xref: /illumos-gate/usr/src/uts/common/vm/vm_page.c (revision c64c5389d6d65f1a8915fd0ff67288100f518172)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2015, Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
24  * Copyright (c) 2015, 2016 by Delphix. All rights reserved.
25  * Copyright 2018 Joyent, Inc.
26  */
27 
28 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989  AT&T	*/
29 /*	  All Rights Reserved  	*/
30 
31 /*
32  * University Copyright- Copyright (c) 1982, 1986, 1988
33  * The Regents of the University of California
34  * All Rights Reserved
35  *
36  * University Acknowledgment- Portions of this document are derived from
37  * software developed by the University of California, Berkeley, and its
38  * contributors.
39  */
40 
41 /*
42  * VM - physical page management.
43  */
44 
45 #include <sys/types.h>
46 #include <sys/t_lock.h>
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/errno.h>
50 #include <sys/time.h>
51 #include <sys/vnode.h>
52 #include <sys/vm.h>
53 #include <sys/vtrace.h>
54 #include <sys/swap.h>
55 #include <sys/cmn_err.h>
56 #include <sys/tuneable.h>
57 #include <sys/sysmacros.h>
58 #include <sys/cpuvar.h>
59 #include <sys/callb.h>
60 #include <sys/debug.h>
61 #include <sys/tnf_probe.h>
62 #include <sys/condvar_impl.h>
63 #include <sys/mem_config.h>
64 #include <sys/mem_cage.h>
65 #include <sys/kmem.h>
66 #include <sys/atomic.h>
67 #include <sys/strlog.h>
68 #include <sys/mman.h>
69 #include <sys/ontrap.h>
70 #include <sys/lgrp.h>
71 #include <sys/vfs.h>
72 
73 #include <vm/hat.h>
74 #include <vm/anon.h>
75 #include <vm/page.h>
76 #include <vm/seg.h>
77 #include <vm/pvn.h>
78 #include <vm/seg_kmem.h>
79 #include <vm/vm_dep.h>
80 #include <sys/vm_usage.h>
81 #include <fs/fs_subr.h>
82 #include <sys/ddi.h>
83 #include <sys/modctl.h>
84 
85 static pgcnt_t max_page_get;	/* max page_get request size in pages */
86 pgcnt_t total_pages = 0;	/* total number of pages (used by /proc) */
87 
88 /*
89  * freemem_lock protects all freemem variables:
90  * availrmem. Also this lock protects the globals which track the
91  * availrmem changes for accurate kernel footprint calculation.
92  * See below for an explanation of these
93  * globals.
94  */
95 kmutex_t freemem_lock;
96 pgcnt_t availrmem;
97 pgcnt_t availrmem_initial;
98 
99 /*
100  * These globals track availrmem changes to get a more accurate
101  * estimate of tke kernel size. Historically pp_kernel is used for
102  * kernel size and is based on availrmem. But availrmem is adjusted for
103  * locked pages in the system not just for kernel locked pages.
104  * These new counters will track the pages locked through segvn and
105  * by explicit user locking.
106  *
107  * pages_locked : How many pages are locked because of user specified
108  * locking through mlock or plock.
109  *
110  * pages_useclaim,pages_claimed : These two variables track the
111  * claim adjustments because of the protection changes on a segvn segment.
112  *
113  * All these globals are protected by the same lock which protects availrmem.
114  */
115 pgcnt_t pages_locked = 0;
116 pgcnt_t pages_useclaim = 0;
117 pgcnt_t pages_claimed = 0;
118 
119 
120 /*
121  * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
122  */
123 static kmutex_t	new_freemem_lock;
124 static uint_t	freemem_wait;	/* someone waiting for freemem */
125 static kcondvar_t freemem_cv;
126 
127 /*
128  * The logical page free list is maintained as two lists, the 'free'
129  * and the 'cache' lists.
130  * The free list contains those pages that should be reused first.
131  *
132  * The implementation of the lists is machine dependent.
133  * page_get_freelist(), page_get_cachelist(),
134  * page_list_sub(), and page_list_add()
135  * form the interface to the machine dependent implementation.
136  *
137  * Pages with p_free set are on the cache list.
138  * Pages with p_free and p_age set are on the free list,
139  *
140  * A page may be locked while on either list.
141  */
142 
143 /*
144  * free list accounting stuff.
145  *
146  *
147  * Spread out the value for the number of pages on the
148  * page free and page cache lists.  If there is just one
149  * value, then it must be under just one lock.
150  * The lock contention and cache traffic are a real bother.
151  *
152  * When we acquire and then drop a single pcf lock
153  * we can start in the middle of the array of pcf structures.
154  * If we acquire more than one pcf lock at a time, we need to
155  * start at the front to avoid deadlocking.
156  *
157  * pcf_count holds the number of pages in each pool.
158  *
159  * pcf_block is set when page_create_get_something() has asked the
160  * PSM page freelist and page cachelist routines without specifying
161  * a color and nothing came back.  This is used to block anything
162  * else from moving pages from one list to the other while the
163  * lists are searched again.  If a page is freeed while pcf_block is
164  * set, then pcf_reserve is incremented.  pcgs_unblock() takes care
165  * of clearning pcf_block, doing the wakeups, etc.
166  */
167 
168 #define	MAX_PCF_FANOUT NCPU
169 static uint_t pcf_fanout = 1; /* Will get changed at boot time */
170 static uint_t pcf_fanout_mask = 0;
171 
172 struct pcf {
173 	kmutex_t	pcf_lock;	/* protects the structure */
174 	uint_t		pcf_count;	/* page count */
175 	uint_t		pcf_wait;	/* number of waiters */
176 	uint_t		pcf_block; 	/* pcgs flag to page_free() */
177 	uint_t		pcf_reserve; 	/* pages freed after pcf_block set */
178 	uint_t		pcf_fill[10];	/* to line up on the caches */
179 };
180 
181 /*
182  * PCF_INDEX hash needs to be dynamic (every so often the hash changes where
183  * it will hash the cpu to).  This is done to prevent a drain condition
184  * from happening.  This drain condition will occur when pcf_count decrement
185  * occurs on cpu A and the increment of pcf_count always occurs on cpu B.  An
186  * example of this shows up with device interrupts.  The dma buffer is allocated
187  * by the cpu requesting the IO thus the pcf_count is decremented based on that.
188  * When the memory is returned by the interrupt thread, the pcf_count will be
189  * incremented based on the cpu servicing the interrupt.
190  */
191 static struct pcf pcf[MAX_PCF_FANOUT];
192 #define	PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \
193 	(randtick() >> 24)) & (pcf_fanout_mask))
194 
195 static int pcf_decrement_bucket(pgcnt_t);
196 static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int);
197 
198 kmutex_t	pcgs_lock;		/* serializes page_create_get_ */
199 kmutex_t	pcgs_cagelock;		/* serializes NOSLEEP cage allocs */
200 kmutex_t	pcgs_wait_lock;		/* used for delay in pcgs */
201 static kcondvar_t	pcgs_cv;	/* cv for delay in pcgs */
202 
203 #ifdef VM_STATS
204 
205 /*
206  * No locks, but so what, they are only statistics.
207  */
208 
209 static struct page_tcnt {
210 	int	pc_free_cache;		/* free's into cache list */
211 	int	pc_free_dontneed;	/* free's with dontneed */
212 	int	pc_free_pageout;	/* free's from pageout */
213 	int	pc_free_free;		/* free's into free list */
214 	int	pc_free_pages;		/* free's into large page free list */
215 	int	pc_destroy_pages;	/* large page destroy's */
216 	int	pc_get_cache;		/* get's from cache list */
217 	int	pc_get_free;		/* get's from free list */
218 	int	pc_reclaim;		/* reclaim's */
219 	int	pc_abortfree;		/* abort's of free pages */
220 	int	pc_find_hit;		/* find's that find page */
221 	int	pc_find_miss;		/* find's that don't find page */
222 	int	pc_destroy_free;	/* # of free pages destroyed */
223 #define	PC_HASH_CNT	(4*PAGE_HASHAVELEN)
224 	int	pc_find_hashlen[PC_HASH_CNT+1];
225 	int	pc_addclaim_pages;
226 	int	pc_subclaim_pages;
227 	int	pc_free_replacement_page[2];
228 	int	pc_try_demote_pages[6];
229 	int	pc_demote_pages[2];
230 } pagecnt;
231 
232 uint_t	hashin_count;
233 uint_t	hashin_not_held;
234 uint_t	hashin_already;
235 
236 uint_t	hashout_count;
237 uint_t	hashout_not_held;
238 
239 uint_t	page_create_count;
240 uint_t	page_create_not_enough;
241 uint_t	page_create_not_enough_again;
242 uint_t	page_create_zero;
243 uint_t	page_create_hashout;
244 uint_t	page_create_page_lock_failed;
245 uint_t	page_create_trylock_failed;
246 uint_t	page_create_found_one;
247 uint_t	page_create_hashin_failed;
248 uint_t	page_create_dropped_phm;
249 
250 uint_t	page_create_new;
251 uint_t	page_create_exists;
252 uint_t	page_create_putbacks;
253 uint_t	page_create_overshoot;
254 
255 uint_t	page_reclaim_zero;
256 uint_t	page_reclaim_zero_locked;
257 
258 uint_t	page_rename_exists;
259 uint_t	page_rename_count;
260 
261 uint_t	page_lookup_cnt[20];
262 uint_t	page_lookup_nowait_cnt[10];
263 uint_t	page_find_cnt;
264 uint_t	page_exists_cnt;
265 uint_t	page_exists_forreal_cnt;
266 uint_t	page_lookup_dev_cnt;
267 uint_t	get_cachelist_cnt;
268 uint_t	page_create_cnt[10];
269 uint_t	alloc_pages[9];
270 uint_t	page_exphcontg[19];
271 uint_t  page_create_large_cnt[10];
272 
273 #endif
274 
275 static inline page_t *
276 page_hash_search(ulong_t index, vnode_t *vnode, u_offset_t off)
277 {
278 	uint_t mylen = 0;
279 	page_t *page;
280 
281 	for (page = page_hash[index]; page; page = page->p_hash, mylen++)
282 		if (page->p_vnode == vnode && page->p_offset == off)
283 			break;
284 
285 #ifdef	VM_STATS
286 	if (page != NULL)
287 		pagecnt.pc_find_hit++;
288 	else
289 		pagecnt.pc_find_miss++;
290 
291 	pagecnt.pc_find_hashlen[MIN(mylen, PC_HASH_CNT)]++;
292 #endif
293 
294 	return (page);
295 }
296 
297 
298 #ifdef DEBUG
299 #define	MEMSEG_SEARCH_STATS
300 #endif
301 
302 #ifdef MEMSEG_SEARCH_STATS
303 struct memseg_stats {
304     uint_t nsearch;
305     uint_t nlastwon;
306     uint_t nhashwon;
307     uint_t nnotfound;
308 } memseg_stats;
309 
310 #define	MEMSEG_STAT_INCR(v) \
311 	atomic_inc_32(&memseg_stats.v)
312 #else
313 #define	MEMSEG_STAT_INCR(x)
314 #endif
315 
316 struct memseg *memsegs;		/* list of memory segments */
317 
318 /*
319  * /etc/system tunable to control large page allocation hueristic.
320  *
321  * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
322  * for large page allocation requests.  If a large page is not readily
323  * avaliable on the local freelists we will go through additional effort
324  * to create a large page, potentially moving smaller pages around to coalesce
325  * larger pages in the local lgroup.
326  * Default value of LPAP_DEFAULT will go to remote freelists if large pages
327  * are not readily available in the local lgroup.
328  */
329 enum lpap {
330 	LPAP_DEFAULT,	/* default large page allocation policy */
331 	LPAP_LOCAL	/* local large page allocation policy */
332 };
333 
334 enum lpap lpg_alloc_prefer = LPAP_DEFAULT;
335 
336 static void page_init_mem_config(void);
337 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
338 static void page_do_hashout(page_t *);
339 static void page_capture_init();
340 int page_capture_take_action(page_t *, uint_t, void *);
341 
342 static void page_demote_vp_pages(page_t *);
343 
344 
345 void
346 pcf_init(void)
347 {
348 	if (boot_ncpus != -1) {
349 		pcf_fanout = boot_ncpus;
350 	} else {
351 		pcf_fanout = max_ncpus;
352 	}
353 #ifdef sun4v
354 	/*
355 	 * Force at least 4 buckets if possible for sun4v.
356 	 */
357 	pcf_fanout = MAX(pcf_fanout, 4);
358 #endif /* sun4v */
359 
360 	/*
361 	 * Round up to the nearest power of 2.
362 	 */
363 	pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT);
364 	if (!ISP2(pcf_fanout)) {
365 		pcf_fanout = 1 << highbit(pcf_fanout);
366 
367 		if (pcf_fanout > MAX_PCF_FANOUT) {
368 			pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1);
369 		}
370 	}
371 	pcf_fanout_mask = pcf_fanout - 1;
372 }
373 
374 /*
375  * vm subsystem related initialization
376  */
377 void
378 vm_init(void)
379 {
380 	boolean_t callb_vm_cpr(void *, int);
381 
382 	(void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
383 	page_init_mem_config();
384 	page_retire_init();
385 	vm_usage_init();
386 	page_capture_init();
387 }
388 
389 /*
390  * This function is called at startup and when memory is added or deleted.
391  */
392 void
393 init_pages_pp_maximum()
394 {
395 	static pgcnt_t p_min;
396 	static pgcnt_t pages_pp_maximum_startup;
397 	static pgcnt_t avrmem_delta;
398 	static int init_done;
399 	static int user_set;	/* true if set in /etc/system */
400 
401 	if (init_done == 0) {
402 
403 		/* If the user specified a value, save it */
404 		if (pages_pp_maximum != 0) {
405 			user_set = 1;
406 			pages_pp_maximum_startup = pages_pp_maximum;
407 		}
408 
409 		/*
410 		 * Setting of pages_pp_maximum is based first time
411 		 * on the value of availrmem just after the start-up
412 		 * allocations. To preserve this relationship at run
413 		 * time, use a delta from availrmem_initial.
414 		 */
415 		ASSERT(availrmem_initial >= availrmem);
416 		avrmem_delta = availrmem_initial - availrmem;
417 
418 		/* The allowable floor of pages_pp_maximum */
419 		p_min = tune.t_minarmem + 100;
420 
421 		/* Make sure we don't come through here again. */
422 		init_done = 1;
423 	}
424 	/*
425 	 * Determine pages_pp_maximum, the number of currently available
426 	 * pages (availrmem) that can't be `locked'. If not set by
427 	 * the user, we set it to 4% of the currently available memory
428 	 * plus 4MB.
429 	 * But we also insist that it be greater than tune.t_minarmem;
430 	 * otherwise a process could lock down a lot of memory, get swapped
431 	 * out, and never have enough to get swapped back in.
432 	 */
433 	if (user_set)
434 		pages_pp_maximum = pages_pp_maximum_startup;
435 	else
436 		pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
437 		    + btop(4 * 1024 * 1024);
438 
439 	if (pages_pp_maximum <= p_min) {
440 		pages_pp_maximum = p_min;
441 	}
442 }
443 
444 /*
445  * In the past, we limited the maximum pages that could be gotten to essentially
446  * 1/2 of the total pages on the system. However, this is too conservative for
447  * some cases. For example, if we want to host a large virtual machine which
448  * needs to use a significant portion of the system's memory. In practice,
449  * allowing more than 1/2 of the total pages is fine, but becomes problematic
450  * as we approach or exceed 75% of the pages on the system. Thus, we limit the
451  * maximum to 23/32 of the total pages, which is ~72%.
452  */
453 void
454 set_max_page_get(pgcnt_t target_total_pages)
455 {
456 	max_page_get = (target_total_pages >> 5) * 23;
457 	ASSERT3U(max_page_get, >, 0);
458 }
459 
460 pgcnt_t
461 get_max_page_get()
462 {
463 	return (max_page_get);
464 }
465 
466 static pgcnt_t pending_delete;
467 
468 /*ARGSUSED*/
469 static void
470 page_mem_config_post_add(
471 	void *arg,
472 	pgcnt_t delta_pages)
473 {
474 	set_max_page_get(total_pages - pending_delete);
475 	init_pages_pp_maximum();
476 }
477 
478 /*ARGSUSED*/
479 static int
480 page_mem_config_pre_del(
481 	void *arg,
482 	pgcnt_t delta_pages)
483 {
484 	pgcnt_t nv;
485 
486 	nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
487 	set_max_page_get(total_pages - nv);
488 	return (0);
489 }
490 
491 /*ARGSUSED*/
492 static void
493 page_mem_config_post_del(
494 	void *arg,
495 	pgcnt_t delta_pages,
496 	int cancelled)
497 {
498 	pgcnt_t nv;
499 
500 	nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
501 	set_max_page_get(total_pages - nv);
502 	if (!cancelled)
503 		init_pages_pp_maximum();
504 }
505 
506 static kphysm_setup_vector_t page_mem_config_vec = {
507 	KPHYSM_SETUP_VECTOR_VERSION,
508 	page_mem_config_post_add,
509 	page_mem_config_pre_del,
510 	page_mem_config_post_del,
511 };
512 
513 static void
514 page_init_mem_config(void)
515 {
516 	int ret;
517 
518 	ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
519 	ASSERT(ret == 0);
520 }
521 
522 /*
523  * Evenly spread out the PCF counters for large free pages
524  */
525 static void
526 page_free_large_ctr(pgcnt_t npages)
527 {
528 	static struct pcf	*p = pcf;
529 	pgcnt_t			lump;
530 
531 	freemem += npages;
532 
533 	lump = roundup(npages, pcf_fanout) / pcf_fanout;
534 
535 	while (npages > 0) {
536 
537 		ASSERT(!p->pcf_block);
538 
539 		if (lump < npages) {
540 			p->pcf_count += (uint_t)lump;
541 			npages -= lump;
542 		} else {
543 			p->pcf_count += (uint_t)npages;
544 			npages = 0;
545 		}
546 
547 		ASSERT(!p->pcf_wait);
548 
549 		if (++p > &pcf[pcf_fanout - 1])
550 			p = pcf;
551 	}
552 
553 	ASSERT(npages == 0);
554 }
555 
556 /*
557  * Add a physical chunk of memory to the system free lists during startup.
558  * Platform specific startup() allocates the memory for the page structs.
559  *
560  * num	- number of page structures
561  * base - page number (pfn) to be associated with the first page.
562  *
563  * Since we are doing this during startup (ie. single threaded), we will
564  * use shortcut routines to avoid any locking overhead while putting all
565  * these pages on the freelists.
566  *
567  * NOTE: Any changes performed to page_free(), must also be performed to
568  *	 add_physmem() since this is how we initialize all page_t's at
569  *	 boot time.
570  */
571 void
572 add_physmem(
573 	page_t	*pp,
574 	pgcnt_t	num,
575 	pfn_t	pnum)
576 {
577 	page_t	*root = NULL;
578 	uint_t	szc = page_num_pagesizes() - 1;
579 	pgcnt_t	large = page_get_pagecnt(szc);
580 	pgcnt_t	cnt = 0;
581 
582 	TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
583 	    "add_physmem:pp %p num %lu", pp, num);
584 
585 	/*
586 	 * Arbitrarily limit the max page_get request
587 	 * to 1/2 of the page structs we have.
588 	 */
589 	total_pages += num;
590 	set_max_page_get(total_pages);
591 
592 	PLCNT_MODIFY_MAX(pnum, (long)num);
593 
594 	/*
595 	 * The physical space for the pages array
596 	 * representing ram pages has already been
597 	 * allocated.  Here we initialize each lock
598 	 * in the page structure, and put each on
599 	 * the free list
600 	 */
601 	for (; num; pp++, pnum++, num--) {
602 
603 		/*
604 		 * this needs to fill in the page number
605 		 * and do any other arch specific initialization
606 		 */
607 		add_physmem_cb(pp, pnum);
608 
609 		pp->p_lckcnt = 0;
610 		pp->p_cowcnt = 0;
611 		pp->p_slckcnt = 0;
612 
613 		/*
614 		 * Initialize the page lock as unlocked, since nobody
615 		 * can see or access this page yet.
616 		 */
617 		pp->p_selock = 0;
618 
619 		/*
620 		 * Initialize IO lock
621 		 */
622 		page_iolock_init(pp);
623 
624 		/*
625 		 * initialize other fields in the page_t
626 		 */
627 		PP_SETFREE(pp);
628 		page_clr_all_props(pp);
629 		PP_SETAGED(pp);
630 		pp->p_offset = (u_offset_t)-1;
631 		pp->p_next = pp;
632 		pp->p_prev = pp;
633 
634 		/*
635 		 * Simple case: System doesn't support large pages.
636 		 */
637 		if (szc == 0) {
638 			pp->p_szc = 0;
639 			page_free_at_startup(pp);
640 			continue;
641 		}
642 
643 		/*
644 		 * Handle unaligned pages, we collect them up onto
645 		 * the root page until we have a full large page.
646 		 */
647 		if (!IS_P2ALIGNED(pnum, large)) {
648 
649 			/*
650 			 * If not in a large page,
651 			 * just free as small page.
652 			 */
653 			if (root == NULL) {
654 				pp->p_szc = 0;
655 				page_free_at_startup(pp);
656 				continue;
657 			}
658 
659 			/*
660 			 * Link a constituent page into the large page.
661 			 */
662 			pp->p_szc = szc;
663 			page_list_concat(&root, &pp);
664 
665 			/*
666 			 * When large page is fully formed, free it.
667 			 */
668 			if (++cnt == large) {
669 				page_free_large_ctr(cnt);
670 				page_list_add_pages(root, PG_LIST_ISINIT);
671 				root = NULL;
672 				cnt = 0;
673 			}
674 			continue;
675 		}
676 
677 		/*
678 		 * At this point we have a page number which
679 		 * is aligned. We assert that we aren't already
680 		 * in a different large page.
681 		 */
682 		ASSERT(IS_P2ALIGNED(pnum, large));
683 		ASSERT(root == NULL && cnt == 0);
684 
685 		/*
686 		 * If insufficient number of pages left to form
687 		 * a large page, just free the small page.
688 		 */
689 		if (num < large) {
690 			pp->p_szc = 0;
691 			page_free_at_startup(pp);
692 			continue;
693 		}
694 
695 		/*
696 		 * Otherwise start a new large page.
697 		 */
698 		pp->p_szc = szc;
699 		cnt++;
700 		root = pp;
701 	}
702 	ASSERT(root == NULL && cnt == 0);
703 }
704 
705 /*
706  * Find a page representing the specified [vp, offset].
707  * If we find the page but it is intransit coming in,
708  * it will have an "exclusive" lock and we wait for
709  * the i/o to complete.  A page found on the free list
710  * is always reclaimed and then locked.  On success, the page
711  * is locked, its data is valid and it isn't on the free
712  * list, while a NULL is returned if the page doesn't exist.
713  */
714 page_t *
715 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
716 {
717 	return (page_lookup_create(vp, off, se, NULL, NULL, 0));
718 }
719 
720 /*
721  * Find a page representing the specified [vp, offset].
722  * We either return the one we found or, if passed in,
723  * create one with identity of [vp, offset] of the
724  * pre-allocated page. If we find existing page but it is
725  * intransit coming in, it will have an "exclusive" lock
726  * and we wait for the i/o to complete.  A page found on
727  * the free list is always reclaimed and then locked.
728  * On success, the page is locked, its data is valid and
729  * it isn't on the free list, while a NULL is returned
730  * if the page doesn't exist and newpp is NULL;
731  */
732 page_t *
733 page_lookup_create(
734 	vnode_t *vp,
735 	u_offset_t off,
736 	se_t se,
737 	page_t *newpp,
738 	spgcnt_t *nrelocp,
739 	int flags)
740 {
741 	page_t		*pp;
742 	kmutex_t	*phm;
743 	ulong_t		index;
744 	uint_t		hash_locked;
745 	uint_t		es;
746 
747 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
748 	VM_STAT_ADD(page_lookup_cnt[0]);
749 	ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
750 
751 	/*
752 	 * Acquire the appropriate page hash lock since
753 	 * we have to search the hash list.  Pages that
754 	 * hash to this list can't change identity while
755 	 * this lock is held.
756 	 */
757 	hash_locked = 0;
758 	index = PAGE_HASH_FUNC(vp, off);
759 	phm = NULL;
760 top:
761 	pp = page_hash_search(index, vp, off);
762 	if (pp != NULL) {
763 		VM_STAT_ADD(page_lookup_cnt[1]);
764 		es = (newpp != NULL) ? 1 : 0;
765 		es |= flags;
766 		if (!hash_locked) {
767 			VM_STAT_ADD(page_lookup_cnt[2]);
768 			if (!page_try_reclaim_lock(pp, se, es)) {
769 				/*
770 				 * On a miss, acquire the phm.  Then
771 				 * next time, page_lock() will be called,
772 				 * causing a wait if the page is busy.
773 				 * just looping with page_trylock() would
774 				 * get pretty boring.
775 				 */
776 				VM_STAT_ADD(page_lookup_cnt[3]);
777 				phm = PAGE_HASH_MUTEX(index);
778 				mutex_enter(phm);
779 				hash_locked = 1;
780 				goto top;
781 			}
782 		} else {
783 			VM_STAT_ADD(page_lookup_cnt[4]);
784 			if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
785 				VM_STAT_ADD(page_lookup_cnt[5]);
786 				goto top;
787 			}
788 		}
789 
790 		/*
791 		 * Since `pp' is locked it can not change identity now.
792 		 * Reconfirm we locked the correct page.
793 		 *
794 		 * Both the p_vnode and p_offset *must* be cast volatile
795 		 * to force a reload of their values: The page_hash_search
796 		 * function will have stuffed p_vnode and p_offset into
797 		 * registers before calling page_trylock(); another thread,
798 		 * actually holding the hash lock, could have changed the
799 		 * page's identity in memory, but our registers would not
800 		 * be changed, fooling the reconfirmation.  If the hash
801 		 * lock was held during the search, the casting would
802 		 * not be needed.
803 		 */
804 		VM_STAT_ADD(page_lookup_cnt[6]);
805 		if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
806 		    ((volatile u_offset_t)(pp->p_offset) != off)) {
807 			VM_STAT_ADD(page_lookup_cnt[7]);
808 			if (hash_locked) {
809 				panic("page_lookup_create: lost page %p",
810 				    (void *)pp);
811 				/*NOTREACHED*/
812 			}
813 			page_unlock(pp);
814 			phm = PAGE_HASH_MUTEX(index);
815 			mutex_enter(phm);
816 			hash_locked = 1;
817 			goto top;
818 		}
819 
820 		/*
821 		 * If page_trylock() was called, then pp may still be on
822 		 * the cachelist (can't be on the free list, it would not
823 		 * have been found in the search).  If it is on the
824 		 * cachelist it must be pulled now. To pull the page from
825 		 * the cachelist, it must be exclusively locked.
826 		 *
827 		 * The other big difference between page_trylock() and
828 		 * page_lock(), is that page_lock() will pull the
829 		 * page from whatever free list (the cache list in this
830 		 * case) the page is on.  If page_trylock() was used
831 		 * above, then we have to do the reclaim ourselves.
832 		 */
833 		if ((!hash_locked) && (PP_ISFREE(pp))) {
834 			ASSERT(PP_ISAGED(pp) == 0);
835 			VM_STAT_ADD(page_lookup_cnt[8]);
836 
837 			/*
838 			 * page_relcaim will insure that we
839 			 * have this page exclusively
840 			 */
841 
842 			if (!page_reclaim(pp, NULL)) {
843 				/*
844 				 * Page_reclaim dropped whatever lock
845 				 * we held.
846 				 */
847 				VM_STAT_ADD(page_lookup_cnt[9]);
848 				phm = PAGE_HASH_MUTEX(index);
849 				mutex_enter(phm);
850 				hash_locked = 1;
851 				goto top;
852 			} else if (se == SE_SHARED && newpp == NULL) {
853 				VM_STAT_ADD(page_lookup_cnt[10]);
854 				page_downgrade(pp);
855 			}
856 		}
857 
858 		if (hash_locked) {
859 			mutex_exit(phm);
860 		}
861 
862 		if (newpp != NULL && pp->p_szc < newpp->p_szc &&
863 		    PAGE_EXCL(pp) && nrelocp != NULL) {
864 			ASSERT(nrelocp != NULL);
865 			(void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
866 			    NULL);
867 			if (*nrelocp > 0) {
868 				VM_STAT_COND_ADD(*nrelocp == 1,
869 				    page_lookup_cnt[11]);
870 				VM_STAT_COND_ADD(*nrelocp > 1,
871 				    page_lookup_cnt[12]);
872 				pp = newpp;
873 				se = SE_EXCL;
874 			} else {
875 				if (se == SE_SHARED) {
876 					page_downgrade(pp);
877 				}
878 				VM_STAT_ADD(page_lookup_cnt[13]);
879 			}
880 		} else if (newpp != NULL && nrelocp != NULL) {
881 			if (PAGE_EXCL(pp) && se == SE_SHARED) {
882 				page_downgrade(pp);
883 			}
884 			VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
885 			    page_lookup_cnt[14]);
886 			VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
887 			    page_lookup_cnt[15]);
888 			VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
889 			    page_lookup_cnt[16]);
890 		} else if (newpp != NULL && PAGE_EXCL(pp)) {
891 			se = SE_EXCL;
892 		}
893 	} else if (!hash_locked) {
894 		VM_STAT_ADD(page_lookup_cnt[17]);
895 		phm = PAGE_HASH_MUTEX(index);
896 		mutex_enter(phm);
897 		hash_locked = 1;
898 		goto top;
899 	} else if (newpp != NULL) {
900 		/*
901 		 * If we have a preallocated page then
902 		 * insert it now and basically behave like
903 		 * page_create.
904 		 */
905 		VM_STAT_ADD(page_lookup_cnt[18]);
906 		/*
907 		 * Since we hold the page hash mutex and
908 		 * just searched for this page, page_hashin
909 		 * had better not fail.  If it does, that
910 		 * means some thread did not follow the
911 		 * page hash mutex rules.  Panic now and
912 		 * get it over with.  As usual, go down
913 		 * holding all the locks.
914 		 */
915 		ASSERT(MUTEX_HELD(phm));
916 		if (!page_hashin(newpp, vp, off, phm)) {
917 			ASSERT(MUTEX_HELD(phm));
918 			panic("page_lookup_create: hashin failed %p %p %llx %p",
919 			    (void *)newpp, (void *)vp, off, (void *)phm);
920 			/*NOTREACHED*/
921 		}
922 		ASSERT(MUTEX_HELD(phm));
923 		mutex_exit(phm);
924 		phm = NULL;
925 		page_set_props(newpp, P_REF);
926 		page_io_lock(newpp);
927 		pp = newpp;
928 		se = SE_EXCL;
929 	} else {
930 		VM_STAT_ADD(page_lookup_cnt[19]);
931 		mutex_exit(phm);
932 	}
933 
934 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
935 
936 	ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
937 
938 	return (pp);
939 }
940 
941 /*
942  * Search the hash list for the page representing the
943  * specified [vp, offset] and return it locked.  Skip
944  * free pages and pages that cannot be locked as requested.
945  * Used while attempting to kluster pages.
