xref: /illumos-gate/usr/src/uts/common/vm/vm_page.c (revision 6918308b4f7a98b1ab7146af715a679a95b03288)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989  AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 /*
43  * VM - physical page management.
44  */
45 
46 #include <sys/types.h>
47 #include <sys/t_lock.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/errno.h>
51 #include <sys/time.h>
52 #include <sys/vnode.h>
53 #include <sys/vm.h>
54 #include <sys/vtrace.h>
55 #include <sys/swap.h>
56 #include <sys/cmn_err.h>
57 #include <sys/tuneable.h>
58 #include <sys/sysmacros.h>
59 #include <sys/cpuvar.h>
60 #include <sys/callb.h>
61 #include <sys/debug.h>
62 #include <sys/tnf_probe.h>
63 #include <sys/condvar_impl.h>
64 #include <sys/mem_config.h>
65 #include <sys/mem_cage.h>
66 #include <sys/kmem.h>
67 #include <sys/atomic.h>
68 #include <sys/strlog.h>
69 #include <sys/mman.h>
70 #include <sys/ontrap.h>
71 #include <sys/lgrp.h>
72 #include <sys/vfs.h>
73 
74 #include <vm/hat.h>
75 #include <vm/anon.h>
76 #include <vm/page.h>
77 #include <vm/seg.h>
78 #include <vm/pvn.h>
79 #include <vm/seg_kmem.h>
80 #include <vm/vm_dep.h>
81 
82 #include <fs/fs_subr.h>
83 
84 static int nopageage = 0;
85 
86 static pgcnt_t max_page_get;	/* max page_get request size in pages */
87 pgcnt_t total_pages = 0;	/* total number of pages (used by /proc) */
88 
89 /*
90  * freemem_lock protects all freemem variables:
91  * availrmem. Also this lock protects the globals which track the
92  * availrmem changes for accurate kernel footprint calculation.
93  * See below for an explanation of these
94  * globals.
95  */
96 kmutex_t freemem_lock;
97 pgcnt_t availrmem;
98 pgcnt_t availrmem_initial;
99 
100 /*
101  * These globals track availrmem changes to get a more accurate
102  * estimate of tke kernel size. Historically pp_kernel is used for
103  * kernel size and is based on availrmem. But availrmem is adjusted for
104  * locked pages in the system not just for kernel locked pages.
105  * These new counters will track the pages locked through segvn and
106  * by explicit user locking.
107  *
108  * segvn_pages_locked : This keeps track on a global basis how many pages
109  * are currently locked because of I/O.
110  *
111  * pages_locked : How many pages are locked becuase of user specified
112  * locking through mlock or plock.
113  *
114  * pages_useclaim,pages_claimed : These two variables track the
115  * cliam adjustments because of the protection changes on a segvn segment.
116  *
117  * All these globals are protected by the same lock which protects availrmem.
118  */
119 pgcnt_t segvn_pages_locked;
120 pgcnt_t pages_locked;
121 pgcnt_t pages_useclaim;
122 pgcnt_t pages_claimed;
123 
124 
125 /*
126  * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
127  */
128 static kmutex_t	new_freemem_lock;
129 static uint_t	freemem_wait;	/* someone waiting for freemem */
130 static kcondvar_t freemem_cv;
131 
132 /*
133  * The logical page free list is maintained as two lists, the 'free'
134  * and the 'cache' lists.
135  * The free list contains those pages that should be reused first.
136  *
137  * The implementation of the lists is machine dependent.
138  * page_get_freelist(), page_get_cachelist(),
139  * page_list_sub(), and page_list_add()
140  * form the interface to the machine dependent implementation.
141  *
142  * Pages with p_free set are on the cache list.
143  * Pages with p_free and p_age set are on the free list,
144  *
145  * A page may be locked while on either list.
146  */
147 
148 /*
149  * free list accounting stuff.
150  *
151  *
152  * Spread out the value for the number of pages on the
153  * page free and page cache lists.  If there is just one
154  * value, then it must be under just one lock.
155  * The lock contention and cache traffic are a real bother.
156  *
157  * When we acquire and then drop a single pcf lock
158  * we can start in the middle of the array of pcf structures.
159  * If we acquire more than one pcf lock at a time, we need to
160  * start at the front to avoid deadlocking.
161  *
162  * pcf_count holds the number of pages in each pool.
163  *
164  * pcf_block is set when page_create_get_something() has asked the
165  * PSM page freelist and page cachelist routines without specifying
166  * a color and nothing came back.  This is used to block anything
167  * else from moving pages from one list to the other while the
168  * lists are searched again.  If a page is freeed while pcf_block is
169  * set, then pcf_reserve is incremented.  pcgs_unblock() takes care
170  * of clearning pcf_block, doing the wakeups, etc.
171  */
172 
173 #if NCPU <= 4
174 #define	PAD	1
175 #define	PCF_FANOUT	4
176 static	uint_t	pcf_mask = PCF_FANOUT - 1;
177 #else
178 #define	PAD	9
179 #ifdef sun4v
180 #define	PCF_FANOUT	32
181 #else
182 #define	PCF_FANOUT	128
183 #endif
184 static	uint_t	pcf_mask = PCF_FANOUT - 1;
185 #endif
186 
187 struct pcf {
188 	uint_t		pcf_touch;	/* just to help the cache */
189 	uint_t		pcf_count;	/* page count */
190 	kmutex_t	pcf_lock;	/* protects the structure */
191 	uint_t		pcf_wait;	/* number of waiters */
192 	uint_t		pcf_block; 	/* pcgs flag to page_free() */
193 	uint_t		pcf_reserve; 	/* pages freed after pcf_block set */
194 	uint_t		pcf_fill[PAD];	/* to line up on the caches */
195 };
196 
197 static struct	pcf	pcf[PCF_FANOUT];
198 #define	PCF_INDEX()	((CPU->cpu_id) & (pcf_mask))
199 
200 kmutex_t	pcgs_lock;		/* serializes page_create_get_ */
201 kmutex_t	pcgs_cagelock;		/* serializes NOSLEEP cage allocs */
202 kmutex_t	pcgs_wait_lock;		/* used for delay in pcgs */
203 static kcondvar_t	pcgs_cv;	/* cv for delay in pcgs */
204 
205 #define	PAGE_LOCK_MAXIMUM \
206 	((1 << (sizeof (((page_t *)0)->p_lckcnt) * NBBY)) - 1)
207 
208 #ifdef VM_STATS
209 
210 /*
211  * No locks, but so what, they are only statistics.
212  */
213 
214 static struct page_tcnt {
215 	int	pc_free_cache;		/* free's into cache list */
216 	int	pc_free_dontneed;	/* free's with dontneed */
217 	int	pc_free_pageout;	/* free's from pageout */
218 	int	pc_free_free;		/* free's into free list */
219 	int	pc_free_pages;		/* free's into large page free list */
220 	int	pc_destroy_pages;	/* large page destroy's */
221 	int	pc_get_cache;		/* get's from cache list */
222 	int	pc_get_free;		/* get's from free list */
223 	int	pc_reclaim;		/* reclaim's */
224 	int	pc_abortfree;		/* abort's of free pages */
225 	int	pc_find_hit;		/* find's that find page */
226 	int	pc_find_miss;		/* find's that don't find page */
227 	int	pc_destroy_free;	/* # of free pages destroyed */
228 #define	PC_HASH_CNT	(4*PAGE_HASHAVELEN)
229 	int	pc_find_hashlen[PC_HASH_CNT+1];
230 	int	pc_addclaim_pages;
231 	int	pc_subclaim_pages;
232 	int	pc_free_replacement_page[2];
233 	int	pc_try_demote_pages[6];
234 	int	pc_demote_pages[2];
235 } pagecnt;
236 
237 uint_t	hashin_count;
238 uint_t	hashin_not_held;
239 uint_t	hashin_already;
240 
241 uint_t	hashout_count;
242 uint_t	hashout_not_held;
243 
244 uint_t	page_create_count;
245 uint_t	page_create_not_enough;
246 uint_t	page_create_not_enough_again;
247 uint_t	page_create_zero;
248 uint_t	page_create_hashout;
249 uint_t	page_create_page_lock_failed;
250 uint_t	page_create_trylock_failed;
251 uint_t	page_create_found_one;
252 uint_t	page_create_hashin_failed;
253 uint_t	page_create_dropped_phm;
254 
255 uint_t	page_create_new;
256 uint_t	page_create_exists;
257 uint_t	page_create_putbacks;
258 uint_t	page_create_overshoot;
259 
260 uint_t	page_reclaim_zero;
261 uint_t	page_reclaim_zero_locked;
262 
263 uint_t	page_rename_exists;
264 uint_t	page_rename_count;
265 
266 uint_t	page_lookup_cnt[20];
267 uint_t	page_lookup_nowait_cnt[10];
268 uint_t	page_find_cnt;
269 uint_t	page_exists_cnt;
270 uint_t	page_exists_forreal_cnt;
271 uint_t	page_lookup_dev_cnt;
272 uint_t	get_cachelist_cnt;
273 uint_t	page_create_cnt[10];
274 uint_t	alloc_pages[8];
275 uint_t	page_exphcontg[19];
276 uint_t  page_create_large_cnt[10];
277 
278 /*
279  * Collects statistics.
280  */
281 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
282 	uint_t	mylen = 0; \
283 			\
284 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash, mylen++) { \
285 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
286 			break; \
287 	} \
288 	if ((pp) != NULL) \
289 		pagecnt.pc_find_hit++; \
290 	else \
291 		pagecnt.pc_find_miss++; \
292 	if (mylen > PC_HASH_CNT) \
293 		mylen = PC_HASH_CNT; \
294 	pagecnt.pc_find_hashlen[mylen]++; \
295 }
296 
297 #else	/* VM_STATS */
298 
299 /*
300  * Don't collect statistics
301  */
302 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
303 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
304 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
305 			break; \
306 	} \
307 }
308 
309 #endif	/* VM_STATS */
310 
311 
312 
313 #ifdef DEBUG
314 #define	MEMSEG_SEARCH_STATS
315 #endif
316 
317 #ifdef MEMSEG_SEARCH_STATS
318 struct memseg_stats {
319     uint_t nsearch;
320     uint_t nlastwon;
321     uint_t nhashwon;
322     uint_t nnotfound;
323 } memseg_stats;
324 
325 #define	MEMSEG_STAT_INCR(v) \
326 	atomic_add_32(&memseg_stats.v, 1)
327 #else
328 #define	MEMSEG_STAT_INCR(x)
329 #endif
330 
331 struct memseg *memsegs;		/* list of memory segments */
332 
333 
334 static void page_init_mem_config(void);
335 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
336 static void page_do_hashout(page_t *);
337 
338 static void page_demote_vp_pages(page_t *);
339 
340 /*
341  * vm subsystem related initialization
342  */
343 void
344 vm_init(void)
345 {
346 	boolean_t callb_vm_cpr(void *, int);
347 
348 	(void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
349 	page_init_mem_config();
350 	page_retire_init();
351 }
352 
353 /*
354  * This function is called at startup and when memory is added or deleted.
355  */
356 void
357 init_pages_pp_maximum()
358 {
359 	static pgcnt_t p_min;
360 	static pgcnt_t pages_pp_maximum_startup;
361 	static pgcnt_t avrmem_delta;
362 	static int init_done;
363 	static int user_set;	/* true if set in /etc/system */
364 
365 	if (init_done == 0) {
366 
367 		/* If the user specified a value, save it */
368 		if (pages_pp_maximum != 0) {
369 			user_set = 1;
370 			pages_pp_maximum_startup = pages_pp_maximum;
371 		}
372 
373 		/*
374 		 * Setting of pages_pp_maximum is based first time
375 		 * on the value of availrmem just after the start-up
376 		 * allocations. To preserve this relationship at run
377 		 * time, use a delta from availrmem_initial.
378 		 */
379 		ASSERT(availrmem_initial >= availrmem);
380 		avrmem_delta = availrmem_initial - availrmem;
381 
382 		/* The allowable floor of pages_pp_maximum */
383 		p_min = tune.t_minarmem + 100;
384 
385 		/* Make sure we don't come through here again. */
386 		init_done = 1;
387 	}
388 	/*
389 	 * Determine pages_pp_maximum, the number of currently available
390 	 * pages (availrmem) that can't be `locked'. If not set by
391 	 * the user, we set it to 4% of the currently available memory
392 	 * plus 4MB.
393 	 * But we also insist that it be greater than tune.t_minarmem;
394 	 * otherwise a process could lock down a lot of memory, get swapped
395 	 * out, and never have enough to get swapped back in.
396 	 */
397 	if (user_set)
398 		pages_pp_maximum = pages_pp_maximum_startup;
399 	else
400 		pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
401 		    + btop(4 * 1024 * 1024);
402 
403 	if (pages_pp_maximum <= p_min) {
404 		pages_pp_maximum = p_min;
405 	}
406 }
407 
408 void
409 set_max_page_get(pgcnt_t target_total_pages)
410 {
411 	max_page_get = target_total_pages / 2;
412 }
413 
414 static pgcnt_t pending_delete;
415 
416 /*ARGSUSED*/
417 static void
418 page_mem_config_post_add(
419 	void *arg,
420 	pgcnt_t delta_pages)
421 {
422 	set_max_page_get(total_pages - pending_delete);
423 	init_pages_pp_maximum();
424 }
425 
426 /*ARGSUSED*/
427 static int
428 page_mem_config_pre_del(
429 	void *arg,
430 	pgcnt_t delta_pages)
431 {
432 	pgcnt_t nv;
433 
434 	nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
435 	set_max_page_get(total_pages - nv);
436 	return (0);
437 }
438 
439 /*ARGSUSED*/
440 static void
441 page_mem_config_post_del(
442 	void *arg,
443 	pgcnt_t delta_pages,
444 	int cancelled)
445 {
446 	pgcnt_t nv;
447 
448 	nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
449 	set_max_page_get(total_pages - nv);
450 	if (!cancelled)
451 		init_pages_pp_maximum();
452 }
453 
454 static kphysm_setup_vector_t page_mem_config_vec = {
455 	KPHYSM_SETUP_VECTOR_VERSION,
456 	page_mem_config_post_add,
457 	page_mem_config_pre_del,
458 	page_mem_config_post_del,
459 };
460 
461 static void
462 page_init_mem_config(void)
463 {
464 	int ret;
465 
466 	ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
467 	ASSERT(ret == 0);
468 }
469 
470 /*
471  * Evenly spread out the PCF counters for large free pages
472  */
473 static void
474 page_free_large_ctr(pgcnt_t npages)
475 {
476 	static struct pcf	*p = pcf;
477 	pgcnt_t			lump;
478 
479 	freemem += npages;
480 
481 	lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT;
482 
483 	while (npages > 0) {
484 
485 		ASSERT(!p->pcf_block);
486 
487 		if (lump < npages) {
488 			p->pcf_count += (uint_t)lump;
489 			npages -= lump;
490 		} else {
491 			p->pcf_count += (uint_t)npages;
492 			npages = 0;
493 		}
494 
495 		ASSERT(!p->pcf_wait);
496 
497 		if (++p > &pcf[PCF_FANOUT - 1])
498 			p = pcf;
499 	}
500 
501 	ASSERT(npages == 0);
502 }
503 
504 /*
505  * Add a physical chunk of memory to the system freee lists during startup.
506  * Platform specific startup() allocates the memory for the page structs.
507  *
508  * num	- number of page structures
509  * base - page number (pfn) to be associated with the first page.
510  *
511  * Since we are doing this during startup (ie. single threaded), we will
512  * use shortcut routines to avoid any locking overhead while putting all
513  * these pages on the freelists.
514  *
515  * NOTE: Any changes performed to page_free(), must also be performed to
516  *	 add_physmem() since this is how we initialize all page_t's at
517  *	 boot time.
518  */
519 void
520 add_physmem(
521 	page_t	*pp,
522 	pgcnt_t	num,
523 	pfn_t	pnum)
524 {
525 	page_t	*root = NULL;
526 	uint_t	szc = page_num_pagesizes() - 1;
527 	pgcnt_t	large = page_get_pagecnt(szc);
528 	pgcnt_t	cnt = 0;
529 
530 	TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
531 		"add_physmem:pp %p num %lu", pp, num);
532 
533 	/*
534 	 * Arbitrarily limit the max page_get request
535 	 * to 1/2 of the page structs we have.
536 	 */
537 	total_pages += num;
538 	set_max_page_get(total_pages);
539 
540 	/*
541 	 * The physical space for the pages array
542 	 * representing ram pages has already been
543 	 * allocated.  Here we initialize each lock
544 	 * in the page structure, and put each on
545 	 * the free list
546 	 */
547 	for (; num; pp++, pnum++, num--) {
548 
549 		/*
550 		 * this needs to fill in the page number
551 		 * and do any other arch specific initialization
552 		 */
553 		add_physmem_cb(pp, pnum);
554 
555 		/*
556 		 * Initialize the page lock as unlocked, since nobody
557 		 * can see or access this page yet.
558 		 */
559 		pp->p_selock = 0;
560 
561 		/*
562 		 * Initialize IO lock
563 		 */
564 		page_iolock_init(pp);
565 
566 		/*
567 		 * initialize other fields in the page_t
568 		 */
569 		PP_SETFREE(pp);
570 		page_clr_all_props(pp);
571 		PP_SETAGED(pp);
572 		pp->p_offset = (u_offset_t)-1;
573 		pp->p_next = pp;
574 		pp->p_prev = pp;
575 
576 		/*
577 		 * Simple case: System doesn't support large pages.
578 		 */
579 		if (szc == 0) {
580 			pp->p_szc = 0;
581 			page_free_at_startup(pp);
582 			continue;
583 		}
584 
585 		/*
586 		 * Handle unaligned pages, we collect them up onto
587 		 * the root page until we have a full large page.
588 		 */
589 		if (!IS_P2ALIGNED(pnum, large)) {
590 
591 			/*
592 			 * If not in a large page,
593 			 * just free as small page.
594 			 */
595 			if (root == NULL) {
596 				pp->p_szc = 0;
597 				page_free_at_startup(pp);
598 				continue;
599 			}
600 
601 			/*
602 			 * Link a constituent page into the large page.
603 			 */
604 			pp->p_szc = szc;
605 			page_list_concat(&root, &pp);
606 
607 			/*
608 			 * When large page is fully formed, free it.
609 			 */
610 			if (++cnt == large) {
611 				page_free_large_ctr(cnt);
612 				page_list_add_pages(root, PG_LIST_ISINIT);
613 				root = NULL;
614 				cnt = 0;
615 			}
616 			continue;
617 		}
618 
619 		/*
620 		 * At this point we have a page number which
621 		 * is aligned. We assert that we aren't already
622 		 * in a different large page.
623 		 */
624 		ASSERT(IS_P2ALIGNED(pnum, large));
625 		ASSERT(root == NULL && cnt == 0);
626 
627 		/*
628 		 * If insufficient number of pages left to form
629 		 * a large page, just free the small page.
630 		 */
631 		if (num < large) {
632 			pp->p_szc = 0;
633 			page_free_at_startup(pp);
634 			continue;
635 		}
636 
637 		/*
638 		 * Otherwise start a new large page.
639 		 */
640 		pp->p_szc = szc;
641 		cnt++;
642 		root = pp;
643 	}
644 	ASSERT(root == NULL && cnt == 0);
645 }
646 
647 /*
648  * Find a page representing the specified [vp, offset].
649  * If we find the page but it is intransit coming in,
650  * it will have an "exclusive" lock and we wait for
651  * the i/o to complete.  A page found on the free list
652  * is always reclaimed and then locked.  On success, the page
653  * is locked, its data is valid and it isn't on the free
654  * list, while a NULL is returned if the page doesn't exist.
655  */
656 page_t *
657 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
658 {
659 	return (page_lookup_create(vp, off, se, NULL, NULL, 0));
660 }
661 
662 /*
663  * Find a page representing the specified [vp, offset].
664  * We either return the one we found or, if passed in,
665  * create one with identity of [vp, offset] of the
666  * pre-allocated page. If we find exsisting page but it is
667  * intransit coming in, it will have an "exclusive" lock
668  * and we wait for the i/o to complete.  A page found on
669  * the free list is always reclaimed and then locked.
670  * On success, the page is locked, its data is valid and
671  * it isn't on the free list, while a NULL is returned
672  * if the page doesn't exist and newpp is NULL;
673  */
674 page_t *
675 page_lookup_create(
676 	vnode_t *vp,
677 	u_offset_t off,
678 	se_t se,
679 	page_t *newpp,
680 	spgcnt_t *nrelocp,
681 	int flags)
682 {
683 	page_t		*pp;
684 	kmutex_t	*phm;
685 	ulong_t		index;
686 	uint_t		hash_locked;
687 	uint_t		es;
688 
689 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
690 	VM_STAT_ADD(page_lookup_cnt[0]);
691 	ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
692 
693 	/*
694 	 * Acquire the appropriate page hash lock since
695 	 * we have to search the hash list.  Pages that
696 	 * hash to this list can't change identity while
697 	 * this lock is held.
698 	 */
699 	hash_locked = 0;
700 	index = PAGE_HASH_FUNC(vp, off);
701 	phm = NULL;
702 top:
703 	PAGE_HASH_SEARCH(index, pp, vp, off);
704 	if (pp != NULL) {
705 		VM_STAT_ADD(page_lookup_cnt[1]);
706 		es = (newpp != NULL) ? 1 : 0;
707 		es |= flags;
708 		if (!hash_locked) {
709 			VM_STAT_ADD(page_lookup_cnt[2]);
710 			if (!page_try_reclaim_lock(pp, se, es)) {
711 				/*
712 				 * On a miss, acquire the phm.  Then
713 				 * next time, page_lock() will be called,
714 				 * causing a wait if the page is busy.
715 				 * just looping with page_trylock() would
716 				 * get pretty boring.
