolock(pfnum); 4276 if (pp == NULL) { 4277 return ((page_t *)NULL); 4278 } 4279 4280 /* 4281 * Try to acquire the appropriate lock on the page. 4282 */ 4283 if (PP_ISFREE(pp)) 4284 pp = NULL; 4285 else { 4286 if (!page_trylock(pp, se)) 4287 pp = NULL; 4288 else { 4289 if (page_pptonum(pp) != pfnum) { 4290 page_unlock(pp); 4291 goto retry; 4292 } 4293 if (PP_ISFREE(pp)) { 4294 page_unlock(pp); 4295 pp = NULL; 4296 } 4297 } 4298 } 4299 return (pp); 4300 } 4301 4302 /* 4303 * Returns a count of dirty pages that are in the process 4304 * of being written out. If 'cleanit' is set, try to push the page. 4305 */ 4306 pgcnt_t 4307 page_busy(int cleanit) 4308 { 4309 page_t *page0 = page_first(); 4310 page_t *pp = page0; 4311 pgcnt_t nppbusy = 0; 4312 u_offset_t off; 4313 4314 do { 4315 vnode_t *vp = pp->p_vnode; 4316 /* 4317 * A page is a candidate for syncing if it is: 4318 * 4319 * (a) On neither the freelist nor the cachelist 4320 * (b) Hashed onto a vnode 4321 * (c) Not a kernel page 4322 * (d) Dirty 4323 * (e) Not part of a swapfile 4324 * (f) a page which belongs to a real vnode; eg has a non-null 4325 * v_vfsp pointer. 4326 * (g) Backed by a filesystem which doesn't have a 4327 * stubbed-out sync operation 4328 */ 4329 if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) && 4330 hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL && 4331 vfs_can_sync(vp->v_vfsp)) { 4332 nppbusy++; 4333 4334 if (!cleanit) 4335 continue; 4336 if (!page_trylock(pp, SE_EXCL)) 4337 continue; 4338 4339 if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) || 4340 pp->p_lckcnt != 0 || pp->p_cowcnt != 0 || 4341 !(hat_pagesync(pp, 4342 HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) { 4343 page_unlock(pp); 4344 continue; 4345 } 4346 off = pp->p_offset; 4347 VN_HOLD(vp); 4348 page_unlock(pp); 4349 (void) VOP_PUTPAGE(vp, off, PAGESIZE, 4350 B_ASYNC | B_FREE, kcred, NULL); 4351 VN_RELE(vp); 4352 } 4353 } while ((pp = page_next(pp)) != page0); 4354 4355 return (nppbusy); 4356 } 4357 4358 void page_invalidate_pages(void); 4359 4360 /* 4361 * callback handler to vm sub-system 4362 * 4363 * callers make sure no recursive entries to this func. 4364 */ 4365 /*ARGSUSED*/ 4366 boolean_t 4367 callb_vm_cpr(void *arg, int code) 4368 { 4369 if (code == CB_CODE_CPR_CHKPT) 4370 page_invalidate_pages(); 4371 return (B_TRUE); 4372 } 4373 4374 /* 4375 * Invalidate all pages of the system. 4376 * It shouldn't be called until all user page activities are all stopped. 4377 */ 4378 void 4379 page_invalidate_pages() 4380 { 4381 page_t *pp; 4382 page_t *page0; 4383 pgcnt_t nbusypages; 4384 int retry = 0; 4385 const int MAXRETRIES = 4; 4386 top: 4387 /* 4388 * Flush dirty pages and destroy the clean ones. 4389 */ 4390 nbusypages = 0; 4391 4392 pp = page0 = page_first(); 4393 do { 4394 struct vnode *vp; 4395 u_offset_t offset; 4396 int mod; 4397 4398 /* 4399 * skip the page if it has no vnode or the page associated 4400 * with the kernel vnode or prom allocated kernel mem. 4401 */ 4402 if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp)) 4403 continue; 4404 4405 /* 4406 * skip the page which is already free invalidated. 4407 */ 4408 if (PP_ISFREE(pp) && PP_ISAGED(pp)) 4409 continue; 4410 4411 /* 4412 * skip pages that are already locked or can't be "exclusively" 4413 * locked or are already free. After we lock the page, check 4414 * the free and age bits again to be sure it's not destroyed 4415 * yet. 4416 * To achieve max. parallelization, we use page_trylock instead 4417 * of page_lock so that we don't get block on individual pages 4418 * while we have thousands of other pages to process. 4419 */ 4420 if (!page_trylock(pp, SE_EXCL)) { 4421 nbusypages++; 4422 continue; 4423 } else if (PP_ISFREE(pp)) { 4424 if (!PP_ISAGED(pp)) { 4425 page_destroy_free(pp); 4426 } else { 4427 page_unlock(pp); 4428 } 4429 continue; 4430 } 4431 /* 4432 * Is this page involved in some I/O? shared? 4433 * 4434 * The page_struct_lock need not be acquired to 4435 * examine these fields since the page has an 4436 * "exclusive" lock. 4437 */ 4438 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { 4439 page_unlock(pp); 4440 continue; 4441 } 4442 4443 if (vp->v_type == VCHR) { 4444 panic("vp->v_type == VCHR"); 4445 /*NOTREACHED*/ 4446 } 4447 4448 if (!page_try_demote_pages(pp)) { 4449 page_unlock(pp); 4450 continue; 4451 } 4452 4453 /* 4454 * Check the modified bit. Leave the bits alone in hardware 4455 * (they will be modified if we do the putpage). 4456 */ 4457 mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) 4458 & P_MOD); 4459 if (mod) { 4460 offset = pp->p_offset; 4461 /* 4462 * Hold the vnode before releasing the page lock 4463 * to prevent it from being freed and re-used by 4464 * some other thread. 4465 */ 4466 VN_HOLD(vp); 4467 page_unlock(pp); 4468 /* 4469 * No error return is checked here. Callers such as 4470 * cpr deals with the dirty pages at the dump time 4471 * if this putpage fails. 4472 */ 4473 (void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL, 4474 kcred, NULL); 4475 VN_RELE(vp); 4476 } else { 4477 /*LINTED: constant in conditional context*/ 4478 VN_DISPOSE(pp, B_INVAL, 0, kcred); 4479 } 4480 } while ((pp = page_next(pp)) != page0); 4481 if (nbusypages && retry++ < MAXRETRIES) { 4482 delay(1); 4483 goto top; 4484 } 4485 } 4486 4487 /* 4488 * Replace the page "old" with the page "new" on the page hash and vnode lists 4489 * 4490 * the replacement must be done in place, ie the equivalent sequence: 4491 * 4492 * vp = old->p_vnode; 4493 * off = old->p_offset; 4494 * page_do_hashout(old) 4495 * page_do_hashin(new, vp, off) 4496 * 4497 * doesn't work, since 4498 * 1) if old is the only page on the vnode, the v_pages list has a window 4499 * where it looks empty. This will break file system assumptions. 4500 * and 4501 * 2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list. 4502 */ 4503 static void 4504 page_do_relocate_hash(page_t *new, page_t *old) 4505 { 4506 page_t **hash_list; 4507 vnode_t *vp = old->p_vnode; 4508 kmutex_t *sep; 4509 4510 ASSERT(PAGE_EXCL(old)); 4511 ASSERT(PAGE_EXCL(new)); 4512 ASSERT(vp != NULL); 4513 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 4514 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset)))); 4515 4516 /* 4517 * First find old page on the page hash list 4518 */ 4519 hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)]; 4520 4521 for (;;) { 4522 if (*hash_list == old) 4523 break; 4524 if (*hash_list == NULL) { 4525 panic("page_do_hashout"); 4526 /*NOTREACHED*/ 4527 } 4528 hash_list = &(*hash_list)->p_hash; 4529 } 4530 4531 /* 4532 * update new and replace old with new on the page hash list 4533 */ 4534 new->p_vnode = old->p_vnode; 4535 new->p_offset = old->p_offset; 4536 new->p_hash = old->p_hash; 4537 *hash_list = new; 4538 4539 if ((new->p_vnode->v_flag & VISSWAP) != 0) 4540 PP_SETSWAP(new); 4541 4542 /* 4543 * replace old with new on the vnode's page list 4544 */ 4545 if (old->p_vpnext == old) { 4546 new->p_vpnext = new; 4547 new->p_vpprev = new; 4548 } else { 4549 new->p_vpnext = old->p_vpnext; 4550 new->p_vpprev = old->p_vpprev; 4551 new->p_vpnext->p_vpprev = new; 4552 new->p_vpprev->p_vpnext = new; 4553 } 4554 if (vp->v_pages == old) 4555 vp->v_pages = new; 4556 4557 /* 4558 * clear out the old page 4559 */ 4560 old->p_hash = NULL; 4561 old->p_vpnext = NULL; 4562 old->p_vpprev = NULL; 4563 old->p_vnode = NULL; 4564 PP_CLRSWAP(old); 4565 old->p_offset = (u_offset_t)-1; 4566 page_clr_all_props(old); 4567 4568 /* 4569 * Wake up processes waiting for this page. The page's 4570 * identity has been changed, and is probably not the 4571 * desired page any longer. 4572 */ 4573 sep = page_se_mutex(old); 4574 mutex_enter(sep); 4575 old->p_selock &= ~SE_EWANTED; 4576 if (CV_HAS_WAITERS(&old->p_cv)) 4577 cv_broadcast(&old->p_cv); 4578 mutex_exit(sep); 4579 } 4580 4581 /* 4582 * This function moves the identity of page "pp_old" to page "pp_new". 4583 * Both pages must be locked on entry. "pp_new" is free, has no identity, 4584 * and need not be hashed out from anywhere. 4585 */ 4586 void 4587 page_relocate_hash(page_t *pp_new, page_t *pp_old) 4588 { 4589 vnode_t *vp = pp_old->p_vnode; 4590 u_offset_t off = pp_old->p_offset; 4591 kmutex_t *phm, *vphm; 4592 4593 /* 4594 * Rehash two pages 4595 */ 4596 ASSERT(PAGE_EXCL(pp_old)); 4597 ASSERT(PAGE_EXCL(pp_new)); 4598 ASSERT(vp != NULL); 4599 ASSERT(pp_new->p_vnode == NULL); 4600 4601 /* 4602 * hashout then hashin while holding the mutexes 4603 */ 4604 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off)); 4605 mutex_enter(phm); 4606 vphm = page_vnode_mutex(vp); 4607 mutex_enter(vphm); 4608 4609 page_do_relocate_hash(pp_new, pp_old); 4610 4611 /* The following comment preserved from page_flip(). */ 4612 pp_new->p_fsdata = pp_old->p_fsdata; 4613 pp_old->p_fsdata = 0; 4614 mutex_exit(vphm); 4615 mutex_exit(phm); 4616 4617 /* 4618 * The page_struct_lock need not be acquired for lckcnt and 4619 * cowcnt since the page has an "exclusive" lock. 4620 */ 4621 ASSERT(pp_new->p_lckcnt == 0); 4622 ASSERT(pp_new->p_cowcnt == 0); 4623 pp_new->p_lckcnt = pp_old->p_lckcnt; 4624 pp_new->p_cowcnt = pp_old->p_cowcnt; 4625 pp_old->p_lckcnt = pp_old->p_cowcnt = 0; 4626 4627 } 4628 4629 /* 4630 * Helper routine used to lock all remaining members of a 4631 * large page. The caller is responsible for passing in a locked 4632 * pp. If pp is a large page, then it succeeds in locking all the 4633 * remaining constituent pages or it returns with only the 4634 * original page locked. 4635 * 4636 * Returns 1 on success, 0 on failure. 4637 * 4638 * If success is returned this routine guarantees p_szc for all constituent 4639 * pages of a large page pp belongs to can't change. To achieve this we 4640 * recheck szc of pp after locking all constituent pages and retry if szc 4641 * changed (it could only decrease). Since hat_page_demote() needs an EXCL 4642 * lock on one of constituent pages it can't be running after all constituent 4643 * pages are locked. hat_page_demote() with a lock on a constituent page 4644 * outside of this large page (i.e. pp belonged to a larger large page) is 4645 * already done with all constituent pages of pp since the root's p_szc is 4646 * changed last. Therefore no need to synchronize with hat_page_demote() that 4647 * locked a constituent page outside of pp's current large page. 4648 */ 4649 #ifdef DEBUG 4650 uint32_t gpg_trylock_mtbf = 0; 4651 #endif 4652 4653 int 4654 group_page_trylock(page_t *pp, se_t se) 4655 { 4656 page_t *tpp; 4657 pgcnt_t npgs, i, j; 4658 uint_t pszc = pp->p_szc; 4659 4660 #ifdef DEBUG 4661 if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) { 4662 return (0); 4663 } 4664 #endif 4665 4666 if (pp != PP_GROUPLEADER(pp, pszc)) { 4667 return (0); 4668 } 4669 4670 retry: 4671 ASSERT(PAGE_LOCKED_SE(pp, se)); 4672 ASSERT(!PP_ISFREE(pp)); 4673 if (pszc == 0) { 4674 return (1); 4675 } 4676 npgs = page_get_pagecnt(pszc); 4677 tpp = pp + 1; 4678 for (i = 1; i < npgs; i++, tpp++) { 4679 if (!page_trylock(tpp, se)) { 4680 tpp = pp + 1; 4681 for (j = 1; j < i; j++, tpp++) { 4682 page_unlock(tpp); 4683 } 4684 return (0); 4685 } 4686 } 4687 if (pp->p_szc != pszc) { 4688 ASSERT(pp->p_szc < pszc); 4689 ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) && 4690 !IS_SWAPFSVP(pp->p_vnode)); 4691 tpp = pp + 1; 4692 for (i = 1; i < npgs; i++, tpp++) { 4693 page_unlock(tpp); 4694 } 4695 pszc = pp->p_szc; 4696 goto retry; 4697 } 4698 return (1); 4699 } 4700 4701 void 4702 group_page_unlock(page_t *pp) 4703 { 4704 page_t *tpp; 4705 pgcnt_t npgs, i; 4706 4707 ASSERT(PAGE_LOCKED(pp)); 4708 ASSERT(!PP_ISFREE(pp)); 4709 ASSERT(pp == PP_PAGEROOT(pp)); 4710 npgs = page_get_pagecnt(pp->p_szc); 4711 for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) { 4712 page_unlock(tpp); 4713 } 4714 } 4715 4716 /* 4717 * returns 4718 * 0 : on success and *nrelocp is number of relocated PAGESIZE pages 4719 * ERANGE : this is not a base page 4720 * EBUSY : failure to get locks on the page/pages 4721 * ENOMEM : failure to obtain replacement pages 4722 * EAGAIN : OBP has not yet completed its boot-time handoff to the kernel 4723 * EIO : An error occurred while trying to copy the page data 4724 * 4725 * Return with all constituent members of target and replacement 4726 * SE_EXCL locked. It is the callers responsibility to drop the 4727 * locks. 