946  */
947 page_t *
948 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
949 {
950 	page_t		*pp;
951 	kmutex_t	*phm;
952 	ulong_t		index;
953 	uint_t		locked;
954 
955 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
956 	VM_STAT_ADD(page_lookup_nowait_cnt[0]);
957 
958 	index = PAGE_HASH_FUNC(vp, off);
959 	pp = page_hash_search(index, vp, off);
960 	locked = 0;
961 	if (pp == NULL) {
962 top:
963 		VM_STAT_ADD(page_lookup_nowait_cnt[1]);
964 		locked = 1;
965 		phm = PAGE_HASH_MUTEX(index);
966 		mutex_enter(phm);
967 		pp = page_hash_search(index, vp, off);
968 	}
969 
970 	if (pp == NULL || PP_ISFREE(pp)) {
971 		VM_STAT_ADD(page_lookup_nowait_cnt[2]);
972 		pp = NULL;
973 	} else {
974 		if (!page_trylock(pp, se)) {
975 			VM_STAT_ADD(page_lookup_nowait_cnt[3]);
976 			pp = NULL;
977 		} else {
978 			VM_STAT_ADD(page_lookup_nowait_cnt[4]);
979 			/*
980 			 * See the comment in page_lookup()
981 			 */
982 			if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
983 			    ((u_offset_t)(pp->p_offset) != off)) {
984 				VM_STAT_ADD(page_lookup_nowait_cnt[5]);
985 				if (locked) {
986 					panic("page_lookup_nowait %p",
987 					    (void *)pp);
988 					/*NOTREACHED*/
989 				}
990 				page_unlock(pp);
991 				goto top;
992 			}
993 			if (PP_ISFREE(pp)) {
994 				VM_STAT_ADD(page_lookup_nowait_cnt[6]);
995 				page_unlock(pp);
996 				pp = NULL;
997 			}
998 		}
999 	}
1000 	if (locked) {
1001 		VM_STAT_ADD(page_lookup_nowait_cnt[7]);
1002 		mutex_exit(phm);
1003 	}
1004 
1005 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
1006 
1007 	return (pp);
1008 }
1009 
1010 /*
1011  * Search the hash list for a page with the specified [vp, off]
1012  * that is known to exist and is already locked.  This routine
1013  * is typically used by segment SOFTUNLOCK routines.
1014  */
1015 page_t *
1016 page_find(vnode_t *vp, u_offset_t off)
1017 {
1018 	page_t		*pp;
1019 	kmutex_t	*phm;
1020 	ulong_t		index;
1021 
1022 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1023 	VM_STAT_ADD(page_find_cnt);
1024 
1025 	index = PAGE_HASH_FUNC(vp, off);
1026 	phm = PAGE_HASH_MUTEX(index);
1027 
1028 	mutex_enter(phm);
1029 	pp = page_hash_search(index, vp, off);
1030 	mutex_exit(phm);
1031 
1032 	ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
1033 	return (pp);
1034 }
1035 
1036 /*
1037  * Determine whether a page with the specified [vp, off]
1038  * currently exists in the system.  Obviously this should
1039  * only be considered as a hint since nothing prevents the
1040  * page from disappearing or appearing immediately after
1041  * the return from this routine. Subsequently, we don't
1042  * even bother to lock the list.
1043  */
1044 page_t *
1045 page_exists(vnode_t *vp, u_offset_t off)
1046 {
1047 	ulong_t		index;
1048 
1049 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1050 	VM_STAT_ADD(page_exists_cnt);
1051 
1052 	index = PAGE_HASH_FUNC(vp, off);
1053 
1054 	return (page_hash_search(index, vp, off));
1055 }
1056 
1057 /*
1058  * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1059  * page_size(szc)) range.  if they exist and ppa is not NULL fill ppa array
1060  * with these pages locked SHARED. If necessary reclaim pages from
1061  * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1062  *
1063  * If we fail to lock pages still return 1 if pages exist and contiguous.
1064  * But in this case return value is just a hint. ppa array won't be filled.
1065  * Caller should initialize ppa[0] as NULL to distinguish return value.
1066  *
1067  * Returns 0 if pages don't exist or not physically contiguous.
1068  *
1069  * This routine doesn't work for anonymous(swapfs) pages.
1070  */
1071 int
1072 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1073 {
1074 	pgcnt_t pages;
1075 	pfn_t pfn;
1076 	page_t *rootpp;
1077 	pgcnt_t i;
1078 	pgcnt_t j;
1079 	u_offset_t save_off = off;
1080 	ulong_t index;
1081 	kmutex_t *phm;
1082 	page_t *pp;
1083 	uint_t pszc;
1084 	int loopcnt = 0;
1085 
1086 	ASSERT(szc != 0);
1087 	ASSERT(vp != NULL);
1088 	ASSERT(!IS_SWAPFSVP(vp));
1089 	ASSERT(!VN_ISKAS(vp));
1090 
1091 again:
1092 	if (++loopcnt > 3) {
1093 		VM_STAT_ADD(page_exphcontg[0]);
1094 		return (0);
1095 	}
1096 
1097 	index = PAGE_HASH_FUNC(vp, off);
1098 	phm = PAGE_HASH_MUTEX(index);
1099 
1100 	mutex_enter(phm);
1101 	pp = page_hash_search(index, vp, off);
1102 	mutex_exit(phm);
1103 
1104 	VM_STAT_ADD(page_exphcontg[1]);
1105 
1106 	if (pp == NULL) {
1107 		VM_STAT_ADD(page_exphcontg[2]);
1108 		return (0);
1109 	}
1110 
1111 	pages = page_get_pagecnt(szc);
1112 	rootpp = pp;
1113 	pfn = rootpp->p_pagenum;
1114 
1115 	if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1116 		VM_STAT_ADD(page_exphcontg[3]);
1117 		if (!page_trylock(pp, SE_SHARED)) {
1118 			VM_STAT_ADD(page_exphcontg[4]);
1119 			return (1);
1120 		}
1121 		/*
1122 		 * Also check whether p_pagenum was modified by DR.
1123 		 */
1124 		if (pp->p_szc != pszc || pp->p_vnode != vp ||
1125 		    pp->p_offset != off || pp->p_pagenum != pfn) {
1126 			VM_STAT_ADD(page_exphcontg[5]);
1127 			page_unlock(pp);
1128 			off = save_off;
1129 			goto again;
1130 		}
1131 		/*
1132 		 * szc was non zero and vnode and offset matched after we
1133 		 * locked the page it means it can't become free on us.
1134 		 */
1135 		ASSERT(!PP_ISFREE(pp));
1136 		if (!IS_P2ALIGNED(pfn, pages)) {
1137 			page_unlock(pp);
1138 			return (0);
1139 		}
1140 		ppa[0] = pp;
1141 		pp++;
1142 		off += PAGESIZE;
1143 		pfn++;
1144 		for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1145 			if (!page_trylock(pp, SE_SHARED)) {
1146 				VM_STAT_ADD(page_exphcontg[6]);
1147 				pp--;
1148 				while (i-- > 0) {
1149 					page_unlock(pp);
1150 					pp--;
1151 				}
1152 				ppa[0] = NULL;
1153 				return (1);
1154 			}
1155 			if (pp->p_szc != pszc) {
1156 				VM_STAT_ADD(page_exphcontg[7]);
1157 				page_unlock(pp);
1158 				pp--;
1159 				while (i-- > 0) {
1160 					page_unlock(pp);
1161 					pp--;
1162 				}
1163 				ppa[0] = NULL;
1164 				off = save_off;
1165 				goto again;
1166 			}
1167 			/*
1168 			 * szc the same as for previous already locked pages
1169 			 * with right identity. Since this page had correct
1170 			 * szc after we locked it can't get freed or destroyed
1171 			 * and therefore must have the expected identity.
1172 			 */
1173 			ASSERT(!PP_ISFREE(pp));
1174 			if (pp->p_vnode != vp ||
1175 			    pp->p_offset != off) {
1176 				panic("page_exists_physcontig: "
1177 				    "large page identity doesn't match");
1178 			}
1179 			ppa[i] = pp;
1180 			ASSERT(pp->p_pagenum == pfn);
1181 		}
1182 		VM_STAT_ADD(page_exphcontg[8]);
1183 		ppa[pages] = NULL;
1184 		return (1);
1185 	} else if (pszc >= szc) {
1186 		VM_STAT_ADD(page_exphcontg[9]);
1187 		if (!IS_P2ALIGNED(pfn, pages)) {
1188 			return (0);
1189 		}
1190 		return (1);
1191 	}
1192 
1193 	if (!IS_P2ALIGNED(pfn, pages)) {
1194 		VM_STAT_ADD(page_exphcontg[10]);
1195 		return (0);
1196 	}
1197 
1198 	if (page_numtomemseg_nolock(pfn) !=
1199 	    page_numtomemseg_nolock(pfn + pages - 1)) {
1200 		VM_STAT_ADD(page_exphcontg[11]);
1201 		return (0);
1202 	}
1203 
1204 	/*
1205 	 * We loop up 4 times across pages to promote page size.
1206 	 * We're extra cautious to promote page size atomically with respect
1207 	 * to everybody else.  But we can probably optimize into 1 loop if
1208 	 * this becomes an issue.
1209 	 */
1210 
1211 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1212 		if (!page_trylock(pp, SE_EXCL)) {
1213 			VM_STAT_ADD(page_exphcontg[12]);
1214 			break;
1215 		}
1216 		/*
1217 		 * Check whether p_pagenum was modified by DR.
1218 		 */
1219 		if (pp->p_pagenum != pfn) {
1220 			page_unlock(pp);
1221 			break;
1222 		}
1223 		if (pp->p_vnode != vp ||
1224 		    pp->p_offset != off) {
1225 			VM_STAT_ADD(page_exphcontg[13]);
1226 			page_unlock(pp);
1227 			break;
1228 		}
1229 		if (pp->p_szc >= szc) {
1230 			ASSERT(i == 0);
1231 			page_unlock(pp);
1232 			off = save_off;
1233 			goto again;
1234 		}
1235 	}
1236 
1237 	if (i != pages) {
1238 		VM_STAT_ADD(page_exphcontg[14]);
1239 		--pp;
1240 		while (i-- > 0) {
1241 			page_unlock(pp);
1242 			--pp;
1243 		}
1244 		return (0);
1245 	}
1246 
1247 	pp = rootpp;
1248 	for (i = 0; i < pages; i++, pp++) {
1249 		if (PP_ISFREE(pp)) {
1250 			VM_STAT_ADD(page_exphcontg[15]);
1251 			ASSERT(!PP_ISAGED(pp));
1252 			ASSERT(pp->p_szc == 0);
1253 			if (!page_reclaim(pp, NULL)) {
1254 				break;
1255 			}
1256 		} else {
1257 			ASSERT(pp->p_szc < szc);
1258 			VM_STAT_ADD(page_exphcontg[16]);
1259 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1260 		}
1261 	}
1262 	if (i < pages) {
1263 		VM_STAT_ADD(page_exphcontg[17]);
1264 		/*
1265 		 * page_reclaim failed because we were out of memory.
1266 		 * drop the rest of the locks and return because this page
1267 		 * must be already reallocated anyway.
1268 		 */
1269 		pp = rootpp;
1270 		for (j = 0; j < pages; j++, pp++) {
1271 			if (j != i) {
1272 				page_unlock(pp);
1273 			}
1274 		}
1275 		return (0);
1276 	}
1277 
1278 	off = save_off;
1279 	pp = rootpp;
1280 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1281 		ASSERT(PAGE_EXCL(pp));
1282 		ASSERT(!PP_ISFREE(pp));
1283 		ASSERT(!hat_page_is_mapped(pp));
1284 		ASSERT(pp->p_vnode == vp);
1285 		ASSERT(pp->p_offset == off);
1286 		pp->p_szc = szc;
1287 	}
1288 	pp = rootpp;
1289 	for (i = 0; i < pages; i++, pp++) {
1290 		if (ppa == NULL) {
1291 			page_unlock(pp);
1292 		} else {
1293 			ppa[i] = pp;
1294 			page_downgrade(ppa[i]);
1295 		}
1296 	}
1297 	if (ppa != NULL) {
1298 		ppa[pages] = NULL;
1299 	}
1300 	VM_STAT_ADD(page_exphcontg[18]);
1301 	ASSERT(vp->v_pages != NULL);
1302 	return (1);
1303 }
1304 
1305 /*
1306  * Determine whether a page with the specified [vp, off]
1307  * currently exists in the system and if so return its
1308  * size code. Obviously this should only be considered as
1309  * a hint since nothing prevents the page from disappearing
1310  * or appearing immediately after the return from this routine.
1311  */
1312 int
1313 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1314 {
1315 	page_t		*pp;
1316 	kmutex_t	*phm;
1317 	ulong_t		index;
1318 	int		rc = 0;
1319 
1320 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1321 	ASSERT(szc != NULL);
1322 	VM_STAT_ADD(page_exists_forreal_cnt);
1323 
1324 	index = PAGE_HASH_FUNC(vp, off);
1325 	phm = PAGE_HASH_MUTEX(index);
1326 
1327 	mutex_enter(phm);
1328 	pp = page_hash_search(index, vp, off);
1329 	if (pp != NULL) {
1330 		*szc = pp->p_szc;
1331 		rc = 1;
1332 	}
1333 	mutex_exit(phm);
1334 	return (rc);
1335 }
1336 
1337 /* wakeup threads waiting for pages in page_create_get_something() */
1338 void
1339 wakeup_pcgs(void)
1340 {
1341 	if (!CV_HAS_WAITERS(&pcgs_cv))
1342 		return;
1343 	cv_broadcast(&pcgs_cv);
1344 }
1345 
1346 /*
1347  * 'freemem' is used all over the kernel as an indication of how many
1348  * pages are free (either on the cache list or on the free page list)
1349  * in the system.  In very few places is a really accurate 'freemem'
1350  * needed.  To avoid contention of the lock protecting a the
1351  * single freemem, it was spread out into NCPU buckets.  Set_freemem
1352  * sets freemem to the total of all NCPU buckets.  It is called from
1353  * clock() on each TICK.
1354  */
1355 void
1356 set_freemem()
1357 {
1358 	struct pcf	*p;
1359 	ulong_t		t;
1360 	uint_t		i;
1361 
1362 	t = 0;
1363 	p = pcf;
1364 	for (i = 0;  i < pcf_fanout; i++) {
1365 		t += p->pcf_count;
1366 		p++;
1367 	}
1368 	freemem = t;
1369 
1370 	/*
1371 	 * Don't worry about grabbing mutex.  It's not that
1372 	 * critical if we miss a tick or two.  This is
1373 	 * where we wakeup possible delayers in
1374 	 * page_create_get_something().
1375 	 */
1376 	wakeup_pcgs();
1377 }
1378 
1379 ulong_t
1380 get_freemem()
1381 {
1382 	struct pcf	*p;
1383 	ulong_t		t;
1384 	uint_t		i;
1385 
1386 	t = 0;
1387 	p = pcf;
1388 	for (i = 0; i < pcf_fanout; i++) {
1389 		t += p->pcf_count;
1390 		p++;
1391 	}
1392 	/*
1393 	 * We just calculated it, might as well set it.
1394 	 */
1395 	freemem = t;
1396 	return (t);
1397 }
1398 
1399 /*
1400  * Acquire all of the page cache & free (pcf) locks.
1401  */
1402 void
1403 pcf_acquire_all()
1404 {
1405 	struct pcf	*p;
1406 	uint_t		i;
1407 
1408 	p = pcf;
1409 	for (i = 0; i < pcf_fanout; i++) {
1410 		mutex_enter(&p->pcf_lock);
1411 		p++;
1412 	}
1413 }
1414 
1415 /*
1416  * Release all the pcf_locks.
1417  */
1418 void
1419 pcf_release_all()
1420 {
1421 	struct pcf	*p;
1422 	uint_t		i;
1423 
1424 	p = pcf;
1425 	for (i = 0; i < pcf_fanout; i++) {
1426 		mutex_exit(&p->pcf_lock);
1427 		p++;
1428 	}
1429 }
1430 
1431 /*
1432  * Inform the VM system that we need some pages freed up.
1433  * Calls must be symmetric, e.g.:
1434  *
1435  *	page_needfree(100);
1436  *	wait a bit;
1437  *	page_needfree(-100);
1438  */
1439 void
1440 page_needfree(spgcnt_t npages)
1441 {
1442 	mutex_enter(&new_freemem_lock);
1443 	needfree += npages;
1444 	mutex_exit(&new_freemem_lock);
1445 }
1446 
1447 /*
1448  * Throttle for page_create(): try to prevent freemem from dropping
1449  * below throttlefree.  We can't provide a 100% guarantee because
1450  * KM_NOSLEEP allocations, page_reclaim(), and various other things
1451  * nibble away at the freelist.  However, we can block all PG_WAIT
1452  * allocations until memory becomes available.  The motivation is
1453  * that several things can fall apart when there's no free memory:
1454  *
1455  * (1) If pageout() needs memory to push a page, the system deadlocks.
1456  *
1457  * (2) By (broken) specification, timeout(9F) can neither fail nor
1458  *     block, so it has no choice but to panic the system if it
1459  *     cannot allocate a callout structure.
1460  *
1461  * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1462  *     it panics if it cannot allocate a callback structure.
1463  *
1464  * (4) Untold numbers of third-party drivers have not yet been hardened
1465  *     against KM_NOSLEEP and/or allocb() failures; they simply assume
1466  *     success and panic the system with a data fault on failure.
1467  *     (The long-term solution to this particular problem is to ship
1468  *     hostile fault-injecting DEBUG kernels with the DDK.)
1469  *
1470  * It is theoretically impossible to guarantee success of non-blocking
1471  * allocations, but in practice, this throttle is very hard to break.
1472  */
1473 static int
1474 page_create_throttle(pgcnt_t npages, int flags)
1475 {
1476 	ulong_t	fm;
1477 	uint_t	i;
1478 	pgcnt_t tf;	/* effective value of throttlefree */
1479 
1480 	/*
1481 	 * Normal priority allocations.
1482 	 */
1483 	if ((flags & (PG_WAIT | PG_NORMALPRI)) == PG_NORMALPRI) {
1484 		ASSERT(!(flags & (PG_PANIC | PG_PUSHPAGE)));
1485 		return (freemem >= npages + throttlefree);
1486 	}
1487 
1488 	/*
1489 	 * Never deny pages when:
1490 	 * - it's a thread that cannot block [NOMEMWAIT()]
1491 	 * - the allocation cannot block and must not fail
1492 	 * - the allocation cannot block and is pageout dispensated
1493 	 */
1494 	if (NOMEMWAIT() ||
1495 	    ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1496 	    ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1497 		return (1);
1498 
1499 	/*
1500 	 * If the allocation can't block, we look favorably upon it
1501 	 * unless we're below pageout_reserve.  In that case we fail
1502 	 * the allocation because we want to make sure there are a few
1503 	 * pages available for pageout.
1504 	 */
1505 	if ((flags & PG_WAIT) == 0)
1506 		return (freemem >= npages + pageout_reserve);
1507 
1508 	/* Calculate the effective throttlefree value */
1509 	tf = throttlefree -
1510 	    ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1511 
1512 	cv_signal(&proc_pageout->p_cv);
1513 
1514 	for (;;) {
1515 		fm = 0;
1516 		pcf_acquire_all();
1517 		mutex_enter(&new_freemem_lock);
1518 		for (i = 0; i < pcf_fanout; i++) {
1519 			fm += pcf[i].pcf_count;
1520 			pcf[i].pcf_wait++;
1521 			mutex_exit(&pcf[i].pcf_lock);
1522 		}
1523 		freemem = fm;
1524 		if (freemem >= npages + tf) {
1525 			mutex_exit(&new_freemem_lock);
1526 			break;
1527 		}
1528 		needfree += npages;
1529 		freemem_wait++;
1530 		cv_wait(&freemem_cv, &new_freemem_lock);
1531 		freemem_wait--;
1532 		needfree -= npages;
1533 		mutex_exit(&new_freemem_lock);
1534 	}
1535 	return (1);
1536 }
1537 
1538 /*
1539  * page_create_wait() is called to either coalesce pages from the
1540  * different pcf buckets or to wait because there simply are not
1541  * enough pages to satisfy the caller's request.
1542  *
1543  * Sadly, this is called from platform/vm/vm_machdep.c
1544  */
1545 int
1546 page_create_wait(pgcnt_t npages, uint_t flags)
1547 {
1548 	pgcnt_t		total;
1549 	uint_t		i;
1550 	struct pcf	*p;
1551 
1552 	/*
1553 	 * Wait until there are enough free pages to satisfy our
1554 	 * entire request.
1555 	 * We set needfree += npages before prodding pageout, to make sure
1556 	 * it does real work when npages > lotsfree > freemem.
1557 	 */
1558 	VM_STAT_ADD(page_create_not_enough);
1559 
1560 	ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1561 checkagain:
1562 	if ((flags & PG_NORELOC) &&
1563 	    kcage_freemem < kcage_throttlefree + npages)
1564 		(void) kcage_create_throttle(npages, flags);
1565 
1566 	if (freemem < npages + throttlefree)
1567 		if (!page_create_throttle(npages, flags))
1568 			return (0);
1569 
1570 	if (pcf_decrement_bucket(npages) ||
1571 	    pcf_decrement_multiple(&total, npages, 0))
1572 		return (1);
1573 
1574 	/*
1575 	 * All of the pcf locks are held, there are not enough pages
1576 	 * to satisfy the request (npages < total).
1577 	 * Be sure to acquire the new_freemem_lock before dropping
1578 	 * the pcf locks.  This prevents dropping wakeups in page_free().
1579 	 * The order is always pcf_lock then new_freemem_lock.
1580 	 *
1581 	 * Since we hold all the pcf locks, it is a good time to set freemem.
1582 	 *
1583 	 * If the caller does not want to wait, return now.
1584 	 * Else turn the pageout daemon loose to find something
1585 	 * and wait till it does.
1586 	 *
1587 	 */
1588 	freemem = total;
1589 
1590 	if ((flags & PG_WAIT) == 0) {
1591 		pcf_release_all();
1592 
1593 		TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1594 		"page_create_nomem:npages %ld freemem %ld", npages, freemem);
1595 		return (0);
1596 	}
1597 
1598 	ASSERT(proc_pageout != NULL);
1599 	cv_signal(&proc_pageout->p_cv);
1600 
1601 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1602 	    "page_create_sleep_start: freemem %ld needfree %ld",
1603 	    freemem, needfree);
1604 
1605 	/*
1606 	 * We are going to wait.
1607 	 * We currently hold all of the pcf_locks,
1608 	 * get the new_freemem_lock (it protects freemem_wait),
1609 	 * before dropping the pcf_locks.
1610 	 */
1611 	mutex_enter(&new_freemem_lock);
1612 
1613 	p = pcf;
1614 	for (i = 0; i < pcf_fanout; i++) {
1615 		p->pcf_wait++;
1616 		mutex_exit(&p->pcf_lock);
1617 		p++;
1618 	}
1619 
1620 	needfree += npages;
1621 	freemem_wait++;
1622 
1623 	cv_wait(&freemem_cv, &new_freemem_lock);
1624 
1625 	freemem_wait--;
1626 	needfree -= npages;
1627 
1628 	mutex_exit(&new_freemem_lock);
1629 
1630 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1631 	    "page_create_sleep_end: freemem %ld needfree %ld",
1632 	    freemem, needfree);
1633 
1634 	VM_STAT_ADD(page_create_not_enough_again);
1635 	goto checkagain;
1636 }
1637 /*
1638  * A routine to do the opposite of page_create_wait().
1639  */
1640 void
1641 page_create_putback(spgcnt_t npages)
1642 {
1643 	struct pcf	*p;
1644 	pgcnt_t		lump;
1645 	uint_t		*which;
1646 
1647 	/*
1648 	 * When a contiguous lump is broken up, we have to
1649 	 * deal with lots of pages (min 64) so lets spread
1650 	 * the wealth around.
1651 	 */
1652 	lump = roundup(npages, pcf_fanout) / pcf_fanout;
1653 	freemem += npages;
1654 
1655 	for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) {
1656 		which = &p->pcf_count;
1657 
1658 		mutex_enter(&p->pcf_lock);
1659 
1660 		if (p->pcf_block) {
1661 			which = &p->pcf_reserve;
1662 		}
1663 
1664 		if (lump < npages) {
1665 			*which += (uint_t)lump;
1666 			npages -= lump;
1667 		} else {
1668 			*which += (uint_t)npages;
1669 			npages = 0;
1670 		}
1671 
1672 		if (p->pcf_wait) {
1673 			mutex_enter(&new_freemem_lock);
1674 			/*
1675 			 * Check to see if some other thread
1676 			 * is actually waiting.  Another bucket
1677 			 * may have woken it up by now.  If there
1678 			 * are no waiters, then set our pcf_wait
1679 			 * count to zero to avoid coming in here
1680 			 * next time.
1681 			 */
1682 			if (freemem_wait) {
1683 				if (npages > 1) {
1684 					cv_broadcast(&freemem_cv);
1685 				} else {
1686 					cv_signal(&freemem_cv);
1687 				}
1688 				p->pcf_wait--;
1689 			} else {
1690 				p->pcf_wait = 0;
1691 			}
1692 			mutex_exit(&new_freemem_lock);
1693 		}
1694 		mutex_exit(&p->pcf_lock);
1695 	}
1696 	ASSERT(npages == 0);
1697 }
1698 
1699 /*
1700  * A helper routine for page_create_get_something.
1701  * The indenting got to deep down there.
1702  * Unblock the pcf counters.  Any pages freed after
1703  * pcf_block got set are moved to pcf_count and
1704  * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1705  */
1706 static void
1707 pcgs_unblock(void)
1708 {
1709 	int		i;
1710 	struct pcf	*p;
1711 
1712 	/* Update freemem while we're here. */
1713 	freemem = 0;
1714 	p = pcf;
1715 	for (i = 0; i < pcf_fanout; i++) {
1716 		mutex_enter(&p->pcf_lock);
1717 		ASSERT(p->pcf_count == 0);
1718 		p->pcf_count = p->pcf_reserve;
1719 		p->pcf_block = 0;
1720 		freemem += p->pcf_count;
1721 		if (p->pcf_wait) {
1722 			mutex_enter(&new_freemem_lock);
1723 			if (freemem_wait) {
1724 				if (p->pcf_reserve > 1) {
1725 					cv_broadcast(&freemem_cv);
1726 					p->pcf_wait = 0;
1727 				} else {
1728 					cv_signal(&freemem_cv);
1729 					p->pcf_wait--;
1730 				}
1731 			} else {
1732 				p->pcf_wait = 0;
1733 			}
1734 			mutex_exit(&new_freemem_lock);
1735 		}
1736 		p->pcf_reserve = 0;
1737 		mutex_exit(&p->pcf_lock);
1738 		p++;
1739 	}
1740 }
1741 
1742 /*
1743  * Called from page_create_va() when both the cache and free lists
1744  * have been checked once.
1745  *
1746  * Either returns a page or panics since the accounting was done
1747  * way before we got here.
1748  *
1749  * We don't come here often, so leave the accounting on permanently.
1750  */
1751 
1752 #define	MAX_PCGS	100
1753 
1754 #ifdef	DEBUG
1755 #define	PCGS_TRIES	100
1756 #else	/* DEBUG */
1757 #define	PCGS_TRIES	10
1758 #endif	/* DEBUG */
1759 
1760 #ifdef	VM_STATS
1761 uint_t	pcgs_counts[PCGS_TRIES];
1762 uint_t	pcgs_too_many;
1763 uint_t	pcgs_entered;
1764 uint_t	pcgs_entered_noreloc;
1765 uint_t	pcgs_locked;
1766 uint_t	pcgs_cagelocked;
1767 #endif	/* VM_STATS */
1768 
1769 static page_t *
1770 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1771     caddr_t vaddr, uint_t flags)
1772 {
1773 	uint_t		count;
1774 	page_t		*pp;
1775 	uint_t		locked, i;
1776 	struct	pcf	*p;
1777 	lgrp_t		*lgrp;
1778 	int		cagelocked = 0;
1779 
1780 	VM_STAT_ADD(pcgs_entered);
1781 
1782 	/*
1783 	 * Tap any reserve freelists: if we fail now, we'll die
1784 	 * since the page(s) we're looking for have already been
1785 	 * accounted for.
1786 	 */
1787 	flags |= PG_PANIC;
1788 
1789 	if ((flags & PG_NORELOC) != 0) {
1790 		VM_STAT_ADD(pcgs_entered_noreloc);
1791 		/*
1792 		 * Requests for free pages from critical threads
1793 		 * such as pageout still won't throttle here, but
1794 		 * we must try again, to give the cageout thread
1795 		 * another chance to catch up. Since we already
1796 		 * accounted for the pages, we had better get them
1797 		 * this time.
1798 		 *
1799 		 * N.B. All non-critical threads acquire the pcgs_cagelock
1800 		 * to serialize access to the freelists. This implements a
1801 		 * turnstile-type synchornization to avoid starvation of
1802 		 * critical requests for PG_NORELOC memory by non-critical
1803 		 * threads: all non-critical threads must acquire a 'ticket'
1804 		 * before passing through, which entails making sure
1805 		 * kcage_freemem won't fall below minfree prior to grabbing
1806 		 * pages from the freelists.
1807 		 */
1808 		if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1809 			mutex_enter(&pcgs_cagelock);
1810 			cagelocked = 1;
1811 			VM_STAT_ADD(pcgs_cagelocked);
1812 		}
1813 	}
1814 
1815 	/*
1816 	 * Time to get serious.
1817 	 * We failed to get a `correctly colored' page from both the
1818 	 * free and cache lists.
1819 	 * We escalate in stage.
1820 	 *
1821 	 * First try both lists without worring about color.
1822 	 *
1823 	 * Then, grab all page accounting locks (ie. pcf[]) and
1824 	 * steal any pages that they have and set the pcf_block flag to
1825 	 * stop deletions from the lists.  This will help because
1826 	 * a page can get added to the free list while we are looking
1827 	 * at the cache list, then another page could be added to the cache
1828 	 * list allowing the page on the free list to be removed as we
1829 	 * move from looking at the cache list to the free list. This
1830 	 * could happen over and over. We would never find the page
1831 	 * we have accounted for.
1832 	 *
1833 	 * Noreloc pages are a subset of the global (relocatable) page pool.
1834 	 * They are not tracked separately in the pcf bins, so it is
1835 	 * impossible to know when doing pcf accounting if the available
1836 	 * page(s) are noreloc pages or not. When looking for a noreloc page
1837 	 * it is quite easy to end up here even if the global (relocatable)
1838 	 * page pool has plenty of free pages but the noreloc pool is empty.
1839 	 *
1840 	 * When the noreloc pool is empty (or low), additional noreloc pages
1841 	 * are created by converting pages from the global page pool. This
1842 	 * process will stall during pcf accounting if the pcf bins are
1843 	 * already locked. Such is the case when a noreloc allocation is
1844 	 * looping here in page_create_get_something waiting for more noreloc
1845 	 * pages to appear.
1846 	 *
1847 	 * Short of adding a new field to the pcf bins to accurately track
1848 	 * the number of free noreloc pages, we instead do not grab the
1849 	 * pcgs_lock, do not set the pcf blocks and do not timeout when
1850 	 * allocating a noreloc page. This allows noreloc allocations to
1851 	 * loop without blocking global page pool allocations.
1852 	 *
1853 	 * NOTE: the behaviour of page_create_get_something has not changed
1854 	 * for the case of global page pool allocations.
1855 	 */
1856 
1857 	flags &= ~PG_MATCH_COLOR;
1858 	locked = 0;
1859 #if defined(__i386) || defined(__amd64)
1860 	flags = page_create_update_flags_x86(flags);
1861 #endif
1862 
1863 	lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1864 
1865 	for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1866 		pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1867 		    flags, lgrp);
1868 		if (pp == NULL) {
1869 			pp = page_get_cachelist(vp, off, seg, vaddr,
1870 			    flags, lgrp);
1871 		}
1872 		if (pp == NULL) {
1873 			/*
1874 			 * Serialize.  Don't fight with other pcgs().