717 				 */
718 				VM_STAT_ADD(page_lookup_cnt[3]);
719 				phm = PAGE_HASH_MUTEX(index);
720 				mutex_enter(phm);
721 				hash_locked = 1;
722 				goto top;
723 			}
724 		} else {
725 			VM_STAT_ADD(page_lookup_cnt[4]);
726 			if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
727 				VM_STAT_ADD(page_lookup_cnt[5]);
728 				goto top;
729 			}
730 		}
731 
732 		/*
733 		 * Since `pp' is locked it can not change identity now.
734 		 * Reconfirm we locked the correct page.
735 		 *
736 		 * Both the p_vnode and p_offset *must* be cast volatile
737 		 * to force a reload of their values: The PAGE_HASH_SEARCH
738 		 * macro will have stuffed p_vnode and p_offset into
739 		 * registers before calling page_trylock(); another thread,
740 		 * actually holding the hash lock, could have changed the
741 		 * page's identity in memory, but our registers would not
742 		 * be changed, fooling the reconfirmation.  If the hash
743 		 * lock was held during the search, the casting would
744 		 * not be needed.
745 		 */
746 		VM_STAT_ADD(page_lookup_cnt[6]);
747 		if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
748 		    ((volatile u_offset_t)(pp->p_offset) != off)) {
749 			VM_STAT_ADD(page_lookup_cnt[7]);
750 			if (hash_locked) {
751 				panic("page_lookup_create: lost page %p",
752 				    (void *)pp);
753 				/*NOTREACHED*/
754 			}
755 			page_unlock(pp);
756 			phm = PAGE_HASH_MUTEX(index);
757 			mutex_enter(phm);
758 			hash_locked = 1;
759 			goto top;
760 		}
761 
762 		/*
763 		 * If page_trylock() was called, then pp may still be on
764 		 * the cachelist (can't be on the free list, it would not
765 		 * have been found in the search).  If it is on the
766 		 * cachelist it must be pulled now. To pull the page from
767 		 * the cachelist, it must be exclusively locked.
768 		 *
769 		 * The other big difference between page_trylock() and
770 		 * page_lock(), is that page_lock() will pull the
771 		 * page from whatever free list (the cache list in this
772 		 * case) the page is on.  If page_trylock() was used
773 		 * above, then we have to do the reclaim ourselves.
774 		 */
775 		if ((!hash_locked) && (PP_ISFREE(pp))) {
776 			ASSERT(PP_ISAGED(pp) == 0);
777 			VM_STAT_ADD(page_lookup_cnt[8]);
778 
779 			/*
780 			 * page_relcaim will insure that we
781 			 * have this page exclusively
782 			 */
783 
784 			if (!page_reclaim(pp, NULL)) {
785 				/*
786 				 * Page_reclaim dropped whatever lock
787 				 * we held.
788 				 */
789 				VM_STAT_ADD(page_lookup_cnt[9]);
790 				phm = PAGE_HASH_MUTEX(index);
791 				mutex_enter(phm);
792 				hash_locked = 1;
793 				goto top;
794 			} else if (se == SE_SHARED && newpp == NULL) {
795 				VM_STAT_ADD(page_lookup_cnt[10]);
796 				page_downgrade(pp);
797 			}
798 		}
799 
800 		if (hash_locked) {
801 			mutex_exit(phm);
802 		}
803 
804 		if (newpp != NULL && pp->p_szc < newpp->p_szc &&
805 		    PAGE_EXCL(pp) && nrelocp != NULL) {
806 			ASSERT(nrelocp != NULL);
807 			(void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
808 			    NULL);
809 			if (*nrelocp > 0) {
810 				VM_STAT_COND_ADD(*nrelocp == 1,
811 				    page_lookup_cnt[11]);
812 				VM_STAT_COND_ADD(*nrelocp > 1,
813 				    page_lookup_cnt[12]);
814 				pp = newpp;
815 				se = SE_EXCL;
816 			} else {
817 				if (se == SE_SHARED) {
818 					page_downgrade(pp);
819 				}
820 				VM_STAT_ADD(page_lookup_cnt[13]);
821 			}
822 		} else if (newpp != NULL && nrelocp != NULL) {
823 			if (PAGE_EXCL(pp) && se == SE_SHARED) {
824 				page_downgrade(pp);
825 			}
826 			VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
827 			    page_lookup_cnt[14]);
828 			VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
829 			    page_lookup_cnt[15]);
830 			VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
831 			    page_lookup_cnt[16]);
832 		} else if (newpp != NULL && PAGE_EXCL(pp)) {
833 			se = SE_EXCL;
834 		}
835 	} else if (!hash_locked) {
836 		VM_STAT_ADD(page_lookup_cnt[17]);
837 		phm = PAGE_HASH_MUTEX(index);
838 		mutex_enter(phm);
839 		hash_locked = 1;
840 		goto top;
841 	} else if (newpp != NULL) {
842 		/*
843 		 * If we have a preallocated page then
844 		 * insert it now and basically behave like
845 		 * page_create.
846 		 */
847 		VM_STAT_ADD(page_lookup_cnt[18]);
848 		/*
849 		 * Since we hold the page hash mutex and
850 		 * just searched for this page, page_hashin
851 		 * had better not fail.  If it does, that
852 		 * means some thread did not follow the
853 		 * page hash mutex rules.  Panic now and
854 		 * get it over with.  As usual, go down
855 		 * holding all the locks.
856 		 */
857 		ASSERT(MUTEX_HELD(phm));
858 		if (!page_hashin(newpp, vp, off, phm)) {
859 			ASSERT(MUTEX_HELD(phm));
860 			panic("page_lookup_create: hashin failed %p %p %llx %p",
861 			    (void *)newpp, (void *)vp, off, (void *)phm);
862 			/*NOTREACHED*/
863 		}
864 		ASSERT(MUTEX_HELD(phm));
865 		mutex_exit(phm);
866 		phm = NULL;
867 		page_set_props(newpp, P_REF);
868 		page_io_lock(newpp);
869 		pp = newpp;
870 		se = SE_EXCL;
871 	} else {
872 		VM_STAT_ADD(page_lookup_cnt[19]);
873 		mutex_exit(phm);
874 	}
875 
876 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
877 
878 	ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
879 
880 	return (pp);
881 }
882 
883 /*
884  * Search the hash list for the page representing the
885  * specified [vp, offset] and return it locked.  Skip
886  * free pages and pages that cannot be locked as requested.
887  * Used while attempting to kluster pages.
888  */
889 page_t *
890 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
891 {
892 	page_t		*pp;
893 	kmutex_t	*phm;
894 	ulong_t		index;
895 	uint_t		locked;
896 
897 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
898 	VM_STAT_ADD(page_lookup_nowait_cnt[0]);
899 
900 	index = PAGE_HASH_FUNC(vp, off);
901 	PAGE_HASH_SEARCH(index, pp, vp, off);
902 	locked = 0;
903 	if (pp == NULL) {
904 top:
905 		VM_STAT_ADD(page_lookup_nowait_cnt[1]);
906 		locked = 1;
907 		phm = PAGE_HASH_MUTEX(index);
908 		mutex_enter(phm);
909 		PAGE_HASH_SEARCH(index, pp, vp, off);
910 	}
911 
912 	if (pp == NULL || PP_ISFREE(pp)) {
913 		VM_STAT_ADD(page_lookup_nowait_cnt[2]);
914 		pp = NULL;
915 	} else {
916 		if (!page_trylock(pp, se)) {
917 			VM_STAT_ADD(page_lookup_nowait_cnt[3]);
918 			pp = NULL;
919 		} else {
920 			VM_STAT_ADD(page_lookup_nowait_cnt[4]);
921 			/*
922 			 * See the comment in page_lookup()
923 			 */
924 			if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
925 			    ((u_offset_t)(pp->p_offset) != off)) {
926 				VM_STAT_ADD(page_lookup_nowait_cnt[5]);
927 				if (locked) {
928 					panic("page_lookup_nowait %p",
929 					    (void *)pp);
930 					/*NOTREACHED*/
931 				}
932 				page_unlock(pp);
933 				goto top;
934 			}
935 			if (PP_ISFREE(pp)) {
936 				VM_STAT_ADD(page_lookup_nowait_cnt[6]);
937 				page_unlock(pp);
938 				pp = NULL;
939 			}
940 		}
941 	}
942 	if (locked) {
943 		VM_STAT_ADD(page_lookup_nowait_cnt[7]);
944 		mutex_exit(phm);
945 	}
946 
947 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
948 
949 	return (pp);
950 }
951 
952 /*
953  * Search the hash list for a page with the specified [vp, off]
954  * that is known to exist and is already locked.  This routine
955  * is typically used by segment SOFTUNLOCK routines.
956  */
957 page_t *
958 page_find(vnode_t *vp, u_offset_t off)
959 {
960 	page_t		*pp;
961 	kmutex_t	*phm;
962 	ulong_t		index;
963 
964 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
965 	VM_STAT_ADD(page_find_cnt);
966 
967 	index = PAGE_HASH_FUNC(vp, off);
968 	phm = PAGE_HASH_MUTEX(index);
969 
970 	mutex_enter(phm);
971 	PAGE_HASH_SEARCH(index, pp, vp, off);
972 	mutex_exit(phm);
973 
974 	ASSERT(pp != NULL);
975 	ASSERT(PAGE_LOCKED(pp) || panicstr);
976 	return (pp);
977 }
978 
979 /*
980  * Determine whether a page with the specified [vp, off]
981  * currently exists in the system.  Obviously this should
982  * only be considered as a hint since nothing prevents the
983  * page from disappearing or appearing immediately after
984  * the return from this routine. Subsequently, we don't
985  * even bother to lock the list.
986  */
987 page_t *
988 page_exists(vnode_t *vp, u_offset_t off)
989 {
990 	page_t	*pp;
991 	ulong_t		index;
992 
993 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
994 	VM_STAT_ADD(page_exists_cnt);
995 
996 	index = PAGE_HASH_FUNC(vp, off);
997 	PAGE_HASH_SEARCH(index, pp, vp, off);
998 
999 	return (pp);
1000 }
1001 
1002 /*
1003  * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1004  * page_size(szc)) range.  if they exist and ppa is not NULL fill ppa array
1005  * with these pages locked SHARED. If necessary reclaim pages from
1006  * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1007  *
1008  * If we fail to lock pages still return 1 if pages exist and contiguous.
1009  * But in this case return value is just a hint. ppa array won't be filled.
1010  * Caller should initialize ppa[0] as NULL to distinguish return value.
1011  *
1012  * Returns 0 if pages don't exist or not physically contiguous.
1013  *
1014  * This routine doesn't work for anonymous(swapfs) pages.
1015  */
1016 int
1017 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1018 {
1019 	pgcnt_t pages;
1020 	pfn_t pfn;
1021 	page_t *rootpp;
1022 	pgcnt_t i;
1023 	pgcnt_t j;
1024 	u_offset_t save_off = off;
1025 	ulong_t index;
1026 	kmutex_t *phm;
1027 	page_t *pp;
1028 	uint_t pszc;
1029 	int loopcnt = 0;
1030 
1031 	ASSERT(szc != 0);
1032 	ASSERT(vp != NULL);
1033 	ASSERT(!IS_SWAPFSVP(vp));
1034 	ASSERT(vp != &kvp);
1035 
1036 again:
1037 	if (++loopcnt > 3) {
1038 		VM_STAT_ADD(page_exphcontg[0]);
1039 		return (0);
1040 	}
1041 
1042 	index = PAGE_HASH_FUNC(vp, off);
1043 	phm = PAGE_HASH_MUTEX(index);
1044 
1045 	mutex_enter(phm);
1046 	PAGE_HASH_SEARCH(index, pp, vp, off);
1047 	mutex_exit(phm);
1048 
1049 	VM_STAT_ADD(page_exphcontg[1]);
1050 
1051 	if (pp == NULL) {
1052 		VM_STAT_ADD(page_exphcontg[2]);
1053 		return (0);
1054 	}
1055 
1056 	pages = page_get_pagecnt(szc);
1057 	rootpp = pp;
1058 	pfn = rootpp->p_pagenum;
1059 
1060 	if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1061 		VM_STAT_ADD(page_exphcontg[3]);
1062 		if (!page_trylock(pp, SE_SHARED)) {
1063 			VM_STAT_ADD(page_exphcontg[4]);
1064 			return (1);
1065 		}
1066 		if (pp->p_szc != pszc || pp->p_vnode != vp ||
1067 		    pp->p_offset != off) {
1068 			VM_STAT_ADD(page_exphcontg[5]);
1069 			page_unlock(pp);
1070 			off = save_off;
1071 			goto again;
1072 		}
1073 		/*
1074 		 * szc was non zero and vnode and offset matched after we
1075 		 * locked the page it means it can't become free on us.
1076 		 */
1077 		ASSERT(!PP_ISFREE(pp));
1078 		if (!IS_P2ALIGNED(pfn, pages)) {
1079 			page_unlock(pp);
1080 			return (0);
1081 		}
1082 		ppa[0] = pp;
1083 		pp++;
1084 		off += PAGESIZE;
1085 		pfn++;
1086 		for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1087 			if (!page_trylock(pp, SE_SHARED)) {
1088 				VM_STAT_ADD(page_exphcontg[6]);
1089 				pp--;
1090 				while (i-- > 0) {
1091 					page_unlock(pp);
1092 					pp--;
1093 				}
1094 				ppa[0] = NULL;
1095 				return (1);
1096 			}
1097 			if (pp->p_szc != pszc) {
1098 				VM_STAT_ADD(page_exphcontg[7]);
1099 				page_unlock(pp);
1100 				pp--;
1101 				while (i-- > 0) {
1102 					page_unlock(pp);
1103 					pp--;
1104 				}
1105 				ppa[0] = NULL;
1106 				off = save_off;
1107 				goto again;
1108 			}
1109 			/*
1110 			 * szc the same as for previous already locked pages
1111 			 * with right identity. Since this page had correct
1112 			 * szc after we locked it can't get freed or destroyed
1113 			 * and therefore must have the expected identity.
1114 			 */
1115 			ASSERT(!PP_ISFREE(pp));
1116 			if (pp->p_vnode != vp ||
1117 			    pp->p_offset != off) {
1118 				panic("page_exists_physcontig: "
1119 				    "large page identity doesn't match");
1120 			}
1121 			ppa[i] = pp;
1122 			ASSERT(pp->p_pagenum == pfn);
1123 		}
1124 		VM_STAT_ADD(page_exphcontg[8]);
1125 		ppa[pages] = NULL;
1126 		return (1);
1127 	} else if (pszc >= szc) {
1128 		VM_STAT_ADD(page_exphcontg[9]);
1129 		if (!IS_P2ALIGNED(pfn, pages)) {
1130 			return (0);
1131 		}
1132 		return (1);
1133 	}
1134 
1135 	if (!IS_P2ALIGNED(pfn, pages)) {
1136 		VM_STAT_ADD(page_exphcontg[10]);
1137 		return (0);
1138 	}
1139 
1140 	if (page_numtomemseg_nolock(pfn) !=
1141 	    page_numtomemseg_nolock(pfn + pages - 1)) {
1142 		VM_STAT_ADD(page_exphcontg[11]);
1143 		return (0);
1144 	}
1145 
1146 	/*
1147 	 * We loop up 4 times across pages to promote page size.
1148 	 * We're extra cautious to promote page size atomically with respect
1149 	 * to everybody else.  But we can probably optimize into 1 loop if
1150 	 * this becomes an issue.
1151 	 */
1152 
1153 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1154 		ASSERT(pp->p_pagenum == pfn);
1155 		if (!page_trylock(pp, SE_EXCL)) {
1156 			VM_STAT_ADD(page_exphcontg[12]);
1157 			break;
1158 		}
1159 		if (pp->p_vnode != vp ||
1160 		    pp->p_offset != off) {
1161 			VM_STAT_ADD(page_exphcontg[13]);
1162 			page_unlock(pp);
1163 			break;
1164 		}
1165 		if (pp->p_szc >= szc) {
1166 			ASSERT(i == 0);
1167 			page_unlock(pp);
1168 			off = save_off;
1169 			goto again;
1170 		}
1171 	}
1172 
1173 	if (i != pages) {
1174 		VM_STAT_ADD(page_exphcontg[14]);
1175 		--pp;
1176 		while (i-- > 0) {
1177 			page_unlock(pp);
1178 			--pp;
1179 		}
1180 		return (0);
1181 	}
1182 
1183 	pp = rootpp;
1184 	for (i = 0; i < pages; i++, pp++) {
1185 		if (PP_ISFREE(pp)) {
1186 			VM_STAT_ADD(page_exphcontg[15]);
1187 			ASSERT(!PP_ISAGED(pp));
1188 			ASSERT(pp->p_szc == 0);
1189 			if (!page_reclaim(pp, NULL)) {
1190 				break;
1191 			}
1192 		} else {
1193 			ASSERT(pp->p_szc < szc);
1194 			VM_STAT_ADD(page_exphcontg[16]);
1195 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1196 		}
1197 	}
1198 	if (i < pages) {
1199 		VM_STAT_ADD(page_exphcontg[17]);
1200 		/*
1201 		 * page_reclaim failed because we were out of memory.
1202 		 * drop the rest of the locks and return because this page
1203 		 * must be already reallocated anyway.
1204 		 */
1205 		pp = rootpp;
1206 		for (j = 0; j < pages; j++, pp++) {
1207 			if (j != i) {
1208 				page_unlock(pp);
1209 			}
1210 		}
1211 		return (0);
1212 	}
1213 
1214 	off = save_off;
1215 	pp = rootpp;
1216 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1217 		ASSERT(PAGE_EXCL(pp));
1218 		ASSERT(!PP_ISFREE(pp));
1219 		ASSERT(!hat_page_is_mapped(pp));
1220 		ASSERT(pp->p_vnode == vp);
1221 		ASSERT(pp->p_offset == off);
1222 		pp->p_szc = szc;
1223 	}
1224 	pp = rootpp;
1225 	for (i = 0; i < pages; i++, pp++) {
1226 		if (ppa == NULL) {
1227 			page_unlock(pp);
1228 		} else {
1229 			ppa[i] = pp;
1230 			page_downgrade(ppa[i]);
1231 		}
1232 	}
1233 	if (ppa != NULL) {
1234 		ppa[pages] = NULL;
1235 	}
1236 	VM_STAT_ADD(page_exphcontg[18]);
1237 	ASSERT(vp->v_pages != NULL);
1238 	return (1);
1239 }
1240 
1241 /*
1242  * Determine whether a page with the specified [vp, off]
1243  * currently exists in the system and if so return its
1244  * size code. Obviously this should only be considered as
1245  * a hint since nothing prevents the page from disappearing
1246  * or appearing immediately after the return from this routine.
1247  */
1248 int
1249 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1250 {
1251 	page_t		*pp;
1252 	kmutex_t	*phm;
1253 	ulong_t		index;
1254 	int		rc = 0;
1255 
1256 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1257 	ASSERT(szc != NULL);
1258 	VM_STAT_ADD(page_exists_forreal_cnt);
1259 
1260 	index = PAGE_HASH_FUNC(vp, off);
1261 	phm = PAGE_HASH_MUTEX(index);
1262 
1263 	mutex_enter(phm);
1264 	PAGE_HASH_SEARCH(index, pp, vp, off);
1265 	if (pp != NULL) {
1266 		*szc = pp->p_szc;
1267 		rc = 1;
1268 	}
1269 	mutex_exit(phm);
1270 	return (rc);
1271 }
1272 
1273 /* wakeup threads waiting for pages in page_create_get_something() */
1274 void
1275 wakeup_pcgs(void)
1276 {
1277 	if (!CV_HAS_WAITERS(&pcgs_cv))
1278 		return;
1279 	cv_broadcast(&pcgs_cv);
1280 }
1281 
1282 /*
1283  * 'freemem' is used all over the kernel as an indication of how many
1284  * pages are free (either on the cache list or on the free page list)
1285  * in the system.  In very few places is a really accurate 'freemem'
1286  * needed.  To avoid contention of the lock protecting a the
1287  * single freemem, it was spread out into NCPU buckets.  Set_freemem
1288  * sets freemem to the total of all NCPU buckets.  It is called from
1289  * clock() on each TICK.
1290  */
1291 void
1292 set_freemem()
1293 {
1294 	struct pcf	*p;
1295 	ulong_t		t;
1296 	uint_t		i;
1297 
1298 	t = 0;
1299 	p = pcf;
1300 	for (i = 0;  i < PCF_FANOUT; i++) {
1301 		t += p->pcf_count;
1302 		p++;
1303 	}
1304 	freemem = t;
1305 
1306 	/*
1307 	 * Don't worry about grabbing mutex.  It's not that
1308 	 * critical if we miss a tick or two.  This is
1309 	 * where we wakeup possible delayers in
1310 	 * page_create_get_something().
1311 	 */
1312 	wakeup_pcgs();
1313 }
1314 
1315 ulong_t
1316 get_freemem()
1317 {
1318 	struct pcf	*p;
1319 	ulong_t		t;
1320 	uint_t		i;
1321 
1322 	t = 0;
1323 	p = pcf;
1324 	for (i = 0; i < PCF_FANOUT; i++) {
1325 		t += p->pcf_count;
1326 		p++;
1327 	}
1328 	/*
1329 	 * We just calculated it, might as well set it.
1330 	 */
1331 	freemem = t;
1332 	return (t);
1333 }
1334 
1335 /*
1336  * Acquire all of the page cache & free (pcf) locks.
1337  */
1338 void
1339 pcf_acquire_all()
1340 {
1341 	struct pcf	*p;
1342 	uint_t		i;
1343 
1344 	p = pcf;
1345 	for (i = 0; i < PCF_FANOUT; i++) {
1346 		p->pcf_touch = 1;
1347 		mutex_enter(&p->pcf_lock);
1348 		p++;
1349 	}
1350 }
1351 
1352 /*
1353  * Release all the pcf_locks.
1354  */
1355 void
1356 pcf_release_all()
1357 {
1358 	struct pcf	*p;
1359 	uint_t		i;
1360 
1361 	p = pcf;
1362 	for (i = 0; i < PCF_FANOUT; i++) {
1363 		mutex_exit(&p->pcf_lock);
1364 		p++;
1365 	}
1366 }
1367 
1368 /*
1369  * Inform the VM system that we need some pages freed up.
