xref: /illumos-gate/usr/src/uts/common/vm/vm_page.c (revision b3619796d92b4472acfed6b7c813f83cef335013)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2015, Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
24  * Copyright (c) 2015, 2016 by Delphix. All rights reserved.
25  * Copyright 2018 Joyent, Inc.
26  * Copyright 2021 Oxide Computer Company
27  */
28 
29 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989  AT&T */
30 /* All Rights Reserved */
31 
32 /*
33  * University Copyright- Copyright (c) 1982, 1986, 1988
34  * The Regents of the University of California
35  * All Rights Reserved
36  *
37  * University Acknowledgment- Portions of this document are derived from
38  * software developed by the University of California, Berkeley, and its
39  * contributors.
40  */
41 
42 /*
43  * VM - physical page management.
44  */
45 
46 #include <sys/types.h>
47 #include <sys/t_lock.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/errno.h>
51 #include <sys/time.h>
52 #include <sys/vnode.h>
53 #include <sys/vm.h>
54 #include <sys/vtrace.h>
55 #include <sys/swap.h>
56 #include <sys/cmn_err.h>
57 #include <sys/tuneable.h>
58 #include <sys/sysmacros.h>
59 #include <sys/cpuvar.h>
60 #include <sys/callb.h>
61 #include <sys/debug.h>
62 #include <sys/tnf_probe.h>
63 #include <sys/condvar_impl.h>
64 #include <sys/mem_config.h>
65 #include <sys/mem_cage.h>
66 #include <sys/kmem.h>
67 #include <sys/atomic.h>
68 #include <sys/strlog.h>
69 #include <sys/mman.h>
70 #include <sys/ontrap.h>
71 #include <sys/lgrp.h>
72 #include <sys/vfs.h>
73 
74 #include <vm/hat.h>
75 #include <vm/anon.h>
76 #include <vm/page.h>
77 #include <vm/seg.h>
78 #include <vm/pvn.h>
79 #include <vm/seg_kmem.h>
80 #include <vm/vm_dep.h>
81 #include <sys/vm_usage.h>
82 #include <fs/fs_subr.h>
83 #include <sys/ddi.h>
84 #include <sys/modctl.h>
85 
86 static pgcnt_t max_page_get;	/* max page_get request size in pages */
87 pgcnt_t total_pages = 0;	/* total number of pages (used by /proc) */
88 
89 /*
90  * freemem_lock protects all freemem variables:
91  * availrmem. Also this lock protects the globals which track the
92  * availrmem changes for accurate kernel footprint calculation.
93  * See below for an explanation of these
94  * globals.
95  */
96 kmutex_t freemem_lock;
97 pgcnt_t availrmem;
98 pgcnt_t availrmem_initial;
99 
100 /*
101  * These globals track availrmem changes to get a more accurate
102  * estimate of tke kernel size. Historically pp_kernel is used for
103  * kernel size and is based on availrmem. But availrmem is adjusted for
104  * locked pages in the system not just for kernel locked pages.
105  * These new counters will track the pages locked through segvn and
106  * by explicit user locking.
107  *
108  * pages_locked : How many pages are locked because of user specified
109  * locking through mlock or plock.
110  *
111  * pages_useclaim,pages_claimed : These two variables track the
112  * claim adjustments because of the protection changes on a segvn segment.
113  *
114  * All these globals are protected by the same lock which protects availrmem.
115  */
116 pgcnt_t pages_locked = 0;
117 pgcnt_t pages_useclaim = 0;
118 pgcnt_t pages_claimed = 0;
119 
120 
121 /*
122  * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
123  */
124 static kmutex_t	new_freemem_lock;
125 static uint_t	freemem_wait;	/* someone waiting for freemem */
126 static kcondvar_t freemem_cv;
127 
128 /*
129  * The logical page free list is maintained as two lists, the 'free'
130  * and the 'cache' lists.
131  * The free list contains those pages that should be reused first.
132  *
133  * The implementation of the lists is machine dependent.
134  * page_get_freelist(), page_get_cachelist(),
135  * page_list_sub(), and page_list_add()
136  * form the interface to the machine dependent implementation.
137  *
138  * Pages with p_free set are on the cache list.
139  * Pages with p_free and p_age set are on the free list,
140  *
141  * A page may be locked while on either list.
142  */
143 
144 /*
145  * free list accounting stuff.
146  *
147  *
148  * Spread out the value for the number of pages on the
149  * page free and page cache lists.  If there is just one
150  * value, then it must be under just one lock.
151  * The lock contention and cache traffic are a real bother.
152  *
153  * When we acquire and then drop a single pcf lock
154  * we can start in the middle of the array of pcf structures.
155  * If we acquire more than one pcf lock at a time, we need to
156  * start at the front to avoid deadlocking.
157  *
158  * pcf_count holds the number of pages in each pool.
159  *
160  * pcf_block is set when page_create_get_something() has asked the
161  * PSM page freelist and page cachelist routines without specifying
162  * a color and nothing came back.  This is used to block anything
163  * else from moving pages from one list to the other while the
164  * lists are searched again.  If a page is freeed while pcf_block is
165  * set, then pcf_reserve is incremented.  pcgs_unblock() takes care
166  * of clearning pcf_block, doing the wakeups, etc.
167  */
168 
169 #define	MAX_PCF_FANOUT NCPU
170 static uint_t pcf_fanout = 1; /* Will get changed at boot time */
171 static uint_t pcf_fanout_mask = 0;
172 
173 struct pcf {
174 	kmutex_t	pcf_lock;	/* protects the structure */
175 	uint_t		pcf_count;	/* page count */
176 	uint_t		pcf_wait;	/* number of waiters */
177 	uint_t		pcf_block;	/* pcgs flag to page_free() */
178 	uint_t		pcf_reserve;	/* pages freed after pcf_block set */
179 	uint_t		pcf_fill[10];	/* to line up on the caches */
180 };
181 
182 /*
183  * PCF_INDEX hash needs to be dynamic (every so often the hash changes where
184  * it will hash the cpu to).  This is done to prevent a drain condition
185  * from happening.  This drain condition will occur when pcf_count decrement
186  * occurs on cpu A and the increment of pcf_count always occurs on cpu B.  An
187  * example of this shows up with device interrupts.  The dma buffer is allocated
188  * by the cpu requesting the IO thus the pcf_count is decremented based on that.
189  * When the memory is returned by the interrupt thread, the pcf_count will be
190  * incremented based on the cpu servicing the interrupt.
191  */
192 static struct pcf pcf[MAX_PCF_FANOUT];
193 #define	PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \
194 	(randtick() >> 24)) & (pcf_fanout_mask))
195 
196 static int pcf_decrement_bucket(pgcnt_t);
197 static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int);
198 
199 kmutex_t	pcgs_lock;		/* serializes page_create_get_ */
200 kmutex_t	pcgs_cagelock;		/* serializes NOSLEEP cage allocs */
201 kmutex_t	pcgs_wait_lock;		/* used for delay in pcgs */
202 static kcondvar_t	pcgs_cv;	/* cv for delay in pcgs */
203 
204 #ifdef VM_STATS
205 
206 /*
207  * No locks, but so what, they are only statistics.
208  */
209 
210 static struct page_tcnt {
211 	int	pc_free_cache;		/* free's into cache list */
212 	int	pc_free_dontneed;	/* free's with dontneed */
213 	int	pc_free_pageout;	/* free's from pageout */
214 	int	pc_free_free;		/* free's into free list */
215 	int	pc_free_pages;		/* free's into large page free list */
216 	int	pc_destroy_pages;	/* large page destroy's */
217 	int	pc_get_cache;		/* get's from cache list */
218 	int	pc_get_free;		/* get's from free list */
219 	int	pc_reclaim;		/* reclaim's */
220 	int	pc_abortfree;		/* abort's of free pages */
221 	int	pc_find_hit;		/* find's that find page */
222 	int	pc_find_miss;		/* find's that don't find page */
223 	int	pc_destroy_free;	/* # of free pages destroyed */
224 #define	PC_HASH_CNT	(4*PAGE_HASHAVELEN)
225 	int	pc_find_hashlen[PC_HASH_CNT+1];
226 	int	pc_addclaim_pages;
227 	int	pc_subclaim_pages;
228 	int	pc_free_replacement_page[2];
229 	int	pc_try_demote_pages[6];
230 	int	pc_demote_pages[2];
231 } pagecnt;
232 
233 uint_t	hashin_count;
234 uint_t	hashin_not_held;
235 uint_t	hashin_already;
236 
237 uint_t	hashout_count;
238 uint_t	hashout_not_held;
239 
240 uint_t	page_create_count;
241 uint_t	page_create_not_enough;
242 uint_t	page_create_not_enough_again;
243 uint_t	page_create_zero;
244 uint_t	page_create_hashout;
245 uint_t	page_create_page_lock_failed;
246 uint_t	page_create_trylock_failed;
247 uint_t	page_create_found_one;
248 uint_t	page_create_hashin_failed;
249 uint_t	page_create_dropped_phm;
250 
251 uint_t	page_create_new;
252 uint_t	page_create_exists;
253 uint_t	page_create_putbacks;
254 uint_t	page_create_overshoot;
255 
256 uint_t	page_reclaim_zero;
257 uint_t	page_reclaim_zero_locked;
258 
259 uint_t	page_rename_exists;
260 uint_t	page_rename_count;
261 
262 uint_t	page_lookup_cnt[20];
263 uint_t	page_lookup_nowait_cnt[10];
264 uint_t	page_find_cnt;
265 uint_t	page_exists_cnt;
266 uint_t	page_exists_forreal_cnt;
267 uint_t	page_lookup_dev_cnt;
268 uint_t	get_cachelist_cnt;
269 uint_t	page_create_cnt[10];
270 uint_t	alloc_pages[9];
271 uint_t	page_exphcontg[19];
272 uint_t  page_create_large_cnt[10];
273 
274 #endif
275 
276 static inline page_t *
277 page_hash_search(ulong_t index, vnode_t *vnode, u_offset_t off)
278 {
279 	uint_t mylen = 0;
280 	page_t *page;
281 
282 	for (page = page_hash[index]; page; page = page->p_hash, mylen++)
283 		if (page->p_vnode == vnode && page->p_offset == off)
284 			break;
285 
286 #ifdef	VM_STATS
287 	if (page != NULL)
288 		pagecnt.pc_find_hit++;
289 	else
290 		pagecnt.pc_find_miss++;
291 
292 	pagecnt.pc_find_hashlen[MIN(mylen, PC_HASH_CNT)]++;
293 #endif
294 
295 	return (page);
296 }
297 
298 
299 #ifdef DEBUG
300 #define	MEMSEG_SEARCH_STATS
301 #endif
302 
303 #ifdef MEMSEG_SEARCH_STATS
304 struct memseg_stats {
305     uint_t nsearch;
306     uint_t nlastwon;
307     uint_t nhashwon;
308     uint_t nnotfound;
309 } memseg_stats;
310 
311 #define	MEMSEG_STAT_INCR(v) \
312 	atomic_inc_32(&memseg_stats.v)
313 #else
314 #define	MEMSEG_STAT_INCR(x)
315 #endif
316 
317 struct memseg *memsegs;		/* list of memory segments */
318 
319 /*
320  * /etc/system tunable to control large page allocation hueristic.
321  *
322  * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
323  * for large page allocation requests.  If a large page is not readily
324  * avaliable on the local freelists we will go through additional effort
325  * to create a large page, potentially moving smaller pages around to coalesce
326  * larger pages in the local lgroup.
327  * Default value of LPAP_DEFAULT will go to remote freelists if large pages
328  * are not readily available in the local lgroup.
329  */
330 enum lpap {
331 	LPAP_DEFAULT,	/* default large page allocation policy */
332 	LPAP_LOCAL	/* local large page allocation policy */
333 };
334 
335 enum lpap lpg_alloc_prefer = LPAP_DEFAULT;
336 
337 static void page_init_mem_config(void);
338 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
339 static void page_do_hashout(page_t *);
340 static void page_capture_init();
341 int page_capture_take_action(page_t *, uint_t, void *);
342 
343 static void page_demote_vp_pages(page_t *);
344 
345 
346 void
347 pcf_init(void)
348 {
349 	if (boot_ncpus != -1) {
350 		pcf_fanout = boot_ncpus;
351 	} else {
352 		pcf_fanout = max_ncpus;
353 	}
354 #ifdef sun4v
355 	/*
356 	 * Force at least 4 buckets if possible for sun4v.
357 	 */
358 	pcf_fanout = MAX(pcf_fanout, 4);
359 #endif /* sun4v */
360 
361 	/*
362 	 * Round up to the nearest power of 2.
363 	 */
364 	pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT);
365 	if (!ISP2(pcf_fanout)) {
366 		pcf_fanout = 1 << highbit(pcf_fanout);
367 
368 		if (pcf_fanout > MAX_PCF_FANOUT) {
369 			pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1);
370 		}
371 	}
372 	pcf_fanout_mask = pcf_fanout - 1;
373 }
374 
375 /*
376  * vm subsystem related initialization
377  */
378 void
379 vm_init(void)
380 {
381 	boolean_t callb_vm_cpr(void *, int);
382 
383 	(void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
384 	page_init_mem_config();
385 	page_retire_init();
386 	vm_usage_init();
387 	page_capture_init();
388 }
389 
390 /*
391  * This function is called at startup and when memory is added or deleted.
392  */
393 void
394 init_pages_pp_maximum()
395 {
396 	static pgcnt_t p_min;
397 	static pgcnt_t pages_pp_maximum_startup;
398 	static pgcnt_t avrmem_delta;
399 	static int init_done;
400 	static int user_set;	/* true if set in /etc/system */
401 
402 	if (init_done == 0) {
403 
404 		/* If the user specified a value, save it */
405 		if (pages_pp_maximum != 0) {
406 			user_set = 1;
407 			pages_pp_maximum_startup = pages_pp_maximum;
408 		}
409 
410 		/*
411 		 * Setting of pages_pp_maximum is based first time
412 		 * on the value of availrmem just after the start-up
413 		 * allocations. To preserve this relationship at run
414 		 * time, use a delta from availrmem_initial.
415 		 */
416 		ASSERT(availrmem_initial >= availrmem);
417 		avrmem_delta = availrmem_initial - availrmem;
418 
419 		/* The allowable floor of pages_pp_maximum */
420 		p_min = tune.t_minarmem + 100;
421 
422 		/* Make sure we don't come through here again. */
423 		init_done = 1;
424 	}
425 	/*
426 	 * Determine pages_pp_maximum, the number of currently available
427 	 * pages (availrmem) that can't be `locked'. If not set by
428 	 * the user, we set it to 4% of the currently available memory
429 	 * plus 4MB.
430 	 * But we also insist that it be greater than tune.t_minarmem;
431 	 * otherwise a process could lock down a lot of memory, get swapped
432 	 * out, and never have enough to get swapped back in.
433 	 */
434 	if (user_set)
435 		pages_pp_maximum = pages_pp_maximum_startup;
436 	else
437 		pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
438 		    + btop(4 * 1024 * 1024);
439 
440 	if (pages_pp_maximum <= p_min) {
441 		pages_pp_maximum = p_min;
442 	}
443 }
444 
445 /*
446  * In the past, we limited the maximum pages that could be gotten to essentially
447  * 1/2 of the total pages on the system. However, this is too conservative for
448  * some cases. For example, if we want to host a large virtual machine which
449  * needs to use a significant portion of the system's memory. In practice,
450  * allowing more than 1/2 of the total pages is fine, but becomes problematic
451  * as we approach or exceed 75% of the pages on the system. Thus, we limit the
452  * maximum to 23/32 of the total pages, which is ~72%.
453  */
454 void
455 set_max_page_get(pgcnt_t target_total_pages)
456 {
457 	max_page_get = (target_total_pages >> 5) * 23;
458 	ASSERT3U(max_page_get, >, 0);
459 }
460 
461 pgcnt_t
462 get_max_page_get()
463 {
464 	return (max_page_get);
465 }
466 
467 static pgcnt_t pending_delete;
468 
469 /*ARGSUSED*/
470 static void
471 page_mem_config_post_add(
472 	void *arg,
473 	pgcnt_t delta_pages)
474 {
475 	set_max_page_get(total_pages - pending_delete);
476 	init_pages_pp_maximum();
477 }
478 
479 /*ARGSUSED*/
480 static int
481 page_mem_config_pre_del(
482 	void *arg,
483 	pgcnt_t delta_pages)
484 {
485 	pgcnt_t nv;
486 
487 	nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
488 	set_max_page_get(total_pages - nv);
489 	return (0);
490 }
491 
492 /*ARGSUSED*/
493 static void
494 page_mem_config_post_del(
495 	void *arg,
496 	pgcnt_t delta_pages,
497 	int cancelled)
498 {
499 	pgcnt_t nv;
500 
501 	nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
502 	set_max_page_get(total_pages - nv);
503 	if (!cancelled)
504 		init_pages_pp_maximum();
505 }
506 
507 static kphysm_setup_vector_t page_mem_config_vec = {
508 	KPHYSM_SETUP_VECTOR_VERSION,
509 	page_mem_config_post_add,
510 	page_mem_config_pre_del,
511 	page_mem_config_post_del,
512 };
513 
514 static void
515 page_init_mem_config(void)
516 {
517 	int ret;
518 
519 	ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
520 	ASSERT(ret == 0);
521 }
522 
523 /*
524  * Evenly spread out the PCF counters for large free pages
525  */
526 static void
527 page_free_large_ctr(pgcnt_t npages)
528 {
529 	static struct pcf	*p = pcf;
530 	pgcnt_t			lump;
531 
532 	freemem += npages;
533 
534 	lump = roundup(npages, pcf_fanout) / pcf_fanout;
535 
536 	while (npages > 0) {
537 
538 		ASSERT(!p->pcf_block);
539 
540 		if (lump < npages) {
541 			p->pcf_count += (uint_t)lump;
542 			npages -= lump;
543 		} else {
544 			p->pcf_count += (uint_t)npages;
545 			npages = 0;
546 		}
547 
548 		ASSERT(!p->pcf_wait);
549 
550 		if (++p > &pcf[pcf_fanout - 1])
551 			p = pcf;
552 	}
553 
554 	ASSERT(npages == 0);
555 }
556 
557 /*
558  * Add a physical chunk of memory to the system free lists during startup.
559  * Platform specific startup() allocates the memory for the page structs.
560  *
561  * num	- number of page structures
562  * base - page number (pfn) to be associated with the first page.
563  *
564  * Since we are doing this during startup (ie. single threaded), we will
565  * use shortcut routines to avoid any locking overhead while putting all
566  * these pages on the freelists.
567  *
568  * NOTE: Any changes performed to page_free(), must also be performed to
569  *	 add_physmem() since this is how we initialize all page_t's at
570  *	 boot time.
571  */
572 void
573 add_physmem(
574 	page_t	*pp,
575 	pgcnt_t	num,
576 	pfn_t	pnum)
577 {
578 	page_t	*root = NULL;
579 	uint_t	szc = page_num_pagesizes() - 1;
580 	pgcnt_t	large = page_get_pagecnt(szc);
581 	pgcnt_t	cnt = 0;
582 
583 	TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
584 	    "add_physmem:pp %p num %lu", pp, num);
585 
586 	/*
587 	 * Arbitrarily limit the max page_get request
588 	 * to 1/2 of the page structs we have.
589 	 */
590 	total_pages += num;
591 	set_max_page_get(total_pages);
592 
593 	PLCNT_MODIFY_MAX(pnum, (long)num);
594 
595 	/*
596 	 * The physical space for the pages array
597 	 * representing ram pages has already been
598 	 * allocated.  Here we initialize each lock
599 	 * in the page structure, and put each on
600 	 * the free list
601 	 */
602 	for (; num; pp++, pnum++, num--) {
603 
604 		/*
605 		 * this needs to fill in the page number
606 		 * and do any other arch specific initialization
607 		 */
608 		add_physmem_cb(pp, pnum);
609 
610 		pp->p_lckcnt = 0;
611 		pp->p_cowcnt = 0;
612 		pp->p_slckcnt = 0;
613 
614 		/*
615 		 * Initialize the page lock as unlocked, since nobody
616 		 * can see or access this page yet.
617 		 */
618 		pp->p_selock = 0;
619 
620 		/*
621 		 * Initialize IO lock
622 		 */
623 		page_iolock_init(pp);
624 
625 		/*
626 		 * initialize other fields in the page_t
627 		 */
628 		PP_SETFREE(pp);
629 		page_clr_all_props(pp);
630 		PP_SETAGED(pp);
631 		pp->p_offset = (u_offset_t)-1;
632 		pp->p_next = pp;
633 		pp->p_prev = pp;
634 
635 		/*
636 		 * Simple case: System doesn't support large pages.
637 		 */
638 		if (szc == 0) {
639 			pp->p_szc = 0;
640 			page_free_at_startup(pp);
641 			continue;
642 		}
643 
644 		/*
645 		 * Handle unaligned pages, we collect them up onto
646 		 * the root page until we have a full large page.
647 		 */
648 		if (!IS_P2ALIGNED(pnum, large)) {
649 
650 			/*
651 			 * If not in a large page,
652 			 * just free as small page.
653 			 */
654 			if (root == NULL) {
655 				pp->p_szc = 0;
656 				page_free_at_startup(pp);
657 				continue;
658 			}
659 
660 			/*
661 			 * Link a constituent page into the large page.
662 			 */
663 			pp->p_szc = szc;
664 			page_list_concat(&root, &pp);
665 
666 			/*
667 			 * When large page is fully formed, free it.
668 			 */
669 			if (++cnt == large) {
670 				page_free_large_ctr(cnt);
671 				page_list_add_pages(root, PG_LIST_ISINIT);
672 				root = NULL;
673 				cnt = 0;
674 			}
675 			continue;
676 		}
677 
678 		/*
679 		 * At this point we have a page number which
680 		 * is aligned. We assert that we aren't already
681 		 * in a different large page.
682 		 */
683 		ASSERT(IS_P2ALIGNED(pnum, large));
684 		ASSERT(root == NULL && cnt == 0);
685 
686 		/*
687 		 * If insufficient number of pages left to form
688 		 * a large page, just free the small page.
689 		 */
690 		if (num < large) {
691 			pp->p_szc = 0;
692 			page_free_at_startup(pp);
693 			continue;
694 		}
695 
696 		/*
697 		 * Otherwise start a new large page.
698 		 */
699 		pp->p_szc = szc;
700 		cnt++;
701 		root = pp;
702 	}
703 	ASSERT(root == NULL && cnt == 0);
704 }
705 
706 /*
707  * Find a page representing the specified [vp, offset].
708  * If we find the page but it is intransit coming in,
709  * it will have an "exclusive" lock and we wait for
710  * the i/o to complete.  A page found on the free list
711  * is always reclaimed and then locked.  On success, the page
712  * is locked, its data is valid and it isn't on the free
713  * list, while a NULL is returned if the page doesn't exist.
714  */
715 page_t *
716 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
717 {
718 	return (page_lookup_create(vp, off, se, NULL, NULL, 0));
719 }
720 
721 /*
722  * Find a page representing the specified [vp, offset].
723  * We either return the one we found or, if passed in,
724  * create one with identity of [vp, offset] of the
725  * pre-allocated page. If we find existing page but it is
726  * intransit coming in, it will have an "exclusive" lock
727  * and we wait for the i/o to complete.  A page found on
728  * the free list is always reclaimed and then locked.
729  * On success, the page is locked, its data is valid and
730  * it isn't on the free list, while a NULL is returned
731  * if the page doesn't exist and newpp is NULL;
732  */
733 page_t *
734 page_lookup_create(
735 	vnode_t *vp,
736 	u_offset_t off,
737 	se_t se,
738 	page_t *newpp,
739 	spgcnt_t *nrelocp,
740 	int flags)
741 {
742 	page_t		*pp;
743 	kmutex_t	*phm;
744 	ulong_t		index;
745 	uint_t		hash_locked;
746 	uint_t		es;
747 
748 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
749 	VM_STAT_ADD(page_lookup_cnt[0]);
750 	ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
751 
752 	/*
753 	 * Acquire the appropriate page hash lock since
754 	 * we have to search the hash list.  Pages that
755 	 * hash to this list can't change identity while
756 	 * this lock is held.
757 	 */
758 	hash_locked = 0;
759 	index = PAGE_HASH_FUNC(vp, off);
760 	phm = NULL;
761 top:
762 	pp = page_hash_search(index, vp, off);
763 	if (pp != NULL) {
764 		VM_STAT_ADD(page_lookup_cnt[1]);
765 		es = (newpp != NULL) ? 1 : 0;
766 		es |= flags;
767 		if (!hash_locked) {
768 			VM_STAT_ADD(page_lookup_cnt[2]);
769 			if (!page_try_reclaim_lock(pp, se, es)) {
770 				/*
771 				 * On a miss, acquire the phm.  Then
772 				 * next time, page_lock() will be called,
773 				 * causing a wait if the page is busy.
774 				 * just looping with page_trylock() would
775 				 * get pretty boring.
776 				 */
777 				VM_STAT_ADD(page_lookup_cnt[3]);
778 				phm = PAGE_HASH_MUTEX(index);
779 				mutex_enter(phm);
780 				hash_locked = 1;
781 				goto top;
782 			}
783 		} else {
784 			VM_STAT_ADD(page_lookup_cnt[4]);
785 			if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
786 				VM_STAT_ADD(page_lookup_cnt[5]);
787 				goto top;
788 			}
789 		}
790 
791 		/*
792 		 * Since `pp' is locked it can not change identity now.
793 		 * Reconfirm we locked the correct page.
794 		 *
795 		 * Both the p_vnode and p_offset *must* be cast volatile
796 		 * to force a reload of their values: The page_hash_search
797 		 * function will have stuffed p_vnode and p_offset into
798 		 * registers before calling page_trylock(); another thread,
799 		 * actually holding the hash lock, could have changed the
800 		 * page's identity in memory, but our registers would not
801 		 * be changed, fooling the reconfirmation.  If the hash
802 		 * lock was held during the search, the casting would
803 		 * not be needed.
804 		 */
805 		VM_STAT_ADD(page_lookup_cnt[6]);
806 		if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
807 		    ((volatile u_offset_t)(pp->p_offset) != off)) {
808 			VM_STAT_ADD(page_lookup_cnt[7]);
809 			if (hash_locked) {
810 				panic("page_lookup_create: lost page %p",
811 				    (void *)pp);
812 				/*NOTREACHED*/
813 			}
814 			page_unlock(pp);
815 			phm = PAGE_HASH_MUTEX(index);
816 			mutex_enter(phm);
817 			hash_locked = 1;
818 			goto top;
819 		}
820 
821 		/*
822 		 * If page_trylock() was called, then pp may still be on
823 		 * the cachelist (can't be on the free list, it would not
824 		 * have been found in the search).  If it is on the
825 		 * cachelist it must be pulled now. To pull the page from
826 		 * the cachelist, it must be exclusively locked.
827 		 *
828 		 * The other big difference between page_trylock() and
829 		 * page_lock(), is that page_lock() will pull the
830 		 * page from whatever free list (the cache list in this
831 		 * case) the page is on.  If page_trylock() was used
832 		 * above, then we have to do the reclaim ourselves.
833 		 */
834 		if ((!hash_locked) && (PP_ISFREE(pp))) {
835 			ASSERT(PP_ISAGED(pp) == 0);
836 			VM_STAT_ADD(page_lookup_cnt[8]);
837 
838 			/*
839 			 * page_relcaim will insure that we
840 			 * have this page exclusively
841 			 */
842 
843 			if (!page_reclaim(pp, NULL)) {
844 				/*
845 				 * Page_reclaim dropped whatever lock
846 				 * we held.
847 				 */
848 				VM_STAT_ADD(page_lookup_cnt[9]);
849 				phm = PAGE_HASH_MUTEX(index);
850 				mutex_enter(phm);
851 				hash_locked = 1;
852 				goto top;
853 			} else if (se == SE_SHARED && newpp == NULL) {
854 				VM_STAT_ADD(page_lookup_cnt[10]);
855 				page_downgrade(pp);
856 			}
857 		}
858 
859 		if (hash_locked) {
860 			mutex_exit(phm);
861 		}
862 
863 		if (newpp != NULL && pp->p_szc < newpp->p_szc &&
864 		    PAGE_EXCL(pp) && nrelocp != NULL) {
865 			ASSERT(nrelocp != NULL);
866 			(void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
867 			    NULL);
868 			if (*nrelocp > 0) {
869 				VM_STAT_COND_ADD(*nrelocp == 1,
870 				    page_lookup_cnt[11]);
871 				VM_STAT_COND_ADD(*nrelocp > 1,
872 				    page_lookup_cnt[12]);
873 				pp = newpp;
874 				se = SE_EXCL;
875 			} else {
876 				if (se == SE_SHARED) {
877 					page_downgrade(pp);
878 				}
879 				VM_STAT_ADD(page_lookup_cnt[13]);
880 			}
881 		} else if (newpp != NULL && nrelocp != NULL) {
882 			if (PAGE_EXCL(pp) && se == SE_SHARED) {
883 				page_downgrade(pp);
884 			}
885 			VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
886 			    page_lookup_cnt[14]);
887 			VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
888 			    page_lookup_cnt[15]);
889 			VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
890 			    page_lookup_cnt[16]);
891 		} else if (newpp != NULL && PAGE_EXCL(pp)) {
892 			se = SE_EXCL;
893 		}
894 	} else if (!hash_locked) {
895 		VM_STAT_ADD(page_lookup_cnt[17]);
896 		phm = PAGE_HASH_MUTEX(index);
897 		mutex_enter(phm);
898 		hash_locked = 1;
899 		goto top;
900 	} else if (newpp != NULL) {
901 		/*
902 		 * If we have a preallocated page then
903 		 * insert it now and basically behave like
904 		 * page_create.
905 		 */
906 		VM_STAT_ADD(page_lookup_cnt[18]);
907 		/*
908 		 * Since we hold the page hash mutex and
909 		 * just searched for this page, page_hashin
910 		 * had better not fail.  If it does, that
911 		 * means some thread did not follow the
912 		 * page hash mutex rules.  Panic now and
913 		 * get it over with.  As usual, go down
914 		 * holding all the locks.
915 		 */
916 		ASSERT(MUTEX_HELD(phm));
917 		if (!page_hashin(newpp, vp, off, phm)) {
918 			ASSERT(MUTEX_HELD(phm));
919 			panic("page_lookup_create: hashin failed %p %p %llx %p",
920 			    (void *)newpp, (void *)vp, off, (void *)phm);
921 			/*NOTREACHED*/
922 		}
923 		ASSERT(MUTEX_HELD(phm));
924 		mutex_exit(phm);
925 		phm = NULL;
926 		page_set_props(newpp, P_REF);
927 		page_io_lock(newpp);
928 		pp = newpp;
929 		se = SE_EXCL;
930 	} else {
931 		VM_STAT_ADD(page_lookup_cnt[19]);
932 		mutex_exit(phm);
933 	}
934 
935 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
936 
937 	ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
938 
939 	return (pp);
940 }
941 
942 /*
943  * Search the hash list for the page representing the
944  * specified [vp, offset] and return it locked.  Skip
945  * free pages and pages that cannot be locked as requested.
946  * Used while attempting to kluster pages.