1875 			 */
1876 			if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1877 				mutex_enter(&pcgs_lock);
1878 				VM_STAT_ADD(pcgs_locked);
1879 				locked = 1;
1880 				p = pcf;
1881 				for (i = 0; i < pcf_fanout; i++) {
1882 					mutex_enter(&p->pcf_lock);
1883 					ASSERT(p->pcf_block == 0);
1884 					p->pcf_block = 1;
1885 					p->pcf_reserve = p->pcf_count;
1886 					p->pcf_count = 0;
1887 					mutex_exit(&p->pcf_lock);
1888 					p++;
1889 				}
1890 				freemem = 0;
1891 			}
1892 
1893 			if (count) {
1894 				/*
1895 				 * Since page_free() puts pages on
1896 				 * a list then accounts for it, we
1897 				 * just have to wait for page_free()
1898 				 * to unlock any page it was working
1899 				 * with. The page_lock()-page_reclaim()
1900 				 * path falls in the same boat.
1901 				 *
1902 				 * We don't need to check on the
1903 				 * PG_WAIT flag, we have already
1904 				 * accounted for the page we are
1905 				 * looking for in page_create_va().
1906 				 *
1907 				 * We just wait a moment to let any
1908 				 * locked pages on the lists free up,
1909 				 * then continue around and try again.
1910 				 *
1911 				 * Will be awakened by set_freemem().
1912 				 */
1913 				mutex_enter(&pcgs_wait_lock);
1914 				cv_wait(&pcgs_cv, &pcgs_wait_lock);
1915 				mutex_exit(&pcgs_wait_lock);
1916 			}
1917 		} else {
1918 #ifdef VM_STATS
1919 			if (count >= PCGS_TRIES) {
1920 				VM_STAT_ADD(pcgs_too_many);
1921 			} else {
1922 				VM_STAT_ADD(pcgs_counts[count]);
1923 			}
1924 #endif
1925 			if (locked) {
1926 				pcgs_unblock();
1927 				mutex_exit(&pcgs_lock);
1928 			}
1929 			if (cagelocked)
1930 				mutex_exit(&pcgs_cagelock);
1931 			return (pp);
1932 		}
1933 	}
1934 	/*
1935 	 * we go down holding the pcf locks.
1936 	 */
1937 	panic("no %spage found %d",
1938 	    ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1939 	/*NOTREACHED*/
1940 }
1941 
1942 /*
1943  * Create enough pages for "bytes" worth of data starting at
1944  * "off" in "vp".
1945  *
1946  *	Where flag must be one of:
1947  *
1948  *		PG_EXCL:	Exclusive create (fail if any page already
1949  *				exists in the page cache) which does not
1950  *				wait for memory to become available.
1951  *
1952  *		PG_WAIT:	Non-exclusive create which can wait for
1953  *				memory to become available.
1954  *
1955  *		PG_PHYSCONTIG:	Allocate physically contiguous pages.
1956  *				(Not Supported)
1957  *
1958  * A doubly linked list of pages is returned to the caller.  Each page
1959  * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1960  * lock.
1961  *
1962  * Unable to change the parameters to page_create() in a minor release,
1963  * we renamed page_create() to page_create_va(), changed all known calls
1964  * from page_create() to page_create_va(), and created this wrapper.
1965  *
1966  * Upon a major release, we should break compatibility by deleting this
1967  * wrapper, and replacing all the strings "page_create_va", with "page_create".
1968  *
1969  * NOTE: There is a copy of this interface as page_create_io() in
1970  *	 i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1971  *	 there.
1972  */
1973 page_t *
1974 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1975 {
1976 	caddr_t random_vaddr;
1977 	struct seg kseg;
1978 
1979 #ifdef DEBUG
1980 	cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1981 	    (void *)caller());
1982 #endif
1983 
1984 	random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1985 	    (uintptr_t)(off >> PAGESHIFT));
1986 	kseg.s_as = &kas;
1987 
1988 	return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1989 }
1990 
1991 #ifdef DEBUG
1992 uint32_t pg_alloc_pgs_mtbf = 0;
1993 #endif
1994 
1995 /*
1996  * Used for large page support. It will attempt to allocate
1997  * a large page(s) off the freelist.
1998  *
1999  * Returns non zero on failure.
2000  */
2001 int
2002 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
2003     page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags)
2004 {
2005 	pgcnt_t		npgs, curnpgs, totpgs;
2006 	size_t		pgsz;
2007 	page_t		*pplist = NULL, *pp;
2008 	int		err = 0;
2009 	lgrp_t		*lgrp;
2010 
2011 	ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
2012 	ASSERT(pgflags == 0 || pgflags == PG_LOCAL);
2013 
2014 	/*
2015 	 * Check if system heavily prefers local large pages over remote
2016 	 * on systems with multiple lgroups.
2017 	 */
2018 	if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) {
2019 		pgflags = PG_LOCAL;
2020 	}
2021 
2022 	VM_STAT_ADD(alloc_pages[0]);
2023 
2024 #ifdef DEBUG
2025 	if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
2026 		return (ENOMEM);
2027 	}
2028 #endif
2029 
2030 	/*
2031 	 * One must be NULL but not both.
2032 	 * And one must be non NULL but not both.
2033 	 */
2034 	ASSERT(basepp != NULL || ppa != NULL);
2035 	ASSERT(basepp == NULL || ppa == NULL);
2036 
2037 #if defined(__i386) || defined(__amd64)
2038 	while (page_chk_freelist(szc) == 0) {
2039 		VM_STAT_ADD(alloc_pages[8]);
2040 		if (anypgsz == 0 || --szc == 0)
2041 			return (ENOMEM);
2042 	}
2043 #endif
2044 
2045 	pgsz = page_get_pagesize(szc);
2046 	totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
2047 
2048 	ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
2049 
2050 	(void) page_create_wait(npgs, PG_WAIT);
2051 
2052 	while (npgs && szc) {
2053 		lgrp = lgrp_mem_choose(seg, addr, pgsz);
2054 		if (pgflags == PG_LOCAL) {
2055 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2056 			    pgflags, lgrp);
2057 			if (pp == NULL) {
2058 				pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2059 				    0, lgrp);
2060 			}
2061 		} else {
2062 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2063 			    0, lgrp);
2064 		}
2065 		if (pp != NULL) {
2066 			VM_STAT_ADD(alloc_pages[1]);
2067 			page_list_concat(&pplist, &pp);
2068 			ASSERT(npgs >= curnpgs);
2069 			npgs -= curnpgs;
2070 		} else if (anypgsz) {
2071 			VM_STAT_ADD(alloc_pages[2]);
2072 			szc--;
2073 			pgsz = page_get_pagesize(szc);
2074 			curnpgs = pgsz >> PAGESHIFT;
2075 		} else {
2076 			VM_STAT_ADD(alloc_pages[3]);
2077 			ASSERT(npgs == totpgs);
2078 			page_create_putback(npgs);
2079 			return (ENOMEM);
2080 		}
2081 	}
2082 	if (szc == 0) {
2083 		VM_STAT_ADD(alloc_pages[4]);
2084 		ASSERT(npgs != 0);
2085 		page_create_putback(npgs);
2086 		err = ENOMEM;
2087 	} else if (basepp != NULL) {
2088 		ASSERT(npgs == 0);
2089 		ASSERT(ppa == NULL);
2090 		*basepp = pplist;
2091 	}
2092 
2093 	npgs = totpgs - npgs;
2094 	pp = pplist;
2095 
2096 	/*
2097 	 * Clear the free and age bits. Also if we were passed in a ppa then
2098 	 * fill it in with all the constituent pages from the large page. But
2099 	 * if we failed to allocate all the pages just free what we got.
2100 	 */
2101 	while (npgs != 0) {
2102 		ASSERT(PP_ISFREE(pp));
2103 		ASSERT(PP_ISAGED(pp));
2104 		if (ppa != NULL || err != 0) {
2105 			if (err == 0) {
2106 				VM_STAT_ADD(alloc_pages[5]);
2107 				PP_CLRFREE(pp);
2108 				PP_CLRAGED(pp);
2109 				page_sub(&pplist, pp);
2110 				*ppa++ = pp;
2111 				npgs--;
2112 			} else {
2113 				VM_STAT_ADD(alloc_pages[6]);
2114 				ASSERT(pp->p_szc != 0);
2115 				curnpgs = page_get_pagecnt(pp->p_szc);
2116 				page_list_break(&pp, &pplist, curnpgs);
2117 				page_list_add_pages(pp, 0);
2118 				page_create_putback(curnpgs);
2119 				ASSERT(npgs >= curnpgs);
2120 				npgs -= curnpgs;
2121 			}
2122 			pp = pplist;
2123 		} else {
2124 			VM_STAT_ADD(alloc_pages[7]);
2125 			PP_CLRFREE(pp);
2126 			PP_CLRAGED(pp);
2127 			pp = pp->p_next;
2128 			npgs--;
2129 		}
2130 	}
2131 	return (err);
2132 }
2133 
2134 /*
2135  * Get a single large page off of the freelists, and set it up for use.
2136  * Number of bytes requested must be a supported page size.
2137  *
2138  * Note that this call may fail even if there is sufficient
2139  * memory available or PG_WAIT is set, so the caller must
2140  * be willing to fallback on page_create_va(), block and retry,
2141  * or fail the requester.
2142  */
2143 page_t *
2144 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2145     struct seg *seg, caddr_t vaddr, void *arg)
2146 {
2147 	pgcnt_t		npages;
2148 	page_t		*pp;
2149 	page_t		*rootpp;
2150 	lgrp_t		*lgrp;
2151 	lgrp_id_t	*lgrpid = (lgrp_id_t *)arg;
2152 
2153 	ASSERT(vp != NULL);
2154 
2155 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2156 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2157 	/* but no others */
2158 
2159 	ASSERT((flags & PG_EXCL) == PG_EXCL);
2160 
2161 	npages = btop(bytes);
2162 
2163 	if (!kcage_on || panicstr) {
2164 		/*
2165 		 * Cage is OFF, or we are single threaded in
2166 		 * panic, so make everything a RELOC request.
2167 		 */
2168 		flags &= ~PG_NORELOC;
2169 	}
2170 
2171 	/*
2172 	 * Make sure there's adequate physical memory available.
2173 	 * Note: PG_WAIT is ignored here.
2174 	 */
2175 	if (freemem <= throttlefree + npages) {
2176 		VM_STAT_ADD(page_create_large_cnt[1]);
2177 		return (NULL);
2178 	}
2179 
2180 	/*
2181 	 * If cage is on, dampen draw from cage when available
2182 	 * cage space is low.
2183 	 */
2184 	if ((flags & (PG_NORELOC | PG_WAIT)) ==  (PG_NORELOC | PG_WAIT) &&
2185 	    kcage_freemem < kcage_throttlefree + npages) {
2186 
2187 		/*
2188 		 * The cage is on, the caller wants PG_NORELOC
2189 		 * pages and available cage memory is very low.
2190 		 * Call kcage_create_throttle() to attempt to
2191 		 * control demand on the cage.
2192 		 */
2193 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2194 			VM_STAT_ADD(page_create_large_cnt[2]);
2195 			return (NULL);
2196 		}
2197 	}
2198 
2199 	if (!pcf_decrement_bucket(npages) &&
2200 	    !pcf_decrement_multiple(NULL, npages, 1)) {
2201 		VM_STAT_ADD(page_create_large_cnt[4]);
2202 		return (NULL);
2203 	}
2204 
2205 	/*
2206 	 * This is where this function behaves fundamentally differently
2207 	 * than page_create_va(); since we're intending to map the page
2208 	 * with a single TTE, we have to get it as a physically contiguous
2209 	 * hardware pagesize chunk.  If we can't, we fail.
2210 	 */
2211 	if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2212 	    LGRP_EXISTS(lgrp_table[*lgrpid]))
2213 		lgrp = lgrp_table[*lgrpid];
2214 	else
2215 		lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2216 
2217 	if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2218 	    bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2219 		page_create_putback(npages);
2220 		VM_STAT_ADD(page_create_large_cnt[5]);
2221 		return (NULL);
2222 	}
2223 
2224 	/*
2225 	 * if we got the page with the wrong mtype give it back this is a
2226 	 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2227 	 * inside "if" and the workaround becomes just a nop
2228 	 */
2229 	if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2230 		page_list_add_pages(rootpp, 0);
2231 		page_create_putback(npages);
2232 		VM_STAT_ADD(page_create_large_cnt[6]);
2233 		return (NULL);
2234 	}
2235 
2236 	/*
2237 	 * If satisfying this request has left us with too little
2238 	 * memory, start the wheels turning to get some back.  The
2239 	 * first clause of the test prevents waking up the pageout
2240 	 * daemon in situations where it would decide that there's
2241 	 * nothing to do.
2242 	 */
2243 	if (nscan < desscan && freemem < minfree) {
2244 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2245 		    "pageout_cv_signal:freemem %ld", freemem);
2246 		cv_signal(&proc_pageout->p_cv);
2247 	}
2248 
2249 	pp = rootpp;
2250 	while (npages--) {
2251 		ASSERT(PAGE_EXCL(pp));
2252 		ASSERT(pp->p_vnode == NULL);
2253 		ASSERT(!hat_page_is_mapped(pp));
2254 		PP_CLRFREE(pp);
2255 		PP_CLRAGED(pp);
2256 		if (!page_hashin(pp, vp, off, NULL))
2257 			panic("page_create_large: hashin failed: page %p",
2258 			    (void *)pp);
2259 		page_io_lock(pp);
2260 		off += PAGESIZE;
2261 		pp = pp->p_next;
2262 	}
2263 
2264 	VM_STAT_ADD(page_create_large_cnt[0]);
2265 	return (rootpp);
2266 }
2267 
2268 page_t *
2269 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2270     struct seg *seg, caddr_t vaddr)
2271 {
2272 	page_t		*plist = NULL;
2273 	pgcnt_t		npages;
2274 	pgcnt_t		found_on_free = 0;
2275 	pgcnt_t		pages_req;
2276 	page_t		*npp = NULL;
2277 	struct pcf	*p;
2278 	lgrp_t		*lgrp;
2279 
2280 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2281 	    "page_create_start:vp %p off %llx bytes %lu flags %x",
2282 	    vp, off, bytes, flags);
2283 
2284 	ASSERT(bytes != 0 && vp != NULL);
2285 
2286 	if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2287 		panic("page_create: invalid flags");
2288 		/*NOTREACHED*/
2289 	}
2290 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2291 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2292 	    /* but no others */
2293 
2294 	pages_req = npages = btopr(bytes);
2295 	/*
2296 	 * Try to see whether request is too large to *ever* be
2297 	 * satisfied, in order to prevent deadlock.  We arbitrarily
2298 	 * decide to limit maximum size requests to max_page_get.
2299 	 */
2300 	if (npages >= max_page_get) {
2301 		if ((flags & PG_WAIT) == 0) {
2302 			TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2303 			    "page_create_toobig:vp %p off %llx npages "
2304 			    "%lu max_page_get %lu",
2305 			    vp, off, npages, max_page_get);
2306 			return (NULL);
2307 		} else {
2308 			cmn_err(CE_WARN,
2309 			    "Request for too much kernel memory "
2310 			    "(%lu bytes), will hang forever", bytes);
2311 			for (;;)
2312 				delay(1000000000);
2313 		}
2314 	}
2315 
2316 	if (!kcage_on || panicstr) {
2317 		/*
2318 		 * Cage is OFF, or we are single threaded in
2319 		 * panic, so make everything a RELOC request.
2320 		 */
2321 		flags &= ~PG_NORELOC;
2322 	}
2323 
2324 	if (freemem <= throttlefree + npages)
2325 		if (!page_create_throttle(npages, flags))
2326 			return (NULL);
2327 
2328 	/*
2329 	 * If cage is on, dampen draw from cage when available
2330 	 * cage space is low.
2331 	 */
2332 	if ((flags & PG_NORELOC) &&
2333 	    kcage_freemem < kcage_throttlefree + npages) {
2334 
2335 		/*
2336 		 * The cage is on, the caller wants PG_NORELOC
2337 		 * pages and available cage memory is very low.
2338 		 * Call kcage_create_throttle() to attempt to
2339 		 * control demand on the cage.
2340 		 */
2341 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2342 			return (NULL);
2343 	}
2344 
2345 	VM_STAT_ADD(page_create_cnt[0]);
2346 
2347 	if (!pcf_decrement_bucket(npages)) {
2348 		/*
2349 		 * Have to look harder.  If npages is greater than
2350 		 * one, then we might have to coalesce the counters.
2351 		 *
2352 		 * Go wait.  We come back having accounted
2353 		 * for the memory.
2354 		 */
2355 		VM_STAT_ADD(page_create_cnt[1]);
2356 		if (!page_create_wait(npages, flags)) {
2357 			VM_STAT_ADD(page_create_cnt[2]);
2358 			return (NULL);
2359 		}
2360 	}
2361 
2362 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2363 	    "page_create_success:vp %p off %llx", vp, off);
2364 
2365 	/*
2366 	 * If satisfying this request has left us with too little
2367 	 * memory, start the wheels turning to get some back.  The
2368 	 * first clause of the test prevents waking up the pageout
2369 	 * daemon in situations where it would decide that there's
2370 	 * nothing to do.
2371 	 */
2372 	if (nscan < desscan && freemem < minfree) {
2373 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2374 		    "pageout_cv_signal:freemem %ld", freemem);
2375 		cv_signal(&proc_pageout->p_cv);
2376 	}
2377 
2378 	/*
2379 	 * Loop around collecting the requested number of pages.
2380 	 * Most of the time, we have to `create' a new page. With
2381 	 * this in mind, pull the page off the free list before
2382 	 * getting the hash lock.  This will minimize the hash
2383 	 * lock hold time, nesting, and the like.  If it turns
2384 	 * out we don't need the page, we put it back at the end.
2385 	 */
2386 	while (npages--) {
2387 		page_t		*pp;
2388 		kmutex_t	*phm = NULL;
2389 		ulong_t		index;
2390 
2391 		index = PAGE_HASH_FUNC(vp, off);
2392 top:
2393 		ASSERT(phm == NULL);
2394 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
2395 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2396 
2397 		if (npp == NULL) {
2398 			/*
2399 			 * Try to get a page from the freelist (ie,
2400 			 * a page with no [vp, off] tag).  If that
2401 			 * fails, use the cachelist.
2402 			 *
2403 			 * During the first attempt at both the free
2404 			 * and cache lists we try for the correct color.
2405 			 */
2406 			/*
2407 			 * XXXX-how do we deal with virtual indexed
2408 			 * caches and and colors?
2409 			 */
2410 			VM_STAT_ADD(page_create_cnt[4]);
2411 			/*
2412 			 * Get lgroup to allocate next page of shared memory
2413 			 * from and use it to specify where to allocate
2414 			 * the physical memory
2415 			 */
2416 			lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2417 			npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2418 			    flags | PG_MATCH_COLOR, lgrp);
2419 			if (npp == NULL) {
2420 				npp = page_get_cachelist(vp, off, seg,
2421 				    vaddr, flags | PG_MATCH_COLOR, lgrp);
2422 				if (npp == NULL) {
2423 					npp = page_create_get_something(vp,
2424 					    off, seg, vaddr,
2425 					    flags & ~PG_MATCH_COLOR);
2426 				}
2427 
2428 				if (PP_ISAGED(npp) == 0) {
2429 					/*
2430 					 * Since this page came from the
2431 					 * cachelist, we must destroy the
2432 					 * old vnode association.
2433 					 */
2434 					page_hashout(npp, NULL);
2435 				}
2436 			}
2437 		}
2438 
2439 		/*
2440 		 * We own this page!
2441 		 */
2442 		ASSERT(PAGE_EXCL(npp));
2443 		ASSERT(npp->p_vnode == NULL);
2444 		ASSERT(!hat_page_is_mapped(npp));
2445 		PP_CLRFREE(npp);
2446 		PP_CLRAGED(npp);
2447 
2448 		/*
2449 		 * Here we have a page in our hot little mits and are
2450 		 * just waiting to stuff it on the appropriate lists.
2451 		 * Get the mutex and check to see if it really does
2452 		 * not exist.
2453 		 */
2454 		phm = PAGE_HASH_MUTEX(index);
2455 		mutex_enter(phm);
2456 		pp = page_hash_search(index, vp, off);
2457 		if (pp == NULL) {
2458 			VM_STAT_ADD(page_create_new);
2459 			pp = npp;
2460 			npp = NULL;
2461 			if (!page_hashin(pp, vp, off, phm)) {
2462 				/*
2463 				 * Since we hold the page hash mutex and
2464 				 * just searched for this page, page_hashin
2465 				 * had better not fail.  If it does, that
2466 				 * means somethread did not follow the
2467 				 * page hash mutex rules.  Panic now and
2468 				 * get it over with.  As usual, go down
2469 				 * holding all the locks.
2470 				 */
2471 				ASSERT(MUTEX_HELD(phm));
2472 				panic("page_create: "
2473 				    "hashin failed %p %p %llx %p",
2474 				    (void *)pp, (void *)vp, off, (void *)phm);
2475 				/*NOTREACHED*/
2476 			}
2477 			ASSERT(MUTEX_HELD(phm));
2478 			mutex_exit(phm);
2479 			phm = NULL;
2480 
2481 			/*
2482 			 * Hat layer locking need not be done to set
2483 			 * the following bits since the page is not hashed
2484 			 * and was on the free list (i.e., had no mappings).
2485 			 *
2486 			 * Set the reference bit to protect
2487 			 * against immediate pageout
2488 			 *
2489 			 * XXXmh modify freelist code to set reference
2490 			 * bit so we don't have to do it here.
2491 			 */
2492 			page_set_props(pp, P_REF);
2493 			found_on_free++;
2494 		} else {
2495 			VM_STAT_ADD(page_create_exists);
2496 			if (flags & PG_EXCL) {
2497 				/*
2498 				 * Found an existing page, and the caller
2499 				 * wanted all new pages.  Undo all of the work
2500 				 * we have done.
2501 				 */
2502 				mutex_exit(phm);
2503 				phm = NULL;
2504 				while (plist != NULL) {
2505 					pp = plist;
2506 					page_sub(&plist, pp);
2507 					page_io_unlock(pp);
2508 					/* large pages should not end up here */
2509 					ASSERT(pp->p_szc == 0);
2510 					/*LINTED: constant in conditional ctx*/
2511 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
2512 				}
2513 				VM_STAT_ADD(page_create_found_one);
2514 				goto fail;
2515 			}
2516 			ASSERT(flags & PG_WAIT);
2517 			if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2518 				/*
2519 				 * Start all over again if we blocked trying
2520 				 * to lock the page.
2521 				 */
2522 				mutex_exit(phm);
2523 				VM_STAT_ADD(page_create_page_lock_failed);
2524 				phm = NULL;
2525 				goto top;
2526 			}
2527 			mutex_exit(phm);
2528 			phm = NULL;
2529 
2530 			if (PP_ISFREE(pp)) {
2531 				ASSERT(PP_ISAGED(pp) == 0);
2532 				VM_STAT_ADD(pagecnt.pc_get_cache);
2533 				page_list_sub(pp, PG_CACHE_LIST);
2534 				PP_CLRFREE(pp);
2535 				found_on_free++;
2536 			}
2537 		}
2538 
2539 		/*
2540 		 * Got a page!  It is locked.  Acquire the i/o
2541 		 * lock since we are going to use the p_next and
2542 		 * p_prev fields to link the requested pages together.
2543 		 */
2544 		page_io_lock(pp);
2545 		page_add(&plist, pp);
2546 		plist = plist->p_next;
2547 		off += PAGESIZE;
2548 		vaddr += PAGESIZE;
2549 	}
2550 
2551 	ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2552 fail:
2553 	if (npp != NULL) {
2554 		/*
2555 		 * Did not need this page after all.
2556 		 * Put it back on the free list.
2557 		 */
2558 		VM_STAT_ADD(page_create_putbacks);
2559 		PP_SETFREE(npp);
2560 		PP_SETAGED(npp);
2561 		npp->p_offset = (u_offset_t)-1;
2562 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2563 		page_unlock(npp);
2564 
2565 	}
2566 
2567 	ASSERT(pages_req >= found_on_free);
2568 
2569 	{
2570 		uint_t overshoot = (uint_t)(pages_req - found_on_free);
2571 
2572 		if (overshoot) {
2573 			VM_STAT_ADD(page_create_overshoot);
2574 			p = &pcf[PCF_INDEX()];
2575 			mutex_enter(&p->pcf_lock);
2576 			if (p->pcf_block) {
2577 				p->pcf_reserve += overshoot;
2578 			} else {
2579 				p->pcf_count += overshoot;
2580 				if (p->pcf_wait) {
2581 					mutex_enter(&new_freemem_lock);
2582 					if (freemem_wait) {
2583 						cv_signal(&freemem_cv);
2584 						p->pcf_wait--;
2585 					} else {
2586 						p->pcf_wait = 0;
2587 					}
2588 					mutex_exit(&new_freemem_lock);
2589 				}
2590 			}
2591 			mutex_exit(&p->pcf_lock);
2592 			/* freemem is approximate, so this test OK */
2593 			if (!p->pcf_block)
2594 				freemem += overshoot;
2595 		}
2596 	}
2597 
2598 	return (plist);
2599 }
2600 
2601 /*
2602  * One or more constituent pages of this large page has been marked
2603  * toxic. Simply demote the large page to PAGESIZE pages and let
2604  * page_free() handle it. This routine should only be called by
2605  * large page free routines (page_free_pages() and page_destroy_pages().
2606  * All pages are locked SE_EXCL and have already been marked free.
2607  */
2608 static void
2609 page_free_toxic_pages(page_t *rootpp)
2610 {
2611 	page_t	*tpp;
2612 	pgcnt_t	i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2613 	uint_t	szc = rootpp->p_szc;
2614 
2615 	for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2616 		ASSERT(tpp->p_szc == szc);
2617 		ASSERT((PAGE_EXCL(tpp) &&
2618 		    !page_iolock_assert(tpp)) || panicstr);
2619 		tpp->p_szc = 0;
2620 	}
2621 
2622 	while (rootpp != NULL) {
2623 		tpp = rootpp;
2624 		page_sub(&rootpp, tpp);
2625 		ASSERT(PP_ISFREE(tpp));
2626 		PP_CLRFREE(tpp);
2627 		page_free(tpp, 1);
2628 	}
2629 }
2630 
2631 /*
2632  * Put page on the "free" list.
2633  * The free list is really two lists maintained by
2634  * the PSM of whatever machine we happen to be on.
2635  */
2636 void
2637 page_free(page_t *pp, int dontneed)
2638 {
2639 	struct pcf	*p;
2640 	uint_t		pcf_index;
2641 
2642 	ASSERT((PAGE_EXCL(pp) &&
2643 	    !page_iolock_assert(pp)) || panicstr);
2644 
2645 	if (PP_ISFREE(pp)) {
2646 		panic("page_free: page %p is free", (void *)pp);
2647 	}
2648 
2649 	if (pp->p_szc != 0) {
2650 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2651 		    PP_ISKAS(pp)) {
2652 			panic("page_free: anon or kernel "
2653 			    "or no vnode large page %p", (void *)pp);
2654 		}
2655 		page_demote_vp_pages(pp);
2656 		ASSERT(pp->p_szc == 0);
2657 	}
2658 
2659 	/*
2660 	 * The page_struct_lock need not be acquired to examine these
2661 	 * fields since the page has an "exclusive" lock.
2662 	 */
2663 	if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
2664 	    pp->p_slckcnt != 0) {
2665 		panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2666 		    "slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt,
2667 		    pp->p_cowcnt, pp->p_slckcnt);
2668 		/*NOTREACHED*/
2669 	}
2670 
2671 	ASSERT(!hat_page_getshare(pp));
2672 
2673 	PP_SETFREE(pp);
2674 	ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2675 	    !hat_ismod(pp));
2676 	page_clr_all_props(pp);
2677 	ASSERT(!hat_page_getshare(pp));
2678 
2679 	/*
2680 	 * Now we add the page to the head of the free list.
2681 	 * But if this page is associated with a paged vnode
2682 	 * then we adjust the head forward so that the page is
2683 	 * effectively at the end of the list.
2684 	 */
2685 	if (pp->p_vnode == NULL) {
2686 		/*
2687 		 * Page has no identity, put it on the free list.
2688 		 */
2689 		PP_SETAGED(pp);
2690 		pp->p_offset = (u_offset_t)-1;
2691 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2692 		VM_STAT_ADD(pagecnt.pc_free_free);
2693 		TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2694 		    "page_free_free:pp %p", pp);
2695 	} else {
2696 		PP_CLRAGED(pp);
2697 
2698 		if (!dontneed) {
2699 			/* move it to the tail of the list */
2700 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2701 
2702 			VM_STAT_ADD(pagecnt.pc_free_cache);
2703 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2704 			    "page_free_cache_tail:pp %p", pp);
2705 		} else {
2706 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2707 
2708 			VM_STAT_ADD(pagecnt.pc_free_dontneed);
2709 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2710 			    "page_free_cache_head:pp %p", pp);
2711 		}
2712 	}
2713 	page_unlock(pp);
2714 
2715 	/*
2716 	 * Now do the `freemem' accounting.
2717 	 */
2718 	pcf_index = PCF_INDEX();
2719 	p = &pcf[pcf_index];
2720 
2721 	mutex_enter(&p->pcf_lock);
2722 	if (p->pcf_block) {
2723 		p->pcf_reserve += 1;
2724 	} else {
2725 		p->pcf_count += 1;
2726 		if (p->pcf_wait) {
2727 			mutex_enter(&new_freemem_lock);
2728 			/*
2729 			 * Check to see if some other thread
2730 			 * is actually waiting.  Another bucket
2731 			 * may have woken it up by now.  If there
2732 			 * are no waiters, then set our pcf_wait
2733 			 * count to zero to avoid coming in here
2734 			 * next time.  Also, since only one page
2735 			 * was put on the free list, just wake
2736 			 * up one waiter.
2737 			 */
2738 			if (freemem_wait) {
2739 				cv_signal(&freemem_cv);
2740 				p->pcf_wait--;
2741 			} else {
2742 				p->pcf_wait = 0;
2743 			}
2744 			mutex_exit(&new_freemem_lock);
2745 		}
2746 	}
2747 	mutex_exit(&p->pcf_lock);
2748 
2749 	/* freemem is approximate, so this test OK */
2750 	if (!p->pcf_block)
2751 		freemem += 1;
2752 }
2753 
2754 /*
2755  * Put page on the "free" list during intial startup.
2756  * This happens during initial single threaded execution.
2757  */
2758 void
2759 page_free_at_startup(page_t *pp)
2760 {
2761 	struct pcf	*p;
2762 	uint_t		pcf_index;
2763 
2764 	page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2765 	VM_STAT_ADD(pagecnt.pc_free_free);
2766 
2767 	/*
2768 	 * Now do the `freemem' accounting.