4728 */ 4729 int 4730 do_page_relocate( 4731 page_t **target, 4732 page_t **replacement, 4733 int grouplock, 4734 spgcnt_t *nrelocp, 4735 lgrp_t *lgrp) 4736 { 4737 page_t *first_repl; 4738 page_t *repl; 4739 page_t *targ; 4740 page_t *pl = NULL; 4741 uint_t ppattr; 4742 pfn_t pfn, repl_pfn; 4743 uint_t szc; 4744 spgcnt_t npgs, i; 4745 int repl_contig = 0; 4746 uint_t flags = 0; 4747 spgcnt_t dofree = 0; 4748 4749 *nrelocp = 0; 4750 4751 #if defined(__sparc) 4752 /* 4753 * We need to wait till OBP has completed 4754 * its boot-time handoff of its resources to the kernel 4755 * before we allow page relocation 4756 */ 4757 if (page_relocate_ready == 0) { 4758 return (EAGAIN); 4759 } 4760 #endif 4761 4762 /* 4763 * If this is not a base page, 4764 * just return with 0x0 pages relocated. 4765 */ 4766 targ = *target; 4767 ASSERT(PAGE_EXCL(targ)); 4768 ASSERT(!PP_ISFREE(targ)); 4769 szc = targ->p_szc; 4770 ASSERT(szc < mmu_page_sizes); 4771 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]); 4772 pfn = targ->p_pagenum; 4773 if (pfn != PFN_BASE(pfn, szc)) { 4774 VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]); 4775 return (ERANGE); 4776 } 4777 4778 if ((repl = *replacement) != NULL && repl->p_szc >= szc) { 4779 repl_pfn = repl->p_pagenum; 4780 if (repl_pfn != PFN_BASE(repl_pfn, szc)) { 4781 VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]); 4782 return (ERANGE); 4783 } 4784 repl_contig = 1; 4785 } 4786 4787 /* 4788 * We must lock all members of this large page or we cannot 4789 * relocate any part of it. 4790 */ 4791 if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) { 4792 VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]); 4793 return (EBUSY); 4794 } 4795 4796 /* 4797 * reread szc it could have been decreased before 4798 * group_page_trylock() was done. 4799 */ 4800 szc = targ->p_szc; 4801 ASSERT(szc < mmu_page_sizes); 4802 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]); 4803 ASSERT(pfn == PFN_BASE(pfn, szc)); 4804 4805 npgs = page_get_pagecnt(targ->p_szc); 4806 4807 if (repl == NULL) { 4808 dofree = npgs; /* Size of target page in MMU pages */ 4809 if (!page_create_wait(dofree, 0)) { 4810 if (grouplock != 0) { 4811 group_page_unlock(targ); 4812 } 4813 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]); 4814 return (ENOMEM); 4815 } 4816 4817 /* 4818 * seg kmem pages require that the target and replacement 4819 * page be the same pagesize. 4820 */ 4821 flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0; 4822 repl = page_get_replacement_page(targ, lgrp, flags); 4823 if (repl == NULL) { 4824 if (grouplock != 0) { 4825 group_page_unlock(targ); 4826 } 4827 page_create_putback(dofree); 4828 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]); 4829 return (ENOMEM); 4830 } 4831 } 4832 #ifdef DEBUG 4833 else { 4834 ASSERT(PAGE_LOCKED(repl)); 4835 } 4836 #endif /* DEBUG */ 4837 4838 #if defined(__sparc) 4839 /* 4840 * Let hat_page_relocate() complete the relocation if it's kernel page 4841 */ 4842 if (VN_ISKAS(targ->p_vnode)) { 4843 *replacement = repl; 4844 if (hat_page_relocate(target, replacement, nrelocp) != 0) { 4845 if (grouplock != 0) { 4846 group_page_unlock(targ); 4847 } 4848 if (dofree) { 4849 *replacement = NULL; 4850 page_free_replacement_page(repl); 4851 page_create_putback(dofree); 4852 } 4853 VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]); 4854 return (EAGAIN); 4855 } 4856 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]); 4857 return (0); 4858 } 4859 #else 4860 #if defined(lint) 4861 dofree = dofree; 4862 #endif 4863 #endif 4864 4865 first_repl = repl; 4866 4867 for (i = 0; i < npgs; i++) { 4868 ASSERT(PAGE_EXCL(targ)); 4869 ASSERT(targ->p_slckcnt == 0); 4870 ASSERT(repl->p_slckcnt == 0); 4871 4872 (void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD); 4873 4874 ASSERT(hat_page_getshare(targ) == 0); 4875 ASSERT(!PP_ISFREE(targ)); 4876 ASSERT(targ->p_pagenum == (pfn + i)); 4877 ASSERT(repl_contig == 0 || 4878 repl->p_pagenum == (repl_pfn + i)); 4879 4880 /* 4881 * Copy the page contents and attributes then 4882 * relocate the page in the page hash. 4883 */ 4884 if (ppcopy(targ, repl) == 0) { 4885 targ = *target; 4886 repl = first_repl; 4887 VM_STAT_ADD(vmm_vmstats.ppr_copyfail); 4888 if (grouplock != 0) { 4889 group_page_unlock(targ); 4890 } 4891 if (dofree) { 4892 *replacement = NULL; 4893 page_free_replacement_page(repl); 4894 page_create_putback(dofree); 4895 } 4896 return (EIO); 4897 } 4898 4899 targ++; 4900 if (repl_contig != 0) { 4901 repl++; 4902 } else { 4903 repl = repl->p_next; 4904 } 4905 } 4906 4907 repl = first_repl; 4908 targ = *target; 4909 4910 for (i = 0; i < npgs; i++) { 4911 ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO)); 4912 page_clr_all_props(repl); 4913 page_set_props(repl, ppattr); 4914 page_relocate_hash(repl, targ); 4915 4916 ASSERT(hat_page_getshare(targ) == 0); 4917 ASSERT(hat_page_getshare(repl) == 0); 4918 /* 4919 * Now clear the props on targ, after the 4920 * page_relocate_hash(), they no longer 4921 * have any meaning. 4922 */ 4923 page_clr_all_props(targ); 4924 ASSERT(targ->p_next == targ); 4925 ASSERT(targ->p_prev == targ); 4926 page_list_concat(&pl, &targ); 4927 4928 targ++; 4929 if (repl_contig != 0) { 4930 repl++; 4931 } else { 4932 repl = repl->p_next; 4933 } 4934 } 4935 /* assert that we have come full circle with repl */ 4936 ASSERT(repl_contig == 1 || first_repl == repl); 4937 4938 *target = pl; 4939 if (*replacement == NULL) { 4940 ASSERT(first_repl == repl); 4941 *replacement = repl; 4942 } 4943 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]); 4944 *nrelocp = npgs; 4945 return (0); 4946 } 4947 /* 4948 * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated. 4949 */ 4950 int 4951 page_relocate( 4952 page_t **target, 4953 page_t **replacement, 4954 int grouplock, 4955 int freetarget, 4956 spgcnt_t *nrelocp, 4957 lgrp_t *lgrp) 4958 { 4959 spgcnt_t ret; 4960 4961 /* do_page_relocate returns 0 on success or errno value */ 4962 ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp); 4963 4964 if (ret != 0 || freetarget == 0) { 4965 return (ret); 4966 } 4967 if (*nrelocp == 1) { 4968 ASSERT(*target != NULL); 4969 page_free(*target, 1); 4970 } else { 4971 page_t *tpp = *target; 4972 uint_t szc = tpp->p_szc; 4973 pgcnt_t npgs = page_get_pagecnt(szc); 4974 ASSERT(npgs > 1); 4975 ASSERT(szc != 0); 4976 do { 4977 ASSERT(PAGE_EXCL(tpp)); 4978 ASSERT(!hat_page_is_mapped(tpp)); 4979 ASSERT(tpp->p_szc == szc); 4980 PP_SETFREE(tpp); 4981 PP_SETAGED(tpp); 4982 npgs--; 4983 } while ((tpp = tpp->p_next) != *target); 4984 ASSERT(npgs == 0); 4985 page_list_add_pages(*target, 0); 4986 npgs = page_get_pagecnt(szc); 4987 page_create_putback(npgs); 4988 } 4989 return (ret); 4990 } 4991 4992 /* 4993 * it is up to the caller to deal with pcf accounting. 4994 */ 4995 void 4996 page_free_replacement_page(page_t *pplist) 4997 { 4998 page_t *pp; 4999 5000 while (pplist != NULL) { 5001 /* 5002 * pp_targ is a linked list. 5003 */ 5004 pp = pplist; 5005 if (pp->p_szc == 0) { 5006 page_sub(&pplist, pp); 5007 page_clr_all_props(pp); 5008 PP_SETFREE(pp); 5009 PP_SETAGED(pp); 5010 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 5011 page_unlock(pp); 5012 VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]); 5013 } else { 5014 spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc); 5015 page_t *tpp; 5016 page_list_break(&pp, &pplist, curnpgs); 5017 tpp = pp; 5018 do { 5019 ASSERT(PAGE_EXCL(tpp)); 5020 ASSERT(!hat_page_is_mapped(tpp)); 5021 page_clr_all_props(tpp); 5022 PP_SETFREE(tpp); 5023 PP_SETAGED(tpp); 5024 } while ((tpp = tpp->p_next) != pp); 5025 page_list_add_pages(pp, 0); 5026 VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]); 5027 } 5028 } 5029 } 5030 5031 /* 5032 * Relocate target to non-relocatable replacement page. 5033 */ 5034 int 5035 page_relocate_cage(page_t **target, page_t **replacement) 5036 { 5037 page_t *tpp, *rpp; 5038 spgcnt_t pgcnt, npgs; 5039 int result; 5040 5041 tpp = *target; 5042 5043 ASSERT(PAGE_EXCL(tpp)); 5044 ASSERT(tpp->p_szc == 0); 5045 5046 pgcnt = btop(page_get_pagesize(tpp->p_szc)); 5047 5048 do { 5049 (void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC); 5050 rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC); 5051 if (rpp == NULL) { 5052 page_create_putback(pgcnt); 5053 kcage_cageout_wakeup(); 5054 } 5055 } while (rpp == NULL); 5056 5057 ASSERT(PP_ISNORELOC(rpp)); 5058 5059 result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL); 5060 5061 if (result == 0) { 5062 *replacement = rpp; 5063 if (pgcnt != npgs) 5064 panic("page_relocate_cage: partial relocation"); 5065 } 5066 5067 return (result); 5068 } 5069 5070 /* 5071 * Release the page lock on a page, place on cachelist 5072 * tail if no longer mapped. Caller can let us know if 5073 * the page is known to be clean. 5074 */ 5075 int 5076 page_release(page_t *pp, int checkmod) 5077 { 5078 int status; 5079 5080 ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) && 5081 (pp->p_vnode != NULL)); 5082 5083 if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) && 5084 ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) && 5085 pp->p_lckcnt == 0 && pp->p_cowcnt == 0 && 5086 !hat_page_is_mapped(pp)) { 5087 5088 /* 5089 * If page is modified, unlock it 5090 * 5091 * (p_nrm & P_MOD) bit has the latest stuff because: 5092 * (1) We found that this page doesn't have any mappings 5093 * _after_ holding SE_EXCL and 5094 * (2) We didn't drop SE_EXCL lock after the check in (1) 5095 */ 5096 if (checkmod && hat_ismod(pp)) { 5097 page_unlock(pp); 5098 status = PGREL_MOD; 5099 } else { 5100 /*LINTED: constant in conditional context*/ 5101 VN_DISPOSE(pp, B_FREE, 0, kcred); 5102 status = PGREL_CLEAN; 5103 } 5104 } else { 5105 page_unlock(pp); 5106 status = PGREL_NOTREL; 5107 } 5108 return (status); 5109 } 5110 5111 /* 5112 * Given a constituent page, try to demote the large page on the freelist. 5113 * 5114 * Returns nonzero if the page could be demoted successfully. Returns with 5115 * the constituent page still locked. 5116 */ 5117 int 5118 page_try_demote_free_pages(page_t *pp) 5119 { 5120 page_t *rootpp = pp; 5121 pfn_t pfn = page_pptonum(pp); 5122 spgcnt_t npgs; 5123 uint_t szc = pp->p_szc; 5124 5125 ASSERT(PP_ISFREE(pp)); 5126 ASSERT(PAGE_EXCL(pp)); 5127 5128 /* 5129 * Adjust rootpp and lock it, if `pp' is not the base 5130 * constituent page. 5131 */ 5132 npgs = page_get_pagecnt(pp->p_szc); 5133 if (npgs == 1) { 5134 return (0); 5135 } 5136 5137 if (!IS_P2ALIGNED(pfn, npgs)) { 5138 pfn = P2ALIGN(pfn, npgs); 5139 rootpp = page_numtopp_nolock(pfn); 5140 } 5141 5142 if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) { 5143 return (0); 5144 } 5145 5146 if (rootpp->p_szc != szc) { 5147 if (pp != rootpp) 5148 page_unlock(rootpp); 5149 return (0); 5150 } 5151 5152 page_demote_free_pages(rootpp); 5153 5154 if (pp != rootpp) 5155 page_unlock(rootpp); 5156 5157 ASSERT(PP_ISFREE(pp)); 5158 ASSERT(PAGE_EXCL(pp)); 5159 return (1); 5160 } 5161 5162 /* 5163 * Given a constituent page, try to demote the large page. 5164 * 5165 * Returns nonzero if the page could be demoted successfully. Returns with 5166 * the constituent page still locked. 