947  */
948 page_t *
949 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
950 {
951 	page_t		*pp;
952 	kmutex_t	*phm;
953 	ulong_t		index;
954 	uint_t		locked;
955 
956 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
957 	VM_STAT_ADD(page_lookup_nowait_cnt[0]);
958 
959 	index = PAGE_HASH_FUNC(vp, off);
960 	pp = page_hash_search(index, vp, off);
961 	locked = 0;
962 	if (pp == NULL) {
963 top:
964 		VM_STAT_ADD(page_lookup_nowait_cnt[1]);
965 		locked = 1;
966 		phm = PAGE_HASH_MUTEX(index);
967 		mutex_enter(phm);
968 		pp = page_hash_search(index, vp, off);
969 	}
970 
971 	if (pp == NULL || PP_ISFREE(pp)) {
972 		VM_STAT_ADD(page_lookup_nowait_cnt[2]);
973 		pp = NULL;
974 	} else {
975 		if (!page_trylock(pp, se)) {
976 			VM_STAT_ADD(page_lookup_nowait_cnt[3]);
977 			pp = NULL;
978 		} else {
979 			VM_STAT_ADD(page_lookup_nowait_cnt[4]);
980 			/*
981 			 * See the comment in page_lookup()
982 			 */
983 			if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
984 			    ((u_offset_t)(pp->p_offset) != off)) {
985 				VM_STAT_ADD(page_lookup_nowait_cnt[5]);
986 				if (locked) {
987 					panic("page_lookup_nowait %p",
988 					    (void *)pp);
989 					/*NOTREACHED*/
990 				}
991 				page_unlock(pp);
992 				goto top;
993 			}
994 			if (PP_ISFREE(pp)) {
995 				VM_STAT_ADD(page_lookup_nowait_cnt[6]);
996 				page_unlock(pp);
997 				pp = NULL;
998 			}
999 		}
1000 	}
1001 	if (locked) {
1002 		VM_STAT_ADD(page_lookup_nowait_cnt[7]);
1003 		mutex_exit(phm);
1004 	}
1005 
1006 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
1007 
1008 	return (pp);
1009 }
1010 
1011 /*
1012  * Search the hash list for a page with the specified [vp, off]
1013  * that is known to exist and is already locked.  This routine
1014  * is typically used by segment SOFTUNLOCK routines.
1015  */
1016 page_t *
1017 page_find(vnode_t *vp, u_offset_t off)
1018 {
1019 	page_t		*pp;
1020 	kmutex_t	*phm;
1021 	ulong_t		index;
1022 
1023 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1024 	VM_STAT_ADD(page_find_cnt);
1025 
1026 	index = PAGE_HASH_FUNC(vp, off);
1027 	phm = PAGE_HASH_MUTEX(index);
1028 
1029 	mutex_enter(phm);
1030 	pp = page_hash_search(index, vp, off);
1031 	mutex_exit(phm);
1032 
1033 	ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
1034 	return (pp);
1035 }
1036 
1037 /*
1038  * Determine whether a page with the specified [vp, off]
1039  * currently exists in the system.  Obviously this should
1040  * only be considered as a hint since nothing prevents the
1041  * page from disappearing or appearing immediately after
1042  * the return from this routine. Subsequently, we don't
1043  * even bother to lock the list.
1044  */
1045 page_t *
1046 page_exists(vnode_t *vp, u_offset_t off)
1047 {
1048 	ulong_t		index;
1049 
1050 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1051 	VM_STAT_ADD(page_exists_cnt);
1052 
1053 	index = PAGE_HASH_FUNC(vp, off);
1054 
1055 	return (page_hash_search(index, vp, off));
1056 }
1057 
1058 /*
1059  * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1060  * page_size(szc)) range.  if they exist and ppa is not NULL fill ppa array
1061  * with these pages locked SHARED. If necessary reclaim pages from
1062  * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1063  *
1064  * If we fail to lock pages still return 1 if pages exist and contiguous.
1065  * But in this case return value is just a hint. ppa array won't be filled.
1066  * Caller should initialize ppa[0] as NULL to distinguish return value.
1067  *
1068  * Returns 0 if pages don't exist or not physically contiguous.
1069  *
1070  * This routine doesn't work for anonymous(swapfs) pages.
1071  */
1072 int
1073 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1074 {
1075 	pgcnt_t pages;
1076 	pfn_t pfn;
1077 	page_t *rootpp;
1078 	pgcnt_t i;
1079 	pgcnt_t j;
1080 	u_offset_t save_off = off;
1081 	ulong_t index;
1082 	kmutex_t *phm;
1083 	page_t *pp;
1084 	uint_t pszc;
1085 	int loopcnt = 0;
1086 
1087 	ASSERT(szc != 0);
1088 	ASSERT(vp != NULL);
1089 	ASSERT(!IS_SWAPFSVP(vp));
1090 	ASSERT(!VN_ISKAS(vp));
1091 
1092 again:
1093 	if (++loopcnt > 3) {
1094 		VM_STAT_ADD(page_exphcontg[0]);
1095 		return (0);
1096 	}
1097 
1098 	index = PAGE_HASH_FUNC(vp, off);
1099 	phm = PAGE_HASH_MUTEX(index);
1100 
1101 	mutex_enter(phm);
1102 	pp = page_hash_search(index, vp, off);
1103 	mutex_exit(phm);
1104 
1105 	VM_STAT_ADD(page_exphcontg[1]);
1106 
1107 	if (pp == NULL) {
1108 		VM_STAT_ADD(page_exphcontg[2]);
1109 		return (0);
1110 	}
1111 
1112 	pages = page_get_pagecnt(szc);
1113 	rootpp = pp;
1114 	pfn = rootpp->p_pagenum;
1115 
1116 	if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1117 		VM_STAT_ADD(page_exphcontg[3]);
1118 		if (!page_trylock(pp, SE_SHARED)) {
1119 			VM_STAT_ADD(page_exphcontg[4]);
1120 			return (1);
1121 		}
1122 		/*
1123 		 * Also check whether p_pagenum was modified by DR.
1124 		 */
1125 		if (pp->p_szc != pszc || pp->p_vnode != vp ||
1126 		    pp->p_offset != off || pp->p_pagenum != pfn) {
1127 			VM_STAT_ADD(page_exphcontg[5]);
1128 			page_unlock(pp);
1129 			off = save_off;
1130 			goto again;
1131 		}
1132 		/*
1133 		 * szc was non zero and vnode and offset matched after we
1134 		 * locked the page it means it can't become free on us.
1135 		 */
1136 		ASSERT(!PP_ISFREE(pp));
1137 		if (!IS_P2ALIGNED(pfn, pages)) {
1138 			page_unlock(pp);
1139 			return (0);
1140 		}
1141 		ppa[0] = pp;
1142 		pp++;
1143 		off += PAGESIZE;
1144 		pfn++;
1145 		for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1146 			if (!page_trylock(pp, SE_SHARED)) {
1147 				VM_STAT_ADD(page_exphcontg[6]);
1148 				pp--;
1149 				while (i-- > 0) {
1150 					page_unlock(pp);
1151 					pp--;
1152 				}
1153 				ppa[0] = NULL;
1154 				return (1);
1155 			}
1156 			if (pp->p_szc != pszc) {
1157 				VM_STAT_ADD(page_exphcontg[7]);
1158 				page_unlock(pp);
1159 				pp--;
1160 				while (i-- > 0) {
1161 					page_unlock(pp);
1162 					pp--;
1163 				}
1164 				ppa[0] = NULL;
1165 				off = save_off;
1166 				goto again;
1167 			}
1168 			/*
1169 			 * szc the same as for previous already locked pages
1170 			 * with right identity. Since this page had correct
1171 			 * szc after we locked it can't get freed or destroyed
1172 			 * and therefore must have the expected identity.
1173 			 */
1174 			ASSERT(!PP_ISFREE(pp));
1175 			if (pp->p_vnode != vp ||
1176 			    pp->p_offset != off) {
1177 				panic("page_exists_physcontig: "
1178 				    "large page identity doesn't match");
1179 			}
1180 			ppa[i] = pp;
1181 			ASSERT(pp->p_pagenum == pfn);
1182 		}
1183 		VM_STAT_ADD(page_exphcontg[8]);
1184 		ppa[pages] = NULL;
1185 		return (1);
1186 	} else if (pszc >= szc) {
1187 		VM_STAT_ADD(page_exphcontg[9]);
1188 		if (!IS_P2ALIGNED(pfn, pages)) {
1189 			return (0);
1190 		}
1191 		return (1);
1192 	}
1193 
1194 	if (!IS_P2ALIGNED(pfn, pages)) {
1195 		VM_STAT_ADD(page_exphcontg[10]);
1196 		return (0);
1197 	}
1198 
1199 	if (page_numtomemseg_nolock(pfn) !=
1200 	    page_numtomemseg_nolock(pfn + pages - 1)) {
1201 		VM_STAT_ADD(page_exphcontg[11]);
1202 		return (0);
1203 	}
1204 
1205 	/*
1206 	 * We loop up 4 times across pages to promote page size.
1207 	 * We're extra cautious to promote page size atomically with respect
1208 	 * to everybody else.  But we can probably optimize into 1 loop if
1209 	 * this becomes an issue.
1210 	 */
1211 
1212 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1213 		if (!page_trylock(pp, SE_EXCL)) {
1214 			VM_STAT_ADD(page_exphcontg[12]);
1215 			break;
1216 		}
1217 		/*
1218 		 * Check whether p_pagenum was modified by DR.
1219 		 */
1220 		if (pp->p_pagenum != pfn) {
1221 			page_unlock(pp);
1222 			break;
1223 		}
1224 		if (pp->p_vnode != vp ||
1225 		    pp->p_offset != off) {
1226 			VM_STAT_ADD(page_exphcontg[13]);
1227 			page_unlock(pp);
1228 			break;
1229 		}
1230 		if (pp->p_szc >= szc) {
1231 			ASSERT(i == 0);
1232 			page_unlock(pp);
1233 			off = save_off;
1234 			goto again;
1235 		}
1236 	}
1237 
1238 	if (i != pages) {
1239 		VM_STAT_ADD(page_exphcontg[14]);
1240 		--pp;
1241 		while (i-- > 0) {
1242 			page_unlock(pp);
1243 			--pp;
1244 		}
1245 		return (0);
1246 	}
1247 
1248 	pp = rootpp;
1249 	for (i = 0; i < pages; i++, pp++) {
1250 		if (PP_ISFREE(pp)) {
1251 			VM_STAT_ADD(page_exphcontg[15]);
1252 			ASSERT(!PP_ISAGED(pp));
1253 			ASSERT(pp->p_szc == 0);
1254 			if (!page_reclaim(pp, NULL)) {
1255 				break;
1256 			}
1257 		} else {
1258 			ASSERT(pp->p_szc < szc);
1259 			VM_STAT_ADD(page_exphcontg[16]);
1260 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1261 		}
1262 	}
1263 	if (i < pages) {
1264 		VM_STAT_ADD(page_exphcontg[17]);
1265 		/*
1266 		 * page_reclaim failed because we were out of memory.
1267 		 * drop the rest of the locks and return because this page
1268 		 * must be already reallocated anyway.
1269 		 */
1270 		pp = rootpp;
1271 		for (j = 0; j < pages; j++, pp++) {
1272 			if (j != i) {
1273 				page_unlock(pp);
1274 			}
1275 		}
1276 		return (0);
1277 	}
1278 
1279 	off = save_off;
1280 	pp = rootpp;
1281 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1282 		ASSERT(PAGE_EXCL(pp));
1283 		ASSERT(!PP_ISFREE(pp));
1284 		ASSERT(!hat_page_is_mapped(pp));
1285 		ASSERT(pp->p_vnode == vp);
1286 		ASSERT(pp->p_offset == off);
1287 		pp->p_szc = szc;
1288 	}
1289 	pp = rootpp;
1290 	for (i = 0; i < pages; i++, pp++) {
1291 		if (ppa == NULL) {
1292 			page_unlock(pp);
1293 		} else {
1294 			ppa[i] = pp;
1295 			page_downgrade(ppa[i]);
1296 		}
1297 	}
1298 	if (ppa != NULL) {
1299 		ppa[pages] = NULL;
1300 	}
1301 	VM_STAT_ADD(page_exphcontg[18]);
1302 	ASSERT(vp->v_pages != NULL);
1303 	return (1);
1304 }
1305 
1306 /*
1307  * Determine whether a page with the specified [vp, off]
1308  * currently exists in the system and if so return its
1309  * size code. Obviously this should only be considered as
1310  * a hint since nothing prevents the page from disappearing
1311  * or appearing immediately after the return from this routine.
1312  */
1313 int
1314 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1315 {
1316 	page_t		*pp;
1317 	kmutex_t	*phm;
1318 	ulong_t		index;
1319 	int		rc = 0;
1320 
1321 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1322 	ASSERT(szc != NULL);
1323 	VM_STAT_ADD(page_exists_forreal_cnt);
1324 
1325 	index = PAGE_HASH_FUNC(vp, off);
1326 	phm = PAGE_HASH_MUTEX(index);
1327 
1328 	mutex_enter(phm);
1329 	pp = page_hash_search(index, vp, off);
1330 	if (pp != NULL) {
1331 		*szc = pp->p_szc;
1332 		rc = 1;
1333 	}
1334 	mutex_exit(phm);
1335 	return (rc);
1336 }
1337 
1338 /* wakeup threads waiting for pages in page_create_get_something() */
1339 void
1340 wakeup_pcgs(void)
1341 {
1342 	if (!CV_HAS_WAITERS(&pcgs_cv))
1343 		return;
1344 	cv_broadcast(&pcgs_cv);
1345 }
1346 
1347 /*
1348  * 'freemem' is used all over the kernel as an indication of how many
1349  * pages are free (either on the cache list or on the free page list)
1350  * in the system.  In very few places is a really accurate 'freemem'
1351  * needed.  To avoid contention of the lock protecting a the
1352  * single freemem, it was spread out into NCPU buckets.  Set_freemem
1353  * sets freemem to the total of all NCPU buckets.  It is called from
1354  * clock() on each TICK.
1355  */
1356 void
1357 set_freemem(void)
1358 {
1359 	struct pcf	*p;
1360 	ulong_t		t;
1361 	uint_t		i;
1362 
1363 	t = 0;
1364 	p = pcf;
1365 	for (i = 0;  i < pcf_fanout; i++) {
1366 		t += p->pcf_count;
1367 		p++;
1368 	}
1369 	freemem = t;
1370 
1371 	/*
1372 	 * Don't worry about grabbing mutex.  It's not that
1373 	 * critical if we miss a tick or two.  This is
1374 	 * where we wakeup possible delayers in
1375 	 * page_create_get_something().
1376 	 */
1377 	wakeup_pcgs();
1378 }
1379 
1380 ulong_t
1381 get_freemem()
1382 {
1383 	struct pcf	*p;
1384 	ulong_t		t;
1385 	uint_t		i;
1386 
1387 	t = 0;
1388 	p = pcf;
1389 	for (i = 0; i < pcf_fanout; i++) {
1390 		t += p->pcf_count;
1391 		p++;
1392 	}
1393 	/*
1394 	 * We just calculated it, might as well set it.
1395 	 */
1396 	freemem = t;
1397 	return (t);
1398 }
1399 
1400 /*
1401  * Acquire all of the page cache & free (pcf) locks.
1402  */
1403 void
1404 pcf_acquire_all()
1405 {
1406 	struct pcf	*p;
1407 	uint_t		i;
1408 
1409 	p = pcf;
1410 	for (i = 0; i < pcf_fanout; i++) {
1411 		mutex_enter(&p->pcf_lock);
1412 		p++;
1413 	}
1414 }
1415 
1416 /*
1417  * Release all the pcf_locks.
1418  */
1419 void
1420 pcf_release_all()
1421 {
1422 	struct pcf	*p;
1423 	uint_t		i;
1424 
1425 	p = pcf;
1426 	for (i = 0; i < pcf_fanout; i++) {
1427 		mutex_exit(&p->pcf_lock);
1428 		p++;
1429 	}
1430 }
1431 
1432 /*
1433  * Inform the VM system that we need some pages freed up.
1434  * Calls must be symmetric, e.g.:
1435  *
1436  *	page_needfree(100);
1437  *	wait a bit;
1438  *	page_needfree(-100);
1439  */
1440 void
1441 page_needfree(spgcnt_t npages)
1442 {
1443 	mutex_enter(&new_freemem_lock);
1444 	needfree += npages;
1445 	mutex_exit(&new_freemem_lock);
1446 }
1447 
1448 /*
1449  * Throttle for page_create(): try to prevent freemem from dropping
1450  * below throttlefree.  We can't provide a 100% guarantee because
1451  * KM_NOSLEEP allocations, page_reclaim(), and various other things
1452  * nibble away at the freelist.  However, we can block all PG_WAIT
1453  * allocations until memory becomes available.  The motivation is
1454  * that several things can fall apart when there's no free memory:
1455  *
1456  * (1) If pageout() needs memory to push a page, the system deadlocks.
1457  *
1458  * (2) By (broken) specification, timeout(9F) can neither fail nor
1459  *     block, so it has no choice but to panic the system if it
1460  *     cannot allocate a callout structure.
1461  *
1462  * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1463  *     it panics if it cannot allocate a callback structure.
1464  *
1465  * (4) Untold numbers of third-party drivers have not yet been hardened
1466  *     against KM_NOSLEEP and/or allocb() failures; they simply assume
1467  *     success and panic the system with a data fault on failure.
1468  *     (The long-term solution to this particular problem is to ship
1469  *     hostile fault-injecting DEBUG kernels with the DDK.)
1470  *
1471  * It is theoretically impossible to guarantee success of non-blocking
1472  * allocations, but in practice, this throttle is very hard to break.
1473  */
1474 static int
1475 page_create_throttle(pgcnt_t npages, int flags)
1476 {
1477 	ulong_t	fm;
1478 	uint_t	i;
1479 	pgcnt_t tf;	/* effective value of throttlefree */
1480 
1481 	/*
1482 	 * Normal priority allocations.
1483 	 */
1484 	if ((flags & (PG_WAIT | PG_NORMALPRI)) == PG_NORMALPRI) {
1485 		ASSERT(!(flags & (PG_PANIC | PG_PUSHPAGE)));
1486 		return (freemem >= npages + throttlefree);
1487 	}
1488 
1489 	/*
1490 	 * Never deny pages when:
1491 	 * - it's a thread that cannot block [NOMEMWAIT()]
1492 	 * - the allocation cannot block and must not fail
1493 	 * - the allocation cannot block and is pageout dispensated
1494 	 */
1495 	if (NOMEMWAIT() ||
1496 	    ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1497 	    ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1498 		return (1);
1499 
1500 	/*
1501 	 * If the allocation can't block, we look favorably upon it
1502 	 * unless we're below pageout_reserve.  In that case we fail
1503 	 * the allocation because we want to make sure there are a few
1504 	 * pages available for pageout.
1505 	 */
1506 	if ((flags & PG_WAIT) == 0)
1507 		return (freemem >= npages + pageout_reserve);
1508 
1509 	/* Calculate the effective throttlefree value */
1510 	tf = throttlefree -
1511 	    ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1512 
1513 	cv_signal(&proc_pageout->p_cv);
1514 
1515 	for (;;) {
1516 		fm = 0;
1517 		pcf_acquire_all();
1518 		mutex_enter(&new_freemem_lock);
1519 		for (i = 0; i < pcf_fanout; i++) {
1520 			fm += pcf[i].pcf_count;
1521 			pcf[i].pcf_wait++;
1522 			mutex_exit(&pcf[i].pcf_lock);
1523 		}
1524 		freemem = fm;
1525 		if (freemem >= npages + tf) {
1526 			mutex_exit(&new_freemem_lock);
1527 			break;
1528 		}
1529 		needfree += npages;
1530 		freemem_wait++;
1531 		cv_wait(&freemem_cv, &new_freemem_lock);
1532 		freemem_wait--;
1533 		needfree -= npages;
1534 		mutex_exit(&new_freemem_lock);
1535 	}
1536 	return (1);
1537 }
1538 
1539 /*
1540  * page_create_wait() is called to either coalesce pages from the
1541  * different pcf buckets or to wait because there simply are not
1542  * enough pages to satisfy the caller's request.
1543  *
1544  * Sadly, this is called from platform/vm/vm_machdep.c
1545  */
1546 int
1547 page_create_wait(pgcnt_t npages, uint_t flags)
1548 {
1549 	pgcnt_t		total;
1550 	uint_t		i;
1551 	struct pcf	*p;
1552 
1553 	/*
1554 	 * Wait until there are enough free pages to satisfy our
1555 	 * entire request.
1556 	 * We set needfree += npages before prodding pageout, to make sure
1557 	 * it does real work when npages > lotsfree > freemem.
1558 	 */
1559 	VM_STAT_ADD(page_create_not_enough);
1560 
1561 	ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1562 checkagain:
1563 	if ((flags & PG_NORELOC) &&
1564 	    kcage_freemem < kcage_throttlefree + npages)
1565 		(void) kcage_create_throttle(npages, flags);
1566 
1567 	if (freemem < npages + throttlefree)
1568 		if (!page_create_throttle(npages, flags))
1569 			return (0);
1570 
1571 	if (pcf_decrement_bucket(npages) ||
1572 	    pcf_decrement_multiple(&total, npages, 0))
1573 		return (1);
1574 
1575 	/*
1576 	 * All of the pcf locks are held, there are not enough pages
1577 	 * to satisfy the request (npages < total).
1578 	 * Be sure to acquire the new_freemem_lock before dropping
1579 	 * the pcf locks.  This prevents dropping wakeups in page_free().
1580 	 * The order is always pcf_lock then new_freemem_lock.
1581 	 *
1582 	 * Since we hold all the pcf locks, it is a good time to set freemem.
1583 	 *
1584 	 * If the caller does not want to wait, return now.
1585 	 * Else turn the pageout daemon loose to find something
1586 	 * and wait till it does.
1587 	 *
1588 	 */
1589 	freemem = total;
1590 
1591 	if ((flags & PG_WAIT) == 0) {
1592 		pcf_release_all();
1593 
1594 		TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1595 		"page_create_nomem:npages %ld freemem %ld", npages, freemem);
1596 		return (0);
1597 	}
1598 
1599 	ASSERT(proc_pageout != NULL);
1600 	cv_signal(&proc_pageout->p_cv);
1601 
1602 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1603 	    "page_create_sleep_start: freemem %ld needfree %ld",
1604 	    freemem, needfree);
1605 
1606 	/*
1607 	 * We are going to wait.
1608 	 * We currently hold all of the pcf_locks,
1609 	 * get the new_freemem_lock (it protects freemem_wait),
1610 	 * before dropping the pcf_locks.
1611 	 */
1612 	mutex_enter(&new_freemem_lock);
1613 
1614 	p = pcf;
1615 	for (i = 0; i < pcf_fanout; i++) {
1616 		p->pcf_wait++;
1617 		mutex_exit(&p->pcf_lock);
1618 		p++;
1619 	}
1620 
1621 	needfree += npages;
1622 	freemem_wait++;
1623 
1624 	cv_wait(&freemem_cv, &new_freemem_lock);
1625 
1626 	freemem_wait--;
1627 	needfree -= npages;
1628 
1629 	mutex_exit(&new_freemem_lock);
1630 
1631 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1632 	    "page_create_sleep_end: freemem %ld needfree %ld",
1633 	    freemem, needfree);
1634 
1635 	VM_STAT_ADD(page_create_not_enough_again);
1636 	goto checkagain;
1637 }
1638 /*
1639  * A routine to do the opposite of page_create_wait().
1640  */
1641 void
1642 page_create_putback(spgcnt_t npages)
1643 {
1644 	struct pcf	*p;
1645 	pgcnt_t		lump;
1646 	uint_t		*which;
1647 
1648 	/*
1649 	 * When a contiguous lump is broken up, we have to
1650 	 * deal with lots of pages (min 64) so lets spread
1651 	 * the wealth around.
1652 	 */
1653 	lump = roundup(npages, pcf_fanout) / pcf_fanout;
1654 	freemem += npages;
1655 
1656 	for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) {
1657 		which = &p->pcf_count;
1658 
1659 		mutex_enter(&p->pcf_lock);
1660 
1661 		if (p->pcf_block) {
1662 			which = &p->pcf_reserve;
1663 		}
1664 
1665 		if (lump < npages) {
1666 			*which += (uint_t)lump;
1667 			npages -= lump;
1668 		} else {
1669 			*which += (uint_t)npages;
1670 			npages = 0;
1671 		}
1672 
1673 		if (p->pcf_wait) {
1674 			mutex_enter(&new_freemem_lock);
1675 			/*
1676 			 * Check to see if some other thread
1677 			 * is actually waiting.  Another bucket
1678 			 * may have woken it up by now.  If there
1679 			 * are no waiters, then set our pcf_wait
1680 			 * count to zero to avoid coming in here
1681 			 * next time.
1682 			 */
1683 			if (freemem_wait) {
1684 				if (npages > 1) {
1685 					cv_broadcast(&freemem_cv);
1686 				} else {
1687 					cv_signal(&freemem_cv);
1688 				}
1689 				p->pcf_wait--;
1690 			} else {
1691 				p->pcf_wait = 0;
1692 			}
1693 			mutex_exit(&new_freemem_lock);
1694 		}
1695 		mutex_exit(&p->pcf_lock);
1696 	}
1697 	ASSERT(npages == 0);
1698 }
1699 
1700 /*
1701  * A helper routine for page_create_get_something.
1702  * The indenting got to deep down there.
1703  * Unblock the pcf counters.  Any pages freed after
1704  * pcf_block got set are moved to pcf_count and
1705  * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1706  */
1707 static void
1708 pcgs_unblock(void)
1709 {
1710 	int		i;
1711 	struct pcf	*p;
1712 
1713 	/* Update freemem while we're here. */
1714 	freemem = 0;
1715 	p = pcf;
1716 	for (i = 0; i < pcf_fanout; i++) {
1717 		mutex_enter(&p->pcf_lock);
1718 		ASSERT(p->pcf_count == 0);
1719 		p->pcf_count = p->pcf_reserve;
1720 		p->pcf_block = 0;
1721 		freemem += p->pcf_count;
1722 		if (p->pcf_wait) {
1723 			mutex_enter(&new_freemem_lock);
1724 			if (freemem_wait) {
1725 				if (p->pcf_reserve > 1) {
1726 					cv_broadcast(&freemem_cv);
1727 					p->pcf_wait = 0;
1728 				} else {
1729 					cv_signal(&freemem_cv);
1730 					p->pcf_wait--;
1731 				}
1732 			} else {
1733 				p->pcf_wait = 0;
1734 			}
1735 			mutex_exit(&new_freemem_lock);
1736 		}
1737 		p->pcf_reserve = 0;
1738 		mutex_exit(&p->pcf_lock);
1739 		p++;
1740 	}
1741 }
1742 
1743 /*
1744  * Called from page_create_va() when both the cache and free lists
1745  * have been checked once.
1746  *
1747  * Either returns a page or panics since the accounting was done
1748  * way before we got here.
1749  *
1750  * We don't come here often, so leave the accounting on permanently.
1751  */
1752 
1753 #define	MAX_PCGS	100
1754 
1755 #ifdef	DEBUG
1756 #define	PCGS_TRIES	100
1757 #else	/* DEBUG */
1758 #define	PCGS_TRIES	10
1759 #endif	/* DEBUG */
1760 
1761 #ifdef	VM_STATS
1762 uint_t	pcgs_counts[PCGS_TRIES];
1763 uint_t	pcgs_too_many;
1764 uint_t	pcgs_entered;
1765 uint_t	pcgs_entered_noreloc;
1766 uint_t	pcgs_locked;
1767 uint_t	pcgs_cagelocked;
1768 #endif	/* VM_STATS */
1769 
1770 static page_t *
1771 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1772     caddr_t vaddr, uint_t flags)
1773 {
1774 	uint_t		count;
1775 	page_t		*pp;
1776 	uint_t		locked, i;
1777 	struct	pcf	*p;
1778 	lgrp_t		*lgrp;
1779 	int		cagelocked = 0;
1780 
1781 	VM_STAT_ADD(pcgs_entered);
1782 
1783 	/*
1784 	 * Tap any reserve freelists: if we fail now, we'll die
1785 	 * since the page(s) we're looking for have already been
1786 	 * accounted for.
1787 	 */
1788 	flags |= PG_PANIC;
1789 
1790 	if ((flags & PG_NORELOC) != 0) {
1791 		VM_STAT_ADD(pcgs_entered_noreloc);
1792 		/*
1793 		 * Requests for free pages from critical threads
1794 		 * such as pageout still won't throttle here, but
1795 		 * we must try again, to give the cageout thread
1796 		 * another chance to catch up. Since we already
1797 		 * accounted for the pages, we had better get them
1798 		 * this time.
1799 		 *
1800 		 * N.B. All non-critical threads acquire the pcgs_cagelock
1801 		 * to serialize access to the freelists. This implements a
1802 		 * turnstile-type synchornization to avoid starvation of
1803 		 * critical requests for PG_NORELOC memory by non-critical
1804 		 * threads: all non-critical threads must acquire a 'ticket'
1805 		 * before passing through, which entails making sure
1806 		 * kcage_freemem won't fall below minfree prior to grabbing
1807 		 * pages from the freelists.
1808 		 */
1809 		if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1810 			mutex_enter(&pcgs_cagelock);
1811 			cagelocked = 1;
1812 			VM_STAT_ADD(pcgs_cagelocked);
1813 		}
1814 	}
1815 
1816 	/*
1817 	 * Time to get serious.
1818 	 * We failed to get a `correctly colored' page from both the
1819 	 * free and cache lists.
1820 	 * We escalate in stage.
1821 	 *
1822 	 * First try both lists without worring about color.
1823 	 *
1824 	 * Then, grab all page accounting locks (ie. pcf[]) and
1825 	 * steal any pages that they have and set the pcf_block flag to
1826 	 * stop deletions from the lists.  This will help because
1827 	 * a page can get added to the free list while we are looking
1828 	 * at the cache list, then another page could be added to the cache
1829 	 * list allowing the page on the free list to be removed as we
1830 	 * move from looking at the cache list to the free list. This
1831 	 * could happen over and over. We would never find the page
1832 	 * we have accounted for.
1833 	 *
1834 	 * Noreloc pages are a subset of the global (relocatable) page pool.
1835 	 * They are not tracked separately in the pcf bins, so it is
1836 	 * impossible to know when doing pcf accounting if the available
1837 	 * page(s) are noreloc pages or not. When looking for a noreloc page
1838 	 * it is quite easy to end up here even if the global (relocatable)
1839 	 * page pool has plenty of free pages but the noreloc pool is empty.
1840 	 *
1841 	 * When the noreloc pool is empty (or low), additional noreloc pages
1842 	 * are created by converting pages from the global page pool. This
1843 	 * process will stall during pcf accounting if the pcf bins are
1844 	 * already locked. Such is the case when a noreloc allocation is
1845 	 * looping here in page_create_get_something waiting for more noreloc
1846 	 * pages to appear.
1847 	 *
1848 	 * Short of adding a new field to the pcf bins to accurately track
1849 	 * the number of free noreloc pages, we instead do not grab the
1850 	 * pcgs_lock, do not set the pcf blocks and do not timeout when
1851 	 * allocating a noreloc page. This allows noreloc allocations to
1852 	 * loop without blocking global page pool allocations.
1853 	 *
1854 	 * NOTE: the behaviour of page_create_get_something has not changed
1855 	 * for the case of global page pool allocations.
1856 	 */
1857 
1858 	flags &= ~PG_MATCH_COLOR;
1859 	locked = 0;
1860 #if defined(__x86)
1861 	flags = page_create_update_flags_x86(flags);
1862 #endif
1863 
1864 	lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1865 
1866 	for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1867 		pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1868 		    flags, lgrp);
1869 		if (pp == NULL) {
1870 			pp = page_get_cachelist(vp, off, seg, vaddr,
1871 			    flags, lgrp);
1872 		}
1873 		if (pp == NULL) {
1874 			/*
1875 			 * Serialize.  Don't fight with other pcgs().
1876 			 */
1877 			if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1878 				mutex_enter(&pcgs_lock);
1879 				VM_STAT_ADD(pcgs_locked);
1880 				locked = 1;
1881 				p = pcf;
1882 				for (i = 0; i < pcf_fanout; i++) {
1883 					mutex_enter(&p->pcf_lock);
1884 					ASSERT(p->pcf_block == 0);
1885 					p->pcf_block = 1;
1886 					p->pcf_reserve = p->pcf_count;
1887 					p->pcf_count = 0;
1888 					mutex_exit(&p->pcf_lock);
1889 					p++;
1890 				}
1891 				freemem = 0;
1892 			}
1893 
1894 			if (count) {
1895 				/*
1896 				 * Since page_free() puts pages on
1897 				 * a list then accounts for it, we
1898 				 * just have to wait for page_free()
1899 				 * to unlock any page it was working
1900 				 * with. The page_lock()-page_reclaim()
1901 				 * path falls in the same boat.