1370  * Calls must be symmetric, e.g.:
1371  *
1372  *	page_needfree(100);
1373  *	wait a bit;
1374  *	page_needfree(-100);
1375  */
1376 void
1377 page_needfree(spgcnt_t npages)
1378 {
1379 	mutex_enter(&new_freemem_lock);
1380 	needfree += npages;
1381 	mutex_exit(&new_freemem_lock);
1382 }
1383 
1384 /*
1385  * Throttle for page_create(): try to prevent freemem from dropping
1386  * below throttlefree.  We can't provide a 100% guarantee because
1387  * KM_NOSLEEP allocations, page_reclaim(), and various other things
1388  * nibble away at the freelist.  However, we can block all PG_WAIT
1389  * allocations until memory becomes available.  The motivation is
1390  * that several things can fall apart when there's no free memory:
1391  *
1392  * (1) If pageout() needs memory to push a page, the system deadlocks.
1393  *
1394  * (2) By (broken) specification, timeout(9F) can neither fail nor
1395  *     block, so it has no choice but to panic the system if it
1396  *     cannot allocate a callout structure.
1397  *
1398  * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1399  *     it panics if it cannot allocate a callback structure.
1400  *
1401  * (4) Untold numbers of third-party drivers have not yet been hardened
1402  *     against KM_NOSLEEP and/or allocb() failures; they simply assume
1403  *     success and panic the system with a data fault on failure.
1404  *     (The long-term solution to this particular problem is to ship
1405  *     hostile fault-injecting DEBUG kernels with the DDK.)
1406  *
1407  * It is theoretically impossible to guarantee success of non-blocking
1408  * allocations, but in practice, this throttle is very hard to break.
1409  */
1410 static int
1411 page_create_throttle(pgcnt_t npages, int flags)
1412 {
1413 	ulong_t	fm;
1414 	uint_t	i;
1415 	pgcnt_t tf;	/* effective value of throttlefree */
1416 
1417 	/*
1418 	 * Never deny pages when:
1419 	 * - it's a thread that cannot block [NOMEMWAIT()]
1420 	 * - the allocation cannot block and must not fail
1421 	 * - the allocation cannot block and is pageout dispensated
1422 	 */
1423 	if (NOMEMWAIT() ||
1424 	    ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1425 	    ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1426 		return (1);
1427 
1428 	/*
1429 	 * If the allocation can't block, we look favorably upon it
1430 	 * unless we're below pageout_reserve.  In that case we fail
1431 	 * the allocation because we want to make sure there are a few
1432 	 * pages available for pageout.
1433 	 */
1434 	if ((flags & PG_WAIT) == 0)
1435 		return (freemem >= npages + pageout_reserve);
1436 
1437 	/* Calculate the effective throttlefree value */
1438 	tf = throttlefree -
1439 	    ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1440 
1441 	cv_signal(&proc_pageout->p_cv);
1442 
1443 	while (freemem < npages + tf) {
1444 		pcf_acquire_all();
1445 		mutex_enter(&new_freemem_lock);
1446 		fm = 0;
1447 		for (i = 0; i < PCF_FANOUT; i++) {
1448 			fm += pcf[i].pcf_count;
1449 			pcf[i].pcf_wait++;
1450 			mutex_exit(&pcf[i].pcf_lock);
1451 		}
1452 		freemem = fm;
1453 		needfree += npages;
1454 		freemem_wait++;
1455 		cv_wait(&freemem_cv, &new_freemem_lock);
1456 		freemem_wait--;
1457 		needfree -= npages;
1458 		mutex_exit(&new_freemem_lock);
1459 	}
1460 	return (1);
1461 }
1462 
1463 /*
1464  * page_create_wait() is called to either coalecse pages from the
1465  * different pcf buckets or to wait because there simply are not
1466  * enough pages to satisfy the caller's request.
1467  *
1468  * Sadly, this is called from platform/vm/vm_machdep.c
1469  */
1470 int
1471 page_create_wait(size_t npages, uint_t flags)
1472 {
1473 	pgcnt_t		total;
1474 	uint_t		i;
1475 	struct pcf	*p;
1476 
1477 	/*
1478 	 * Wait until there are enough free pages to satisfy our
1479 	 * entire request.
1480 	 * We set needfree += npages before prodding pageout, to make sure
1481 	 * it does real work when npages > lotsfree > freemem.
1482 	 */
1483 	VM_STAT_ADD(page_create_not_enough);
1484 
1485 	ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1486 checkagain:
1487 	if ((flags & PG_NORELOC) &&
1488 	    kcage_freemem < kcage_throttlefree + npages)
1489 		(void) kcage_create_throttle(npages, flags);
1490 
1491 	if (freemem < npages + throttlefree)
1492 		if (!page_create_throttle(npages, flags))
1493 			return (0);
1494 
1495 	/*
1496 	 * Since page_create_va() looked at every
1497 	 * bucket, assume we are going to have to wait.
1498 	 * Get all of the pcf locks.
1499 	 */
1500 	total = 0;
1501 	p = pcf;
1502 	for (i = 0; i < PCF_FANOUT; i++) {
1503 		p->pcf_touch = 1;
1504 		mutex_enter(&p->pcf_lock);
1505 		total += p->pcf_count;
1506 		if (total >= npages) {
1507 			/*
1508 			 * Wow!  There are enough pages laying around
1509 			 * to satisfy the request.  Do the accounting,
1510 			 * drop the locks we acquired, and go back.
1511 			 *
1512 			 * freemem is not protected by any lock. So,
1513 			 * we cannot have any assertion containing
1514 			 * freemem.
1515 			 */
1516 			freemem -= npages;
1517 
1518 			while (p >= pcf) {
1519 				if (p->pcf_count <= npages) {
1520 					npages -= p->pcf_count;
1521 					p->pcf_count = 0;
1522 				} else {
1523 					p->pcf_count -= (uint_t)npages;
1524 					npages = 0;
1525 				}
1526 				mutex_exit(&p->pcf_lock);
1527 				p--;
1528 			}
1529 			ASSERT(npages == 0);
1530 			return (1);
1531 		}
1532 		p++;
1533 	}
1534 
1535 	/*
1536 	 * All of the pcf locks are held, there are not enough pages
1537 	 * to satisfy the request (npages < total).
1538 	 * Be sure to acquire the new_freemem_lock before dropping
1539 	 * the pcf locks.  This prevents dropping wakeups in page_free().
1540 	 * The order is always pcf_lock then new_freemem_lock.
1541 	 *
1542 	 * Since we hold all the pcf locks, it is a good time to set freemem.
1543 	 *
1544 	 * If the caller does not want to wait, return now.
1545 	 * Else turn the pageout daemon loose to find something
1546 	 * and wait till it does.
1547 	 *
1548 	 */
1549 	freemem = total;
1550 
1551 	if ((flags & PG_WAIT) == 0) {
1552 		pcf_release_all();
1553 
1554 		TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1555 		"page_create_nomem:npages %ld freemem %ld", npages, freemem);
1556 		return (0);
1557 	}
1558 
1559 	ASSERT(proc_pageout != NULL);
1560 	cv_signal(&proc_pageout->p_cv);
1561 
1562 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1563 	    "page_create_sleep_start: freemem %ld needfree %ld",
1564 	    freemem, needfree);
1565 
1566 	/*
1567 	 * We are going to wait.
1568 	 * We currently hold all of the pcf_locks,
1569 	 * get the new_freemem_lock (it protects freemem_wait),
1570 	 * before dropping the pcf_locks.
1571 	 */
1572 	mutex_enter(&new_freemem_lock);
1573 
1574 	p = pcf;
1575 	for (i = 0; i < PCF_FANOUT; i++) {
1576 		p->pcf_wait++;
1577 		mutex_exit(&p->pcf_lock);
1578 		p++;
1579 	}
1580 
1581 	needfree += npages;
1582 	freemem_wait++;
1583 
1584 	cv_wait(&freemem_cv, &new_freemem_lock);
1585 
1586 	freemem_wait--;
1587 	needfree -= npages;
1588 
1589 	mutex_exit(&new_freemem_lock);
1590 
1591 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1592 	    "page_create_sleep_end: freemem %ld needfree %ld",
1593 	    freemem, needfree);
1594 
1595 	VM_STAT_ADD(page_create_not_enough_again);
1596 	goto checkagain;
1597 }
1598 
1599 /*
1600  * A routine to do the opposite of page_create_wait().
1601  */
1602 void
1603 page_create_putback(spgcnt_t npages)
1604 {
1605 	struct pcf	*p;
1606 	pgcnt_t		lump;
1607 	uint_t		*which;
1608 
1609 	/*
1610 	 * When a contiguous lump is broken up, we have to
1611 	 * deal with lots of pages (min 64) so lets spread
1612 	 * the wealth around.
1613 	 */
1614 	lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT;
1615 	freemem += npages;
1616 
1617 	for (p = pcf; (npages > 0) && (p < &pcf[PCF_FANOUT]); p++) {
1618 		which = &p->pcf_count;
1619 
1620 		mutex_enter(&p->pcf_lock);
1621 
1622 		if (p->pcf_block) {
1623 			which = &p->pcf_reserve;
1624 		}
1625 
1626 		if (lump < npages) {
1627 			*which += (uint_t)lump;
1628 			npages -= lump;
1629 		} else {
1630 			*which += (uint_t)npages;
1631 			npages = 0;
1632 		}
1633 
1634 		if (p->pcf_wait) {
1635 			mutex_enter(&new_freemem_lock);
1636 			/*
1637 			 * Check to see if some other thread
1638 			 * is actually waiting.  Another bucket
1639 			 * may have woken it up by now.  If there
1640 			 * are no waiters, then set our pcf_wait
1641 			 * count to zero to avoid coming in here
1642 			 * next time.
1643 			 */
1644 			if (freemem_wait) {
1645 				if (npages > 1) {
1646 					cv_broadcast(&freemem_cv);
1647 				} else {
1648 					cv_signal(&freemem_cv);
1649 				}
1650 				p->pcf_wait--;
1651 			} else {
1652 				p->pcf_wait = 0;
1653 			}
1654 			mutex_exit(&new_freemem_lock);
1655 		}
1656 		mutex_exit(&p->pcf_lock);
1657 	}
1658 	ASSERT(npages == 0);
1659 }
1660 
1661 /*
1662  * A helper routine for page_create_get_something.
1663  * The indenting got to deep down there.
1664  * Unblock the pcf counters.  Any pages freed after
1665  * pcf_block got set are moved to pcf_count and
1666  * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1667  */
1668 static void
1669 pcgs_unblock(void)
1670 {
1671 	int		i;
1672 	struct pcf	*p;
1673 
1674 	/* Update freemem while we're here. */
1675 	freemem = 0;
1676 	p = pcf;
1677 	for (i = 0; i < PCF_FANOUT; i++) {
1678 		mutex_enter(&p->pcf_lock);
1679 		ASSERT(p->pcf_count == 0);
1680 		p->pcf_count = p->pcf_reserve;
1681 		p->pcf_block = 0;
1682 		freemem += p->pcf_count;
1683 		if (p->pcf_wait) {
1684 			mutex_enter(&new_freemem_lock);
1685 			if (freemem_wait) {
1686 				if (p->pcf_reserve > 1) {
1687 					cv_broadcast(&freemem_cv);
1688 					p->pcf_wait = 0;
1689 				} else {
1690 					cv_signal(&freemem_cv);
1691 					p->pcf_wait--;
1692 				}
1693 			} else {
1694 				p->pcf_wait = 0;
1695 			}
1696 			mutex_exit(&new_freemem_lock);
1697 		}
1698 		p->pcf_reserve = 0;
1699 		mutex_exit(&p->pcf_lock);
1700 		p++;
1701 	}
1702 }
1703 
1704 /*
1705  * Called from page_create_va() when both the cache and free lists
1706  * have been checked once.
1707  *
1708  * Either returns a page or panics since the accounting was done
1709  * way before we got here.
1710  *
1711  * We don't come here often, so leave the accounting on permanently.
1712  */
1713 
1714 #define	MAX_PCGS	100
1715 
1716 #ifdef	DEBUG
1717 #define	PCGS_TRIES	100
1718 #else	/* DEBUG */
1719 #define	PCGS_TRIES	10
1720 #endif	/* DEBUG */
1721 
1722 #ifdef	VM_STATS
1723 uint_t	pcgs_counts[PCGS_TRIES];
1724 uint_t	pcgs_too_many;
1725 uint_t	pcgs_entered;
1726 uint_t	pcgs_entered_noreloc;
1727 uint_t	pcgs_locked;
1728 uint_t	pcgs_cagelocked;
1729 #endif	/* VM_STATS */
1730 
1731 static page_t *
1732 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1733     caddr_t vaddr, uint_t flags)
1734 {
1735 	uint_t		count;
1736 	page_t		*pp;
1737 	uint_t		locked, i;
1738 	struct	pcf	*p;
1739 	lgrp_t		*lgrp;
1740 	int		cagelocked = 0;
1741 
1742 	VM_STAT_ADD(pcgs_entered);
1743 
1744 	/*
1745 	 * Tap any reserve freelists: if we fail now, we'll die
1746 	 * since the page(s) we're looking for have already been
1747 	 * accounted for.
1748 	 */
1749 	flags |= PG_PANIC;
1750 
1751 	if ((flags & PG_NORELOC) != 0) {
1752 		VM_STAT_ADD(pcgs_entered_noreloc);
1753 		/*
1754 		 * Requests for free pages from critical threads
1755 		 * such as pageout still won't throttle here, but
1756 		 * we must try again, to give the cageout thread
1757 		 * another chance to catch up. Since we already
1758 		 * accounted for the pages, we had better get them
1759 		 * this time.
1760 		 *
1761 		 * N.B. All non-critical threads acquire the pcgs_cagelock
1762 		 * to serialize access to the freelists. This implements a
1763 		 * turnstile-type synchornization to avoid starvation of
1764 		 * critical requests for PG_NORELOC memory by non-critical
1765 		 * threads: all non-critical threads must acquire a 'ticket'
1766 		 * before passing through, which entails making sure
1767 		 * kcage_freemem won't fall below minfree prior to grabbing
1768 		 * pages from the freelists.
1769 		 */
1770 		if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1771 			mutex_enter(&pcgs_cagelock);
1772 			cagelocked = 1;
1773 			VM_STAT_ADD(pcgs_cagelocked);
1774 		}
1775 	}
1776 
1777 	/*
1778 	 * Time to get serious.
1779 	 * We failed to get a `correctly colored' page from both the
1780 	 * free and cache lists.
1781 	 * We escalate in stage.
1782 	 *
1783 	 * First try both lists without worring about color.
1784 	 *
1785 	 * Then, grab all page accounting locks (ie. pcf[]) and
1786 	 * steal any pages that they have and set the pcf_block flag to
1787 	 * stop deletions from the lists.  This will help because
1788 	 * a page can get added to the free list while we are looking
1789 	 * at the cache list, then another page could be added to the cache
1790 	 * list allowing the page on the free list to be removed as we
1791 	 * move from looking at the cache list to the free list. This
1792 	 * could happen over and over. We would never find the page
1793 	 * we have accounted for.
1794 	 *
1795 	 * Noreloc pages are a subset of the global (relocatable) page pool.
1796 	 * They are not tracked separately in the pcf bins, so it is
1797 	 * impossible to know when doing pcf accounting if the available
1798 	 * page(s) are noreloc pages or not. When looking for a noreloc page
1799 	 * it is quite easy to end up here even if the global (relocatable)
1800 	 * page pool has plenty of free pages but the noreloc pool is empty.
1801 	 *
1802 	 * When the noreloc pool is empty (or low), additional noreloc pages
1803 	 * are created by converting pages from the global page pool. This
1804 	 * process will stall during pcf accounting if the pcf bins are
1805 	 * already locked. Such is the case when a noreloc allocation is
1806 	 * looping here in page_create_get_something waiting for more noreloc
1807 	 * pages to appear.
1808 	 *
1809 	 * Short of adding a new field to the pcf bins to accurately track
1810 	 * the number of free noreloc pages, we instead do not grab the
1811 	 * pcgs_lock, do not set the pcf blocks and do not timeout when
1812 	 * allocating a noreloc page. This allows noreloc allocations to
1813 	 * loop without blocking global page pool allocations.
1814 	 *
1815 	 * NOTE: the behaviour of page_create_get_something has not changed
1816 	 * for the case of global page pool allocations.
1817 	 */
1818 
1819 	flags &= ~PG_MATCH_COLOR;
1820 	locked = 0;
1821 #ifndef __sparc
1822 	/*
1823 	 * page_create_get_something may be called because 4g memory may be
1824 	 * depleted. Set flags to allow for relocation of base page below
1825 	 * 4g if necessary.
1826 	 */
1827 	if (physmax4g)
1828 		flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI);
1829 #endif
1830 
1831 	lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1832 
1833 	for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1834 		pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1835 		    flags, lgrp);
1836 		if (pp == NULL) {
1837 			pp = page_get_cachelist(vp, off, seg, vaddr,
1838 				flags, lgrp);
1839 		}
1840 		if (pp == NULL) {
1841 			/*
1842 			 * Serialize.  Don't fight with other pcgs().
1843 			 */
1844 			if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1845 				mutex_enter(&pcgs_lock);
1846 				VM_STAT_ADD(pcgs_locked);
1847 				locked = 1;
1848 				p = pcf;
1849 				for (i = 0; i < PCF_FANOUT; i++) {
1850 					mutex_enter(&p->pcf_lock);
1851 					ASSERT(p->pcf_block == 0);
1852 					p->pcf_block = 1;
1853 					p->pcf_reserve = p->pcf_count;
1854 					p->pcf_count = 0;
1855 					mutex_exit(&p->pcf_lock);
1856 					p++;
1857 				}
1858 				freemem = 0;
1859 			}
1860 
1861 			if (count) {
1862 				/*
1863 				 * Since page_free() puts pages on
1864 				 * a list then accounts for it, we
1865 				 * just have to wait for page_free()
1866 				 * to unlock any page it was working
1867 				 * with. The page_lock()-page_reclaim()
1868 				 * path falls in the same boat.
1869 				 *
1870 				 * We don't need to check on the
1871 				 * PG_WAIT flag, we have already
1872 				 * accounted for the page we are
1873 				 * looking for in page_create_va().
1874 				 *
1875 				 * We just wait a moment to let any
1876 				 * locked pages on the lists free up,
1877 				 * then continue around and try again.
1878 				 *
1879 				 * Will be awakened by set_freemem().
1880 				 */
1881 				mutex_enter(&pcgs_wait_lock);
1882 				cv_wait(&pcgs_cv, &pcgs_wait_lock);
1883 				mutex_exit(&pcgs_wait_lock);
1884 			}
1885 		} else {
1886 #ifdef VM_STATS
1887 			if (count >= PCGS_TRIES) {
1888 				VM_STAT_ADD(pcgs_too_many);
1889 			} else {
1890 				VM_STAT_ADD(pcgs_counts[count]);
1891 			}
1892 #endif
1893 			if (locked) {
1894 				pcgs_unblock();
1895 				mutex_exit(&pcgs_lock);
1896 			}
1897 			if (cagelocked)
1898 				mutex_exit(&pcgs_cagelock);
1899 			return (pp);
1900 		}
1901 	}
1902 	/*
1903 	 * we go down holding the pcf locks.
1904 	 */
1905 	panic("no %spage found %d",
1906 	    ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1907 	/*NOTREACHED*/
1908 }
1909 
1910 /*
1911  * Create enough pages for "bytes" worth of data starting at
1912  * "off" in "vp".
1913  *
1914  *	Where flag must be one of:
1915  *
1916  *		PG_EXCL:	Exclusive create (fail if any page already
1917  *				exists in the page cache) which does not
1918  *				wait for memory to become available.
1919  *
1920  *		PG_WAIT:	Non-exclusive create which can wait for
1921  *				memory to become available.
1922  *
1923  *		PG_PHYSCONTIG:	Allocate physically contiguous pages.
1924  *				(Not Supported)
1925  *
1926  * A doubly linked list of pages is returned to the caller.  Each page
1927  * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1928  * lock.
1929  *
1930  * Unable to change the parameters to page_create() in a minor release,
1931  * we renamed page_create() to page_create_va(), changed all known calls
1932  * from page_create() to page_create_va(), and created this wrapper.
1933  *
1934  * Upon a major release, we should break compatibility by deleting this
1935  * wrapper, and replacing all the strings "page_create_va", with "page_create".
1936  *
1937  * NOTE: There is a copy of this interface as page_create_io() in
1938  *	 i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1939  *	 there.
1940  */
1941 page_t *
1942 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1943 {
1944 	caddr_t random_vaddr;
1945 	struct seg kseg;
1946 
1947 #ifdef DEBUG
1948 	cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1949 	    (void *)caller());
1950 #endif
1951 
1952 	random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1953 	    (uintptr_t)(off >> PAGESHIFT));
1954 	kseg.s_as = &kas;
1955 
1956 	return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1957 }
1958 
1959 #ifdef DEBUG
1960 uint32_t pg_alloc_pgs_mtbf = 0;
1961 #endif
1962 
1963 /*
1964  * Used for large page support. It will attempt to allocate
1965  * a large page(s) off the freelist.
1966  *
1967  * Returns non zero on failure.
1968  */
1969 int
1970 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
1971     page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz)
1972 {
1973 	pgcnt_t		npgs, curnpgs, totpgs;
1974 	size_t		pgsz;
1975 	page_t		*pplist = NULL, *pp;
1976 	int		err = 0;
1977 	lgrp_t		*lgrp;
1978 
1979 	ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
1980 
1981 	VM_STAT_ADD(alloc_pages[0]);
1982 
1983 #ifdef DEBUG
1984 	if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
1985 		return (ENOMEM);
1986 	}
1987 #endif
1988 
1989 	pgsz = page_get_pagesize(szc);
1990 	totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
1991 
1992 	ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
1993 	/*
1994 	 * One must be NULL but not both.
1995 	 * And one must be non NULL but not both.