5167 */ 5168 int 5169 page_try_demote_pages(page_t *pp) 5170 { 5171 page_t *tpp, *rootpp = pp; 5172 pfn_t pfn = page_pptonum(pp); 5173 spgcnt_t i, npgs; 5174 uint_t szc = pp->p_szc; 5175 vnode_t *vp = pp->p_vnode; 5176 5177 ASSERT(PAGE_EXCL(pp)); 5178 5179 VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]); 5180 5181 if (pp->p_szc == 0) { 5182 VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]); 5183 return (1); 5184 } 5185 5186 if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) { 5187 VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]); 5188 page_demote_vp_pages(pp); 5189 ASSERT(pp->p_szc == 0); 5190 return (1); 5191 } 5192 5193 /* 5194 * Adjust rootpp if passed in is not the base 5195 * constituent page. 5196 */ 5197 npgs = page_get_pagecnt(pp->p_szc); 5198 ASSERT(npgs > 1); 5199 if (!IS_P2ALIGNED(pfn, npgs)) { 5200 pfn = P2ALIGN(pfn, npgs); 5201 rootpp = page_numtopp_nolock(pfn); 5202 VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]); 5203 ASSERT(rootpp->p_vnode != NULL); 5204 ASSERT(rootpp->p_szc == szc); 5205 } 5206 5207 /* 5208 * We can't demote kernel pages since we can't hat_unload() 5209 * the mappings. 5210 */ 5211 if (VN_ISKAS(rootpp->p_vnode)) 5212 return (0); 5213 5214 /* 5215 * Attempt to lock all constituent pages except the page passed 5216 * in since it's already locked. 5217 */ 5218 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5219 ASSERT(!PP_ISFREE(tpp)); 5220 ASSERT(tpp->p_vnode != NULL); 5221 5222 if (tpp != pp && !page_trylock(tpp, SE_EXCL)) 5223 break; 5224 ASSERT(tpp->p_szc == rootpp->p_szc); 5225 ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i); 5226 } 5227 5228 /* 5229 * If we failed to lock them all then unlock what we have 5230 * locked so far and bail. 5231 */ 5232 if (i < npgs) { 5233 tpp = rootpp; 5234 while (i-- > 0) { 5235 if (tpp != pp) 5236 page_unlock(tpp); 5237 tpp++; 5238 } 5239 VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]); 5240 return (0); 5241 } 5242 5243 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5244 ASSERT(PAGE_EXCL(tpp)); 5245 ASSERT(tpp->p_slckcnt == 0); 5246 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD); 5247 tpp->p_szc = 0; 5248 } 5249 5250 /* 5251 * Unlock all pages except the page passed in. 5252 */ 5253 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5254 ASSERT(!hat_page_is_mapped(tpp)); 5255 if (tpp != pp) 5256 page_unlock(tpp); 5257 } 5258 5259 VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]); 5260 return (1); 5261 } 5262 5263 /* 5264 * Called by page_free() and page_destroy() to demote the page size code 5265 * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero 5266 * p_szc on free list, neither can we just clear p_szc of a single page_t 5267 * within a large page since it will break other code that relies on p_szc 5268 * being the same for all page_t's of a large page). Anonymous pages should 5269 * never end up here because anon_map_getpages() cannot deal with p_szc 5270 * changes after a single constituent page is locked. While anonymous or 5271 * kernel large pages are demoted or freed the entire large page at a time 5272 * with all constituent pages locked EXCL for the file system pages we 5273 * have to be able to demote a large page (i.e. decrease all constituent pages 5274 * p_szc) with only just an EXCL lock on one of constituent pages. The reason 5275 * we can easily deal with anonymous page demotion the entire large page at a 5276 * time is that those operation originate at address space level and concern 5277 * the entire large page region with actual demotion only done when pages are 5278 * not shared with any other processes (therefore we can always get EXCL lock 5279 * on all anonymous constituent pages after clearing segment page 5280 * cache). However file system pages can be truncated or invalidated at a 5281 * PAGESIZE level from the file system side and end up in page_free() or 5282 * page_destroy() (we also allow only part of the large page to be SOFTLOCKed 5283 * and therefore pageout should be able to demote a large page by EXCL locking 5284 * any constituent page that is not under SOFTLOCK). In those cases we cannot 5285 * rely on being able to lock EXCL all constituent pages. 5286 * 5287 * To prevent szc changes on file system pages one has to lock all constituent 5288 * pages at least SHARED (or call page_szc_lock()). The only subsystem that 5289 * doesn't rely on locking all constituent pages (or using page_szc_lock()) to 5290 * prevent szc changes is hat layer that uses its own page level mlist 5291 * locks. hat assumes that szc doesn't change after mlist lock for a page is 5292 * taken. Therefore we need to change szc under hat level locks if we only 5293 * have an EXCL lock on a single constituent page and hat still references any 5294 * of constituent pages. (Note we can't "ignore" hat layer by simply 5295 * hat_pageunload() all constituent pages without having EXCL locks on all of 5296 * constituent pages). We use hat_page_demote() call to safely demote szc of 5297 * all constituent pages under hat locks when we only have an EXCL lock on one 5298 * of constituent pages. 5299 * 5300 * This routine calls page_szc_lock() before calling hat_page_demote() to 5301 * allow segvn in one special case not to lock all constituent pages SHARED 5302 * before calling hat_memload_array() that relies on p_szc not changing even 5303 * before hat level mlist lock is taken. In that case segvn uses 5304 * page_szc_lock() to prevent hat_page_demote() changing p_szc values. 5305 * 5306 * Anonymous or kernel page demotion still has to lock all pages exclusively 5307 * and do hat_pageunload() on all constituent pages before demoting the page 5308 * therefore there's no need for anonymous or kernel page demotion to use 5309 * hat_page_demote() mechanism. 5310 * 5311 * hat_page_demote() removes all large mappings that map pp and then decreases 5312 * p_szc starting from the last constituent page of the large page. By working 5313 * from the tail of a large page in pfn decreasing order allows one looking at 5314 * the root page to know that hat_page_demote() is done for root's szc area. 5315 * e.g. if a root page has szc 1 one knows it only has to lock all constituent 5316 * pages within szc 1 area to prevent szc changes because hat_page_demote() 5317 * that started on this page when it had szc > 1 is done for this szc 1 area. 5318 * 5319 * We are guaranteed that all constituent pages of pp's large page belong to 5320 * the same vnode with the consecutive offsets increasing in the direction of 5321 * the pfn i.e. the identity of constituent pages can't change until their 5322 * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove 5323 * large mappings to pp even though we don't lock any constituent page except 5324 * pp (i.e. we won't unload e.g. kernel locked page). 5325 */ 5326 static void 5327 page_demote_vp_pages(page_t *pp) 5328 { 5329 kmutex_t *mtx; 5330 5331 ASSERT(PAGE_EXCL(pp)); 5332 ASSERT(!PP_ISFREE(pp)); 5333 ASSERT(pp->p_vnode != NULL); 5334 ASSERT(!IS_SWAPFSVP(pp->p_vnode)); 5335 ASSERT(!PP_ISKAS(pp)); 5336 5337 VM_STAT_ADD(pagecnt.pc_demote_pages[0]); 5338 5339 mtx = page_szc_lock(pp); 5340 if (mtx != NULL) { 5341 hat_page_demote(pp); 5342 mutex_exit(mtx); 5343 } 5344 ASSERT(pp->p_szc == 0); 5345 } 5346 5347 /* 5348 * Mark any existing pages for migration in the given range 5349 */ 5350 void 5351 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len, 5352 struct anon_map *amp, ulong_t anon_index, vnode_t *vp, 5353 u_offset_t vnoff, int rflag) 5354 { 5355 struct anon *ap; 5356 vnode_t *curvp; 5357 lgrp_t *from; 5358 pgcnt_t nlocked; 5359 u_offset_t off; 5360 pfn_t pfn; 5361 size_t pgsz; 5362 size_t segpgsz; 5363 pgcnt_t pages; 5364 uint_t pszc; 5365 page_t *pp0, *pp; 5366 caddr_t va; 5367 ulong_t an_idx; 5368 anon_sync_obj_t cookie; 5369 5370 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 5371 5372 /* 5373 * Don't do anything if don't need to do lgroup optimizations 5374 * on this system 5375 */ 5376 if (!lgrp_optimizations()) 5377 return; 5378 5379 /* 5380 * Align address and length to (potentially large) page boundary 5381 */ 5382 segpgsz = page_get_pagesize(seg->s_szc); 5383 addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz); 5384 if (rflag) 5385 len = P2ROUNDUP(len, segpgsz); 5386 5387 /* 5388 * Do one (large) page at a time 5389 */ 5390 va = addr; 5391 while (va < addr + len) { 5392 /* 5393 * Lookup (root) page for vnode and offset corresponding to 5394 * this virtual address 5395 * Try anonmap first since there may be copy-on-write 5396 * pages, but initialize vnode pointer and offset using 5397 * vnode arguments just in case there isn't an amp. 5398 */ 5399 curvp = vp; 5400 off = vnoff + va - seg->s_base; 5401 if (amp) { 5402 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5403 an_idx = anon_index + seg_page(seg, va); 5404 anon_array_enter(amp, an_idx, &cookie); 5405 ap = anon_get_ptr(amp->ahp, an_idx); 5406 if (ap) 5407 swap_xlate(ap, &curvp, &off); 5408 anon_array_exit(&cookie); 5409 ANON_LOCK_EXIT(&->a_rwlock); 5410 } 5411 5412 pp = NULL; 5413 if (curvp) 5414 pp = page_lookup(curvp, off, SE_SHARED); 5415 5416 /* 5417 * If there isn't a page at this virtual address, 5418 * skip to next page 5419 */ 5420 if (pp == NULL) { 5421 va += PAGESIZE; 5422 continue; 5423 } 5424 5425 /* 5426 * Figure out which lgroup this page is in for kstats 5427 */ 5428 pfn = page_pptonum(pp); 5429 from = lgrp_pfn_to_lgrp(pfn); 5430 5431 /* 5432 * Get page size, and round up and skip to next page boundary 5433 * if unaligned address 5434 */ 5435 pszc = pp->p_szc; 5436 pgsz = page_get_pagesize(pszc); 5437 pages = btop(pgsz); 5438 if (!IS_P2ALIGNED(va, pgsz) || 5439 !IS_P2ALIGNED(pfn, pages) || 5440 pgsz > segpgsz) { 5441 pgsz = MIN(pgsz, segpgsz); 5442 page_unlock(pp); 5443 pages = btop(P2END((uintptr_t)va, pgsz) - 5444 (uintptr_t)va); 5445 va = (caddr_t)P2END((uintptr_t)va, pgsz); 5446 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, pages); 5447 continue; 5448 } 5449 5450 /* 5451 * Upgrade to exclusive lock on page 5452 */ 5453 if (!page_tryupgrade(pp)) { 5454 page_unlock(pp); 5455 va += pgsz; 5456 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, 5457 btop(pgsz)); 5458 continue; 5459 } 5460 5461 pp0 = pp++; 5462 nlocked = 1; 5463 5464 /* 5465 * Lock constituent pages if this is large page 5466 */ 5467 if (pages > 1) { 5468 /* 5469 * Lock all constituents except root page, since it 5470 * should be locked already. 