1902 				 *
1903 				 * We don't need to check on the
1904 				 * PG_WAIT flag, we have already
1905 				 * accounted for the page we are
1906 				 * looking for in page_create_va().
1907 				 *
1908 				 * We just wait a moment to let any
1909 				 * locked pages on the lists free up,
1910 				 * then continue around and try again.
1911 				 *
1912 				 * Will be awakened by set_freemem().
1913 				 */
1914 				mutex_enter(&pcgs_wait_lock);
1915 				cv_wait(&pcgs_cv, &pcgs_wait_lock);
1916 				mutex_exit(&pcgs_wait_lock);
1917 			}
1918 		} else {
1919 #ifdef VM_STATS
1920 			if (count >= PCGS_TRIES) {
1921 				VM_STAT_ADD(pcgs_too_many);
1922 			} else {
1923 				VM_STAT_ADD(pcgs_counts[count]);
1924 			}
1925 #endif
1926 			if (locked) {
1927 				pcgs_unblock();
1928 				mutex_exit(&pcgs_lock);
1929 			}
1930 			if (cagelocked)
1931 				mutex_exit(&pcgs_cagelock);
1932 			return (pp);
1933 		}
1934 	}
1935 	/*
1936 	 * we go down holding the pcf locks.
1937 	 */
1938 	panic("no %spage found %d",
1939 	    ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1940 	/*NOTREACHED*/
1941 }
1942 
1943 /*
1944  * Create enough pages for "bytes" worth of data starting at
1945  * "off" in "vp".
1946  *
1947  *	Where flag must be one of:
1948  *
1949  *		PG_EXCL:	Exclusive create (fail if any page already
1950  *				exists in the page cache) which does not
1951  *				wait for memory to become available.
1952  *
1953  *		PG_WAIT:	Non-exclusive create which can wait for
1954  *				memory to become available.
1955  *
1956  *		PG_PHYSCONTIG:	Allocate physically contiguous pages.
1957  *				(Not Supported)
1958  *
1959  * A doubly linked list of pages is returned to the caller.  Each page
1960  * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1961  * lock.
1962  *
1963  * Unable to change the parameters to page_create() in a minor release,
1964  * we renamed page_create() to page_create_va(), changed all known calls
1965  * from page_create() to page_create_va(), and created this wrapper.
1966  *
1967  * Upon a major release, we should break compatibility by deleting this
1968  * wrapper, and replacing all the strings "page_create_va", with "page_create".
1969  *
1970  * NOTE: There is a copy of this interface as page_create_io() in
1971  *	 i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1972  *	 there.
1973  */
1974 page_t *
1975 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1976 {
1977 	caddr_t random_vaddr;
1978 	struct seg kseg;
1979 
1980 #ifdef DEBUG
1981 	cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1982 	    (void *)caller());
1983 #endif
1984 
1985 	random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1986 	    (uintptr_t)(off >> PAGESHIFT));
1987 	kseg.s_as = &kas;
1988 
1989 	return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1990 }
1991 
1992 #ifdef DEBUG
1993 uint32_t pg_alloc_pgs_mtbf = 0;
1994 #endif
1995 
1996 /*
1997  * Used for large page support. It will attempt to allocate
1998  * a large page(s) off the freelist.
1999  *
2000  * Returns non zero on failure.
2001  */
2002 int
2003 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
2004     page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags)
2005 {
2006 	pgcnt_t		npgs, curnpgs, totpgs;
2007 	size_t		pgsz;
2008 	page_t		*pplist = NULL, *pp;
2009 	int		err = 0;
2010 	lgrp_t		*lgrp;
2011 
2012 	ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
2013 	ASSERT(pgflags == 0 || pgflags == PG_LOCAL);
2014 
2015 	/*
2016 	 * Check if system heavily prefers local large pages over remote
2017 	 * on systems with multiple lgroups.
2018 	 */
2019 	if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) {
2020 		pgflags = PG_LOCAL;
2021 	}
2022 
2023 	VM_STAT_ADD(alloc_pages[0]);
2024 
2025 #ifdef DEBUG
2026 	if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
2027 		return (ENOMEM);
2028 	}
2029 #endif
2030 
2031 	/*
2032 	 * One must be NULL but not both.
2033 	 * And one must be non NULL but not both.
2034 	 */
2035 	ASSERT(basepp != NULL || ppa != NULL);
2036 	ASSERT(basepp == NULL || ppa == NULL);
2037 
2038 #if defined(__x86)
2039 	while (page_chk_freelist(szc) == 0) {
2040 		VM_STAT_ADD(alloc_pages[8]);
2041 		if (anypgsz == 0 || --szc == 0)
2042 			return (ENOMEM);
2043 	}
2044 #endif
2045 
2046 	pgsz = page_get_pagesize(szc);
2047 	totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
2048 
2049 	ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
2050 
2051 	(void) page_create_wait(npgs, PG_WAIT);
2052 
2053 	while (npgs && szc) {
2054 		lgrp = lgrp_mem_choose(seg, addr, pgsz);
2055 		if (pgflags == PG_LOCAL) {
2056 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2057 			    pgflags, lgrp);
2058 			if (pp == NULL) {
2059 				pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2060 				    0, lgrp);
2061 			}
2062 		} else {
2063 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2064 			    0, lgrp);
2065 		}
2066 		if (pp != NULL) {
2067 			VM_STAT_ADD(alloc_pages[1]);
2068 			page_list_concat(&pplist, &pp);
2069 			ASSERT(npgs >= curnpgs);
2070 			npgs -= curnpgs;
2071 		} else if (anypgsz) {
2072 			VM_STAT_ADD(alloc_pages[2]);
2073 			szc--;
2074 			pgsz = page_get_pagesize(szc);
2075 			curnpgs = pgsz >> PAGESHIFT;
2076 		} else {
2077 			VM_STAT_ADD(alloc_pages[3]);
2078 			ASSERT(npgs == totpgs);
2079 			page_create_putback(npgs);
2080 			return (ENOMEM);
2081 		}
2082 	}
2083 	if (szc == 0) {
2084 		VM_STAT_ADD(alloc_pages[4]);
2085 		ASSERT(npgs != 0);
2086 		page_create_putback(npgs);
2087 		err = ENOMEM;
2088 	} else if (basepp != NULL) {
2089 		ASSERT(npgs == 0);
2090 		ASSERT(ppa == NULL);
2091 		*basepp = pplist;
2092 	}
2093 
2094 	npgs = totpgs - npgs;
2095 	pp = pplist;
2096 
2097 	/*
2098 	 * Clear the free and age bits. Also if we were passed in a ppa then
2099 	 * fill it in with all the constituent pages from the large page. But
2100 	 * if we failed to allocate all the pages just free what we got.
2101 	 */
2102 	while (npgs != 0) {
2103 		ASSERT(PP_ISFREE(pp));
2104 		ASSERT(PP_ISAGED(pp));
2105 		if (ppa != NULL || err != 0) {
2106 			if (err == 0) {
2107 				VM_STAT_ADD(alloc_pages[5]);
2108 				PP_CLRFREE(pp);
2109 				PP_CLRAGED(pp);
2110 				page_sub(&pplist, pp);
2111 				*ppa++ = pp;
2112 				npgs--;
2113 			} else {
2114 				VM_STAT_ADD(alloc_pages[6]);
2115 				ASSERT(pp->p_szc != 0);
2116 				curnpgs = page_get_pagecnt(pp->p_szc);
2117 				page_list_break(&pp, &pplist, curnpgs);
2118 				page_list_add_pages(pp, 0);
2119 				page_create_putback(curnpgs);
2120 				ASSERT(npgs >= curnpgs);
2121 				npgs -= curnpgs;
2122 			}
2123 			pp = pplist;
2124 		} else {
2125 			VM_STAT_ADD(alloc_pages[7]);
2126 			PP_CLRFREE(pp);
2127 			PP_CLRAGED(pp);
2128 			pp = pp->p_next;
2129 			npgs--;
2130 		}
2131 	}
2132 	return (err);
2133 }
2134 
2135 /*
2136  * Get a single large page off of the freelists, and set it up for use.
2137  * Number of bytes requested must be a supported page size.
2138  *
2139  * Note that this call may fail even if there is sufficient
2140  * memory available or PG_WAIT is set, so the caller must
2141  * be willing to fallback on page_create_va(), block and retry,
2142  * or fail the requester.
2143  */
2144 page_t *
2145 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2146     struct seg *seg, caddr_t vaddr, void *arg)
2147 {
2148 	pgcnt_t		npages;
2149 	page_t		*pp;
2150 	page_t		*rootpp;
2151 	lgrp_t		*lgrp;
2152 	lgrp_id_t	*lgrpid = (lgrp_id_t *)arg;
2153 
2154 	ASSERT(vp != NULL);
2155 
2156 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2157 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2158 	/* but no others */
2159 
2160 	ASSERT((flags & PG_EXCL) == PG_EXCL);
2161 
2162 	npages = btop(bytes);
2163 
2164 	if (!kcage_on || panicstr) {
2165 		/*
2166 		 * Cage is OFF, or we are single threaded in
2167 		 * panic, so make everything a RELOC request.
2168 		 */
2169 		flags &= ~PG_NORELOC;
2170 	}
2171 
2172 	/*
2173 	 * Make sure there's adequate physical memory available.
2174 	 * Note: PG_WAIT is ignored here.
2175 	 */
2176 	if (freemem <= throttlefree + npages) {
2177 		VM_STAT_ADD(page_create_large_cnt[1]);
2178 		return (NULL);
2179 	}
2180 
2181 	/*
2182 	 * If cage is on, dampen draw from cage when available
2183 	 * cage space is low.
2184 	 */
2185 	if ((flags & (PG_NORELOC | PG_WAIT)) ==  (PG_NORELOC | PG_WAIT) &&
2186 	    kcage_freemem < kcage_throttlefree + npages) {
2187 
2188 		/*
2189 		 * The cage is on, the caller wants PG_NORELOC
2190 		 * pages and available cage memory is very low.
2191 		 * Call kcage_create_throttle() to attempt to
2192 		 * control demand on the cage.
2193 		 */
2194 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2195 			VM_STAT_ADD(page_create_large_cnt[2]);
2196 			return (NULL);
2197 		}
2198 	}
2199 
2200 	if (!pcf_decrement_bucket(npages) &&
2201 	    !pcf_decrement_multiple(NULL, npages, 1)) {
2202 		VM_STAT_ADD(page_create_large_cnt[4]);
2203 		return (NULL);
2204 	}
2205 
2206 	/*
2207 	 * This is where this function behaves fundamentally differently
2208 	 * than page_create_va(); since we're intending to map the page
2209 	 * with a single TTE, we have to get it as a physically contiguous
2210 	 * hardware pagesize chunk.  If we can't, we fail.
2211 	 */
2212 	if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2213 	    LGRP_EXISTS(lgrp_table[*lgrpid]))
2214 		lgrp = lgrp_table[*lgrpid];
2215 	else
2216 		lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2217 
2218 	if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2219 	    bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2220 		page_create_putback(npages);
2221 		VM_STAT_ADD(page_create_large_cnt[5]);
2222 		return (NULL);
2223 	}
2224 
2225 	/*
2226 	 * if we got the page with the wrong mtype give it back this is a
2227 	 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2228 	 * inside "if" and the workaround becomes just a nop
2229 	 */
2230 	if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2231 		page_list_add_pages(rootpp, 0);
2232 		page_create_putback(npages);
2233 		VM_STAT_ADD(page_create_large_cnt[6]);
2234 		return (NULL);
2235 	}
2236 
2237 	/*
2238 	 * If satisfying this request has left us with too little
2239 	 * memory, start the wheels turning to get some back.  The
2240 	 * first clause of the test prevents waking up the pageout
2241 	 * daemon in situations where it would decide that there's
2242 	 * nothing to do.
2243 	 */
2244 	if (nscan < desscan && freemem < minfree) {
2245 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2246 		    "pageout_cv_signal:freemem %ld", freemem);
2247 		cv_signal(&proc_pageout->p_cv);
2248 	}
2249 
2250 	pp = rootpp;
2251 	while (npages--) {
2252 		ASSERT(PAGE_EXCL(pp));
2253 		ASSERT(pp->p_vnode == NULL);
2254 		ASSERT(!hat_page_is_mapped(pp));
2255 		PP_CLRFREE(pp);
2256 		PP_CLRAGED(pp);
2257 		if (!page_hashin(pp, vp, off, NULL))
2258 			panic("page_create_large: hashin failed: page %p",
2259 			    (void *)pp);
2260 		page_io_lock(pp);
2261 		off += PAGESIZE;
2262 		pp = pp->p_next;
2263 	}
2264 
2265 	VM_STAT_ADD(page_create_large_cnt[0]);
2266 	return (rootpp);
2267 }
2268 
2269 page_t *
2270 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2271     struct seg *seg, caddr_t vaddr)
2272 {
2273 	page_t		*plist = NULL;
2274 	pgcnt_t		npages;
2275 	pgcnt_t		found_on_free = 0;
2276 	pgcnt_t		pages_req;
2277 	page_t		*npp = NULL;
2278 	struct pcf	*p;
2279 	lgrp_t		*lgrp;
2280 
2281 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2282 	    "page_create_start:vp %p off %llx bytes %lu flags %x",
2283 	    vp, off, bytes, flags);
2284 
2285 	ASSERT(bytes != 0 && vp != NULL);
2286 
2287 	if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2288 		panic("page_create: invalid flags");
2289 		/*NOTREACHED*/
2290 	}
2291 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2292 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2293 	    /* but no others */
2294 
2295 	pages_req = npages = btopr(bytes);
2296 	/*
2297 	 * Try to see whether request is too large to *ever* be
2298 	 * satisfied, in order to prevent deadlock.  We arbitrarily
2299 	 * decide to limit maximum size requests to max_page_get.
2300 	 */
2301 	if (npages >= max_page_get) {
2302 		if ((flags & PG_WAIT) == 0) {
2303 			TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2304 			    "page_create_toobig:vp %p off %llx npages "
2305 			    "%lu max_page_get %lu",
2306 			    vp, off, npages, max_page_get);
2307 			return (NULL);
2308 		} else {
2309 			cmn_err(CE_WARN,
2310 			    "Request for too much kernel memory "
2311 			    "(%lu bytes), will hang forever", bytes);
2312 			for (;;)
2313 				delay(1000000000);
2314 		}
2315 	}
2316 
2317 	if (!kcage_on || panicstr) {
2318 		/*
2319 		 * Cage is OFF, or we are single threaded in
2320 		 * panic, so make everything a RELOC request.
2321 		 */
2322 		flags &= ~PG_NORELOC;
2323 	}
2324 
2325 	if (freemem <= throttlefree + npages)
2326 		if (!page_create_throttle(npages, flags))
2327 			return (NULL);
2328 
2329 	/*
2330 	 * If cage is on, dampen draw from cage when available
2331 	 * cage space is low.
2332 	 */
2333 	if ((flags & PG_NORELOC) &&
2334 	    kcage_freemem < kcage_throttlefree + npages) {
2335 
2336 		/*
2337 		 * The cage is on, the caller wants PG_NORELOC
2338 		 * pages and available cage memory is very low.
2339 		 * Call kcage_create_throttle() to attempt to
2340 		 * control demand on the cage.
2341 		 */
2342 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2343 			return (NULL);
2344 	}
2345 
2346 	VM_STAT_ADD(page_create_cnt[0]);
2347 
2348 	if (!pcf_decrement_bucket(npages)) {
2349 		/*
2350 		 * Have to look harder.  If npages is greater than
2351 		 * one, then we might have to coalesce the counters.
2352 		 *
2353 		 * Go wait.  We come back having accounted
2354 		 * for the memory.
2355 		 */
2356 		VM_STAT_ADD(page_create_cnt[1]);
2357 		if (!page_create_wait(npages, flags)) {
2358 			VM_STAT_ADD(page_create_cnt[2]);
2359 			return (NULL);
2360 		}
2361 	}
2362 
2363 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2364 	    "page_create_success:vp %p off %llx", vp, off);
2365 
2366 	/*
2367 	 * If satisfying this request has left us with too little
2368 	 * memory, start the wheels turning to get some back.  The
2369 	 * first clause of the test prevents waking up the pageout
2370 	 * daemon in situations where it would decide that there's
2371 	 * nothing to do.
2372 	 */
2373 	if (nscan < desscan && freemem < minfree) {
2374 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2375 		    "pageout_cv_signal:freemem %ld", freemem);
2376 		cv_signal(&proc_pageout->p_cv);
2377 	}
2378 
2379 	/*
2380 	 * Loop around collecting the requested number of pages.
2381 	 * Most of the time, we have to `create' a new page. With
2382 	 * this in mind, pull the page off the free list before
2383 	 * getting the hash lock.  This will minimize the hash
2384 	 * lock hold time, nesting, and the like.  If it turns
2385 	 * out we don't need the page, we put it back at the end.
2386 	 */
2387 	while (npages--) {
2388 		page_t		*pp;
2389 		kmutex_t	*phm = NULL;
2390 		ulong_t		index;
2391 
2392 		index = PAGE_HASH_FUNC(vp, off);
2393 top:
2394 		ASSERT(phm == NULL);
2395 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
2396 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2397 
2398 		if (npp == NULL) {
2399 			/*
2400 			 * Try to get a page from the freelist (ie,
2401 			 * a page with no [vp, off] tag).  If that
2402 			 * fails, use the cachelist.
2403 			 *
2404 			 * During the first attempt at both the free
2405 			 * and cache lists we try for the correct color.
2406 			 */
2407 			/*
2408 			 * XXXX-how do we deal with virtual indexed
2409 			 * caches and and colors?
2410 			 */
2411 			VM_STAT_ADD(page_create_cnt[4]);
2412 			/*
2413 			 * Get lgroup to allocate next page of shared memory
2414 			 * from and use it to specify where to allocate
2415 			 * the physical memory
2416 			 */
2417 			lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2418 			npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2419 			    flags | PG_MATCH_COLOR, lgrp);
2420 			if (npp == NULL) {
2421 				npp = page_get_cachelist(vp, off, seg,
2422 				    vaddr, flags | PG_MATCH_COLOR, lgrp);
2423 				if (npp == NULL) {
2424 					npp = page_create_get_something(vp,
2425 					    off, seg, vaddr,
2426 					    flags & ~PG_MATCH_COLOR);
2427 				}
2428 
2429 				if (PP_ISAGED(npp) == 0) {
2430 					/*
2431 					 * Since this page came from the
2432 					 * cachelist, we must destroy the
2433 					 * old vnode association.
2434 					 */
2435 					page_hashout(npp, NULL);
2436 				}
2437 			}
2438 		}
2439 
2440 		/*
2441 		 * We own this page!
2442 		 */
2443 		ASSERT(PAGE_EXCL(npp));
2444 		ASSERT(npp->p_vnode == NULL);
2445 		ASSERT(!hat_page_is_mapped(npp));
2446 		PP_CLRFREE(npp);
2447 		PP_CLRAGED(npp);
2448 
2449 		/*
2450 		 * Here we have a page in our hot little mits and are
2451 		 * just waiting to stuff it on the appropriate lists.
2452 		 * Get the mutex and check to see if it really does
2453 		 * not exist.
2454 		 */
2455 		phm = PAGE_HASH_MUTEX(index);
2456 		mutex_enter(phm);
2457 		pp = page_hash_search(index, vp, off);
2458 		if (pp == NULL) {
2459 			VM_STAT_ADD(page_create_new);
2460 			pp = npp;
2461 			npp = NULL;
2462 			if (!page_hashin(pp, vp, off, phm)) {
2463 				/*
2464 				 * Since we hold the page hash mutex and
2465 				 * just searched for this page, page_hashin
2466 				 * had better not fail.  If it does, that
2467 				 * means somethread did not follow the
2468 				 * page hash mutex rules.  Panic now and
2469 				 * get it over with.  As usual, go down
2470 				 * holding all the locks.
2471 				 */
2472 				ASSERT(MUTEX_HELD(phm));
2473 				panic("page_create: "
2474 				    "hashin failed %p %p %llx %p",
2475 				    (void *)pp, (void *)vp, off, (void *)phm);
2476 				/*NOTREACHED*/
2477 			}
2478 			ASSERT(MUTEX_HELD(phm));
2479 			mutex_exit(phm);
2480 			phm = NULL;
2481 
2482 			/*
2483 			 * Hat layer locking need not be done to set
2484 			 * the following bits since the page is not hashed
2485 			 * and was on the free list (i.e., had no mappings).
2486 			 *
2487 			 * Set the reference bit to protect
2488 			 * against immediate pageout
2489 			 *
2490 			 * XXXmh modify freelist code to set reference
2491 			 * bit so we don't have to do it here.
2492 			 */
2493 			page_set_props(pp, P_REF);
2494 			found_on_free++;
2495 		} else {
2496 			VM_STAT_ADD(page_create_exists);
2497 			if (flags & PG_EXCL) {
2498 				/*
2499 				 * Found an existing page, and the caller
2500 				 * wanted all new pages.  Undo all of the work
2501 				 * we have done.
2502 				 */
2503 				mutex_exit(phm);
2504 				phm = NULL;
2505 				while (plist != NULL) {
2506 					pp = plist;
2507 					page_sub(&plist, pp);
2508 					page_io_unlock(pp);
2509 					/* large pages should not end up here */
2510 					ASSERT(pp->p_szc == 0);
2511 					/*LINTED: constant in conditional ctx*/
2512 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
2513 				}
2514 				VM_STAT_ADD(page_create_found_one);
2515 				goto fail;
2516 			}
2517 			ASSERT(flags & PG_WAIT);
2518 			if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2519 				/*
2520 				 * Start all over again if we blocked trying
2521 				 * to lock the page.
2522 				 */
2523 				mutex_exit(phm);
2524 				VM_STAT_ADD(page_create_page_lock_failed);
2525 				phm = NULL;
2526 				goto top;
2527 			}
2528 			mutex_exit(phm);
2529 			phm = NULL;
2530 
2531 			if (PP_ISFREE(pp)) {
2532 				ASSERT(PP_ISAGED(pp) == 0);
2533 				VM_STAT_ADD(pagecnt.pc_get_cache);
2534 				page_list_sub(pp, PG_CACHE_LIST);
2535 				PP_CLRFREE(pp);
2536 				found_on_free++;
2537 			}
2538 		}
2539 
2540 		/*
2541 		 * Got a page!  It is locked.  Acquire the i/o
2542 		 * lock since we are going to use the p_next and
2543 		 * p_prev fields to link the requested pages together.
2544 		 */
2545 		page_io_lock(pp);
2546 		page_add(&plist, pp);
2547 		plist = plist->p_next;
2548 		off += PAGESIZE;
2549 		vaddr += PAGESIZE;
2550 	}
2551 
2552 	ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2553 fail:
2554 	if (npp != NULL) {
2555 		/*
2556 		 * Did not need this page after all.
2557 		 * Put it back on the free list.
2558 		 */
2559 		VM_STAT_ADD(page_create_putbacks);
2560 		PP_SETFREE(npp);
2561 		PP_SETAGED(npp);
2562 		npp->p_offset = (u_offset_t)-1;
2563 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2564 		page_unlock(npp);
2565 
2566 	}
2567 
2568 	ASSERT(pages_req >= found_on_free);
2569 
2570 	{
2571 		uint_t overshoot = (uint_t)(pages_req - found_on_free);
2572 
2573 		if (overshoot) {
2574 			VM_STAT_ADD(page_create_overshoot);
2575 			p = &pcf[PCF_INDEX()];
2576 			mutex_enter(&p->pcf_lock);
2577 			if (p->pcf_block) {
2578 				p->pcf_reserve += overshoot;
2579 			} else {
2580 				p->pcf_count += overshoot;
2581 				if (p->pcf_wait) {
2582 					mutex_enter(&new_freemem_lock);
2583 					if (freemem_wait) {
2584 						cv_signal(&freemem_cv);
2585 						p->pcf_wait--;
2586 					} else {
2587 						p->pcf_wait = 0;
2588 					}
2589 					mutex_exit(&new_freemem_lock);
2590 				}
2591 			}
2592 			mutex_exit(&p->pcf_lock);
2593 			/* freemem is approximate, so this test OK */
2594 			if (!p->pcf_block)
2595 				freemem += overshoot;
2596 		}
2597 	}
2598 
2599 	return (plist);
2600 }
2601 
2602 /*
2603  * One or more constituent pages of this large page has been marked
2604  * toxic. Simply demote the large page to PAGESIZE pages and let
2605  * page_free() handle it. This routine should only be called by
2606  * large page free routines (page_free_pages() and page_destroy_pages().
2607  * All pages are locked SE_EXCL and have already been marked free.
2608  */
2609 static void
2610 page_free_toxic_pages(page_t *rootpp)
2611 {
2612 	page_t	*tpp;
2613 	pgcnt_t	i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2614 	uint_t	szc = rootpp->p_szc;
2615 
2616 	for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2617 		ASSERT(tpp->p_szc == szc);
2618 		ASSERT((PAGE_EXCL(tpp) &&
2619 		    !page_iolock_assert(tpp)) || panicstr);
2620 		tpp->p_szc = 0;
2621 	}
2622 
2623 	while (rootpp != NULL) {
2624 		tpp = rootpp;
2625 		page_sub(&rootpp, tpp);
2626 		ASSERT(PP_ISFREE(tpp));
2627 		PP_CLRFREE(tpp);
2628 		page_free(tpp, 1);
2629 	}
2630 }
2631 
2632 /*
2633  * Put page on the "free" list.
2634  * The free list is really two lists maintained by
2635  * the PSM of whatever machine we happen to be on.
2636  */
2637 void
2638 page_free(page_t *pp, int dontneed)
2639 {
2640 	struct pcf	*p;
2641 	uint_t		pcf_index;
2642 
2643 	ASSERT((PAGE_EXCL(pp) &&
2644 	    !page_iolock_assert(pp)) || panicstr);
2645 
2646 	if (PP_ISFREE(pp)) {
2647 		panic("page_free: page %p is free", (void *)pp);
2648 	}
2649 
2650 	if (pp->p_szc != 0) {
2651 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2652 		    PP_ISKAS(pp)) {
2653 			panic("page_free: anon or kernel "
2654 			    "or no vnode large page %p", (void *)pp);
2655 		}
2656 		page_demote_vp_pages(pp);
2657 		ASSERT(pp->p_szc == 0);
2658 	}
2659 
2660 	/*
2661 	 * The page_struct_lock need not be acquired to examine these
2662 	 * fields since the page has an "exclusive" lock.
2663 	 */
2664 	if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
2665 	    pp->p_slckcnt != 0) {
2666 		panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2667 		    "slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt,
2668 		    pp->p_cowcnt, pp->p_slckcnt);
2669 		/*NOTREACHED*/
2670 	}
2671 
2672 	ASSERT(!hat_page_getshare(pp));
2673 
2674 	PP_SETFREE(pp);
2675 	ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2676 	    !hat_ismod(pp));
2677 	page_clr_all_props(pp);
2678 	ASSERT(!hat_page_getshare(pp));
2679 
2680 	/*
2681 	 * Now we add the page to the head of the free list.
2682 	 * But if this page is associated with a paged vnode
2683 	 * then we adjust the head forward so that the page is
2684 	 * effectively at the end of the list.
2685 	 */
2686 	if (pp->p_vnode == NULL) {
2687 		/*
2688 		 * Page has no identity, put it on the free list.
2689 		 */
2690 		PP_SETAGED(pp);
2691 		pp->p_offset = (u_offset_t)-1;
2692 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2693 		VM_STAT_ADD(pagecnt.pc_free_free);
2694 		TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2695 		    "page_free_free:pp %p", pp);
2696 	} else {
2697 		PP_CLRAGED(pp);
2698 
2699 		if (!dontneed) {
2700 			/* move it to the tail of the list */
2701 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2702 
2703 			VM_STAT_ADD(pagecnt.pc_free_cache);
2704 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2705 			    "page_free_cache_tail:pp %p", pp);
2706 		} else {
2707 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2708 
2709 			VM_STAT_ADD(pagecnt.pc_free_dontneed);
2710 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2711 			    "page_free_cache_head:pp %p", pp);
2712 		}
2713 	}
2714 	page_unlock(pp);
2715 
2716 	/*
2717 	 * Now do the `freemem' accounting.
2718 	 */
2719 	pcf_index = PCF_INDEX();
2720 	p = &pcf[pcf_index];
2721 
2722 	mutex_enter(&p->pcf_lock);
2723 	if (p->pcf_block) {
2724 		p->pcf_reserve += 1;
2725 	} else {
2726 		p->pcf_count += 1;
2727 		if (p->pcf_wait) {
2728 			mutex_enter(&new_freemem_lock);
2729 			/*
2730 			 * Check to see if some other thread
2731 			 * is actually waiting.  Another bucket
2732 			 * may have woken it up by now.  If there
2733 			 * are no waiters, then set our pcf_wait
2734 			 * count to zero to avoid coming in here
2735 			 * next time.  Also, since only one page
2736 			 * was put on the free list, just wake
2737 			 * up one waiter.
2738 			 */
2739 			if (freemem_wait) {
2740 				cv_signal(&freemem_cv);
2741 				p->pcf_wait--;
2742 			} else {
2743 				p->pcf_wait = 0;
2744 			}
2745 			mutex_exit(&new_freemem_lock);
2746 		}
2747 	}
2748 	mutex_exit(&p->pcf_lock);
2749 
2750 	/* freemem is approximate, so this test OK */
2751 	if (!p->pcf_block)
2752 		freemem += 1;
2753 }
2754 
2755 /*
2756  * Put page on the "free" list during intial startup.
2757  * This happens during initial single threaded execution.
2758  */
2759 void
2760 page_free_at_startup(page_t *pp)
2761 {
2762 	struct pcf	*p;
2763 	uint_t		pcf_index;
2764 
2765 	page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2766 	VM_STAT_ADD(pagecnt.pc_free_free);
2767 
2768 	/*
2769 	 * Now do the `freemem' accounting.
2770 	 */
2771 	pcf_index = PCF_INDEX();
2772 	p = &pcf[pcf_index];
2773 
2774 	ASSERT(p->pcf_block == 0);
2775 	ASSERT(p->pcf_wait == 0);
2776 	p->pcf_count += 1;
2777 
2778 	/* freemem is approximate, so this is OK */
2779 	freemem += 1;
2780 }
2781 
2782 void
2783 page_free_pages(page_t *pp)
2784 {
2785 	page_t	*tpp, *rootpp = NULL;
2786 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
2787 	pgcnt_t	i;
2788 	uint_t	szc = pp->p_szc;
2789 
2790 	VM_STAT_ADD(pagecnt.pc_free_pages);
2791 	TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2792 	    "page_free_free:pp %p", pp);
2793 
2794 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2795 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2796 		panic("page_free_pages: not root page %p", (void *)pp);
2797 		/*NOTREACHED*/
2798 	}
2799 
2800 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2801 		ASSERT((PAGE_EXCL(tpp) &&
2802 		    !page_iolock_assert(tpp)) || panicstr);
2803 		if (PP_ISFREE(tpp)) {
2804 			panic("page_free_pages: page %p is free", (void *)tpp);
2805 			/*NOTREACHED*/
2806 		}
2807 		if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2808 		    tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
2809 			panic("page_free_pages %p", (void *)tpp);
2810 			/*NOTREACHED*/
2811 		}
2812 
2813 		ASSERT(!hat_page_getshare(tpp));
2814 		ASSERT(tpp->p_vnode == NULL);
2815 		ASSERT(tpp->p_szc == szc);
2816 
2817 		PP_SETFREE(tpp);
2818 		page_clr_all_props(tpp);
2819 		PP_SETAGED(tpp);
2820 		tpp->p_offset = (u_offset_t)-1;
2821 		ASSERT(tpp->p_next == tpp);
2822 		ASSERT(tpp->p_prev == tpp);
2823 		page_list_concat(&rootpp, &tpp);
2824 	}
2825 	ASSERT(rootpp == pp);
2826 
2827 	page_list_add_pages(rootpp, 0);
2828 	page_create_putback(pgcnt);
2829 }
2830 
2831 int free_pages = 1;
2832 
2833 /*
2834  * This routine attempts to return pages to the cachelist via page_release().