2769 	 */
2770 	pcf_index = PCF_INDEX();
2771 	p = &pcf[pcf_index];
2772 
2773 	ASSERT(p->pcf_block == 0);
2774 	ASSERT(p->pcf_wait == 0);
2775 	p->pcf_count += 1;
2776 
2777 	/* freemem is approximate, so this is OK */
2778 	freemem += 1;
2779 }
2780 
2781 void
2782 page_free_pages(page_t *pp)
2783 {
2784 	page_t	*tpp, *rootpp = NULL;
2785 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
2786 	pgcnt_t	i;
2787 	uint_t	szc = pp->p_szc;
2788 
2789 	VM_STAT_ADD(pagecnt.pc_free_pages);
2790 	TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2791 	    "page_free_free:pp %p", pp);
2792 
2793 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2794 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2795 		panic("page_free_pages: not root page %p", (void *)pp);
2796 		/*NOTREACHED*/
2797 	}
2798 
2799 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2800 		ASSERT((PAGE_EXCL(tpp) &&
2801 		    !page_iolock_assert(tpp)) || panicstr);
2802 		if (PP_ISFREE(tpp)) {
2803 			panic("page_free_pages: page %p is free", (void *)tpp);
2804 			/*NOTREACHED*/
2805 		}
2806 		if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2807 		    tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
2808 			panic("page_free_pages %p", (void *)tpp);
2809 			/*NOTREACHED*/
2810 		}
2811 
2812 		ASSERT(!hat_page_getshare(tpp));
2813 		ASSERT(tpp->p_vnode == NULL);
2814 		ASSERT(tpp->p_szc == szc);
2815 
2816 		PP_SETFREE(tpp);
2817 		page_clr_all_props(tpp);
2818 		PP_SETAGED(tpp);
2819 		tpp->p_offset = (u_offset_t)-1;
2820 		ASSERT(tpp->p_next == tpp);
2821 		ASSERT(tpp->p_prev == tpp);
2822 		page_list_concat(&rootpp, &tpp);
2823 	}
2824 	ASSERT(rootpp == pp);
2825 
2826 	page_list_add_pages(rootpp, 0);
2827 	page_create_putback(pgcnt);
2828 }
2829 
2830 int free_pages = 1;
2831 
2832 /*
2833  * This routine attempts to return pages to the cachelist via page_release().
2834  * It does not *have* to be successful in all cases, since the pageout scanner
2835  * will catch any pages it misses.  It does need to be fast and not introduce
2836  * too much overhead.
2837  *
2838  * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2839  * don't lock and retry.  This is ok, since the page scanner will eventually
2840  * find any page we miss in free_vp_pages().
2841  */
2842 void
2843 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2844 {
2845 	page_t *pp;
2846 	u_offset_t eoff;
2847 	extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2848 
2849 	eoff = off + len;
2850 
2851 	if (free_pages == 0)
2852 		return;
2853 	if (swap_in_range(vp, off, len))
2854 		return;
2855 
2856 	for (; off < eoff; off += PAGESIZE) {
2857 
2858 		/*
2859 		 * find the page using a fast, but inexact search. It'll be OK
2860 		 * if a few pages slip through the cracks here.
2861 		 */
2862 		pp = page_exists(vp, off);
2863 
2864 		/*
2865 		 * If we didn't find the page (it may not exist), the page
2866 		 * is free, looks still in use (shared), or we can't lock it,
2867 		 * just give up.
2868 		 */
2869 		if (pp == NULL ||
2870 		    PP_ISFREE(pp) ||
2871 		    page_share_cnt(pp) > 0 ||
2872 		    !page_trylock(pp, SE_EXCL))
2873 			continue;
2874 
2875 		/*
2876 		 * Once we have locked pp, verify that it's still the
2877 		 * correct page and not already free
2878 		 */
2879 		ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2880 		if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2881 			page_unlock(pp);
2882 			continue;
2883 		}
2884 
2885 		/*
2886 		 * try to release the page...
2887 		 */
2888 		(void) page_release(pp, 1);
2889 	}
2890 }
2891 
2892 /*
2893  * Reclaim the given page from the free list.
2894  * If pp is part of a large pages, only the given constituent page is reclaimed
2895  * and the large page it belonged to will be demoted.  This can only happen
2896  * if the page is not on the cachelist.
2897  *
2898  * Returns 1 on success or 0 on failure.
2899  *
2900  * The page is unlocked if it can't be reclaimed (when freemem == 0).
2901  * If `lock' is non-null, it will be dropped and re-acquired if
2902  * the routine must wait while freemem is 0.
2903  *
2904  * As it turns out, boot_getpages() does this.  It picks a page,
2905  * based on where OBP mapped in some address, gets its pfn, searches
2906  * the memsegs, locks the page, then pulls it off the free list!
2907  */
2908 int
2909 page_reclaim(page_t *pp, kmutex_t *lock)
2910 {
2911 	struct pcf	*p;
2912 	struct cpu	*cpup;
2913 	int		enough;
2914 	uint_t		i;
2915 
2916 	ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
2917 	ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
2918 
2919 	/*
2920 	 * If `freemem' is 0, we cannot reclaim this page from the
2921 	 * freelist, so release every lock we might hold: the page,
2922 	 * and the `lock' before blocking.
2923 	 *
2924 	 * The only way `freemem' can become 0 while there are pages
2925 	 * marked free (have their p->p_free bit set) is when the
2926 	 * system is low on memory and doing a page_create().  In
2927 	 * order to guarantee that once page_create() starts acquiring
2928 	 * pages it will be able to get all that it needs since `freemem'
2929 	 * was decreased by the requested amount.  So, we need to release
2930 	 * this page, and let page_create() have it.
2931 	 *
2932 	 * Since `freemem' being zero is not supposed to happen, just
2933 	 * use the usual hash stuff as a starting point.  If that bucket
2934 	 * is empty, then assume the worst, and start at the beginning
2935 	 * of the pcf array.  If we always start at the beginning
2936 	 * when acquiring more than one pcf lock, there won't be any
2937 	 * deadlock problems.
2938 	 */
2939 
2940 	/* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
2941 
2942 	if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
2943 		pcf_acquire_all();
2944 		goto page_reclaim_nomem;
2945 	}
2946 
2947 	enough = pcf_decrement_bucket(1);
2948 
2949 	if (!enough) {
2950 		VM_STAT_ADD(page_reclaim_zero);
2951 		/*
2952 		 * Check again. Its possible that some other thread
2953 		 * could have been right behind us, and added one
2954 		 * to a list somewhere.  Acquire each of the pcf locks
2955 		 * until we find a page.
2956 		 */
2957 		p = pcf;
2958 		for (i = 0; i < pcf_fanout; i++) {
2959 			mutex_enter(&p->pcf_lock);
2960 			if (p->pcf_count >= 1) {
2961 				p->pcf_count -= 1;
2962 				/*
2963 				 * freemem is not protected by any lock. Thus,
2964 				 * we cannot have any assertion containing
2965 				 * freemem here.
2966 				 */
2967 				freemem -= 1;
2968 				enough = 1;
2969 				break;
2970 			}
2971 			p++;
2972 		}
2973 
2974 		if (!enough) {
2975 page_reclaim_nomem:
2976 			/*
2977 			 * We really can't have page `pp'.
2978 			 * Time for the no-memory dance with
2979 			 * page_free().  This is just like
2980 			 * page_create_wait().  Plus the added
2981 			 * attraction of releasing whatever mutex
2982 			 * we held when we were called with in `lock'.
2983 			 * Page_unlock() will wakeup any thread
2984 			 * waiting around for this page.
2985 			 */
2986 			if (lock) {
2987 				VM_STAT_ADD(page_reclaim_zero_locked);
2988 				mutex_exit(lock);
2989 			}
2990 			page_unlock(pp);
2991 
2992 			/*
2993 			 * get this before we drop all the pcf locks.
2994 			 */
2995 			mutex_enter(&new_freemem_lock);
2996 
2997 			p = pcf;
2998 			for (i = 0; i < pcf_fanout; i++) {
2999 				p->pcf_wait++;
3000 				mutex_exit(&p->pcf_lock);
3001 				p++;
3002 			}
3003 
3004 			freemem_wait++;
3005 			cv_wait(&freemem_cv, &new_freemem_lock);
3006 			freemem_wait--;
3007 
3008 			mutex_exit(&new_freemem_lock);
3009 
3010 			if (lock) {
3011 				mutex_enter(lock);
3012 			}
3013 			return (0);
3014 		}
3015 
3016 		/*
3017 		 * The pcf accounting has been done,
3018 		 * though none of the pcf_wait flags have been set,
3019 		 * drop the locks and continue on.
3020 		 */
3021 		while (p >= pcf) {
3022 			mutex_exit(&p->pcf_lock);
3023 			p--;
3024 		}
3025 	}
3026 
3027 
3028 	VM_STAT_ADD(pagecnt.pc_reclaim);
3029 
3030 	/*
3031 	 * page_list_sub will handle the case where pp is a large page.
3032 	 * It's possible that the page was promoted while on the freelist
3033 	 */
3034 	if (PP_ISAGED(pp)) {
3035 		page_list_sub(pp, PG_FREE_LIST);
3036 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3037 		    "page_reclaim_free:pp %p", pp);
3038 	} else {
3039 		page_list_sub(pp, PG_CACHE_LIST);
3040 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3041 		    "page_reclaim_cache:pp %p", pp);
3042 	}
3043 
3044 	/*
3045 	 * clear the p_free & p_age bits since this page is no longer
3046 	 * on the free list.  Notice that there was a brief time where
3047 	 * a page is marked as free, but is not on the list.
3048 	 *
3049 	 * Set the reference bit to protect against immediate pageout.
3050 	 */
3051 	PP_CLRFREE(pp);
3052 	PP_CLRAGED(pp);
3053 	page_set_props(pp, P_REF);
3054 
3055 	CPU_STATS_ENTER_K();
3056 	cpup = CPU;	/* get cpup now that CPU cannot change */
3057 	CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3058 	CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3059 	CPU_STATS_EXIT_K();
3060 	ASSERT(pp->p_szc == 0);
3061 
3062 	return (1);
3063 }
3064 
3065 /*
3066  * Destroy identity of the page and put it back on
3067  * the page free list.  Assumes that the caller has
3068  * acquired the "exclusive" lock on the page.
3069  */
3070 void
3071 page_destroy(page_t *pp, int dontfree)
3072 {
3073 	ASSERT((PAGE_EXCL(pp) &&
3074 	    !page_iolock_assert(pp)) || panicstr);
3075 	ASSERT(pp->p_slckcnt == 0 || panicstr);
3076 
3077 	if (pp->p_szc != 0) {
3078 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3079 		    PP_ISKAS(pp)) {
3080 			panic("page_destroy: anon or kernel or no vnode "
3081 			    "large page %p", (void *)pp);
3082 		}
3083 		page_demote_vp_pages(pp);
3084 		ASSERT(pp->p_szc == 0);
3085 	}
3086 
3087 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3088 
3089 	/*
3090 	 * Unload translations, if any, then hash out the
3091 	 * page to erase its identity.
3092 	 */
3093 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3094 	page_hashout(pp, NULL);
3095 
3096 	if (!dontfree) {
3097 		/*
3098 		 * Acquire the "freemem_lock" for availrmem.
3099 		 * The page_struct_lock need not be acquired for lckcnt
3100 		 * and cowcnt since the page has an "exclusive" lock.
3101 		 * We are doing a modified version of page_pp_unlock here.
3102 		 */
3103 		if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3104 			mutex_enter(&freemem_lock);
3105 			if (pp->p_lckcnt != 0) {
3106 				availrmem++;
3107 				pages_locked--;
3108 				pp->p_lckcnt = 0;
3109 			}
3110 			if (pp->p_cowcnt != 0) {
3111 				availrmem += pp->p_cowcnt;
3112 				pages_locked -= pp->p_cowcnt;
3113 				pp->p_cowcnt = 0;
3114 			}
3115 			mutex_exit(&freemem_lock);
3116 		}
3117 		/*
3118 		 * Put the page on the "free" list.
3119 		 */
3120 		page_free(pp, 0);
3121 	}
3122 }
3123 
3124 void
3125 page_destroy_pages(page_t *pp)
3126 {
3127 
3128 	page_t	*tpp, *rootpp = NULL;
3129 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
3130 	pgcnt_t	i, pglcks = 0;
3131 	uint_t	szc = pp->p_szc;
3132 
3133 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3134 
3135 	VM_STAT_ADD(pagecnt.pc_destroy_pages);
3136 
3137 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3138 
3139 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3140 		panic("page_destroy_pages: not root page %p", (void *)pp);
3141 		/*NOTREACHED*/
3142 	}
3143 
3144 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3145 		ASSERT((PAGE_EXCL(tpp) &&
3146 		    !page_iolock_assert(tpp)) || panicstr);
3147 		ASSERT(tpp->p_slckcnt == 0 || panicstr);
3148 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3149 		page_hashout(tpp, NULL);
3150 		ASSERT(tpp->p_offset == (u_offset_t)-1);
3151 		if (tpp->p_lckcnt != 0) {
3152 			pglcks++;
3153 			tpp->p_lckcnt = 0;
3154 		} else if (tpp->p_cowcnt != 0) {
3155 			pglcks += tpp->p_cowcnt;
3156 			tpp->p_cowcnt = 0;
3157 		}
3158 		ASSERT(!hat_page_getshare(tpp));
3159 		ASSERT(tpp->p_vnode == NULL);
3160 		ASSERT(tpp->p_szc == szc);
3161 
3162 		PP_SETFREE(tpp);
3163 		page_clr_all_props(tpp);
3164 		PP_SETAGED(tpp);
3165 		ASSERT(tpp->p_next == tpp);
3166 		ASSERT(tpp->p_prev == tpp);
3167 		page_list_concat(&rootpp, &tpp);
3168 	}
3169 
3170 	ASSERT(rootpp == pp);
3171 	if (pglcks != 0) {
3172 		mutex_enter(&freemem_lock);
3173 		availrmem += pglcks;
3174 		mutex_exit(&freemem_lock);
3175 	}
3176 
3177 	page_list_add_pages(rootpp, 0);
3178 	page_create_putback(pgcnt);
3179 }
3180 
3181 /*
3182  * Similar to page_destroy(), but destroys pages which are
3183  * locked and known to be on the page free list.  Since
3184  * the page is known to be free and locked, no one can access
3185  * it.
3186  *
3187  * Also, the number of free pages does not change.
3188  */
3189 void
3190 page_destroy_free(page_t *pp)
3191 {
3192 	ASSERT(PAGE_EXCL(pp));
3193 	ASSERT(PP_ISFREE(pp));
3194 	ASSERT(pp->p_vnode);
3195 	ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3196 	ASSERT(!hat_page_is_mapped(pp));
3197 	ASSERT(PP_ISAGED(pp) == 0);
3198 	ASSERT(pp->p_szc == 0);
3199 
3200 	VM_STAT_ADD(pagecnt.pc_destroy_free);
3201 	page_list_sub(pp, PG_CACHE_LIST);
3202 
3203 	page_hashout(pp, NULL);
3204 	ASSERT(pp->p_vnode == NULL);
3205 	ASSERT(pp->p_offset == (u_offset_t)-1);
3206 	ASSERT(pp->p_hash == NULL);
3207 
3208 	PP_SETAGED(pp);
3209 	page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3210 	page_unlock(pp);
3211 
3212 	mutex_enter(&new_freemem_lock);
3213 	if (freemem_wait) {
3214 		cv_signal(&freemem_cv);
3215 	}
3216 	mutex_exit(&new_freemem_lock);
3217 }
3218 
3219 /*
3220  * Rename the page "opp" to have an identity specified
3221  * by [vp, off].  If a page already exists with this name
3222  * it is locked and destroyed.  Note that the page's
3223  * translations are not unloaded during the rename.
3224  *
3225  * This routine is used by the anon layer to "steal" the
3226  * original page and is not unlike destroying a page and
3227  * creating a new page using the same page frame.
3228  *
3229  * XXX -- Could deadlock if caller 1 tries to rename A to B while
3230  * caller 2 tries to rename B to A.
3231  */
3232 void
3233 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3234 {
3235 	page_t		*pp;
3236 	int		olckcnt = 0;
3237 	int		ocowcnt = 0;
3238 	kmutex_t	*phm;
3239 	ulong_t		index;
3240 
3241 	ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3242 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3243 	ASSERT(PP_ISFREE(opp) == 0);
3244 
3245 	VM_STAT_ADD(page_rename_count);
3246 
3247 	TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3248 	    "page rename:pp %p vp %p off %llx", opp, vp, off);
3249 
3250 	/*
3251 	 * CacheFS may call page_rename for a large NFS page
3252 	 * when both CacheFS and NFS mount points are used
3253 	 * by applications. Demote this large page before
3254 	 * renaming it, to ensure that there are no "partial"
3255 	 * large pages left lying around.
3256 	 */
3257 	if (opp->p_szc != 0) {
3258 		vnode_t *ovp = opp->p_vnode;
3259 		ASSERT(ovp != NULL);
3260 		ASSERT(!IS_SWAPFSVP(ovp));
3261 		ASSERT(!VN_ISKAS(ovp));
3262 		page_demote_vp_pages(opp);
3263 		ASSERT(opp->p_szc == 0);
3264 	}
3265 
3266 	page_hashout(opp, NULL);
3267 	PP_CLRAGED(opp);
3268 
3269 	/*
3270 	 * Acquire the appropriate page hash lock, since
3271 	 * we're going to rename the page.
3272 	 */
3273 	index = PAGE_HASH_FUNC(vp, off);
3274 	phm = PAGE_HASH_MUTEX(index);
3275 	mutex_enter(phm);
3276 top:
3277 	/*
3278 	 * Look for an existing page with this name and destroy it if found.
3279 	 * By holding the page hash lock all the way to the page_hashin()
3280 	 * call, we are assured that no page can be created with this
3281 	 * identity.  In the case when the phm lock is dropped to undo any
3282 	 * hat layer mappings, the existing page is held with an "exclusive"
3283 	 * lock, again preventing another page from being created with
3284 	 * this identity.
3285 	 */
3286 	pp = page_hash_search(index, vp, off);
3287 	if (pp != NULL) {
3288 		VM_STAT_ADD(page_rename_exists);
3289 
3290 		/*
3291 		 * As it turns out, this is one of only two places where
3292 		 * page_lock() needs to hold the passed in lock in the
3293 		 * successful case.  In all of the others, the lock could
3294 		 * be dropped as soon as the attempt is made to lock
3295 		 * the page.  It is tempting to add yet another arguement,
3296 		 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3297 		 */
3298 		if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3299 			/*
3300 			 * Went to sleep because the page could not
3301 			 * be locked.  We were woken up when the page
3302 			 * was unlocked, or when the page was destroyed.
3303 			 * In either case, `phm' was dropped while we
3304 			 * slept.  Hence we should not just roar through
3305 			 * this loop.
3306 			 */
3307 			goto top;
3308 		}
3309 
3310 		/*
3311 		 * If an existing page is a large page, then demote
3312 		 * it to ensure that no "partial" large pages are
3313 		 * "created" after page_rename. An existing page
3314 		 * can be a CacheFS page, and can't belong to swapfs.
3315 		 */
3316 		if (hat_page_is_mapped(pp)) {
3317 			/*
3318 			 * Unload translations.  Since we hold the
3319 			 * exclusive lock on this page, the page
3320 			 * can not be changed while we drop phm.
3321 			 * This is also not a lock protocol violation,
3322 			 * but rather the proper way to do things.
3323 			 */
3324 			mutex_exit(phm);
3325 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3326 			if (pp->p_szc != 0) {
3327 				ASSERT(!IS_SWAPFSVP(vp));
3328 				ASSERT(!VN_ISKAS(vp));
3329 				page_demote_vp_pages(pp);
3330 				ASSERT(pp->p_szc == 0);
3331 			}
3332 			mutex_enter(phm);
3333 		} else if (pp->p_szc != 0) {
3334 			ASSERT(!IS_SWAPFSVP(vp));
3335 			ASSERT(!VN_ISKAS(vp));
3336 			mutex_exit(phm);
3337 			page_demote_vp_pages(pp);
3338 			ASSERT(pp->p_szc == 0);
3339 			mutex_enter(phm);
3340 		}
3341 		page_hashout(pp, phm);
3342 	}
3343 	/*
3344 	 * Hash in the page with the new identity.
3345 	 */
3346 	if (!page_hashin(opp, vp, off, phm)) {
3347 		/*
3348 		 * We were holding phm while we searched for [vp, off]
3349 		 * and only dropped phm if we found and locked a page.
3350 		 * If we can't create this page now, then some thing
3351 		 * is really broken.
3352 		 */
3353 		panic("page_rename: Can't hash in page: %p", (void *)pp);
3354 		/*NOTREACHED*/
3355 	}
3356 
3357 	ASSERT(MUTEX_HELD(phm));
3358 	mutex_exit(phm);
3359 
3360 	/*
3361 	 * Now that we have dropped phm, lets get around to finishing up
3362 	 * with pp.
3363 	 */
3364 	if (pp != NULL) {
3365 		ASSERT(!hat_page_is_mapped(pp));
3366 		/* for now large pages should not end up here */
3367 		ASSERT(pp->p_szc == 0);
3368 		/*
3369 		 * Save the locks for transfer to the new page and then
3370 		 * clear them so page_free doesn't think they're important.
3371 		 * The page_struct_lock need not be acquired for lckcnt and
3372 		 * cowcnt since the page has an "exclusive" lock.
3373 		 */
3374 		olckcnt = pp->p_lckcnt;
3375 		ocowcnt = pp->p_cowcnt;
3376 		pp->p_lckcnt = pp->p_cowcnt = 0;
3377 
3378 		/*
3379 		 * Put the page on the "free" list after we drop
3380 		 * the lock.  The less work under the lock the better.
3381 		 */
3382 		/*LINTED: constant in conditional context*/
3383 		VN_DISPOSE(pp, B_FREE, 0, kcred);
3384 	}
3385 
3386 	/*
3387 	 * Transfer the lock count from the old page (if any).
3388 	 * The page_struct_lock need not be acquired for lckcnt and
3389 	 * cowcnt since the page has an "exclusive" lock.
3390 	 */
3391 	opp->p_lckcnt += olckcnt;
3392 	opp->p_cowcnt += ocowcnt;
3393 }
3394 
3395 /*
3396  * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3397  *
3398  * Pages are normally inserted at the start of a vnode's v_pages list.
3399  * If the vnode is VMODSORT and the page is modified, it goes at the end.
3400  * This can happen when a modified page is relocated for DR.
3401  *
3402  * Returns 1 on success and 0 on failure.
3403  */
3404 static int
3405 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3406 {
3407 	page_t		**listp;
3408 	page_t		*tp;
3409 	ulong_t		index;
3410 
3411 	ASSERT(PAGE_EXCL(pp));
3412 	ASSERT(vp != NULL);
3413 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3414 
3415 	/*
3416 	 * Be sure to set these up before the page is inserted on the hash
3417 	 * list.  As soon as the page is placed on the list some other
3418 	 * thread might get confused and wonder how this page could
3419 	 * possibly hash to this list.
3420 	 */
3421 	pp->p_vnode = vp;
3422 	pp->p_offset = offset;
3423 
3424 	/*
3425 	 * record if this page is on a swap vnode
3426 	 */
3427 	if ((vp->v_flag & VISSWAP) != 0)
3428 		PP_SETSWAP(pp);
3429 
3430 	index = PAGE_HASH_FUNC(vp, offset);
3431 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3432 	listp = &page_hash[index];
3433 
3434 	/*
3435 	 * If this page is already hashed in, fail this attempt to add it.
3436 	 */
3437 	for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3438 		if (tp->p_vnode == vp && tp->p_offset == offset) {
3439 			pp->p_vnode = NULL;
3440 			pp->p_offset = (u_offset_t)(-1);
3441 			return (0);
3442 		}
3443 	}
3444 	pp->p_hash = *listp;
3445 	*listp = pp;
3446 
3447 	/*
3448 	 * Add the page to the vnode's list of pages
3449 	 */
3450 	if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3451 		listp = &vp->v_pages->p_vpprev->p_vpnext;
3452 	else
3453 		listp = &vp->v_pages;
3454 
3455 	page_vpadd(listp, pp);
3456 
3457 	return (1);
3458 }
3459 
3460 /*
3461  * Add page `pp' to both the hash and vp chains for [vp, offset].
3462  *
3463  * Returns 1 on success and 0 on failure.
3464  * If hold is passed in, it is not dropped.
3465  */
3466 int
3467 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3468 {
3469 	kmutex_t	*phm = NULL;
3470 	kmutex_t	*vphm;
3471 	int		rc;
3472 
3473 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3474 	ASSERT(pp->p_fsdata == 0 || panicstr);
3475 
3476 	TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3477 	    "page_hashin:pp %p vp %p offset %llx",
3478 	    pp, vp, offset);
3479 
3480 	VM_STAT_ADD(hashin_count);
3481 
3482 	if (hold != NULL)
3483 		phm = hold;
3484 	else {
3485 		VM_STAT_ADD(hashin_not_held);
3486 		phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3487 		mutex_enter(phm);
3488 	}
3489 
3490 	vphm = page_vnode_mutex(vp);
3491 	mutex_enter(vphm);
3492 	rc = page_do_hashin(pp, vp, offset);
3493 	mutex_exit(vphm);
3494 	if (hold == NULL)
3495 		mutex_exit(phm);
3496 	if (rc == 0)
3497 		VM_STAT_ADD(hashin_already);
3498 	return (rc);
3499 }
3500 
3501 /*
3502  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3503  * All mutexes must be held
3504  */
3505 static void
3506 page_do_hashout(page_t *pp)
3507 {
3508 	page_t	**hpp;
3509 	page_t	*hp;
3510 	vnode_t	*vp = pp->p_vnode;
3511 
3512 	ASSERT(vp != NULL);
3513 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3514 
3515 	/*
3516 	 * First, take pp off of its hash chain.
3517 	 */
3518 	hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3519 
3520 	for (;;) {
3521 		hp = *hpp;
3522 		if (hp == pp)
3523 			break;
3524 		if (hp == NULL) {
3525 			panic("page_do_hashout");
3526 			/*NOTREACHED*/
3527 		}
3528 		hpp = &hp->p_hash;
3529 	}
3530 	*hpp = pp->p_hash;
3531 
3532 	/*
3533 	 * Now remove it from its associated vnode.
3534 	 */
3535 	if (vp->v_pages)
3536 		page_vpsub(&vp->v_pages, pp);
3537 
3538 	pp->p_hash = NULL;
3539 	page_clr_all_props(pp);
3540 	PP_CLRSWAP(pp);
3541 	pp->p_vnode = NULL;
3542 	pp->p_offset = (u_offset_t)-1;
3543 	pp->p_fsdata = 0;
3544 }
3545 
3546 /*
3547  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3548  *
3549  * When `phm' is non-NULL it contains the address of the mutex protecting the
3550  * hash list pp is on.  It is not dropped.
3551  */
3552 void
3553 page_hashout(page_t *pp, kmutex_t *phm)
3554 {
3555 	vnode_t		*vp;
3556 	ulong_t		index;
3557 	kmutex_t	*nphm;
3558 	kmutex_t	*vphm;
3559 	kmutex_t	*sep;
3560 
3561 	ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3562 	ASSERT(pp->p_vnode != NULL);
3563 	ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3564 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3565 
3566 	vp = pp->p_vnode;
3567 
3568 	TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3569 	    "page_hashout:pp %p vp %p", pp, vp);
3570 
3571 	/* Kernel probe */
3572 	TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */,
3573 	    tnf_opaque, vnode, vp,
3574 	    tnf_offset, offset, pp->p_offset);
3575 
3576 	/*
3577 	 *
3578 	 */
3579 	VM_STAT_ADD(hashout_count);
3580 	index = PAGE_HASH_FUNC(vp, pp->p_offset);
3581 	if (phm == NULL) {
3582 		VM_STAT_ADD(hashout_not_held);
3583 		nphm = PAGE_HASH_MUTEX(index);
3584 		mutex_enter(nphm);
3585 	}
3586 	ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3587 
3588 
3589 	/*
3590 	 * grab page vnode mutex and remove it...
3591 	 */
3592 	vphm = page_vnode_mutex(vp);
3593 	mutex_enter(vphm);
3594 
3595 	page_do_hashout(pp);
3596 
3597 	mutex_exit(vphm);
3598 	if (phm == NULL)
3599 		mutex_exit(nphm);
3600 
3601 	/*
3602 	 * Wake up processes waiting for this page.  The page's
3603 	 * identity has been changed, and is probably not the
3604 	 * desired page any longer.
3605 	 */
3606 	sep = page_se_mutex(pp);
3607 	mutex_enter(sep);
3608 	pp->p_selock &= ~SE_EWANTED;
3609 	if (CV_HAS_WAITERS(&pp->p_cv))
3610 		cv_broadcast(&pp->p_cv);
3611 	mutex_exit(sep);
3612 }
3613 
3614 /*
3615  * Add the page to the front of a linked list of pages
3616  * using the p_next & p_prev pointers for the list.
3617  * The caller is responsible for protecting the list pointers.
3618  */
3619 void
3620 page_add(page_t **ppp, page_t *pp)
3621 {
3622 	ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3623 
3624 	page_add_common(ppp, pp);
3625 }
3626 
3627 
3628 
3629 /*
3630  *  Common code for page_add() and mach_page_add()
3631  */
3632 void
3633 page_add_common(page_t **ppp, page_t *pp)
3634 {
3635 	if (*ppp == NULL) {
3636 		pp->p_next = pp->p_prev = pp;
3637 	} else {
3638 		pp->p_next = *ppp;
3639 		pp->p_prev = (*ppp)->p_prev;
3640 		(*ppp)->p_prev = pp;
3641 		pp->p_prev->p_next = pp;
3642 	}
3643 	*ppp = pp;
3644 }
3645 
3646 
3647 /*
3648  * Remove this page from a linked list of pages
3649  * using the p_next & p_prev pointers for the list.
3650  *
3651  * The caller is responsible for protecting the list pointers.
3652  */
3653 void
3654 page_sub(page_t **ppp, page_t *pp)
3655 {
3656 	ASSERT((PP_ISFREE(pp)) ? 1 :
3657 	    (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3658 
3659 	if (*ppp == NULL || pp == NULL) {
3660 		panic("page_sub: bad arg(s): pp %p, *ppp %p",
3661 		    (void *)pp, (void *)(*ppp));
3662 		/*NOTREACHED*/
3663 	}
3664 
3665 	page_sub_common(ppp, pp);
3666 }
3667 
3668 
3669 /*
3670  *  Common code for page_sub() and mach_page_sub()
3671  */
3672 void
3673 page_sub_common(page_t **ppp, page_t *pp)
3674 {
3675 	if (*ppp == pp)
3676 		*ppp = pp->p_next;		/* go to next page */
3677 
3678 	if (*ppp == pp)
3679 		*ppp = NULL;			/* page list is gone */
3680 	else {
3681 		pp->p_prev->p_next = pp->p_next;
3682 		pp->p_next->p_prev = pp->p_prev;
3683 	}
3684 	pp->p_prev = pp->p_next = pp;		/* make pp a list of one */
3685 }
3686 
3687 
3688 /*
3689  * Break page list cppp into two lists with npages in the first list.
3690  * The tail is returned in nppp.
3691  */
3692 void
3693 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3694 {
3695 	page_t *s1pp = *oppp;
3696 	page_t *s2pp;
3697 	page_t *e1pp, *e2pp;
3698 	long n = 0;
3699 
3700 	if (s1pp == NULL) {
3701 		*nppp = NULL;
3702 		return;
3703 	}
3704 	if (npages == 0) {
3705 		*nppp = s1pp;
3706 		*oppp = NULL;
3707 		return;
3708 	}
3709 	for (n = 0, s2pp = *oppp; n < npages; n++) {
3710 		s2pp = s2pp->p_next;
3711 	}
3712 	/* Fix head and tail of new lists */
3713 	e1pp = s2pp->p_prev;
3714 	e2pp = s1pp->p_prev;
3715 	s1pp->p_prev = e1pp;
3716 	e1pp->p_next = s1pp;
3717 	s2pp->p_prev = e2pp;
3718 	e2pp->p_next = s2pp;
3719 
3720 	/* second list empty */
3721 	if (s2pp == s1pp) {
3722 		*oppp = s1pp;
3723 		*nppp = NULL;
3724 	} else {
3725 		*oppp = s1pp;
3726 		*nppp = s2pp;
3727 	}
3728 }
3729 
3730 /*
3731  * Concatenate page list nppp onto the end of list ppp.