1996 	 */
1997 	ASSERT(basepp != NULL || ppa != NULL);
1998 	ASSERT(basepp == NULL || ppa == NULL);
1999 
2000 	(void) page_create_wait(npgs, PG_WAIT);
2001 
2002 	while (npgs && szc) {
2003 		lgrp = lgrp_mem_choose(seg, addr, pgsz);
2004 		pp = page_get_freelist(vp, 0, seg, addr, pgsz, 0, lgrp);
2005 		if (pp != NULL) {
2006 			VM_STAT_ADD(alloc_pages[1]);
2007 			page_list_concat(&pplist, &pp);
2008 			ASSERT(npgs >= curnpgs);
2009 			npgs -= curnpgs;
2010 		} else if (anypgsz) {
2011 			VM_STAT_ADD(alloc_pages[2]);
2012 			szc--;
2013 			pgsz = page_get_pagesize(szc);
2014 			curnpgs = pgsz >> PAGESHIFT;
2015 		} else {
2016 			VM_STAT_ADD(alloc_pages[3]);
2017 			ASSERT(npgs == totpgs);
2018 			page_create_putback(npgs);
2019 			return (ENOMEM);
2020 		}
2021 	}
2022 	if (szc == 0) {
2023 		VM_STAT_ADD(alloc_pages[4]);
2024 		ASSERT(npgs != 0);
2025 		page_create_putback(npgs);
2026 		err = ENOMEM;
2027 	} else if (basepp != NULL) {
2028 		ASSERT(npgs == 0);
2029 		ASSERT(ppa == NULL);
2030 		*basepp = pplist;
2031 	}
2032 
2033 	npgs = totpgs - npgs;
2034 	pp = pplist;
2035 
2036 	/*
2037 	 * Clear the free and age bits. Also if we were passed in a ppa then
2038 	 * fill it in with all the constituent pages from the large page. But
2039 	 * if we failed to allocate all the pages just free what we got.
2040 	 */
2041 	while (npgs != 0) {
2042 		ASSERT(PP_ISFREE(pp));
2043 		ASSERT(PP_ISAGED(pp));
2044 		if (ppa != NULL || err != 0) {
2045 			if (err == 0) {
2046 				VM_STAT_ADD(alloc_pages[5]);
2047 				PP_CLRFREE(pp);
2048 				PP_CLRAGED(pp);
2049 				page_sub(&pplist, pp);
2050 				*ppa++ = pp;
2051 				npgs--;
2052 			} else {
2053 				VM_STAT_ADD(alloc_pages[6]);
2054 				ASSERT(pp->p_szc != 0);
2055 				curnpgs = page_get_pagecnt(pp->p_szc);
2056 				page_list_break(&pp, &pplist, curnpgs);
2057 				page_list_add_pages(pp, 0);
2058 				page_create_putback(curnpgs);
2059 				ASSERT(npgs >= curnpgs);
2060 				npgs -= curnpgs;
2061 			}
2062 			pp = pplist;
2063 		} else {
2064 			VM_STAT_ADD(alloc_pages[7]);
2065 			PP_CLRFREE(pp);
2066 			PP_CLRAGED(pp);
2067 			pp = pp->p_next;
2068 			npgs--;
2069 		}
2070 	}
2071 	return (err);
2072 }
2073 
2074 /*
2075  * Get a single large page off of the freelists, and set it up for use.
2076  * Number of bytes requested must be a supported page size.
2077  *
2078  * Note that this call may fail even if there is sufficient
2079  * memory available or PG_WAIT is set, so the caller must
2080  * be willing to fallback on page_create_va(), block and retry,
2081  * or fail the requester.
2082  */
2083 page_t *
2084 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2085     struct seg *seg, caddr_t vaddr, void *arg)
2086 {
2087 	pgcnt_t		npages, pcftotal;
2088 	page_t		*pp;
2089 	page_t		*rootpp;
2090 	lgrp_t		*lgrp;
2091 	uint_t		enough;
2092 	uint_t		pcf_index;
2093 	uint_t		i;
2094 	struct pcf	*p;
2095 	struct pcf	*q;
2096 	lgrp_id_t	*lgrpid = (lgrp_id_t *)arg;
2097 
2098 	ASSERT(vp != NULL);
2099 
2100 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2101 		    PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
2102 	/* but no others */
2103 
2104 	ASSERT((flags & PG_EXCL) == PG_EXCL);
2105 
2106 	npages = btop(bytes);
2107 
2108 	if (!kcage_on || panicstr) {
2109 		/*
2110 		 * Cage is OFF, or we are single threaded in
2111 		 * panic, so make everything a RELOC request.
2112 		 */
2113 		flags &= ~PG_NORELOC;
2114 	}
2115 
2116 	/*
2117 	 * Make sure there's adequate physical memory available.
2118 	 * Note: PG_WAIT is ignored here.
2119 	 */
2120 	if (freemem <= throttlefree + npages) {
2121 		VM_STAT_ADD(page_create_large_cnt[1]);
2122 		return (NULL);
2123 	}
2124 
2125 	/*
2126 	 * If cage is on, dampen draw from cage when available
2127 	 * cage space is low.
2128 	 */
2129 	if ((flags & (PG_NORELOC | PG_WAIT)) ==  (PG_NORELOC | PG_WAIT) &&
2130 	    kcage_freemem < kcage_throttlefree + npages) {
2131 
2132 		/*
2133 		 * The cage is on, the caller wants PG_NORELOC
2134 		 * pages and available cage memory is very low.
2135 		 * Call kcage_create_throttle() to attempt to
2136 		 * control demand on the cage.
2137 		 */
2138 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2139 			VM_STAT_ADD(page_create_large_cnt[2]);
2140 			return (NULL);
2141 		}
2142 	}
2143 
2144 	enough = 0;
2145 	pcf_index = PCF_INDEX();
2146 	p = &pcf[pcf_index];
2147 	p->pcf_touch = 1;
2148 	q = &pcf[PCF_FANOUT];
2149 	for (pcftotal = 0, i = 0; i < PCF_FANOUT; i++) {
2150 		if (p->pcf_count > npages) {
2151 			/*
2152 			 * a good one to try.
2153 			 */
2154 			mutex_enter(&p->pcf_lock);
2155 			if (p->pcf_count > npages) {
2156 				p->pcf_count -= (uint_t)npages;
2157 				/*
2158 				 * freemem is not protected by any lock.
2159 				 * Thus, we cannot have any assertion
2160 				 * containing freemem here.
2161 				 */
2162 				freemem -= npages;
2163 				enough = 1;
2164 				mutex_exit(&p->pcf_lock);
2165 				break;
2166 			}
2167 			mutex_exit(&p->pcf_lock);
2168 		}
2169 		pcftotal += p->pcf_count;
2170 		p++;
2171 		if (p >= q) {
2172 			p = pcf;
2173 		}
2174 		p->pcf_touch = 1;
2175 	}
2176 
2177 	if (!enough) {
2178 		/* If there isn't enough memory available, give up. */
2179 		if (pcftotal < npages) {
2180 			VM_STAT_ADD(page_create_large_cnt[3]);
2181 			return (NULL);
2182 		}
2183 
2184 		/* try to collect pages from several pcf bins */
2185 		for (p = pcf, pcftotal = 0, i = 0; i < PCF_FANOUT; i++) {
2186 			p->pcf_touch = 1;
2187 			mutex_enter(&p->pcf_lock);
2188 			pcftotal += p->pcf_count;
2189 			if (pcftotal >= npages) {
2190 				/*
2191 				 * Wow!  There are enough pages laying around
2192 				 * to satisfy the request.  Do the accounting,
2193 				 * drop the locks we acquired, and go back.
2194 				 *
2195 				 * freemem is not protected by any lock. So,
2196 				 * we cannot have any assertion containing
2197 				 * freemem.
2198 				 */
2199 				pgcnt_t	tpages = npages;
2200 				freemem -= npages;
2201 				while (p >= pcf) {
2202 					if (p->pcf_count <= tpages) {
2203 						tpages -= p->pcf_count;
2204 						p->pcf_count = 0;
2205 					} else {
2206 						p->pcf_count -= (uint_t)tpages;
2207 						tpages = 0;
2208 					}
2209 					mutex_exit(&p->pcf_lock);
2210 					p--;
2211 				}
2212 				ASSERT(tpages == 0);
2213 				break;
2214 			}
2215 			p++;
2216 		}
2217 		if (i == PCF_FANOUT) {
2218 			/* failed to collect pages - release the locks */
2219 			while (--p >= pcf) {
2220 				mutex_exit(&p->pcf_lock);
2221 			}
2222 			VM_STAT_ADD(page_create_large_cnt[4]);
2223 			return (NULL);
2224 		}
2225 	}
2226 
2227 	/*
2228 	 * This is where this function behaves fundamentally differently
2229 	 * than page_create_va(); since we're intending to map the page
2230 	 * with a single TTE, we have to get it as a physically contiguous
2231 	 * hardware pagesize chunk.  If we can't, we fail.
2232 	 */
2233 	if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2234 		LGRP_EXISTS(lgrp_table[*lgrpid]))
2235 		lgrp = lgrp_table[*lgrpid];
2236 	else
2237 		lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2238 
2239 	if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2240 	    bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2241 		page_create_putback(npages);
2242 		VM_STAT_ADD(page_create_large_cnt[5]);
2243 		return (NULL);
2244 	}
2245 
2246 	/*
2247 	 * if we got the page with the wrong mtype give it back this is a
2248 	 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2249 	 * inside "if" and the workaround becomes just a nop
2250 	 */
2251 	if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2252 		page_list_add_pages(rootpp, 0);
2253 		page_create_putback(npages);
2254 		VM_STAT_ADD(page_create_large_cnt[6]);
2255 		return (NULL);
2256 	}
2257 
2258 	/*
2259 	 * If satisfying this request has left us with too little
2260 	 * memory, start the wheels turning to get some back.  The
2261 	 * first clause of the test prevents waking up the pageout
2262 	 * daemon in situations where it would decide that there's
2263 	 * nothing to do.
2264 	 */
2265 	if (nscan < desscan && freemem < minfree) {
2266 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2267 		    "pageout_cv_signal:freemem %ld", freemem);
2268 		cv_signal(&proc_pageout->p_cv);
2269 	}
2270 
2271 	pp = rootpp;
2272 	while (npages--) {
2273 		ASSERT(PAGE_EXCL(pp));
2274 		ASSERT(pp->p_vnode == NULL);
2275 		ASSERT(!hat_page_is_mapped(pp));
2276 		PP_CLRFREE(pp);
2277 		PP_CLRAGED(pp);
2278 		if (!page_hashin(pp, vp, off, NULL))
2279 			panic("page_create_large: hashin failed: page %p",
2280 			    (void *)pp);
2281 		page_io_lock(pp);
2282 		off += PAGESIZE;
2283 		pp = pp->p_next;
2284 	}
2285 
2286 	VM_STAT_ADD(page_create_large_cnt[0]);
2287 	return (rootpp);
2288 }
2289 
2290 page_t *
2291 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2292     struct seg *seg, caddr_t vaddr)
2293 {
2294 	page_t		*plist = NULL;
2295 	pgcnt_t		npages;
2296 	pgcnt_t		found_on_free = 0;
2297 	pgcnt_t		pages_req;
2298 	page_t		*npp = NULL;
2299 	uint_t		enough;
2300 	uint_t		i;
2301 	uint_t		pcf_index;
2302 	struct pcf	*p;
2303 	struct pcf	*q;
2304 	lgrp_t		*lgrp;
2305 
2306 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2307 		"page_create_start:vp %p off %llx bytes %lu flags %x",
2308 		vp, off, bytes, flags);
2309 
2310 	ASSERT(bytes != 0 && vp != NULL);
2311 
2312 	if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2313 		panic("page_create: invalid flags");
2314 		/*NOTREACHED*/
2315 	}
2316 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2317 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
2318 	    /* but no others */
2319 
2320 	pages_req = npages = btopr(bytes);
2321 	/*
2322 	 * Try to see whether request is too large to *ever* be
2323 	 * satisfied, in order to prevent deadlock.  We arbitrarily
2324 	 * decide to limit maximum size requests to max_page_get.
2325 	 */
2326 	if (npages >= max_page_get) {
2327 		if ((flags & PG_WAIT) == 0) {
2328 			TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2329 			    "page_create_toobig:vp %p off %llx npages "
2330 			    "%lu max_page_get %lu",
2331 			    vp, off, npages, max_page_get);
2332 			return (NULL);
2333 		} else {
2334 			cmn_err(CE_WARN,
2335 			    "Request for too much kernel memory "
2336 			    "(%lu bytes), will hang forever", bytes);
2337 			for (;;)
2338 				delay(1000000000);
2339 		}
2340 	}
2341 
2342 	if (!kcage_on || panicstr) {
2343 		/*
2344 		 * Cage is OFF, or we are single threaded in
2345 		 * panic, so make everything a RELOC request.
2346 		 */
2347 		flags &= ~PG_NORELOC;
2348 	}
2349 
2350 	if (freemem <= throttlefree + npages)
2351 		if (!page_create_throttle(npages, flags))
2352 			return (NULL);
2353 
2354 	/*
2355 	 * If cage is on, dampen draw from cage when available
2356 	 * cage space is low.
2357 	 */
2358 	if ((flags & PG_NORELOC) &&
2359 		kcage_freemem < kcage_throttlefree + npages) {
2360 
2361 		/*
2362 		 * The cage is on, the caller wants PG_NORELOC
2363 		 * pages and available cage memory is very low.
2364 		 * Call kcage_create_throttle() to attempt to
2365 		 * control demand on the cage.
2366 		 */
2367 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2368 			return (NULL);
2369 	}
2370 
2371 	VM_STAT_ADD(page_create_cnt[0]);
2372 
2373 	enough = 0;
2374 	pcf_index = PCF_INDEX();
2375 
2376 	p = &pcf[pcf_index];
2377 	p->pcf_touch = 1;
2378 	q = &pcf[PCF_FANOUT];
2379 	for (i = 0; i < PCF_FANOUT; i++) {
2380 		if (p->pcf_count > npages) {
2381 			/*
2382 			 * a good one to try.
2383 			 */
2384 			mutex_enter(&p->pcf_lock);
2385 			if (p->pcf_count > npages) {
2386 				p->pcf_count -= (uint_t)npages;
2387 				/*
2388 				 * freemem is not protected by any lock.
2389 				 * Thus, we cannot have any assertion
2390 				 * containing freemem here.
2391 				 */
2392 				freemem -= npages;
2393 				enough = 1;
2394 				mutex_exit(&p->pcf_lock);
2395 				break;
2396 			}
2397 			mutex_exit(&p->pcf_lock);
2398 		}
2399 		p++;
2400 		if (p >= q) {
2401 			p = pcf;
2402 		}
2403 		p->pcf_touch = 1;
2404 	}
2405 
2406 	if (!enough) {
2407 		/*
2408 		 * Have to look harder.  If npages is greater than
2409 		 * one, then we might have to coalecse the counters.
2410 		 *
2411 		 * Go wait.  We come back having accounted
2412 		 * for the memory.
2413 		 */
2414 		VM_STAT_ADD(page_create_cnt[1]);
2415 		if (!page_create_wait(npages, flags)) {
2416 			VM_STAT_ADD(page_create_cnt[2]);
2417 			return (NULL);
2418 		}
2419 	}
2420 
2421 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2422 		"page_create_success:vp %p off %llx", vp, off);
2423 
2424 	/*
2425 	 * If satisfying this request has left us with too little
2426 	 * memory, start the wheels turning to get some back.  The
2427 	 * first clause of the test prevents waking up the pageout
2428 	 * daemon in situations where it would decide that there's
2429 	 * nothing to do.
2430 	 */
2431 	if (nscan < desscan && freemem < minfree) {
2432 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2433 			"pageout_cv_signal:freemem %ld", freemem);
2434 		cv_signal(&proc_pageout->p_cv);
2435 	}
2436 
2437 	/*
2438 	 * Loop around collecting the requested number of pages.
2439 	 * Most of the time, we have to `create' a new page. With
2440 	 * this in mind, pull the page off the free list before
2441 	 * getting the hash lock.  This will minimize the hash
2442 	 * lock hold time, nesting, and the like.  If it turns
2443 	 * out we don't need the page, we put it back at the end.
2444 	 */
2445 	while (npages--) {
2446 		page_t		*pp;
2447 		kmutex_t	*phm = NULL;
2448 		ulong_t		index;
2449 
2450 		index = PAGE_HASH_FUNC(vp, off);
2451 top:
2452 		ASSERT(phm == NULL);
2453 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
2454 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2455 
2456 		if (npp == NULL) {
2457 			/*
2458 			 * Try to get a page from the freelist (ie,
2459 			 * a page with no [vp, off] tag).  If that
2460 			 * fails, use the cachelist.
2461 			 *
2462 			 * During the first attempt at both the free
2463 			 * and cache lists we try for the correct color.
2464 			 */
2465 			/*
2466 			 * XXXX-how do we deal with virtual indexed
2467 			 * caches and and colors?
2468 			 */
2469 			VM_STAT_ADD(page_create_cnt[4]);
2470 			/*
2471 			 * Get lgroup to allocate next page of shared memory
2472 			 * from and use it to specify where to allocate
2473 			 * the physical memory
2474 			 */
2475 			lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2476 			npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2477 			    flags | PG_MATCH_COLOR, lgrp);
2478 			if (npp == NULL) {
2479 				npp = page_get_cachelist(vp, off, seg,
2480 				    vaddr, flags | PG_MATCH_COLOR, lgrp);
2481 				if (npp == NULL) {
2482 					npp = page_create_get_something(vp,
2483 					    off, seg, vaddr,
2484 					    flags & ~PG_MATCH_COLOR);
2485 				}
2486 
2487 				if (PP_ISAGED(npp) == 0) {
2488 					/*
2489 					 * Since this page came from the
2490 					 * cachelist, we must destroy the
2491 					 * old vnode association.
2492 					 */
2493 					page_hashout(npp, NULL);
2494 				}
2495 			}
2496 		}
2497 
2498 		/*
2499 		 * We own this page!
2500 		 */
2501 		ASSERT(PAGE_EXCL(npp));
2502 		ASSERT(npp->p_vnode == NULL);
2503 		ASSERT(!hat_page_is_mapped(npp));
2504 		PP_CLRFREE(npp);
2505 		PP_CLRAGED(npp);
2506 
2507 		/*
2508 		 * Here we have a page in our hot little mits and are
2509 		 * just waiting to stuff it on the appropriate lists.
2510 		 * Get the mutex and check to see if it really does
2511 		 * not exist.
2512 		 */
2513 		phm = PAGE_HASH_MUTEX(index);
2514 		mutex_enter(phm);
2515 		PAGE_HASH_SEARCH(index, pp, vp, off);
2516 		if (pp == NULL) {
2517 			VM_STAT_ADD(page_create_new);
2518 			pp = npp;
2519 			npp = NULL;
2520 			if (!page_hashin(pp, vp, off, phm)) {
2521 				/*
2522 				 * Since we hold the page hash mutex and
2523 				 * just searched for this page, page_hashin
2524 				 * had better not fail.  If it does, that
2525 				 * means somethread did not follow the
2526 				 * page hash mutex rules.  Panic now and
2527 				 * get it over with.  As usual, go down
2528 				 * holding all the locks.
2529 				 */
2530 				ASSERT(MUTEX_HELD(phm));
2531 				panic("page_create: "
2532 				    "hashin failed %p %p %llx %p",
2533 				    (void *)pp, (void *)vp, off, (void *)phm);
2534 				/*NOTREACHED*/
2535 			}
2536 			ASSERT(MUTEX_HELD(phm));
2537 			mutex_exit(phm);
2538 			phm = NULL;
2539 
2540 			/*
2541 			 * Hat layer locking need not be done to set
2542 			 * the following bits since the page is not hashed
2543 			 * and was on the free list (i.e., had no mappings).
2544 			 *
2545 			 * Set the reference bit to protect
2546 			 * against immediate pageout
2547 			 *
2548 			 * XXXmh modify freelist code to set reference
2549 			 * bit so we don't have to do it here.
2550 			 */
2551 			page_set_props(pp, P_REF);
2552 			found_on_free++;
2553 		} else {
2554 			VM_STAT_ADD(page_create_exists);
2555 			if (flags & PG_EXCL) {
2556 				/*
2557 				 * Found an existing page, and the caller
2558 				 * wanted all new pages.  Undo all of the work
2559 				 * we have done.
2560 				 */
2561 				mutex_exit(phm);
2562 				phm = NULL;
2563 				while (plist != NULL) {
2564 					pp = plist;
2565 					page_sub(&plist, pp);
2566 					page_io_unlock(pp);
2567 					/* large pages should not end up here */
2568 					ASSERT(pp->p_szc == 0);
2569 					/*LINTED: constant in conditional ctx*/
2570 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
2571 				}
2572 				VM_STAT_ADD(page_create_found_one);
2573 				goto fail;
2574 			}
2575 			ASSERT(flags & PG_WAIT);
2576 			if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2577 				/*
2578 				 * Start all over again if we blocked trying
2579 				 * to lock the page.
2580 				 */
2581 				mutex_exit(phm);
2582 				VM_STAT_ADD(page_create_page_lock_failed);
2583 				phm = NULL;
2584 				goto top;
2585 			}
2586 			mutex_exit(phm);
2587 			phm = NULL;
2588 
2589 			if (PP_ISFREE(pp)) {
2590 				ASSERT(PP_ISAGED(pp) == 0);
2591 				VM_STAT_ADD(pagecnt.pc_get_cache);
2592 				page_list_sub(pp, PG_CACHE_LIST);
2593 				PP_CLRFREE(pp);
2594 				found_on_free++;
2595 			}
2596 		}
2597 
2598 		/*
2599 		 * Got a page!  It is locked.  Acquire the i/o
2600 		 * lock since we are going to use the p_next and
2601 		 * p_prev fields to link the requested pages together.