2835  * It does not *have* to be successful in all cases, since the pageout scanner
2836  * will catch any pages it misses.  It does need to be fast and not introduce
2837  * too much overhead.
2838  *
2839  * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2840  * don't lock and retry.  This is ok, since the page scanner will eventually
2841  * find any page we miss in free_vp_pages().
2842  */
2843 void
2844 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2845 {
2846 	page_t *pp;
2847 	u_offset_t eoff;
2848 	extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2849 
2850 	eoff = off + len;
2851 
2852 	if (free_pages == 0)
2853 		return;
2854 	if (swap_in_range(vp, off, len))
2855 		return;
2856 
2857 	for (; off < eoff; off += PAGESIZE) {
2858 
2859 		/*
2860 		 * find the page using a fast, but inexact search. It'll be OK
2861 		 * if a few pages slip through the cracks here.
2862 		 */
2863 		pp = page_exists(vp, off);
2864 
2865 		/*
2866 		 * If we didn't find the page (it may not exist), the page
2867 		 * is free, looks still in use (shared), or we can't lock it,
2868 		 * just give up.
2869 		 */
2870 		if (pp == NULL ||
2871 		    PP_ISFREE(pp) ||
2872 		    page_share_cnt(pp) > 0 ||
2873 		    !page_trylock(pp, SE_EXCL))
2874 			continue;
2875 
2876 		/*
2877 		 * Once we have locked pp, verify that it's still the
2878 		 * correct page and not already free
2879 		 */
2880 		ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2881 		if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2882 			page_unlock(pp);
2883 			continue;
2884 		}
2885 
2886 		/*
2887 		 * try to release the page...
2888 		 */
2889 		(void) page_release(pp, 1);
2890 	}
2891 }
2892 
2893 /*
2894  * Reclaim the given page from the free list.
2895  * If pp is part of a large pages, only the given constituent page is reclaimed
2896  * and the large page it belonged to will be demoted.  This can only happen
2897  * if the page is not on the cachelist.
2898  *
2899  * Returns 1 on success or 0 on failure.
2900  *
2901  * The page is unlocked if it can't be reclaimed (when freemem == 0).
2902  * If `lock' is non-null, it will be dropped and re-acquired if
2903  * the routine must wait while freemem is 0.
2904  *
2905  * As it turns out, boot_getpages() does this.  It picks a page,
2906  * based on where OBP mapped in some address, gets its pfn, searches
2907  * the memsegs, locks the page, then pulls it off the free list!
2908  */
2909 int
2910 page_reclaim(page_t *pp, kmutex_t *lock)
2911 {
2912 	struct pcf	*p;
2913 	struct cpu	*cpup;
2914 	int		enough;
2915 	uint_t		i;
2916 
2917 	ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
2918 	ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
2919 
2920 	/*
2921 	 * If `freemem' is 0, we cannot reclaim this page from the
2922 	 * freelist, so release every lock we might hold: the page,
2923 	 * and the `lock' before blocking.
2924 	 *
2925 	 * The only way `freemem' can become 0 while there are pages
2926 	 * marked free (have their p->p_free bit set) is when the
2927 	 * system is low on memory and doing a page_create().  In
2928 	 * order to guarantee that once page_create() starts acquiring
2929 	 * pages it will be able to get all that it needs since `freemem'
2930 	 * was decreased by the requested amount.  So, we need to release
2931 	 * this page, and let page_create() have it.
2932 	 *
2933 	 * Since `freemem' being zero is not supposed to happen, just
2934 	 * use the usual hash stuff as a starting point.  If that bucket
2935 	 * is empty, then assume the worst, and start at the beginning
2936 	 * of the pcf array.  If we always start at the beginning
2937 	 * when acquiring more than one pcf lock, there won't be any
2938 	 * deadlock problems.
2939 	 */
2940 
2941 	/* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
2942 
2943 	if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
2944 		pcf_acquire_all();
2945 		goto page_reclaim_nomem;
2946 	}
2947 
2948 	enough = pcf_decrement_bucket(1);
2949 
2950 	if (!enough) {
2951 		VM_STAT_ADD(page_reclaim_zero);
2952 		/*
2953 		 * Check again. Its possible that some other thread
2954 		 * could have been right behind us, and added one
2955 		 * to a list somewhere.  Acquire each of the pcf locks
2956 		 * until we find a page.
2957 		 */
2958 		p = pcf;
2959 		for (i = 0; i < pcf_fanout; i++) {
2960 			mutex_enter(&p->pcf_lock);
2961 			if (p->pcf_count >= 1) {
2962 				p->pcf_count -= 1;
2963 				/*
2964 				 * freemem is not protected by any lock. Thus,
2965 				 * we cannot have any assertion containing
2966 				 * freemem here.
2967 				 */
2968 				freemem -= 1;
2969 				enough = 1;
2970 				break;
2971 			}
2972 			p++;
2973 		}
2974 
2975 		if (!enough) {
2976 page_reclaim_nomem:
2977 			/*
2978 			 * We really can't have page `pp'.
2979 			 * Time for the no-memory dance with
2980 			 * page_free().  This is just like
2981 			 * page_create_wait().  Plus the added
2982 			 * attraction of releasing whatever mutex
2983 			 * we held when we were called with in `lock'.
2984 			 * Page_unlock() will wakeup any thread
2985 			 * waiting around for this page.
2986 			 */
2987 			if (lock) {
2988 				VM_STAT_ADD(page_reclaim_zero_locked);
2989 				mutex_exit(lock);
2990 			}
2991 			page_unlock(pp);
2992 
2993 			/*
2994 			 * get this before we drop all the pcf locks.
2995 			 */
2996 			mutex_enter(&new_freemem_lock);
2997 
2998 			p = pcf;
2999 			for (i = 0; i < pcf_fanout; i++) {
3000 				p->pcf_wait++;
3001 				mutex_exit(&p->pcf_lock);
3002 				p++;
3003 			}
3004 
3005 			freemem_wait++;
3006 			cv_wait(&freemem_cv, &new_freemem_lock);
3007 			freemem_wait--;
3008 
3009 			mutex_exit(&new_freemem_lock);
3010 
3011 			if (lock) {
3012 				mutex_enter(lock);
3013 			}
3014 			return (0);
3015 		}
3016 
3017 		/*
3018 		 * The pcf accounting has been done,
3019 		 * though none of the pcf_wait flags have been set,
3020 		 * drop the locks and continue on.
3021 		 */
3022 		while (p >= pcf) {
3023 			mutex_exit(&p->pcf_lock);
3024 			p--;
3025 		}
3026 	}
3027 
3028 
3029 	VM_STAT_ADD(pagecnt.pc_reclaim);
3030 
3031 	/*
3032 	 * page_list_sub will handle the case where pp is a large page.
3033 	 * It's possible that the page was promoted while on the freelist
3034 	 */
3035 	if (PP_ISAGED(pp)) {
3036 		page_list_sub(pp, PG_FREE_LIST);
3037 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3038 		    "page_reclaim_free:pp %p", pp);
3039 	} else {
3040 		page_list_sub(pp, PG_CACHE_LIST);
3041 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3042 		    "page_reclaim_cache:pp %p", pp);
3043 	}
3044 
3045 	/*
3046 	 * clear the p_free & p_age bits since this page is no longer
3047 	 * on the free list.  Notice that there was a brief time where
3048 	 * a page is marked as free, but is not on the list.
3049 	 *
3050 	 * Set the reference bit to protect against immediate pageout.
3051 	 */
3052 	PP_CLRFREE(pp);
3053 	PP_CLRAGED(pp);
3054 	page_set_props(pp, P_REF);
3055 
3056 	CPU_STATS_ENTER_K();
3057 	cpup = CPU;	/* get cpup now that CPU cannot change */
3058 	CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3059 	CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3060 	CPU_STATS_EXIT_K();
3061 	ASSERT(pp->p_szc == 0);
3062 
3063 	return (1);
3064 }
3065 
3066 /*
3067  * Destroy identity of the page and put it back on
3068  * the page free list.  Assumes that the caller has
3069  * acquired the "exclusive" lock on the page.
3070  */
3071 void
3072 page_destroy(page_t *pp, int dontfree)
3073 {
3074 	ASSERT((PAGE_EXCL(pp) &&
3075 	    !page_iolock_assert(pp)) || panicstr);
3076 	ASSERT(pp->p_slckcnt == 0 || panicstr);
3077 
3078 	if (pp->p_szc != 0) {
3079 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3080 		    PP_ISKAS(pp)) {
3081 			panic("page_destroy: anon or kernel or no vnode "
3082 			    "large page %p", (void *)pp);
3083 		}
3084 		page_demote_vp_pages(pp);
3085 		ASSERT(pp->p_szc == 0);
3086 	}
3087 
3088 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3089 
3090 	/*
3091 	 * Unload translations, if any, then hash out the
3092 	 * page to erase its identity.
3093 	 */
3094 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3095 	page_hashout(pp, NULL);
3096 
3097 	if (!dontfree) {
3098 		/*
3099 		 * Acquire the "freemem_lock" for availrmem.
3100 		 * The page_struct_lock need not be acquired for lckcnt
3101 		 * and cowcnt since the page has an "exclusive" lock.
3102 		 * We are doing a modified version of page_pp_unlock here.
3103 		 */
3104 		if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3105 			mutex_enter(&freemem_lock);
3106 			if (pp->p_lckcnt != 0) {
3107 				availrmem++;
3108 				pages_locked--;
3109 				pp->p_lckcnt = 0;
3110 			}
3111 			if (pp->p_cowcnt != 0) {
3112 				availrmem += pp->p_cowcnt;
3113 				pages_locked -= pp->p_cowcnt;
3114 				pp->p_cowcnt = 0;
3115 			}
3116 			mutex_exit(&freemem_lock);
3117 		}
3118 		/*
3119 		 * Put the page on the "free" list.
3120 		 */
3121 		page_free(pp, 0);
3122 	}
3123 }
3124 
3125 void
3126 page_destroy_pages(page_t *pp)
3127 {
3128 
3129 	page_t	*tpp, *rootpp = NULL;
3130 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
3131 	pgcnt_t	i, pglcks = 0;
3132 	uint_t	szc = pp->p_szc;
3133 
3134 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3135 
3136 	VM_STAT_ADD(pagecnt.pc_destroy_pages);
3137 
3138 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3139 
3140 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3141 		panic("page_destroy_pages: not root page %p", (void *)pp);
3142 		/*NOTREACHED*/
3143 	}
3144 
3145 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3146 		ASSERT((PAGE_EXCL(tpp) &&
3147 		    !page_iolock_assert(tpp)) || panicstr);
3148 		ASSERT(tpp->p_slckcnt == 0 || panicstr);
3149 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3150 		page_hashout(tpp, NULL);
3151 		ASSERT(tpp->p_offset == (u_offset_t)-1);
3152 		if (tpp->p_lckcnt != 0) {
3153 			pglcks++;
3154 			tpp->p_lckcnt = 0;
3155 		} else if (tpp->p_cowcnt != 0) {
3156 			pglcks += tpp->p_cowcnt;
3157 			tpp->p_cowcnt = 0;
3158 		}
3159 		ASSERT(!hat_page_getshare(tpp));
3160 		ASSERT(tpp->p_vnode == NULL);
3161 		ASSERT(tpp->p_szc == szc);
3162 
3163 		PP_SETFREE(tpp);
3164 		page_clr_all_props(tpp);
3165 		PP_SETAGED(tpp);
3166 		ASSERT(tpp->p_next == tpp);
3167 		ASSERT(tpp->p_prev == tpp);
3168 		page_list_concat(&rootpp, &tpp);
3169 	}
3170 
3171 	ASSERT(rootpp == pp);
3172 	if (pglcks != 0) {
3173 		mutex_enter(&freemem_lock);
3174 		availrmem += pglcks;
3175 		mutex_exit(&freemem_lock);
3176 	}
3177 
3178 	page_list_add_pages(rootpp, 0);
3179 	page_create_putback(pgcnt);
3180 }
3181 
3182 /*
3183  * Similar to page_destroy(), but destroys pages which are
3184  * locked and known to be on the page free list.  Since
3185  * the page is known to be free and locked, no one can access
3186  * it.
3187  *
3188  * Also, the number of free pages does not change.
3189  */
3190 void
3191 page_destroy_free(page_t *pp)
3192 {
3193 	ASSERT(PAGE_EXCL(pp));
3194 	ASSERT(PP_ISFREE(pp));
3195 	ASSERT(pp->p_vnode);
3196 	ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3197 	ASSERT(!hat_page_is_mapped(pp));
3198 	ASSERT(PP_ISAGED(pp) == 0);
3199 	ASSERT(pp->p_szc == 0);
3200 
3201 	VM_STAT_ADD(pagecnt.pc_destroy_free);
3202 	page_list_sub(pp, PG_CACHE_LIST);
3203 
3204 	page_hashout(pp, NULL);
3205 	ASSERT(pp->p_vnode == NULL);
3206 	ASSERT(pp->p_offset == (u_offset_t)-1);
3207 	ASSERT(pp->p_hash == NULL);
3208 
3209 	PP_SETAGED(pp);
3210 	page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3211 	page_unlock(pp);
3212 
3213 	mutex_enter(&new_freemem_lock);
3214 	if (freemem_wait) {
3215 		cv_signal(&freemem_cv);
3216 	}
3217 	mutex_exit(&new_freemem_lock);
3218 }
3219 
3220 /*
3221  * Rename the page "opp" to have an identity specified
3222  * by [vp, off].  If a page already exists with this name
3223  * it is locked and destroyed.  Note that the page's
3224  * translations are not unloaded during the rename.
3225  *
3226  * This routine is used by the anon layer to "steal" the
3227  * original page and is not unlike destroying a page and
3228  * creating a new page using the same page frame.
3229  *
3230  * XXX -- Could deadlock if caller 1 tries to rename A to B while
3231  * caller 2 tries to rename B to A.
3232  */
3233 void
3234 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3235 {
3236 	page_t		*pp;
3237 	int		olckcnt = 0;
3238 	int		ocowcnt = 0;
3239 	kmutex_t	*phm;
3240 	ulong_t		index;
3241 
3242 	ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3243 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3244 	ASSERT(PP_ISFREE(opp) == 0);
3245 
3246 	VM_STAT_ADD(page_rename_count);
3247 
3248 	TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3249 	    "page rename:pp %p vp %p off %llx", opp, vp, off);
3250 
3251 	/*
3252 	 * CacheFS may call page_rename for a large NFS page
3253 	 * when both CacheFS and NFS mount points are used
3254 	 * by applications. Demote this large page before
3255 	 * renaming it, to ensure that there are no "partial"
3256 	 * large pages left lying around.
3257 	 */
3258 	if (opp->p_szc != 0) {
3259 		vnode_t *ovp = opp->p_vnode;
3260 		ASSERT(ovp != NULL);
3261 		ASSERT(!IS_SWAPFSVP(ovp));
3262 		ASSERT(!VN_ISKAS(ovp));
3263 		page_demote_vp_pages(opp);
3264 		ASSERT(opp->p_szc == 0);
3265 	}
3266 
3267 	page_hashout(opp, NULL);
3268 	PP_CLRAGED(opp);
3269 
3270 	/*
3271 	 * Acquire the appropriate page hash lock, since
3272 	 * we're going to rename the page.
3273 	 */
3274 	index = PAGE_HASH_FUNC(vp, off);
3275 	phm = PAGE_HASH_MUTEX(index);
3276 	mutex_enter(phm);
3277 top:
3278 	/*
3279 	 * Look for an existing page with this name and destroy it if found.
3280 	 * By holding the page hash lock all the way to the page_hashin()
3281 	 * call, we are assured that no page can be created with this
3282 	 * identity.  In the case when the phm lock is dropped to undo any
3283 	 * hat layer mappings, the existing page is held with an "exclusive"
3284 	 * lock, again preventing another page from being created with
3285 	 * this identity.
3286 	 */
3287 	pp = page_hash_search(index, vp, off);
3288 	if (pp != NULL) {
3289 		VM_STAT_ADD(page_rename_exists);
3290 
3291 		/*
3292 		 * As it turns out, this is one of only two places where
3293 		 * page_lock() needs to hold the passed in lock in the
3294 		 * successful case.  In all of the others, the lock could
3295 		 * be dropped as soon as the attempt is made to lock
3296 		 * the page.  It is tempting to add yet another arguement,
3297 		 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3298 		 */
3299 		if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3300 			/*
3301 			 * Went to sleep because the page could not
3302 			 * be locked.  We were woken up when the page
3303 			 * was unlocked, or when the page was destroyed.
3304 			 * In either case, `phm' was dropped while we
3305 			 * slept.  Hence we should not just roar through
3306 			 * this loop.
3307 			 */
3308 			goto top;
3309 		}
3310 
3311 		/*
3312 		 * If an existing page is a large page, then demote
3313 		 * it to ensure that no "partial" large pages are
3314 		 * "created" after page_rename. An existing page
3315 		 * can be a CacheFS page, and can't belong to swapfs.
3316 		 */
3317 		if (hat_page_is_mapped(pp)) {
3318 			/*
3319 			 * Unload translations.  Since we hold the
3320 			 * exclusive lock on this page, the page
3321 			 * can not be changed while we drop phm.
3322 			 * This is also not a lock protocol violation,
3323 			 * but rather the proper way to do things.
3324 			 */
3325 			mutex_exit(phm);
3326 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3327 			if (pp->p_szc != 0) {
3328 				ASSERT(!IS_SWAPFSVP(vp));
3329 				ASSERT(!VN_ISKAS(vp));
3330 				page_demote_vp_pages(pp);
3331 				ASSERT(pp->p_szc == 0);
3332 			}
3333 			mutex_enter(phm);
3334 		} else if (pp->p_szc != 0) {
3335 			ASSERT(!IS_SWAPFSVP(vp));
3336 			ASSERT(!VN_ISKAS(vp));
3337 			mutex_exit(phm);
3338 			page_demote_vp_pages(pp);
3339 			ASSERT(pp->p_szc == 0);
3340 			mutex_enter(phm);
3341 		}
3342 		page_hashout(pp, phm);
3343 	}
3344 	/*
3345 	 * Hash in the page with the new identity.
3346 	 */
3347 	if (!page_hashin(opp, vp, off, phm)) {
3348 		/*
3349 		 * We were holding phm while we searched for [vp, off]
3350 		 * and only dropped phm if we found and locked a page.
3351 		 * If we can't create this page now, then some thing
3352 		 * is really broken.
3353 		 */
3354 		panic("page_rename: Can't hash in page: %p", (void *)pp);
3355 		/*NOTREACHED*/
3356 	}
3357 
3358 	ASSERT(MUTEX_HELD(phm));
3359 	mutex_exit(phm);
3360 
3361 	/*
3362 	 * Now that we have dropped phm, lets get around to finishing up
3363 	 * with pp.
3364 	 */
3365 	if (pp != NULL) {
3366 		ASSERT(!hat_page_is_mapped(pp));
3367 		/* for now large pages should not end up here */
3368 		ASSERT(pp->p_szc == 0);
3369 		/*
3370 		 * Save the locks for transfer to the new page and then
3371 		 * clear them so page_free doesn't think they're important.
3372 		 * The page_struct_lock need not be acquired for lckcnt and
3373 		 * cowcnt since the page has an "exclusive" lock.
3374 		 */
3375 		olckcnt = pp->p_lckcnt;
3376 		ocowcnt = pp->p_cowcnt;
3377 		pp->p_lckcnt = pp->p_cowcnt = 0;
3378 
3379 		/*
3380 		 * Put the page on the "free" list after we drop
3381 		 * the lock.  The less work under the lock the better.
3382 		 */
3383 		/*LINTED: constant in conditional context*/
3384 		VN_DISPOSE(pp, B_FREE, 0, kcred);
3385 	}
3386 
3387 	/*
3388 	 * Transfer the lock count from the old page (if any).
3389 	 * The page_struct_lock need not be acquired for lckcnt and
3390 	 * cowcnt since the page has an "exclusive" lock.
3391 	 */
3392 	opp->p_lckcnt += olckcnt;
3393 	opp->p_cowcnt += ocowcnt;
3394 }
3395 
3396 /*
3397  * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3398  *
3399  * Pages are normally inserted at the start of a vnode's v_pages list.
3400  * If the vnode is VMODSORT and the page is modified, it goes at the end.
3401  * This can happen when a modified page is relocated for DR.
3402  *
3403  * Returns 1 on success and 0 on failure.
3404  */
3405 static int
3406 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3407 {
3408 	page_t		**listp;
3409 	page_t		*tp;
3410 	ulong_t		index;
3411 
3412 	ASSERT(PAGE_EXCL(pp));
3413 	ASSERT(vp != NULL);
3414 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3415 
3416 	/*
3417 	 * Be sure to set these up before the page is inserted on the hash
3418 	 * list.  As soon as the page is placed on the list some other
3419 	 * thread might get confused and wonder how this page could
3420 	 * possibly hash to this list.
3421 	 */
3422 	pp->p_vnode = vp;
3423 	pp->p_offset = offset;
3424 
3425 	/*
3426 	 * record if this page is on a swap vnode
3427 	 */
3428 	if ((vp->v_flag & VISSWAP) != 0)
3429 		PP_SETSWAP(pp);
3430 
3431 	index = PAGE_HASH_FUNC(vp, offset);
3432 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3433 	listp = &page_hash[index];
3434 
3435 	/*
3436 	 * If this page is already hashed in, fail this attempt to add it.
3437 	 */
3438 	for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3439 		if (tp->p_vnode == vp && tp->p_offset == offset) {
3440 			pp->p_vnode = NULL;
3441 			pp->p_offset = (u_offset_t)(-1);
3442 			return (0);
3443 		}
3444 	}
3445 	pp->p_hash = *listp;
3446 	*listp = pp;
3447 
3448 	/*
3449 	 * Add the page to the vnode's list of pages
3450 	 */
3451 	if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3452 		listp = &vp->v_pages->p_vpprev->p_vpnext;
3453 	else
3454 		listp = &vp->v_pages;
3455 
3456 	page_vpadd(listp, pp);
3457 
3458 	return (1);
3459 }
3460 
3461 /*
3462  * Add page `pp' to both the hash and vp chains for [vp, offset].
3463  *
3464  * Returns 1 on success and 0 on failure.
3465  * If hold is passed in, it is not dropped.
3466  */
3467 int
3468 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3469 {
3470 	kmutex_t	*phm = NULL;
3471 	kmutex_t	*vphm;
3472 	int		rc;
3473 
3474 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3475 	ASSERT(pp->p_fsdata == 0 || panicstr);
3476 
3477 	TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3478 	    "page_hashin:pp %p vp %p offset %llx",
3479 	    pp, vp, offset);
3480 
3481 	VM_STAT_ADD(hashin_count);
3482 
3483 	if (hold != NULL)
3484 		phm = hold;
3485 	else {
3486 		VM_STAT_ADD(hashin_not_held);
3487 		phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3488 		mutex_enter(phm);
3489 	}
3490 
3491 	vphm = page_vnode_mutex(vp);
3492 	mutex_enter(vphm);
3493 	rc = page_do_hashin(pp, vp, offset);
3494 	mutex_exit(vphm);
3495 	if (hold == NULL)
3496 		mutex_exit(phm);
3497 	if (rc == 0)
3498 		VM_STAT_ADD(hashin_already);
3499 	return (rc);
3500 }
3501 
3502 /*
3503  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3504  * All mutexes must be held
3505  */
3506 static void
3507 page_do_hashout(page_t *pp)
3508 {
3509 	page_t	**hpp;
3510 	page_t	*hp;
3511 	vnode_t	*vp = pp->p_vnode;
3512 
3513 	ASSERT(vp != NULL);
3514 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3515 
3516 	/*
3517 	 * First, take pp off of its hash chain.
3518 	 */
3519 	hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3520 
3521 	for (;;) {
3522 		hp = *hpp;
3523 		if (hp == pp)
3524 			break;
3525 		if (hp == NULL) {
3526 			panic("page_do_hashout");
3527 			/*NOTREACHED*/
3528 		}
3529 		hpp = &hp->p_hash;
3530 	}
3531 	*hpp = pp->p_hash;
3532 
3533 	/*
3534 	 * Now remove it from its associated vnode.
3535 	 */
3536 	if (vp->v_pages)
3537 		page_vpsub(&vp->v_pages, pp);
3538 
3539 	pp->p_hash = NULL;
3540 	page_clr_all_props(pp);
3541 	PP_CLRSWAP(pp);
3542 	pp->p_vnode = NULL;
3543 	pp->p_offset = (u_offset_t)-1;
3544 	pp->p_fsdata = 0;
3545 }
3546 
3547 /*
3548  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3549  *
3550  * When `phm' is non-NULL it contains the address of the mutex protecting the
3551  * hash list pp is on.  It is not dropped.
3552  */
3553 void
3554 page_hashout(page_t *pp, kmutex_t *phm)
3555 {
3556 	vnode_t		*vp;
3557 	ulong_t		index;
3558 	kmutex_t	*nphm;
3559 	kmutex_t	*vphm;
3560 	kmutex_t	*sep;
3561 
3562 	ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3563 	ASSERT(pp->p_vnode != NULL);
3564 	ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3565 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3566 
3567 	vp = pp->p_vnode;
3568 
3569 	TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3570 	    "page_hashout:pp %p vp %p", pp, vp);
3571 
3572 	/* Kernel probe */
3573 	TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */,
3574 	    tnf_opaque, vnode, vp,
3575 	    tnf_offset, offset, pp->p_offset);
3576 
3577 	/*
3578 	 *
3579 	 */
3580 	VM_STAT_ADD(hashout_count);
3581 	index = PAGE_HASH_FUNC(vp, pp->p_offset);
3582 	if (phm == NULL) {
3583 		VM_STAT_ADD(hashout_not_held);
3584 		nphm = PAGE_HASH_MUTEX(index);
3585 		mutex_enter(nphm);
3586 	}
3587 	ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3588 
3589 
3590 	/*
3591 	 * grab page vnode mutex and remove it...
3592 	 */
3593 	vphm = page_vnode_mutex(vp);
3594 	mutex_enter(vphm);
3595 
3596 	page_do_hashout(pp);
3597 
3598 	mutex_exit(vphm);
3599 	if (phm == NULL)
3600 		mutex_exit(nphm);
3601 
3602 	/*
3603 	 * Wake up processes waiting for this page.  The page's
3604 	 * identity has been changed, and is probably not the
3605 	 * desired page any longer.
3606 	 */
3607 	sep = page_se_mutex(pp);
3608 	mutex_enter(sep);
3609 	pp->p_selock &= ~SE_EWANTED;
3610 	if (CV_HAS_WAITERS(&pp->p_cv))
3611 		cv_broadcast(&pp->p_cv);
3612 	mutex_exit(sep);
3613 }
3614 
3615 /*
3616  * Add the page to the front of a linked list of pages
3617  * using the p_next & p_prev pointers for the list.
3618  * The caller is responsible for protecting the list pointers.
3619  */
3620 void
3621 page_add(page_t **ppp, page_t *pp)
3622 {
3623 	ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3624 
3625 	page_add_common(ppp, pp);
3626 }
3627 
3628 
3629 
3630 /*
3631  *  Common code for page_add() and mach_page_add()
3632  */
3633 void
3634 page_add_common(page_t **ppp, page_t *pp)
3635 {
3636 	if (*ppp == NULL) {
3637 		pp->p_next = pp->p_prev = pp;
3638 	} else {
3639 		pp->p_next = *ppp;
3640 		pp->p_prev = (*ppp)->p_prev;
3641 		(*ppp)->p_prev = pp;
3642 		pp->p_prev->p_next = pp;
3643 	}
3644 	*ppp = pp;
3645 }
3646 
3647 
3648 /*
3649  * Remove this page from a linked list of pages
3650  * using the p_next & p_prev pointers for the list.
3651  *
3652  * The caller is responsible for protecting the list pointers.
3653  */
3654 void
3655 page_sub(page_t **ppp, page_t *pp)
3656 {
3657 	ASSERT((PP_ISFREE(pp)) ? 1 :
3658 	    (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3659 
3660 	if (*ppp == NULL || pp == NULL) {
3661 		panic("page_sub: bad arg(s): pp %p, *ppp %p",
3662 		    (void *)pp, (void *)(*ppp));
3663 		/*NOTREACHED*/
3664 	}
3665 
3666 	page_sub_common(ppp, pp);
3667 }
3668 
3669 
3670 /*
3671  *  Common code for page_sub() and mach_page_sub()
3672  */
3673 void
3674 page_sub_common(page_t **ppp, page_t *pp)
3675 {
3676 	if (*ppp == pp)
3677 		*ppp = pp->p_next;		/* go to next page */
3678 
3679 	if (*ppp == pp)
3680 		*ppp = NULL;			/* page list is gone */
3681 	else {
3682 		pp->p_prev->p_next = pp->p_next;
3683 		pp->p_next->p_prev = pp->p_prev;
3684 	}
3685 	pp->p_prev = pp->p_next = pp;		/* make pp a list of one */
3686 }
3687 
3688 
3689 /*
3690  * Break page list cppp into two lists with npages in the first list.
3691  * The tail is returned in nppp.
3692  */
3693 void
3694 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3695 {
3696 	page_t *s1pp = *oppp;
3697 	page_t *s2pp;
3698 	page_t *e1pp, *e2pp;
3699 	long n = 0;
3700 
3701 	if (s1pp == NULL) {
3702 		*nppp = NULL;
3703 		return;
3704 	}
3705 	if (npages == 0) {
3706 		*nppp = s1pp;
3707 		*oppp = NULL;
3708 		return;
3709 	}
3710 	for (n = 0, s2pp = *oppp; n < npages; n++) {
3711 		s2pp = s2pp->p_next;
3712 	}
3713 	/* Fix head and tail of new lists */
3714 	e1pp = s2pp->p_prev;
3715 	e2pp = s1pp->p_prev;
3716 	s1pp->p_prev = e1pp;
3717 	e1pp->p_next = s1pp;
3718 	s2pp->p_prev = e2pp;
3719 	e2pp->p_next = s2pp;
3720 
3721 	/* second list empty */
3722 	if (s2pp == s1pp) {
3723 		*oppp = s1pp;
3724 		*nppp = NULL;
3725 	} else {
3726 		*oppp = s1pp;
3727 		*nppp = s2pp;
3728 	}
3729 }
3730 
3731 /*
3732  * Concatenate page list nppp onto the end of list ppp.
3733  */
3734 void
3735 page_list_concat(page_t **ppp, page_t **nppp)
3736 {
3737 	page_t *s1pp, *s2pp, *e1pp, *e2pp;
3738 
3739 	if (*nppp == NULL) {
3740 		return;
3741 	}
3742 	if (*ppp == NULL) {
3743 		*ppp = *nppp;
3744 		return;
3745 	}
3746 	s1pp = *ppp;
3747 	e1pp =  s1pp->p_prev;
3748 	s2pp = *nppp;
3749 	e2pp = s2pp->p_prev;
3750 	s1pp->p_prev = e2pp;
3751 	e2pp->p_next = s1pp;
3752 	e1pp->p_next = s2pp;
3753 	s2pp->p_prev = e1pp;
3754 }
3755 
3756 /*
3757  * return the next page in the page list
3758  */
3759 page_t *
3760 page_list_next(page_t *pp)
3761 {
3762 	return (pp->p_next);
3763 }
3764 
3765 
3766 /*
3767  * Add the page to the front of the linked list of pages
3768  * using p_vpnext/p_vpprev pointers for the list.