5471 */ 5472 for (; nlocked < pages; nlocked++) { 5473 if (!page_trylock(pp, SE_EXCL)) { 5474 break; 5475 } 5476 if (PP_ISFREE(pp) || 5477 pp->p_szc != pszc) { 5478 /* 5479 * hat_page_demote() raced in with us. 5480 */ 5481 ASSERT(!IS_SWAPFSVP(curvp)); 5482 page_unlock(pp); 5483 break; 5484 } 5485 pp++; 5486 } 5487 } 5488 5489 /* 5490 * If all constituent pages couldn't be locked, 5491 * unlock pages locked so far and skip to next page. 5492 */ 5493 if (nlocked < pages) { 5494 while (pp0 < pp) { 5495 page_unlock(pp0++); 5496 } 5497 va += pgsz; 5498 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, 5499 btop(pgsz)); 5500 continue; 5501 } 5502 5503 /* 5504 * hat_page_demote() can no longer happen 5505 * since last cons page had the right p_szc after 5506 * all cons pages were locked. all cons pages 5507 * should now have the same p_szc. 5508 */ 5509 5510 /* 5511 * All constituent pages locked successfully, so mark 5512 * large page for migration and unload the mappings of 5513 * constituent pages, so a fault will occur on any part of the 5514 * large page 5515 */ 5516 PP_SETMIGRATE(pp0); 5517 while (pp0 < pp) { 5518 (void) hat_pageunload(pp0, HAT_FORCE_PGUNLOAD); 5519 ASSERT(hat_page_getshare(pp0) == 0); 5520 page_unlock(pp0++); 5521 } 5522 lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked); 5523 5524 va += pgsz; 5525 } 5526 } 5527 5528 /* 5529 * Migrate any pages that have been marked for migration in the given range 5530 */ 5531 void 5532 page_migrate( 5533 struct seg *seg, 5534 caddr_t addr, 5535 page_t **ppa, 5536 pgcnt_t npages) 5537 { 5538 lgrp_t *from; 5539 lgrp_t *to; 5540 page_t *newpp; 5541 page_t *pp; 5542 pfn_t pfn; 5543 size_t pgsz; 5544 spgcnt_t page_cnt; 5545 spgcnt_t i; 5546 uint_t pszc; 5547 5548 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 5549 5550 while (npages > 0) { 5551 pp = *ppa; 5552 pszc = pp->p_szc; 5553 pgsz = page_get_pagesize(pszc); 5554 page_cnt = btop(pgsz); 5555 5556 /* 5557 * Check to see whether this page is marked for migration 5558 * 5559 * Assume that root page of large page is marked for 5560 * migration and none of the other constituent pages 5561 * are marked. This really simplifies clearing the 5562 * migrate bit by not having to clear it from each 5563 * constituent page. 5564 * 5565 * note we don't want to relocate an entire large page if 5566 * someone is only using one subpage. 5567 */ 5568 if (npages < page_cnt) 5569 break; 5570 5571 /* 5572 * Is it marked for migration? 5573 */ 5574 if (!PP_ISMIGRATE(pp)) 5575 goto next; 5576 5577 /* 5578 * Determine lgroups that page is being migrated between 5579 */ 5580 pfn = page_pptonum(pp); 5581 if (!IS_P2ALIGNED(pfn, page_cnt)) { 5582 break; 5583 } 5584 from = lgrp_pfn_to_lgrp(pfn); 5585 to = lgrp_mem_choose(seg, addr, pgsz); 5586 5587 /* 5588 * Need to get exclusive lock's to migrate 5589 */ 5590 for (i = 0; i < page_cnt; i++) { 5591 ASSERT(PAGE_LOCKED(ppa[i])); 5592 if (page_pptonum(ppa[i]) != pfn + i || 5593 ppa[i]->p_szc != pszc) { 5594 break; 5595 } 5596 if (!page_tryupgrade(ppa[i])) { 5597 lgrp_stat_add(from->lgrp_id, 5598 LGRP_PM_FAIL_LOCK_PGS, 5599 page_cnt); 5600 break; 5601 } 5602 5603 /* 5604 * Check to see whether we are trying to migrate 5605 * page to lgroup where it is allocated already. 5606 * If so, clear the migrate bit and skip to next 5607 * page. 5608 */ 5609 if (i == 0 && to == from) { 5610 PP_CLRMIGRATE(ppa[0]); 5611 page_downgrade(ppa[0]); 5612 goto next; 5613 } 5614 } 5615 5616 /* 5617 * If all constituent pages couldn't be locked, 5618 * unlock pages locked so far and skip to next page. 5619 */ 5620 if (i != page_cnt) { 5621 while (--i != -1) { 5622 page_downgrade(ppa[i]); 5623 } 5624 goto next; 5625 } 5626 5627 (void) page_create_wait(page_cnt, PG_WAIT); 5628 newpp = page_get_replacement_page(pp, to, PGR_SAMESZC); 5629 if (newpp == NULL) { 5630 page_create_putback(page_cnt); 5631 for (i = 0; i < page_cnt; i++) { 5632 page_downgrade(ppa[i]); 5633 } 5634 lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS, 5635 page_cnt); 5636 goto next; 5637 } 5638 ASSERT(newpp->p_szc == pszc); 5639 /* 5640 * Clear migrate bit and relocate page 5641 */ 5642 PP_CLRMIGRATE(pp); 5643 if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) { 5644 panic("page_migrate: page_relocate failed"); 5645 } 5646 ASSERT(page_cnt * PAGESIZE == pgsz); 5647 5648 /* 5649 * Keep stats for number of pages migrated from and to 5650 * each lgroup 5651 */ 5652 lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt); 5653 lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt); 5654 /* 5655 * update the page_t array we were passed in and 5656 * unlink constituent pages of a large page. 5657 */ 5658 for (i = 0; i < page_cnt; ++i, ++pp) { 5659 ASSERT(PAGE_EXCL(newpp)); 5660 ASSERT(newpp->p_szc == pszc); 5661 ppa[i] = newpp; 5662 pp = newpp; 5663 page_sub(&newpp, pp); 5664 page_downgrade(pp); 5665 } 5666 ASSERT(newpp == NULL); 5667 next: 5668 addr += pgsz; 5669 ppa += page_cnt; 5670 npages -= page_cnt; 5671 } 5672 } 5673 5674 uint_t page_reclaim_maxcnt = 60; /* max total iterations */ 5675 uint_t page_reclaim_nofree_maxcnt = 3; /* max iterations without progress */ 5676 /* 5677 * Reclaim/reserve availrmem for npages. 5678 * If there is not enough memory start reaping seg, kmem caches. 5679 * Start pageout scanner (via page_needfree()). 5680 * Exit after ~ MAX_CNT s regardless of how much memory has been released. 5681 * Note: There is no guarantee that any availrmem will be freed as 5682 * this memory typically is locked (kernel heap) or reserved for swap. 5683 * Also due to memory fragmentation kmem allocator may not be able 5684 * to free any memory (single user allocated buffer will prevent 5685 * freeing slab or a page). 5686 */ 5687 int 5688 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust) 5689 { 5690 int i = 0; 5691 int i_nofree = 0; 5692 int ret = 0; 5693 pgcnt_t deficit; 5694 pgcnt_t old_availrmem = 0; 5695 5696 mutex_enter(&freemem_lock); 5697 while (availrmem < tune.t_minarmem + npages + epages && 5698 i++ < page_reclaim_maxcnt) { 5699 /* ensure we made some progress in the last few iterations */ 5700 if (old_availrmem < availrmem) { 5701 old_availrmem = availrmem; 5702 i_nofree = 0; 5703 } else if (i_nofree++ >= page_reclaim_nofree_maxcnt) { 5704 break; 5705 } 5706 5707 deficit = tune.t_minarmem + npages + epages - availrmem; 5708 mutex_exit(&freemem_lock); 5709 page_needfree(deficit); 5710 kmem_reap(); 5711 delay(hz); 5712 page_needfree(-(spgcnt_t)deficit); 5713 mutex_enter(&freemem_lock); 5714 } 5715 5716 if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) { 5717 availrmem -= npages; 5718 ret = 1; 5719 } 5720 5721 mutex_exit(&freemem_lock); 5722 5723 return (ret); 5724 } 5725 5726 /* 5727 * Search the memory segments to locate the desired page. Within a 5728 * segment, pages increase linearly with one page structure per 5729 * physical page frame (size PAGESIZE). The search begins 5730 * with the segment that was accessed last, to take advantage of locality. 5731 * If the hint misses, we start from the beginning of the sorted memseg list 5732 */ 5733 5734 5735 /* 5736 * Some data structures for pfn to pp lookup. 5737 */ 5738 ulong_t mhash_per_slot; 5739 struct memseg *memseg_hash[N_MEM_SLOTS]; 5740 5741 page_t * 5742 page_numtopp_nolock(pfn_t pfnum) 5743 { 5744 struct memseg *seg; 5745 page_t *pp; 5746 vm_cpu_data_t *vc; 5747 5748 /* 5749 * We need to disable kernel preemption while referencing the 5750 * cpu_vm_data field in order to prevent us from being switched to 5751 * another cpu and trying to reference it after it has been freed. 5752 * This will keep us on cpu and prevent it from being removed while 5753 * we are still on it. 5754 * 5755 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg 5756 * which is being resued by DR who will flush those references 5757 * before modifying the reused memseg. See memseg_cpu_vm_flush(). 5758 */ 5759 kpreempt_disable(); 5760 vc = CPU->cpu_vm_data; 5761 ASSERT(vc != NULL); 5762 5763 MEMSEG_STAT_INCR(nsearch); 5764 5765 /* Try last winner first */ 5766 if (((seg = vc->vc_pnum_memseg) != NULL) && 5767 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5768 MEMSEG_STAT_INCR(nlastwon); 5769 pp = seg->pages + (pfnum - seg->pages_base); 5770 if (pp->p_pagenum == pfnum) { 5771 kpreempt_enable(); 5772 return ((page_t *)pp); 5773 } 5774 } 5775 5776 /* Else Try hash */ 5777 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) && 5778 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5779 MEMSEG_STAT_INCR(nhashwon); 5780 vc->vc_pnum_memseg = seg; 5781 pp = seg->pages + (pfnum - seg->pages_base); 5782 if (pp->p_pagenum == pfnum) { 5783 kpreempt_enable(); 5784 return ((page_t *)pp); 5785 } 5786 } 5787 5788 /* Else Brute force */ 5789 for (seg = memsegs; seg != NULL; seg = seg->next) { 5790 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) { 5791 vc->vc_pnum_memseg = seg; 5792 pp = seg->pages + (pfnum - seg->pages_base); 5793 if (pp->p_pagenum == pfnum) { 5794 kpreempt_enable(); 5795 return ((page_t *)pp); 5796 } 5797 } 5798 } 5799 vc->vc_pnum_memseg = NULL; 5800 kpreempt_enable(); 5801 MEMSEG_STAT_INCR(nnotfound); 5802 return ((page_t *)NULL); 5803 5804 } 5805 5806 struct memseg * 5807 page_numtomemseg_nolock(pfn_t pfnum) 5808 { 5809 struct memseg *seg; 5810 page_t *pp; 5811 5812 /* 5813 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg 5814 * which is being resued by DR who will flush those references 5815 * before modifying the reused memseg. See memseg_cpu_vm_flush(). 5816 */ 5817 kpreempt_disable(); 5818 /* Try hash */ 5819 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) && 5820 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5821 pp = seg->pages + (pfnum - seg->pages_base); 5822 if (pp->p_pagenum == pfnum) { 5823 kpreempt_enable(); 5824 return (seg); 5825 } 5826 } 5827 5828 /* Else Brute force */ 5829 for (seg = memsegs; seg != NULL; seg = seg->next) { 5830 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) { 5831 pp = seg->pages + (pfnum - seg->pages_base); 5832 if (pp->p_pagenum == pfnum) { 5833 kpreempt_enable(); 5834 return (seg); 5835 } 5836 } 5837 } 5838 kpreempt_enable(); 5839 return ((struct memseg *)NULL); 5840 } 5841 5842 /* 5843 * Given a page and a count return the page struct that is 5844 * n structs away from the current one in the global page 5845 * list. 5846 * 5847 * This function wraps to the first page upon 5848 * reaching the end of the memseg list. 5849 */ 5850 page_t * 5851 page_nextn(page_t *pp, ulong_t n) 5852 { 5853 struct memseg *seg; 5854 page_t *ppn; 5855 vm_cpu_data_t *vc; 5856 5857 /* 5858 * We need to disable kernel preemption while referencing the 5859 * cpu_vm_data field in order to prevent us from being switched to 5860 * another cpu and trying to reference it after it has been freed. 5861 * This will keep us on cpu and prevent it from being removed while 5862 * we are still on it. 5863 * 5864 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg 5865 * which is being resued by DR who will flush those references 5866 * before modifying the reused memseg. See memseg_cpu_vm_flush(). 5867 */ 5868 kpreempt_disable(); 5869 vc = (vm_cpu_data_t *)CPU->cpu_vm_data; 5870 5871 ASSERT(vc != NULL); 5872 5873 if (((seg = vc->vc_pnext_memseg) == NULL) || 5874 (seg->pages_base == seg->pages_end) || 5875 !(pp >= seg->pages && pp < seg->epages)) { 5876 5877 for (seg = memsegs; seg; seg = seg->next) { 5878 if (pp >= seg->pages && pp < seg->epages) 5879 break; 5880 } 5881 5882 if (seg == NULL) { 5883 /* Memory delete got in, return something valid. */ 5884 /* TODO: fix me. */ 5885 seg = memsegs; 5886 pp = seg->pages; 5887 } 5888 } 5889 5890 /* check for wraparound - possible if n is large */ 5891 while ((ppn = (pp + n)) >= seg->epages || ppn < pp) { 5892 n -= seg->epages - pp; 5893 seg = seg->next; 5894 if (seg == NULL) 5895 seg = memsegs; 5896 pp = seg->pages; 5897 } 5898 vc->vc_pnext_memseg = seg; 5899 kpreempt_enable(); 5900 return (ppn); 5901 } 5902 5903 /* 5904 * Initialize for a loop using page_next_scan_large(). 