2602 		 */
2603 		page_io_lock(pp);
2604 		page_add(&plist, pp);
2605 		plist = plist->p_next;
2606 		off += PAGESIZE;
2607 		vaddr += PAGESIZE;
2608 	}
2609 
2610 	ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2611 fail:
2612 	if (npp != NULL) {
2613 		/*
2614 		 * Did not need this page after all.
2615 		 * Put it back on the free list.
2616 		 */
2617 		VM_STAT_ADD(page_create_putbacks);
2618 		PP_SETFREE(npp);
2619 		PP_SETAGED(npp);
2620 		npp->p_offset = (u_offset_t)-1;
2621 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2622 		page_unlock(npp);
2623 
2624 	}
2625 
2626 	ASSERT(pages_req >= found_on_free);
2627 
2628 	{
2629 		uint_t overshoot = (uint_t)(pages_req - found_on_free);
2630 
2631 		if (overshoot) {
2632 			VM_STAT_ADD(page_create_overshoot);
2633 			p = &pcf[pcf_index];
2634 			p->pcf_touch = 1;
2635 			mutex_enter(&p->pcf_lock);
2636 			if (p->pcf_block) {
2637 				p->pcf_reserve += overshoot;
2638 			} else {
2639 				p->pcf_count += overshoot;
2640 				if (p->pcf_wait) {
2641 					mutex_enter(&new_freemem_lock);
2642 					if (freemem_wait) {
2643 						cv_signal(&freemem_cv);
2644 						p->pcf_wait--;
2645 					} else {
2646 						p->pcf_wait = 0;
2647 					}
2648 					mutex_exit(&new_freemem_lock);
2649 				}
2650 			}
2651 			mutex_exit(&p->pcf_lock);
2652 			/* freemem is approximate, so this test OK */
2653 			if (!p->pcf_block)
2654 				freemem += overshoot;
2655 		}
2656 	}
2657 
2658 	return (plist);
2659 }
2660 
2661 /*
2662  * One or more constituent pages of this large page has been marked
2663  * toxic. Simply demote the large page to PAGESIZE pages and let
2664  * page_free() handle it. This routine should only be called by
2665  * large page free routines (page_free_pages() and page_destroy_pages().
2666  * All pages are locked SE_EXCL and have already been marked free.
2667  */
2668 static void
2669 page_free_toxic_pages(page_t *rootpp)
2670 {
2671 	page_t	*tpp;
2672 	pgcnt_t	i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2673 	uint_t	szc = rootpp->p_szc;
2674 
2675 	for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2676 		ASSERT(tpp->p_szc == szc);
2677 		ASSERT((PAGE_EXCL(tpp) &&
2678 		    !page_iolock_assert(tpp)) || panicstr);
2679 		tpp->p_szc = 0;
2680 	}
2681 
2682 	while (rootpp != NULL) {
2683 		tpp = rootpp;
2684 		page_sub(&rootpp, tpp);
2685 		ASSERT(PP_ISFREE(tpp));
2686 		PP_CLRFREE(tpp);
2687 		page_free(tpp, 1);
2688 	}
2689 }
2690 
2691 /*
2692  * Put page on the "free" list.
2693  * The free list is really two lists maintained by
2694  * the PSM of whatever machine we happen to be on.
2695  */
2696 void
2697 page_free(page_t *pp, int dontneed)
2698 {
2699 	struct pcf	*p;
2700 	uint_t		pcf_index;
2701 
2702 	ASSERT((PAGE_EXCL(pp) &&
2703 	    !page_iolock_assert(pp)) || panicstr);
2704 
2705 	if (PP_ISFREE(pp)) {
2706 		panic("page_free: page %p is free", (void *)pp);
2707 	}
2708 
2709 	if (pp->p_szc != 0) {
2710 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2711 		    pp->p_vnode == &kvp) {
2712 			panic("page_free: anon or kernel "
2713 			    "or no vnode large page %p", (void *)pp);
2714 		}
2715 		page_demote_vp_pages(pp);
2716 		ASSERT(pp->p_szc == 0);
2717 	}
2718 
2719 	/*
2720 	 * The page_struct_lock need not be acquired to examine these
2721 	 * fields since the page has an "exclusive" lock.
2722 	 */
2723 	if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
2724 		panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d",
2725 		    pp, page_pptonum(pp), pp->p_lckcnt, pp->p_cowcnt);
2726 		/*NOTREACHED*/
2727 	}
2728 
2729 	ASSERT(!hat_page_getshare(pp));
2730 
2731 	PP_SETFREE(pp);
2732 	ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2733 	    !hat_ismod(pp));
2734 	page_clr_all_props(pp);
2735 	ASSERT(!hat_page_getshare(pp));
2736 
2737 	/*
2738 	 * Now we add the page to the head of the free list.
2739 	 * But if this page is associated with a paged vnode
2740 	 * then we adjust the head forward so that the page is
2741 	 * effectively at the end of the list.
2742 	 */
2743 	if (pp->p_vnode == NULL) {
2744 		/*
2745 		 * Page has no identity, put it on the free list.
2746 		 */
2747 		PP_SETAGED(pp);
2748 		pp->p_offset = (u_offset_t)-1;
2749 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2750 		VM_STAT_ADD(pagecnt.pc_free_free);
2751 		TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2752 		    "page_free_free:pp %p", pp);
2753 	} else {
2754 		PP_CLRAGED(pp);
2755 
2756 		if (!dontneed || nopageage) {
2757 			/* move it to the tail of the list */
2758 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2759 
2760 			VM_STAT_ADD(pagecnt.pc_free_cache);
2761 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2762 			    "page_free_cache_tail:pp %p", pp);
2763 		} else {
2764 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2765 
2766 			VM_STAT_ADD(pagecnt.pc_free_dontneed);
2767 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2768 			    "page_free_cache_head:pp %p", pp);
2769 		}
2770 	}
2771 	page_unlock(pp);
2772 
2773 	/*
2774 	 * Now do the `freemem' accounting.
2775 	 */
2776 	pcf_index = PCF_INDEX();
2777 	p = &pcf[pcf_index];
2778 	p->pcf_touch = 1;
2779 
2780 	mutex_enter(&p->pcf_lock);
2781 	if (p->pcf_block) {
2782 		p->pcf_reserve += 1;
2783 	} else {
2784 		p->pcf_count += 1;
2785 		if (p->pcf_wait) {
2786 			mutex_enter(&new_freemem_lock);
2787 			/*
2788 			 * Check to see if some other thread
2789 			 * is actually waiting.  Another bucket
2790 			 * may have woken it up by now.  If there
2791 			 * are no waiters, then set our pcf_wait
2792 			 * count to zero to avoid coming in here
2793 			 * next time.  Also, since only one page
2794 			 * was put on the free list, just wake
2795 			 * up one waiter.
2796 			 */
2797 			if (freemem_wait) {
2798 				cv_signal(&freemem_cv);
2799 				p->pcf_wait--;
2800 			} else {
2801 				p->pcf_wait = 0;
2802 			}
2803 			mutex_exit(&new_freemem_lock);
2804 		}
2805 	}
2806 	mutex_exit(&p->pcf_lock);
2807 
2808 	/* freemem is approximate, so this test OK */
2809 	if (!p->pcf_block)
2810 		freemem += 1;
2811 }
2812 
2813 /*
2814  * Put page on the "free" list during intial startup.
2815  * This happens during initial single threaded execution.
2816  */
2817 void
2818 page_free_at_startup(page_t *pp)
2819 {
2820 	struct pcf	*p;
2821 	uint_t		pcf_index;
2822 
2823 	page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2824 	VM_STAT_ADD(pagecnt.pc_free_free);
2825 
2826 	/*
2827 	 * Now do the `freemem' accounting.
2828 	 */
2829 	pcf_index = PCF_INDEX();
2830 	p = &pcf[pcf_index];
2831 	p->pcf_touch = 1;
2832 
2833 	ASSERT(p->pcf_block == 0);
2834 	ASSERT(p->pcf_wait == 0);
2835 	p->pcf_count += 1;
2836 
2837 	/* freemem is approximate, so this is OK */
2838 	freemem += 1;
2839 }
2840 
2841 void
2842 page_free_pages(page_t *pp)
2843 {
2844 	page_t	*tpp, *rootpp = NULL;
2845 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
2846 	pgcnt_t	i;
2847 	uint_t	szc = pp->p_szc;
2848 
2849 	VM_STAT_ADD(pagecnt.pc_free_pages);
2850 	TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2851 	    "page_free_free:pp %p", pp);
2852 
2853 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2854 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2855 		panic("page_free_pages: not root page %p", (void *)pp);
2856 		/*NOTREACHED*/
2857 	}
2858 
2859 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2860 		ASSERT((PAGE_EXCL(tpp) &&
2861 		    !page_iolock_assert(tpp)) || panicstr);
2862 		if (PP_ISFREE(tpp)) {
2863 			panic("page_free_pages: page %p is free", (void *)tpp);
2864 			/*NOTREACHED*/
2865 		}
2866 		if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2867 		    tpp->p_cowcnt != 0) {
2868 			panic("page_free_pages %p", (void *)tpp);
2869 			/*NOTREACHED*/
2870 		}
2871 
2872 		ASSERT(!hat_page_getshare(tpp));
2873 		ASSERT(tpp->p_vnode == NULL);
2874 		ASSERT(tpp->p_szc == szc);
2875 
2876 		PP_SETFREE(tpp);
2877 		page_clr_all_props(tpp);
2878 		PP_SETAGED(tpp);
2879 		tpp->p_offset = (u_offset_t)-1;
2880 		ASSERT(tpp->p_next == tpp);
2881 		ASSERT(tpp->p_prev == tpp);
2882 		page_list_concat(&rootpp, &tpp);
2883 	}
2884 	ASSERT(rootpp == pp);
2885 
2886 	page_list_add_pages(rootpp, 0);
2887 	page_create_putback(pgcnt);
2888 }
2889 
2890 int free_pages = 1;
2891 
2892 /*
2893  * This routine attempts to return pages to the cachelist via page_release().
2894  * It does not *have* to be successful in all cases, since the pageout scanner
2895  * will catch any pages it misses.  It does need to be fast and not introduce
2896  * too much overhead.
2897  *
2898  * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2899  * don't lock and retry.  This is ok, since the page scanner will eventually
2900  * find any page we miss in free_vp_pages().
2901  */
2902 void
2903 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2904 {
2905 	page_t *pp;
2906 	u_offset_t eoff;
2907 	extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2908 
2909 	eoff = off + len;
2910 
2911 	if (free_pages == 0)
2912 		return;
2913 	if (swap_in_range(vp, off, len))
2914 		return;
2915 
2916 	for (; off < eoff; off += PAGESIZE) {
2917 
2918 		/*
2919 		 * find the page using a fast, but inexact search. It'll be OK
2920 		 * if a few pages slip through the cracks here.
2921 		 */
2922 		pp = page_exists(vp, off);
2923 
2924 		/*
2925 		 * If we didn't find the page (it may not exist), the page
2926 		 * is free, looks still in use (shared), or we can't lock it,
2927 		 * just give up.
2928 		 */
2929 		if (pp == NULL ||
2930 		    PP_ISFREE(pp) ||
2931 		    page_share_cnt(pp) > 0 ||
2932 		    !page_trylock(pp, SE_EXCL))
2933 			continue;
2934 
2935 		/*
2936 		 * Once we have locked pp, verify that it's still the
2937 		 * correct page and not already free
2938 		 */
2939 		ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2940 		if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2941 			page_unlock(pp);
2942 			continue;
2943 		}
2944 
2945 		/*
2946 		 * try to release the page...
2947 		 */
2948 		(void) page_release(pp, 1);
2949 	}
2950 }
2951 
2952 /*
2953  * Reclaim the given page from the free list.
2954  * Returns 1 on success or 0 on failure.
2955  *
2956  * The page is unlocked if it can't be reclaimed (when freemem == 0).
2957  * If `lock' is non-null, it will be dropped and re-acquired if
2958  * the routine must wait while freemem is 0.
2959  *
2960  * As it turns out, boot_getpages() does this.  It picks a page,
2961  * based on where OBP mapped in some address, gets its pfn, searches
2962  * the memsegs, locks the page, then pulls it off the free list!
2963  */
2964 int
2965 page_reclaim(page_t *pp, kmutex_t *lock)
2966 {
2967 	struct pcf	*p;
2968 	uint_t		pcf_index;
2969 	struct cpu	*cpup;
2970 	uint_t		i;
2971 	pgcnt_t		npgs, need;
2972 	pgcnt_t		collected = 0;
2973 
2974 	ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
2975 	ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
2976 
2977 	npgs = page_get_pagecnt(pp->p_szc);
2978 
2979 	/*
2980 	 * If `freemem' is 0, we cannot reclaim this page from the
2981 	 * freelist, so release every lock we might hold: the page,
2982 	 * and the `lock' before blocking.
2983 	 *
2984 	 * The only way `freemem' can become 0 while there are pages
2985 	 * marked free (have their p->p_free bit set) is when the
2986 	 * system is low on memory and doing a page_create().  In
2987 	 * order to guarantee that once page_create() starts acquiring
2988 	 * pages it will be able to get all that it needs since `freemem'
2989 	 * was decreased by the requested amount.  So, we need to release
2990 	 * this page, and let page_create() have it.
2991 	 *
2992 	 * Since `freemem' being zero is not supposed to happen, just
2993 	 * use the usual hash stuff as a starting point.  If that bucket
2994 	 * is empty, then assume the worst, and start at the beginning
2995 	 * of the pcf array.  If we always start at the beginning
2996 	 * when acquiring more than one pcf lock, there won't be any
2997 	 * deadlock problems.
2998 	 */
2999 
3000 	/* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
3001 
3002 	if (freemem <= throttlefree && !page_create_throttle(npgs, 0)) {
3003 		pcf_acquire_all();
3004 		goto page_reclaim_nomem;
3005 	}
3006 
3007 	pcf_index = PCF_INDEX();
3008 	p = &pcf[pcf_index];
3009 	p->pcf_touch = 1;
3010 	mutex_enter(&p->pcf_lock);
3011 	if (p->pcf_count >= npgs) {
3012 		collected = npgs;
3013 		p->pcf_count -= npgs;
3014 	}
3015 	mutex_exit(&p->pcf_lock);
3016 	need = npgs - collected;
3017 
3018 	if (need > 0) {
3019 		VM_STAT_ADD(page_reclaim_zero);
3020 		/*
3021 		 * Check again. Its possible that some other thread
3022 		 * could have been right behind us, and added one
3023 		 * to a list somewhere.  Acquire each of the pcf locks
3024 		 * until we find a page.
3025 		 */
3026 		p = pcf;
3027 		for (i = 0; i < PCF_FANOUT; i++) {
3028 			p->pcf_touch = 1;
3029 			mutex_enter(&p->pcf_lock);
3030 			if (p->pcf_count) {
3031 				if (p->pcf_count >= need) {
3032 					p->pcf_count -= need;
3033 					collected += need;
3034 					need = 0;
3035 					break;
3036 				} else if (p->pcf_count) {
3037 					collected += p->pcf_count;
3038 					need -= p->pcf_count;
3039 					p->pcf_count = 0;
3040 				}
3041 			}
3042 			p++;
3043 		}
3044 
3045 		if (need > 0) {
3046 page_reclaim_nomem:
3047 			/*
3048 			 * We really can't have page `pp'.
3049 			 * Time for the no-memory dance with
3050 			 * page_free().  This is just like
3051 			 * page_create_wait().  Plus the added
3052 			 * attraction of releasing whatever mutex
3053 			 * we held when we were called with in `lock'.
3054 			 * Page_unlock() will wakeup any thread
3055 			 * waiting around for this page.
3056 			 */
3057 			if (lock) {
3058 				VM_STAT_ADD(page_reclaim_zero_locked);
3059 				mutex_exit(lock);
3060 			}
3061 			page_unlock(pp);
3062 
3063 			/*
3064 			 * get this before we drop all the pcf locks.
3065 			 */
3066 			mutex_enter(&new_freemem_lock);
3067 
3068 			p = pcf;
3069 			p->pcf_count += collected;
3070 			for (i = 0; i < PCF_FANOUT; i++) {
3071 				p->pcf_wait++;
3072 				mutex_exit(&p->pcf_lock);
3073 				p++;
3074 			}
3075 
3076 			freemem_wait++;
3077 			cv_wait(&freemem_cv, &new_freemem_lock);
3078 			freemem_wait--;
3079 
3080 			mutex_exit(&new_freemem_lock);
3081 
3082 			if (lock) {
3083 				mutex_enter(lock);
3084 			}
3085 			return (0);
3086 		}
3087 
3088 		/*
3089 		 * We beat the PCF bins over the head until
3090 		 * we got the memory that we wanted.
3091 		 * The pcf accounting has been done,
3092 		 * though none of the pcf_wait flags have been set,
3093 		 * drop the locks and continue on.
3094 		 */
3095 		ASSERT(collected == npgs);
3096 		while (p >= pcf) {
3097 			mutex_exit(&p->pcf_lock);
3098 			p--;
3099 		}
3100 	}
3101 
3102 	/*
3103 	 * freemem is not protected by any lock. Thus, we cannot
3104 	 * have any assertion containing freemem here.
3105 	 */
3106 	freemem -= npgs;
3107 
3108 	VM_STAT_ADD(pagecnt.pc_reclaim);
3109 	if (PP_ISAGED(pp)) {
3110 		if (npgs > 1) {
3111 			page_list_sub_pages(pp, pp->p_szc);
3112 		} else {
3113 			page_list_sub(pp, PG_FREE_LIST);
3114 		}
3115 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3116 		    "page_reclaim_free:pp %p", pp);
3117 	} else {
3118 		ASSERT(npgs == 1);
3119 		page_list_sub(pp, PG_CACHE_LIST);
3120 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3121 		    "page_reclaim_cache:pp %p", pp);
3122 	}
3123 
3124 	/*
3125 	 * clear the p_free & p_age bits since this page is no longer
3126 	 * on the free list.  Notice that there was a brief time where
3127 	 * a page is marked as free, but is not on the list.
3128 	 *
3129 	 * Set the reference bit to protect against immediate pageout.
3130 	 */
3131 	for (i = 0; i < npgs; i++, pp++) {
3132 		PP_CLRFREE(pp);
3133 		PP_CLRAGED(pp);
3134 		page_set_props(pp, P_REF);
3135 	}
3136 
3137 	CPU_STATS_ENTER_K();
3138 	cpup = CPU;	/* get cpup now that CPU cannot change */
3139 	CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3140 	CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3141 	CPU_STATS_EXIT_K();
3142 
3143 	return (1);
3144 }
3145 
3146 
3147 
3148 /*
3149  * Destroy identity of the page and put it back on
3150  * the page free list.  Assumes that the caller has
3151  * acquired the "exclusive" lock on the page.
3152  */
3153 void
3154 page_destroy(page_t *pp, int dontfree)
3155 {
3156 	ASSERT((PAGE_EXCL(pp) &&
3157 	    !page_iolock_assert(pp)) || panicstr);
3158 
3159 	if (pp->p_szc != 0) {
3160 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3161 		    pp->p_vnode == &kvp) {
3162 			panic("page_destroy: anon or kernel or no vnode "
3163 			    "large page %p", (void *)pp);
3164 		}
3165 		page_demote_vp_pages(pp);
3166 		ASSERT(pp->p_szc == 0);
3167 	}
3168 
3169 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3170 
3171 	/*
3172 	 * Unload translations, if any, then hash out the
3173 	 * page to erase its identity.
3174 	 */
3175 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3176 	page_hashout(pp, NULL);
3177 
3178 	if (!dontfree) {
3179 		/*
3180 		 * Acquire the "freemem_lock" for availrmem.
3181 		 * The page_struct_lock need not be acquired for lckcnt
3182 		 * and cowcnt since the page has an "exclusive" lock.
3183 		 */
3184 		if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3185 			mutex_enter(&freemem_lock);
3186 			if (pp->p_lckcnt != 0) {
3187 				availrmem++;
3188 				pp->p_lckcnt = 0;
3189 			}
3190 			if (pp->p_cowcnt != 0) {
3191 				availrmem += pp->p_cowcnt;
3192 				pp->p_cowcnt = 0;
3193 			}
3194 			mutex_exit(&freemem_lock);
3195 		}
3196 		/*
3197 		 * Put the page on the "free" list.
3198 		 */
3199 		page_free(pp, 0);
3200 	}
3201 }
3202 
3203 void
3204 page_destroy_pages(page_t *pp)
3205 {
3206 
3207 	page_t	*tpp, *rootpp = NULL;
3208 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
3209 	pgcnt_t	i, pglcks = 0;
3210 	uint_t	szc = pp->p_szc;
3211 
3212 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3213 
3214 	VM_STAT_ADD(pagecnt.pc_destroy_pages);
3215 
3216 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3217 
3218 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3219 		panic("page_destroy_pages: not root page %p", (void *)pp);
3220 		/*NOTREACHED*/
3221 	}
3222 
3223 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3224 		ASSERT((PAGE_EXCL(tpp) &&
3225 		    !page_iolock_assert(tpp)) || panicstr);
3226 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3227 		page_hashout(tpp, NULL);
3228 		ASSERT(tpp->p_offset == (u_offset_t)-1);
3229 		if (tpp->p_lckcnt != 0) {
3230 			pglcks++;
3231 			tpp->p_lckcnt = 0;
3232 		} else if (tpp->p_cowcnt != 0) {
3233 			pglcks += tpp->p_cowcnt;
3234 			tpp->p_cowcnt = 0;
3235 		}
3236 		ASSERT(!hat_page_getshare(tpp));
3237 		ASSERT(tpp->p_vnode == NULL);
3238 		ASSERT(tpp->p_szc == szc);
3239 
3240 		PP_SETFREE(tpp);
3241 		page_clr_all_props(tpp);
3242 		PP_SETAGED(tpp);
3243 		ASSERT(tpp->p_next == tpp);
3244 		ASSERT(tpp->p_prev == tpp);
3245 		page_list_concat(&rootpp, &tpp);
3246 	}
3247 
3248 	ASSERT(rootpp == pp);
3249 	if (pglcks != 0) {
3250 		mutex_enter(&freemem_lock);
3251 		availrmem += pglcks;
3252 		mutex_exit(&freemem_lock);
3253 	}
3254 
3255 	page_list_add_pages(rootpp, 0);
3256 	page_create_putback(pgcnt);
3257 }
3258 
3259 /*
3260  * Similar to page_destroy(), but destroys pages which are
3261  * locked and known to be on the page free list.  Since
3262  * the page is known to be free and locked, no one can access
3263  * it.