3769  *
3770  * The caller is responsible for protecting the lists.
3771  */
3772 void
3773 page_vpadd(page_t **ppp, page_t *pp)
3774 {
3775 	if (*ppp == NULL) {
3776 		pp->p_vpnext = pp->p_vpprev = pp;
3777 	} else {
3778 		pp->p_vpnext = *ppp;
3779 		pp->p_vpprev = (*ppp)->p_vpprev;
3780 		(*ppp)->p_vpprev = pp;
3781 		pp->p_vpprev->p_vpnext = pp;
3782 	}
3783 	*ppp = pp;
3784 }
3785 
3786 /*
3787  * Remove this page from the linked list of pages
3788  * using p_vpnext/p_vpprev pointers for the list.
3789  *
3790  * The caller is responsible for protecting the lists.
3791  */
3792 void
3793 page_vpsub(page_t **ppp, page_t *pp)
3794 {
3795 	if (*ppp == NULL || pp == NULL) {
3796 		panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3797 		    (void *)pp, (void *)(*ppp));
3798 		/*NOTREACHED*/
3799 	}
3800 
3801 	if (*ppp == pp)
3802 		*ppp = pp->p_vpnext;		/* go to next page */
3803 
3804 	if (*ppp == pp)
3805 		*ppp = NULL;			/* page list is gone */
3806 	else {
3807 		pp->p_vpprev->p_vpnext = pp->p_vpnext;
3808 		pp->p_vpnext->p_vpprev = pp->p_vpprev;
3809 	}
3810 	pp->p_vpprev = pp->p_vpnext = pp;	/* make pp a list of one */
3811 }
3812 
3813 /*
3814  * Lock a physical page into memory "long term".  Used to support "lock
3815  * in memory" functions.  Accepts the page to be locked, and a cow variable
3816  * to indicate whether a the lock will travel to the new page during
3817  * a potential copy-on-write.
3818  */
3819 int
3820 page_pp_lock(
3821 	page_t *pp,			/* page to be locked */
3822 	int cow,			/* cow lock */
3823 	int kernel)			/* must succeed -- ignore checking */
3824 {
3825 	int r = 0;			/* result -- assume failure */
3826 
3827 	ASSERT(PAGE_LOCKED(pp));
3828 
3829 	page_struct_lock(pp);
3830 	/*
3831 	 * Acquire the "freemem_lock" for availrmem.
3832 	 */
3833 	if (cow) {
3834 		mutex_enter(&freemem_lock);
3835 		if ((availrmem > pages_pp_maximum) &&
3836 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3837 			availrmem--;
3838 			pages_locked++;
3839 			mutex_exit(&freemem_lock);
3840 			r = 1;
3841 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3842 				cmn_err(CE_WARN,
3843 				    "COW lock limit reached on pfn 0x%lx",
3844 				    page_pptonum(pp));
3845 			}
3846 		} else
3847 			mutex_exit(&freemem_lock);
3848 	} else {
3849 		if (pp->p_lckcnt) {
3850 			if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3851 				r = 1;
3852 				if (++pp->p_lckcnt ==
3853 				    (ushort_t)PAGE_LOCK_MAXIMUM) {
3854 					cmn_err(CE_WARN, "Page lock limit "
3855 					    "reached on pfn 0x%lx",
3856 					    page_pptonum(pp));
3857 				}
3858 			}
3859 		} else {
3860 			if (kernel) {
3861 				/* availrmem accounting done by caller */
3862 				++pp->p_lckcnt;
3863 				r = 1;
3864 			} else {
3865 				mutex_enter(&freemem_lock);
3866 				if (availrmem > pages_pp_maximum) {
3867 					availrmem--;
3868 					pages_locked++;
3869 					++pp->p_lckcnt;
3870 					r = 1;
3871 				}
3872 				mutex_exit(&freemem_lock);
3873 			}
3874 		}
3875 	}
3876 	page_struct_unlock(pp);
3877 	return (r);
3878 }
3879 
3880 /*
3881  * Decommit a lock on a physical page frame.  Account for cow locks if
3882  * appropriate.
3883  */
3884 void
3885 page_pp_unlock(
3886 	page_t *pp,			/* page to be unlocked */
3887 	int cow,			/* expect cow lock */
3888 	int kernel)			/* this was a kernel lock */
3889 {
3890 	ASSERT(PAGE_LOCKED(pp));
3891 
3892 	page_struct_lock(pp);
3893 	/*
3894 	 * Acquire the "freemem_lock" for availrmem.
3895 	 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3896 	 * could be called to unlock even if nothing is locked. This could
3897 	 * happen if locked file pages were truncated (removing the lock)
3898 	 * and the file was grown again and new pages faulted in; the new
3899 	 * pages are unlocked but the segment still thinks they're locked.
3900 	 */
3901 	if (cow) {
3902 		if (pp->p_cowcnt) {
3903 			mutex_enter(&freemem_lock);
3904 			pp->p_cowcnt--;
3905 			availrmem++;
3906 			pages_locked--;
3907 			mutex_exit(&freemem_lock);
3908 		}
3909 	} else {
3910 		if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
3911 			if (!kernel) {
3912 				mutex_enter(&freemem_lock);
3913 				availrmem++;
3914 				pages_locked--;
3915 				mutex_exit(&freemem_lock);
3916 			}
3917 		}
3918 	}
3919 	page_struct_unlock(pp);
3920 }
3921 
3922 /*
3923  * This routine reserves availrmem for npages.
3924  * It returns 1 on success or 0 on failure.
3925  *
3926  * flags: KM_NOSLEEP or KM_SLEEP
3927  * cb_wait: called to induce delay when KM_SLEEP reservation requires kmem
3928  *     reaping to potentially succeed.  If the callback returns 0, the
3929  *     reservation attempts will cease to repeat and page_xresv() may
3930  *     report a failure.  If cb_wait is NULL, the traditional delay(hz/2)
3931  *     behavior will be used while waiting for a reap.
3932  */
3933 int
3934 page_xresv(pgcnt_t npages, uint_t flags, int (*cb_wait)(void))
3935 {
3936 	mutex_enter(&freemem_lock);
3937 	if (availrmem >= tune.t_minarmem + npages) {
3938 		availrmem -= npages;
3939 		mutex_exit(&freemem_lock);
3940 		return (1);
3941 	} else if ((flags & KM_NOSLEEP) != 0) {
3942 		mutex_exit(&freemem_lock);
3943 		return (0);
3944 	}
3945 	mutex_exit(&freemem_lock);
3946 
3947 	/*
3948 	 * We signal memory pressure to the system by elevating 'needfree'.
3949 	 * Processes such as kmem reaping, pageout, and ZFS ARC shrinking can
3950 	 * then respond to said pressure by freeing pages.
3951 	 */
3952 	page_needfree(npages);
3953 	int nobail = 1;
3954 	do {
3955 		kmem_reap();
3956 		if (cb_wait == NULL) {
3957 			delay(hz >> 2);
3958 		} else {
3959 			nobail = cb_wait();
3960 		}
3961 
3962 		mutex_enter(&freemem_lock);
3963 		if (availrmem >= tune.t_minarmem + npages) {
3964 			availrmem -= npages;
3965 			mutex_exit(&freemem_lock);
3966 			page_needfree(-(spgcnt_t)npages);
3967 			return (1);
3968 		}
3969 		mutex_exit(&freemem_lock);
3970 	} while (nobail != 0);
3971 	page_needfree(-(spgcnt_t)npages);
3972 
3973 	return (0);
3974 }
3975 
3976 /*
3977  * This routine reserves availrmem for npages;
3978  *	flags: KM_NOSLEEP or KM_SLEEP
3979  *	returns 1 on success or 0 on failure
3980  */
3981 int
3982 page_resv(pgcnt_t npages, uint_t flags)
3983 {
3984 	return (page_xresv(npages, flags, NULL));
3985 }
3986 
3987 /*
3988  * This routine unreserves availrmem for npages;
3989  */
3990 void
3991 page_unresv(pgcnt_t npages)
3992 {
3993 	mutex_enter(&freemem_lock);
3994 	availrmem += npages;
3995 	mutex_exit(&freemem_lock);
3996 }
3997 
3998 /*
3999  * See Statement at the beginning of segvn_lockop() regarding
4000  * the way we handle cowcnts and lckcnts.
4001  *
4002  * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
4003  * that breaks COW has PROT_WRITE.
4004  *
4005  * Note that, we may also break COW in case we are softlocking
4006  * on read access during physio;
4007  * in this softlock case, the vpage may not have PROT_WRITE.
4008  * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
4009  * if the vpage doesn't have PROT_WRITE.
4010  *
4011  * This routine is never called if we are stealing a page
4012  * in anon_private.
4013  *
4014  * The caller subtracted from availrmem for read only mapping.
4015  * if lckcnt is 1 increment availrmem.
4016  */
4017 void
4018 page_pp_useclaim(
4019 	page_t *opp,		/* original page frame losing lock */
4020 	page_t *npp,		/* new page frame gaining lock */
4021 	uint_t write_perm)	/* set if vpage has PROT_WRITE */
4022 {
4023 	int payback = 0;
4024 	int nidx, oidx;
4025 
4026 	ASSERT(PAGE_LOCKED(opp));
4027 	ASSERT(PAGE_LOCKED(npp));
4028 
4029 	/*
4030 	 * Since we have two pages we probably have two locks.  We need to take
4031 	 * them in a defined order to avoid deadlocks.  It's also possible they
4032 	 * both hash to the same lock in which case this is a non-issue.
4033 	 */
4034 	nidx = PAGE_LLOCK_HASH(PP_PAGEROOT(npp));
4035 	oidx = PAGE_LLOCK_HASH(PP_PAGEROOT(opp));
4036 	if (nidx < oidx) {
4037 		page_struct_lock(npp);
4038 		page_struct_lock(opp);
4039 	} else if (oidx < nidx) {
4040 		page_struct_lock(opp);
4041 		page_struct_lock(npp);
4042 	} else {	/* The pages hash to the same lock */
4043 		page_struct_lock(npp);
4044 	}
4045 
4046 	ASSERT(npp->p_cowcnt == 0);
4047 	ASSERT(npp->p_lckcnt == 0);
4048 
4049 	/* Don't use claim if nothing is locked (see page_pp_unlock above) */
4050 	if ((write_perm && opp->p_cowcnt != 0) ||
4051 	    (!write_perm && opp->p_lckcnt != 0)) {
4052 
4053 		if (write_perm) {
4054 			npp->p_cowcnt++;
4055 			ASSERT(opp->p_cowcnt != 0);
4056 			opp->p_cowcnt--;
4057 		} else {
4058 
4059 			ASSERT(opp->p_lckcnt != 0);
4060 
4061 			/*
4062 			 * We didn't need availrmem decremented if p_lckcnt on
4063 			 * original page is 1. Here, we are unlocking
4064 			 * read-only copy belonging to original page and
4065 			 * are locking a copy belonging to new page.
4066 			 */
4067 			if (opp->p_lckcnt == 1)
4068 				payback = 1;
4069 
4070 			npp->p_lckcnt++;
4071 			opp->p_lckcnt--;
4072 		}
4073 	}
4074 	if (payback) {
4075 		mutex_enter(&freemem_lock);
4076 		availrmem++;
4077 		pages_useclaim--;
4078 		mutex_exit(&freemem_lock);
4079 	}
4080 
4081 	if (nidx < oidx) {
4082 		page_struct_unlock(opp);
4083 		page_struct_unlock(npp);
4084 	} else if (oidx < nidx) {
4085 		page_struct_unlock(npp);
4086 		page_struct_unlock(opp);
4087 	} else {	/* The pages hash to the same lock */
4088 		page_struct_unlock(npp);
4089 	}
4090 }
4091 
4092 /*
4093  * Simple claim adjust functions -- used to support changes in
4094  * claims due to changes in access permissions.  Used by segvn_setprot().
4095  */
4096 int
4097 page_addclaim(page_t *pp)
4098 {
4099 	int r = 0;			/* result */
4100 
4101 	ASSERT(PAGE_LOCKED(pp));
4102 
4103 	page_struct_lock(pp);
4104 	ASSERT(pp->p_lckcnt != 0);
4105 
4106 	if (pp->p_lckcnt == 1) {
4107 		if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4108 			--pp->p_lckcnt;
4109 			r = 1;
4110 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4111 				cmn_err(CE_WARN,
4112 				    "COW lock limit reached on pfn 0x%lx",
4113 				    page_pptonum(pp));
4114 			}
4115 		}
4116 	} else {
4117 		mutex_enter(&freemem_lock);
4118 		if ((availrmem > pages_pp_maximum) &&
4119 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4120 			--availrmem;
4121 			++pages_claimed;
4122 			mutex_exit(&freemem_lock);
4123 			--pp->p_lckcnt;
4124 			r = 1;
4125 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4126 				cmn_err(CE_WARN,
4127 				    "COW lock limit reached on pfn 0x%lx",
4128 				    page_pptonum(pp));
4129 			}
4130 		} else
4131 			mutex_exit(&freemem_lock);
4132 	}
4133 	page_struct_unlock(pp);
4134 	return (r);
4135 }
4136 
4137 int
4138 page_subclaim(page_t *pp)
4139 {
4140 	int r = 0;
4141 
4142 	ASSERT(PAGE_LOCKED(pp));
4143 
4144 	page_struct_lock(pp);
4145 	ASSERT(pp->p_cowcnt != 0);
4146 
4147 	if (pp->p_lckcnt) {
4148 		if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4149 			r = 1;
4150 			/*
4151 			 * for availrmem
4152 			 */
4153 			mutex_enter(&freemem_lock);
4154 			availrmem++;
4155 			pages_claimed--;
4156 			mutex_exit(&freemem_lock);
4157 
4158 			pp->p_cowcnt--;
4159 
4160 			if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4161 				cmn_err(CE_WARN,
4162 				    "Page lock limit reached on pfn 0x%lx",
4163 				    page_pptonum(pp));
4164 			}
4165 		}
4166 	} else {
4167 		r = 1;
4168 		pp->p_cowcnt--;
4169 		pp->p_lckcnt++;
4170 	}
4171 	page_struct_unlock(pp);
4172 	return (r);
4173 }
4174 
4175 /*
4176  * Variant of page_addclaim(), where ppa[] contains the pages of a single large
4177  * page.
4178  */
4179 int
4180 page_addclaim_pages(page_t  **ppa)
4181 {
4182 	pgcnt_t	lckpgs = 0, pg_idx;
4183 
4184 	VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4185 
4186 	/*
4187 	 * Only need to take the page struct lock on the large page root.
4188 	 */
4189 	page_struct_lock(ppa[0]);
4190 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4191 
4192 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4193 		ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4194 		if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4195 			page_struct_unlock(ppa[0]);
4196 			return (0);
4197 		}
4198 		if (ppa[pg_idx]->p_lckcnt > 1)
4199 			lckpgs++;
4200 	}
4201 
4202 	if (lckpgs != 0) {
4203 		mutex_enter(&freemem_lock);
4204 		if (availrmem >= pages_pp_maximum + lckpgs) {
4205 			availrmem -= lckpgs;
4206 			pages_claimed += lckpgs;
4207 		} else {
4208 			mutex_exit(&freemem_lock);
4209 			page_struct_unlock(ppa[0]);
4210 			return (0);
4211 		}
4212 		mutex_exit(&freemem_lock);
4213 	}
4214 
4215 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4216 		ppa[pg_idx]->p_lckcnt--;
4217 		ppa[pg_idx]->p_cowcnt++;
4218 	}
4219 	page_struct_unlock(ppa[0]);
4220 	return (1);
4221 }
4222 
4223 /*
4224  * Variant of page_subclaim(), where ppa[] contains the pages of a single large
4225  * page.
4226  */
4227 int
4228 page_subclaim_pages(page_t  **ppa)
4229 {
4230 	pgcnt_t	ulckpgs = 0, pg_idx;
4231 
4232 	VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4233 
4234 	/*
4235 	 * Only need to take the page struct lock on the large page root.
4236 	 */
4237 	page_struct_lock(ppa[0]);
4238 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4239 
4240 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4241 		ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4242 		if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4243 			page_struct_unlock(ppa[0]);
4244 			return (0);
4245 		}
4246 		if (ppa[pg_idx]->p_lckcnt != 0)
4247 			ulckpgs++;
4248 	}
4249 
4250 	if (ulckpgs != 0) {
4251 		mutex_enter(&freemem_lock);
4252 		availrmem += ulckpgs;
4253 		pages_claimed -= ulckpgs;
4254 		mutex_exit(&freemem_lock);
4255 	}
4256 
4257 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4258 		ppa[pg_idx]->p_cowcnt--;
4259 		ppa[pg_idx]->p_lckcnt++;
4260 
4261 	}
4262 	page_struct_unlock(ppa[0]);
4263 	return (1);
4264 }
4265 
4266 page_t *
4267 page_numtopp(pfn_t pfnum, se_t se)
4268 {
4269 	page_t *pp;
4270 
4271 retry:
4272 	pp = page_numtopp_nolock(pfnum);
4273 	if (pp == NULL) {
4274 		return ((page_t *)NULL);
4275 	}
4276 
4277 	/*
4278 	 * Acquire the appropriate lock on the page.
4279 	 */
4280 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4281 		if (page_pptonum(pp) != pfnum)
4282 			goto retry;
4283 		continue;
4284 	}
4285 
4286 	if (page_pptonum(pp) != pfnum) {
4287 		page_unlock(pp);
4288 		goto retry;
4289 	}
4290 
4291 	return (pp);
4292 }
4293 
4294 page_t *
4295 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4296 {
4297 	page_t *pp;
4298 
4299 retry:
4300 	pp = page_numtopp_nolock(pfnum);
4301 	if (pp == NULL) {
4302 		return ((page_t *)NULL);
4303 	}
4304 
4305 	/*
4306 	 * Acquire the appropriate lock on the page.
4307 	 */
4308 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4309 		if (page_pptonum(pp) != pfnum)
4310 			goto retry;
4311 		continue;
4312 	}
4313 
4314 	if (page_pptonum(pp) != pfnum) {
4315 		page_unlock(pp);
4316 		goto retry;
4317 	}
4318 
4319 	return (pp);
4320 }
4321 
4322 /*
4323  * This routine is like page_numtopp, but will only return page structs
4324  * for pages which are ok for loading into hardware using the page struct.
4325  */
4326 page_t *
4327 page_numtopp_nowait(pfn_t pfnum, se_t se)
4328 {
4329 	page_t *pp;
4330 
4331 retry:
4332 	pp = page_numtopp_nolock(pfnum);
4333 	if (pp == NULL) {
4334 		return ((page_t *)NULL);
4335 	}
4336 
4337 	/*
4338 	 * Try to acquire the appropriate lock on the page.
4339 	 */
4340 	if (PP_ISFREE(pp))
4341 		pp = NULL;
4342 	else {
4343 		if (!page_trylock(pp, se))
4344 			pp = NULL;
4345 		else {
4346 			if (page_pptonum(pp) != pfnum) {
4347 				page_unlock(pp);
4348 				goto retry;
4349 			}
4350 			if (PP_ISFREE(pp)) {
4351 				page_unlock(pp);
4352 				pp = NULL;
4353 			}
4354 		}
4355 	}
4356 	return (pp);
4357 }
4358 
4359 /*
4360  * Returns a count of dirty pages that are in the process
4361  * of being written out.  If 'cleanit' is set, try to push the page.
4362  */
4363 pgcnt_t
4364 page_busy(int cleanit)
4365 {
4366 	page_t *page0 = page_first();
4367 	page_t *pp = page0;
4368 	pgcnt_t nppbusy = 0;
4369 	u_offset_t off;
4370 
4371 	do {
4372 		vnode_t *vp = pp->p_vnode;
4373 		/*
4374 		 * A page is a candidate for syncing if it is:
4375 		 *
4376 		 * (a)	On neither the freelist nor the cachelist
4377 		 * (b)	Hashed onto a vnode
4378 		 * (c)	Not a kernel page
4379 		 * (d)	Dirty
4380 		 * (e)	Not part of a swapfile
4381 		 * (f)	a page which belongs to a real vnode; eg has a non-null
4382 		 *	v_vfsp pointer.
4383 		 * (g)	Backed by a filesystem which doesn't have a
4384 		 *	stubbed-out sync operation
4385 		 */
4386 		if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
4387 		    hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4388 		    vfs_can_sync(vp->v_vfsp)) {
4389 			nppbusy++;
4390 
4391 			if (!cleanit)
4392 				continue;
4393 			if (!page_trylock(pp, SE_EXCL))
4394 				continue;
4395 
4396 			if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4397 			    pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4398 			    !(hat_pagesync(pp,
4399 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4400 				page_unlock(pp);
4401 				continue;
4402 			}
4403 			off = pp->p_offset;
4404 			VN_HOLD(vp);
4405 			page_unlock(pp);
4406 			(void) VOP_PUTPAGE(vp, off, PAGESIZE,
4407 			    B_ASYNC | B_FREE, kcred, NULL);
4408 			VN_RELE(vp);
4409 		}
4410 	} while ((pp = page_next(pp)) != page0);
4411 
4412 	return (nppbusy);
4413 }
4414 
4415 void page_invalidate_pages(void);
4416 
4417 /*
4418  * callback handler to vm sub-system
4419  *
4420  * callers make sure no recursive entries to this func.
4421  */
4422 /*ARGSUSED*/
4423 boolean_t
4424 callb_vm_cpr(void *arg, int code)
4425 {
4426 	if (code == CB_CODE_CPR_CHKPT)
4427 		page_invalidate_pages();
4428 	return (B_TRUE);
4429 }
4430 
4431 /*
4432  * Invalidate all pages of the system.
4433  * It shouldn't be called until all user page activities are all stopped.
4434  */
4435 void
4436 page_invalidate_pages()
4437 {
4438 	page_t *pp;
4439 	page_t *page0;
4440 	pgcnt_t nbusypages;
4441 	int retry = 0;
4442 	const int MAXRETRIES = 4;
4443 top:
4444 	/*
4445 	 * Flush dirty pages and destroy the clean ones.
4446 	 */
4447 	nbusypages = 0;
4448 
4449 	pp = page0 = page_first();
4450 	do {
4451 		struct vnode	*vp;
4452 		u_offset_t	offset;
4453 		int		mod;
4454 
4455 		/*
4456 		 * skip the page if it has no vnode or the page associated
4457 		 * with the kernel vnode or prom allocated kernel mem.
4458 		 */
4459 		if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
4460 			continue;
4461 
4462 		/*
4463 		 * skip the page which is already free invalidated.
4464 		 */
4465 		if (PP_ISFREE(pp) && PP_ISAGED(pp))
4466 			continue;
4467 
4468 		/*
4469 		 * skip pages that are already locked or can't be "exclusively"
4470 		 * locked or are already free.  After we lock the page, check
4471 		 * the free and age bits again to be sure it's not destroyed
4472 		 * yet.
4473 		 * To achieve max. parallelization, we use page_trylock instead
4474 		 * of page_lock so that we don't get block on individual pages
4475 		 * while we have thousands of other pages to process.
4476 		 */
4477 		if (!page_trylock(pp, SE_EXCL)) {
4478 			nbusypages++;
4479 			continue;
4480 		} else if (PP_ISFREE(pp)) {
4481 			if (!PP_ISAGED(pp)) {
4482 				page_destroy_free(pp);
4483 			} else {
4484 				page_unlock(pp);
4485 			}
4486 			continue;
4487 		}
4488 		/*
4489 		 * Is this page involved in some I/O? shared?
4490 		 *
4491 		 * The page_struct_lock need not be acquired to
4492 		 * examine these fields since the page has an
4493 		 * "exclusive" lock.
4494 		 */
4495 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4496 			page_unlock(pp);
4497 			continue;
4498 		}
4499 
4500 		if (vp->v_type == VCHR) {
4501 			panic("vp->v_type == VCHR");
4502 			/*NOTREACHED*/
4503 		}
4504 
4505 		if (!page_try_demote_pages(pp)) {
4506 			page_unlock(pp);
4507 			continue;
4508 		}
4509 
4510 		/*
4511 		 * Check the modified bit. Leave the bits alone in hardware
4512 		 * (they will be modified if we do the putpage).
4513 		 */
4514 		mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4515 		    & P_MOD);
4516 		if (mod) {
4517 			offset = pp->p_offset;
4518 			/*
4519 			 * Hold the vnode before releasing the page lock
4520 			 * to prevent it from being freed and re-used by
4521 			 * some other thread.
4522 			 */
4523 			VN_HOLD(vp);
4524 			page_unlock(pp);
4525 			/*
4526 			 * No error return is checked here. Callers such as
4527 			 * cpr deals with the dirty pages at the dump time
4528 			 * if this putpage fails.
4529 			 */
4530 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4531 			    kcred, NULL);
4532 			VN_RELE(vp);
4533 		} else {
4534 			/*LINTED: constant in conditional context*/
4535 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
4536 		}
4537 	} while ((pp = page_next(pp)) != page0);
4538 	if (nbusypages && retry++ < MAXRETRIES) {
4539 		delay(1);
4540 		goto top;
4541 	}
4542 }
4543 
4544 /*
4545  * Replace the page "old" with the page "new" on the page hash and vnode lists
4546  *
4547  * the replacement must be done in place, ie the equivalent sequence:
4548  *
4549  *	vp = old->p_vnode;
4550  *	off = old->p_offset;
4551  *	page_do_hashout(old)
4552  *	page_do_hashin(new, vp, off)
4553  *
4554  * doesn't work, since
4555  *  1) if old is the only page on the vnode, the v_pages list has a window
4556  *     where it looks empty. This will break file system assumptions.
4557  * and
4558  *  2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4559  */
4560 static void
4561 page_do_relocate_hash(page_t *new, page_t *old)
4562 {
4563 	page_t	**hash_list;
4564 	vnode_t	*vp = old->p_vnode;
4565 	kmutex_t *sep;
4566 
4567 	ASSERT(PAGE_EXCL(old));
4568 	ASSERT(PAGE_EXCL(new));
4569 	ASSERT(vp != NULL);
4570 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4571 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4572 
4573 	/*
4574 	 * First find old page on the page hash list
4575 	 */
4576 	hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4577 
4578 	for (;;) {
4579 		if (*hash_list == old)
4580 			break;
4581 		if (*hash_list == NULL) {
4582 			panic("page_do_hashout");
4583 			/*NOTREACHED*/
4584 		}
4585 		hash_list = &(*hash_list)->p_hash;
4586 	}
4587 
4588 	/*
4589 	 * update new and replace old with new on the page hash list
4590 	 */
4591 	new->p_vnode = old->p_vnode;
4592 	new->p_offset = old->p_offset;
4593 	new->p_hash = old->p_hash;
4594 	*hash_list = new;
4595 
4596 	if ((new->p_vnode->v_flag & VISSWAP) != 0)
4597 		PP_SETSWAP(new);
4598 
4599 	/*
4600 	 * replace old with new on the vnode's page list
4601 	 */
4602 	if (old->p_vpnext == old) {
4603 		new->p_vpnext = new;
4604 		new->p_vpprev = new;
4605 	} else {
4606 		new->p_vpnext = old->p_vpnext;
4607 		new->p_vpprev = old->p_vpprev;
4608 		new->p_vpnext->p_vpprev = new;
4609 		new->p_vpprev->p_vpnext = new;
4610 	}
4611 	if (vp->v_pages == old)
4612 		vp->v_pages = new;
4613 
4614 	/*
4615 	 * clear out the old page
4616 	 */
4617 	old->p_hash = NULL;
4618 	old->p_vpnext = NULL;
4619 	old->p_vpprev = NULL;
4620 	old->p_vnode = NULL;
4621 	PP_CLRSWAP(old);
4622 	old->p_offset = (u_offset_t)-1;
4623 	page_clr_all_props(old);
4624 
4625 	/*
4626 	 * Wake up processes waiting for this page.  The page's
4627 	 * identity has been changed, and is probably not the
4628 	 * desired page any longer.
4629 	 */
4630 	sep = page_se_mutex(old);
4631 	mutex_enter(sep);
4632 	old->p_selock &= ~SE_EWANTED;
4633 	if (CV_HAS_WAITERS(&old->p_cv))
4634 		cv_broadcast(&old->p_cv);
4635 	mutex_exit(sep);
4636 }
4637 
4638 /*
4639  * This function moves the identity of page "pp_old" to page "pp_new".
4640  * Both pages must be locked on entry.  "pp_new" is free, has no identity,
4641  * and need not be hashed out from anywhere.
4642  */
4643 void
4644 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4645 {
4646 	vnode_t *vp = pp_old->p_vnode;
4647 	u_offset_t off = pp_old->p_offset;
4648 	kmutex_t *phm, *vphm;
4649 
4650 	/*
4651 	 * Rehash two pages
4652 	 */
4653 	ASSERT(PAGE_EXCL(pp_old));
4654 	ASSERT(PAGE_EXCL(pp_new));
4655 	ASSERT(vp != NULL);
4656 	ASSERT(pp_new->p_vnode == NULL);
4657 
4658 	/*
4659 	 * hashout then hashin while holding the mutexes
4660 	 */
4661 	phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4662 	mutex_enter(phm);
4663 	vphm = page_vnode_mutex(vp);
4664 	mutex_enter(vphm);
4665 
4666 	page_do_relocate_hash(pp_new, pp_old);
4667 
4668 	/* The following comment preserved from page_flip(). */
4669 	pp_new->p_fsdata = pp_old->p_fsdata;
4670 	pp_old->p_fsdata = 0;
4671 	mutex_exit(vphm);
4672 	mutex_exit(phm);
4673 
4674 	/*
4675 	 * The page_struct_lock need not be acquired for lckcnt and
4676 	 * cowcnt since the page has an "exclusive" lock.
4677 	 */
4678 	ASSERT(pp_new->p_lckcnt == 0);
4679 	ASSERT(pp_new->p_cowcnt == 0);
4680 	pp_new->p_lckcnt = pp_old->p_lckcnt;
4681 	pp_new->p_cowcnt = pp_old->p_cowcnt;
4682 	pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4683 
4684 }
4685 
4686 /*
4687  * Helper routine used to lock all remaining members of a
4688  * large page. The caller is responsible for passing in a locked
4689  * pp. If pp is a large page, then it succeeds in locking all the
4690  * remaining constituent pages or it returns with only the
4691  * original page locked.
4692  *
4693  * Returns 1 on success, 0 on failure.
4694  *
4695  * If success is returned this routine guarantees p_szc for all constituent
4696  * pages of a large page pp belongs to can't change. To achieve this we
4697  * recheck szc of pp after locking all constituent pages and retry if szc
4698  * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4699  * lock on one of constituent pages it can't be running after all constituent
4700  * pages are locked.  hat_page_demote() with a lock on a constituent page
4701  * outside of this large page (i.e. pp belonged to a larger large page) is
4702  * already done with all constituent pages of pp since the root's p_szc is
4703  * changed last. Therefore no need to synchronize with hat_page_demote() that
4704  * locked a constituent page outside of pp's current large page.