5905 */ 5906 page_t * 5907 page_next_scan_init(void **cookie) 5908 { 5909 ASSERT(cookie != NULL); 5910 *cookie = (void *)memsegs; 5911 return ((page_t *)memsegs->pages); 5912 } 5913 5914 /* 5915 * Return the next page in a scan of page_t's, assuming we want 5916 * to skip over sub-pages within larger page sizes. 5917 * 5918 * The cookie is used to keep track of the current memseg. 5919 */ 5920 page_t * 5921 page_next_scan_large( 5922 page_t *pp, 5923 ulong_t *n, 5924 void **cookie) 5925 { 5926 struct memseg *seg = (struct memseg *)*cookie; 5927 page_t *new_pp; 5928 ulong_t cnt; 5929 pfn_t pfn; 5930 5931 5932 /* 5933 * get the count of page_t's to skip based on the page size 5934 */ 5935 ASSERT(pp != NULL); 5936 if (pp->p_szc == 0) { 5937 cnt = 1; 5938 } else { 5939 pfn = page_pptonum(pp); 5940 cnt = page_get_pagecnt(pp->p_szc); 5941 cnt -= pfn & (cnt - 1); 5942 } 5943 *n += cnt; 5944 new_pp = pp + cnt; 5945 5946 /* 5947 * Catch if we went past the end of the current memory segment. If so, 5948 * just move to the next segment with pages. 5949 */ 5950 if (new_pp >= seg->epages || seg->pages_base == seg->pages_end) { 5951 do { 5952 seg = seg->next; 5953 if (seg == NULL) 5954 seg = memsegs; 5955 } while (seg->pages_base == seg->pages_end); 5956 new_pp = seg->pages; 5957 *cookie = (void *)seg; 5958 } 5959 5960 return (new_pp); 5961 } 5962 5963 5964 /* 5965 * Returns next page in list. Note: this function wraps 5966 * to the first page in the list upon reaching the end 5967 * of the list. Callers should be aware of this fact. 5968 */ 5969 5970 /* We should change this be a #define */ 5971 5972 page_t * 5973 page_next(page_t *pp) 5974 { 5975 return (page_nextn(pp, 1)); 5976 } 5977 5978 page_t * 5979 page_first() 5980 { 5981 return ((page_t *)memsegs->pages); 5982 } 5983 5984 5985 /* 5986 * This routine is called at boot with the initial memory configuration 5987 * and when memory is added or removed. 5988 */ 5989 void 5990 build_pfn_hash() 5991 { 5992 pfn_t cur; 5993 pgcnt_t index; 5994 struct memseg *pseg; 5995 int i; 5996 5997 /* 5998 * Clear memseg_hash array. 5999 * Since memory add/delete is designed to operate concurrently 6000 * with normal operation, the hash rebuild must be able to run 6001 * concurrently with page_numtopp_nolock(). To support this 6002 * functionality, assignments to memseg_hash array members must 6003 * be done atomically. 6004 * 6005 * NOTE: bzero() does not currently guarantee this for kernel 6006 * threads, and cannot be used here. 6007 */ 6008 for (i = 0; i < N_MEM_SLOTS; i++) 6009 memseg_hash[i] = NULL; 6010 6011 hat_kpm_mseghash_clear(N_MEM_SLOTS); 6012 6013 /* 6014 * Physmax is the last valid pfn. 6015 */ 6016 mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT; 6017 for (pseg = memsegs; pseg != NULL; pseg = pseg->next) { 6018 index = MEMSEG_PFN_HASH(pseg->pages_base); 6019 cur = pseg->pages_base; 6020 do { 6021 if (index >= N_MEM_SLOTS) 6022 index = MEMSEG_PFN_HASH(cur); 6023 6024 if (memseg_hash[index] == NULL || 6025 memseg_hash[index]->pages_base > pseg->pages_base) { 6026 memseg_hash[index] = pseg; 6027 hat_kpm_mseghash_update(index, pseg); 6028 } 6029 cur += mhash_per_slot; 6030 index++; 6031 } while (cur < pseg->pages_end); 6032 } 6033 } 6034 6035 /* 6036 * Return the pagenum for the pp 6037 */ 6038 pfn_t 6039 page_pptonum(page_t *pp) 6040 { 6041 return (pp->p_pagenum); 6042 } 6043 6044 /* 6045 * interface to the referenced and modified etc bits 6046 * in the PSM part of the page struct 6047 * when no locking is desired. 6048 */ 6049 void 6050 page_set_props(page_t *pp, uint_t flags) 6051 { 6052 ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0); 6053 pp->p_nrm |= (uchar_t)flags; 6054 } 6055 6056 void 6057 page_clr_all_props(page_t *pp) 6058 { 6059 pp->p_nrm = 0; 6060 } 6061 6062 /* 6063 * Clear p_lckcnt and p_cowcnt, adjusting freemem if required. 6064 */ 6065 int 6066 page_clear_lck_cow(page_t *pp, int adjust) 6067 { 6068 int f_amount; 6069 6070 ASSERT(PAGE_EXCL(pp)); 6071 6072 /* 6073 * The page_struct_lock need not be acquired here since 6074 * we require the caller hold the page exclusively locked. 6075 */ 6076 f_amount = 0; 6077 if (pp->p_lckcnt) { 6078 f_amount = 1; 6079 pp->p_lckcnt = 0; 6080 } 6081 if (pp->p_cowcnt) { 6082 f_amount += pp->p_cowcnt; 6083 pp->p_cowcnt = 0; 6084 } 6085 6086 if (adjust && f_amount) { 6087 mutex_enter(&freemem_lock); 6088 availrmem += f_amount; 6089 mutex_exit(&freemem_lock); 6090 } 6091 6092 return (f_amount); 6093 } 6094 6095 /* 6096 * The following functions is called from free_vp_pages() 6097 * for an inexact estimate of a newly free'd page... 6098 */ 6099 ulong_t 6100 page_share_cnt(page_t *pp) 6101 { 6102 return (hat_page_getshare(pp)); 6103 } 6104 6105 int 6106 page_isshared(page_t *pp) 6107 { 6108 return (hat_page_checkshare(pp, 1)); 6109 } 6110 6111 int 6112 page_isfree(page_t *pp) 6113 { 6114 return (PP_ISFREE(pp)); 6115 } 6116 6117 int 6118 page_isref(page_t *pp) 6119 { 6120 return (hat_page_getattr(pp, P_REF)); 6121 } 6122 6123 int 6124 page_ismod(page_t *pp) 6125 { 6126 return (hat_page_getattr(pp, P_MOD)); 6127 } 6128 6129 /* 6130 * The following code all currently relates to the page capture logic: 6131 * 6132 * This logic is used for cases where there is a desire to claim a certain 6133 * physical page in the system for the caller. As it may not be possible 6134 * to capture the page immediately, the p_toxic bits are used in the page 6135 * structure to indicate that someone wants to capture this page. When the 6136 * page gets unlocked, the toxic flag will be noted and an attempt to capture 6137 * the page will be made. If it is successful, the original callers callback 6138 * will be called with the page to do with it what they please. 6139 * 6140 * There is also an async thread which wakes up to attempt to capture 6141 * pages occasionally which have the capture bit set. All of the pages which 6142 * need to be captured asynchronously have been inserted into the 6143 * page_capture_hash and thus this thread walks that hash list. Items in the 6144 * hash have an expiration time so this thread handles that as well by removing 6145 * the item from the hash if it has expired. 6146 * 6147 * Some important things to note are: 6148 * - if the PR_CAPTURE bit is set on a page, then the page is in the 6149 * page_capture_hash. The page_capture_hash_head.pchh_mutex is needed 6150 * to set and clear this bit, and while the lock is held is the only time 6151 * you can add or remove an entry from the hash. 6152 * - the PR_CAPTURE bit can only be set and cleared while holding the 6153 * page_capture_hash_head.pchh_mutex 6154 * - the t_flag field of the thread struct is used with the T_CAPTURING 6155 * flag to prevent recursion while dealing with large pages. 6156 * - pages which need to be retired never expire on the page_capture_hash. 6157 */ 6158 6159 static void page_capture_thread(void); 6160 static kthread_t *pc_thread_id; 6161 kcondvar_t pc_cv; 6162 static kmutex_t pc_thread_mutex; 6163 static clock_t pc_thread_shortwait; 6164 static clock_t pc_thread_longwait; 6165 static int pc_thread_retry; 6166 6167 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS]; 6168 6169 /* Note that this is a circular linked list */ 6170 typedef struct page_capture_hash_bucket { 6171 page_t *pp; 6172 uchar_t szc; 6173 uchar_t pri; 6174 uint_t flags; 6175 clock_t expires; /* lbolt at which this request expires. */ 6176 void *datap; /* Cached data passed in for callback */ 6177 struct page_capture_hash_bucket *next; 6178 struct page_capture_hash_bucket *prev; 6179 } page_capture_hash_bucket_t; 6180 6181 #define PC_PRI_HI 0 /* capture now */ 6182 #define PC_PRI_LO 1 /* capture later */ 6183 #define PC_NUM_PRI 2 6184 6185 #define PAGE_CAPTURE_PRIO(pp) (PP_ISRAF(pp) ? PC_PRI_LO : PC_PRI_HI) 6186 6187 6188 /* 6189 * Each hash bucket will have it's own mutex and two lists which are: 6190 * active (0): represents requests which have not been processed by 6191 * the page_capture async thread yet. 6192 * walked (1): represents requests which have been processed by the 6193 * page_capture async thread within it's given walk of this bucket. 6194 * 6195 * These are all needed so that we can synchronize all async page_capture 6196 * events. When the async thread moves to a new bucket, it will append the 6197 * walked list to the active list and walk each item one at a time, moving it 6198 * from the active list to the walked list. Thus if there is an async request 6199 * outstanding for a given page, it will always be in one of the two lists. 6200 * New requests will always be added to the active list. 6201 * If we were not able to capture a page before the request expired, we'd free 6202 * up the request structure which would indicate to page_capture that there is 6203 * no longer a need for the given page, and clear the PR_CAPTURE flag if 6204 * possible. 6205 */ 6206 typedef struct page_capture_hash_head { 6207 kmutex_t pchh_mutex; 6208 uint_t num_pages[PC_NUM_PRI]; 6209 page_capture_hash_bucket_t lists[2]; /* sentinel nodes */ 6210 } page_capture_hash_head_t; 6211 6212 #ifdef DEBUG 6213 #define NUM_PAGE_CAPTURE_BUCKETS 4 6214 #else 6215 #define NUM_PAGE_CAPTURE_BUCKETS 64 6216 #endif 6217 6218 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS]; 6219 6220 /* for now use a very simple hash based upon the size of a page struct */ 6221 #define PAGE_CAPTURE_HASH(pp) \ 6222 ((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1))) 6223 6224 extern pgcnt_t swapfs_minfree; 6225 6226 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap); 6227 6228 /* 6229 * a callback function is required for page capture requests. 6230 */ 6231 void 6232 page_capture_register_callback(uint_t index, clock_t duration, 6233 int (*cb_func)(page_t *, void *, uint_t)) 6234 { 6235 ASSERT(pc_cb[index].cb_active == 0); 6236 ASSERT(cb_func != NULL); 6237 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER); 6238 pc_cb[index].duration = duration; 6239 pc_cb[index].cb_func = cb_func; 6240 pc_cb[index].cb_active = 1; 6241 rw_exit(&pc_cb[index].cb_rwlock); 6242 } 6243 6244 void 6245 page_capture_unregister_callback(uint_t index) 6246 { 6247 int i, j; 6248 struct page_capture_hash_bucket *bp1; 6249 struct page_capture_hash_bucket *bp2; 6250 struct page_capture_hash_bucket *head = NULL; 6251 uint_t flags = (1 << index); 6252 6253 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER); 6254 ASSERT(pc_cb[index].cb_active == 1); 6255 pc_cb[index].duration = 0; /* Paranoia */ 6256 pc_cb[index].cb_func = NULL; /* Paranoia */ 6257 pc_cb[index].cb_active = 0; 6258 rw_exit(&pc_cb[index].cb_rwlock); 6259 6260 /* 6261 * Just move all the entries to a private list which we can walk 6262 * through without the need to hold any locks. 6263 * No more requests can get added to the hash lists for this consumer 6264 * as the cb_active field for the callback has been cleared. 6265 */ 6266 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 6267 mutex_enter(&page_capture_hash[i].pchh_mutex); 6268 for (j = 0; j < 2; j++) { 6269 bp1 = page_capture_hash[i].lists[j].next; 6270 /* walk through all but first (sentinel) element */ 6271 while (bp1 != &page_capture_hash[i].lists[j]) { 6272 bp2 = bp1; 6273 if (bp2->flags & flags) { 6274 bp1 = bp2->next; 6275 bp1->prev = bp2->prev; 6276 bp2->prev->next = bp1; 6277 bp2->next = head; 6278 head = bp2; 6279 /* 6280 * Clear the PR_CAPTURE bit as we 6281 * hold appropriate locks here. 6282 */ 6283 page_clrtoxic(head->pp, PR_CAPTURE); 6284 page_capture_hash[i]. 