3264  *
3265  * Also, the number of free pages does not change.
3266  */
3267 void
3268 page_destroy_free(page_t *pp)
3269 {
3270 	ASSERT(PAGE_EXCL(pp));
3271 	ASSERT(PP_ISFREE(pp));
3272 	ASSERT(pp->p_vnode);
3273 	ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3274 	ASSERT(!hat_page_is_mapped(pp));
3275 	ASSERT(PP_ISAGED(pp) == 0);
3276 	ASSERT(pp->p_szc == 0);
3277 
3278 	VM_STAT_ADD(pagecnt.pc_destroy_free);
3279 	page_list_sub(pp, PG_CACHE_LIST);
3280 
3281 	page_hashout(pp, NULL);
3282 	ASSERT(pp->p_vnode == NULL);
3283 	ASSERT(pp->p_offset == (u_offset_t)-1);
3284 	ASSERT(pp->p_hash == NULL);
3285 
3286 	PP_SETAGED(pp);
3287 	page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3288 	page_unlock(pp);
3289 
3290 	mutex_enter(&new_freemem_lock);
3291 	if (freemem_wait) {
3292 		cv_signal(&freemem_cv);
3293 	}
3294 	mutex_exit(&new_freemem_lock);
3295 }
3296 
3297 /*
3298  * Rename the page "opp" to have an identity specified
3299  * by [vp, off].  If a page already exists with this name
3300  * it is locked and destroyed.  Note that the page's
3301  * translations are not unloaded during the rename.
3302  *
3303  * This routine is used by the anon layer to "steal" the
3304  * original page and is not unlike destroying a page and
3305  * creating a new page using the same page frame.
3306  *
3307  * XXX -- Could deadlock if caller 1 tries to rename A to B while
3308  * caller 2 tries to rename B to A.
3309  */
3310 void
3311 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3312 {
3313 	page_t		*pp;
3314 	int		olckcnt = 0;
3315 	int		ocowcnt = 0;
3316 	kmutex_t	*phm;
3317 	ulong_t		index;
3318 
3319 	ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3320 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3321 	ASSERT(PP_ISFREE(opp) == 0);
3322 
3323 	VM_STAT_ADD(page_rename_count);
3324 
3325 	TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3326 		"page rename:pp %p vp %p off %llx", opp, vp, off);
3327 
3328 	/*
3329 	 * CacheFS may call page_rename for a large NFS page
3330 	 * when both CacheFS and NFS mount points are used
3331 	 * by applications. Demote this large page before
3332 	 * renaming it, to ensure that there are no "partial"
3333 	 * large pages left lying around.
3334 	 */
3335 	if (opp->p_szc != 0) {
3336 		vnode_t *ovp = opp->p_vnode;
3337 		ASSERT(ovp != NULL);
3338 		ASSERT(!IS_SWAPFSVP(ovp));
3339 		ASSERT(ovp != &kvp);
3340 		page_demote_vp_pages(opp);
3341 		ASSERT(opp->p_szc == 0);
3342 	}
3343 
3344 	page_hashout(opp, NULL);
3345 	PP_CLRAGED(opp);
3346 
3347 	/*
3348 	 * Acquire the appropriate page hash lock, since
3349 	 * we're going to rename the page.
3350 	 */
3351 	index = PAGE_HASH_FUNC(vp, off);
3352 	phm = PAGE_HASH_MUTEX(index);
3353 	mutex_enter(phm);
3354 top:
3355 	/*
3356 	 * Look for an existing page with this name and destroy it if found.
3357 	 * By holding the page hash lock all the way to the page_hashin()
3358 	 * call, we are assured that no page can be created with this
3359 	 * identity.  In the case when the phm lock is dropped to undo any
3360 	 * hat layer mappings, the existing page is held with an "exclusive"
3361 	 * lock, again preventing another page from being created with
3362 	 * this identity.
3363 	 */
3364 	PAGE_HASH_SEARCH(index, pp, vp, off);
3365 	if (pp != NULL) {
3366 		VM_STAT_ADD(page_rename_exists);
3367 
3368 		/*
3369 		 * As it turns out, this is one of only two places where
3370 		 * page_lock() needs to hold the passed in lock in the
3371 		 * successful case.  In all of the others, the lock could
3372 		 * be dropped as soon as the attempt is made to lock
3373 		 * the page.  It is tempting to add yet another arguement,
3374 		 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3375 		 */
3376 		if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3377 			/*
3378 			 * Went to sleep because the page could not
3379 			 * be locked.  We were woken up when the page
3380 			 * was unlocked, or when the page was destroyed.
3381 			 * In either case, `phm' was dropped while we
3382 			 * slept.  Hence we should not just roar through
3383 			 * this loop.
3384 			 */
3385 			goto top;
3386 		}
3387 
3388 		/*
3389 		 * If an existing page is a large page, then demote
3390 		 * it to ensure that no "partial" large pages are
3391 		 * "created" after page_rename. An existing page
3392 		 * can be a CacheFS page, and can't belong to swapfs.
3393 		 */
3394 		if (hat_page_is_mapped(pp)) {
3395 			/*
3396 			 * Unload translations.  Since we hold the
3397 			 * exclusive lock on this page, the page
3398 			 * can not be changed while we drop phm.
3399 			 * This is also not a lock protocol violation,
3400 			 * but rather the proper way to do things.
3401 			 */
3402 			mutex_exit(phm);
3403 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3404 			if (pp->p_szc != 0) {
3405 				ASSERT(!IS_SWAPFSVP(vp));
3406 				ASSERT(vp != &kvp);
3407 				page_demote_vp_pages(pp);
3408 				ASSERT(pp->p_szc == 0);
3409 			}
3410 			mutex_enter(phm);
3411 		} else if (pp->p_szc != 0) {
3412 			ASSERT(!IS_SWAPFSVP(vp));
3413 			ASSERT(vp != &kvp);
3414 			mutex_exit(phm);
3415 			page_demote_vp_pages(pp);
3416 			ASSERT(pp->p_szc == 0);
3417 			mutex_enter(phm);
3418 		}
3419 		page_hashout(pp, phm);
3420 	}
3421 	/*
3422 	 * Hash in the page with the new identity.
3423 	 */
3424 	if (!page_hashin(opp, vp, off, phm)) {
3425 		/*
3426 		 * We were holding phm while we searched for [vp, off]
3427 		 * and only dropped phm if we found and locked a page.
3428 		 * If we can't create this page now, then some thing
3429 		 * is really broken.
3430 		 */
3431 		panic("page_rename: Can't hash in page: %p", (void *)pp);
3432 		/*NOTREACHED*/
3433 	}
3434 
3435 	ASSERT(MUTEX_HELD(phm));
3436 	mutex_exit(phm);
3437 
3438 	/*
3439 	 * Now that we have dropped phm, lets get around to finishing up
3440 	 * with pp.
3441 	 */
3442 	if (pp != NULL) {
3443 		ASSERT(!hat_page_is_mapped(pp));
3444 		/* for now large pages should not end up here */
3445 		ASSERT(pp->p_szc == 0);
3446 		/*
3447 		 * Save the locks for transfer to the new page and then
3448 		 * clear them so page_free doesn't think they're important.
3449 		 * The page_struct_lock need not be acquired for lckcnt and
3450 		 * cowcnt since the page has an "exclusive" lock.
3451 		 */
3452 		olckcnt = pp->p_lckcnt;
3453 		ocowcnt = pp->p_cowcnt;
3454 		pp->p_lckcnt = pp->p_cowcnt = 0;
3455 
3456 		/*
3457 		 * Put the page on the "free" list after we drop
3458 		 * the lock.  The less work under the lock the better.
3459 		 */
3460 		/*LINTED: constant in conditional context*/
3461 		VN_DISPOSE(pp, B_FREE, 0, kcred);
3462 	}
3463 
3464 	/*
3465 	 * Transfer the lock count from the old page (if any).
3466 	 * The page_struct_lock need not be acquired for lckcnt and
3467 	 * cowcnt since the page has an "exclusive" lock.
3468 	 */
3469 	opp->p_lckcnt += olckcnt;
3470 	opp->p_cowcnt += ocowcnt;
3471 }
3472 
3473 /*
3474  * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3475  *
3476  * Pages are normally inserted at the start of a vnode's v_pages list.
3477  * If the vnode is VMODSORT and the page is modified, it goes at the end.
3478  * This can happen when a modified page is relocated for DR.
3479  *
3480  * Returns 1 on success and 0 on failure.
3481  */
3482 static int
3483 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3484 {
3485 	page_t		**listp;
3486 	page_t		*tp;
3487 	ulong_t		index;
3488 
3489 	ASSERT(PAGE_EXCL(pp));
3490 	ASSERT(vp != NULL);
3491 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3492 
3493 	/*
3494 	 * Be sure to set these up before the page is inserted on the hash
3495 	 * list.  As soon as the page is placed on the list some other
3496 	 * thread might get confused and wonder how this page could
3497 	 * possibly hash to this list.
3498 	 */
3499 	pp->p_vnode = vp;
3500 	pp->p_offset = offset;
3501 
3502 	/*
3503 	 * record if this page is on a swap vnode
3504 	 */
3505 	if ((vp->v_flag & VISSWAP) != 0)
3506 		PP_SETSWAP(pp);
3507 
3508 	index = PAGE_HASH_FUNC(vp, offset);
3509 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3510 	listp = &page_hash[index];
3511 
3512 	/*
3513 	 * If this page is already hashed in, fail this attempt to add it.
3514 	 */
3515 	for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3516 		if (tp->p_vnode == vp && tp->p_offset == offset) {
3517 			pp->p_vnode = NULL;
3518 			pp->p_offset = (u_offset_t)(-1);
3519 			return (0);
3520 		}
3521 	}
3522 	pp->p_hash = *listp;
3523 	*listp = pp;
3524 
3525 	/*
3526 	 * Add the page to the vnode's list of pages
3527 	 */
3528 	if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3529 		listp = &vp->v_pages->p_vpprev->p_vpnext;
3530 	else
3531 		listp = &vp->v_pages;
3532 
3533 	page_vpadd(listp, pp);
3534 
3535 	return (1);
3536 }
3537 
3538 /*
3539  * Add page `pp' to both the hash and vp chains for [vp, offset].
3540  *
3541  * Returns 1 on success and 0 on failure.
3542  * If hold is passed in, it is not dropped.
3543  */
3544 int
3545 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3546 {
3547 	kmutex_t	*phm = NULL;
3548 	kmutex_t	*vphm;
3549 	int		rc;
3550 
3551 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3552 
3553 	TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3554 		"page_hashin:pp %p vp %p offset %llx",
3555 		pp, vp, offset);
3556 
3557 	VM_STAT_ADD(hashin_count);
3558 
3559 	if (hold != NULL)
3560 		phm = hold;
3561 	else {
3562 		VM_STAT_ADD(hashin_not_held);
3563 		phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3564 		mutex_enter(phm);
3565 	}
3566 
3567 	vphm = page_vnode_mutex(vp);
3568 	mutex_enter(vphm);
3569 	rc = page_do_hashin(pp, vp, offset);
3570 	mutex_exit(vphm);
3571 	if (hold == NULL)
3572 		mutex_exit(phm);
3573 	if (rc == 0)
3574 		VM_STAT_ADD(hashin_already);
3575 	return (rc);
3576 }
3577 
3578 /*
3579  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3580  * All mutexes must be held
3581  */
3582 static void
3583 page_do_hashout(page_t *pp)
3584 {
3585 	page_t	**hpp;
3586 	page_t	*hp;
3587 	vnode_t	*vp = pp->p_vnode;
3588 
3589 	ASSERT(vp != NULL);
3590 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3591 
3592 	/*
3593 	 * First, take pp off of its hash chain.
3594 	 */
3595 	hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3596 
3597 	for (;;) {
3598 		hp = *hpp;
3599 		if (hp == pp)
3600 			break;
3601 		if (hp == NULL) {
3602 			panic("page_do_hashout");
3603 			/*NOTREACHED*/
3604 		}
3605 		hpp = &hp->p_hash;
3606 	}
3607 	*hpp = pp->p_hash;
3608 
3609 	/*
3610 	 * Now remove it from its associated vnode.
3611 	 */
3612 	if (vp->v_pages)
3613 		page_vpsub(&vp->v_pages, pp);
3614 
3615 	pp->p_hash = NULL;
3616 	page_clr_all_props(pp);
3617 	PP_CLRSWAP(pp);
3618 	pp->p_vnode = NULL;
3619 	pp->p_offset = (u_offset_t)-1;
3620 }
3621 
3622 /*
3623  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3624  *
3625  * When `phm' is non-NULL it contains the address of the mutex protecting the
3626  * hash list pp is on.  It is not dropped.
3627  */
3628 void
3629 page_hashout(page_t *pp, kmutex_t *phm)
3630 {
3631 	vnode_t		*vp;
3632 	ulong_t		index;
3633 	kmutex_t	*nphm;
3634 	kmutex_t	*vphm;
3635 	kmutex_t	*sep;
3636 
3637 	ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3638 	ASSERT(pp->p_vnode != NULL);
3639 	ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3640 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3641 
3642 	vp = pp->p_vnode;
3643 
3644 	TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3645 		"page_hashout:pp %p vp %p", pp, vp);
3646 
3647 	/* Kernel probe */
3648 	TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */,
3649 	    tnf_opaque, vnode, vp,
3650 	    tnf_offset, offset, pp->p_offset);
3651 
3652 	/*
3653 	 *
3654 	 */
3655 	VM_STAT_ADD(hashout_count);
3656 	index = PAGE_HASH_FUNC(vp, pp->p_offset);
3657 	if (phm == NULL) {
3658 		VM_STAT_ADD(hashout_not_held);
3659 		nphm = PAGE_HASH_MUTEX(index);
3660 		mutex_enter(nphm);
3661 	}
3662 	ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3663 
3664 
3665 	/*
3666 	 * grab page vnode mutex and remove it...
3667 	 */
3668 	vphm = page_vnode_mutex(vp);
3669 	mutex_enter(vphm);
3670 
3671 	page_do_hashout(pp);
3672 
3673 	mutex_exit(vphm);
3674 	if (phm == NULL)
3675 		mutex_exit(nphm);
3676 
3677 	/*
3678 	 * Wake up processes waiting for this page.  The page's
3679 	 * identity has been changed, and is probably not the
3680 	 * desired page any longer.
3681 	 */
3682 	sep = page_se_mutex(pp);
3683 	mutex_enter(sep);
3684 	pp->p_selock &= ~SE_EWANTED;
3685 	if (CV_HAS_WAITERS(&pp->p_cv))
3686 		cv_broadcast(&pp->p_cv);
3687 	mutex_exit(sep);
3688 }
3689 
3690 /*
3691  * Add the page to the front of a linked list of pages
3692  * using the p_next & p_prev pointers for the list.
3693  * The caller is responsible for protecting the list pointers.
3694  */
3695 void
3696 page_add(page_t **ppp, page_t *pp)
3697 {
3698 	ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3699 
3700 	page_add_common(ppp, pp);
3701 }
3702 
3703 
3704 
3705 /*
3706  *  Common code for page_add() and mach_page_add()
3707  */
3708 void
3709 page_add_common(page_t **ppp, page_t *pp)
3710 {
3711 	if (*ppp == NULL) {
3712 		pp->p_next = pp->p_prev = pp;
3713 	} else {
3714 		pp->p_next = *ppp;
3715 		pp->p_prev = (*ppp)->p_prev;
3716 		(*ppp)->p_prev = pp;
3717 		pp->p_prev->p_next = pp;
3718 	}
3719 	*ppp = pp;
3720 }
3721 
3722 
3723 /*
3724  * Remove this page from a linked list of pages
3725  * using the p_next & p_prev pointers for the list.
3726  *
3727  * The caller is responsible for protecting the list pointers.
3728  */
3729 void
3730 page_sub(page_t **ppp, page_t *pp)
3731 {
3732 	ASSERT((PP_ISFREE(pp)) ? 1 :
3733 	    (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3734 
3735 	if (*ppp == NULL || pp == NULL) {
3736 		panic("page_sub: bad arg(s): pp %p, *ppp %p",
3737 		    (void *)pp, (void *)(*ppp));
3738 		/*NOTREACHED*/
3739 	}
3740 
3741 	page_sub_common(ppp, pp);
3742 }
3743 
3744 
3745 /*
3746  *  Common code for page_sub() and mach_page_sub()
3747  */
3748 void
3749 page_sub_common(page_t **ppp, page_t *pp)
3750 {
3751 	if (*ppp == pp)
3752 		*ppp = pp->p_next;		/* go to next page */
3753 
3754 	if (*ppp == pp)
3755 		*ppp = NULL;			/* page list is gone */
3756 	else {
3757 		pp->p_prev->p_next = pp->p_next;
3758 		pp->p_next->p_prev = pp->p_prev;
3759 	}
3760 	pp->p_prev = pp->p_next = pp;		/* make pp a list of one */
3761 }
3762 
3763 
3764 /*
3765  * Break page list cppp into two lists with npages in the first list.
3766  * The tail is returned in nppp.
3767  */
3768 void
3769 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3770 {
3771 	page_t *s1pp = *oppp;
3772 	page_t *s2pp;
3773 	page_t *e1pp, *e2pp;
3774 	long n = 0;
3775 
3776 	if (s1pp == NULL) {
3777 		*nppp = NULL;
3778 		return;
3779 	}
3780 	if (npages == 0) {
3781 		*nppp = s1pp;
3782 		*oppp = NULL;
3783 		return;
3784 	}
3785 	for (n = 0, s2pp = *oppp; n < npages; n++) {
3786 		s2pp = s2pp->p_next;
3787 	}
3788 	/* Fix head and tail of new lists */
3789 	e1pp = s2pp->p_prev;
3790 	e2pp = s1pp->p_prev;
3791 	s1pp->p_prev = e1pp;
3792 	e1pp->p_next = s1pp;
3793 	s2pp->p_prev = e2pp;
3794 	e2pp->p_next = s2pp;
3795 
3796 	/* second list empty */
3797 	if (s2pp == s1pp) {
3798 		*oppp = s1pp;
3799 		*nppp = NULL;
3800 	} else {
3801 		*oppp = s1pp;
3802 		*nppp = s2pp;
3803 	}
3804 }
3805 
3806 /*
3807  * Concatenate page list nppp onto the end of list ppp.
3808  */
3809 void
3810 page_list_concat(page_t **ppp, page_t **nppp)
3811 {
3812 	page_t *s1pp, *s2pp, *e1pp, *e2pp;
3813 
3814 	if (*nppp == NULL) {
3815 		return;
3816 	}
3817 	if (*ppp == NULL) {
3818 		*ppp = *nppp;
3819 		return;
3820 	}
3821 	s1pp = *ppp;
3822 	e1pp =  s1pp->p_prev;
3823 	s2pp = *nppp;
3824 	e2pp = s2pp->p_prev;
3825 	s1pp->p_prev = e2pp;
3826 	e2pp->p_next = s1pp;
3827 	e1pp->p_next = s2pp;
3828 	s2pp->p_prev = e1pp;
3829 }
3830 
3831 /*
3832  * return the next page in the page list
3833  */
3834 page_t *
3835 page_list_next(page_t *pp)
3836 {
3837 	return (pp->p_next);
3838 }
3839 
3840 
3841 /*
3842  * Add the page to the front of the linked list of pages
3843  * using p_vpnext/p_vpprev pointers for the list.
3844  *
3845  * The caller is responsible for protecting the lists.
3846  */
3847 void
3848 page_vpadd(page_t **ppp, page_t *pp)
3849 {
3850 	if (*ppp == NULL) {
3851 		pp->p_vpnext = pp->p_vpprev = pp;
3852 	} else {
3853 		pp->p_vpnext = *ppp;
3854 		pp->p_vpprev = (*ppp)->p_vpprev;
3855 		(*ppp)->p_vpprev = pp;
3856 		pp->p_vpprev->p_vpnext = pp;
3857 	}
3858 	*ppp = pp;
3859 }
3860 
3861 /*
3862  * Remove this page from the linked list of pages
3863  * using p_vpnext/p_vpprev pointers for the list.
3864  *
3865  * The caller is responsible for protecting the lists.
3866  */
3867 void
3868 page_vpsub(page_t **ppp, page_t *pp)
3869 {
3870 	if (*ppp == NULL || pp == NULL) {
3871 		panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3872 		    (void *)pp, (void *)(*ppp));
3873 		/*NOTREACHED*/
3874 	}
3875 
3876 	if (*ppp == pp)
3877 		*ppp = pp->p_vpnext;		/* go to next page */
3878 
3879 	if (*ppp == pp)
3880 		*ppp = NULL;			/* page list is gone */
3881 	else {
3882 		pp->p_vpprev->p_vpnext = pp->p_vpnext;
3883 		pp->p_vpnext->p_vpprev = pp->p_vpprev;
3884 	}
3885 	pp->p_vpprev = pp->p_vpnext = pp;	/* make pp a list of one */
3886 }
3887 
3888 /*
3889  * Lock a physical page into memory "long term".  Used to support "lock
3890  * in memory" functions.  Accepts the page to be locked, and a cow variable
3891  * to indicate whether a the lock will travel to the new page during
3892  * a potential copy-on-write.
3893  */
3894 int
3895 page_pp_lock(
3896 	page_t *pp,			/* page to be locked */
3897 	int cow,			/* cow lock */
3898 	int kernel)			/* must succeed -- ignore checking */
3899 {
3900 	int r = 0;			/* result -- assume failure */
3901 
3902 	ASSERT(PAGE_LOCKED(pp));
3903 
3904 	page_struct_lock(pp);
3905 	/*
3906 	 * Acquire the "freemem_lock" for availrmem.