4705  */
4706 #ifdef DEBUG
4707 uint32_t gpg_trylock_mtbf = 0;
4708 #endif
4709 
4710 int
4711 group_page_trylock(page_t *pp, se_t se)
4712 {
4713 	page_t  *tpp;
4714 	pgcnt_t	npgs, i, j;
4715 	uint_t pszc = pp->p_szc;
4716 
4717 #ifdef DEBUG
4718 	if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4719 		return (0);
4720 	}
4721 #endif
4722 
4723 	if (pp != PP_GROUPLEADER(pp, pszc)) {
4724 		return (0);
4725 	}
4726 
4727 retry:
4728 	ASSERT(PAGE_LOCKED_SE(pp, se));
4729 	ASSERT(!PP_ISFREE(pp));
4730 	if (pszc == 0) {
4731 		return (1);
4732 	}
4733 	npgs = page_get_pagecnt(pszc);
4734 	tpp = pp + 1;
4735 	for (i = 1; i < npgs; i++, tpp++) {
4736 		if (!page_trylock(tpp, se)) {
4737 			tpp = pp + 1;
4738 			for (j = 1; j < i; j++, tpp++) {
4739 				page_unlock(tpp);
4740 			}
4741 			return (0);
4742 		}
4743 	}
4744 	if (pp->p_szc != pszc) {
4745 		ASSERT(pp->p_szc < pszc);
4746 		ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
4747 		    !IS_SWAPFSVP(pp->p_vnode));
4748 		tpp = pp + 1;
4749 		for (i = 1; i < npgs; i++, tpp++) {
4750 			page_unlock(tpp);
4751 		}
4752 		pszc = pp->p_szc;
4753 		goto retry;
4754 	}
4755 	return (1);
4756 }
4757 
4758 void
4759 group_page_unlock(page_t *pp)
4760 {
4761 	page_t *tpp;
4762 	pgcnt_t	npgs, i;
4763 
4764 	ASSERT(PAGE_LOCKED(pp));
4765 	ASSERT(!PP_ISFREE(pp));
4766 	ASSERT(pp == PP_PAGEROOT(pp));
4767 	npgs = page_get_pagecnt(pp->p_szc);
4768 	for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4769 		page_unlock(tpp);
4770 	}
4771 }
4772 
4773 /*
4774  * returns
4775  * 0		: on success and *nrelocp is number of relocated PAGESIZE pages
4776  * ERANGE	: this is not a base page
4777  * EBUSY	: failure to get locks on the page/pages
4778  * ENOMEM	: failure to obtain replacement pages
4779  * EAGAIN	: OBP has not yet completed its boot-time handoff to the kernel
4780  * EIO		: An error occurred while trying to copy the page data
4781  *
4782  * Return with all constituent members of target and replacement
4783  * SE_EXCL locked. It is the callers responsibility to drop the
4784  * locks.
4785  */
4786 int
4787 do_page_relocate(
4788 	page_t **target,
4789 	page_t **replacement,
4790 	int grouplock,
4791 	spgcnt_t *nrelocp,
4792 	lgrp_t *lgrp)
4793 {
4794 	page_t *first_repl;
4795 	page_t *repl;
4796 	page_t *targ;
4797 	page_t *pl = NULL;
4798 	uint_t ppattr;
4799 	pfn_t   pfn, repl_pfn;
4800 	uint_t	szc;
4801 	spgcnt_t npgs, i;
4802 	int repl_contig = 0;
4803 	uint_t flags = 0;
4804 	spgcnt_t dofree = 0;
4805 
4806 	*nrelocp = 0;
4807 
4808 #if defined(__sparc)
4809 	/*
4810 	 * We need to wait till OBP has completed
4811 	 * its boot-time handoff of its resources to the kernel
4812 	 * before we allow page relocation
4813 	 */
4814 	if (page_relocate_ready == 0) {
4815 		return (EAGAIN);
4816 	}
4817 #endif
4818 
4819 	/*
4820 	 * If this is not a base page,
4821 	 * just return with 0x0 pages relocated.
4822 	 */
4823 	targ = *target;
4824 	ASSERT(PAGE_EXCL(targ));
4825 	ASSERT(!PP_ISFREE(targ));
4826 	szc = targ->p_szc;
4827 	ASSERT(szc < mmu_page_sizes);
4828 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4829 	pfn = targ->p_pagenum;
4830 	if (pfn != PFN_BASE(pfn, szc)) {
4831 		VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4832 		return (ERANGE);
4833 	}
4834 
4835 	if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4836 		repl_pfn = repl->p_pagenum;
4837 		if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4838 			VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4839 			return (ERANGE);
4840 		}
4841 		repl_contig = 1;
4842 	}
4843 
4844 	/*
4845 	 * We must lock all members of this large page or we cannot
4846 	 * relocate any part of it.
4847 	 */
4848 	if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4849 		VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4850 		return (EBUSY);
4851 	}
4852 
4853 	/*
4854 	 * reread szc it could have been decreased before
4855 	 * group_page_trylock() was done.
4856 	 */
4857 	szc = targ->p_szc;
4858 	ASSERT(szc < mmu_page_sizes);
4859 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4860 	ASSERT(pfn == PFN_BASE(pfn, szc));
4861 
4862 	npgs = page_get_pagecnt(targ->p_szc);
4863 
4864 	if (repl == NULL) {
4865 		dofree = npgs;		/* Size of target page in MMU pages */
4866 		if (!page_create_wait(dofree, 0)) {
4867 			if (grouplock != 0) {
4868 				group_page_unlock(targ);
4869 			}
4870 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4871 			return (ENOMEM);
4872 		}
4873 
4874 		/*
4875 		 * seg kmem pages require that the target and replacement
4876 		 * page be the same pagesize.
4877 		 */
4878 		flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
4879 		repl = page_get_replacement_page(targ, lgrp, flags);
4880 		if (repl == NULL) {
4881 			if (grouplock != 0) {
4882 				group_page_unlock(targ);
4883 			}
4884 			page_create_putback(dofree);
4885 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4886 			return (ENOMEM);
4887 		}
4888 	}
4889 #ifdef DEBUG
4890 	else {
4891 		ASSERT(PAGE_LOCKED(repl));
4892 	}
4893 #endif /* DEBUG */
4894 
4895 #if defined(__sparc)
4896 	/*
4897 	 * Let hat_page_relocate() complete the relocation if it's kernel page
4898 	 */
4899 	if (VN_ISKAS(targ->p_vnode)) {
4900 		*replacement = repl;
4901 		if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4902 			if (grouplock != 0) {
4903 				group_page_unlock(targ);
4904 			}
4905 			if (dofree) {
4906 				*replacement = NULL;
4907 				page_free_replacement_page(repl);
4908 				page_create_putback(dofree);
4909 			}
4910 			VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4911 			return (EAGAIN);
4912 		}
4913 		VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4914 		return (0);
4915 	}
4916 #else
4917 #if defined(lint)
4918 	dofree = dofree;
4919 #endif
4920 #endif
4921 
4922 	first_repl = repl;
4923 
4924 	for (i = 0; i < npgs; i++) {
4925 		ASSERT(PAGE_EXCL(targ));
4926 		ASSERT(targ->p_slckcnt == 0);
4927 		ASSERT(repl->p_slckcnt == 0);
4928 
4929 		(void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4930 
4931 		ASSERT(hat_page_getshare(targ) == 0);
4932 		ASSERT(!PP_ISFREE(targ));
4933 		ASSERT(targ->p_pagenum == (pfn + i));
4934 		ASSERT(repl_contig == 0 ||
4935 		    repl->p_pagenum == (repl_pfn + i));
4936 
4937 		/*
4938 		 * Copy the page contents and attributes then
4939 		 * relocate the page in the page hash.
4940 		 */
4941 		if (ppcopy(targ, repl) == 0) {
4942 			targ = *target;
4943 			repl = first_repl;
4944 			VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
4945 			if (grouplock != 0) {
4946 				group_page_unlock(targ);
4947 			}
4948 			if (dofree) {
4949 				*replacement = NULL;
4950 				page_free_replacement_page(repl);
4951 				page_create_putback(dofree);
4952 			}
4953 			return (EIO);
4954 		}
4955 
4956 		targ++;
4957 		if (repl_contig != 0) {
4958 			repl++;
4959 		} else {
4960 			repl = repl->p_next;
4961 		}
4962 	}
4963 
4964 	repl = first_repl;
4965 	targ = *target;
4966 
4967 	for (i = 0; i < npgs; i++) {
4968 		ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
4969 		page_clr_all_props(repl);
4970 		page_set_props(repl, ppattr);
4971 		page_relocate_hash(repl, targ);
4972 
4973 		ASSERT(hat_page_getshare(targ) == 0);
4974 		ASSERT(hat_page_getshare(repl) == 0);
4975 		/*
4976 		 * Now clear the props on targ, after the
4977 		 * page_relocate_hash(), they no longer
4978 		 * have any meaning.
4979 		 */
4980 		page_clr_all_props(targ);
4981 		ASSERT(targ->p_next == targ);
4982 		ASSERT(targ->p_prev == targ);
4983 		page_list_concat(&pl, &targ);
4984 
4985 		targ++;
4986 		if (repl_contig != 0) {
4987 			repl++;
4988 		} else {
4989 			repl = repl->p_next;
4990 		}
4991 	}
4992 	/* assert that we have come full circle with repl */
4993 	ASSERT(repl_contig == 1 || first_repl == repl);
4994 
4995 	*target = pl;
4996 	if (*replacement == NULL) {
4997 		ASSERT(first_repl == repl);
4998 		*replacement = repl;
4999 	}
5000 	VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
5001 	*nrelocp = npgs;
5002 	return (0);
5003 }
5004 /*
5005  * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
5006  */
5007 int
5008 page_relocate(
5009 	page_t **target,
5010 	page_t **replacement,
5011 	int grouplock,
5012 	int freetarget,
5013 	spgcnt_t *nrelocp,
5014 	lgrp_t *lgrp)
5015 {
5016 	spgcnt_t ret;
5017 
5018 	/* do_page_relocate returns 0 on success or errno value */
5019 	ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
5020 
5021 	if (ret != 0 || freetarget == 0) {
5022 		return (ret);
5023 	}
5024 	if (*nrelocp == 1) {
5025 		ASSERT(*target != NULL);
5026 		page_free(*target, 1);
5027 	} else {
5028 		page_t *tpp = *target;
5029 		uint_t szc = tpp->p_szc;
5030 		pgcnt_t npgs = page_get_pagecnt(szc);
5031 		ASSERT(npgs > 1);
5032 		ASSERT(szc != 0);
5033 		do {
5034 			ASSERT(PAGE_EXCL(tpp));
5035 			ASSERT(!hat_page_is_mapped(tpp));
5036 			ASSERT(tpp->p_szc == szc);
5037 			PP_SETFREE(tpp);
5038 			PP_SETAGED(tpp);
5039 			npgs--;
5040 		} while ((tpp = tpp->p_next) != *target);
5041 		ASSERT(npgs == 0);
5042 		page_list_add_pages(*target, 0);
5043 		npgs = page_get_pagecnt(szc);
5044 		page_create_putback(npgs);
5045 	}
5046 	return (ret);
5047 }
5048 
5049 /*
5050  * it is up to the caller to deal with pcf accounting.
5051  */
5052 void
5053 page_free_replacement_page(page_t *pplist)
5054 {
5055 	page_t *pp;
5056 
5057 	while (pplist != NULL) {
5058 		/*
5059 		 * pp_targ is a linked list.
5060 		 */
5061 		pp = pplist;
5062 		if (pp->p_szc == 0) {
5063 			page_sub(&pplist, pp);
5064 			page_clr_all_props(pp);
5065 			PP_SETFREE(pp);
5066 			PP_SETAGED(pp);
5067 			page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5068 			page_unlock(pp);
5069 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5070 		} else {
5071 			spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5072 			page_t *tpp;
5073 			page_list_break(&pp, &pplist, curnpgs);
5074 			tpp = pp;
5075 			do {
5076 				ASSERT(PAGE_EXCL(tpp));
5077 				ASSERT(!hat_page_is_mapped(tpp));
5078 				page_clr_all_props(tpp);
5079 				PP_SETFREE(tpp);
5080 				PP_SETAGED(tpp);
5081 			} while ((tpp = tpp->p_next) != pp);
5082 			page_list_add_pages(pp, 0);
5083 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5084 		}
5085 	}
5086 }
5087 
5088 /*
5089  * Relocate target to non-relocatable replacement page.
5090  */
5091 int
5092 page_relocate_cage(page_t **target, page_t **replacement)
5093 {
5094 	page_t *tpp, *rpp;
5095 	spgcnt_t pgcnt, npgs;
5096 	int result;
5097 
5098 	tpp = *target;
5099 
5100 	ASSERT(PAGE_EXCL(tpp));
5101 	ASSERT(tpp->p_szc == 0);
5102 
5103 	pgcnt = btop(page_get_pagesize(tpp->p_szc));
5104 
5105 	do {
5106 		(void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5107 		rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5108 		if (rpp == NULL) {
5109 			page_create_putback(pgcnt);
5110 			kcage_cageout_wakeup();
5111 		}
5112 	} while (rpp == NULL);
5113 
5114 	ASSERT(PP_ISNORELOC(rpp));
5115 
5116 	result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5117 
5118 	if (result == 0) {
5119 		*replacement = rpp;
5120 		if (pgcnt != npgs)
5121 			panic("page_relocate_cage: partial relocation");
5122 	}
5123 
5124 	return (result);
5125 }
5126 
5127 /*
5128  * Release the page lock on a page, place on cachelist
5129  * tail if no longer mapped. Caller can let us know if
5130  * the page is known to be clean.
5131  */
5132 int
5133 page_release(page_t *pp, int checkmod)
5134 {
5135 	int status;
5136 
5137 	ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5138 	    (pp->p_vnode != NULL));
5139 
5140 	if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5141 	    ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5142 	    pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5143 	    !hat_page_is_mapped(pp)) {
5144 
5145 		/*
5146 		 * If page is modified, unlock it
5147 		 *
5148 		 * (p_nrm & P_MOD) bit has the latest stuff because:
5149 		 * (1) We found that this page doesn't have any mappings
5150 		 *	_after_ holding SE_EXCL and
5151 		 * (2) We didn't drop SE_EXCL lock after the check in (1)
5152 		 */
5153 		if (checkmod && hat_ismod(pp)) {
5154 			page_unlock(pp);
5155 			status = PGREL_MOD;
5156 		} else {
5157 			/*LINTED: constant in conditional context*/
5158 			VN_DISPOSE(pp, B_FREE, 0, kcred);
5159 			status = PGREL_CLEAN;
5160 		}
5161 	} else {
5162 		page_unlock(pp);
5163 		status = PGREL_NOTREL;
5164 	}
5165 	return (status);
5166 }
5167 
5168 /*
5169  * Given a constituent page, try to demote the large page on the freelist.
5170  *
5171  * Returns nonzero if the page could be demoted successfully. Returns with
5172  * the constituent page still locked.
5173  */
5174 int
5175 page_try_demote_free_pages(page_t *pp)
5176 {
5177 	page_t *rootpp = pp;
5178 	pfn_t	pfn = page_pptonum(pp);
5179 	spgcnt_t npgs;
5180 	uint_t	szc = pp->p_szc;
5181 
5182 	ASSERT(PP_ISFREE(pp));
5183 	ASSERT(PAGE_EXCL(pp));
5184 
5185 	/*
5186 	 * Adjust rootpp and lock it, if `pp' is not the base
5187 	 * constituent page.
5188 	 */
5189 	npgs = page_get_pagecnt(pp->p_szc);
5190 	if (npgs == 1) {
5191 		return (0);
5192 	}
5193 
5194 	if (!IS_P2ALIGNED(pfn, npgs)) {
5195 		pfn = P2ALIGN(pfn, npgs);
5196 		rootpp = page_numtopp_nolock(pfn);
5197 	}
5198 
5199 	if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5200 		return (0);
5201 	}
5202 
5203 	if (rootpp->p_szc != szc) {
5204 		if (pp != rootpp)
5205 			page_unlock(rootpp);
5206 		return (0);
5207 	}
5208 
5209 	page_demote_free_pages(rootpp);
5210 
5211 	if (pp != rootpp)
5212 		page_unlock(rootpp);
5213 
5214 	ASSERT(PP_ISFREE(pp));
5215 	ASSERT(PAGE_EXCL(pp));
5216 	return (1);
5217 }
5218 
5219 /*
5220  * Given a constituent page, try to demote the large page.
5221  *
5222  * Returns nonzero if the page could be demoted successfully. Returns with
5223  * the constituent page still locked.
5224  */
5225 int
5226 page_try_demote_pages(page_t *pp)
5227 {
5228 	page_t *tpp, *rootpp = pp;
5229 	pfn_t	pfn = page_pptonum(pp);
5230 	spgcnt_t i, npgs;
5231 	uint_t	szc = pp->p_szc;
5232 	vnode_t *vp = pp->p_vnode;
5233 
5234 	ASSERT(PAGE_EXCL(pp));
5235 
5236 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5237 
5238 	if (pp->p_szc == 0) {
5239 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5240 		return (1);
5241 	}
5242 
5243 	if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
5244 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5245 		page_demote_vp_pages(pp);
5246 		ASSERT(pp->p_szc == 0);
5247 		return (1);
5248 	}
5249 
5250 	/*
5251 	 * Adjust rootpp if passed in is not the base
5252 	 * constituent page.
5253 	 */
5254 	npgs = page_get_pagecnt(pp->p_szc);
5255 	ASSERT(npgs > 1);
5256 	if (!IS_P2ALIGNED(pfn, npgs)) {
5257 		pfn = P2ALIGN(pfn, npgs);
5258 		rootpp = page_numtopp_nolock(pfn);
5259 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5260 		ASSERT(rootpp->p_vnode != NULL);
5261 		ASSERT(rootpp->p_szc == szc);
5262 	}
5263 
5264 	/*
5265 	 * We can't demote kernel pages since we can't hat_unload()
5266 	 * the mappings.
5267 	 */
5268 	if (VN_ISKAS(rootpp->p_vnode))
5269 		return (0);
5270 
5271 	/*
5272 	 * Attempt to lock all constituent pages except the page passed
5273 	 * in since it's already locked.
5274 	 */
5275 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5276 		ASSERT(!PP_ISFREE(tpp));
5277 		ASSERT(tpp->p_vnode != NULL);
5278 
5279 		if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5280 			break;
5281 		ASSERT(tpp->p_szc == rootpp->p_szc);
5282 		ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5283 	}
5284 
5285 	/*
5286 	 * If we failed to lock them all then unlock what we have
5287 	 * locked so far and bail.
5288 	 */
5289 	if (i < npgs) {
5290 		tpp = rootpp;
5291 		while (i-- > 0) {
5292 			if (tpp != pp)
5293 				page_unlock(tpp);
5294 			tpp++;
5295 		}
5296 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5297 		return (0);
5298 	}
5299 
5300 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5301 		ASSERT(PAGE_EXCL(tpp));
5302 		ASSERT(tpp->p_slckcnt == 0);
5303 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5304 		tpp->p_szc = 0;
5305 	}
5306 
5307 	/*
5308 	 * Unlock all pages except the page passed in.
5309 	 */
5310 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5311 		ASSERT(!hat_page_is_mapped(tpp));
5312 		if (tpp != pp)
5313 			page_unlock(tpp);
5314 	}
5315 
5316 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5317 	return (1);
5318 }
5319 
5320 /*
5321  * Called by page_free() and page_destroy() to demote the page size code
5322  * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5323  * p_szc on free list, neither can we just clear p_szc of a single page_t
5324  * within a large page since it will break other code that relies on p_szc
5325  * being the same for all page_t's of a large page). Anonymous pages should
5326  * never end up here because anon_map_getpages() cannot deal with p_szc
5327  * changes after a single constituent page is locked.  While anonymous or
5328  * kernel large pages are demoted or freed the entire large page at a time
5329  * with all constituent pages locked EXCL for the file system pages we
5330  * have to be able to demote a large page (i.e. decrease all constituent pages
5331  * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5332  * we can easily deal with anonymous page demotion the entire large page at a
5333  * time is that those operation originate at address space level and concern
5334  * the entire large page region with actual demotion only done when pages are
5335  * not shared with any other processes (therefore we can always get EXCL lock
5336  * on all anonymous constituent pages after clearing segment page
5337  * cache). However file system pages can be truncated or invalidated at a
5338  * PAGESIZE level from the file system side and end up in page_free() or
5339  * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5340  * and therefore pageout should be able to demote a large page by EXCL locking
5341  * any constituent page that is not under SOFTLOCK). In those cases we cannot
5342  * rely on being able to lock EXCL all constituent pages.
5343  *
5344  * To prevent szc changes on file system pages one has to lock all constituent
5345  * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5346  * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5347  * prevent szc changes is hat layer that uses its own page level mlist
5348  * locks. hat assumes that szc doesn't change after mlist lock for a page is
5349  * taken. Therefore we need to change szc under hat level locks if we only
5350  * have an EXCL lock on a single constituent page and hat still references any
5351  * of constituent pages.  (Note we can't "ignore" hat layer by simply
5352  * hat_pageunload() all constituent pages without having EXCL locks on all of
5353  * constituent pages). We use hat_page_demote() call to safely demote szc of
5354  * all constituent pages under hat locks when we only have an EXCL lock on one
5355  * of constituent pages.
5356  *
5357  * This routine calls page_szc_lock() before calling hat_page_demote() to
5358  * allow segvn in one special case not to lock all constituent pages SHARED
5359  * before calling hat_memload_array() that relies on p_szc not changing even
5360  * before hat level mlist lock is taken.  In that case segvn uses
5361  * page_szc_lock() to prevent hat_page_demote() changing p_szc values.
5362  *
5363  * Anonymous or kernel page demotion still has to lock all pages exclusively
5364  * and do hat_pageunload() on all constituent pages before demoting the page
5365  * therefore there's no need for anonymous or kernel page demotion to use
5366  * hat_page_demote() mechanism.
5367  *
5368  * hat_page_demote() removes all large mappings that map pp and then decreases
5369  * p_szc starting from the last constituent page of the large page. By working
5370  * from the tail of a large page in pfn decreasing order allows one looking at
5371  * the root page to know that hat_page_demote() is done for root's szc area.
5372  * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5373  * pages within szc 1 area to prevent szc changes because hat_page_demote()
5374  * that started on this page when it had szc > 1 is done for this szc 1 area.
5375  *
5376  * We are guaranteed that all constituent pages of pp's large page belong to
5377  * the same vnode with the consecutive offsets increasing in the direction of
5378  * the pfn i.e. the identity of constituent pages can't change until their
5379  * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5380  * large mappings to pp even though we don't lock any constituent page except
5381  * pp (i.e. we won't unload e.g. kernel locked page).
5382  */
5383 static void
5384 page_demote_vp_pages(page_t *pp)
5385 {
5386 	kmutex_t *mtx;
5387 
5388 	ASSERT(PAGE_EXCL(pp));
5389 	ASSERT(!PP_ISFREE(pp));
5390 	ASSERT(pp->p_vnode != NULL);
5391 	ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5392 	ASSERT(!PP_ISKAS(pp));
5393 
5394 	VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5395 
5396 	mtx = page_szc_lock(pp);
5397 	if (mtx != NULL) {
5398 		hat_page_demote(pp);
5399 		mutex_exit(mtx);
5400 	}
5401 	ASSERT(pp->p_szc == 0);
5402 }
5403 
5404 /*
5405  * Mark any existing pages for migration in the given range
5406  */
5407 void
5408 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5409     struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5410     u_offset_t vnoff, int rflag)
5411 {
5412 	struct anon	*ap;
5413 	vnode_t		*curvp;
5414 	lgrp_t		*from;
5415 	pgcnt_t		nlocked;
5416 	u_offset_t	off;
5417 	pfn_t		pfn;
5418 	size_t		pgsz;
5419 	size_t		segpgsz;
5420 	pgcnt_t		pages;
5421 	uint_t		pszc;
5422 	page_t		*pp0, *pp;
5423 	caddr_t		va;
5424 	ulong_t		an_idx;
5425 	anon_sync_obj_t	cookie;
5426 
5427 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5428 
5429 	/*
5430 	 * Don't do anything if don't need to do lgroup optimizations
5431 	 * on this system
5432 	 */
5433 	if (!lgrp_optimizations())
5434 		return;
5435 
5436 	/*
5437 	 * Align address and length to (potentially large) page boundary
5438 	 */
5439 	segpgsz = page_get_pagesize(seg->s_szc);
5440 	addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5441 	if (rflag)
5442 		len = P2ROUNDUP(len, segpgsz);
5443 
5444 	/*
5445 	 * Do one (large) page at a time
5446 	 */
5447 	va = addr;
5448 	while (va < addr + len) {
5449 		/*
5450 		 * Lookup (root) page for vnode and offset corresponding to
5451 		 * this virtual address
5452 		 * Try anonmap first since there may be copy-on-write
5453 		 * pages, but initialize vnode pointer and offset using
5454 		 * vnode arguments just in case there isn't an amp.
5455 		 */
5456 		curvp = vp;
5457 		off = vnoff + va - seg->s_base;
5458 		if (amp) {
5459 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5460 			an_idx = anon_index + seg_page(seg, va);
5461 			anon_array_enter(amp, an_idx, &cookie);
5462 			ap = anon_get_ptr(amp->ahp, an_idx);
5463 			if (ap)
5464 				swap_xlate(ap, &curvp, &off);
5465 			anon_array_exit(&cookie);
5466 			ANON_LOCK_EXIT(&amp->a_rwlock);
5467 		}
5468 
5469 		pp = NULL;
5470 		if (curvp)
5471 			pp = page_lookup(curvp, off, SE_SHARED);
5472 
5473 		/*
5474 		 * If there isn't a page at this virtual address,
5475 		 * skip to next page
5476 		 */
5477 		if (pp == NULL) {
5478 			va += PAGESIZE;
5479 			continue;
5480 		}
5481 
5482 		/*
5483 		 * Figure out which lgroup this page is in for kstats
5484 		 */
5485 		pfn = page_pptonum(pp);
5486 		from = lgrp_pfn_to_lgrp(pfn);
5487 
5488 		/*
5489 		 * Get page size, and round up and skip to next page boundary
5490 		 * if unaligned address
5491 		 */
5492 		pszc = pp->p_szc;
5493 		pgsz = page_get_pagesize(pszc);
5494 		pages = btop(pgsz);
5495 		if (!IS_P2ALIGNED(va, pgsz) ||
5496 		    !IS_P2ALIGNED(pfn, pages) ||
5497 		    pgsz > segpgsz) {
5498 			pgsz = MIN(pgsz, segpgsz);
5499 			page_unlock(pp);
5500 			pages = btop(P2END((uintptr_t)va, pgsz) -
5501 			    (uintptr_t)va);
5502 			va = (caddr_t)P2END((uintptr_t)va, pgsz);
5503 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, pages);
5504 			continue;
5505 		}
5506 
5507 		/*
5508 		 * Upgrade to exclusive lock on page
5509 		 */
5510 		if (!page_tryupgrade(pp)) {
5511 			page_unlock(pp);
5512 			va += pgsz;
5513 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5514 			    btop(pgsz));
5515 			continue;
5516 		}
5517 
5518 		pp0 = pp++;
5519 		nlocked = 1;
5520 
5521 		/*
5522 		 * Lock constituent pages if this is large page
5523 		 */
5524 		if (pages > 1) {
5525 			/*
5526 			 * Lock all constituents except root page, since it
5527 			 * should be locked already.
5528 			 */
5529 			for (; nlocked < pages; nlocked++) {
5530 				if (!page_trylock(pp, SE_EXCL)) {
5531 					break;
5532 				}
5533 				if (PP_ISFREE(pp) ||
5534 				    pp->p_szc != pszc) {
5535 					/*
5536 					 * hat_page_demote() raced in with us.
5537 					 */
5538 					ASSERT(!IS_SWAPFSVP(curvp));
5539 					page_unlock(pp);
5540 					break;
5541 				}
5542 				pp++;
5543 			}
5544 		}
5545 
5546 		/*
5547 		 * If all constituent pages couldn't be locked,
5548 		 * unlock pages locked so far and skip to next page.
5549 		 */
5550 		if (nlocked < pages) {
5551 			while (pp0 < pp) {
5552 				page_unlock(pp0++);
5553 			}
5554 			va += pgsz;
5555 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5556 			    btop(pgsz));
5557 			continue;
5558 		}
5559 
5560 		/*
5561 		 * hat_page_demote() can no longer happen
5562 		 * since last cons page had the right p_szc after
5563 		 * all cons pages were locked. all cons pages
5564 		 * should now have the same p_szc.
5565 		 */
5566 
5567 		/*
5568 		 * All constituent pages locked successfully, so mark
5569 		 * large page for migration and unload the mappings of
5570 		 * constituent pages, so a fault will occur on any part of the
5571 		 * large page
5572 		 */
5573 		PP_SETMIGRATE(pp0);
5574 		while (pp0 < pp) {
5575 			(void) hat_pageunload(pp0, HAT_FORCE_PGUNLOAD);
5576 			ASSERT(hat_page_getshare(pp0) == 0);
5577 			page_unlock(pp0++);
5578 		}
5579 		lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5580 
5581 		va += pgsz;
5582 	}
5583 }
5584 
5585 /*
5586  * Migrate any pages that have been marked for migration in the given range
5587  */
5588 void
5589 page_migrate(
5590 	struct seg	*seg,
5591 	caddr_t		addr,
5592 	page_t		**ppa,
5593 	pgcnt_t		npages)
5594 {
5595 	lgrp_t		*from;
5596 	lgrp_t		*to;
5597 	page_t		*newpp;
5598 	page_t		*pp;
5599 	pfn_t		pfn;
5600 	size_t		pgsz;
5601 	spgcnt_t	page_cnt;
5602 	spgcnt_t	i;
5603 	uint_t		pszc;
5604 
5605 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5606 
5607 	while (npages > 0) {
5608 		pp = *ppa;
5609 		pszc = pp->p_szc;
5610 		pgsz = page_get_pagesize(pszc);
5611 		page_cnt = btop(pgsz);
5612 
5613 		/*
5614 		 * Check to see whether this page is marked for migration
5615 		 *
5616 		 * Assume that root page of large page is marked for
5617 		 * migration and none of the other constituent pages
5618 		 * are marked.  This really simplifies clearing the
5619 		 * migrate bit by not having to clear it from each
5620 		 * constituent page.
5621 		 *
5622 		 * note we don't want to relocate an entire large page if
5623 		 * someone is only using one subpage.
5624 		 */
5625 		if (npages < page_cnt)
5626 			break;
5627 
5628 		/*
5629 		 * Is it marked for migration?
5630 		 */
5631 		if (!PP_ISMIGRATE(pp))
5632 			goto next;
5633 
5634 		/*
5635 		 * Determine lgroups that page is being migrated between
5636 		 */
5637 		pfn = page_pptonum(pp);
5638 		if (!IS_P2ALIGNED(pfn, page_cnt)) {
5639 			break;
5640 		}
5641 		from = lgrp_pfn_to_lgrp(pfn);
5642 		to = lgrp_mem_choose(seg, addr, pgsz);
5643 
5644 		/*
5645 		 * Need to get exclusive lock's to migrate
5646 		 */
5647 		for (i = 0; i < page_cnt; i++) {
5648 			ASSERT(PAGE_LOCKED(ppa[i]));
5649 			if (page_pptonum(ppa[i]) != pfn + i ||
5650 			    ppa[i]->p_szc != pszc) {
5651 				break;
5652 			}
5653 			if (!page_tryupgrade(ppa[i])) {
5654 				lgrp_stat_add(from->lgrp_id,
5655 				    LGRP_PM_FAIL_LOCK_PGS,
5656 				    page_cnt);
5657 				break;
5658 			}
5659 
5660 			/*
5661 			 * Check to see whether we are trying to migrate
5662 			 * page to lgroup where it is allocated already.
5663 			 * If so, clear the migrate bit and skip to next
5664 			 * page.
5665 			 */
5666 			if (i == 0 && to == from) {
5667 				PP_CLRMIGRATE(ppa[0]);
5668 				page_downgrade(ppa[0]);
5669 				goto next;
5670 			}
5671 		}
5672 
5673 		/*
5674 		 * If all constituent pages couldn't be locked,
5675 		 * unlock pages locked so far and skip to next page.