6285 num_pages[bp2->pri]--; 6286 continue; 6287 } 6288 bp1 = bp1->next; 6289 } 6290 } 6291 mutex_exit(&page_capture_hash[i].pchh_mutex); 6292 } 6293 6294 while (head != NULL) { 6295 bp1 = head; 6296 head = head->next; 6297 kmem_free(bp1, sizeof (*bp1)); 6298 } 6299 } 6300 6301 6302 /* 6303 * Find pp in the active list and move it to the walked list if it 6304 * exists. 6305 * Note that most often pp should be at the front of the active list 6306 * as it is currently used and thus there is no other sort of optimization 6307 * being done here as this is a linked list data structure. 6308 * Returns 1 on successful move or 0 if page could not be found. 6309 */ 6310 static int 6311 page_capture_move_to_walked(page_t *pp) 6312 { 6313 page_capture_hash_bucket_t *bp; 6314 int index; 6315 6316 index = PAGE_CAPTURE_HASH(pp); 6317 6318 mutex_enter(&page_capture_hash[index].pchh_mutex); 6319 bp = page_capture_hash[index].lists[0].next; 6320 while (bp != &page_capture_hash[index].lists[0]) { 6321 if (bp->pp == pp) { 6322 /* Remove from old list */ 6323 bp->next->prev = bp->prev; 6324 bp->prev->next = bp->next; 6325 6326 /* Add to new list */ 6327 bp->next = page_capture_hash[index].lists[1].next; 6328 bp->prev = &page_capture_hash[index].lists[1]; 6329 page_capture_hash[index].lists[1].next = bp; 6330 bp->next->prev = bp; 6331 6332 /* 6333 * There is a small probability of page on a free 6334 * list being retired while being allocated 6335 * and before P_RAF is set on it. The page may 6336 * end up marked as high priority request instead 6337 * of low priority request. 6338 * If P_RAF page is not marked as low priority request 6339 * change it to low priority request. 6340 */ 6341 page_capture_hash[index].num_pages[bp->pri]--; 6342 bp->pri = PAGE_CAPTURE_PRIO(pp); 6343 page_capture_hash[index].num_pages[bp->pri]++; 6344 mutex_exit(&page_capture_hash[index].pchh_mutex); 6345 return (1); 6346 } 6347 bp = bp->next; 6348 } 6349 mutex_exit(&page_capture_hash[index].pchh_mutex); 6350 return (0); 6351 } 6352 6353 /* 6354 * Add a new entry to the page capture hash. The only case where a new 6355 * entry is not added is when the page capture consumer is no longer registered. 6356 * In this case, we'll silently not add the page to the hash. We know that 6357 * page retire will always be registered for the case where we are currently 6358 * unretiring a page and thus there are no conflicts. 6359 */ 6360 static void 6361 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap) 6362 { 6363 page_capture_hash_bucket_t *bp1; 6364 page_capture_hash_bucket_t *bp2; 6365 int index; 6366 int cb_index; 6367 int i; 6368 uchar_t pri; 6369 #ifdef DEBUG 6370 page_capture_hash_bucket_t *tp1; 6371 int l; 6372 #endif 6373 6374 ASSERT(!(flags & CAPTURE_ASYNC)); 6375 6376 bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP); 6377 6378 bp1->pp = pp; 6379 bp1->szc = szc; 6380 bp1->flags = flags; 6381 bp1->datap = datap; 6382 6383 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) { 6384 if ((flags >> cb_index) & 1) { 6385 break; 6386 } 6387 } 6388 6389 ASSERT(cb_index != PC_NUM_CALLBACKS); 6390 6391 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER); 6392 if (pc_cb[cb_index].cb_active) { 6393 if (pc_cb[cb_index].duration == -1) { 6394 bp1->expires = (clock_t)-1; 6395 } else { 6396 bp1->expires = ddi_get_lbolt() + 6397 pc_cb[cb_index].duration; 6398 } 6399 } else { 6400 /* There's no callback registered so don't add to the hash */ 6401 rw_exit(&pc_cb[cb_index].cb_rwlock); 6402 kmem_free(bp1, sizeof (*bp1)); 6403 return; 6404 } 6405 6406 index = PAGE_CAPTURE_HASH(pp); 6407 6408 /* 6409 * Only allow capture flag to be modified under this mutex. 6410 * Prevents multiple entries for same page getting added. 6411 */ 6412 mutex_enter(&page_capture_hash[index].pchh_mutex); 6413 6414 /* 6415 * if not already on the hash, set capture bit and add to the hash 6416 */ 6417 if (!(pp->p_toxic & PR_CAPTURE)) { 6418 #ifdef DEBUG 6419 /* Check for duplicate entries */ 6420 for (l = 0; l < 2; l++) { 6421 tp1 = page_capture_hash[index].lists[l].next; 6422 while (tp1 != &page_capture_hash[index].lists[l]) { 6423 if (tp1->pp == pp) { 6424 panic("page pp 0x%p already on hash " 6425 "at 0x%p\n", 6426 (void *)pp, (void *)tp1); 6427 } 6428 tp1 = tp1->next; 6429 } 6430 } 6431 6432 #endif 6433 page_settoxic(pp, PR_CAPTURE); 6434 pri = PAGE_CAPTURE_PRIO(pp); 6435 bp1->pri = pri; 6436 bp1->next = page_capture_hash[index].lists[0].next; 6437 bp1->prev = &page_capture_hash[index].lists[0]; 6438 bp1->next->prev = bp1; 6439 page_capture_hash[index].lists[0].next = bp1; 6440 page_capture_hash[index].num_pages[pri]++; 6441 if (flags & CAPTURE_RETIRE) { 6442 page_retire_incr_pend_count(datap); 6443 } 6444 mutex_exit(&page_capture_hash[index].pchh_mutex); 6445 rw_exit(&pc_cb[cb_index].cb_rwlock); 6446 cv_signal(&pc_cv); 6447 return; 6448 } 6449 6450 /* 6451 * A page retire request will replace any other request. 6452 * A second physmem request which is for a different process than 6453 * the currently registered one will be dropped as there is 6454 * no way to hold the private data for both calls. 6455 * In the future, once there are more callers, this will have to 6456 * be worked out better as there needs to be private storage for 6457 * at least each type of caller (maybe have datap be an array of 6458 * *void's so that we can index based upon callers index). 6459 */ 6460 6461 /* walk hash list to update expire time */ 6462 for (i = 0; i < 2; i++) { 6463 bp2 = page_capture_hash[index].lists[i].next; 6464 while (bp2 != &page_capture_hash[index].lists[i]) { 6465 if (bp2->pp == pp) { 6466 if (flags & CAPTURE_RETIRE) { 6467 if (!(bp2->flags & CAPTURE_RETIRE)) { 6468 page_retire_incr_pend_count( 6469 datap); 6470 bp2->flags = flags; 6471 bp2->expires = bp1->expires; 6472 bp2->datap = datap; 6473 } 6474 } else { 6475 ASSERT(flags & CAPTURE_PHYSMEM); 6476 if (!(bp2->flags & CAPTURE_RETIRE) && 6477 (datap == bp2->datap)) { 6478 bp2->expires = bp1->expires; 6479 } 6480 } 6481 mutex_exit(&page_capture_hash[index]. 6482 pchh_mutex); 6483 rw_exit(&pc_cb[cb_index].cb_rwlock); 6484 kmem_free(bp1, sizeof (*bp1)); 6485 return; 6486 } 6487 bp2 = bp2->next; 6488 } 6489 } 6490 6491 /* 6492 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes 6493 * and thus it either has to be set or not set and can't change 6494 * while holding the mutex above. 6495 */ 6496 panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n", 6497 (void *)pp); 6498 } 6499 6500 /* 6501 * We have a page in our hands, lets try and make it ours by turning 6502 * it into a clean page like it had just come off the freelists. 6503 * 6504 * Returns 0 on success, with the page still EXCL locked. 6505 * On failure, the page will be unlocked, and returns EAGAIN 6506 */ 6507 static int 6508 page_capture_clean_page(page_t *pp) 6509 { 6510 page_t *newpp; 6511 int skip_unlock = 0; 6512 spgcnt_t count; 6513 page_t *tpp; 6514 int ret = 0; 6515 int extra; 6516 6517 ASSERT(PAGE_EXCL(pp)); 6518 ASSERT(!PP_RETIRED(pp)); 6519 ASSERT(curthread->t_flag & T_CAPTURING); 6520 6521 if (PP_ISFREE(pp)) { 6522 if (!page_reclaim(pp, NULL)) { 6523 skip_unlock = 1; 6524 ret = EAGAIN; 6525 goto cleanup; 6526 } 6527 ASSERT(pp->p_szc == 0); 6528 if (pp->p_vnode != NULL) { 6529 /* 6530 * Since this page came from the 6531 * cachelist, we must destroy the 6532 * old vnode association. 6533 */ 6534 page_hashout(pp, NULL); 6535 } 6536 goto cleanup; 6537 } 6538 6539 /* 6540 * If we know page_relocate will fail, skip it 6541 * It could still fail due to a UE on another page but we 6542 * can't do anything about that. 6543 */ 6544 if (pp->p_toxic & PR_UE) { 6545 goto skip_relocate; 6546 } 6547 6548 /* 6549 * It's possible that pages can not have a vnode as fsflush comes 6550 * through and cleans up these pages. It's ugly but that's how it is. 6551 */ 6552 if (pp->p_vnode == NULL) { 6553 goto skip_relocate; 6554 } 6555 6556 /* 6557 * Page was not free, so lets try to relocate it. 6558 * page_relocate only works with root pages, so if this is not a root 6559 * page, we need to demote it to try and relocate it. 6560 * Unfortunately this is the best we can do right now. 6561 */ 6562 newpp = NULL; 6563 if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) { 6564 if (page_try_demote_pages(pp) == 0) { 6565 ret = EAGAIN; 6566 goto cleanup; 6567 } 6568 } 6569 ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL); 6570 if (ret == 0) { 6571 page_t *npp; 6572 /* unlock the new page(s) */ 6573 while (count-- > 0) { 6574 ASSERT(newpp != NULL); 6575 npp = newpp; 6576 page_sub(&newpp, npp); 6577 page_unlock(npp); 6578 } 6579 ASSERT(newpp == NULL); 6580 /* 6581 * Check to see if the page we have is too large. 6582 * If so, demote it freeing up the extra pages. 6583 */ 6584 if (pp->p_szc > 0) { 6585 /* For now demote extra pages to szc == 0 */ 6586 extra = page_get_pagecnt(pp->p_szc) - 1; 6587 while (extra > 0) { 6588 tpp = pp->p_next; 6589 page_sub(&pp, tpp); 6590 tpp->p_szc = 0; 6591 page_free(tpp, 1); 6592 extra--; 6593 } 6594 /* Make sure to set our page to szc 0 as well */ 6595 ASSERT(pp->p_next == pp && pp->p_prev == pp); 6596 pp->p_szc = 0; 6597 } 6598 goto cleanup; 6599 } else if (ret == EIO) { 6600 ret = EAGAIN; 6601 goto cleanup; 6602 } else { 6603 /* 6604 * Need to reset return type as we failed to relocate the page 6605 * but that does not mean that some of the next steps will not 6606 * work. 6607 */ 6608 ret = 0; 6609 } 6610 6611 skip_relocate: 6612 6613 if (pp->p_szc > 0) { 6614 if (page_try_demote_pages(pp) == 0) { 6615 ret = EAGAIN; 6616 goto cleanup; 6617 } 6618 } 6619 6620 ASSERT(pp->p_szc == 0); 6621 6622 if (hat_ismod(pp)) { 6623 ret = EAGAIN; 6624 goto cleanup; 6625 } 6626 if (PP_ISKAS(pp)) { 6627 ret = EAGAIN; 6628 goto cleanup; 6629 } 6630 if (pp->p_lckcnt || pp->p_cowcnt) { 6631 ret = EAGAIN; 6632 goto cleanup; 6633 } 6634 6635 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 6636 ASSERT(!hat_page_is_mapped(pp)); 6637 6638 if (hat_ismod(pp)) { 6639 /* 6640 * This is a semi-odd case as the page is now modified but not 6641 * mapped as we just unloaded the mappings above. 6642 */ 6643 ret = EAGAIN; 6644 goto cleanup; 6645 } 6646 if (pp->p_vnode != NULL) { 6647 page_hashout(pp, NULL); 6648 } 6649 6650 /* 6651 * At this point, the page should be in a clean state and 6652 * we can do whatever we want with it. 6653 */ 6654 6655 cleanup: 6656 if (ret != 0) { 6657 if (!skip_unlock) { 6658 page_unlock(pp); 6659 } 6660 } else { 6661 ASSERT(pp->p_szc == 0); 6662 ASSERT(PAGE_EXCL(pp)); 6663 6664 pp->p_next = pp; 6665 pp->p_prev = pp; 6666 } 6667 return (ret); 6668 } 6669 6670 /* 6671 * Various callers of page_trycapture() can have different restrictions upon 6672 * what memory they have access to. 6673 * Returns 0 on success, with the following error codes on failure: 6674 * EPERM - The requested page is long term locked, and thus repeated 6675 * requests to capture this page will likely fail. 6676 * ENOMEM - There was not enough free memory in the system to safely 6677 * map the requested page. 6678 * ENOENT - The requested page was inside the kernel cage, and the 6679 * PHYSMEM_CAGE flag was not set. 6680 */ 6681 int 6682 page_capture_pre_checks(page_t *pp, uint_t flags) 6683 { 6684 ASSERT(pp != NULL); 6685 6686 #if defined(__sparc) 6687 if (pp->p_vnode == &promvp) { 6688 return (EPERM); 6689 } 6690 6691 if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) && 6692 (flags & CAPTURE_PHYSMEM)) { 6693 return (ENOENT); 6694 } 6695 6696 if (PP_ISNORELOCKERNEL(pp)) { 6697 return (EPERM); 6698 } 6699 #else 6700 if (PP_ISKAS(pp)) { 6701 return (EPERM); 6702 } 6703 #endif /* __sparc */ 6704 6705 /* only physmem currently has the restrictions checked below */ 6706 if (!