3732  */
3733 void
3734 page_list_concat(page_t **ppp, page_t **nppp)
3735 {
3736 	page_t *s1pp, *s2pp, *e1pp, *e2pp;
3737 
3738 	if (*nppp == NULL) {
3739 		return;
3740 	}
3741 	if (*ppp == NULL) {
3742 		*ppp = *nppp;
3743 		return;
3744 	}
3745 	s1pp = *ppp;
3746 	e1pp =  s1pp->p_prev;
3747 	s2pp = *nppp;
3748 	e2pp = s2pp->p_prev;
3749 	s1pp->p_prev = e2pp;
3750 	e2pp->p_next = s1pp;
3751 	e1pp->p_next = s2pp;
3752 	s2pp->p_prev = e1pp;
3753 }
3754 
3755 /*
3756  * return the next page in the page list
3757  */
3758 page_t *
3759 page_list_next(page_t *pp)
3760 {
3761 	return (pp->p_next);
3762 }
3763 
3764 
3765 /*
3766  * Add the page to the front of the linked list of pages
3767  * using p_vpnext/p_vpprev pointers for the list.
3768  *
3769  * The caller is responsible for protecting the lists.
3770  */
3771 void
3772 page_vpadd(page_t **ppp, page_t *pp)
3773 {
3774 	if (*ppp == NULL) {
3775 		pp->p_vpnext = pp->p_vpprev = pp;
3776 	} else {
3777 		pp->p_vpnext = *ppp;
3778 		pp->p_vpprev = (*ppp)->p_vpprev;
3779 		(*ppp)->p_vpprev = pp;
3780 		pp->p_vpprev->p_vpnext = pp;
3781 	}
3782 	*ppp = pp;
3783 }
3784 
3785 /*
3786  * Remove this page from the linked list of pages
3787  * using p_vpnext/p_vpprev pointers for the list.
3788  *
3789  * The caller is responsible for protecting the lists.
3790  */
3791 void
3792 page_vpsub(page_t **ppp, page_t *pp)
3793 {
3794 	if (*ppp == NULL || pp == NULL) {
3795 		panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3796 		    (void *)pp, (void *)(*ppp));
3797 		/*NOTREACHED*/
3798 	}
3799 
3800 	if (*ppp == pp)
3801 		*ppp = pp->p_vpnext;		/* go to next page */
3802 
3803 	if (*ppp == pp)
3804 		*ppp = NULL;			/* page list is gone */
3805 	else {
3806 		pp->p_vpprev->p_vpnext = pp->p_vpnext;
3807 		pp->p_vpnext->p_vpprev = pp->p_vpprev;
3808 	}
3809 	pp->p_vpprev = pp->p_vpnext = pp;	/* make pp a list of one */
3810 }
3811 
3812 /*
3813  * Lock a physical page into memory "long term".  Used to support "lock
3814  * in memory" functions.  Accepts the page to be locked, and a cow variable
3815  * to indicate whether a the lock will travel to the new page during
3816  * a potential copy-on-write.
3817  */
3818 int
3819 page_pp_lock(
3820 	page_t *pp,			/* page to be locked */
3821 	int cow,			/* cow lock */
3822 	int kernel)			/* must succeed -- ignore checking */
3823 {
3824 	int r = 0;			/* result -- assume failure */
3825 
3826 	ASSERT(PAGE_LOCKED(pp));
3827 
3828 	page_struct_lock(pp);
3829 	/*
3830 	 * Acquire the "freemem_lock" for availrmem.
3831 	 */
3832 	if (cow) {
3833 		mutex_enter(&freemem_lock);
3834 		if ((availrmem > pages_pp_maximum) &&
3835 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3836 			availrmem--;
3837 			pages_locked++;
3838 			mutex_exit(&freemem_lock);
3839 			r = 1;
3840 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3841 				cmn_err(CE_WARN,
3842 				    "COW lock limit reached on pfn 0x%lx",
3843 				    page_pptonum(pp));
3844 			}
3845 		} else
3846 			mutex_exit(&freemem_lock);
3847 	} else {
3848 		if (pp->p_lckcnt) {
3849 			if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3850 				r = 1;
3851 				if (++pp->p_lckcnt ==
3852 				    (ushort_t)PAGE_LOCK_MAXIMUM) {
3853 					cmn_err(CE_WARN, "Page lock limit "
3854 					    "reached on pfn 0x%lx",
3855 					    page_pptonum(pp));
3856 				}
3857 			}
3858 		} else {
3859 			if (kernel) {
3860 				/* availrmem accounting done by caller */
3861 				++pp->p_lckcnt;
3862 				r = 1;
3863 			} else {
3864 				mutex_enter(&freemem_lock);
3865 				if (availrmem > pages_pp_maximum) {
3866 					availrmem--;
3867 					pages_locked++;
3868 					++pp->p_lckcnt;
3869 					r = 1;
3870 				}
3871 				mutex_exit(&freemem_lock);
3872 			}
3873 		}
3874 	}
3875 	page_struct_unlock(pp);
3876 	return (r);
3877 }
3878 
3879 /*
3880  * Decommit a lock on a physical page frame.  Account for cow locks if
3881  * appropriate.
3882  */
3883 void
3884 page_pp_unlock(
3885 	page_t *pp,			/* page to be unlocked */
3886 	int cow,			/* expect cow lock */
3887 	int kernel)			/* this was a kernel lock */
3888 {
3889 	ASSERT(PAGE_LOCKED(pp));
3890 
3891 	page_struct_lock(pp);
3892 	/*
3893 	 * Acquire the "freemem_lock" for availrmem.
3894 	 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3895 	 * could be called to unlock even if nothing is locked. This could
3896 	 * happen if locked file pages were truncated (removing the lock)
3897 	 * and the file was grown again and new pages faulted in; the new
3898 	 * pages are unlocked but the segment still thinks they're locked.
3899 	 */
3900 	if (cow) {
3901 		if (pp->p_cowcnt) {
3902 			mutex_enter(&freemem_lock);
3903 			pp->p_cowcnt--;
3904 			availrmem++;
3905 			pages_locked--;
3906 			mutex_exit(&freemem_lock);
3907 		}
3908 	} else {
3909 		if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
3910 			if (!kernel) {
3911 				mutex_enter(&freemem_lock);
3912 				availrmem++;
3913 				pages_locked--;
3914 				mutex_exit(&freemem_lock);
3915 			}
3916 		}
3917 	}
3918 	page_struct_unlock(pp);
3919 }
3920 
3921 /*
3922  * This routine reserves availrmem for npages;
3923  * 	flags: KM_NOSLEEP or KM_SLEEP
3924  * 	returns 1 on success or 0 on failure
3925  */
3926 int
3927 page_resv(pgcnt_t npages, uint_t flags)
3928 {
3929 	mutex_enter(&freemem_lock);
3930 	while (availrmem < tune.t_minarmem + npages) {
3931 		if (flags & KM_NOSLEEP) {
3932 			mutex_exit(&freemem_lock);
3933 			return (0);
3934 		}
3935 		mutex_exit(&freemem_lock);
3936 		page_needfree(npages);
3937 		kmem_reap();
3938 		delay(hz >> 2);
3939 		page_needfree(-(spgcnt_t)npages);
3940 		mutex_enter(&freemem_lock);
3941 	}
3942 	availrmem -= npages;
3943 	mutex_exit(&freemem_lock);
3944 	return (1);
3945 }
3946 
3947 /*
3948  * This routine unreserves availrmem for npages;
3949  */
3950 void
3951 page_unresv(pgcnt_t npages)
3952 {
3953 	mutex_enter(&freemem_lock);
3954 	availrmem += npages;
3955 	mutex_exit(&freemem_lock);
3956 }
3957 
3958 /*
3959  * See Statement at the beginning of segvn_lockop() regarding
3960  * the way we handle cowcnts and lckcnts.
3961  *
3962  * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
3963  * that breaks COW has PROT_WRITE.
3964  *
3965  * Note that, we may also break COW in case we are softlocking
3966  * on read access during physio;
3967  * in this softlock case, the vpage may not have PROT_WRITE.
3968  * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
3969  * if the vpage doesn't have PROT_WRITE.
3970  *
3971  * This routine is never called if we are stealing a page
3972  * in anon_private.
3973  *
3974  * The caller subtracted from availrmem for read only mapping.
3975  * if lckcnt is 1 increment availrmem.
3976  */
3977 void
3978 page_pp_useclaim(
3979 	page_t *opp,		/* original page frame losing lock */
3980 	page_t *npp,		/* new page frame gaining lock */
3981 	uint_t	write_perm) 	/* set if vpage has PROT_WRITE */
3982 {
3983 	int payback = 0;
3984 	int nidx, oidx;
3985 
3986 	ASSERT(PAGE_LOCKED(opp));
3987 	ASSERT(PAGE_LOCKED(npp));
3988 
3989 	/*
3990 	 * Since we have two pages we probably have two locks.  We need to take
3991 	 * them in a defined order to avoid deadlocks.  It's also possible they
3992 	 * both hash to the same lock in which case this is a non-issue.
3993 	 */
3994 	nidx = PAGE_LLOCK_HASH(PP_PAGEROOT(npp));
3995 	oidx = PAGE_LLOCK_HASH(PP_PAGEROOT(opp));
3996 	if (nidx < oidx) {
3997 		page_struct_lock(npp);
3998 		page_struct_lock(opp);
3999 	} else if (oidx < nidx) {
4000 		page_struct_lock(opp);
4001 		page_struct_lock(npp);
4002 	} else {	/* The pages hash to the same lock */
4003 		page_struct_lock(npp);
4004 	}
4005 
4006 	ASSERT(npp->p_cowcnt == 0);
4007 	ASSERT(npp->p_lckcnt == 0);
4008 
4009 	/* Don't use claim if nothing is locked (see page_pp_unlock above) */
4010 	if ((write_perm && opp->p_cowcnt != 0) ||
4011 	    (!write_perm && opp->p_lckcnt != 0)) {
4012 
4013 		if (write_perm) {
4014 			npp->p_cowcnt++;
4015 			ASSERT(opp->p_cowcnt != 0);
4016 			opp->p_cowcnt--;
4017 		} else {
4018 
4019 			ASSERT(opp->p_lckcnt != 0);
4020 
4021 			/*
4022 			 * We didn't need availrmem decremented if p_lckcnt on
4023 			 * original page is 1. Here, we are unlocking
4024 			 * read-only copy belonging to original page and
4025 			 * are locking a copy belonging to new page.
4026 			 */
4027 			if (opp->p_lckcnt == 1)
4028 				payback = 1;
4029 
4030 			npp->p_lckcnt++;
4031 			opp->p_lckcnt--;
4032 		}
4033 	}
4034 	if (payback) {
4035 		mutex_enter(&freemem_lock);
4036 		availrmem++;
4037 		pages_useclaim--;
4038 		mutex_exit(&freemem_lock);
4039 	}
4040 
4041 	if (nidx < oidx) {
4042 		page_struct_unlock(opp);
4043 		page_struct_unlock(npp);
4044 	} else if (oidx < nidx) {
4045 		page_struct_unlock(npp);
4046 		page_struct_unlock(opp);
4047 	} else {	/* The pages hash to the same lock */
4048 		page_struct_unlock(npp);
4049 	}
4050 }
4051 
4052 /*
4053  * Simple claim adjust functions -- used to support changes in
4054  * claims due to changes in access permissions.  Used by segvn_setprot().
4055  */
4056 int
4057 page_addclaim(page_t *pp)
4058 {
4059 	int r = 0;			/* result */
4060 
4061 	ASSERT(PAGE_LOCKED(pp));
4062 
4063 	page_struct_lock(pp);
4064 	ASSERT(pp->p_lckcnt != 0);
4065 
4066 	if (pp->p_lckcnt == 1) {
4067 		if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4068 			--pp->p_lckcnt;
4069 			r = 1;
4070 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4071 				cmn_err(CE_WARN,
4072 				    "COW lock limit reached on pfn 0x%lx",
4073 				    page_pptonum(pp));
4074 			}
4075 		}
4076 	} else {
4077 		mutex_enter(&freemem_lock);
4078 		if ((availrmem > pages_pp_maximum) &&
4079 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4080 			--availrmem;
4081 			++pages_claimed;
4082 			mutex_exit(&freemem_lock);
4083 			--pp->p_lckcnt;
4084 			r = 1;
4085 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4086 				cmn_err(CE_WARN,
4087 				    "COW lock limit reached on pfn 0x%lx",
4088 				    page_pptonum(pp));
4089 			}
4090 		} else
4091 			mutex_exit(&freemem_lock);
4092 	}
4093 	page_struct_unlock(pp);
4094 	return (r);
4095 }
4096 
4097 int
4098 page_subclaim(page_t *pp)
4099 {
4100 	int r = 0;
4101 
4102 	ASSERT(PAGE_LOCKED(pp));
4103 
4104 	page_struct_lock(pp);
4105 	ASSERT(pp->p_cowcnt != 0);
4106 
4107 	if (pp->p_lckcnt) {
4108 		if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4109 			r = 1;
4110 			/*
4111 			 * for availrmem
4112 			 */
4113 			mutex_enter(&freemem_lock);
4114 			availrmem++;
4115 			pages_claimed--;
4116 			mutex_exit(&freemem_lock);
4117 
4118 			pp->p_cowcnt--;
4119 
4120 			if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4121 				cmn_err(CE_WARN,
4122 				    "Page lock limit reached on pfn 0x%lx",
4123 				    page_pptonum(pp));
4124 			}
4125 		}
4126 	} else {
4127 		r = 1;
4128 		pp->p_cowcnt--;
4129 		pp->p_lckcnt++;
4130 	}
4131 	page_struct_unlock(pp);
4132 	return (r);
4133 }
4134 
4135 /*
4136  * Variant of page_addclaim(), where ppa[] contains the pages of a single large
4137  * page.
4138  */
4139 int
4140 page_addclaim_pages(page_t  **ppa)
4141 {
4142 	pgcnt_t	lckpgs = 0, pg_idx;
4143 
4144 	VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4145 
4146 	/*
4147 	 * Only need to take the page struct lock on the large page root.
4148 	 */
4149 	page_struct_lock(ppa[0]);
4150 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4151 
4152 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4153 		ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4154 		if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4155 			page_struct_unlock(ppa[0]);
4156 			return (0);
4157 		}
4158 		if (ppa[pg_idx]->p_lckcnt > 1)
4159 			lckpgs++;
4160 	}
4161 
4162 	if (lckpgs != 0) {
4163 		mutex_enter(&freemem_lock);
4164 		if (availrmem >= pages_pp_maximum + lckpgs) {
4165 			availrmem -= lckpgs;
4166 			pages_claimed += lckpgs;
4167 		} else {
4168 			mutex_exit(&freemem_lock);
4169 			page_struct_unlock(ppa[0]);
4170 			return (0);
4171 		}
4172 		mutex_exit(&freemem_lock);
4173 	}
4174 
4175 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4176 		ppa[pg_idx]->p_lckcnt--;
4177 		ppa[pg_idx]->p_cowcnt++;
4178 	}
4179 	page_struct_unlock(ppa[0]);
4180 	return (1);
4181 }
4182 
4183 /*
4184  * Variant of page_subclaim(), where ppa[] contains the pages of a single large
4185  * page.
4186  */
4187 int
4188 page_subclaim_pages(page_t  **ppa)
4189 {
4190 	pgcnt_t	ulckpgs = 0, pg_idx;
4191 
4192 	VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4193 
4194 	/*
4195 	 * Only need to take the page struct lock on the large page root.
4196 	 */
4197 	page_struct_lock(ppa[0]);
4198 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4199 
4200 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4201 		ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4202 		if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4203 			page_struct_unlock(ppa[0]);
4204 			return (0);
4205 		}
4206 		if (ppa[pg_idx]->p_lckcnt != 0)
4207 			ulckpgs++;
4208 	}
4209 
4210 	if (ulckpgs != 0) {
4211 		mutex_enter(&freemem_lock);
4212 		availrmem += ulckpgs;
4213 		pages_claimed -= ulckpgs;
4214 		mutex_exit(&freemem_lock);
4215 	}
4216 
4217 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4218 		ppa[pg_idx]->p_cowcnt--;
4219 		ppa[pg_idx]->p_lckcnt++;
4220 
4221 	}
4222 	page_struct_unlock(ppa[0]);
4223 	return (1);
4224 }
4225 
4226 page_t *
4227 page_numtopp(pfn_t pfnum, se_t se)
4228 {
4229 	page_t *pp;
4230 
4231 retry:
4232 	pp = page_numtopp_nolock(pfnum);
4233 	if (pp == NULL) {
4234 		return ((page_t *)NULL);
4235 	}
4236 
4237 	/*
4238 	 * Acquire the appropriate lock on the page.
4239 	 */
4240 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4241 		if (page_pptonum(pp) != pfnum)
4242 			goto retry;
4243 		continue;
4244 	}
4245 
4246 	if (page_pptonum(pp) != pfnum) {
4247 		page_unlock(pp);
4248 		goto retry;
4249 	}
4250 
4251 	return (pp);
4252 }
4253 
4254 page_t *
4255 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4256 {
4257 	page_t *pp;
4258 
4259 retry:
4260 	pp = page_numtopp_nolock(pfnum);
4261 	if (pp == NULL) {
4262 		return ((page_t *)NULL);
4263 	}
4264 
4265 	/*
4266 	 * Acquire the appropriate lock on the page.
4267 	 */
4268 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4269 		if (page_pptonum(pp) != pfnum)
4270 			goto retry;
4271 		continue;
4272 	}
4273 
4274 	if (page_pptonum(pp) != pfnum) {
4275 		page_unlock(pp);
4276 		goto retry;
4277 	}
4278 
4279 	return (pp);
4280 }
4281 
4282 /*
4283  * This routine is like page_numtopp, but will only return page structs
4284  * for pages which are ok for loading into hardware using the page struct.
4285  */
4286 page_t *
4287 page_numtopp_nowait(pfn_t pfnum, se_t se)
4288 {
4289 	page_t *pp;
4290 
4291 retry:
4292 	pp = page_numtopp_nolock(pfnum);
4293 	if (pp == NULL) {
4294 		return ((page_t *)NULL);
4295 	}
4296 
4297 	/*
4298 	 * Try to acquire the appropriate lock on the page.
4299 	 */
4300 	if (PP_ISFREE(pp))
4301 		pp = NULL;
4302 	else {
4303 		if (!page_trylock(pp, se))
4304 			pp = NULL;
4305 		else {
4306 			if (page_pptonum(pp) != pfnum) {
4307 				page_unlock(pp);
4308 				goto retry;
4309 			}
4310 			if (PP_ISFREE(pp)) {
4311 				page_unlock(pp);
4312 				pp = NULL;
4313 			}
4314 		}
4315 	}
4316 	return (pp);
4317 }
4318 
4319 /*
4320  * Returns a count of dirty pages that are in the process
4321  * of being written out.  If 'cleanit' is set, try to push the page.
4322  */
4323 pgcnt_t
4324 page_busy(int cleanit)
4325 {
4326 	page_t *page0 = page_first();
4327 	page_t *pp = page0;
4328 	pgcnt_t nppbusy = 0;
4329 	u_offset_t off;
4330 
4331 	do {
4332 		vnode_t *vp = pp->p_vnode;
4333 		/*
4334 		 * A page is a candidate for syncing if it is:
4335 		 *
4336 		 * (a)	On neither the freelist nor the cachelist
4337 		 * (b)	Hashed onto a vnode
4338 		 * (c)	Not a kernel page
4339 		 * (d)	Dirty
4340 		 * (e)	Not part of a swapfile
4341 		 * (f)	a page which belongs to a real vnode; eg has a non-null
4342 		 *	v_vfsp pointer.
4343 		 * (g)	Backed by a filesystem which doesn't have a
4344 		 *	stubbed-out sync operation
4345 		 */
4346 		if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
4347 		    hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4348 		    vfs_can_sync(vp->v_vfsp)) {
4349 			nppbusy++;
4350 
4351 			if (!cleanit)
4352 				continue;
4353 			if (!page_trylock(pp, SE_EXCL))
4354 				continue;
4355 
4356 			if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4357 			    pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4358 			    !(hat_pagesync(pp,
4359 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4360 				page_unlock(pp);
4361 				continue;
4362 			}
4363 			off = pp->p_offset;
4364 			VN_HOLD(vp);
4365 			page_unlock(pp);
4366 			(void) VOP_PUTPAGE(vp, off, PAGESIZE,
4367 			    B_ASYNC | B_FREE, kcred, NULL);
4368 			VN_RELE(vp);
4369 		}
4370 	} while ((pp = page_next(pp)) != page0);
4371 
4372 	return (nppbusy);
4373 }
4374 
4375 void page_invalidate_pages(void);
4376 
4377 /*
4378  * callback handler to vm sub-system
4379  *
4380  * callers make sure no recursive entries to this func.
4381  */
4382 /*ARGSUSED*/
4383 boolean_t
4384 callb_vm_cpr(void *arg, int code)
4385 {
4386 	if (code == CB_CODE_CPR_CHKPT)
4387 		page_invalidate_pages();
4388 	return (B_TRUE);
4389 }
4390 
4391 /*
4392  * Invalidate all pages of the system.
4393  * It shouldn't be called until all user page activities are all stopped.
4394  */
4395 void
4396 page_invalidate_pages()
4397 {
4398 	page_t *pp;
4399 	page_t *page0;
4400 	pgcnt_t nbusypages;
4401 	int retry = 0;
4402 	const int MAXRETRIES = 4;
4403 top:
4404 	/*
4405 	 * Flush dirty pages and destroy the clean ones.
4406 	 */
4407 	nbusypages = 0;
4408 
4409 	pp = page0 = page_first();
4410 	do {
4411 		struct vnode	*vp;
4412 		u_offset_t	offset;
4413 		int		mod;
4414 
4415 		/*
4416 		 * skip the page if it has no vnode or the page associated
4417 		 * with the kernel vnode or prom allocated kernel mem.
4418 		 */
4419 		if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
4420 			continue;
4421 
4422 		/*
4423 		 * skip the page which is already free invalidated.
4424 		 */
4425 		if (PP_ISFREE(pp) && PP_ISAGED(pp))
4426 			continue;
4427 
4428 		/*
4429 		 * skip pages that are already locked or can't be "exclusively"
4430 		 * locked or are already free.  After we lock the page, check
4431 		 * the free and age bits again to be sure it's not destroyed
4432 		 * yet.
4433 		 * To achieve max. parallelization, we use page_trylock instead
4434 		 * of page_lock so that we don't get block on individual pages
4435 		 * while we have thousands of other pages to process.
4436 		 */
4437 		if (!page_trylock(pp, SE_EXCL)) {
4438 			nbusypages++;
4439 			continue;
4440 		} else if (PP_ISFREE(pp)) {
4441 			if (!PP_ISAGED(pp)) {
4442 				page_destroy_free(pp);
4443 			} else {
4444 				page_unlock(pp);
4445 			}
4446 			continue;
4447 		}
4448 		/*
4449 		 * Is this page involved in some I/O? shared?
4450 		 *
4451 		 * The page_struct_lock need not be acquired to
4452 		 * examine these fields since the page has an
4453 		 * "exclusive" lock.
4454 		 */
4455 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4456 			page_unlock(pp);
4457 			continue;
4458 		}
4459 
4460 		if (vp->v_type == VCHR) {
4461 			panic("vp->v_type == VCHR");
4462 			/*NOTREACHED*/
4463 		}
4464 
4465 		if (!page_try_demote_pages(pp)) {
4466 			page_unlock(pp);
4467 			continue;
4468 		}
4469 
4470 		/*
4471 		 * Check the modified bit. Leave the bits alone in hardware
4472 		 * (they will be modified if we do the putpage).
4473 		 */
4474 		mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4475 		    & P_MOD);
4476 		if (mod) {
4477 			offset = pp->p_offset;
4478 			/*
4479 			 * Hold the vnode before releasing the page lock
4480 			 * to prevent it from being freed and re-used by
4481 			 * some other thread.
4482 			 */
4483 			VN_HOLD(vp);
4484 			page_unlock(pp);
4485 			/*
4486 			 * No error return is checked here. Callers such as
4487 			 * cpr deals with the dirty pages at the dump time
4488 			 * if this putpage fails.
4489 			 */
4490 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4491 			    kcred, NULL);
4492 			VN_RELE(vp);
4493 		} else {
4494 			/*LINTED: constant in conditional context*/
4495 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
4496 		}
4497 	} while ((pp = page_next(pp)) != page0);
4498 	if (nbusypages && retry++ < MAXRETRIES) {
4499 		delay(1);
4500 		goto top;
4501 	}
4502 }
4503 
4504 /*
4505  * Replace the page "old" with the page "new" on the page hash and vnode lists
4506  *
4507  * the replacement must be done in place, ie the equivalent sequence:
4508  *
4509  *	vp = old->p_vnode;
4510  *	off = old->p_offset;
4511  *	page_do_hashout(old)
4512  *	page_do_hashin(new, vp, off)
4513  *
4514  * doesn't work, since
4515  *  1) if old is the only page on the vnode, the v_pages list has a window
4516  *     where it looks empty. This will break file system assumptions.
4517  * and
4518  *  2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4519  */
4520 static void
4521 page_do_relocate_hash(page_t *new, page_t *old)
4522 {
4523 	page_t	**hash_list;
4524 	vnode_t	*vp = old->p_vnode;
4525 	kmutex_t *sep;
4526 
4527 	ASSERT(PAGE_EXCL(old));
4528 	ASSERT(PAGE_EXCL(new));
4529 	ASSERT(vp != NULL);
4530 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4531 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4532 
4533 	/*
4534 	 * First find old page on the page hash list
4535 	 */
4536 	hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4537 
4538 	for (;;) {
4539 		if (*hash_list == old)
4540 			break;
4541 		if (*hash_list == NULL) {
4542 			panic("page_do_hashout");
4543 			/*NOTREACHED*/
4544 		}
4545 		hash_list = &(*hash_list)->p_hash;
4546 	}
4547 
4548 	/*
4549 	 * update new and replace old with new on the page hash list
4550 	 */
4551 	new->p_vnode = old->p_vnode;
4552 	new->p_offset = old->p_offset;
4553 	new->p_hash = old->p_hash;
4554 	*hash_list = new;
4555 
4556 	if ((new->p_vnode->v_flag & VISSWAP) != 0)
4557 		PP_SETSWAP(new);
4558 
4559 	/*
4560 	 * replace old with new on the vnode's page list
4561 	 */
4562 	if (old->p_vpnext == old) {
4563 		new->p_vpnext = new;
4564 		new->p_vpprev = new;
4565 	} else {
4566 		new->p_vpnext = old->p_vpnext;
4567 		new->p_vpprev = old->p_vpprev;
4568 		new->p_vpnext->p_vpprev = new;
4569 		new->p_vpprev->p_vpnext = new;
4570 	}
4571 	if (vp->v_pages == old)
4572 		vp->v_pages = new;
4573 
4574 	/*
4575 	 * clear out the old page
4576 	 */
4577 	old->p_hash = NULL;
4578 	old->p_vpnext = NULL;
4579 	old->p_vpprev = NULL;
4580 	old->p_vnode = NULL;
4581 	PP_CLRSWAP(old);
4582 	old->p_offset = (u_offset_t)-1;
4583 	page_clr_all_props(old);
4584 
4585 	/*
4586 	 * Wake up processes waiting for this page.  The page's
4587 	 * identity has been changed, and is probably not the
4588 	 * desired page any longer.
4589 	 */
4590 	sep = page_se_mutex(old);
4591 	mutex_enter(sep);
4592 	old->p_selock &= ~SE_EWANTED;
4593 	if (CV_HAS_WAITERS(&old->p_cv))
4594 		cv_broadcast(&old->p_cv);
4595 	mutex_exit(sep);
4596 }
4597 
4598 /*
4599  * This function moves the identity of page "pp_old" to page "pp_new".
4600  * Both pages must be locked on entry.  "pp_new" is free, has no identity,
4601  * and need not be hashed out from anywhere.
4602  */
4603 void
4604 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4605 {
4606 	vnode_t *vp = pp_old->p_vnode;
4607 	u_offset_t off = pp_old->p_offset;
4608 	kmutex_t *phm, *vphm;
4609 
4610 	/*
4611 	 * Rehash two pages
4612 	 */
4613 	ASSERT(PAGE_EXCL(pp_old));
4614 	ASSERT(PAGE_EXCL(pp_new));
4615 	ASSERT(vp != NULL);
4616 	ASSERT(pp_new->p_vnode == NULL);
4617 
4618 	/*
4619 	 * hashout then hashin while holding the mutexes
4620 	 */
4621 	phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4622 	mutex_enter(phm);
4623 	vphm = page_vnode_mutex(vp);
4624 	mutex_enter(vphm);
4625 
4626 	page_do_relocate_hash(pp_new, pp_old);
4627 
4628 	/* The following comment preserved from page_flip(). */
4629 	pp_new->p_fsdata = pp_old->p_fsdata;
4630 	pp_old->p_fsdata = 0;
4631 	mutex_exit(vphm);
4632 	mutex_exit(phm);
4633 
4634 	/*
4635 	 * The page_struct_lock need not be acquired for lckcnt and
4636 	 * cowcnt since the page has an "exclusive" lock.
4637 	 */
4638 	ASSERT(pp_new->p_lckcnt == 0);
4639 	ASSERT(pp_new->p_cowcnt == 0);
4640 	pp_new->p_lckcnt = pp_old->p_lckcnt;
4641 	pp_new->p_cowcnt = pp_old->p_cowcnt;
4642 	pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4643 
4644 }
4645 
4646 /*
4647  * Helper routine used to lock all remaining members of a
4648  * large page. The caller is responsible for passing in a locked
4649  * pp. If pp is a large page, then it succeeds in locking all the
4650  * remaining constituent pages or it returns with only the
4651  * original page locked.
4652  *
4653  * Returns 1 on success, 0 on failure.
4654  *
4655  * If success is returned this routine guarantees p_szc for all constituent
4656  * pages of a large page pp belongs to can't change. To achieve this we
4657  * recheck szc of pp after locking all constituent pages and retry if szc
4658  * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4659  * lock on one of constituent pages it can't be running after all constituent
4660  * pages are locked.  hat_page_demote() with a lock on a constituent page
4661  * outside of this large page (i.e. pp belonged to a larger large page) is
4662  * already done with all constituent pages of pp since the root's p_szc is
4663  * changed last. Therefore no need to synchronize with hat_page_demote() that
4664  * locked a constituent page outside of pp's current large page.
4665  */
4666 #ifdef DEBUG
4667 uint32_t gpg_trylock_mtbf = 0;
4668 #endif
4669 
4670 int
4671 group_page_trylock(page_t *pp, se_t se)
4672 {
4673 	page_t  *tpp;
4674 	pgcnt_t	npgs, i, j;
4675 	uint_t pszc = pp->p_szc;
4676 
4677 #ifdef DEBUG
4678 	if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4679 		return (0);
4680 	}
4681 #endif
4682 
4683 	if (pp != PP_GROUPLEADER(pp, pszc)) {
4684 		return (0);
4685 	}
4686 
4687 retry:
4688 	ASSERT(PAGE_LOCKED_SE(pp, se));
4689 	ASSERT(!PP_ISFREE(pp));
4690 	if (pszc == 0) {
4691 		return (1);
4692 	}
4693 	npgs = page_get_pagecnt(pszc);
4694 	tpp = pp + 1;
4695 	for (i = 1; i < npgs; i++, tpp++) {
4696 		if (!page_trylock(tpp, se)) {
4697 			tpp = pp + 1;
4698 			for (j = 1; j < i; j++, tpp++) {
4699 				page_unlock(tpp);
4700 			}
4701 			return (0);
4702 		}
4703 	}
4704 	if (pp->p_szc != pszc) {
4705 		ASSERT(pp->p_szc < pszc);
4706 		ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
4707 		    !IS_SWAPFSVP(pp->p_vnode));
4708 		tpp = pp + 1;
4709 		for (i = 1; i < npgs; i++, tpp++) {
4710 			page_unlock(tpp);
4711 		}
4712 		pszc = pp->p_szc;
4713 		goto retry;
4714 	}
4715 	return (1);
4716 }
4717 
4718 void
4719 group_page_unlock(page_t *pp)
4720 {
4721 	page_t *tpp;
4722 	pgcnt_t	npgs, i;
4723 
4724 	ASSERT(PAGE_LOCKED(pp));
4725 	ASSERT(!PP_ISFREE(pp));
4726 	ASSERT(pp == PP_PAGEROOT(pp));
4727 	npgs = page_get_pagecnt(pp->p_szc);
4728 	for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4729 		page_unlock(tpp);
4730 	}
4731 }
4732 
4733 /*
4734  * returns
4735  * 0 		: on success and *nrelocp is number of relocated PAGESIZE pages
4736  * ERANGE	: this is not a base page
4737  * EBUSY	: failure to get locks on the page/pages
4738  * ENOMEM	: failure to obtain replacement pages
4739  * EAGAIN	: OBP has not yet completed its boot-time handoff to the kernel
4740  * EIO		: An error occurred while trying to copy the page data
4741  *
4742  * Return with all constituent members of target and replacement
4743  * SE_EXCL locked. It is the callers responsibility to drop the
4744  * locks.