3907 	 */
3908 	if (cow) {
3909 		mutex_enter(&freemem_lock);
3910 		if ((availrmem > pages_pp_maximum) &&
3911 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3912 			availrmem--;
3913 			pages_locked++;
3914 			mutex_exit(&freemem_lock);
3915 			r = 1;
3916 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3917 				cmn_err(CE_WARN,
3918 				    "COW lock limit reached on pfn 0x%lx",
3919 				    page_pptonum(pp));
3920 			}
3921 		} else
3922 			mutex_exit(&freemem_lock);
3923 	} else {
3924 		if (pp->p_lckcnt) {
3925 			if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3926 				r = 1;
3927 				if (++pp->p_lckcnt ==
3928 				    (ushort_t)PAGE_LOCK_MAXIMUM) {
3929 					cmn_err(CE_WARN, "Page lock limit "
3930 					    "reached on pfn 0x%lx",
3931 					    page_pptonum(pp));
3932 				}
3933 			}
3934 		} else {
3935 			if (kernel) {
3936 				/* availrmem accounting done by caller */
3937 				++pp->p_lckcnt;
3938 				r = 1;
3939 			} else {
3940 				mutex_enter(&freemem_lock);
3941 				if (availrmem > pages_pp_maximum) {
3942 					availrmem--;
3943 					pages_locked++;
3944 					++pp->p_lckcnt;
3945 					r = 1;
3946 				}
3947 				mutex_exit(&freemem_lock);
3948 			}
3949 		}
3950 	}
3951 	page_struct_unlock(pp);
3952 	return (r);
3953 }
3954 
3955 /*
3956  * Decommit a lock on a physical page frame.  Account for cow locks if
3957  * appropriate.
3958  */
3959 void
3960 page_pp_unlock(
3961 	page_t *pp,			/* page to be unlocked */
3962 	int cow,			/* expect cow lock */
3963 	int kernel)			/* this was a kernel lock */
3964 {
3965 	ASSERT(PAGE_LOCKED(pp));
3966 
3967 	page_struct_lock(pp);
3968 	/*
3969 	 * Acquire the "freemem_lock" for availrmem.
3970 	 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3971 	 * could be called to unlock even if nothing is locked. This could
3972 	 * happen if locked file pages were truncated (removing the lock)
3973 	 * and the file was grown again and new pages faulted in; the new
3974 	 * pages are unlocked but the segment still thinks they're locked.
3975 	 */
3976 	if (cow) {
3977 		if (pp->p_cowcnt) {
3978 			mutex_enter(&freemem_lock);
3979 			pp->p_cowcnt--;
3980 			availrmem++;
3981 			pages_locked--;
3982 			mutex_exit(&freemem_lock);
3983 		}
3984 	} else {
3985 		if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
3986 			if (!kernel) {
3987 				mutex_enter(&freemem_lock);
3988 				availrmem++;
3989 				pages_locked--;
3990 				mutex_exit(&freemem_lock);
3991 			}
3992 		}
3993 	}
3994 	page_struct_unlock(pp);
3995 }
3996 
3997 /*
3998  * This routine reserves availrmem for npages;
3999  * 	flags: KM_NOSLEEP or KM_SLEEP
4000  * 	returns 1 on success or 0 on failure
4001  */
4002 int
4003 page_resv(pgcnt_t npages, uint_t flags)
4004 {
4005 	mutex_enter(&freemem_lock);
4006 	while (availrmem < tune.t_minarmem + npages) {
4007 		if (flags & KM_NOSLEEP) {
4008 			mutex_exit(&freemem_lock);
4009 			return (0);
4010 		}
4011 		mutex_exit(&freemem_lock);
4012 		page_needfree(npages);
4013 		kmem_reap();
4014 		delay(hz >> 2);
4015 		page_needfree(-(spgcnt_t)npages);
4016 		mutex_enter(&freemem_lock);
4017 	}
4018 	availrmem -= npages;
4019 	mutex_exit(&freemem_lock);
4020 	return (1);
4021 }
4022 
4023 /*
4024  * This routine unreserves availrmem for npages;
4025  */
4026 void
4027 page_unresv(pgcnt_t npages)
4028 {
4029 	mutex_enter(&freemem_lock);
4030 	availrmem += npages;
4031 	mutex_exit(&freemem_lock);
4032 }
4033 
4034 /*
4035  * See Statement at the beginning of segvn_lockop() regarding
4036  * the way we handle cowcnts and lckcnts.
4037  *
4038  * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
4039  * that breaks COW has PROT_WRITE.
4040  *
4041  * Note that, we may also break COW in case we are softlocking
4042  * on read access during physio;
4043  * in this softlock case, the vpage may not have PROT_WRITE.
4044  * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
4045  * if the vpage doesn't have PROT_WRITE.
4046  *
4047  * This routine is never called if we are stealing a page
4048  * in anon_private.
4049  *
4050  * The caller subtracted from availrmem for read only mapping.
4051  * if lckcnt is 1 increment availrmem.
4052  */
4053 void
4054 page_pp_useclaim(
4055 	page_t *opp,		/* original page frame losing lock */
4056 	page_t *npp,		/* new page frame gaining lock */
4057 	uint_t	write_perm) 	/* set if vpage has PROT_WRITE */
4058 {
4059 	int payback = 0;
4060 
4061 	ASSERT(PAGE_LOCKED(opp));
4062 	ASSERT(PAGE_LOCKED(npp));
4063 
4064 	page_struct_lock(opp);
4065 
4066 	ASSERT(npp->p_cowcnt == 0);
4067 	ASSERT(npp->p_lckcnt == 0);
4068 
4069 	/* Don't use claim if nothing is locked (see page_pp_unlock above) */
4070 	if ((write_perm && opp->p_cowcnt != 0) ||
4071 	    (!write_perm && opp->p_lckcnt != 0)) {
4072 
4073 		if (write_perm) {
4074 			npp->p_cowcnt++;
4075 			ASSERT(opp->p_cowcnt != 0);
4076 			opp->p_cowcnt--;
4077 		} else {
4078 
4079 			ASSERT(opp->p_lckcnt != 0);
4080 
4081 			/*
4082 			 * We didn't need availrmem decremented if p_lckcnt on
4083 			 * original page is 1. Here, we are unlocking
4084 			 * read-only copy belonging to original page and
4085 			 * are locking a copy belonging to new page.
4086 			 */
4087 			if (opp->p_lckcnt == 1)
4088 				payback = 1;
4089 
4090 			npp->p_lckcnt++;
4091 			opp->p_lckcnt--;
4092 		}
4093 	}
4094 	if (payback) {
4095 		mutex_enter(&freemem_lock);
4096 		availrmem++;
4097 		pages_useclaim--;
4098 		mutex_exit(&freemem_lock);
4099 	}
4100 	page_struct_unlock(opp);
4101 }
4102 
4103 /*
4104  * Simple claim adjust functions -- used to support changes in
4105  * claims due to changes in access permissions.  Used by segvn_setprot().
4106  */
4107 int
4108 page_addclaim(page_t *pp)
4109 {
4110 	int r = 0;			/* result */
4111 
4112 	ASSERT(PAGE_LOCKED(pp));
4113 
4114 	page_struct_lock(pp);
4115 	ASSERT(pp->p_lckcnt != 0);
4116 
4117 	if (pp->p_lckcnt == 1) {
4118 		if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4119 			--pp->p_lckcnt;
4120 			r = 1;
4121 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4122 				cmn_err(CE_WARN,
4123 				    "COW lock limit reached on pfn 0x%lx",
4124 				    page_pptonum(pp));
4125 			}
4126 		}
4127 	} else {
4128 		mutex_enter(&freemem_lock);
4129 		if ((availrmem > pages_pp_maximum) &&
4130 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4131 			--availrmem;
4132 			++pages_claimed;
4133 			mutex_exit(&freemem_lock);
4134 			--pp->p_lckcnt;
4135 			r = 1;
4136 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4137 				cmn_err(CE_WARN,
4138 				    "COW lock limit reached on pfn 0x%lx",
4139 				    page_pptonum(pp));
4140 			}
4141 		} else
4142 			mutex_exit(&freemem_lock);
4143 	}
4144 	page_struct_unlock(pp);
4145 	return (r);
4146 }
4147 
4148 int
4149 page_subclaim(page_t *pp)
4150 {
4151 	int r = 0;
4152 
4153 	ASSERT(PAGE_LOCKED(pp));
4154 
4155 	page_struct_lock(pp);
4156 	ASSERT(pp->p_cowcnt != 0);
4157 
4158 	if (pp->p_lckcnt) {
4159 		if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4160 			r = 1;
4161 			/*
4162 			 * for availrmem
4163 			 */
4164 			mutex_enter(&freemem_lock);
4165 			availrmem++;
4166 			pages_claimed--;
4167 			mutex_exit(&freemem_lock);
4168 
4169 			pp->p_cowcnt--;
4170 
4171 			if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4172 				cmn_err(CE_WARN,
4173 				    "Page lock limit reached on pfn 0x%lx",
4174 				    page_pptonum(pp));
4175 			}
4176 		}
4177 	} else {
4178 		r = 1;
4179 		pp->p_cowcnt--;
4180 		pp->p_lckcnt++;
4181 	}
4182 	page_struct_unlock(pp);
4183 	return (r);
4184 }
4185 
4186 int
4187 page_addclaim_pages(page_t  **ppa)
4188 {
4189 
4190 	pgcnt_t	lckpgs = 0, pg_idx;
4191 
4192 	VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4193 
4194 	mutex_enter(&page_llock);
4195 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4196 
4197 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4198 		ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4199 		if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4200 			mutex_exit(&page_llock);
4201 			return (0);
4202 		}
4203 		if (ppa[pg_idx]->p_lckcnt > 1)
4204 			lckpgs++;
4205 	}
4206 
4207 	if (lckpgs != 0) {
4208 		mutex_enter(&freemem_lock);
4209 		if (availrmem >= pages_pp_maximum + lckpgs) {
4210 			availrmem -= lckpgs;
4211 			pages_claimed += lckpgs;
4212 		} else {
4213 			mutex_exit(&freemem_lock);
4214 			mutex_exit(&page_llock);
4215 			return (0);
4216 		}
4217 		mutex_exit(&freemem_lock);
4218 	}
4219 
4220 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4221 		ppa[pg_idx]->p_lckcnt--;
4222 		ppa[pg_idx]->p_cowcnt++;
4223 	}
4224 	mutex_exit(&page_llock);
4225 	return (1);
4226 }
4227 
4228 int
4229 page_subclaim_pages(page_t  **ppa)
4230 {
4231 	pgcnt_t	ulckpgs = 0, pg_idx;
4232 
4233 	VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4234 
4235 	mutex_enter(&page_llock);
4236 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4237 
4238 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4239 		ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4240 		if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4241 			mutex_exit(&page_llock);
4242 			return (0);
4243 		}
4244 		if (ppa[pg_idx]->p_lckcnt != 0)
4245 			ulckpgs++;
4246 	}
4247 
4248 	if (ulckpgs != 0) {
4249 		mutex_enter(&freemem_lock);
4250 		availrmem += ulckpgs;
4251 		pages_claimed -= ulckpgs;
4252 		mutex_exit(&freemem_lock);
4253 	}
4254 
4255 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4256 		ppa[pg_idx]->p_cowcnt--;
4257 		ppa[pg_idx]->p_lckcnt++;
4258 
4259 	}
4260 	mutex_exit(&page_llock);
4261 	return (1);
4262 }
4263 
4264 page_t *
4265 page_numtopp(pfn_t pfnum, se_t se)
4266 {
4267 	page_t *pp;
4268 
4269 retry:
4270 	pp = page_numtopp_nolock(pfnum);
4271 	if (pp == NULL) {
4272 		return ((page_t *)NULL);
4273 	}
4274 
4275 	/*
4276 	 * Acquire the appropriate lock on the page.
4277 	 */
4278 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4279 		if (page_pptonum(pp) != pfnum)
4280 			goto retry;
4281 		continue;
4282 	}
4283 
4284 	if (page_pptonum(pp) != pfnum) {
4285 		page_unlock(pp);
4286 		goto retry;
4287 	}
4288 
4289 	return (pp);
4290 }
4291 
4292 page_t *
4293 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4294 {
4295 	page_t *pp;
4296 
4297 retry:
4298 	pp = page_numtopp_nolock(pfnum);
4299 	if (pp == NULL) {
4300 		return ((page_t *)NULL);
4301 	}
4302 
4303 	/*
4304 	 * Acquire the appropriate lock on the page.
4305 	 */
4306 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4307 		if (page_pptonum(pp) != pfnum)
4308 			goto retry;
4309 		continue;
4310 	}
4311 
4312 	if (page_pptonum(pp) != pfnum) {
4313 		page_unlock(pp);
4314 		goto retry;
4315 	}
4316 
4317 	return (pp);
4318 }
4319 
4320 /*
4321  * This routine is like page_numtopp, but will only return page structs
4322  * for pages which are ok for loading into hardware using the page struct.
4323  */
4324 page_t *
4325 page_numtopp_nowait(pfn_t pfnum, se_t se)
4326 {
4327 	page_t *pp;
4328 
4329 retry:
4330 	pp = page_numtopp_nolock(pfnum);
4331 	if (pp == NULL) {
4332 		return ((page_t *)NULL);
4333 	}
4334 
4335 	/*
4336 	 * Try to acquire the appropriate lock on the page.
4337 	 */
4338 	if (PP_ISFREE(pp))
4339 		pp = NULL;
4340 	else {
4341 		if (!page_trylock(pp, se))
4342 			pp = NULL;
4343 		else {
4344 			if (page_pptonum(pp) != pfnum) {
4345 				page_unlock(pp);
4346 				goto retry;
4347 			}
4348 			if (PP_ISFREE(pp)) {
4349 				page_unlock(pp);
4350 				pp = NULL;
4351 			}
4352 		}
4353 	}
4354 	return (pp);
4355 }
4356 
4357 /*
4358  * Returns a count of dirty pages that are in the process
4359  * of being written out.  If 'cleanit' is set, try to push the page.
4360  */
4361 pgcnt_t
4362 page_busy(int cleanit)
4363 {
4364 	page_t *page0 = page_first();
4365 	page_t *pp = page0;
4366 	pgcnt_t nppbusy = 0;
4367 	u_offset_t off;
4368 
4369 	do {
4370 		vnode_t *vp = pp->p_vnode;
4371 
4372 		/*
4373 		 * A page is a candidate for syncing if it is:
4374 		 *
4375 		 * (a)	On neither the freelist nor the cachelist
4376 		 * (b)	Hashed onto a vnode
4377 		 * (c)	Not a kernel page
4378 		 * (d)	Dirty
4379 		 * (e)	Not part of a swapfile
4380 		 * (f)	a page which belongs to a real vnode; eg has a non-null
4381 		 *	v_vfsp pointer.
4382 		 * (g)	Backed by a filesystem which doesn't have a
4383 		 *	stubbed-out sync operation
4384 		 */
4385 		if (!PP_ISFREE(pp) && vp != NULL && vp != &kvp &&
4386 		    hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4387 		    vfs_can_sync(vp->v_vfsp)) {
4388 			nppbusy++;
4389 			vfs_syncprogress();
4390 
4391 			if (!cleanit)
4392 				continue;
4393 			if (!page_trylock(pp, SE_EXCL))
4394 				continue;
4395 
4396 			if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4397 			    pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4398 			    !(hat_pagesync(pp,
4399 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4400 				page_unlock(pp);
4401 				continue;
4402 			}
4403 			off = pp->p_offset;
4404 			VN_HOLD(vp);
4405 			page_unlock(pp);
4406 			(void) VOP_PUTPAGE(vp, off, PAGESIZE,
4407 			    B_ASYNC | B_FREE, kcred);
4408 			VN_RELE(vp);
4409 		}
4410 	} while ((pp = page_next(pp)) != page0);
4411 
4412 	return (nppbusy);
4413 }
4414 
4415 void page_invalidate_pages(void);
4416 
4417 /*
4418  * callback handler to vm sub-system
4419  *
4420  * callers make sure no recursive entries to this func.
4421  */
4422 /*ARGSUSED*/
4423 boolean_t
4424 callb_vm_cpr(void *arg, int code)
4425 {
4426 	if (code == CB_CODE_CPR_CHKPT)
4427 		page_invalidate_pages();
4428 	return (B_TRUE);
4429 }
4430 
4431 /*
4432  * Invalidate all pages of the system.
4433  * It shouldn't be called until all user page activities are all stopped.
4434  */
4435 void
4436 page_invalidate_pages()
4437 {
4438 	page_t *pp;
4439 	page_t *page0;
4440 	pgcnt_t nbusypages;
4441 	int retry = 0;
4442 	const int MAXRETRIES = 4;
4443 #if defined(__sparc)
4444 	extern struct vnode prom_ppages;
4445 #endif /* __sparc */
4446 
4447 top:
4448 	/*
4449 	 * Flush dirty pages and destory the clean ones.
4450 	 */
4451 	nbusypages = 0;
4452 
4453 	pp = page0 = page_first();
4454 	do {
4455 		struct vnode	*vp;
4456 		u_offset_t	offset;
4457 		int		mod;
4458 
4459 		/*
4460 		 * skip the page if it has no vnode or the page associated
4461 		 * with the kernel vnode or prom allocated kernel mem.
4462 		 */
4463 #if defined(__sparc)
4464 		if ((vp = pp->p_vnode) == NULL || vp == &kvp ||
4465 		    vp == &prom_ppages)
4466 #else /* x86 doesn't have prom or prom_ppage */
4467 		if ((vp = pp->p_vnode) == NULL || vp == &kvp)
4468 #endif /* __sparc */
4469 			continue;
4470 
4471 		/*
4472 		 * skip the page which is already free invalidated.
4473 		 */
4474 		if (PP_ISFREE(pp) && PP_ISAGED(pp))
4475 			continue;
4476 
4477 		/*
4478 		 * skip pages that are already locked or can't be "exclusively"
4479 		 * locked or are already free.  After we lock the page, check
4480 		 * the free and age bits again to be sure it's not destroied
4481 		 * yet.
4482 		 * To achieve max. parallelization, we use page_trylock instead
4483 		 * of page_lock so that we don't get block on individual pages
4484 		 * while we have thousands of other pages to process.
4485 		 */
4486 		if (!page_trylock(pp, SE_EXCL)) {
4487 			nbusypages++;
4488 			continue;
4489 		} else if (PP_ISFREE(pp)) {
4490 			if (!PP_ISAGED(pp)) {
4491 				page_destroy_free(pp);
4492 			} else {
4493 				page_unlock(pp);
4494 			}
4495 			continue;
4496 		}
4497 		/*
4498 		 * Is this page involved in some I/O? shared?
4499 		 *
4500 		 * The page_struct_lock need not be acquired to
4501 		 * examine these fields since the page has an
4502 		 * "exclusive" lock.
4503 		 */
4504 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4505 			page_unlock(pp);
4506 			continue;
4507 		}
4508 
4509 		if (vp->v_type == VCHR) {
4510 			panic("vp->v_type == VCHR");
4511 			/*NOTREACHED*/
4512 		}
4513 
4514 		if (!page_try_demote_pages(pp)) {
4515 			page_unlock(pp);
4516 			continue;
4517 		}
4518 
4519 		/*
4520 		 * Check the modified bit. Leave the bits alone in hardware
4521 		 * (they will be modified if we do the putpage).
4522 		 */
4523 		mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4524 			& P_MOD);
4525 		if (mod) {
4526 			offset = pp->p_offset;
4527 			/*
4528 			 * Hold the vnode before releasing the page lock
4529 			 * to prevent it from being freed and re-used by
4530 			 * some other thread.
4531 			 */
4532 			VN_HOLD(vp);
4533 			page_unlock(pp);
4534 			/*
4535 			 * No error return is checked here. Callers such as
4536 			 * cpr deals with the dirty pages at the dump time
4537 			 * if this putpage fails.
4538 			 */
4539 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4540 			    kcred);
4541 			VN_RELE(vp);
4542 		} else {
4543 			page_destroy(pp, 0);
4544 		}
4545 	} while ((pp = page_next(pp)) != page0);
4546 	if (nbusypages && retry++ < MAXRETRIES) {
4547 		delay(1);
4548 		goto top;
4549 	}
4550 }
4551 
4552 /*
4553  * Replace the page "old" with the page "new" on the page hash and vnode lists
4554  *
4555  * the replacemnt must be done in place, ie the equivalent sequence:
4556  *
4557  *	vp = old->p_vnode;
4558  *	off = old->p_offset;
4559  *	page_do_hashout(old)
4560  *	page_do_hashin(new, vp, off)
4561  *
4562  * doesn't work, since
4563  *  1) if old is the only page on the vnode, the v_pages list has a window
4564  *     where it looks empty. This will break file system assumptions.
4565  * and
4566  *  2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4567  */
4568 static void
4569 page_do_relocate_hash(page_t *new, page_t *old)
4570 {
4571 	page_t	**hash_list;
4572 	vnode_t	*vp = old->p_vnode;
4573 	kmutex_t *sep;
4574 
4575 	ASSERT(PAGE_EXCL(old));
4576 	ASSERT(PAGE_EXCL(new));
4577 	ASSERT(vp != NULL);
4578 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4579 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4580 
4581 	/*
4582 	 * First find old page on the page hash list
4583 	 */
4584 	hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4585 
4586 	for (;;) {
4587 		if (*hash_list == old)
4588 			break;
4589 		if (*hash_list == NULL) {
4590 			panic("page_do_hashout");
4591 			/*NOTREACHED*/
4592 		}
4593 		hash_list = &(*hash_list)->p_hash;
4594 	}
4595 
4596 	/*
4597 	 * update new and replace old with new on the page hash list
4598 	 */
4599 	new->p_vnode = old->p_vnode;
4600 	new->p_offset = old->p_offset;
4601 	new->p_hash = old->p_hash;
4602 	*hash_list = new;
4603 
4604 	if ((new->p_vnode->v_flag & VISSWAP) != 0)
4605 		PP_SETSWAP(new);
4606 
4607 	/*
4608 	 * replace old with new on the vnode's page list
4609 	 */
4610 	if (old->p_vpnext == old) {
4611 		new->p_vpnext = new;
4612 		new->p_vpprev = new;
4613 	} else {
4614 		new->p_vpnext = old->p_vpnext;
4615 		new->p_vpprev = old->p_vpprev;
4616 		new->p_vpnext->p_vpprev = new;
4617 		new->p_vpprev->p_vpnext = new;
4618 	}
4619 	if (vp->v_pages == old)
4620 		vp->v_pages = new;
4621 
4622 	/*
4623 	 * clear out the old page
4624 	 */
4625 	old->p_hash = NULL;
4626 	old->p_vpnext = NULL;
4627 	old->p_vpprev = NULL;
4628 	old->p_vnode = NULL;
4629 	PP_CLRSWAP(old);
4630 	old->p_offset = (u_offset_t)-1;
4631 	page_clr_all_props(old);
4632 
4633 	/*
4634 	 * Wake up processes waiting for this page.  The page's
4635 	 * identity has been changed, and is probably not the
4636 	 * desired page any longer.