5676 		 */
5677 		if (i != page_cnt) {
5678 			while (--i != -1) {
5679 				page_downgrade(ppa[i]);
5680 			}
5681 			goto next;
5682 		}
5683 
5684 		(void) page_create_wait(page_cnt, PG_WAIT);
5685 		newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5686 		if (newpp == NULL) {
5687 			page_create_putback(page_cnt);
5688 			for (i = 0; i < page_cnt; i++) {
5689 				page_downgrade(ppa[i]);
5690 			}
5691 			lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5692 			    page_cnt);
5693 			goto next;
5694 		}
5695 		ASSERT(newpp->p_szc == pszc);
5696 		/*
5697 		 * Clear migrate bit and relocate page
5698 		 */
5699 		PP_CLRMIGRATE(pp);
5700 		if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5701 			panic("page_migrate: page_relocate failed");
5702 		}
5703 		ASSERT(page_cnt * PAGESIZE == pgsz);
5704 
5705 		/*
5706 		 * Keep stats for number of pages migrated from and to
5707 		 * each lgroup
5708 		 */
5709 		lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5710 		lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5711 		/*
5712 		 * update the page_t array we were passed in and
5713 		 * unlink constituent pages of a large page.
5714 		 */
5715 		for (i = 0; i < page_cnt; ++i, ++pp) {
5716 			ASSERT(PAGE_EXCL(newpp));
5717 			ASSERT(newpp->p_szc == pszc);
5718 			ppa[i] = newpp;
5719 			pp = newpp;
5720 			page_sub(&newpp, pp);
5721 			page_downgrade(pp);
5722 		}
5723 		ASSERT(newpp == NULL);
5724 next:
5725 		addr += pgsz;
5726 		ppa += page_cnt;
5727 		npages -= page_cnt;
5728 	}
5729 }
5730 
5731 uint_t page_reclaim_maxcnt = 60; /* max total iterations */
5732 uint_t page_reclaim_nofree_maxcnt = 3; /* max iterations without progress */
5733 /*
5734  * Reclaim/reserve availrmem for npages.
5735  * If there is not enough memory start reaping seg, kmem caches.
5736  * Start pageout scanner (via page_needfree()).
5737  * Exit after ~ MAX_CNT s regardless of how much memory has been released.
5738  * Note: There is no guarantee that any availrmem will be freed as
5739  * this memory typically is locked (kernel heap) or reserved for swap.
5740  * Also due to memory fragmentation kmem allocator may not be able
5741  * to free any memory (single user allocated buffer will prevent
5742  * freeing slab or a page).
5743  */
5744 int
5745 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust)
5746 {
5747 	int	i = 0;
5748 	int	i_nofree = 0;
5749 	int	ret = 0;
5750 	pgcnt_t	deficit;
5751 	pgcnt_t old_availrmem = 0;
5752 
5753 	mutex_enter(&freemem_lock);
5754 	while (availrmem < tune.t_minarmem + npages + epages &&
5755 	    i++ < page_reclaim_maxcnt) {
5756 		/* ensure we made some progress in the last few iterations */
5757 		if (old_availrmem < availrmem) {
5758 			old_availrmem = availrmem;
5759 			i_nofree = 0;
5760 		} else if (i_nofree++ >= page_reclaim_nofree_maxcnt) {
5761 			break;
5762 		}
5763 
5764 		deficit = tune.t_minarmem + npages + epages - availrmem;
5765 		mutex_exit(&freemem_lock);
5766 		page_needfree(deficit);
5767 		kmem_reap();
5768 		delay(hz);
5769 		page_needfree(-(spgcnt_t)deficit);
5770 		mutex_enter(&freemem_lock);
5771 	}
5772 
5773 	if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
5774 		availrmem -= npages;
5775 		ret = 1;
5776 	}
5777 
5778 	mutex_exit(&freemem_lock);
5779 
5780 	return (ret);
5781 }
5782 
5783 /*
5784  * Search the memory segments to locate the desired page.  Within a
5785  * segment, pages increase linearly with one page structure per
5786  * physical page frame (size PAGESIZE).  The search begins
5787  * with the segment that was accessed last, to take advantage of locality.
5788  * If the hint misses, we start from the beginning of the sorted memseg list
5789  */
5790 
5791 
5792 /*
5793  * Some data structures for pfn to pp lookup.
5794  */
5795 ulong_t mhash_per_slot;
5796 struct memseg *memseg_hash[N_MEM_SLOTS];
5797 
5798 page_t *
5799 page_numtopp_nolock(pfn_t pfnum)
5800 {
5801 	struct memseg *seg;
5802 	page_t *pp;
5803 	vm_cpu_data_t *vc;
5804 
5805 	/*
5806 	 * We need to disable kernel preemption while referencing the
5807 	 * cpu_vm_data field in order to prevent us from being switched to
5808 	 * another cpu and trying to reference it after it has been freed.
5809 	 * This will keep us on cpu and prevent it from being removed while
5810 	 * we are still on it.
5811 	 *
5812 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5813 	 * which is being resued by DR who will flush those references
5814 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5815 	 */
5816 	kpreempt_disable();
5817 	vc = CPU->cpu_vm_data;
5818 	ASSERT(vc != NULL);
5819 
5820 	MEMSEG_STAT_INCR(nsearch);
5821 
5822 	/* Try last winner first */
5823 	if (((seg = vc->vc_pnum_memseg) != NULL) &&
5824 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5825 		MEMSEG_STAT_INCR(nlastwon);
5826 		pp = seg->pages + (pfnum - seg->pages_base);
5827 		if (pp->p_pagenum == pfnum) {
5828 			kpreempt_enable();
5829 			return ((page_t *)pp);
5830 		}
5831 	}
5832 
5833 	/* Else Try hash */
5834 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5835 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5836 		MEMSEG_STAT_INCR(nhashwon);
5837 		vc->vc_pnum_memseg = seg;
5838 		pp = seg->pages + (pfnum - seg->pages_base);
5839 		if (pp->p_pagenum == pfnum) {
5840 			kpreempt_enable();
5841 			return ((page_t *)pp);
5842 		}
5843 	}
5844 
5845 	/* Else Brute force */
5846 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5847 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5848 			vc->vc_pnum_memseg = seg;
5849 			pp = seg->pages + (pfnum - seg->pages_base);
5850 			if (pp->p_pagenum == pfnum) {
5851 				kpreempt_enable();
5852 				return ((page_t *)pp);
5853 			}
5854 		}
5855 	}
5856 	vc->vc_pnum_memseg = NULL;
5857 	kpreempt_enable();
5858 	MEMSEG_STAT_INCR(nnotfound);
5859 	return ((page_t *)NULL);
5860 
5861 }
5862 
5863 struct memseg *
5864 page_numtomemseg_nolock(pfn_t pfnum)
5865 {
5866 	struct memseg *seg;
5867 	page_t *pp;
5868 
5869 	/*
5870 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5871 	 * which is being resued by DR who will flush those references
5872 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5873 	 */
5874 	kpreempt_disable();
5875 	/* Try hash */
5876 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5877 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5878 		pp = seg->pages + (pfnum - seg->pages_base);
5879 		if (pp->p_pagenum == pfnum) {
5880 			kpreempt_enable();
5881 			return (seg);
5882 		}
5883 	}
5884 
5885 	/* Else Brute force */
5886 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5887 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5888 			pp = seg->pages + (pfnum - seg->pages_base);
5889 			if (pp->p_pagenum == pfnum) {
5890 				kpreempt_enable();
5891 				return (seg);
5892 			}
5893 		}
5894 	}
5895 	kpreempt_enable();
5896 	return ((struct memseg *)NULL);
5897 }
5898 
5899 /*
5900  * Given a page and a count return the page struct that is
5901  * n structs away from the current one in the global page
5902  * list.
5903  *
5904  * This function wraps to the first page upon
5905  * reaching the end of the memseg list.
5906  */
5907 page_t *
5908 page_nextn(page_t *pp, ulong_t n)
5909 {
5910 	struct memseg *seg;
5911 	page_t *ppn;
5912 	vm_cpu_data_t *vc;
5913 
5914 	/*
5915 	 * We need to disable kernel preemption while referencing the
5916 	 * cpu_vm_data field in order to prevent us from being switched to
5917 	 * another cpu and trying to reference it after it has been freed.
5918 	 * This will keep us on cpu and prevent it from being removed while
5919 	 * we are still on it.
5920 	 *
5921 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5922 	 * which is being resued by DR who will flush those references
5923 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5924 	 */
5925 	kpreempt_disable();
5926 	vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5927 
5928 	ASSERT(vc != NULL);
5929 
5930 	if (((seg = vc->vc_pnext_memseg) == NULL) ||
5931 	    (seg->pages_base == seg->pages_end) ||
5932 	    !(pp >= seg->pages && pp < seg->epages)) {
5933 
5934 		for (seg = memsegs; seg; seg = seg->next) {
5935 			if (pp >= seg->pages && pp < seg->epages)
5936 				break;
5937 		}
5938 
5939 		if (seg == NULL) {
5940 			/* Memory delete got in, return something valid. */
5941 			/* TODO: fix me. */
5942 			seg = memsegs;
5943 			pp = seg->pages;
5944 		}
5945 	}
5946 
5947 	/* check for wraparound - possible if n is large */
5948 	while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
5949 		n -= seg->epages - pp;
5950 		seg = seg->next;
5951 		if (seg == NULL)
5952 			seg = memsegs;
5953 		pp = seg->pages;
5954 	}
5955 	vc->vc_pnext_memseg = seg;
5956 	kpreempt_enable();
5957 	return (ppn);
5958 }
5959 
5960 /*
5961  * Initialize for a loop using page_next_scan_large().
5962  */
5963 page_t *
5964 page_next_scan_init(void **cookie)
5965 {
5966 	ASSERT(cookie != NULL);
5967 	*cookie = (void *)memsegs;
5968 	return ((page_t *)memsegs->pages);
5969 }
5970 
5971 /*
5972  * Return the next page in a scan of page_t's, assuming we want
5973  * to skip over sub-pages within larger page sizes.
5974  *
5975  * The cookie is used to keep track of the current memseg.
5976  */
5977 page_t *
5978 page_next_scan_large(
5979 	page_t		*pp,
5980 	ulong_t		*n,
5981 	void		**cookie)
5982 {
5983 	struct memseg	*seg = (struct memseg *)*cookie;
5984 	page_t		*new_pp;
5985 	ulong_t		cnt;
5986 	pfn_t		pfn;
5987 
5988 
5989 	/*
5990 	 * get the count of page_t's to skip based on the page size
5991 	 */
5992 	ASSERT(pp != NULL);
5993 	if (pp->p_szc == 0) {
5994 		cnt = 1;
5995 	} else {
5996 		pfn = page_pptonum(pp);
5997 		cnt = page_get_pagecnt(pp->p_szc);
5998 		cnt -= pfn & (cnt - 1);
5999 	}
6000 	*n += cnt;
6001 	new_pp = pp + cnt;
6002 
6003 	/*
6004 	 * Catch if we went past the end of the current memory segment. If so,
6005 	 * just move to the next segment with pages.
6006 	 */
6007 	if (new_pp >= seg->epages || seg->pages_base == seg->pages_end) {
6008 		do {
6009 			seg = seg->next;
6010 			if (seg == NULL)
6011 				seg = memsegs;
6012 		} while (seg->pages_base == seg->pages_end);
6013 		new_pp = seg->pages;
6014 		*cookie = (void *)seg;
6015 	}
6016 
6017 	return (new_pp);
6018 }
6019 
6020 
6021 /*
6022  * Returns next page in list. Note: this function wraps
6023  * to the first page in the list upon reaching the end
6024  * of the list. Callers should be aware of this fact.
6025  */
6026 
6027 /* We should change this be a #define */
6028 
6029 page_t *
6030 page_next(page_t *pp)
6031 {
6032 	return (page_nextn(pp, 1));
6033 }
6034 
6035 page_t *
6036 page_first()
6037 {
6038 	return ((page_t *)memsegs->pages);
6039 }
6040 
6041 
6042 /*
6043  * This routine is called at boot with the initial memory configuration
6044  * and when memory is added or removed.
6045  */
6046 void
6047 build_pfn_hash()
6048 {
6049 	pfn_t cur;
6050 	pgcnt_t index;
6051 	struct memseg *pseg;
6052 	int	i;
6053 
6054 	/*
6055 	 * Clear memseg_hash array.
6056 	 * Since memory add/delete is designed to operate concurrently
6057 	 * with normal operation, the hash rebuild must be able to run
6058 	 * concurrently with page_numtopp_nolock(). To support this
6059 	 * functionality, assignments to memseg_hash array members must
6060 	 * be done atomically.
6061 	 *
6062 	 * NOTE: bzero() does not currently guarantee this for kernel
6063 	 * threads, and cannot be used here.
6064 	 */
6065 	for (i = 0; i < N_MEM_SLOTS; i++)
6066 		memseg_hash[i] = NULL;
6067 
6068 	hat_kpm_mseghash_clear(N_MEM_SLOTS);
6069 
6070 	/*
6071 	 * Physmax is the last valid pfn.
6072 	 */
6073 	mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6074 	for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6075 		index = MEMSEG_PFN_HASH(pseg->pages_base);
6076 		cur = pseg->pages_base;
6077 		do {
6078 			if (index >= N_MEM_SLOTS)
6079 				index = MEMSEG_PFN_HASH(cur);
6080 
6081 			if (memseg_hash[index] == NULL ||
6082 			    memseg_hash[index]->pages_base > pseg->pages_base) {
6083 				memseg_hash[index] = pseg;
6084 				hat_kpm_mseghash_update(index, pseg);
6085 			}
6086 			cur += mhash_per_slot;
6087 			index++;
6088 		} while (cur < pseg->pages_end);
6089 	}
6090 }
6091 
6092 /*
6093  * Return the pagenum for the pp
6094  */
6095 pfn_t
6096 page_pptonum(page_t *pp)
6097 {
6098 	return (pp->p_pagenum);
6099 }
6100 
6101 /*
6102  * interface to the referenced and modified etc bits
6103  * in the PSM part of the page struct
6104  * when no locking is desired.
6105  */
6106 void
6107 page_set_props(page_t *pp, uint_t flags)
6108 {
6109 	ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6110 	pp->p_nrm |= (uchar_t)flags;
6111 }
6112 
6113 void
6114 page_clr_all_props(page_t *pp)
6115 {
6116 	pp->p_nrm = 0;
6117 }
6118 
6119 /*
6120  * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6121  */
6122 int
6123 page_clear_lck_cow(page_t *pp, int adjust)
6124 {
6125 	int	f_amount;
6126 
6127 	ASSERT(PAGE_EXCL(pp));
6128 
6129 	/*
6130 	 * The page_struct_lock need not be acquired here since
6131 	 * we require the caller hold the page exclusively locked.
6132 	 */
6133 	f_amount = 0;
6134 	if (pp->p_lckcnt) {
6135 		f_amount = 1;
6136 		pp->p_lckcnt = 0;
6137 	}
6138 	if (pp->p_cowcnt) {
6139 		f_amount += pp->p_cowcnt;
6140 		pp->p_cowcnt = 0;
6141 	}
6142 
6143 	if (adjust && f_amount) {
6144 		mutex_enter(&freemem_lock);
6145 		availrmem += f_amount;
6146 		mutex_exit(&freemem_lock);
6147 	}
6148 
6149 	return (f_amount);
6150 }
6151 
6152 /*
6153  * The following functions is called from free_vp_pages()
6154  * for an inexact estimate of a newly free'd page...
6155  */
6156 ulong_t
6157 page_share_cnt(page_t *pp)
6158 {
6159 	return (hat_page_getshare(pp));
6160 }
6161 
6162 int
6163 page_isshared(page_t *pp)
6164 {
6165 	return (hat_page_checkshare(pp, 1));
6166 }
6167 
6168 int
6169 page_isfree(page_t *pp)
6170 {
6171 	return (PP_ISFREE(pp));
6172 }
6173 
6174 int
6175 page_isref(page_t *pp)
6176 {
6177 	return (hat_page_getattr(pp, P_REF));
6178 }
6179 
6180 int
6181 page_ismod(page_t *pp)
6182 {
6183 	return (hat_page_getattr(pp, P_MOD));
6184 }
6185 
6186 /*
6187  * The following code all currently relates to the page capture logic:
6188  *
6189  * This logic is used for cases where there is a desire to claim a certain
6190  * physical page in the system for the caller.  As it may not be possible
6191  * to capture the page immediately, the p_toxic bits are used in the page
6192  * structure to indicate that someone wants to capture this page.  When the
6193  * page gets unlocked, the toxic flag will be noted and an attempt to capture
6194  * the page will be made.  If it is successful, the original callers callback
6195  * will be called with the page to do with it what they please.
6196  *
6197  * There is also an async thread which wakes up to attempt to capture
6198  * pages occasionally which have the capture bit set.  All of the pages which
6199  * need to be captured asynchronously have been inserted into the
6200  * page_capture_hash and thus this thread walks that hash list.  Items in the
6201  * hash have an expiration time so this thread handles that as well by removing
6202  * the item from the hash if it has expired.
6203  *
6204  * Some important things to note are:
6205  * - if the PR_CAPTURE bit is set on a page, then the page is in the
6206  *   page_capture_hash.  The page_capture_hash_head.pchh_mutex is needed
6207  *   to set and clear this bit, and while the lock is held is the only time
6208  *   you can add or remove an entry from the hash.
6209  * - the PR_CAPTURE bit can only be set and cleared while holding the
6210  *   page_capture_hash_head.pchh_mutex
6211  * - the t_flag field of the thread struct is used with the T_CAPTURING
6212  *   flag to prevent recursion while dealing with large pages.
6213  * - pages which need to be retired never expire on the page_capture_hash.
6214  */
6215 
6216 static void page_capture_thread(void);
6217 static kthread_t *pc_thread_id;
6218 kcondvar_t pc_cv;
6219 static kmutex_t pc_thread_mutex;
6220 static clock_t pc_thread_shortwait;
6221 static clock_t pc_thread_longwait;
6222 static int pc_thread_retry;
6223 
6224 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
6225 
6226 /* Note that this is a circular linked list */
6227 typedef struct page_capture_hash_bucket {
6228 	page_t *pp;
6229 	uchar_t szc;
6230 	uchar_t pri;
6231 	uint_t flags;
6232 	clock_t expires;	/* lbolt at which this request expires. */
6233 	void *datap;		/* Cached data passed in for callback */
6234 	struct page_capture_hash_bucket *next;
6235 	struct page_capture_hash_bucket *prev;
6236 } page_capture_hash_bucket_t;
6237 
6238 #define	PC_PRI_HI	0	/* capture now */
6239 #define	PC_PRI_LO	1	/* capture later */
6240 #define	PC_NUM_PRI	2
6241 
6242 #define	PAGE_CAPTURE_PRIO(pp) (PP_ISRAF(pp) ? PC_PRI_LO : PC_PRI_HI)
6243 
6244 
6245 /*
6246  * Each hash bucket will have it's own mutex and two lists which are:
6247  * active (0):	represents requests which have not been processed by
6248  *		the page_capture async thread yet.
6249  * walked (1):	represents requests which have been processed by the
6250  *		page_capture async thread within it's given walk of this bucket.
6251  *
6252  * These are all needed so that we can synchronize all async page_capture
6253  * events.  When the async thread moves to a new bucket, it will append the
6254  * walked list to the active list and walk each item one at a time, moving it
6255  * from the active list to the walked list.  Thus if there is an async request
6256  * outstanding for a given page, it will always be in one of the two lists.
6257  * New requests will always be added to the active list.
6258  * If we were not able to capture a page before the request expired, we'd free
6259  * up the request structure which would indicate to page_capture that there is
6260  * no longer a need for the given page, and clear the PR_CAPTURE flag if
6261  * possible.
6262  */
6263 typedef struct page_capture_hash_head {
6264 	kmutex_t pchh_mutex;
6265 	uint_t num_pages[PC_NUM_PRI];
6266 	page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
6267 } page_capture_hash_head_t;
6268 
6269 #ifdef DEBUG
6270 #define	NUM_PAGE_CAPTURE_BUCKETS 4
6271 #else
6272 #define	NUM_PAGE_CAPTURE_BUCKETS 64
6273 #endif
6274 
6275 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
6276 
6277 /* for now use a very simple hash based upon the size of a page struct */
6278 #define	PAGE_CAPTURE_HASH(pp)	\
6279 	((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
6280 
6281 extern pgcnt_t swapfs_minfree;
6282 
6283 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
6284 
6285 /*
6286  * a callback function is required for page capture requests.
6287  */
6288 void
6289 page_capture_register_callback(uint_t index, clock_t duration,
6290     int (*cb_func)(page_t *, void *, uint_t))
6291 {
6292 	ASSERT(pc_cb[index].cb_active == 0);
6293 	ASSERT(cb_func != NULL);
6294 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6295 	pc_cb[index].duration = duration;
6296 	pc_cb[index].cb_func = cb_func;
6297 	pc_cb[index].cb_active = 1;
6298 	rw_exit(&pc_cb[index].cb_rwlock);
6299 }
6300 
6301 void
6302 page_capture_unregister_callback(uint_t index)
6303 {
6304 	int i, j;
6305 	struct page_capture_hash_bucket *bp1;
6306 	struct page_capture_hash_bucket *bp2;
6307 	struct page_capture_hash_bucket *head = NULL;
6308 	uint_t flags = (1 << index);
6309 
6310 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6311 	ASSERT(pc_cb[index].cb_active == 1);
6312 	pc_cb[index].duration = 0;	/* Paranoia */
6313 	pc_cb[index].cb_func = NULL;	/* Paranoia */
6314 	pc_cb[index].cb_active = 0;
6315 	rw_exit(&pc_cb[index].cb_rwlock);
6316 
6317 	/*
6318 	 * Just move all the entries to a private list which we can walk
6319 	 * through without the need to hold any locks.
6320 	 * No more requests can get added to the hash lists for this consumer
6321 	 * as the cb_active field for the callback has been cleared.
6322 	 */
6323 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6324 		mutex_enter(&page_capture_hash[i].pchh_mutex);
6325 		for (j = 0; j < 2; j++) {
6326 			bp1 = page_capture_hash[i].lists[j].next;
6327 			/* walk through all but first (sentinel) element */
6328 			while (bp1 != &page_capture_hash[i].lists[j]) {
6329 				bp2 = bp1;
6330 				if (bp2->flags & flags) {
6331 					bp1 = bp2->next;
6332 					bp1->prev = bp2->prev;
6333 					bp2->prev->next = bp1;
6334 					bp2->next = head;
6335 					head = bp2;
6336 					/*
6337 					 * Clear the PR_CAPTURE bit as we
6338 					 * hold appropriate locks here.
6339 					 */
6340 					page_clrtoxic(head->pp, PR_CAPTURE);
6341 					page_capture_hash[i].
6342 					    num_pages[bp2->pri]--;
6343 					continue;
6344 				}
6345 				bp1 = bp1->next;
6346 			}
6347 		}
6348 		mutex_exit(&page_capture_hash[i].pchh_mutex);
6349 	}
6350 
6351 	while (head != NULL) {
6352 		bp1 = head;
6353 		head = head->next;
6354 		kmem_free(bp1, sizeof (*bp1));
6355 	}
6356 }
6357 
6358 
6359 /*
6360  * Find pp in the active list and move it to the walked list if it
6361  * exists.
6362  * Note that most often pp should be at the front of the active list
6363  * as it is currently used and thus there is no other sort of optimization
6364  * being done here as this is a linked list data structure.
6365  * Returns 1 on successful move or 0 if page could not be found.
6366  */
6367 static int
6368 page_capture_move_to_walked(page_t *pp)
6369 {
6370 	page_capture_hash_bucket_t *bp;
6371 	int index;
6372 
6373 	index = PAGE_CAPTURE_HASH(pp);
6374 
6375 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6376 	bp = page_capture_hash[index].lists[0].next;
6377 	while (bp != &page_capture_hash[index].lists[0]) {
6378 		if (bp->pp == pp) {
6379 			/* Remove from old list */
6380 			bp->next->prev = bp->prev;
6381 			bp->prev->next = bp->next;
6382 
6383 			/* Add to new list */
6384 			bp->next = page_capture_hash[index].lists[1].next;
6385 			bp->prev = &page_capture_hash[index].lists[1];
6386 			page_capture_hash[index].lists[1].next = bp;
6387 			bp->next->prev = bp;
6388 
6389 			/*
6390 			 * There is a small probability of page on a free
6391 			 * list being retired while being allocated
6392 			 * and before P_RAF is set on it. The page may
6393 			 * end up marked as high priority request instead
6394 			 * of low priority request.
6395 			 * If P_RAF page is not marked as low priority request
6396 			 * change it to low priority request.
6397 			 */
6398 			page_capture_hash[index].num_pages[bp->pri]--;
6399 			bp->pri = PAGE_CAPTURE_PRIO(pp);
6400 			page_capture_hash[index].num_pages[bp->pri]++;
6401 			mutex_exit(&page_capture_hash[index].pchh_mutex);
6402 			return (1);
6403 		}
6404 		bp = bp->next;
6405 	}
6406 	mutex_exit(&page_capture_hash[index].pchh_mutex);
6407 	return (0);
6408 }
6409 
6410 /*
6411  * Add a new entry to the page capture hash.  The only case where a new
6412  * entry is not added is when the page capture consumer is no longer registered.
6413  * In this case, we'll silently not add the page to the hash.  We know that
6414  * page retire will always be registered for the case where we are currently
6415  * unretiring a page and thus there are no conflicts.
6416  */
6417 static void
6418 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
6419 {
6420 	page_capture_hash_bucket_t *bp1;
6421 	page_capture_hash_bucket_t *bp2;
6422 	int index;
6423 	int cb_index;
6424 	int i;
6425 	uchar_t pri;
6426 #ifdef DEBUG
6427 	page_capture_hash_bucket_t *tp1;
6428 	int l;
6429 #endif
6430 
6431 	ASSERT(!(flags & CAPTURE_ASYNC));
6432 
6433 	bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
6434 
6435 	bp1->pp = pp;
6436 	bp1->szc = szc;
6437 	bp1->flags = flags;
6438 	bp1->datap = datap;
6439 
6440 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6441 		if ((flags >> cb_index) & 1) {
6442 			break;
6443 		}
6444 	}
6445 
6446 	ASSERT(cb_index != PC_NUM_CALLBACKS);
6447 
6448 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6449 	if (pc_cb[cb_index].cb_active) {
6450 		if (pc_cb[cb_index].duration == -1) {
6451 			bp1->expires = (clock_t)-1;
6452 		} else {
6453 			bp1->expires = ddi_get_lbolt() +
6454 			    pc_cb[cb_index].duration;
6455 		}
6456 	} else {
6457 		/* There's no callback registered so don't add to the hash */
6458 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6459 		kmem_free(bp1, sizeof (*bp1));
6460 		return;
6461 	}
6462 
6463 	index = PAGE_CAPTURE_HASH(pp);
6464 
6465 	/*
6466 	 * Only allow capture flag to be modified under this mutex.
6467 	 * Prevents multiple entries for same page getting added.
6468 	 */
6469 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6470 
6471 	/*
6472 	 * if not already on the hash, set capture bit and add to the hash
6473 	 */
6474 	if (!(pp->p_toxic & PR_CAPTURE)) {
6475 #ifdef DEBUG
6476 		/* Check for duplicate entries */
6477 		for (l = 0; l < 2; l++) {
6478 			tp1 = page_capture_hash[index].lists[l].next;
6479 			while (tp1 != &page_capture_hash[index].lists[l]) {
6480 				if (tp1->pp == pp) {
6481 					panic("page pp 0x%p already on hash "
6482 					    "at 0x%p\n",
6483 					    (void *)pp, (void *)tp1);
6484 				}
6485 				tp1 = tp1->next;
6486 			}
6487 		}
6488 
6489 #endif
6490 		page_settoxic(pp, PR_CAPTURE);
6491 		pri = PAGE_CAPTURE_PRIO(pp);
6492 		bp1->pri = pri;
6493 		bp1->next = page_capture_hash[index].lists[0].next;
6494 		bp1->prev = &page_capture_hash[index].lists[0];
6495 		bp1->next->prev = bp1;
6496 		page_capture_hash[index].lists[0].next = bp1;
6497 		page_capture_hash[index].num_pages[pri]++;
6498 		if (flags & CAPTURE_RETIRE) {
6499 			page_retire_incr_pend_count(datap);
6500 		}
6501 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6502 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6503 		cv_signal(&pc_cv);
6504 		return;
6505 	}
6506 
6507 	/*
6508 	 * A page retire request will replace any other request.
6509 	 * A second physmem request which is for a different process than
6510 	 * the currently registered one will be dropped as there is
6511 	 * no way to hold the private data for both calls.
6512 	 * In the future, once there are more callers, this will have to
6513 	 * be worked out better as there needs to be private storage for
6514 	 * at least each type of caller (maybe have datap be an array of
6515 	 * *void's so that we can index based upon callers index).
6516 	 */
6517 
6518 	/* walk hash list to update expire time */
6519 	for (i = 0; i < 2; i++) {
6520 		bp2 = page_capture_hash[index].lists[i].next;
6521 		while (bp2 != &page_capture_hash[index].lists[i]) {
6522 			if (bp2->pp == pp) {
6523 				if (flags & CAPTURE_RETIRE) {
6524 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6525 						page_retire_incr_pend_count(
6526 						    datap);
6527 						bp2->flags = flags;
6528 						bp2->expires = bp1->expires;
6529 						bp2->datap = datap;
6530 					}
6531 				} else {
6532 					ASSERT(flags & CAPTURE_PHYSMEM);
6533 					if (!(bp2->flags & CAPTURE_RETIRE) &&
6534 					    (datap == bp2->datap)) {
6535 						bp2->expires = bp1->expires;
6536 					}
6537 				}
6538 				mutex_exit(&page_capture_hash[index].
6539 				    pchh_mutex);
6540 				rw_exit(&pc_cb[cb_index].cb_rwlock);
6541 				kmem_free(bp1, sizeof (*bp1));
6542 				return;
6543 			}
6544 			bp2 = bp2->next;
6545 		}
6546 	}
6547 
6548 	/*
6549 	 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6550 	 * and thus it either has to be set or not set and can't change
6551 	 * while holding the mutex above.
6552 	 */
6553 	panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n",
6554 	    (void *)pp);
6555 }
6556 
6557 /*
6558  * We have a page in our hands, lets try and make it ours by turning
6559  * it into a clean page like it had just come off the freelists.
6560  *
6561  * Returns 0 on success, with the page still EXCL locked.
6562  * On failure, the page will be unlocked, and returns EAGAIN
6563  */
6564 static int
6565 page_capture_clean_page(page_t *pp)
6566 {
6567 	page_t *newpp;
6568 	int skip_unlock = 0;
6569 	spgcnt_t count;
6570 	page_t *tpp;
6571 	int ret = 0;
6572 	int extra;
6573 
6574 	ASSERT(PAGE_EXCL(pp));
6575 	ASSERT(!PP_RETIRED(pp));
6576 	ASSERT(curthread->t_flag & T_CAPTURING);
6577 
6578 	if (PP_ISFREE(pp)) {
6579 		if (!page_reclaim(pp, NULL)) {
6580 			skip_unlock = 1;
6581 			ret = EAGAIN;
6582 			goto cleanup;
6583 		}
6584 		ASSERT(pp->p_szc == 0);
6585 		if (pp->p_vnode != NULL) {
6586 			/*
6587 			 * Since this page came from the
6588 			 * cachelist, we must destroy the
6589 			 * old vnode association.
6590 			 */
6591 			page_hashout(pp, NULL);
6592 		}
6593 		goto cleanup;
6594 	}
6595 
6596 	/*
6597 	 * If we know page_relocate will fail, skip it
6598 	 * It could still fail due to a UE on another page but we
6599 	 * can't do anything about that.
6600 	 */
6601 	if (pp->p_toxic & PR_UE) {
6602 		goto skip_relocate;
6603 	}
6604 
6605 	/*
6606 	 * It's possible that pages can not have a vnode as fsflush comes
6607 	 * through and cleans up these pages.  It's ugly but that's how it is.
6608 	 */
6609 	if (pp->p_vnode == NULL) {
6610 		goto skip_relocate;
6611 	}
6612 
6613 	/*
6614 	 * Page was not free, so lets try to relocate it.
6615 	 * page_relocate only works with root pages, so if this is not a root
6616 	 * page, we need to demote it to try and relocate it.