4745  */
4746 int
4747 do_page_relocate(
4748 	page_t **target,
4749 	page_t **replacement,
4750 	int grouplock,
4751 	spgcnt_t *nrelocp,
4752 	lgrp_t *lgrp)
4753 {
4754 	page_t *first_repl;
4755 	page_t *repl;
4756 	page_t *targ;
4757 	page_t *pl = NULL;
4758 	uint_t ppattr;
4759 	pfn_t   pfn, repl_pfn;
4760 	uint_t	szc;
4761 	spgcnt_t npgs, i;
4762 	int repl_contig = 0;
4763 	uint_t flags = 0;
4764 	spgcnt_t dofree = 0;
4765 
4766 	*nrelocp = 0;
4767 
4768 #if defined(__sparc)
4769 	/*
4770 	 * We need to wait till OBP has completed
4771 	 * its boot-time handoff of its resources to the kernel
4772 	 * before we allow page relocation
4773 	 */
4774 	if (page_relocate_ready == 0) {
4775 		return (EAGAIN);
4776 	}
4777 #endif
4778 
4779 	/*
4780 	 * If this is not a base page,
4781 	 * just return with 0x0 pages relocated.
4782 	 */
4783 	targ = *target;
4784 	ASSERT(PAGE_EXCL(targ));
4785 	ASSERT(!PP_ISFREE(targ));
4786 	szc = targ->p_szc;
4787 	ASSERT(szc < mmu_page_sizes);
4788 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4789 	pfn = targ->p_pagenum;
4790 	if (pfn != PFN_BASE(pfn, szc)) {
4791 		VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4792 		return (ERANGE);
4793 	}
4794 
4795 	if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4796 		repl_pfn = repl->p_pagenum;
4797 		if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4798 			VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4799 			return (ERANGE);
4800 		}
4801 		repl_contig = 1;
4802 	}
4803 
4804 	/*
4805 	 * We must lock all members of this large page or we cannot
4806 	 * relocate any part of it.
4807 	 */
4808 	if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4809 		VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4810 		return (EBUSY);
4811 	}
4812 
4813 	/*
4814 	 * reread szc it could have been decreased before
4815 	 * group_page_trylock() was done.
4816 	 */
4817 	szc = targ->p_szc;
4818 	ASSERT(szc < mmu_page_sizes);
4819 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4820 	ASSERT(pfn == PFN_BASE(pfn, szc));
4821 
4822 	npgs = page_get_pagecnt(targ->p_szc);
4823 
4824 	if (repl == NULL) {
4825 		dofree = npgs;		/* Size of target page in MMU pages */
4826 		if (!page_create_wait(dofree, 0)) {
4827 			if (grouplock != 0) {
4828 				group_page_unlock(targ);
4829 			}
4830 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4831 			return (ENOMEM);
4832 		}
4833 
4834 		/*
4835 		 * seg kmem pages require that the target and replacement
4836 		 * page be the same pagesize.
4837 		 */
4838 		flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
4839 		repl = page_get_replacement_page(targ, lgrp, flags);
4840 		if (repl == NULL) {
4841 			if (grouplock != 0) {
4842 				group_page_unlock(targ);
4843 			}
4844 			page_create_putback(dofree);
4845 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4846 			return (ENOMEM);
4847 		}
4848 	}
4849 #ifdef DEBUG
4850 	else {
4851 		ASSERT(PAGE_LOCKED(repl));
4852 	}
4853 #endif /* DEBUG */
4854 
4855 #if defined(__sparc)
4856 	/*
4857 	 * Let hat_page_relocate() complete the relocation if it's kernel page
4858 	 */
4859 	if (VN_ISKAS(targ->p_vnode)) {
4860 		*replacement = repl;
4861 		if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4862 			if (grouplock != 0) {
4863 				group_page_unlock(targ);
4864 			}
4865 			if (dofree) {
4866 				*replacement = NULL;
4867 				page_free_replacement_page(repl);
4868 				page_create_putback(dofree);
4869 			}
4870 			VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4871 			return (EAGAIN);
4872 		}
4873 		VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4874 		return (0);
4875 	}
4876 #else
4877 #if defined(lint)
4878 	dofree = dofree;
4879 #endif
4880 #endif
4881 
4882 	first_repl = repl;
4883 
4884 	for (i = 0; i < npgs; i++) {
4885 		ASSERT(PAGE_EXCL(targ));
4886 		ASSERT(targ->p_slckcnt == 0);
4887 		ASSERT(repl->p_slckcnt == 0);
4888 
4889 		(void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4890 
4891 		ASSERT(hat_page_getshare(targ) == 0);
4892 		ASSERT(!PP_ISFREE(targ));
4893 		ASSERT(targ->p_pagenum == (pfn + i));
4894 		ASSERT(repl_contig == 0 ||
4895 		    repl->p_pagenum == (repl_pfn + i));
4896 
4897 		/*
4898 		 * Copy the page contents and attributes then
4899 		 * relocate the page in the page hash.
4900 		 */
4901 		if (ppcopy(targ, repl) == 0) {
4902 			targ = *target;
4903 			repl = first_repl;
4904 			VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
4905 			if (grouplock != 0) {
4906 				group_page_unlock(targ);
4907 			}
4908 			if (dofree) {
4909 				*replacement = NULL;
4910 				page_free_replacement_page(repl);
4911 				page_create_putback(dofree);
4912 			}
4913 			return (EIO);
4914 		}
4915 
4916 		targ++;
4917 		if (repl_contig != 0) {
4918 			repl++;
4919 		} else {
4920 			repl = repl->p_next;
4921 		}
4922 	}
4923 
4924 	repl = first_repl;
4925 	targ = *target;
4926 
4927 	for (i = 0; i < npgs; i++) {
4928 		ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
4929 		page_clr_all_props(repl);
4930 		page_set_props(repl, ppattr);
4931 		page_relocate_hash(repl, targ);
4932 
4933 		ASSERT(hat_page_getshare(targ) == 0);
4934 		ASSERT(hat_page_getshare(repl) == 0);
4935 		/*
4936 		 * Now clear the props on targ, after the
4937 		 * page_relocate_hash(), they no longer
4938 		 * have any meaning.
4939 		 */
4940 		page_clr_all_props(targ);
4941 		ASSERT(targ->p_next == targ);
4942 		ASSERT(targ->p_prev == targ);
4943 		page_list_concat(&pl, &targ);
4944 
4945 		targ++;
4946 		if (repl_contig != 0) {
4947 			repl++;
4948 		} else {
4949 			repl = repl->p_next;
4950 		}
4951 	}
4952 	/* assert that we have come full circle with repl */
4953 	ASSERT(repl_contig == 1 || first_repl == repl);
4954 
4955 	*target = pl;
4956 	if (*replacement == NULL) {
4957 		ASSERT(first_repl == repl);
4958 		*replacement = repl;
4959 	}
4960 	VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4961 	*nrelocp = npgs;
4962 	return (0);
4963 }
4964 /*
4965  * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
4966  */
4967 int
4968 page_relocate(
4969 	page_t **target,
4970 	page_t **replacement,
4971 	int grouplock,
4972 	int freetarget,
4973 	spgcnt_t *nrelocp,
4974 	lgrp_t *lgrp)
4975 {
4976 	spgcnt_t ret;
4977 
4978 	/* do_page_relocate returns 0 on success or errno value */
4979 	ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
4980 
4981 	if (ret != 0 || freetarget == 0) {
4982 		return (ret);
4983 	}
4984 	if (*nrelocp == 1) {
4985 		ASSERT(*target != NULL);
4986 		page_free(*target, 1);
4987 	} else {
4988 		page_t *tpp = *target;
4989 		uint_t szc = tpp->p_szc;
4990 		pgcnt_t npgs = page_get_pagecnt(szc);
4991 		ASSERT(npgs > 1);
4992 		ASSERT(szc != 0);
4993 		do {
4994 			ASSERT(PAGE_EXCL(tpp));
4995 			ASSERT(!hat_page_is_mapped(tpp));
4996 			ASSERT(tpp->p_szc == szc);
4997 			PP_SETFREE(tpp);
4998 			PP_SETAGED(tpp);
4999 			npgs--;
5000 		} while ((tpp = tpp->p_next) != *target);
5001 		ASSERT(npgs == 0);
5002 		page_list_add_pages(*target, 0);
5003 		npgs = page_get_pagecnt(szc);
5004 		page_create_putback(npgs);
5005 	}
5006 	return (ret);
5007 }
5008 
5009 /*
5010  * it is up to the caller to deal with pcf accounting.
5011  */
5012 void
5013 page_free_replacement_page(page_t *pplist)
5014 {
5015 	page_t *pp;
5016 
5017 	while (pplist != NULL) {
5018 		/*
5019 		 * pp_targ is a linked list.
5020 		 */
5021 		pp = pplist;
5022 		if (pp->p_szc == 0) {
5023 			page_sub(&pplist, pp);
5024 			page_clr_all_props(pp);
5025 			PP_SETFREE(pp);
5026 			PP_SETAGED(pp);
5027 			page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5028 			page_unlock(pp);
5029 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5030 		} else {
5031 			spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5032 			page_t *tpp;
5033 			page_list_break(&pp, &pplist, curnpgs);
5034 			tpp = pp;
5035 			do {
5036 				ASSERT(PAGE_EXCL(tpp));
5037 				ASSERT(!hat_page_is_mapped(tpp));
5038 				page_clr_all_props(tpp);
5039 				PP_SETFREE(tpp);
5040 				PP_SETAGED(tpp);
5041 			} while ((tpp = tpp->p_next) != pp);
5042 			page_list_add_pages(pp, 0);
5043 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5044 		}
5045 	}
5046 }
5047 
5048 /*
5049  * Relocate target to non-relocatable replacement page.
5050  */
5051 int
5052 page_relocate_cage(page_t **target, page_t **replacement)
5053 {
5054 	page_t *tpp, *rpp;
5055 	spgcnt_t pgcnt, npgs;
5056 	int result;
5057 
5058 	tpp = *target;
5059 
5060 	ASSERT(PAGE_EXCL(tpp));
5061 	ASSERT(tpp->p_szc == 0);
5062 
5063 	pgcnt = btop(page_get_pagesize(tpp->p_szc));
5064 
5065 	do {
5066 		(void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5067 		rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5068 		if (rpp == NULL) {
5069 			page_create_putback(pgcnt);
5070 			kcage_cageout_wakeup();
5071 		}
5072 	} while (rpp == NULL);
5073 
5074 	ASSERT(PP_ISNORELOC(rpp));
5075 
5076 	result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5077 
5078 	if (result == 0) {
5079 		*replacement = rpp;
5080 		if (pgcnt != npgs)
5081 			panic("page_relocate_cage: partial relocation");
5082 	}
5083 
5084 	return (result);
5085 }
5086 
5087 /*
5088  * Release the page lock on a page, place on cachelist
5089  * tail if no longer mapped. Caller can let us know if
5090  * the page is known to be clean.
5091  */
5092 int
5093 page_release(page_t *pp, int checkmod)
5094 {
5095 	int status;
5096 
5097 	ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5098 	    (pp->p_vnode != NULL));
5099 
5100 	if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5101 	    ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5102 	    pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5103 	    !hat_page_is_mapped(pp)) {
5104 
5105 		/*
5106 		 * If page is modified, unlock it
5107 		 *
5108 		 * (p_nrm & P_MOD) bit has the latest stuff because:
5109 		 * (1) We found that this page doesn't have any mappings
5110 		 *	_after_ holding SE_EXCL and
5111 		 * (2) We didn't drop SE_EXCL lock after the check in (1)
5112 		 */
5113 		if (checkmod && hat_ismod(pp)) {
5114 			page_unlock(pp);
5115 			status = PGREL_MOD;
5116 		} else {
5117 			/*LINTED: constant in conditional context*/
5118 			VN_DISPOSE(pp, B_FREE, 0, kcred);
5119 			status = PGREL_CLEAN;
5120 		}
5121 	} else {
5122 		page_unlock(pp);
5123 		status = PGREL_NOTREL;
5124 	}
5125 	return (status);
5126 }
5127 
5128 /*
5129  * Given a constituent page, try to demote the large page on the freelist.
5130  *
5131  * Returns nonzero if the page could be demoted successfully. Returns with
5132  * the constituent page still locked.
5133  */
5134 int
5135 page_try_demote_free_pages(page_t *pp)
5136 {
5137 	page_t *rootpp = pp;
5138 	pfn_t	pfn = page_pptonum(pp);
5139 	spgcnt_t npgs;
5140 	uint_t	szc = pp->p_szc;
5141 
5142 	ASSERT(PP_ISFREE(pp));
5143 	ASSERT(PAGE_EXCL(pp));
5144 
5145 	/*
5146 	 * Adjust rootpp and lock it, if `pp' is not the base
5147 	 * constituent page.
5148 	 */
5149 	npgs = page_get_pagecnt(pp->p_szc);
5150 	if (npgs == 1) {
5151 		return (0);
5152 	}
5153 
5154 	if (!IS_P2ALIGNED(pfn, npgs)) {
5155 		pfn = P2ALIGN(pfn, npgs);
5156 		rootpp = page_numtopp_nolock(pfn);
5157 	}
5158 
5159 	if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5160 		return (0);
5161 	}
5162 
5163 	if (rootpp->p_szc != szc) {
5164 		if (pp != rootpp)
5165 			page_unlock(rootpp);
5166 		return (0);
5167 	}
5168 
5169 	page_demote_free_pages(rootpp);
5170 
5171 	if (pp != rootpp)
5172 		page_unlock(rootpp);
5173 
5174 	ASSERT(PP_ISFREE(pp));
5175 	ASSERT(PAGE_EXCL(pp));
5176 	return (1);
5177 }
5178 
5179 /*
5180  * Given a constituent page, try to demote the large page.
5181  *
5182  * Returns nonzero if the page could be demoted successfully. Returns with
5183  * the constituent page still locked.
5184  */
5185 int
5186 page_try_demote_pages(page_t *pp)
5187 {
5188 	page_t *tpp, *rootpp = pp;
5189 	pfn_t	pfn = page_pptonum(pp);
5190 	spgcnt_t i, npgs;
5191 	uint_t	szc = pp->p_szc;
5192 	vnode_t *vp = pp->p_vnode;
5193 
5194 	ASSERT(PAGE_EXCL(pp));
5195 
5196 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5197 
5198 	if (pp->p_szc == 0) {
5199 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5200 		return (1);
5201 	}
5202 
5203 	if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
5204 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5205 		page_demote_vp_pages(pp);
5206 		ASSERT(pp->p_szc == 0);
5207 		return (1);
5208 	}
5209 
5210 	/*
5211 	 * Adjust rootpp if passed in is not the base
5212 	 * constituent page.
5213 	 */
5214 	npgs = page_get_pagecnt(pp->p_szc);
5215 	ASSERT(npgs > 1);
5216 	if (!IS_P2ALIGNED(pfn, npgs)) {
5217 		pfn = P2ALIGN(pfn, npgs);
5218 		rootpp = page_numtopp_nolock(pfn);
5219 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5220 		ASSERT(rootpp->p_vnode != NULL);
5221 		ASSERT(rootpp->p_szc == szc);
5222 	}
5223 
5224 	/*
5225 	 * We can't demote kernel pages since we can't hat_unload()
5226 	 * the mappings.
5227 	 */
5228 	if (VN_ISKAS(rootpp->p_vnode))
5229 		return (0);
5230 
5231 	/*
5232 	 * Attempt to lock all constituent pages except the page passed
5233 	 * in since it's already locked.
5234 	 */
5235 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5236 		ASSERT(!PP_ISFREE(tpp));
5237 		ASSERT(tpp->p_vnode != NULL);
5238 
5239 		if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5240 			break;
5241 		ASSERT(tpp->p_szc == rootpp->p_szc);
5242 		ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5243 	}
5244 
5245 	/*
5246 	 * If we failed to lock them all then unlock what we have
5247 	 * locked so far and bail.
5248 	 */
5249 	if (i < npgs) {
5250 		tpp = rootpp;
5251 		while (i-- > 0) {
5252 			if (tpp != pp)
5253 				page_unlock(tpp);
5254 			tpp++;
5255 		}
5256 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5257 		return (0);
5258 	}
5259 
5260 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5261 		ASSERT(PAGE_EXCL(tpp));
5262 		ASSERT(tpp->p_slckcnt == 0);
5263 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5264 		tpp->p_szc = 0;
5265 	}
5266 
5267 	/*
5268 	 * Unlock all pages except the page passed in.
5269 	 */
5270 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5271 		ASSERT(!hat_page_is_mapped(tpp));
5272 		if (tpp != pp)
5273 			page_unlock(tpp);
5274 	}
5275 
5276 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5277 	return (1);
5278 }
5279 
5280 /*
5281  * Called by page_free() and page_destroy() to demote the page size code
5282  * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5283  * p_szc on free list, neither can we just clear p_szc of a single page_t
5284  * within a large page since it will break other code that relies on p_szc
5285  * being the same for all page_t's of a large page). Anonymous pages should
5286  * never end up here because anon_map_getpages() cannot deal with p_szc
5287  * changes after a single constituent page is locked.  While anonymous or
5288  * kernel large pages are demoted or freed the entire large page at a time
5289  * with all constituent pages locked EXCL for the file system pages we
5290  * have to be able to demote a large page (i.e. decrease all constituent pages
5291  * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5292  * we can easily deal with anonymous page demotion the entire large page at a
5293  * time is that those operation originate at address space level and concern
5294  * the entire large page region with actual demotion only done when pages are
5295  * not shared with any other processes (therefore we can always get EXCL lock
5296  * on all anonymous constituent pages after clearing segment page
5297  * cache). However file system pages can be truncated or invalidated at a
5298  * PAGESIZE level from the file system side and end up in page_free() or
5299  * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5300  * and therefore pageout should be able to demote a large page by EXCL locking
5301  * any constituent page that is not under SOFTLOCK). In those cases we cannot
5302  * rely on being able to lock EXCL all constituent pages.
5303  *
5304  * To prevent szc changes on file system pages one has to lock all constituent
5305  * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5306  * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5307  * prevent szc changes is hat layer that uses its own page level mlist
5308  * locks. hat assumes that szc doesn't change after mlist lock for a page is
5309  * taken. Therefore we need to change szc under hat level locks if we only
5310  * have an EXCL lock on a single constituent page and hat still references any
5311  * of constituent pages.  (Note we can't "ignore" hat layer by simply
5312  * hat_pageunload() all constituent pages without having EXCL locks on all of
5313  * constituent pages). We use hat_page_demote() call to safely demote szc of
5314  * all constituent pages under hat locks when we only have an EXCL lock on one
5315  * of constituent pages.
5316  *
5317  * This routine calls page_szc_lock() before calling hat_page_demote() to
5318  * allow segvn in one special case not to lock all constituent pages SHARED
5319  * before calling hat_memload_array() that relies on p_szc not changing even
5320  * before hat level mlist lock is taken.  In that case segvn uses
5321  * page_szc_lock() to prevent hat_page_demote() changing p_szc values.
5322  *
5323  * Anonymous or kernel page demotion still has to lock all pages exclusively
5324  * and do hat_pageunload() on all constituent pages before demoting the page
5325  * therefore there's no need for anonymous or kernel page demotion to use
5326  * hat_page_demote() mechanism.
5327  *
5328  * hat_page_demote() removes all large mappings that map pp and then decreases
5329  * p_szc starting from the last constituent page of the large page. By working
5330  * from the tail of a large page in pfn decreasing order allows one looking at
5331  * the root page to know that hat_page_demote() is done for root's szc area.
5332  * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5333  * pages within szc 1 area to prevent szc changes because hat_page_demote()
5334  * that started on this page when it had szc > 1 is done for this szc 1 area.
5335  *
5336  * We are guaranteed that all constituent pages of pp's large page belong to
5337  * the same vnode with the consecutive offsets increasing in the direction of
5338  * the pfn i.e. the identity of constituent pages can't change until their
5339  * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5340  * large mappings to pp even though we don't lock any constituent page except
5341  * pp (i.e. we won't unload e.g. kernel locked page).
5342  */
5343 static void
5344 page_demote_vp_pages(page_t *pp)
5345 {
5346 	kmutex_t *mtx;
5347 
5348 	ASSERT(PAGE_EXCL(pp));
5349 	ASSERT(!PP_ISFREE(pp));
5350 	ASSERT(pp->p_vnode != NULL);
5351 	ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5352 	ASSERT(!PP_ISKAS(pp));
5353 
5354 	VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5355 
5356 	mtx = page_szc_lock(pp);
5357 	if (mtx != NULL) {
5358 		hat_page_demote(pp);
5359 		mutex_exit(mtx);
5360 	}
5361 	ASSERT(pp->p_szc == 0);
5362 }
5363 
5364 /*
5365  * Mark any existing pages for migration in the given range
5366  */
5367 void
5368 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5369     struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5370     u_offset_t vnoff, int rflag)
5371 {
5372 	struct anon	*ap;
5373 	vnode_t		*curvp;
5374 	lgrp_t		*from;
5375 	pgcnt_t		nlocked;
5376 	u_offset_t	off;
5377 	pfn_t		pfn;
5378 	size_t		pgsz;
5379 	size_t		segpgsz;
5380 	pgcnt_t		pages;
5381 	uint_t		pszc;
5382 	page_t		*pp0, *pp;
5383 	caddr_t		va;
5384 	ulong_t		an_idx;
5385 	anon_sync_obj_t	cookie;
5386 
5387 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5388 
5389 	/*
5390 	 * Don't do anything if don't need to do lgroup optimizations
5391 	 * on this system
5392 	 */
5393 	if (!lgrp_optimizations())
5394 		return;
5395 
5396 	/*
5397 	 * Align address and length to (potentially large) page boundary
5398 	 */
5399 	segpgsz = page_get_pagesize(seg->s_szc);
5400 	addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5401 	if (rflag)
5402 		len = P2ROUNDUP(len, segpgsz);
5403 
5404 	/*
5405 	 * Do one (large) page at a time
5406 	 */
5407 	va = addr;
5408 	while (va < addr + len) {
5409 		/*
5410 		 * Lookup (root) page for vnode and offset corresponding to
5411 		 * this virtual address
5412 		 * Try anonmap first since there may be copy-on-write
5413 		 * pages, but initialize vnode pointer and offset using
5414 		 * vnode arguments just in case there isn't an amp.
5415 		 */
5416 		curvp = vp;
5417 		off = vnoff + va - seg->s_base;
5418 		if (amp) {
5419 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5420 			an_idx = anon_index + seg_page(seg, va);
5421 			anon_array_enter(amp, an_idx, &cookie);
5422 			ap = anon_get_ptr(amp->ahp, an_idx);
5423 			if (ap)
5424 				swap_xlate(ap, &curvp, &off);
5425 			anon_array_exit(&cookie);
5426 			ANON_LOCK_EXIT(&amp->a_rwlock);
5427 		}
5428 
5429 		pp = NULL;
5430 		if (curvp)
5431 			pp = page_lookup(curvp, off, SE_SHARED);
5432 
5433 		/*
5434 		 * If there isn't a page at this virtual address,
5435 		 * skip to next page
5436 		 */
5437 		if (pp == NULL) {
5438 			va += PAGESIZE;
5439 			continue;
5440 		}
5441 
5442 		/*
5443 		 * Figure out which lgroup this page is in for kstats
5444 		 */
5445 		pfn = page_pptonum(pp);
5446 		from = lgrp_pfn_to_lgrp(pfn);
5447 
5448 		/*
5449 		 * Get page size, and round up and skip to next page boundary
5450 		 * if unaligned address
5451 		 */
5452 		pszc = pp->p_szc;
5453 		pgsz = page_get_pagesize(pszc);
5454 		pages = btop(pgsz);
5455 		if (!IS_P2ALIGNED(va, pgsz) ||
5456 		    !IS_P2ALIGNED(pfn, pages) ||
5457 		    pgsz > segpgsz) {
5458 			pgsz = MIN(pgsz, segpgsz);
5459 			page_unlock(pp);
5460 			pages = btop(P2END((uintptr_t)va, pgsz) -
5461 			    (uintptr_t)va);
5462 			va = (caddr_t)P2END((uintptr_t)va, pgsz);
5463 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, pages);
5464 			continue;
5465 		}
5466 
5467 		/*
5468 		 * Upgrade to exclusive lock on page
5469 		 */
5470 		if (!page_tryupgrade(pp)) {
5471 			page_unlock(pp);
5472 			va += pgsz;
5473 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5474 			    btop(pgsz));
5475 			continue;
5476 		}
5477 
5478 		pp0 = pp++;
5479 		nlocked = 1;
5480 
5481 		/*
5482 		 * Lock constituent pages if this is large page
5483 		 */
5484 		if (pages > 1) {
5485 			/*
5486 			 * Lock all constituents except root page, since it
5487 			 * should be locked already.
5488 			 */
5489 			for (; nlocked < pages; nlocked++) {
5490 				if (!page_trylock(pp, SE_EXCL)) {
5491 					break;
5492 				}
5493 				if (PP_ISFREE(pp) ||
5494 				    pp->p_szc != pszc) {
5495 					/*
5496 					 * hat_page_demote() raced in with us.
5497 					 */
5498 					ASSERT(!IS_SWAPFSVP(curvp));
5499 					page_unlock(pp);
5500 					break;
5501 				}
5502 				pp++;
5503 			}
5504 		}
5505 
5506 		/*
5507 		 * If all constituent pages couldn't be locked,
5508 		 * unlock pages locked so far and skip to next page.
5509 		 */
5510 		if (nlocked < pages) {
5511 			while (pp0 < pp) {
5512 				page_unlock(pp0++);
5513 			}
5514 			va += pgsz;
5515 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5516 			    btop(pgsz));
5517 			continue;
5518 		}
5519 
5520 		/*
5521 		 * hat_page_demote() can no longer happen
5522 		 * since last cons page had the right p_szc after
5523 		 * all cons pages were locked. all cons pages
5524 		 * should now have the same p_szc.
5525 		 */
5526 
5527 		/*
5528 		 * All constituent pages locked successfully, so mark
5529 		 * large page for migration and unload the mappings of
5530 		 * constituent pages, so a fault will occur on any part of the
5531 		 * large page
5532 		 */
5533 		PP_SETMIGRATE(pp0);
5534 		while (pp0 < pp) {
5535 			(void) hat_pageunload(pp0, HAT_FORCE_PGUNLOAD);
5536 			ASSERT(hat_page_getshare(pp0) == 0);
5537 			page_unlock(pp0++);
5538 		}
5539 		lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5540 
5541 		va += pgsz;
5542 	}
5543 }
5544 
5545 /*
5546  * Migrate any pages that have been marked for migration in the given range
5547  */
5548 void
5549 page_migrate(
5550 	struct seg	*seg,
5551 	caddr_t		addr,
5552 	page_t		**ppa,
5553 	pgcnt_t		npages)
5554 {
5555 	lgrp_t		*from;
5556 	lgrp_t		*to;
5557 	page_t		*newpp;
5558 	page_t		*pp;
5559 	pfn_t		pfn;
5560 	size_t		pgsz;
5561 	spgcnt_t	page_cnt;
5562 	spgcnt_t	i;
5563 	uint_t		pszc;
5564 
5565 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5566 
5567 	while (npages > 0) {
5568 		pp = *ppa;
5569 		pszc = pp->p_szc;
5570 		pgsz = page_get_pagesize(pszc);
5571 		page_cnt = btop(pgsz);
5572 
5573 		/*
5574 		 * Check to see whether this page is marked for migration
5575 		 *
5576 		 * Assume that root page of large page is marked for
5577 		 * migration and none of the other constituent pages
5578 		 * are marked.  This really simplifies clearing the
5579 		 * migrate bit by not having to clear it from each
5580 		 * constituent page.
5581 		 *
5582 		 * note we don't want to relocate an entire large page if
5583 		 * someone is only using one subpage.
5584 		 */
5585 		if (npages < page_cnt)
5586 			break;
5587 
5588 		/*
5589 		 * Is it marked for migration?
5590 		 */
5591 		if (!PP_ISMIGRATE(pp))
5592 			goto next;
5593 
5594 		/*
5595 		 * Determine lgroups that page is being migrated between
5596 		 */
5597 		pfn = page_pptonum(pp);
5598 		if (!IS_P2ALIGNED(pfn, page_cnt)) {
5599 			break;
5600 		}
5601 		from = lgrp_pfn_to_lgrp(pfn);
5602 		to = lgrp_mem_choose(seg, addr, pgsz);
5603 
5604 		/*
5605 		 * Need to get exclusive lock's to migrate
5606 		 */
5607 		for (i = 0; i < page_cnt; i++) {
5608 			ASSERT(PAGE_LOCKED(ppa[i]));
5609 			if (page_pptonum(ppa[i]) != pfn + i ||
5610 			    ppa[i]->p_szc != pszc) {
5611 				break;
5612 			}
5613 			if (!page_tryupgrade(ppa[i])) {
5614 				lgrp_stat_add(from->lgrp_id,
5615 				    LGRP_PM_FAIL_LOCK_PGS,
5616 				    page_cnt);
5617 				break;
5618 			}
5619 
5620 			/*
5621 			 * Check to see whether we are trying to migrate
5622 			 * page to lgroup where it is allocated already.
5623 			 * If so, clear the migrate bit and skip to next
5624 			 * page.
5625 			 */
5626 			if (i == 0 && to == from) {
5627 				PP_CLRMIGRATE(ppa[0]);
5628 				page_downgrade(ppa[0]);
5629 				goto next;
5630 			}
5631 		}
5632 
5633 		/*
5634 		 * If all constituent pages couldn't be locked,
5635 		 * unlock pages locked so far and skip to next page.
5636 		 */
5637 		if (i != page_cnt) {
5638 			while (--i != -1) {
5639 				page_downgrade(ppa[i]);
5640 			}
5641 			goto next;
5642 		}
5643 
5644 		(void) page_create_wait(page_cnt, PG_WAIT);
5645 		newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5646 		if (newpp == NULL) {
5647 			page_create_putback(page_cnt);
5648 			for (i = 0; i < page_cnt; i++) {
5649 				page_downgrade(ppa[i]);
5650 			}
5651 			lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5652 			    page_cnt);
5653 			goto next;
5654 		}
5655 		ASSERT(newpp->p_szc == pszc);
5656 		/*
5657 		 * Clear migrate bit and relocate page
5658 		 */
5659 		PP_CLRMIGRATE(pp);
5660 		if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5661 			panic("page_migrate: page_relocate failed");
5662 		}
5663 		ASSERT(page_cnt * PAGESIZE == pgsz);
5664 
5665 		/*
5666 		 * Keep stats for number of pages migrated from and to
5667 		 * each lgroup
5668 		 */
5669 		lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5670 		lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5671 		/*
5672 		 * update the page_t array we were passed in and
5673 		 * unlink constituent pages of a large page.