(flags & CAPTURE_PHYSMEM)) { 6707 return (0); 6708 } 6709 6710 if (availrmem < swapfs_minfree) { 6711 /* 6712 * We won't try to capture this page as we are 6713 * running low on memory. 6714 */ 6715 return (ENOMEM); 6716 } 6717 return (0); 6718 } 6719 6720 /* 6721 * Once we have a page in our mits, go ahead and complete the capture 6722 * operation. 6723 * Returns 1 on failure where page is no longer needed 6724 * Returns 0 on success 6725 * Returns -1 if there was a transient failure. 6726 * Failure cases must release the SE_EXCL lock on pp (usually via page_free). 6727 */ 6728 int 6729 page_capture_take_action(page_t *pp, uint_t flags, void *datap) 6730 { 6731 int cb_index; 6732 int ret = 0; 6733 page_capture_hash_bucket_t *bp1; 6734 page_capture_hash_bucket_t *bp2; 6735 int index; 6736 int found = 0; 6737 int i; 6738 6739 ASSERT(PAGE_EXCL(pp)); 6740 ASSERT(curthread->t_flag & T_CAPTURING); 6741 6742 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) { 6743 if ((flags >> cb_index) & 1) { 6744 break; 6745 } 6746 } 6747 ASSERT(cb_index < PC_NUM_CALLBACKS); 6748 6749 /* 6750 * Remove the entry from the page_capture hash, but don't free it yet 6751 * as we may need to put it back. 6752 * Since we own the page at this point in time, we should find it 6753 * in the hash if this is an ASYNC call. If we don't it's likely 6754 * that the page_capture_async() thread decided that this request 6755 * had expired, in which case we just continue on. 6756 */ 6757 if (flags & CAPTURE_ASYNC) { 6758 6759 index = PAGE_CAPTURE_HASH(pp); 6760 6761 mutex_enter(&page_capture_hash[index].pchh_mutex); 6762 for (i = 0; i < 2 && !found; i++) { 6763 bp1 = page_capture_hash[index].lists[i].next; 6764 while (bp1 != &page_capture_hash[index].lists[i]) { 6765 if (bp1->pp == pp) { 6766 bp1->next->prev = bp1->prev; 6767 bp1->prev->next = bp1->next; 6768 page_capture_hash[index]. 6769 num_pages[bp1->pri]--; 6770 page_clrtoxic(pp, PR_CAPTURE); 6771 found = 1; 6772 break; 6773 } 6774 bp1 = bp1->next; 6775 } 6776 } 6777 mutex_exit(&page_capture_hash[index].pchh_mutex); 6778 } 6779 6780 /* Synchronize with the unregister func. */ 6781 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER); 6782 if (!pc_cb[cb_index].cb_active) { 6783 page_free(pp, 1); 6784 rw_exit(&pc_cb[cb_index].cb_rwlock); 6785 if (found) { 6786 kmem_free(bp1, sizeof (*bp1)); 6787 } 6788 return (1); 6789 } 6790 6791 /* 6792 * We need to remove the entry from the page capture hash and turn off 6793 * the PR_CAPTURE bit before calling the callback. We'll need to cache 6794 * the entry here, and then based upon the return value, cleanup 6795 * appropriately or re-add it to the hash, making sure that someone else 6796 * hasn't already done so. 6797 * It should be rare for the callback to fail and thus it's ok for 6798 * the failure path to be a bit complicated as the success path is 6799 * cleaner and the locking rules are easier to follow. 6800 */ 6801 6802 ret = pc_cb[cb_index].cb_func(pp, datap, flags); 6803 6804 rw_exit(&pc_cb[cb_index].cb_rwlock); 6805 6806 /* 6807 * If this was an ASYNC request, we need to cleanup the hash if the 6808 * callback was successful or if the request was no longer valid. 6809 * For non-ASYNC requests, we return failure to map and the caller 6810 * will take care of adding the request to the hash. 6811 * Note also that the callback itself is responsible for the page 6812 * at this point in time in terms of locking ... The most common 6813 * case for the failure path should just be a page_free. 6814 */ 6815 if (ret >= 0) { 6816 if (found) { 6817 if (bp1->flags & CAPTURE_RETIRE) { 6818 page_retire_decr_pend_count(datap); 6819 } 6820 kmem_free(bp1, sizeof (*bp1)); 6821 } 6822 return (ret); 6823 } 6824 if (!found) { 6825 return (ret); 6826 } 6827 6828 ASSERT(flags & CAPTURE_ASYNC); 6829 6830 /* 6831 * Check for expiration time first as we can just free it up if it's 6832 * expired. 6833 */ 6834 if (ddi_get_lbolt() > bp1->expires && bp1->expires != -1) { 6835 kmem_free(bp1, sizeof (*bp1)); 6836 return (ret); 6837 } 6838 6839 /* 6840 * The callback failed and there used to be an entry in the hash for 6841 * this page, so we need to add it back to the hash. 6842 */ 6843 mutex_enter(&page_capture_hash[index].pchh_mutex); 6844 if (!(pp->p_toxic & PR_CAPTURE)) { 6845 /* just add bp1 back to head of walked list */ 6846 page_settoxic(pp, PR_CAPTURE); 6847 bp1->next = page_capture_hash[index].lists[1].next; 6848 bp1->prev = &page_capture_hash[index].lists[1]; 6849 bp1->next->prev = bp1; 6850 bp1->pri = PAGE_CAPTURE_PRIO(pp); 6851 page_capture_hash[index].lists[1].next = bp1; 6852 page_capture_hash[index].num_pages[bp1->pri]++; 6853 mutex_exit(&page_capture_hash[index].pchh_mutex); 6854 return (ret); 6855 } 6856 6857 /* 6858 * Otherwise there was a new capture request added to list 6859 * Need to make sure that our original data is represented if 6860 * appropriate. 6861 */ 6862 for (i = 0; i < 2; i++) { 6863 bp2 = page_capture_hash[index].lists[i].next; 6864 while (bp2 != &page_capture_hash[index].lists[i]) { 6865 if (bp2->pp == pp) { 6866 if (bp1->flags & CAPTURE_RETIRE) { 6867 if (!(bp2->flags & CAPTURE_RETIRE)) { 6868 bp2->szc = bp1->szc; 6869 bp2->flags = bp1->flags; 6870 bp2->expires = bp1->expires; 6871 bp2->datap = bp1->datap; 6872 } 6873 } else { 6874 ASSERT(bp1->flags & CAPTURE_PHYSMEM); 6875 if (!(bp2->flags & CAPTURE_RETIRE)) { 6876 bp2->szc = bp1->szc; 6877 bp2->flags = bp1->flags; 6878 bp2->expires = bp1->expires; 6879 bp2->datap = bp1->datap; 6880 } 6881 } 6882 page_capture_hash[index].num_pages[bp2->pri]--; 6883 bp2->pri = PAGE_CAPTURE_PRIO(pp); 6884 page_capture_hash[index].num_pages[bp2->pri]++; 6885 mutex_exit(&page_capture_hash[index]. 6886 pchh_mutex); 6887 kmem_free(bp1, sizeof (*bp1)); 6888 return (ret); 6889 } 6890 bp2 = bp2->next; 6891 } 6892 } 6893 panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp); 6894 /*NOTREACHED*/ 6895 } 6896 6897 /* 6898 * Try to capture the given page for the caller specified in the flags 6899 * parameter. The page will either be captured and handed over to the 6900 * appropriate callback, or will be queued up in the page capture hash 6901 * to be captured asynchronously. 6902 * If the current request is due to an async capture, the page must be 6903 * exclusively locked before calling this function. 6904 * Currently szc must be 0 but in the future this should be expandable to 6905 * other page sizes. 6906 * Returns 0 on success, with the following error codes on failure: 6907 * EPERM - The requested page is long term locked, and thus repeated 6908 * requests to capture this page will likely fail. 6909 * ENOMEM - There was not enough free memory in the system to safely 6910 * map the requested page. 6911 * ENOENT - The requested page was inside the kernel cage, and the 6912 * CAPTURE_GET_CAGE flag was not set. 6913 * EAGAIN - The requested page could not be capturead at this point in 6914 * time but future requests will likely work. 6915 * EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag 6916 * was not set. 6917 */ 6918 int 6919 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap) 6920 { 6921 int ret; 6922 int cb_index; 6923 6924 if (flags & CAPTURE_ASYNC) { 6925 ASSERT(PAGE_EXCL(pp)); 6926 goto async; 6927 } 6928 6929 /* Make sure there's enough availrmem ... */ 6930 ret = page_capture_pre_checks(pp, flags); 6931 if (ret != 0) { 6932 return (ret); 6933 } 6934 6935 if (!page_trylock(pp, SE_EXCL)) { 6936 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) { 6937 if ((flags >> cb_index) & 1) { 6938 break; 6939 } 6940 } 6941 ASSERT(cb_index < PC_NUM_CALLBACKS); 6942 ret = EAGAIN; 6943 /* Special case for retired pages */ 6944 if (PP_RETIRED(pp)) { 6945 if (flags & CAPTURE_GET_RETIRED) { 6946 if (!page_unretire_pp(pp, PR_UNR_TEMP)) { 6947 /* 6948 * Need to set capture bit and add to 6949 * hash so that the page will be 6950 * retired when freed. 6951 */ 6952 page_capture_add_hash(pp, szc, 6953 CAPTURE_RETIRE, NULL); 6954 ret = 0; 6955 goto own_page; 6956 } 6957 } else { 6958 return (EBUSY); 6959 } 6960 } 6961 page_capture_add_hash(pp, szc, flags, datap); 6962 return (ret); 6963 } 6964 6965 async: 6966 ASSERT(PAGE_EXCL(pp)); 6967 6968 /* Need to check for physmem async requests that availrmem is sane */ 6969 if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) == 6970 (CAPTURE_ASYNC | CAPTURE_PHYSMEM) && 6971 (availrmem < swapfs_minfree)) { 6972 page_unlock(pp); 6973 return (ENOMEM); 6974 } 6975 6976 ret = page_capture_clean_page(pp); 6977 6978 if (ret != 0) { 6979 /* We failed to get the page, so lets add it to the hash */ 6980 if (!(flags & CAPTURE_ASYNC)) { 6981 page_capture_add_hash(pp, szc, flags, datap); 6982 } 6983 return (ret); 6984 } 6985 6986 own_page: 6987 ASSERT(PAGE_EXCL(pp)); 6988 ASSERT(pp->p_szc == 0); 6989 6990 /* Call the callback */ 6991 ret = page_capture_take_action(pp, flags, datap); 6992 6993 if (ret == 0) { 6994 return (0); 6995 } 6996 6997 /* 6998 * Note that in the failure cases from page_capture_take_action, the 6999 * EXCL lock will have already been dropped. 7000 */ 7001 if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) { 7002 page_capture_add_hash(pp, szc, flags, datap); 7003 } 7004 return (EAGAIN); 7005 } 7006 7007 int 7008 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap) 7009 { 7010 int ret; 7011 7012 curthread->t_flag |= T_CAPTURING; 7013 ret = page_itrycapture(pp, szc, flags, datap); 7014 curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */ 7015 return (ret); 7016 } 7017 7018 /* 7019 * When unlocking a page which has the PR_CAPTURE bit set, this routine 7020 * gets called to try and capture the page. 7021 */ 7022 void 7023 page_unlock_capture(page_t *pp) 7024 { 7025 page_capture_hash_bucket_t *bp; 7026 int index; 7027 int i; 7028 uint_t szc; 7029 uint_t flags = 0; 7030 void *datap; 7031 kmutex_t *mp; 7032 extern vnode_t retired_pages; 7033 7034 /* 7035 * We need to protect against a possible deadlock here where we own 7036 * the vnode page hash mutex and want to acquire it again as there 7037 * are locations in the code, where we unlock a page while holding 7038 * the mutex which can lead to the page being captured and eventually 7039 * end up here. As we may be hashing out the old page and hashing into 7040 * the retire vnode, we need to make sure we don't own them. 7041 * Other callbacks who do hash operations also need to make sure that 7042 * before they hashin to a vnode that they do not currently own the 7043 * vphm mutex otherwise there will be a panic. 