6617 	 * Unfortunately this is the best we can do right now.
6618 	 */
6619 	newpp = NULL;
6620 	if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
6621 		if (page_try_demote_pages(pp) == 0) {
6622 			ret = EAGAIN;
6623 			goto cleanup;
6624 		}
6625 	}
6626 	ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
6627 	if (ret == 0) {
6628 		page_t *npp;
6629 		/* unlock the new page(s) */
6630 		while (count-- > 0) {
6631 			ASSERT(newpp != NULL);
6632 			npp = newpp;
6633 			page_sub(&newpp, npp);
6634 			page_unlock(npp);
6635 		}
6636 		ASSERT(newpp == NULL);
6637 		/*
6638 		 * Check to see if the page we have is too large.
6639 		 * If so, demote it freeing up the extra pages.
6640 		 */
6641 		if (pp->p_szc > 0) {
6642 			/* For now demote extra pages to szc == 0 */
6643 			extra = page_get_pagecnt(pp->p_szc) - 1;
6644 			while (extra > 0) {
6645 				tpp = pp->p_next;
6646 				page_sub(&pp, tpp);
6647 				tpp->p_szc = 0;
6648 				page_free(tpp, 1);
6649 				extra--;
6650 			}
6651 			/* Make sure to set our page to szc 0 as well */
6652 			ASSERT(pp->p_next == pp && pp->p_prev == pp);
6653 			pp->p_szc = 0;
6654 		}
6655 		goto cleanup;
6656 	} else if (ret == EIO) {
6657 		ret = EAGAIN;
6658 		goto cleanup;
6659 	} else {
6660 		/*
6661 		 * Need to reset return type as we failed to relocate the page
6662 		 * but that does not mean that some of the next steps will not
6663 		 * work.
6664 		 */
6665 		ret = 0;
6666 	}
6667 
6668 skip_relocate:
6669 
6670 	if (pp->p_szc > 0) {
6671 		if (page_try_demote_pages(pp) == 0) {
6672 			ret = EAGAIN;
6673 			goto cleanup;
6674 		}
6675 	}
6676 
6677 	ASSERT(pp->p_szc == 0);
6678 
6679 	if (hat_ismod(pp)) {
6680 		ret = EAGAIN;
6681 		goto cleanup;
6682 	}
6683 	if (PP_ISKAS(pp)) {
6684 		ret = EAGAIN;
6685 		goto cleanup;
6686 	}
6687 	if (pp->p_lckcnt || pp->p_cowcnt) {
6688 		ret = EAGAIN;
6689 		goto cleanup;
6690 	}
6691 
6692 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
6693 	ASSERT(!hat_page_is_mapped(pp));
6694 
6695 	if (hat_ismod(pp)) {
6696 		/*
6697 		 * This is a semi-odd case as the page is now modified but not
6698 		 * mapped as we just unloaded the mappings above.
6699 		 */
6700 		ret = EAGAIN;
6701 		goto cleanup;
6702 	}
6703 	if (pp->p_vnode != NULL) {
6704 		page_hashout(pp, NULL);
6705 	}
6706 
6707 	/*
6708 	 * At this point, the page should be in a clean state and
6709 	 * we can do whatever we want with it.
6710 	 */
6711 
6712 cleanup:
6713 	if (ret != 0) {
6714 		if (!skip_unlock) {
6715 			page_unlock(pp);
6716 		}
6717 	} else {
6718 		ASSERT(pp->p_szc == 0);
6719 		ASSERT(PAGE_EXCL(pp));
6720 
6721 		pp->p_next = pp;
6722 		pp->p_prev = pp;
6723 	}
6724 	return (ret);
6725 }
6726 
6727 /*
6728  * Various callers of page_trycapture() can have different restrictions upon
6729  * what memory they have access to.
6730  * Returns 0 on success, with the following error codes on failure:
6731  *      EPERM - The requested page is long term locked, and thus repeated
6732  *              requests to capture this page will likely fail.
6733  *      ENOMEM - There was not enough free memory in the system to safely
6734  *              map the requested page.
6735  *      ENOENT - The requested page was inside the kernel cage, and the
6736  *              PHYSMEM_CAGE flag was not set.
6737  */
6738 int
6739 page_capture_pre_checks(page_t *pp, uint_t flags)
6740 {
6741 	ASSERT(pp != NULL);
6742 
6743 #if defined(__sparc)
6744 	if (pp->p_vnode == &promvp) {
6745 		return (EPERM);
6746 	}
6747 
6748 	if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) &&
6749 	    (flags & CAPTURE_PHYSMEM)) {
6750 		return (ENOENT);
6751 	}
6752 
6753 	if (PP_ISNORELOCKERNEL(pp)) {
6754 		return (EPERM);
6755 	}
6756 #else
6757 	if (PP_ISKAS(pp)) {
6758 		return (EPERM);
6759 	}
6760 #endif /* __sparc */
6761 
6762 	/* only physmem currently has the restrictions checked below */
6763 	if (!(flags & CAPTURE_PHYSMEM)) {
6764 		return (0);
6765 	}
6766 
6767 	if (availrmem < swapfs_minfree) {
6768 		/*
6769 		 * We won't try to capture this page as we are
6770 		 * running low on memory.
6771 		 */
6772 		return (ENOMEM);
6773 	}
6774 	return (0);
6775 }
6776 
6777 /*
6778  * Once we have a page in our mits, go ahead and complete the capture
6779  * operation.
6780  * Returns 1 on failure where page is no longer needed
6781  * Returns 0 on success
6782  * Returns -1 if there was a transient failure.
6783  * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6784  */
6785 int
6786 page_capture_take_action(page_t *pp, uint_t flags, void *datap)
6787 {
6788 	int cb_index;
6789 	int ret = 0;
6790 	page_capture_hash_bucket_t *bp1;
6791 	page_capture_hash_bucket_t *bp2;
6792 	int index;
6793 	int found = 0;
6794 	int i;
6795 
6796 	ASSERT(PAGE_EXCL(pp));
6797 	ASSERT(curthread->t_flag & T_CAPTURING);
6798 
6799 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6800 		if ((flags >> cb_index) & 1) {
6801 			break;
6802 		}
6803 	}
6804 	ASSERT(cb_index < PC_NUM_CALLBACKS);
6805 
6806 	/*
6807 	 * Remove the entry from the page_capture hash, but don't free it yet
6808 	 * as we may need to put it back.
6809 	 * Since we own the page at this point in time, we should find it
6810 	 * in the hash if this is an ASYNC call.  If we don't it's likely
6811 	 * that the page_capture_async() thread decided that this request
6812 	 * had expired, in which case we just continue on.
6813 	 */
6814 	if (flags & CAPTURE_ASYNC) {
6815 
6816 		index = PAGE_CAPTURE_HASH(pp);
6817 
6818 		mutex_enter(&page_capture_hash[index].pchh_mutex);
6819 		for (i = 0; i < 2 && !found; i++) {
6820 			bp1 = page_capture_hash[index].lists[i].next;
6821 			while (bp1 != &page_capture_hash[index].lists[i]) {
6822 				if (bp1->pp == pp) {
6823 					bp1->next->prev = bp1->prev;
6824 					bp1->prev->next = bp1->next;
6825 					page_capture_hash[index].
6826 					    num_pages[bp1->pri]--;
6827 					page_clrtoxic(pp, PR_CAPTURE);
6828 					found = 1;
6829 					break;
6830 				}
6831 				bp1 = bp1->next;
6832 			}
6833 		}
6834 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6835 	}
6836 
6837 	/* Synchronize with the unregister func. */
6838 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6839 	if (!pc_cb[cb_index].cb_active) {
6840 		page_free(pp, 1);
6841 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6842 		if (found) {
6843 			kmem_free(bp1, sizeof (*bp1));
6844 		}
6845 		return (1);
6846 	}
6847 
6848 	/*
6849 	 * We need to remove the entry from the page capture hash and turn off
6850 	 * the PR_CAPTURE bit before calling the callback.  We'll need to cache
6851 	 * the entry here, and then based upon the return value, cleanup
6852 	 * appropriately or re-add it to the hash, making sure that someone else
6853 	 * hasn't already done so.
6854 	 * It should be rare for the callback to fail and thus it's ok for
6855 	 * the failure path to be a bit complicated as the success path is
6856 	 * cleaner and the locking rules are easier to follow.
6857 	 */
6858 
6859 	ret = pc_cb[cb_index].cb_func(pp, datap, flags);
6860 
6861 	rw_exit(&pc_cb[cb_index].cb_rwlock);
6862 
6863 	/*
6864 	 * If this was an ASYNC request, we need to cleanup the hash if the
6865 	 * callback was successful or if the request was no longer valid.
6866 	 * For non-ASYNC requests, we return failure to map and the caller
6867 	 * will take care of adding the request to the hash.
6868 	 * Note also that the callback itself is responsible for the page
6869 	 * at this point in time in terms of locking ...  The most common
6870 	 * case for the failure path should just be a page_free.
6871 	 */
6872 	if (ret >= 0) {
6873 		if (found) {
6874 			if (bp1->flags & CAPTURE_RETIRE) {
6875 				page_retire_decr_pend_count(datap);
6876 			}
6877 			kmem_free(bp1, sizeof (*bp1));
6878 		}
6879 		return (ret);
6880 	}
6881 	if (!found) {
6882 		return (ret);
6883 	}
6884 
6885 	ASSERT(flags & CAPTURE_ASYNC);
6886 
6887 	/*
6888 	 * Check for expiration time first as we can just free it up if it's
6889 	 * expired.
6890 	 */
6891 	if (ddi_get_lbolt() > bp1->expires && bp1->expires != -1) {
6892 		kmem_free(bp1, sizeof (*bp1));
6893 		return (ret);
6894 	}
6895 
6896 	/*
6897 	 * The callback failed and there used to be an entry in the hash for
6898 	 * this page, so we need to add it back to the hash.
6899 	 */
6900 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6901 	if (!(pp->p_toxic & PR_CAPTURE)) {
6902 		/* just add bp1 back to head of walked list */
6903 		page_settoxic(pp, PR_CAPTURE);
6904 		bp1->next = page_capture_hash[index].lists[1].next;
6905 		bp1->prev = &page_capture_hash[index].lists[1];
6906 		bp1->next->prev = bp1;
6907 		bp1->pri = PAGE_CAPTURE_PRIO(pp);
6908 		page_capture_hash[index].lists[1].next = bp1;
6909 		page_capture_hash[index].num_pages[bp1->pri]++;
6910 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6911 		return (ret);
6912 	}
6913 
6914 	/*
6915 	 * Otherwise there was a new capture request added to list
6916 	 * Need to make sure that our original data is represented if
6917 	 * appropriate.
6918 	 */
6919 	for (i = 0; i < 2; i++) {
6920 		bp2 = page_capture_hash[index].lists[i].next;
6921 		while (bp2 != &page_capture_hash[index].lists[i]) {
6922 			if (bp2->pp == pp) {
6923 				if (bp1->flags & CAPTURE_RETIRE) {
6924 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6925 						bp2->szc = bp1->szc;
6926 						bp2->flags = bp1->flags;
6927 						bp2->expires = bp1->expires;
6928 						bp2->datap = bp1->datap;
6929 					}
6930 				} else {
6931 					ASSERT(bp1->flags & CAPTURE_PHYSMEM);
6932 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6933 						bp2->szc = bp1->szc;
6934 						bp2->flags = bp1->flags;
6935 						bp2->expires = bp1->expires;
6936 						bp2->datap = bp1->datap;
6937 					}
6938 				}
6939 				page_capture_hash[index].num_pages[bp2->pri]--;
6940 				bp2->pri = PAGE_CAPTURE_PRIO(pp);
6941 				page_capture_hash[index].num_pages[bp2->pri]++;
6942 				mutex_exit(&page_capture_hash[index].
6943 				    pchh_mutex);
6944 				kmem_free(bp1, sizeof (*bp1));
6945 				return (ret);
6946 			}
6947 			bp2 = bp2->next;
6948 		}
6949 	}
6950 	panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp);
6951 	/*NOTREACHED*/
6952 }
6953 
6954 /*
6955  * Try to capture the given page for the caller specified in the flags
6956  * parameter.  The page will either be captured and handed over to the
6957  * appropriate callback, or will be queued up in the page capture hash
6958  * to be captured asynchronously.
6959  * If the current request is due to an async capture, the page must be
6960  * exclusively locked before calling this function.
6961  * Currently szc must be 0 but in the future this should be expandable to
6962  * other page sizes.
6963  * Returns 0 on success, with the following error codes on failure:
6964  *      EPERM - The requested page is long term locked, and thus repeated
6965  *              requests to capture this page will likely fail.
6966  *      ENOMEM - There was not enough free memory in the system to safely
6967  *              map the requested page.
6968  *      ENOENT - The requested page was inside the kernel cage, and the
6969  *              CAPTURE_GET_CAGE flag was not set.
6970  *	EAGAIN - The requested page could not be capturead at this point in
6971  *		time but future requests will likely work.
6972  *	EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
6973  *		was not set.
6974  */
6975 int
6976 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
6977 {
6978 	int ret;
6979 	int cb_index;
6980 
6981 	if (flags & CAPTURE_ASYNC) {
6982 		ASSERT(PAGE_EXCL(pp));
6983 		goto async;
6984 	}
6985 
6986 	/* Make sure there's enough availrmem ... */
6987 	ret = page_capture_pre_checks(pp, flags);
6988 	if (ret != 0) {
6989 		return (ret);
6990 	}
6991 
6992 	if (!page_trylock(pp, SE_EXCL)) {
6993 		for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6994 			if ((flags >> cb_index) & 1) {
6995 				break;
6996 			}
6997 		}
6998 		ASSERT(cb_index < PC_NUM_CALLBACKS);
6999 		ret = EAGAIN;
7000 		/* Special case for retired pages */
7001 		if (PP_RETIRED(pp)) {
7002 			if (flags & CAPTURE_GET_RETIRED) {
7003 				if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
7004 					/*
7005 					 * Need to set capture bit and add to
7006 					 * hash so that the page will be
7007 					 * retired when freed.
7008 					 */
7009 					page_capture_add_hash(pp, szc,
7010 					    CAPTURE_RETIRE, NULL);
7011 					ret = 0;
7012 					goto own_page;
7013 				}
7014 			} else {
7015 				return (EBUSY);
7016 			}
7017 		}
7018 		page_capture_add_hash(pp, szc, flags, datap);
7019 		return (ret);
7020 	}
7021 
7022 async:
7023 	ASSERT(PAGE_EXCL(pp));
7024 
7025 	/* Need to check for physmem async requests that availrmem is sane */
7026 	if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
7027 	    (CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
7028 	    (availrmem < swapfs_minfree)) {
7029 		page_unlock(pp);
7030 		return (ENOMEM);
7031 	}
7032 
7033 	ret = page_capture_clean_page(pp);
7034 
7035 	if (ret != 0) {
7036 		/* We failed to get the page, so lets add it to the hash */
7037 		if (!(flags & CAPTURE_ASYNC)) {
7038 			page_capture_add_hash(pp, szc, flags, datap);
7039 		}
7040 		return (ret);
7041 	}
7042 
7043 own_page:
7044 	ASSERT(PAGE_EXCL(pp));
7045 	ASSERT(pp->p_szc == 0);
7046 
7047 	/* Call the callback */
7048 	ret = page_capture_take_action(pp, flags, datap);
7049 
7050 	if (ret == 0) {
7051 		return (0);
7052 	}
7053 
7054 	/*
7055 	 * Note that in the failure cases from page_capture_take_action, the
7056 	 * EXCL lock will have already been dropped.
7057 	 */
7058 	if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
7059 		page_capture_add_hash(pp, szc, flags, datap);
7060 	}
7061 	return (EAGAIN);
7062 }
7063 
7064 int
7065 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7066 {
7067 	int ret;
7068 
7069 	curthread->t_flag |= T_CAPTURING;
7070 	ret = page_itrycapture(pp, szc, flags, datap);
7071 	curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
7072 	return (ret);
7073 }
7074 
7075 /*
7076  * When unlocking a page which has the PR_CAPTURE bit set, this routine
7077  * gets called to try and capture the page.
7078  */
7079 void
7080 page_unlock_capture(page_t *pp)
7081 {
7082 	page_capture_hash_bucket_t *bp;
7083 	int index;
7084 	int i;
7085 	uint_t szc;
7086 	uint_t flags = 0;
7087 	void *datap;
7088 	kmutex_t *mp;
7089 	extern vnode_t retired_pages;
7090 
7091 	/*
7092 	 * We need to protect against a possible deadlock here where we own
7093 	 * the vnode page hash mutex and want to acquire it again as there
7094 	 * are locations in the code, where we unlock a page while holding
7095 	 * the mutex which can lead to the page being captured and eventually
7096 	 * end up here.  As we may be hashing out the old page and hashing into
7097 	 * the retire vnode, we need to make sure we don't own them.
7098 	 * Other callbacks who do hash operations also need to make sure that
7099 	 * before they hashin to a vnode that they do not currently own the
7100 	 * vphm mutex otherwise there will be a panic.
7101 	 */
7102 	if (mutex_owned(page_vnode_mutex(&retired_pages))) {
7103 		page_unlock_nocapture(pp);
7104 		return;
7105 	}
7106 	if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
7107 		page_unlock_nocapture(pp);
7108 		return;
7109 	}
7110 
7111 	index = PAGE_CAPTURE_HASH(pp);
7112 
7113 	mp = &page_capture_hash[index].pchh_mutex;
7114 	mutex_enter(mp);
7115 	for (i = 0; i < 2; i++) {
7116 		bp = page_capture_hash[index].lists[i].next;
7117 		while (bp != &page_capture_hash[index].lists[i]) {
7118 			if (bp->pp == pp) {
7119 				szc = bp->szc;
7120 				flags = bp->flags | CAPTURE_ASYNC;
7121 				datap = bp->datap;
7122 				mutex_exit(mp);
7123 				(void) page_trycapture(pp, szc, flags, datap);
7124 				return;
7125 			}
7126 			bp = bp->next;
7127 		}
7128 	}
7129 
7130 	/* Failed to find page in hash so clear flags and unlock it. */
7131 	page_clrtoxic(pp, PR_CAPTURE);
7132 	page_unlock(pp);
7133 
7134 	mutex_exit(mp);
7135 }
7136 
7137 void
7138 page_capture_init()
7139 {
7140 	int i;
7141 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7142 		page_capture_hash[i].lists[0].next =
7143 		    &page_capture_hash[i].lists[0];
7144 		page_capture_hash[i].lists[0].prev =
7145 		    &page_capture_hash[i].lists[0];
7146 		page_capture_hash[i].lists[1].next =
7147 		    &page_capture_hash[i].lists[1];
7148 		page_capture_hash[i].lists[1].prev =
7149 		    &page_capture_hash[i].lists[1];
7150 	}
7151 
7152 	pc_thread_shortwait = 23 * hz;
7153 	pc_thread_longwait = 1201 * hz;
7154 	pc_thread_retry = 3;
7155 	mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
7156 	cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
7157 	pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
7158 	    TS_RUN, minclsyspri);
7159 }
7160 
7161 /*
7162  * It is necessary to scrub any failing pages prior to reboot in order to
7163  * prevent a latent error trap from occurring on the next boot.
7164  */
7165 void
7166 page_retire_mdboot()
7167 {
7168 	page_t *pp;
7169 	int i, j;
7170 	page_capture_hash_bucket_t *bp;
7171 	uchar_t pri;
7172 
7173 	/* walk lists looking for pages to scrub */
7174 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7175 		for (pri = 0; pri < PC_NUM_PRI; pri++) {
7176 			if (page_capture_hash[i].num_pages[pri] != 0) {
7177 				break;
7178 			}
7179 		}
7180 		if (pri == PC_NUM_PRI)
7181 			continue;
7182 
7183 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7184 
7185 		for (j = 0; j < 2; j++) {
7186 			bp = page_capture_hash[i].lists[j].next;
7187 			while (bp != &page_capture_hash[i].lists[j]) {
7188 				pp = bp->pp;
7189 				if (PP_TOXIC(pp)) {
7190 					if (page_trylock(pp, SE_EXCL)) {
7191 						PP_CLRFREE(pp);
7192 						pagescrub(pp, 0, PAGESIZE);
7193 						page_unlock(pp);
7194 					}
7195 				}
7196 				bp = bp->next;
7197 			}
7198 		}
7199 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7200 	}
7201 }
7202 
7203 /*
7204  * Walk the page_capture_hash trying to capture pages and also cleanup old
7205  * entries which have expired.
7206  */
7207 void
7208 page_capture_async()
7209 {
7210 	page_t *pp;
7211 	int i;
7212 	int ret;
7213 	page_capture_hash_bucket_t *bp1, *bp2;
7214 	uint_t szc;
7215 	uint_t flags;
7216 	void *datap;
7217 	uchar_t pri;
7218 
7219 	/* If there are outstanding pages to be captured, get to work */
7220 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7221 		for (pri = 0; pri < PC_NUM_PRI; pri++) {
7222 			if (page_capture_hash[i].num_pages[pri] != 0)
7223 				break;
7224 		}
7225 		if (pri == PC_NUM_PRI)
7226 			continue;
7227 
7228 		/* Append list 1 to list 0 and then walk through list 0 */
7229 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7230 		bp1 = &page_capture_hash[i].lists[1];
7231 		bp2 = bp1->next;
7232 		if (bp1 != bp2) {
7233 			bp1->prev->next = page_capture_hash[i].lists[0].next;
7234 			bp2->prev = &page_capture_hash[i].lists[0];
7235 			page_capture_hash[i].lists[0].next->prev = bp1->prev;
7236 			page_capture_hash[i].lists[0].next = bp2;
7237 			bp1->next = bp1;
7238 			bp1->prev = bp1;
7239 		}
7240 
7241 		/* list[1] will be empty now */
7242 
7243 		bp1 = page_capture_hash[i].lists[0].next;
7244 		while (bp1 != &page_capture_hash[i].lists[0]) {
7245 			/* Check expiration time */
7246 			if ((ddi_get_lbolt() > bp1->expires &&
7247 			    bp1->expires != -1) ||
7248 			    page_deleted(bp1->pp)) {
7249 				page_capture_hash[i].lists[0].next = bp1->next;
7250 				bp1->next->prev =
7251 				    &page_capture_hash[i].lists[0];
7252 				page_capture_hash[i].num_pages[bp1->pri]--;
7253 
7254 				/*
7255 				 * We can safely remove the PR_CAPTURE bit
7256 				 * without holding the EXCL lock on the page
7257 				 * as the PR_CAPTURE bit requres that the
7258 				 * page_capture_hash[].pchh_mutex be held
7259 				 * to modify it.
7260 				 */
7261 				page_clrtoxic(bp1->pp, PR_CAPTURE);
7262 				mutex_exit(&page_capture_hash[i].pchh_mutex);
7263 				kmem_free(bp1, sizeof (*bp1));
7264 				mutex_enter(&page_capture_hash[i].pchh_mutex);
7265 				bp1 = page_capture_hash[i].lists[0].next;
7266 				continue;
7267 			}
7268 			pp = bp1->pp;
7269 			szc = bp1->szc;
7270 			flags = bp1->flags;
7271 			datap = bp1->datap;
7272 			mutex_exit(&page_capture_hash[i].pchh_mutex);
7273 			if (page_trylock(pp, SE_EXCL)) {
7274 				ret = page_trycapture(pp, szc,
7275 				    flags | CAPTURE_ASYNC, datap);
7276 			} else {
7277 				ret = 1;	/* move to walked hash */
7278 			}
7279 
7280 			if (ret != 0) {
7281 				/* Move to walked hash */
7282 				(void) page_capture_move_to_walked(pp);
7283 			}
7284 			mutex_enter(&page_capture_hash[i].pchh_mutex);
7285 			bp1 = page_capture_hash[i].lists[0].next;
7286 		}
7287 
7288 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7289 	}
7290 }
7291 
7292 /*
7293  * This function is called by the page_capture_thread, and is needed in
7294  * in order to initiate aio cleanup, so that pages used in aio
7295  * will be unlocked and subsequently retired by page_capture_thread.
7296  */
7297 static int
7298 do_aio_cleanup(void)
7299 {
7300 	proc_t *procp;
7301 	int (*aio_cleanup_dr_delete_memory)(proc_t *);
7302 	int cleaned = 0;
7303 
7304 	if (modload("sys", "kaio") == -1) {
7305 		cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
7306 		return (0);
7307 	}
7308 	/*
7309 	 * We use the aio_cleanup_dr_delete_memory function to
7310 	 * initiate the actual clean up; this function will wake
7311 	 * up the per-process aio_cleanup_thread.
7312 	 */
7313 	aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
7314 	    modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
7315 	if (aio_cleanup_dr_delete_memory == NULL) {
7316 		cmn_err(CE_WARN,
7317 	    "aio_cleanup_dr_delete_memory not found in kaio");
7318 		return (0);
7319 	}
7320 	mutex_enter(&pidlock);
7321 	for (procp = practive; (procp != NULL); procp = procp->p_next) {
7322 		mutex_enter(&procp->p_lock);
7323 		if (procp->p_aio != NULL) {
7324 			/* cleanup proc's outstanding kaio */
7325 			cleaned += (*aio_cleanup_dr_delete_memory)(procp);
7326 		}
7327 		mutex_exit(&procp->p_lock);
7328 	}
7329 	mutex_exit(&pidlock);
7330 	return (cleaned);
7331 }
7332 
7333 /*
7334  * helper function for page_capture_thread
7335  */
7336 static void
7337 page_capture_handle_outstanding(void)
7338 {
7339 	int ntry;
7340 
7341 	/* Reap pages before attempting capture pages */
7342 	kmem_reap();
7343 
7344 	if ((page_retire_pend_count() > page_retire_pend_kas_count()) &&
7345 	    hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
7346 		/*
7347 		 * Note: Purging only for platforms that support
7348 		 * ISM hat_pageunload() - mainly SPARC. On x86/x64
7349 		 * platforms ISM pages SE_SHARED locked until destroyed.
7350 		 */
7351 
7352 		/* disable and purge seg_pcache */
7353 		(void) seg_p_disable();
7354 		for (ntry = 0; ntry < pc_thread_retry; ntry++) {
7355 			if (!page_retire_pend_count())
7356 				break;
7357 			if (do_aio_cleanup()) {
7358 				/*
7359 				 * allow the apps cleanup threads
7360 				 * to run
7361 				 */
7362 				delay(pc_thread_shortwait);
7363 			}
7364 			page_capture_async();
7365 		}
7366 		/* reenable seg_pcache */
7367 		seg_p_enable();
7368 
7369 		/* completed what can be done.  break out */
7370 		return;
7371 	}
7372 
7373 	/*
7374 	 * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap
7375 	 * and then attempt to capture.
7376 	 */
7377 	seg_preap();
7378 	page_capture_async();
7379 }
7380 
7381 /*
7382  * The page_capture_thread loops forever, looking to see if there are
7383  * pages still waiting to be captured.
7384  */
7385 static void
7386 page_capture_thread(void)
7387 {
7388 	callb_cpr_t c;
7389 	int i;
7390 	int high_pri_pages;
7391 	int low_pri_pages;
7392 	clock_t timeout;
7393 
7394 	CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
7395 
7396 	mutex_enter(&pc_thread_mutex);
7397 	for (;;) {
7398 		high_pri_pages = 0;
7399 		low_pri_pages = 0;
7400 		for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7401 			high_pri_pages +=
7402 			    page_capture_hash[i].num_pages[PC_PRI_HI];
7403 			low_pri_pages +=
7404 			    page_capture_hash[i].num_pages[PC_PRI_LO];
7405 		}
7406 
7407 		timeout = pc_thread_longwait;
7408 		if (high_pri_pages != 0) {
7409 			timeout = pc_thread_shortwait;
7410 			page_capture_handle_outstanding();
7411 		} else if (low_pri_pages != 0) {
7412 			page_capture_async();
7413 		}
7414 		CALLB_CPR_SAFE_BEGIN(&c);
7415 		(void) cv_reltimedwait(&pc_cv, &pc_thread_mutex,
7416 		    timeout, TR_CLOCK_TICK);
7417 		CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7418 	}
7419 	/*NOTREACHED*/
7420 }
7421 /*
7422  * Attempt to locate a bucket that has enough pages to satisfy the request.
7423  * The initial check is done without the lock to avoid unneeded contention.
7424  * The function returns 1 if enough pages were found, else 0 if it could not
7425  * find enough pages in a bucket.
7426  */
7427 static int
7428 pcf_decrement_bucket(pgcnt_t npages)
7429 {
7430 	struct pcf	*p;
7431 	struct pcf	*q;
7432 	int i;
7433 
7434 	p = &pcf[PCF_INDEX()];
7435 	q = &pcf[pcf_fanout];
7436 	for (i = 0; i < pcf_fanout; i++) {
7437 		if (p->pcf_count > npages) {
7438 			/*
7439 			 * a good one to try.
7440 			 */
7441 			mutex_enter(&p->pcf_lock);
7442 			if (p->pcf_count > npages) {
7443 				p->pcf_count -= (uint_t)npages;
7444 				/*
7445 				 * freemem is not protected by any lock.
7446 				 * Thus, we cannot have any assertion
7447 				 * containing freemem here.
7448 				 */
7449 				freemem -= npages;
7450 				mutex_exit(&p->pcf_lock);
7451 				return (1);
7452 			}
7453 			mutex_exit(&p->pcf_lock);
7454 		}
7455 		p++;
7456 		if (p >= q) {
7457 			p = pcf;
7458 		}
7459 	}
7460 	return (0);
7461 }
7462 
7463 /*
7464  * Arguments:
7465  *	pcftotal_ret:	If the value is not NULL and we have walked all the
7466  *			buckets but did not find enough pages then it will
7467  *			be set to the total number of pages in all the pcf
7468  *			buckets.
7469  *	npages:		Is the number of pages we have been requested to
7470  *			find.
7471  *	unlock:		If set to 0 we will leave the buckets locked if the
7472  *			requested number of pages are not found.
7473  *
7474  * Go and try to satisfy the page request  from any number of buckets.
7475  * This can be a very expensive operation as we have to lock the buckets
7476  * we are checking (and keep them locked), starting at bucket 0.
7477  *
7478  * The function returns 1 if enough pages were found, else 0 if it could not
7479  * find enough pages in the buckets.
7480  *
7481  */
7482 static int
7483 pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock)
7484 {
7485 	struct pcf	*p;
7486 	pgcnt_t pcftotal;
7487 	int i;
7488 
7489 	p = pcf;
7490 	/* try to collect pages from several pcf bins */
7491 	for (pcftotal = 0, i = 0; i < pcf_fanout; i++) {
7492 		mutex_enter(&p->pcf_lock);
7493 		pcftotal += p->pcf_count;
7494 		if (pcftotal >= npages) {
7495 			/*
7496 			 * Wow!  There are enough pages laying around
7497 			 * to satisfy the request.  Do the accounting,
7498 			 * drop the locks we acquired, and go back.
7499 			 *
7500 			 * freemem is not protected by any lock. So,
7501 			 * we cannot have any assertion containing
7502 			 * freemem.
7503 			 */
7504 			freemem -= npages;
7505 			while (p >= pcf) {
7506 				if (p->pcf_count <= npages) {
7507 					npages -= p->pcf_count;
7508 					p->pcf_count = 0;
7509 				} else {
7510 					p->pcf_count -= (uint_t)npages;
7511 					npages = 0;
7512 				}
7513 				mutex_exit(&p->pcf_lock);
7514 				p--;
7515 			}
7516 			ASSERT(npages == 0);
7517 			return (1);
7518 		}
7519 		p++;
7520 	}
7521 	if (unlock) {
7522 		/* failed to collect pages - release the locks */
7523 		while (--p >= pcf) {
7524 			mutex_exit(&p->pcf_lock);
7525 		}
7526 	}
7527 	if (pcftotal_ret != NULL)
7528 		*pcftotal_ret = pcftotal;
7529 	return (0);
7530 }
7531