5674 		 */
5675 		for (i = 0; i < page_cnt; ++i, ++pp) {
5676 			ASSERT(PAGE_EXCL(newpp));
5677 			ASSERT(newpp->p_szc == pszc);
5678 			ppa[i] = newpp;
5679 			pp = newpp;
5680 			page_sub(&newpp, pp);
5681 			page_downgrade(pp);
5682 		}
5683 		ASSERT(newpp == NULL);
5684 next:
5685 		addr += pgsz;
5686 		ppa += page_cnt;
5687 		npages -= page_cnt;
5688 	}
5689 }
5690 
5691 uint_t page_reclaim_maxcnt = 60; /* max total iterations */
5692 uint_t page_reclaim_nofree_maxcnt = 3; /* max iterations without progress */
5693 /*
5694  * Reclaim/reserve availrmem for npages.
5695  * If there is not enough memory start reaping seg, kmem caches.
5696  * Start pageout scanner (via page_needfree()).
5697  * Exit after ~ MAX_CNT s regardless of how much memory has been released.
5698  * Note: There is no guarantee that any availrmem will be freed as
5699  * this memory typically is locked (kernel heap) or reserved for swap.
5700  * Also due to memory fragmentation kmem allocator may not be able
5701  * to free any memory (single user allocated buffer will prevent
5702  * freeing slab or a page).
5703  */
5704 int
5705 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust)
5706 {
5707 	int	i = 0;
5708 	int	i_nofree = 0;
5709 	int	ret = 0;
5710 	pgcnt_t	deficit;
5711 	pgcnt_t old_availrmem = 0;
5712 
5713 	mutex_enter(&freemem_lock);
5714 	while (availrmem < tune.t_minarmem + npages + epages &&
5715 	    i++ < page_reclaim_maxcnt) {
5716 		/* ensure we made some progress in the last few iterations */
5717 		if (old_availrmem < availrmem) {
5718 			old_availrmem = availrmem;
5719 			i_nofree = 0;
5720 		} else if (i_nofree++ >= page_reclaim_nofree_maxcnt) {
5721 			break;
5722 		}
5723 
5724 		deficit = tune.t_minarmem + npages + epages - availrmem;
5725 		mutex_exit(&freemem_lock);
5726 		page_needfree(deficit);
5727 		kmem_reap();
5728 		delay(hz);
5729 		page_needfree(-(spgcnt_t)deficit);
5730 		mutex_enter(&freemem_lock);
5731 	}
5732 
5733 	if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
5734 		availrmem -= npages;
5735 		ret = 1;
5736 	}
5737 
5738 	mutex_exit(&freemem_lock);
5739 
5740 	return (ret);
5741 }
5742 
5743 /*
5744  * Search the memory segments to locate the desired page.  Within a
5745  * segment, pages increase linearly with one page structure per
5746  * physical page frame (size PAGESIZE).  The search begins
5747  * with the segment that was accessed last, to take advantage of locality.
5748  * If the hint misses, we start from the beginning of the sorted memseg list
5749  */
5750 
5751 
5752 /*
5753  * Some data structures for pfn to pp lookup.
5754  */
5755 ulong_t mhash_per_slot;
5756 struct memseg *memseg_hash[N_MEM_SLOTS];
5757 
5758 page_t *
5759 page_numtopp_nolock(pfn_t pfnum)
5760 {
5761 	struct memseg *seg;
5762 	page_t *pp;
5763 	vm_cpu_data_t *vc;
5764 
5765 	/*
5766 	 * We need to disable kernel preemption while referencing the
5767 	 * cpu_vm_data field in order to prevent us from being switched to
5768 	 * another cpu and trying to reference it after it has been freed.
5769 	 * This will keep us on cpu and prevent it from being removed while
5770 	 * we are still on it.
5771 	 *
5772 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5773 	 * which is being resued by DR who will flush those references
5774 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5775 	 */
5776 	kpreempt_disable();
5777 	vc = CPU->cpu_vm_data;
5778 	ASSERT(vc != NULL);
5779 
5780 	MEMSEG_STAT_INCR(nsearch);
5781 
5782 	/* Try last winner first */
5783 	if (((seg = vc->vc_pnum_memseg) != NULL) &&
5784 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5785 		MEMSEG_STAT_INCR(nlastwon);
5786 		pp = seg->pages + (pfnum - seg->pages_base);
5787 		if (pp->p_pagenum == pfnum) {
5788 			kpreempt_enable();
5789 			return ((page_t *)pp);
5790 		}
5791 	}
5792 
5793 	/* Else Try hash */
5794 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5795 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5796 		MEMSEG_STAT_INCR(nhashwon);
5797 		vc->vc_pnum_memseg = seg;
5798 		pp = seg->pages + (pfnum - seg->pages_base);
5799 		if (pp->p_pagenum == pfnum) {
5800 			kpreempt_enable();
5801 			return ((page_t *)pp);
5802 		}
5803 	}
5804 
5805 	/* Else Brute force */
5806 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5807 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5808 			vc->vc_pnum_memseg = seg;
5809 			pp = seg->pages + (pfnum - seg->pages_base);
5810 			if (pp->p_pagenum == pfnum) {
5811 				kpreempt_enable();
5812 				return ((page_t *)pp);
5813 			}
5814 		}
5815 	}
5816 	vc->vc_pnum_memseg = NULL;
5817 	kpreempt_enable();
5818 	MEMSEG_STAT_INCR(nnotfound);
5819 	return ((page_t *)NULL);
5820 
5821 }
5822 
5823 struct memseg *
5824 page_numtomemseg_nolock(pfn_t pfnum)
5825 {
5826 	struct memseg *seg;
5827 	page_t *pp;
5828 
5829 	/*
5830 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5831 	 * which is being resued by DR who will flush those references
5832 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5833 	 */
5834 	kpreempt_disable();
5835 	/* Try hash */
5836 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5837 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5838 		pp = seg->pages + (pfnum - seg->pages_base);
5839 		if (pp->p_pagenum == pfnum) {
5840 			kpreempt_enable();
5841 			return (seg);
5842 		}
5843 	}
5844 
5845 	/* Else Brute force */
5846 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5847 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5848 			pp = seg->pages + (pfnum - seg->pages_base);
5849 			if (pp->p_pagenum == pfnum) {
5850 				kpreempt_enable();
5851 				return (seg);
5852 			}
5853 		}
5854 	}
5855 	kpreempt_enable();
5856 	return ((struct memseg *)NULL);
5857 }
5858 
5859 /*
5860  * Given a page and a count return the page struct that is
5861  * n structs away from the current one in the global page
5862  * list.
5863  *
5864  * This function wraps to the first page upon
5865  * reaching the end of the memseg list.
5866  */
5867 page_t *
5868 page_nextn(page_t *pp, ulong_t n)
5869 {
5870 	struct memseg *seg;
5871 	page_t *ppn;
5872 	vm_cpu_data_t *vc;
5873 
5874 	/*
5875 	 * We need to disable kernel preemption while referencing the
5876 	 * cpu_vm_data field in order to prevent us from being switched to
5877 	 * another cpu and trying to reference it after it has been freed.
5878 	 * This will keep us on cpu and prevent it from being removed while
5879 	 * we are still on it.
5880 	 *
5881 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5882 	 * which is being resued by DR who will flush those references
5883 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5884 	 */
5885 	kpreempt_disable();
5886 	vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5887 
5888 	ASSERT(vc != NULL);
5889 
5890 	if (((seg = vc->vc_pnext_memseg) == NULL) ||
5891 	    (seg->pages_base == seg->pages_end) ||
5892 	    !(pp >= seg->pages && pp < seg->epages)) {
5893 
5894 		for (seg = memsegs; seg; seg = seg->next) {
5895 			if (pp >= seg->pages && pp < seg->epages)
5896 				break;
5897 		}
5898 
5899 		if (seg == NULL) {
5900 			/* Memory delete got in, return something valid. */
5901 			/* TODO: fix me. */
5902 			seg = memsegs;
5903 			pp = seg->pages;
5904 		}
5905 	}
5906 
5907 	/* check for wraparound - possible if n is large */
5908 	while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
5909 		n -= seg->epages - pp;
5910 		seg = seg->next;
5911 		if (seg == NULL)
5912 			seg = memsegs;
5913 		pp = seg->pages;
5914 	}
5915 	vc->vc_pnext_memseg = seg;
5916 	kpreempt_enable();
5917 	return (ppn);
5918 }
5919 
5920 /*
5921  * Initialize for a loop using page_next_scan_large().
5922  */
5923 page_t *
5924 page_next_scan_init(void **cookie)
5925 {
5926 	ASSERT(cookie != NULL);
5927 	*cookie = (void *)memsegs;
5928 	return ((page_t *)memsegs->pages);
5929 }
5930 
5931 /*
5932  * Return the next page in a scan of page_t's, assuming we want
5933  * to skip over sub-pages within larger page sizes.
5934  *
5935  * The cookie is used to keep track of the current memseg.
5936  */
5937 page_t *
5938 page_next_scan_large(
5939 	page_t		*pp,
5940 	ulong_t		*n,
5941 	void		**cookie)
5942 {
5943 	struct memseg	*seg = (struct memseg *)*cookie;
5944 	page_t		*new_pp;
5945 	ulong_t		cnt;
5946 	pfn_t		pfn;
5947 
5948 
5949 	/*
5950 	 * get the count of page_t's to skip based on the page size
5951 	 */
5952 	ASSERT(pp != NULL);
5953 	if (pp->p_szc == 0) {
5954 		cnt = 1;
5955 	} else {
5956 		pfn = page_pptonum(pp);
5957 		cnt = page_get_pagecnt(pp->p_szc);
5958 		cnt -= pfn & (cnt - 1);
5959 	}
5960 	*n += cnt;
5961 	new_pp = pp + cnt;
5962 
5963 	/*
5964 	 * Catch if we went past the end of the current memory segment. If so,
5965 	 * just move to the next segment with pages.
5966 	 */
5967 	if (new_pp >= seg->epages || seg->pages_base == seg->pages_end) {
5968 		do {
5969 			seg = seg->next;
5970 			if (seg == NULL)
5971 				seg = memsegs;
5972 		} while (seg->pages_base == seg->pages_end);
5973 		new_pp = seg->pages;
5974 		*cookie = (void *)seg;
5975 	}
5976 
5977 	return (new_pp);
5978 }
5979 
5980 
5981 /*
5982  * Returns next page in list. Note: this function wraps
5983  * to the first page in the list upon reaching the end
5984  * of the list. Callers should be aware of this fact.
5985  */
5986 
5987 /* We should change this be a #define */
5988 
5989 page_t *
5990 page_next(page_t *pp)
5991 {
5992 	return (page_nextn(pp, 1));
5993 }
5994 
5995 page_t *
5996 page_first()
5997 {
5998 	return ((page_t *)memsegs->pages);
5999 }
6000 
6001 
6002 /*
6003  * This routine is called at boot with the initial memory configuration
6004  * and when memory is added or removed.
6005  */
6006 void
6007 build_pfn_hash()
6008 {
6009 	pfn_t cur;
6010 	pgcnt_t index;
6011 	struct memseg *pseg;
6012 	int	i;
6013 
6014 	/*
6015 	 * Clear memseg_hash array.
6016 	 * Since memory add/delete is designed to operate concurrently
6017 	 * with normal operation, the hash rebuild must be able to run
6018 	 * concurrently with page_numtopp_nolock(). To support this
6019 	 * functionality, assignments to memseg_hash array members must
6020 	 * be done atomically.
6021 	 *
6022 	 * NOTE: bzero() does not currently guarantee this for kernel
6023 	 * threads, and cannot be used here.
6024 	 */
6025 	for (i = 0; i < N_MEM_SLOTS; i++)
6026 		memseg_hash[i] = NULL;
6027 
6028 	hat_kpm_mseghash_clear(N_MEM_SLOTS);
6029 
6030 	/*
6031 	 * Physmax is the last valid pfn.
6032 	 */
6033 	mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6034 	for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6035 		index = MEMSEG_PFN_HASH(pseg->pages_base);
6036 		cur = pseg->pages_base;
6037 		do {
6038 			if (index >= N_MEM_SLOTS)
6039 				index = MEMSEG_PFN_HASH(cur);
6040 
6041 			if (memseg_hash[index] == NULL ||
6042 			    memseg_hash[index]->pages_base > pseg->pages_base) {
6043 				memseg_hash[index] = pseg;
6044 				hat_kpm_mseghash_update(index, pseg);
6045 			}
6046 			cur += mhash_per_slot;
6047 			index++;
6048 		} while (cur < pseg->pages_end);
6049 	}
6050 }
6051 
6052 /*
6053  * Return the pagenum for the pp
6054  */
6055 pfn_t
6056 page_pptonum(page_t *pp)
6057 {
6058 	return (pp->p_pagenum);
6059 }
6060 
6061 /*
6062  * interface to the referenced and modified etc bits
6063  * in the PSM part of the page struct
6064  * when no locking is desired.
6065  */
6066 void
6067 page_set_props(page_t *pp, uint_t flags)
6068 {
6069 	ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6070 	pp->p_nrm |= (uchar_t)flags;
6071 }
6072 
6073 void
6074 page_clr_all_props(page_t *pp)
6075 {
6076 	pp->p_nrm = 0;
6077 }
6078 
6079 /*
6080  * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6081  */
6082 int
6083 page_clear_lck_cow(page_t *pp, int adjust)
6084 {
6085 	int	f_amount;
6086 
6087 	ASSERT(PAGE_EXCL(pp));
6088 
6089 	/*
6090 	 * The page_struct_lock need not be acquired here since
6091 	 * we require the caller hold the page exclusively locked.
6092 	 */
6093 	f_amount = 0;
6094 	if (pp->p_lckcnt) {
6095 		f_amount = 1;
6096 		pp->p_lckcnt = 0;
6097 	}
6098 	if (pp->p_cowcnt) {
6099 		f_amount += pp->p_cowcnt;
6100 		pp->p_cowcnt = 0;
6101 	}
6102 
6103 	if (adjust && f_amount) {
6104 		mutex_enter(&freemem_lock);
6105 		availrmem += f_amount;
6106 		mutex_exit(&freemem_lock);
6107 	}
6108 
6109 	return (f_amount);
6110 }
6111 
6112 /*
6113  * The following functions is called from free_vp_pages()
6114  * for an inexact estimate of a newly free'd page...
6115  */
6116 ulong_t
6117 page_share_cnt(page_t *pp)
6118 {
6119 	return (hat_page_getshare(pp));
6120 }
6121 
6122 int
6123 page_isshared(page_t *pp)
6124 {
6125 	return (hat_page_checkshare(pp, 1));
6126 }
6127 
6128 int
6129 page_isfree(page_t *pp)
6130 {
6131 	return (PP_ISFREE(pp));
6132 }
6133 
6134 int
6135 page_isref(page_t *pp)
6136 {
6137 	return (hat_page_getattr(pp, P_REF));
6138 }
6139 
6140 int
6141 page_ismod(page_t *pp)
6142 {
6143 	return (hat_page_getattr(pp, P_MOD));
6144 }
6145 
6146 /*
6147  * The following code all currently relates to the page capture logic:
6148  *
6149  * This logic is used for cases where there is a desire to claim a certain
6150  * physical page in the system for the caller.  As it may not be possible
6151  * to capture the page immediately, the p_toxic bits are used in the page
6152  * structure to indicate that someone wants to capture this page.  When the
6153  * page gets unlocked, the toxic flag will be noted and an attempt to capture
6154  * the page will be made.  If it is successful, the original callers callback
6155  * will be called with the page to do with it what they please.
6156  *
6157  * There is also an async thread which wakes up to attempt to capture
6158  * pages occasionally which have the capture bit set.  All of the pages which
6159  * need to be captured asynchronously have been inserted into the
6160  * page_capture_hash and thus this thread walks that hash list.  Items in the
6161  * hash have an expiration time so this thread handles that as well by removing
6162  * the item from the hash if it has expired.
6163  *
6164  * Some important things to note are:
6165  * - if the PR_CAPTURE bit is set on a page, then the page is in the
6166  *   page_capture_hash.  The page_capture_hash_head.pchh_mutex is needed
6167  *   to set and clear this bit, and while the lock is held is the only time
6168  *   you can add or remove an entry from the hash.
6169  * - the PR_CAPTURE bit can only be set and cleared while holding the
6170  *   page_capture_hash_head.pchh_mutex
6171  * - the t_flag field of the thread struct is used with the T_CAPTURING
6172  *   flag to prevent recursion while dealing with large pages.
6173  * - pages which need to be retired never expire on the page_capture_hash.
6174  */
6175 
6176 static void page_capture_thread(void);
6177 static kthread_t *pc_thread_id;
6178 kcondvar_t pc_cv;
6179 static kmutex_t pc_thread_mutex;
6180 static clock_t pc_thread_shortwait;
6181 static clock_t pc_thread_longwait;
6182 static int pc_thread_retry;
6183 
6184 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
6185 
6186 /* Note that this is a circular linked list */
6187 typedef struct page_capture_hash_bucket {
6188 	page_t *pp;
6189 	uchar_t szc;
6190 	uchar_t pri;
6191 	uint_t flags;
6192 	clock_t expires;	/* lbolt at which this request expires. */
6193 	void *datap;		/* Cached data passed in for callback */
6194 	struct page_capture_hash_bucket *next;
6195 	struct page_capture_hash_bucket *prev;
6196 } page_capture_hash_bucket_t;
6197 
6198 #define	PC_PRI_HI	0	/* capture now */
6199 #define	PC_PRI_LO	1	/* capture later */
6200 #define	PC_NUM_PRI	2
6201 
6202 #define	PAGE_CAPTURE_PRIO(pp) (PP_ISRAF(pp) ? PC_PRI_LO : PC_PRI_HI)
6203 
6204 
6205 /*
6206  * Each hash bucket will have it's own mutex and two lists which are:
6207  * active (0):	represents requests which have not been processed by
6208  *		the page_capture async thread yet.
6209  * walked (1):	represents requests which have been processed by the
6210  *		page_capture async thread within it's given walk of this bucket.
6211  *
6212  * These are all needed so that we can synchronize all async page_capture
6213  * events.  When the async thread moves to a new bucket, it will append the
6214  * walked list to the active list and walk each item one at a time, moving it
6215  * from the active list to the walked list.  Thus if there is an async request
6216  * outstanding for a given page, it will always be in one of the two lists.
6217  * New requests will always be added to the active list.
6218  * If we were not able to capture a page before the request expired, we'd free
6219  * up the request structure which would indicate to page_capture that there is
6220  * no longer a need for the given page, and clear the PR_CAPTURE flag if
6221  * possible.
6222  */
6223 typedef struct page_capture_hash_head {
6224 	kmutex_t pchh_mutex;
6225 	uint_t num_pages[PC_NUM_PRI];
6226 	page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
6227 } page_capture_hash_head_t;
6228 
6229 #ifdef DEBUG
6230 #define	NUM_PAGE_CAPTURE_BUCKETS 4
6231 #else
6232 #define	NUM_PAGE_CAPTURE_BUCKETS 64
6233 #endif
6234 
6235 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
6236 
6237 /* for now use a very simple hash based upon the size of a page struct */
6238 #define	PAGE_CAPTURE_HASH(pp)	\
6239 	((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
6240 
6241 extern pgcnt_t swapfs_minfree;
6242 
6243 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
6244 
6245 /*
6246  * a callback function is required for page capture requests.
6247  */
6248 void
6249 page_capture_register_callback(uint_t index, clock_t duration,
6250     int (*cb_func)(page_t *, void *, uint_t))
6251 {
6252 	ASSERT(pc_cb[index].cb_active == 0);
6253 	ASSERT(cb_func != NULL);
6254 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6255 	pc_cb[index].duration = duration;
6256 	pc_cb[index].cb_func = cb_func;
6257 	pc_cb[index].cb_active = 1;
6258 	rw_exit(&pc_cb[index].cb_rwlock);
6259 }
6260 
6261 void
6262 page_capture_unregister_callback(uint_t index)
6263 {
6264 	int i, j;
6265 	struct page_capture_hash_bucket *bp1;
6266 	struct page_capture_hash_bucket *bp2;
6267 	struct page_capture_hash_bucket *head = NULL;
6268 	uint_t flags = (1 << index);
6269 
6270 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6271 	ASSERT(pc_cb[index].cb_active == 1);
6272 	pc_cb[index].duration = 0;	/* Paranoia */
6273 	pc_cb[index].cb_func = NULL;	/* Paranoia */
6274 	pc_cb[index].cb_active = 0;
6275 	rw_exit(&pc_cb[index].cb_rwlock);
6276 
6277 	/*
6278 	 * Just move all the entries to a private list which we can walk
6279 	 * through without the need to hold any locks.
6280 	 * No more requests can get added to the hash lists for this consumer
6281 	 * as the cb_active field for the callback has been cleared.
6282 	 */
6283 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6284 		mutex_enter(&page_capture_hash[i].pchh_mutex);
6285 		for (j = 0; j < 2; j++) {
6286 			bp1 = page_capture_hash[i].lists[j].next;
6287 			/* walk through all but first (sentinel) element */
6288 			while (bp1 != &page_capture_hash[i].lists[j]) {
6289 				bp2 = bp1;
6290 				if (bp2->flags & flags) {
6291 					bp1 = bp2->next;
6292 					bp1->prev = bp2->prev;
6293 					bp2->prev->next = bp1;
6294 					bp2->next = head;
6295 					head = bp2;
6296 					/*
6297 					 * Clear the PR_CAPTURE bit as we
6298 					 * hold appropriate locks here.
6299 					 */
6300 					page_clrtoxic(head->pp, PR_CAPTURE);
6301 					page_capture_hash[i].
6302 					    num_pages[bp2->pri]--;
6303 					continue;
6304 				}
6305 				bp1 = bp1->next;
6306 			}
6307 		}
6308 		mutex_exit(&page_capture_hash[i].pchh_mutex);
6309 	}
6310 
6311 	while (head != NULL) {
6312 		bp1 = head;
6313 		head = head->next;
6314 		kmem_free(bp1, sizeof (*bp1));
6315 	}
6316 }
6317 
6318 
6319 /*
6320  * Find pp in the active list and move it to the walked list if it
6321  * exists.
6322  * Note that most often pp should be at the front of the active list
6323  * as it is currently used and thus there is no other sort of optimization
6324  * being done here as this is a linked list data structure.
6325  * Returns 1 on successful move or 0 if page could not be found.
6326  */
6327 static int
6328 page_capture_move_to_walked(page_t *pp)
6329 {
6330 	page_capture_hash_bucket_t *bp;
6331 	int index;
6332 
6333 	index = PAGE_CAPTURE_HASH(pp);
6334 
6335 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6336 	bp = page_capture_hash[index].lists[0].next;
6337 	while (bp != &page_capture_hash[index].lists[0]) {
6338 		if (bp->pp == pp) {
6339 			/* Remove from old list */
6340 			bp->next->prev = bp->prev;
6341 			bp->prev->next = bp->next;
6342 
6343 			/* Add to new list */
6344 			bp->next = page_capture_hash[index].lists[1].next;
6345 			bp->prev = &page_capture_hash[index].lists[1];
6346 			page_capture_hash[index].lists[1].next = bp;
6347 			bp->next->prev = bp;
6348 
6349 			/*
6350 			 * There is a small probability of page on a free
6351 			 * list being retired while being allocated
6352 			 * and before P_RAF is set on it. The page may
6353 			 * end up marked as high priority request instead
6354 			 * of low priority request.
6355 			 * If P_RAF page is not marked as low priority request
6356 			 * change it to low priority request.
6357 			 */
6358 			page_capture_hash[index].num_pages[bp->pri]--;
6359 			bp->pri = PAGE_CAPTURE_PRIO(pp);
6360 			page_capture_hash[index].num_pages[bp->pri]++;
6361 			mutex_exit(&page_capture_hash[index].pchh_mutex);
6362 			return (1);
6363 		}
6364 		bp = bp->next;
6365 	}
6366 	mutex_exit(&page_capture_hash[index].pchh_mutex);
6367 	return (0);
6368 }
6369 
6370 /*
6371  * Add a new entry to the page capture hash.  The only case where a new
6372  * entry is not added is when the page capture consumer is no longer registered.
6373  * In this case, we'll silently not add the page to the hash.  We know that
6374  * page retire will always be registered for the case where we are currently
6375  * unretiring a page and thus there are no conflicts.
6376  */
6377 static void
6378 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
6379 {
6380 	page_capture_hash_bucket_t *bp1;
6381 	page_capture_hash_bucket_t *bp2;
6382 	int index;
6383 	int cb_index;
6384 	int i;
6385 	uchar_t pri;
6386 #ifdef DEBUG
6387 	page_capture_hash_bucket_t *tp1;
6388 	int l;
6389 #endif
6390 
6391 	ASSERT(!(flags & CAPTURE_ASYNC));
6392 
6393 	bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
6394 
6395 	bp1->pp = pp;
6396 	bp1->szc = szc;
6397 	bp1->flags = flags;
6398 	bp1->datap = datap;
6399 
6400 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6401 		if ((flags >> cb_index) & 1) {
6402 			break;
6403 		}
6404 	}
6405 
6406 	ASSERT(cb_index != PC_NUM_CALLBACKS);
6407 
6408 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6409 	if (pc_cb[cb_index].cb_active) {
6410 		if (pc_cb[cb_index].duration == -1) {
6411 			bp1->expires = (clock_t)-1;
6412 		} else {
6413 			bp1->expires = ddi_get_lbolt() +
6414 			    pc_cb[cb_index].duration;
6415 		}
6416 	} else {
6417 		/* There's no callback registered so don't add to the hash */
6418 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6419 		kmem_free(bp1, sizeof (*bp1));
6420 		return;
6421 	}
6422 
6423 	index = PAGE_CAPTURE_HASH(pp);
6424 
6425 	/*
6426 	 * Only allow capture flag to be modified under this mutex.
6427 	 * Prevents multiple entries for same page getting added.
6428 	 */
6429 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6430 
6431 	/*
6432 	 * if not already on the hash, set capture bit and add to the hash
6433 	 */
6434 	if (!(pp->p_toxic & PR_CAPTURE)) {
6435 #ifdef DEBUG
6436 		/* Check for duplicate entries */
6437 		for (l = 0; l < 2; l++) {
6438 			tp1 = page_capture_hash[index].lists[l].next;
6439 			while (tp1 != &page_capture_hash[index].lists[l]) {
6440 				if (tp1->pp == pp) {
6441 					panic("page pp 0x%p already on hash "
6442 					    "at 0x%p\n",
6443 					    (void *)pp, (void *)tp1);
6444 				}
6445 				tp1 = tp1->next;
6446 			}
6447 		}
6448 
6449 #endif
6450 		page_settoxic(pp, PR_CAPTURE);
6451 		pri = PAGE_CAPTURE_PRIO(pp);
6452 		bp1->pri = pri;
6453 		bp1->next = page_capture_hash[index].lists[0].next;
6454 		bp1->prev = &page_capture_hash[index].lists[0];
6455 		bp1->next->prev = bp1;
6456 		page_capture_hash[index].lists[0].next = bp1;
6457 		page_capture_hash[index].num_pages[pri]++;
6458 		if (flags & CAPTURE_RETIRE) {
6459 			page_retire_incr_pend_count(datap);
6460 		}
6461 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6462 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6463 		cv_signal(&pc_cv);
6464 		return;
6465 	}
6466 
6467 	/*
6468 	 * A page retire request will replace any other request.
6469 	 * A second physmem request which is for a different process than
6470 	 * the currently registered one will be dropped as there is
6471 	 * no way to hold the private data for both calls.
6472 	 * In the future, once there are more callers, this will have to
6473 	 * be worked out better as there needs to be private storage for
6474 	 * at least each type of caller (maybe have datap be an array of
6475 	 * *void's so that we can index based upon callers index).
6476 	 */
6477 
6478 	/* walk hash list to update expire time */
6479 	for (i = 0; i < 2; i++) {
6480 		bp2 = page_capture_hash[index].lists[i].next;
6481 		while (bp2 != &page_capture_hash[index].lists[i]) {
6482 			if (bp2->pp == pp) {
6483 				if (flags & CAPTURE_RETIRE) {
6484 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6485 						page_retire_incr_pend_count(
6486 						    datap);
6487 						bp2->flags = flags;
6488 						bp2->expires = bp1->expires;
6489 						bp2->datap = datap;
6490 					}
6491 				} else {
6492 					ASSERT(flags & CAPTURE_PHYSMEM);
6493 					if (!(bp2->flags & CAPTURE_RETIRE) &&
6494 					    (datap == bp2->datap)) {
6495 						bp2->expires = bp1->expires;
6496 					}
6497 				}
6498 				mutex_exit(&page_capture_hash[index].
6499 				    pchh_mutex);
6500 				rw_exit(&pc_cb[cb_index].cb_rwlock);
6501 				kmem_free(bp1, sizeof (*bp1));
6502 				return;
6503 			}
6504 			bp2 = bp2->next;
6505 		}
6506 	}
6507 
6508 	/*
6509 	 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6510 	 * and thus it either has to be set or not set and can't change
6511 	 * while holding the mutex above.
6512 	 */
6513 	panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n",
6514 	    (void *)pp);
6515 }
6516 
6517 /*
6518  * We have a page in our hands, lets try and make it ours by turning
6519  * it into a clean page like it had just come off the freelists.
6520  *
6521  * Returns 0 on success, with the page still EXCL locked.
6522  * On failure, the page will be unlocked, and returns EAGAIN
6523  */
6524 static int
6525 page_capture_clean_page(page_t *pp)
6526 {
6527 	page_t *newpp;
6528 	int skip_unlock = 0;
6529 	spgcnt_t count;
6530 	page_t *tpp;
6531 	int ret = 0;
6532 	int extra;
6533 
6534 	ASSERT(PAGE_EXCL(pp));
6535 	ASSERT(!PP_RETIRED(pp));
6536 	ASSERT(curthread->t_flag & T_CAPTURING);
6537 
6538 	if (PP_ISFREE(pp)) {
6539 		if (!page_reclaim(pp, NULL)) {
6540 			skip_unlock = 1;
6541 			ret = EAGAIN;
6542 			goto cleanup;
6543 		}
6544 		ASSERT(pp->p_szc == 0);
6545 		if (pp->p_vnode != NULL) {
6546 			/*
6547 			 * Since this page came from the
6548 			 * cachelist, we must destroy the
6549 			 * old vnode association.
6550 			 */
6551 			page_hashout(pp, NULL);
6552 		}
6553 		goto cleanup;
6554 	}
6555 
6556 	/*
6557 	 * If we know page_relocate will fail, skip it
6558 	 * It could still fail due to a UE on another page but we
6559 	 * can't do anything about that.
6560 	 */
6561 	if (pp->p_toxic & PR_UE) {
6562 		goto skip_relocate;
6563 	}
6564 
6565 	/*
6566 	 * It's possible that pages can not have a vnode as fsflush comes
6567 	 * through and cleans up these pages.  It's ugly but that's how it is.
6568 	 */
6569 	if (pp->p_vnode == NULL) {
6570 		goto skip_relocate;
6571 	}
6572 
6573 	/*
6574 	 * Page was not free, so lets try to relocate it.
6575 	 * page_relocate only works with root pages, so if this is not a root
6576 	 * page, we need to demote it to try and relocate it.
6577 	 * Unfortunately this is the best we can do right now.