7044 */ 7045 if (mutex_owned(page_vnode_mutex(&retired_pages))) { 7046 page_unlock_nocapture(pp); 7047 return; 7048 } 7049 if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) { 7050 page_unlock_nocapture(pp); 7051 return; 7052 } 7053 7054 index = PAGE_CAPTURE_HASH(pp); 7055 7056 mp = &page_capture_hash[index].pchh_mutex; 7057 mutex_enter(mp); 7058 for (i = 0; i < 2; i++) { 7059 bp = page_capture_hash[index].lists[i].next; 7060 while (bp != &page_capture_hash[index].lists[i]) { 7061 if (bp->pp == pp) { 7062 szc = bp->szc; 7063 flags = bp->flags | CAPTURE_ASYNC; 7064 datap = bp->datap; 7065 mutex_exit(mp); 7066 (void) page_trycapture(pp, szc, flags, datap); 7067 return; 7068 } 7069 bp = bp->next; 7070 } 7071 } 7072 7073 /* Failed to find page in hash so clear flags and unlock it. */ 7074 page_clrtoxic(pp, PR_CAPTURE); 7075 page_unlock(pp); 7076 7077 mutex_exit(mp); 7078 } 7079 7080 void 7081 page_capture_init() 7082 { 7083 int i; 7084 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7085 page_capture_hash[i].lists[0].next = 7086 &page_capture_hash[i].lists[0]; 7087 page_capture_hash[i].lists[0].prev = 7088 &page_capture_hash[i].lists[0]; 7089 page_capture_hash[i].lists[1].next = 7090 &page_capture_hash[i].lists[1]; 7091 page_capture_hash[i].lists[1].prev = 7092 &page_capture_hash[i].lists[1]; 7093 } 7094 7095 pc_thread_shortwait = 23 * hz; 7096 pc_thread_longwait = 1201 * hz; 7097 pc_thread_retry = 3; 7098 mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL); 7099 cv_init(&pc_cv, NULL, CV_DEFAULT, NULL); 7100 pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0, 7101 TS_RUN, minclsyspri); 7102 } 7103 7104 /* 7105 * It is necessary to scrub any failing pages prior to reboot in order to 7106 * prevent a latent error trap from occurring on the next boot. 7107 */ 7108 void 7109 page_retire_mdboot() 7110 { 7111 page_t *pp; 7112 int i, j; 7113 page_capture_hash_bucket_t *bp; 7114 uchar_t pri; 7115 7116 /* walk lists looking for pages to scrub */ 7117 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7118 for (pri = 0; pri < PC_NUM_PRI; pri++) { 7119 if (page_capture_hash[i].num_pages[pri] != 0) { 7120 break; 7121 } 7122 } 7123 if (pri == PC_NUM_PRI) 7124 continue; 7125 7126 mutex_enter(&page_capture_hash[i].pchh_mutex); 7127 7128 for (j = 0; j < 2; j++) { 7129 bp = page_capture_hash[i].lists[j].next; 7130 while (bp != &page_capture_hash[i].lists[j]) { 7131 pp = bp->pp; 7132 if (PP_TOXIC(pp)) { 7133 if (page_trylock(pp, SE_EXCL)) { 7134 PP_CLRFREE(pp); 7135 pagescrub(pp, 0, PAGESIZE); 7136 page_unlock(pp); 7137 } 7138 } 7139 bp = bp->next; 7140 } 7141 } 7142 mutex_exit(&page_capture_hash[i].pchh_mutex); 7143 } 7144 } 7145 7146 /* 7147 * Walk the page_capture_hash trying to capture pages and also cleanup old 7148 * entries which have expired. 7149 */ 7150 void 7151 page_capture_async() 7152 { 7153 page_t *pp; 7154 int i; 7155 int ret; 7156 page_capture_hash_bucket_t *bp1, *bp2; 7157 uint_t szc; 7158 uint_t flags; 7159 void *datap; 7160 uchar_t pri; 7161 7162 /* If there are outstanding pages to be captured, get to work */ 7163 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7164 for (pri = 0; pri < PC_NUM_PRI; pri++) { 7165 if (page_capture_hash[i].num_pages[pri] != 0) 7166 break; 7167 } 7168 if (pri == PC_NUM_PRI) 7169 continue; 7170 7171 /* Append list 1 to list 0 and then walk through list 0 */ 7172 mutex_enter(&page_capture_hash[i].pchh_mutex); 7173 bp1 = &page_capture_hash[i].lists[1]; 7174 bp2 = bp1->next; 7175 if (bp1 != bp2) { 7176 bp1->prev->next = page_capture_hash[i].lists[0].next; 7177 bp2->prev = &page_capture_hash[i].lists[0]; 7178 page_capture_hash[i].lists[0].next->prev = bp1->prev; 7179 page_capture_hash[i].lists[0].next = bp2; 7180 bp1->next = bp1; 7181 bp1->prev = bp1; 7182 } 7183 7184 /* list[1] will be empty now */ 7185 7186 bp1 = page_capture_hash[i].lists[0].next; 7187 while (bp1 != &page_capture_hash[i].lists[0]) { 7188 /* Check expiration time */ 7189 if ((ddi_get_lbolt() > bp1->expires && 7190 bp1->expires != -1) || 7191 page_deleted(bp1->pp)) { 7192 page_capture_hash[i].lists[0].next = bp1->next; 7193 bp1->next->prev = 7194 &page_capture_hash[i].lists[0]; 7195 page_capture_hash[i].num_pages[bp1->pri]--; 7196 7197 /* 7198 * We can safely remove the PR_CAPTURE bit 7199 * without holding the EXCL lock on the page 7200 * as the PR_CAPTURE bit requres that the 7201 * page_capture_hash[].pchh_mutex be held 7202 * to modify it. 7203 */ 7204 page_clrtoxic(bp1->pp, PR_CAPTURE); 7205 mutex_exit(&page_capture_hash[i].pchh_mutex); 7206 kmem_free(bp1, sizeof (*bp1)); 7207 mutex_enter(&page_capture_hash[i].pchh_mutex); 7208 bp1 = page_capture_hash[i].lists[0].next; 7209 continue; 7210 } 7211 pp = bp1->pp; 7212 szc = bp1->szc; 7213 flags = bp1->flags; 7214 datap = bp1->datap; 7215 mutex_exit(&page_capture_hash[i].pchh_mutex); 7216 if (page_trylock(pp, SE_EXCL)) { 7217 ret = page_trycapture(pp, szc, 7218 flags | CAPTURE_ASYNC, datap); 7219 } else { 7220 ret = 1; /* move to walked hash */ 7221 } 7222 7223 if (ret != 0) { 7224 /* Move to walked hash */ 7225 (void) page_capture_move_to_walked(pp); 7226 } 7227 mutex_enter(&page_capture_hash[i].pchh_mutex); 7228 bp1 = page_capture_hash[i].lists[0].next; 7229 } 7230 7231 mutex_exit(&page_capture_hash[i].pchh_mutex); 7232 } 7233 } 7234 7235 /* 7236 * This function is called by the page_capture_thread, and is needed in 7237 * in order to initiate aio cleanup, so that pages used in aio 7238 * will be unlocked and subsequently retired by page_capture_thread. 7239 */ 7240 static int 7241 do_aio_cleanup(void) 7242 { 7243 proc_t *procp; 7244 int (*aio_cleanup_dr_delete_memory)(proc_t *); 7245 int cleaned = 0; 7246 7247 if (modload("sys", "kaio") == -1) { 7248 cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio"); 7249 return (0); 7250 } 7251 /* 7252 * We use the aio_cleanup_dr_delete_memory function to 7253 * initiate the actual clean up; this function will wake 7254 * up the per-process aio_cleanup_thread. 7255 */ 7256 aio_cleanup_dr_delete_memory = (int (*)(proc_t *)) 7257 modgetsymvalue("aio_cleanup_dr_delete_memory", 0); 7258 if (aio_cleanup_dr_delete_memory == NULL) { 7259 cmn_err(CE_WARN, 7260 "aio_cleanup_dr_delete_memory not found in kaio"); 7261 return (0); 7262 } 7263 mutex_enter(&pidlock); 7264 for (procp = practive; (procp != NULL); procp = procp->p_next) { 7265 mutex_enter(&procp->p_lock); 7266 if (procp->p_aio != NULL) { 7267 /* cleanup proc's outstanding kaio */ 7268 cleaned += (*aio_cleanup_dr_delete_memory)(procp); 7269 } 7270 mutex_exit(&procp->p_lock); 7271 } 7272 mutex_exit(&pidlock); 7273 return (cleaned); 7274 } 7275 7276 /* 7277 * helper function for page_capture_thread 7278 */ 7279 static void 7280 page_capture_handle_outstanding(void) 7281 { 7282 int ntry; 7283 7284 /* Reap pages before attempting capture pages */ 7285 kmem_reap(); 7286 7287 if ((page_retire_pend_count() > page_retire_pend_kas_count()) && 7288 hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) { 7289 /* 7290 * Note: Purging only for platforms that support 7291 * ISM hat_pageunload() - mainly SPARC. On x86/x64 7292 * platforms ISM pages SE_SHARED locked until destroyed. 7293 */ 7294 7295 /* disable and purge seg_pcache */ 7296 (void) seg_p_disable(); 7297 for (ntry = 0; ntry < pc_thread_retry; ntry++) { 7298 if (!page_retire_pend_count()) 7299 break; 7300 if (do_aio_cleanup()) { 7301 /* 7302 * allow the apps cleanup threads 7303 * to run 7304 */ 7305 delay(pc_thread_shortwait); 7306 } 7307 page_capture_async(); 7308 } 7309 /* reenable seg_pcache */ 7310 seg_p_enable(); 7311 7312 /* completed what can be done. break out */ 7313 return; 7314 } 7315 7316 /* 7317 * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap 7318 * and then attempt to capture. 7319 */ 7320 seg_preap(); 7321 page_capture_async(); 7322 } 7323 7324 /* 7325 * The page_capture_thread loops forever, looking to see if there are 7326 * pages still waiting to be captured. 7327 */ 7328 static void 7329 page_capture_thread(void) 7330 { 7331 callb_cpr_t c; 7332 int i; 7333 int high_pri_pages; 7334 int low_pri_pages; 7335 clock_t timeout; 7336 7337 CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture"); 7338 7339 mutex_enter(&pc_thread_mutex); 7340 for (;;) { 7341 high_pri_pages = 0; 7342 low_pri_pages = 0; 7343 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7344 high_pri_pages += 7345 page_capture_hash[i].num_pages[PC_PRI_HI]; 7346 low_pri_pages += 7347 page_capture_hash[i].num_pages[PC_PRI_LO]; 7348 } 7349 7350 timeout = pc_thread_longwait; 7351 if (high_pri_pages != 0) { 7352 timeout = pc_thread_shortwait; 7353 page_capture_handle_outstanding(); 7354 } else if (low_pri_pages != 0) { 7355 page_capture_async(); 7356 } 7357 CALLB_CPR_SAFE_BEGIN(&c); 7358 (void) cv_reltimedwait(&pc_cv, &pc_thread_mutex, 7359 timeout, TR_CLOCK_TICK); 7360 CALLB_CPR_SAFE_END(&c, &pc_thread_mutex); 7361 } 7362 /*NOTREACHED*/ 7363 } 7364 /* 7365 * Attempt to locate a bucket that has enough pages to satisfy the request. 7366 * The initial check is done without the lock to avoid unneeded contention. 7367 * The function returns 1 if enough pages were found, else 0 if it could not 7368 * find enough pages in a bucket. 7369 */ 7370 static int 7371 pcf_decrement_bucket(pgcnt_t npages) 7372 { 7373 struct pcf *p; 7374 struct pcf *q; 7375 int i; 7376 7377 p = &pcf[PCF_INDEX()]; 7378 q = &pcf[pcf_fanout]; 7379 for (i = 0; i < pcf_fanout; i++) { 7380 if (p->pcf_count > npages) { 7381 /* 7382 * a good one to try. 7383 */ 7384 mutex_enter(&p->pcf_lock); 7385 if (p->pcf_count > npages) { 7386 p->pcf_count -= (uint_t)npages; 7387 /* 7388 * freemem is not protected by any lock. 7389 * Thus, we cannot have any assertion 7390 * containing freemem here. 7391 */ 7392 freemem -= npages; 7393 mutex_exit(&p->pcf_lock); 7394 return (1); 7395 } 7396 mutex_exit(&p->pcf_lock); 7397 } 7398 p++; 7399 if (p >= q) { 7400 p = pcf; 7401 } 7402 } 7403 return (0); 7404 } 7405 7406 /* 7407 * Arguments: 7408 * pcftotal_ret: If the value is not NULL and we have walked all the 7409 * buckets but did not find enough pages then it will 7410 * be set to the total number of pages in all the pcf 7411 * buckets. 7412 * npages: Is the number of pages we have been requested to 7413 * find. 7414 * unlock: If set to 0 we will leave the buckets locked if the 7415 * requested number of pages are not found. 7416 * 7417 * Go and try to satisfy the page request from any number of buckets. 7418 * This can be a very expensive operation as we have to lock the buckets 7419 * we are checking (and keep them locked), starting at bucket 0. 7420 * 7421 * The function returns 1 if enough pages were found, else 0 if it could not 7422 * find enough pages in the buckets. 7423 * 7424 */ 7425 static int 7426 pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock) 7427 { 7428 struct pcf *p; 7429 pgcnt_t pcftotal; 7430 int i; 7431 7432 p = pcf; 7433 /* try to collect pages from several pcf bins */ 7434 for (pcftotal = 0, i = 0; i < pcf_fanout; i++) { 7435 mutex_enter(&p->pcf_lock); 7436 pcftotal += p->pcf_count; 7437 if (pcftotal >= npages) { 7438 /* 7439 * Wow! There are enough pages laying around 7440 * to satisfy the request. Do the accounting, 7441 * drop the locks we acquired, and go back. 7442 * 7443 * freemem is not protected by any lock. So, 7444 * we cannot have any assertion containing 7445 * freemem. 7446 */ 7447 freemem -= npages; 7448 while (p >= pcf) { 7449 if (p->pcf_count <= npages) { 7450 npages -= p->pcf_count; 7451 p->pcf_count = 0; 7452 } else { 7453 p->pcf_count -= (uint_t)npages; 7454 npages = 0; 7455 } 7456 mutex_exit(&p->pcf_lock); 7457 p--; 7458 } 7459 ASSERT(npages == 0); 7460 return (1); 7461 } 7462 p++; 7463 } 7464 if (unlock) { 7465 /* failed to collect pages - release the locks */ 7466 while (--p >= pcf) { 7467 mutex_exit(&p->pcf_lock); 7468 } 7469 } 7470 if (pcftotal_ret != NULL) 7471 *pcftotal_ret = pcftotal; 7472 return (0); 7473 } 7474