6578 	 */
6579 	newpp = NULL;
6580 	if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
6581 		if (page_try_demote_pages(pp) == 0) {
6582 			ret = EAGAIN;
6583 			goto cleanup;
6584 		}
6585 	}
6586 	ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
6587 	if (ret == 0) {
6588 		page_t *npp;
6589 		/* unlock the new page(s) */
6590 		while (count-- > 0) {
6591 			ASSERT(newpp != NULL);
6592 			npp = newpp;
6593 			page_sub(&newpp, npp);
6594 			page_unlock(npp);
6595 		}
6596 		ASSERT(newpp == NULL);
6597 		/*
6598 		 * Check to see if the page we have is too large.
6599 		 * If so, demote it freeing up the extra pages.
6600 		 */
6601 		if (pp->p_szc > 0) {
6602 			/* For now demote extra pages to szc == 0 */
6603 			extra = page_get_pagecnt(pp->p_szc) - 1;
6604 			while (extra > 0) {
6605 				tpp = pp->p_next;
6606 				page_sub(&pp, tpp);
6607 				tpp->p_szc = 0;
6608 				page_free(tpp, 1);
6609 				extra--;
6610 			}
6611 			/* Make sure to set our page to szc 0 as well */
6612 			ASSERT(pp->p_next == pp && pp->p_prev == pp);
6613 			pp->p_szc = 0;
6614 		}
6615 		goto cleanup;
6616 	} else if (ret == EIO) {
6617 		ret = EAGAIN;
6618 		goto cleanup;
6619 	} else {
6620 		/*
6621 		 * Need to reset return type as we failed to relocate the page
6622 		 * but that does not mean that some of the next steps will not
6623 		 * work.
6624 		 */
6625 		ret = 0;
6626 	}
6627 
6628 skip_relocate:
6629 
6630 	if (pp->p_szc > 0) {
6631 		if (page_try_demote_pages(pp) == 0) {
6632 			ret = EAGAIN;
6633 			goto cleanup;
6634 		}
6635 	}
6636 
6637 	ASSERT(pp->p_szc == 0);
6638 
6639 	if (hat_ismod(pp)) {
6640 		ret = EAGAIN;
6641 		goto cleanup;
6642 	}
6643 	if (PP_ISKAS(pp)) {
6644 		ret = EAGAIN;
6645 		goto cleanup;
6646 	}
6647 	if (pp->p_lckcnt || pp->p_cowcnt) {
6648 		ret = EAGAIN;
6649 		goto cleanup;
6650 	}
6651 
6652 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
6653 	ASSERT(!hat_page_is_mapped(pp));
6654 
6655 	if (hat_ismod(pp)) {
6656 		/*
6657 		 * This is a semi-odd case as the page is now modified but not
6658 		 * mapped as we just unloaded the mappings above.
6659 		 */
6660 		ret = EAGAIN;
6661 		goto cleanup;
6662 	}
6663 	if (pp->p_vnode != NULL) {
6664 		page_hashout(pp, NULL);
6665 	}
6666 
6667 	/*
6668 	 * At this point, the page should be in a clean state and
6669 	 * we can do whatever we want with it.
6670 	 */
6671 
6672 cleanup:
6673 	if (ret != 0) {
6674 		if (!skip_unlock) {
6675 			page_unlock(pp);
6676 		}
6677 	} else {
6678 		ASSERT(pp->p_szc == 0);
6679 		ASSERT(PAGE_EXCL(pp));
6680 
6681 		pp->p_next = pp;
6682 		pp->p_prev = pp;
6683 	}
6684 	return (ret);
6685 }
6686 
6687 /*
6688  * Various callers of page_trycapture() can have different restrictions upon
6689  * what memory they have access to.
6690  * Returns 0 on success, with the following error codes on failure:
6691  *      EPERM - The requested page is long term locked, and thus repeated
6692  *              requests to capture this page will likely fail.
6693  *      ENOMEM - There was not enough free memory in the system to safely
6694  *              map the requested page.
6695  *      ENOENT - The requested page was inside the kernel cage, and the
6696  *              PHYSMEM_CAGE flag was not set.
6697  */
6698 int
6699 page_capture_pre_checks(page_t *pp, uint_t flags)
6700 {
6701 	ASSERT(pp != NULL);
6702 
6703 #if defined(__sparc)
6704 	if (pp->p_vnode == &promvp) {
6705 		return (EPERM);
6706 	}
6707 
6708 	if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) &&
6709 	    (flags & CAPTURE_PHYSMEM)) {
6710 		return (ENOENT);
6711 	}
6712 
6713 	if (PP_ISNORELOCKERNEL(pp)) {
6714 		return (EPERM);
6715 	}
6716 #else
6717 	if (PP_ISKAS(pp)) {
6718 		return (EPERM);
6719 	}
6720 #endif /* __sparc */
6721 
6722 	/* only physmem currently has the restrictions checked below */
6723 	if (!(flags & CAPTURE_PHYSMEM)) {
6724 		return (0);
6725 	}
6726 
6727 	if (availrmem < swapfs_minfree) {
6728 		/*
6729 		 * We won't try to capture this page as we are
6730 		 * running low on memory.
6731 		 */
6732 		return (ENOMEM);
6733 	}
6734 	return (0);
6735 }
6736 
6737 /*
6738  * Once we have a page in our mits, go ahead and complete the capture
6739  * operation.
6740  * Returns 1 on failure where page is no longer needed
6741  * Returns 0 on success
6742  * Returns -1 if there was a transient failure.
6743  * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6744  */
6745 int
6746 page_capture_take_action(page_t *pp, uint_t flags, void *datap)
6747 {
6748 	int cb_index;
6749 	int ret = 0;
6750 	page_capture_hash_bucket_t *bp1;
6751 	page_capture_hash_bucket_t *bp2;
6752 	int index;
6753 	int found = 0;
6754 	int i;
6755 
6756 	ASSERT(PAGE_EXCL(pp));
6757 	ASSERT(curthread->t_flag & T_CAPTURING);
6758 
6759 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6760 		if ((flags >> cb_index) & 1) {
6761 			break;
6762 		}
6763 	}
6764 	ASSERT(cb_index < PC_NUM_CALLBACKS);
6765 
6766 	/*
6767 	 * Remove the entry from the page_capture hash, but don't free it yet
6768 	 * as we may need to put it back.
6769 	 * Since we own the page at this point in time, we should find it
6770 	 * in the hash if this is an ASYNC call.  If we don't it's likely
6771 	 * that the page_capture_async() thread decided that this request
6772 	 * had expired, in which case we just continue on.
6773 	 */
6774 	if (flags & CAPTURE_ASYNC) {
6775 
6776 		index = PAGE_CAPTURE_HASH(pp);
6777 
6778 		mutex_enter(&page_capture_hash[index].pchh_mutex);
6779 		for (i = 0; i < 2 && !found; i++) {
6780 			bp1 = page_capture_hash[index].lists[i].next;
6781 			while (bp1 != &page_capture_hash[index].lists[i]) {
6782 				if (bp1->pp == pp) {
6783 					bp1->next->prev = bp1->prev;
6784 					bp1->prev->next = bp1->next;
6785 					page_capture_hash[index].
6786 					    num_pages[bp1->pri]--;
6787 					page_clrtoxic(pp, PR_CAPTURE);
6788 					found = 1;
6789 					break;
6790 				}
6791 				bp1 = bp1->next;
6792 			}
6793 		}
6794 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6795 	}
6796 
6797 	/* Synchronize with the unregister func. */
6798 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6799 	if (!pc_cb[cb_index].cb_active) {
6800 		page_free(pp, 1);
6801 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6802 		if (found) {
6803 			kmem_free(bp1, sizeof (*bp1));
6804 		}
6805 		return (1);
6806 	}
6807 
6808 	/*
6809 	 * We need to remove the entry from the page capture hash and turn off
6810 	 * the PR_CAPTURE bit before calling the callback.  We'll need to cache
6811 	 * the entry here, and then based upon the return value, cleanup
6812 	 * appropriately or re-add it to the hash, making sure that someone else
6813 	 * hasn't already done so.
6814 	 * It should be rare for the callback to fail and thus it's ok for
6815 	 * the failure path to be a bit complicated as the success path is
6816 	 * cleaner and the locking rules are easier to follow.
6817 	 */
6818 
6819 	ret = pc_cb[cb_index].cb_func(pp, datap, flags);
6820 
6821 	rw_exit(&pc_cb[cb_index].cb_rwlock);
6822 
6823 	/*
6824 	 * If this was an ASYNC request, we need to cleanup the hash if the
6825 	 * callback was successful or if the request was no longer valid.
6826 	 * For non-ASYNC requests, we return failure to map and the caller
6827 	 * will take care of adding the request to the hash.
6828 	 * Note also that the callback itself is responsible for the page
6829 	 * at this point in time in terms of locking ...  The most common
6830 	 * case for the failure path should just be a page_free.
6831 	 */
6832 	if (ret >= 0) {
6833 		if (found) {
6834 			if (bp1->flags & CAPTURE_RETIRE) {
6835 				page_retire_decr_pend_count(datap);
6836 			}
6837 			kmem_free(bp1, sizeof (*bp1));
6838 		}
6839 		return (ret);
6840 	}
6841 	if (!found) {
6842 		return (ret);
6843 	}
6844 
6845 	ASSERT(flags & CAPTURE_ASYNC);
6846 
6847 	/*
6848 	 * Check for expiration time first as we can just free it up if it's
6849 	 * expired.
6850 	 */
6851 	if (ddi_get_lbolt() > bp1->expires && bp1->expires != -1) {
6852 		kmem_free(bp1, sizeof (*bp1));
6853 		return (ret);
6854 	}
6855 
6856 	/*
6857 	 * The callback failed and there used to be an entry in the hash for
6858 	 * this page, so we need to add it back to the hash.
6859 	 */
6860 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6861 	if (!(pp->p_toxic & PR_CAPTURE)) {
6862 		/* just add bp1 back to head of walked list */
6863 		page_settoxic(pp, PR_CAPTURE);
6864 		bp1->next = page_capture_hash[index].lists[1].next;
6865 		bp1->prev = &page_capture_hash[index].lists[1];
6866 		bp1->next->prev = bp1;
6867 		bp1->pri = PAGE_CAPTURE_PRIO(pp);
6868 		page_capture_hash[index].lists[1].next = bp1;
6869 		page_capture_hash[index].num_pages[bp1->pri]++;
6870 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6871 		return (ret);
6872 	}
6873 
6874 	/*
6875 	 * Otherwise there was a new capture request added to list
6876 	 * Need to make sure that our original data is represented if
6877 	 * appropriate.
6878 	 */
6879 	for (i = 0; i < 2; i++) {
6880 		bp2 = page_capture_hash[index].lists[i].next;
6881 		while (bp2 != &page_capture_hash[index].lists[i]) {
6882 			if (bp2->pp == pp) {
6883 				if (bp1->flags & CAPTURE_RETIRE) {
6884 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6885 						bp2->szc = bp1->szc;
6886 						bp2->flags = bp1->flags;
6887 						bp2->expires = bp1->expires;
6888 						bp2->datap = bp1->datap;
6889 					}
6890 				} else {
6891 					ASSERT(bp1->flags & CAPTURE_PHYSMEM);
6892 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6893 						bp2->szc = bp1->szc;
6894 						bp2->flags = bp1->flags;
6895 						bp2->expires = bp1->expires;
6896 						bp2->datap = bp1->datap;
6897 					}
6898 				}
6899 				page_capture_hash[index].num_pages[bp2->pri]--;
6900 				bp2->pri = PAGE_CAPTURE_PRIO(pp);
6901 				page_capture_hash[index].num_pages[bp2->pri]++;
6902 				mutex_exit(&page_capture_hash[index].
6903 				    pchh_mutex);
6904 				kmem_free(bp1, sizeof (*bp1));
6905 				return (ret);
6906 			}
6907 			bp2 = bp2->next;
6908 		}
6909 	}
6910 	panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp);
6911 	/*NOTREACHED*/
6912 }
6913 
6914 /*
6915  * Try to capture the given page for the caller specified in the flags
6916  * parameter.  The page will either be captured and handed over to the
6917  * appropriate callback, or will be queued up in the page capture hash
6918  * to be captured asynchronously.
6919  * If the current request is due to an async capture, the page must be
6920  * exclusively locked before calling this function.
6921  * Currently szc must be 0 but in the future this should be expandable to
6922  * other page sizes.
6923  * Returns 0 on success, with the following error codes on failure:
6924  *      EPERM - The requested page is long term locked, and thus repeated
6925  *              requests to capture this page will likely fail.
6926  *      ENOMEM - There was not enough free memory in the system to safely
6927  *              map the requested page.
6928  *      ENOENT - The requested page was inside the kernel cage, and the
6929  *              CAPTURE_GET_CAGE flag was not set.
6930  *	EAGAIN - The requested page could not be capturead at this point in
6931  *		time but future requests will likely work.
6932  *	EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
6933  *		was not set.
6934  */
6935 int
6936 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
6937 {
6938 	int ret;
6939 	int cb_index;
6940 
6941 	if (flags & CAPTURE_ASYNC) {
6942 		ASSERT(PAGE_EXCL(pp));
6943 		goto async;
6944 	}
6945 
6946 	/* Make sure there's enough availrmem ... */
6947 	ret = page_capture_pre_checks(pp, flags);
6948 	if (ret != 0) {
6949 		return (ret);
6950 	}
6951 
6952 	if (!page_trylock(pp, SE_EXCL)) {
6953 		for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6954 			if ((flags >> cb_index) & 1) {
6955 				break;
6956 			}
6957 		}
6958 		ASSERT(cb_index < PC_NUM_CALLBACKS);
6959 		ret = EAGAIN;
6960 		/* Special case for retired pages */
6961 		if (PP_RETIRED(pp)) {
6962 			if (flags & CAPTURE_GET_RETIRED) {
6963 				if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
6964 					/*
6965 					 * Need to set capture bit and add to
6966 					 * hash so that the page will be
6967 					 * retired when freed.
6968 					 */
6969 					page_capture_add_hash(pp, szc,
6970 					    CAPTURE_RETIRE, NULL);
6971 					ret = 0;
6972 					goto own_page;
6973 				}
6974 			} else {
6975 				return (EBUSY);
6976 			}
6977 		}
6978 		page_capture_add_hash(pp, szc, flags, datap);
6979 		return (ret);
6980 	}
6981 
6982 async:
6983 	ASSERT(PAGE_EXCL(pp));
6984 
6985 	/* Need to check for physmem async requests that availrmem is sane */
6986 	if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
6987 	    (CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
6988 	    (availrmem < swapfs_minfree)) {
6989 		page_unlock(pp);
6990 		return (ENOMEM);
6991 	}
6992 
6993 	ret = page_capture_clean_page(pp);
6994 
6995 	if (ret != 0) {
6996 		/* We failed to get the page, so lets add it to the hash */
6997 		if (!(flags & CAPTURE_ASYNC)) {
6998 			page_capture_add_hash(pp, szc, flags, datap);
6999 		}
7000 		return (ret);
7001 	}
7002 
7003 own_page:
7004 	ASSERT(PAGE_EXCL(pp));
7005 	ASSERT(pp->p_szc == 0);
7006 
7007 	/* Call the callback */
7008 	ret = page_capture_take_action(pp, flags, datap);
7009 
7010 	if (ret == 0) {
7011 		return (0);
7012 	}
7013 
7014 	/*
7015 	 * Note that in the failure cases from page_capture_take_action, the
7016 	 * EXCL lock will have already been dropped.
7017 	 */
7018 	if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
7019 		page_capture_add_hash(pp, szc, flags, datap);
7020 	}
7021 	return (EAGAIN);
7022 }
7023 
7024 int
7025 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7026 {
7027 	int ret;
7028 
7029 	curthread->t_flag |= T_CAPTURING;
7030 	ret = page_itrycapture(pp, szc, flags, datap);
7031 	curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
7032 	return (ret);
7033 }
7034 
7035 /*
7036  * When unlocking a page which has the PR_CAPTURE bit set, this routine
7037  * gets called to try and capture the page.
7038  */
7039 void
7040 page_unlock_capture(page_t *pp)
7041 {
7042 	page_capture_hash_bucket_t *bp;
7043 	int index;
7044 	int i;
7045 	uint_t szc;
7046 	uint_t flags = 0;
7047 	void *datap;
7048 	kmutex_t *mp;
7049 	extern vnode_t retired_pages;
7050 
7051 	/*
7052 	 * We need to protect against a possible deadlock here where we own
7053 	 * the vnode page hash mutex and want to acquire it again as there
7054 	 * are locations in the code, where we unlock a page while holding
7055 	 * the mutex which can lead to the page being captured and eventually
7056 	 * end up here.  As we may be hashing out the old page and hashing into
7057 	 * the retire vnode, we need to make sure we don't own them.
7058 	 * Other callbacks who do hash operations also need to make sure that
7059 	 * before they hashin to a vnode that they do not currently own the
7060 	 * vphm mutex otherwise there will be a panic.
7061 	 */
7062 	if (mutex_owned(page_vnode_mutex(&retired_pages))) {
7063 		page_unlock_nocapture(pp);
7064 		return;
7065 	}
7066 	if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
7067 		page_unlock_nocapture(pp);
7068 		return;
7069 	}
7070 
7071 	index = PAGE_CAPTURE_HASH(pp);
7072 
7073 	mp = &page_capture_hash[index].pchh_mutex;
7074 	mutex_enter(mp);
7075 	for (i = 0; i < 2; i++) {
7076 		bp = page_capture_hash[index].lists[i].next;
7077 		while (bp != &page_capture_hash[index].lists[i]) {
7078 			if (bp->pp == pp) {
7079 				szc = bp->szc;
7080 				flags = bp->flags | CAPTURE_ASYNC;
7081 				datap = bp->datap;
7082 				mutex_exit(mp);
7083 				(void) page_trycapture(pp, szc, flags, datap);
7084 				return;
7085 			}
7086 			bp = bp->next;
7087 		}
7088 	}
7089 
7090 	/* Failed to find page in hash so clear flags and unlock it. */
7091 	page_clrtoxic(pp, PR_CAPTURE);
7092 	page_unlock(pp);
7093 
7094 	mutex_exit(mp);
7095 }
7096 
7097 void
7098 page_capture_init()
7099 {
7100 	int i;
7101 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7102 		page_capture_hash[i].lists[0].next =
7103 		    &page_capture_hash[i].lists[0];
7104 		page_capture_hash[i].lists[0].prev =
7105 		    &page_capture_hash[i].lists[0];
7106 		page_capture_hash[i].lists[1].next =
7107 		    &page_capture_hash[i].lists[1];
7108 		page_capture_hash[i].lists[1].prev =
7109 		    &page_capture_hash[i].lists[1];
7110 	}
7111 
7112 	pc_thread_shortwait = 23 * hz;
7113 	pc_thread_longwait = 1201 * hz;
7114 	pc_thread_retry = 3;
7115 	mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
7116 	cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
7117 	pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
7118 	    TS_RUN, minclsyspri);
7119 }
7120 
7121 /*
7122  * It is necessary to scrub any failing pages prior to reboot in order to
7123  * prevent a latent error trap from occurring on the next boot.
7124  */
7125 void
7126 page_retire_mdboot()
7127 {
7128 	page_t *pp;
7129 	int i, j;
7130 	page_capture_hash_bucket_t *bp;
7131 	uchar_t pri;
7132 
7133 	/* walk lists looking for pages to scrub */
7134 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7135 		for (pri = 0; pri < PC_NUM_PRI; pri++) {
7136 			if (page_capture_hash[i].num_pages[pri] != 0) {
7137 				break;
7138 			}
7139 		}
7140 		if (pri == PC_NUM_PRI)
7141 			continue;
7142 
7143 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7144 
7145 		for (j = 0; j < 2; j++) {
7146 			bp = page_capture_hash[i].lists[j].next;
7147 			while (bp != &page_capture_hash[i].lists[j]) {
7148 				pp = bp->pp;
7149 				if (PP_TOXIC(pp)) {
7150 					if (page_trylock(pp, SE_EXCL)) {
7151 						PP_CLRFREE(pp);
7152 						pagescrub(pp, 0, PAGESIZE);
7153 						page_unlock(pp);
7154 					}
7155 				}
7156 				bp = bp->next;
7157 			}
7158 		}
7159 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7160 	}
7161 }
7162 
7163 /*
7164  * Walk the page_capture_hash trying to capture pages and also cleanup old
7165  * entries which have expired.
7166  */
7167 void
7168 page_capture_async()
7169 {
7170 	page_t *pp;
7171 	int i;
7172 	int ret;
7173 	page_capture_hash_bucket_t *bp1, *bp2;
7174 	uint_t szc;
7175 	uint_t flags;
7176 	void *datap;
7177 	uchar_t pri;
7178 
7179 	/* If there are outstanding pages to be captured, get to work */
7180 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7181 		for (pri = 0; pri < PC_NUM_PRI; pri++) {
7182 			if (page_capture_hash[i].num_pages[pri] != 0)
7183 				break;
7184 		}
7185 		if (pri == PC_NUM_PRI)
7186 			continue;
7187 
7188 		/* Append list 1 to list 0 and then walk through list 0 */
7189 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7190 		bp1 = &page_capture_hash[i].lists[1];
7191 		bp2 = bp1->next;
7192 		if (bp1 != bp2) {
7193 			bp1->prev->next = page_capture_hash[i].lists[0].next;
7194 			bp2->prev = &page_capture_hash[i].lists[0];
7195 			page_capture_hash[i].lists[0].next->prev = bp1->prev;
7196 			page_capture_hash[i].lists[0].next = bp2;
7197 			bp1->next = bp1;
7198 			bp1->prev = bp1;
7199 		}
7200 
7201 		/* list[1] will be empty now */
7202 
7203 		bp1 = page_capture_hash[i].lists[0].next;
7204 		while (bp1 != &page_capture_hash[i].lists[0]) {
7205 			/* Check expiration time */
7206 			if ((ddi_get_lbolt() > bp1->expires &&
7207 			    bp1->expires != -1) ||
7208 			    page_deleted(bp1->pp)) {
7209 				page_capture_hash[i].lists[0].next = bp1->next;
7210 				bp1->next->prev =
7211 				    &page_capture_hash[i].lists[0];
7212 				page_capture_hash[i].num_pages[bp1->pri]--;
7213 
7214 				/*
7215 				 * We can safely remove the PR_CAPTURE bit
7216 				 * without holding the EXCL lock on the page
7217 				 * as the PR_CAPTURE bit requres that the
7218 				 * page_capture_hash[].pchh_mutex be held
7219 				 * to modify it.
7220 				 */
7221 				page_clrtoxic(bp1->pp, PR_CAPTURE);
7222 				mutex_exit(&page_capture_hash[i].pchh_mutex);
7223 				kmem_free(bp1, sizeof (*bp1));
7224 				mutex_enter(&page_capture_hash[i].pchh_mutex);
7225 				bp1 = page_capture_hash[i].lists[0].next;
7226 				continue;
7227 			}
7228 			pp = bp1->pp;
7229 			szc = bp1->szc;
7230 			flags = bp1->flags;
7231 			datap = bp1->datap;
7232 			mutex_exit(&page_capture_hash[i].pchh_mutex);
7233 			if (page_trylock(pp, SE_EXCL)) {
7234 				ret = page_trycapture(pp, szc,
7235 				    flags | CAPTURE_ASYNC, datap);
7236 			} else {
7237 				ret = 1;	/* move to walked hash */
7238 			}
7239 
7240 			if (ret != 0) {
7241 				/* Move to walked hash */
7242 				(void) page_capture_move_to_walked(pp);
7243 			}
7244 			mutex_enter(&page_capture_hash[i].pchh_mutex);
7245 			bp1 = page_capture_hash[i].lists[0].next;
7246 		}
7247 
7248 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7249 	}
7250 }
7251 
7252 /*
7253  * This function is called by the page_capture_thread, and is needed in
7254  * in order to initiate aio cleanup, so that pages used in aio
7255  * will be unlocked and subsequently retired by page_capture_thread.
7256  */
7257 static int
7258 do_aio_cleanup(void)
7259 {
7260 	proc_t *procp;
7261 	int (*aio_cleanup_dr_delete_memory)(proc_t *);
7262 	int cleaned = 0;
7263 
7264 	if (modload("sys", "kaio") == -1) {
7265 		cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
7266 		return (0);
7267 	}
7268 	/*
7269 	 * We use the aio_cleanup_dr_delete_memory function to
7270 	 * initiate the actual clean up; this function will wake
7271 	 * up the per-process aio_cleanup_thread.
7272 	 */
7273 	aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
7274 	    modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
7275 	if (aio_cleanup_dr_delete_memory == NULL) {
7276 		cmn_err(CE_WARN,
7277 	    "aio_cleanup_dr_delete_memory not found in kaio");
7278 		return (0);
7279 	}
7280 	mutex_enter(&pidlock);
7281 	for (procp = practive; (procp != NULL); procp = procp->p_next) {
7282 		mutex_enter(&procp->p_lock);
7283 		if (procp->p_aio != NULL) {
7284 			/* cleanup proc's outstanding kaio */
7285 			cleaned += (*aio_cleanup_dr_delete_memory)(procp);
7286 		}
7287 		mutex_exit(&procp->p_lock);
7288 	}
7289 	mutex_exit(&pidlock);
7290 	return (cleaned);
7291 }
7292 
7293 /*
7294  * helper function for page_capture_thread
7295  */
7296 static void
7297 page_capture_handle_outstanding(void)
7298 {
7299 	int ntry;
7300 
7301 	/* Reap pages before attempting capture pages */
7302 	kmem_reap();
7303 
7304 	if ((page_retire_pend_count() > page_retire_pend_kas_count()) &&
7305 	    hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
7306 		/*
7307 		 * Note: Purging only for platforms that support
7308 		 * ISM hat_pageunload() - mainly SPARC. On x86/x64
7309 		 * platforms ISM pages SE_SHARED locked until destroyed.
7310 		 */
7311 
7312 		/* disable and purge seg_pcache */
7313 		(void) seg_p_disable();
7314 		for (ntry = 0; ntry < pc_thread_retry; ntry++) {
7315 			if (!page_retire_pend_count())
7316 				break;
7317 			if (do_aio_cleanup()) {
7318 				/*
7319 				 * allow the apps cleanup threads
7320 				 * to run
7321 				 */
7322 				delay(pc_thread_shortwait);
7323 			}
7324 			page_capture_async();
7325 		}
7326 		/* reenable seg_pcache */
7327 		seg_p_enable();
7328 
7329 		/* completed what can be done.  break out */
7330 		return;
7331 	}
7332 
7333 	/*
7334 	 * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap
7335 	 * and then attempt to capture.
7336 	 */
7337 	seg_preap();
7338 	page_capture_async();
7339 }
7340 
7341 /*
7342  * The page_capture_thread loops forever, looking to see if there are
7343  * pages still waiting to be captured.
7344  */
7345 static void
7346 page_capture_thread(void)
7347 {
7348 	callb_cpr_t c;
7349 	int i;
7350 	int high_pri_pages;
7351 	int low_pri_pages;
7352 	clock_t timeout;
7353 
7354 	CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
7355 
7356 	mutex_enter(&pc_thread_mutex);
7357 	for (;;) {
7358 		high_pri_pages = 0;
7359 		low_pri_pages = 0;
7360 		for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7361 			high_pri_pages +=
7362 			    page_capture_hash[i].num_pages[PC_PRI_HI];
7363 			low_pri_pages +=
7364 			    page_capture_hash[i].num_pages[PC_PRI_LO];
7365 		}
7366 
7367 		timeout = pc_thread_longwait;
7368 		if (high_pri_pages != 0) {
7369 			timeout = pc_thread_shortwait;
7370 			page_capture_handle_outstanding();
7371 		} else if (low_pri_pages != 0) {
7372 			page_capture_async();
7373 		}
7374 		CALLB_CPR_SAFE_BEGIN(&c);
7375 		(void) cv_reltimedwait(&pc_cv, &pc_thread_mutex,
7376 		    timeout, TR_CLOCK_TICK);
7377 		CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7378 	}
7379 	/*NOTREACHED*/
7380 }
7381 /*
7382  * Attempt to locate a bucket that has enough pages to satisfy the request.
7383  * The initial check is done without the lock to avoid unneeded contention.
7384  * The function returns 1 if enough pages were found, else 0 if it could not
7385  * find enough pages in a bucket.
7386  */
7387 static int
7388 pcf_decrement_bucket(pgcnt_t npages)
7389 {
7390 	struct pcf	*p;
7391 	struct pcf	*q;
7392 	int i;
7393 
7394 	p = &pcf[PCF_INDEX()];
7395 	q = &pcf[pcf_fanout];
7396 	for (i = 0; i < pcf_fanout; i++) {
7397 		if (p->pcf_count > npages) {
7398 			/*
7399 			 * a good one to try.
7400 			 */
7401 			mutex_enter(&p->pcf_lock);
7402 			if (p->pcf_count > npages) {
7403 				p->pcf_count -= (uint_t)npages;
7404 				/*
7405 				 * freemem is not protected by any lock.
7406 				 * Thus, we cannot have any assertion
7407 				 * containing freemem here.
7408 				 */
7409 				freemem -= npages;
7410 				mutex_exit(&p->pcf_lock);
7411 				return (1);
7412 			}
7413 			mutex_exit(&p->pcf_lock);
7414 		}
7415 		p++;
7416 		if (p >= q) {
7417 			p = pcf;
7418 		}
7419 	}
7420 	return (0);
7421 }
7422 
7423 /*
7424  * Arguments:
7425  *	pcftotal_ret:	If the value is not NULL and we have walked all the
7426  *			buckets but did not find enough pages then it will
7427  *			be set to the total number of pages in all the pcf
7428  *			buckets.
7429  *	npages:		Is the number of pages we have been requested to
7430  *			find.
7431  *	unlock:		If set to 0 we will leave the buckets locked if the
7432  *			requested number of pages are not found.
7433  *
7434  * Go and try to satisfy the page request  from any number of buckets.
7435  * This can be a very expensive operation as we have to lock the buckets
7436  * we are checking (and keep them locked), starting at bucket 0.
7437  *
7438  * The function returns 1 if enough pages were found, else 0 if it could not
7439  * find enough pages in the buckets.
7440  *
7441  */
7442 static int
7443 pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock)
7444 {
7445 	struct pcf	*p;
7446 	pgcnt_t pcftotal;
7447 	int i;
7448 
7449 	p = pcf;
7450 	/* try to collect pages from several pcf bins */
7451 	for (pcftotal = 0, i = 0; i < pcf_fanout; i++) {
7452 		mutex_enter(&p->pcf_lock);
7453 		pcftotal += p->pcf_count;
7454 		if (pcftotal >= npages) {
7455 			/*
7456 			 * Wow!  There are enough pages laying around
7457 			 * to satisfy the request.  Do the accounting,
7458 			 * drop the locks we acquired, and go back.
7459 			 *
7460 			 * freemem is not protected by any lock. So,
7461 			 * we cannot have any assertion containing
7462 			 * freemem.
7463 			 */
7464 			freemem -= npages;
7465 			while (p >= pcf) {
7466 				if (p->pcf_count <= npages) {
7467 					npages -= p->pcf_count;
7468 					p->pcf_count = 0;
7469 				} else {
7470 					p->pcf_count -= (uint_t)npages;
7471 					npages = 0;
7472 				}
7473 				mutex_exit(&p->pcf_lock);
7474 				p--;
7475 			}
7476 			ASSERT(npages == 0);
7477 			return (1);
7478 		}
7479 		p++;
7480 	}
7481 	if (unlock) {
7482 		/* failed to collect pages - release the locks */
7483 		while (--p >= pcf) {
7484 			mutex_exit(&p->pcf_lock);
7485 		}
7486 	}
7487 	if (pcftotal_ret != NULL)
7488 		*pcftotal_ret = pcftotal;
7489 	return (0);
7490 }
7491