4637 	 */
4638 	sep = page_se_mutex(old);
4639 	mutex_enter(sep);
4640 	old->p_selock &= ~SE_EWANTED;
4641 	if (CV_HAS_WAITERS(&old->p_cv))
4642 		cv_broadcast(&old->p_cv);
4643 	mutex_exit(sep);
4644 }
4645 
4646 /*
4647  * This function moves the identity of page "pp_old" to page "pp_new".
4648  * Both pages must be locked on entry.  "pp_new" is free, has no identity,
4649  * and need not be hashed out from anywhere.
4650  */
4651 void
4652 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4653 {
4654 	vnode_t *vp = pp_old->p_vnode;
4655 	u_offset_t off = pp_old->p_offset;
4656 	kmutex_t *phm, *vphm;
4657 
4658 	/*
4659 	 * Rehash two pages
4660 	 */
4661 	ASSERT(PAGE_EXCL(pp_old));
4662 	ASSERT(PAGE_EXCL(pp_new));
4663 	ASSERT(vp != NULL);
4664 	ASSERT(pp_new->p_vnode == NULL);
4665 
4666 	/*
4667 	 * hashout then hashin while holding the mutexes
4668 	 */
4669 	phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4670 	mutex_enter(phm);
4671 	vphm = page_vnode_mutex(vp);
4672 	mutex_enter(vphm);
4673 
4674 	page_do_relocate_hash(pp_new, pp_old);
4675 
4676 	mutex_exit(vphm);
4677 	mutex_exit(phm);
4678 
4679 	/*
4680 	 * The page_struct_lock need not be acquired for lckcnt and
4681 	 * cowcnt since the page has an "exclusive" lock.
4682 	 */
4683 	ASSERT(pp_new->p_lckcnt == 0);
4684 	ASSERT(pp_new->p_cowcnt == 0);
4685 	pp_new->p_lckcnt = pp_old->p_lckcnt;
4686 	pp_new->p_cowcnt = pp_old->p_cowcnt;
4687 	pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4688 
4689 	/* The following comment preserved from page_flip(). */
4690 	/* XXX - Do we need to protect fsdata? */
4691 	pp_new->p_fsdata = pp_old->p_fsdata;
4692 }
4693 
4694 /*
4695  * Helper routine used to lock all remaining members of a
4696  * large page. The caller is responsible for passing in a locked
4697  * pp. If pp is a large page, then it succeeds in locking all the
4698  * remaining constituent pages or it returns with only the
4699  * original page locked.
4700  *
4701  * Returns 1 on success, 0 on failure.
4702  *
4703  * If success is returned this routine gurantees p_szc for all constituent
4704  * pages of a large page pp belongs to can't change. To achieve this we
4705  * recheck szc of pp after locking all constituent pages and retry if szc
4706  * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4707  * lock on one of constituent pages it can't be running after all constituent
4708  * pages are locked.  hat_page_demote() with a lock on a constituent page
4709  * outside of this large page (i.e. pp belonged to a larger large page) is
4710  * already done with all constituent pages of pp since the root's p_szc is
4711  * changed last. Thefore no need to synchronize with hat_page_demote() that
4712  * locked a constituent page outside of pp's current large page.
4713  */
4714 #ifdef DEBUG
4715 uint32_t gpg_trylock_mtbf = 0;
4716 #endif
4717 
4718 int
4719 group_page_trylock(page_t *pp, se_t se)
4720 {
4721 	page_t  *tpp;
4722 	pgcnt_t	npgs, i, j;
4723 	uint_t pszc = pp->p_szc;
4724 
4725 #ifdef DEBUG
4726 	if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4727 		return (0);
4728 	}
4729 #endif
4730 
4731 	if (pp != PP_GROUPLEADER(pp, pszc)) {
4732 		return (0);
4733 	}
4734 
4735 retry:
4736 	ASSERT(PAGE_LOCKED_SE(pp, se));
4737 	ASSERT(!PP_ISFREE(pp));
4738 	if (pszc == 0) {
4739 		return (1);
4740 	}
4741 	npgs = page_get_pagecnt(pszc);
4742 	tpp = pp + 1;
4743 	for (i = 1; i < npgs; i++, tpp++) {
4744 		if (!page_trylock(tpp, se)) {
4745 			tpp = pp + 1;
4746 			for (j = 1; j < i; j++, tpp++) {
4747 				page_unlock(tpp);
4748 			}
4749 			return (0);
4750 		}
4751 	}
4752 	if (pp->p_szc != pszc) {
4753 		ASSERT(pp->p_szc < pszc);
4754 		ASSERT(pp->p_vnode != NULL && pp->p_vnode != &kvp &&
4755 		    !IS_SWAPFSVP(pp->p_vnode));
4756 		tpp = pp + 1;
4757 		for (i = 1; i < npgs; i++, tpp++) {
4758 			page_unlock(tpp);
4759 		}
4760 		pszc = pp->p_szc;
4761 		goto retry;
4762 	}
4763 	return (1);
4764 }
4765 
4766 void
4767 group_page_unlock(page_t *pp)
4768 {
4769 	page_t *tpp;
4770 	pgcnt_t	npgs, i;
4771 
4772 	ASSERT(PAGE_LOCKED(pp));
4773 	ASSERT(!PP_ISFREE(pp));
4774 	ASSERT(pp == PP_PAGEROOT(pp));
4775 	npgs = page_get_pagecnt(pp->p_szc);
4776 	for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4777 		page_unlock(tpp);
4778 	}
4779 }
4780 
4781 /*
4782  * returns
4783  * 0 		: on success and *nrelocp is number of relocated PAGESIZE pages
4784  * ERANGE	: this is not a base page
4785  * EBUSY	: failure to get locks on the page/pages
4786  * ENOMEM	: failure to obtain replacement pages
4787  * EAGAIN	: OBP has not yet completed its boot-time handoff to the kernel
4788  *
4789  * Return with all constituent members of target and replacement
4790  * SE_EXCL locked. It is the callers responsibility to drop the
4791  * locks.
4792  */
4793 int
4794 do_page_relocate(
4795 	page_t **target,
4796 	page_t **replacement,
4797 	int grouplock,
4798 	spgcnt_t *nrelocp,
4799 	lgrp_t *lgrp)
4800 {
4801 #ifdef DEBUG
4802 	page_t *first_repl;
4803 #endif /* DEBUG */
4804 	page_t *repl;
4805 	page_t *targ;
4806 	page_t *pl = NULL;
4807 	uint_t ppattr;
4808 	pfn_t   pfn, repl_pfn;
4809 	uint_t	szc;
4810 	spgcnt_t npgs, i;
4811 	int repl_contig = 0;
4812 	uint_t flags = 0;
4813 	spgcnt_t dofree = 0;
4814 
4815 	*nrelocp = 0;
4816 
4817 #if defined(__sparc)
4818 	/*
4819 	 * We need to wait till OBP has completed
4820 	 * its boot-time handoff of its resources to the kernel
4821 	 * before we allow page relocation
4822 	 */
4823 	if (page_relocate_ready == 0) {
4824 		return (EAGAIN);
4825 	}
4826 #endif
4827 
4828 	/*
4829 	 * If this is not a base page,
4830 	 * just return with 0x0 pages relocated.
4831 	 */
4832 	targ = *target;
4833 	ASSERT(PAGE_EXCL(targ));
4834 	ASSERT(!PP_ISFREE(targ));
4835 	szc = targ->p_szc;
4836 	ASSERT(szc < mmu_page_sizes);
4837 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4838 	pfn = targ->p_pagenum;
4839 	if (pfn != PFN_BASE(pfn, szc)) {
4840 		VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4841 		return (ERANGE);
4842 	}
4843 
4844 	if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4845 		repl_pfn = repl->p_pagenum;
4846 		if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4847 			VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4848 			return (ERANGE);
4849 		}
4850 		repl_contig = 1;
4851 	}
4852 
4853 	/*
4854 	 * We must lock all members of this large page or we cannot
4855 	 * relocate any part of it.
4856 	 */
4857 	if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4858 		VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4859 		return (EBUSY);
4860 	}
4861 
4862 	/*
4863 	 * reread szc it could have been decreased before
4864 	 * group_page_trylock() was done.
4865 	 */
4866 	szc = targ->p_szc;
4867 	ASSERT(szc < mmu_page_sizes);
4868 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4869 	ASSERT(pfn == PFN_BASE(pfn, szc));
4870 
4871 	npgs = page_get_pagecnt(targ->p_szc);
4872 
4873 	if (repl == NULL) {
4874 		dofree = npgs;		/* Size of target page in MMU pages */
4875 		if (!page_create_wait(dofree, 0)) {
4876 			if (grouplock != 0) {
4877 				group_page_unlock(targ);
4878 			}
4879 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4880 			return (ENOMEM);
4881 		}
4882 
4883 		/*
4884 		 * seg kmem pages require that the target and replacement
4885 		 * page be the same pagesize.
4886 		 */
4887 		flags = (targ->p_vnode == &kvp) ? PGR_SAMESZC : 0;
4888 		repl = page_get_replacement_page(targ, lgrp, flags);
4889 		if (repl == NULL) {
4890 			if (grouplock != 0) {
4891 				group_page_unlock(targ);
4892 			}
4893 			page_create_putback(dofree);
4894 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4895 			return (ENOMEM);
4896 		}
4897 	}
4898 #ifdef DEBUG
4899 	else {
4900 		ASSERT(PAGE_LOCKED(repl));
4901 	}
4902 #endif /* DEBUG */
4903 
4904 #if defined(__sparc)
4905 	/*
4906 	 * Let hat_page_relocate() complete the relocation if it's kernel page
4907 	 */
4908 	if (targ->p_vnode == &kvp) {
4909 		*replacement = repl;
4910 		if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4911 			if (grouplock != 0) {
4912 				group_page_unlock(targ);
4913 			}
4914 			if (dofree) {
4915 				*replacement = NULL;
4916 				page_free_replacement_page(repl);
4917 				page_create_putback(dofree);
4918 			}
4919 			VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4920 			return (EAGAIN);
4921 		}
4922 		VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4923 		return (0);
4924 	}
4925 #else
4926 #if defined(lint)
4927 	dofree = dofree;
4928 #endif
4929 #endif
4930 
4931 #ifdef DEBUG
4932 	first_repl = repl;
4933 #endif /* DEBUG */
4934 
4935 	for (i = 0; i < npgs; i++) {
4936 		ASSERT(PAGE_EXCL(targ));
4937 
4938 		(void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4939 
4940 		ASSERT(hat_page_getshare(targ) == 0);
4941 		ASSERT(!PP_ISFREE(targ));
4942 		ASSERT(targ->p_pagenum == (pfn + i));
4943 		ASSERT(repl_contig == 0 ||
4944 		    repl->p_pagenum == (repl_pfn + i));
4945 
4946 		/*
4947 		 * Copy the page contents and attributes then
4948 		 * relocate the page in the page hash.
4949 		 */
4950 		ppcopy(targ, repl);
4951 		ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
4952 		page_clr_all_props(repl);
4953 		page_set_props(repl, ppattr);
4954 		page_relocate_hash(repl, targ);
4955 
4956 		ASSERT(hat_page_getshare(targ) == 0);
4957 		ASSERT(hat_page_getshare(repl) == 0);
4958 		/*
4959 		 * Now clear the props on targ, after the
4960 		 * page_relocate_hash(), they no longer
4961 		 * have any meaning.
4962 		 */
4963 		page_clr_all_props(targ);
4964 		ASSERT(targ->p_next == targ);
4965 		ASSERT(targ->p_prev == targ);
4966 		page_list_concat(&pl, &targ);
4967 
4968 		targ++;
4969 		if (repl_contig != 0) {
4970 			repl++;
4971 		} else {
4972 			repl = repl->p_next;
4973 		}
4974 	}
4975 	/* assert that we have come full circle with repl */
4976 	ASSERT(repl_contig == 1 || first_repl == repl);
4977 
4978 	*target = pl;
4979 	if (*replacement == NULL) {
4980 		ASSERT(first_repl == repl);
4981 		*replacement = repl;
4982 	}
4983 	VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4984 	*nrelocp = npgs;
4985 	return (0);
4986 }
4987 /*
4988  * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
4989  */
4990 int
4991 page_relocate(
4992 	page_t **target,
4993 	page_t **replacement,
4994 	int grouplock,
4995 	int freetarget,
4996 	spgcnt_t *nrelocp,
4997 	lgrp_t *lgrp)
4998 {
4999 	spgcnt_t ret;
5000 
5001 	/* do_page_relocate returns 0 on success or errno value */
5002 	ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
5003 
5004 	if (ret != 0 || freetarget == 0) {
5005 		return (ret);
5006 	}
5007 	if (*nrelocp == 1) {
5008 		ASSERT(*target != NULL);
5009 		page_free(*target, 1);
5010 	} else {
5011 		page_t *tpp = *target;
5012 		uint_t szc = tpp->p_szc;
5013 		pgcnt_t npgs = page_get_pagecnt(szc);
5014 		ASSERT(npgs > 1);
5015 		ASSERT(szc != 0);
5016 		do {
5017 			ASSERT(PAGE_EXCL(tpp));
5018 			ASSERT(!hat_page_is_mapped(tpp));
5019 			ASSERT(tpp->p_szc == szc);
5020 			PP_SETFREE(tpp);
5021 			PP_SETAGED(tpp);
5022 			npgs--;
5023 		} while ((tpp = tpp->p_next) != *target);
5024 		ASSERT(npgs == 0);
5025 		page_list_add_pages(*target, 0);
5026 		npgs = page_get_pagecnt(szc);
5027 		page_create_putback(npgs);
5028 	}
5029 	return (ret);
5030 }
5031 
5032 /*
5033  * it is up to the caller to deal with pcf accounting.
5034  */
5035 void
5036 page_free_replacement_page(page_t *pplist)
5037 {
5038 	page_t *pp;
5039 
5040 	while (pplist != NULL) {
5041 		/*
5042 		 * pp_targ is a linked list.
5043 		 */
5044 		pp = pplist;
5045 		if (pp->p_szc == 0) {
5046 			page_sub(&pplist, pp);
5047 			page_clr_all_props(pp);
5048 			PP_SETFREE(pp);
5049 			PP_SETAGED(pp);
5050 			page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5051 			page_unlock(pp);
5052 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5053 		} else {
5054 			spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5055 			page_t *tpp;
5056 			page_list_break(&pp, &pplist, curnpgs);
5057 			tpp = pp;
5058 			do {
5059 				ASSERT(PAGE_EXCL(tpp));
5060 				ASSERT(!hat_page_is_mapped(tpp));
5061 				page_clr_all_props(pp);
5062 				PP_SETFREE(tpp);
5063 				PP_SETAGED(tpp);
5064 			} while ((tpp = tpp->p_next) != pp);
5065 			page_list_add_pages(pp, 0);
5066 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5067 		}
5068 	}
5069 }
5070 
5071 /*
5072  * Relocate target to non-relocatable replacement page.
5073  */
5074 int
5075 page_relocate_cage(page_t **target, page_t **replacement)
5076 {
5077 	page_t *tpp, *rpp;
5078 	spgcnt_t pgcnt, npgs;
5079 	int result;
5080 
5081 	tpp = *target;
5082 
5083 	ASSERT(PAGE_EXCL(tpp));
5084 	ASSERT(tpp->p_szc == 0);
5085 
5086 	pgcnt = btop(page_get_pagesize(tpp->p_szc));
5087 
5088 	do {
5089 		(void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5090 		rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5091 		if (rpp == NULL) {
5092 			page_create_putback(pgcnt);
5093 			kcage_cageout_wakeup();
5094 		}
5095 	} while (rpp == NULL);
5096 
5097 	ASSERT(PP_ISNORELOC(rpp));
5098 
5099 	result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5100 
5101 	if (result == 0) {
5102 		*replacement = rpp;
5103 		if (pgcnt != npgs)
5104 			panic("page_relocate_cage: partial relocation");
5105 	}
5106 
5107 	return (result);
5108 }
5109 
5110 /*
5111  * Release the page lock on a page, place on cachelist
5112  * tail if no longer mapped. Caller can let us know if
5113  * the page is known to be clean.
5114  */
5115 int
5116 page_release(page_t *pp, int checkmod)
5117 {
5118 	int status;
5119 
5120 	ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5121 		(pp->p_vnode != NULL));
5122 
5123 	if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5124 	    ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5125 	    pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5126 	    !hat_page_is_mapped(pp)) {
5127 
5128 		/*
5129 		 * If page is modified, unlock it
5130 		 *
5131 		 * (p_nrm & P_MOD) bit has the latest stuff because:
5132 		 * (1) We found that this page doesn't have any mappings
5133 		 *	_after_ holding SE_EXCL and
5134 		 * (2) We didn't drop SE_EXCL lock after the check in (1)
5135 		 */
5136 		if (checkmod && hat_ismod(pp)) {
5137 			page_unlock(pp);
5138 			status = PGREL_MOD;
5139 		} else {
5140 			/*LINTED: constant in conditional context*/
5141 			VN_DISPOSE(pp, B_FREE, 0, kcred);
5142 			status = PGREL_CLEAN;
5143 		}
5144 	} else {
5145 		page_unlock(pp);
5146 		status = PGREL_NOTREL;
5147 	}
5148 	return (status);
5149 }
5150 
5151 /*
5152  * Given a constituent page, try to demote the large page on the freelist.
5153  *
5154  * Returns nonzero if the page could be demoted successfully. Returns with
5155  * the constituent page still locked.
5156  */
5157 int
5158 page_try_demote_free_pages(page_t *pp)
5159 {
5160 	page_t *rootpp = pp;
5161 	pfn_t	pfn = page_pptonum(pp);
5162 	spgcnt_t npgs;
5163 	uint_t	szc = pp->p_szc;
5164 
5165 	ASSERT(PP_ISFREE(pp));
5166 	ASSERT(PAGE_EXCL(pp));
5167 
5168 	/*
5169 	 * Adjust rootpp and lock it, if `pp' is not the base
5170 	 * constituent page.
5171 	 */
5172 	npgs = page_get_pagecnt(pp->p_szc);
5173 	if (npgs == 1) {
5174 		return (0);
5175 	}
5176 
5177 	if (!IS_P2ALIGNED(pfn, npgs)) {
5178 		pfn = P2ALIGN(pfn, npgs);
5179 		rootpp = page_numtopp_nolock(pfn);
5180 	}
5181 
5182 	if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5183 		return (0);
5184 	}
5185 
5186 	if (rootpp->p_szc != szc) {
5187 		if (pp != rootpp)
5188 			page_unlock(rootpp);
5189 		return (0);
5190 	}
5191 
5192 	page_demote_free_pages(rootpp);
5193 
5194 	if (pp != rootpp)
5195 		page_unlock(rootpp);
5196 
5197 	ASSERT(PP_ISFREE(pp));
5198 	ASSERT(PAGE_EXCL(pp));
5199 	return (1);
5200 }
5201 
5202 /*
5203  * Given a constituent page, try to demote the large page.
5204  *
5205  * Returns nonzero if the page could be demoted successfully. Returns with
5206  * the constituent page still locked.
5207  */
5208 int
5209 page_try_demote_pages(page_t *pp)
5210 {
5211 	page_t *tpp, *rootpp = pp;
5212 	pfn_t	pfn = page_pptonum(pp);
5213 	spgcnt_t i, npgs;
5214 	uint_t	szc = pp->p_szc;
5215 	vnode_t *vp = pp->p_vnode;
5216 
5217 	ASSERT(PAGE_EXCL(pp));
5218 
5219 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5220 
5221 	if (pp->p_szc == 0) {
5222 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5223 		return (1);
5224 	}
5225 
5226 	if (vp != NULL && !IS_SWAPFSVP(vp) && vp != &kvp) {
5227 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5228 		page_demote_vp_pages(pp);
5229 		ASSERT(pp->p_szc == 0);
5230 		return (1);
5231 	}
5232 
5233 	/*
5234 	 * Adjust rootpp if passed in is not the base
5235 	 * constituent page.
5236 	 */
5237 	npgs = page_get_pagecnt(pp->p_szc);
5238 	ASSERT(npgs > 1);
5239 	if (!IS_P2ALIGNED(pfn, npgs)) {
5240 		pfn = P2ALIGN(pfn, npgs);
5241 		rootpp = page_numtopp_nolock(pfn);
5242 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5243 		ASSERT(rootpp->p_vnode != NULL);
5244 		ASSERT(rootpp->p_szc == szc);
5245 	}
5246 
5247 	/*
5248 	 * We can't demote kernel pages since we can't hat_unload()
5249 	 * the mappings.
5250 	 */
5251 	if (rootpp->p_vnode == &kvp)
5252 		return (0);
5253 
5254 	/*
5255 	 * Attempt to lock all constituent pages except the page passed
5256 	 * in since it's already locked.
5257 	 */
5258 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5259 		ASSERT(!PP_ISFREE(tpp));
5260 		ASSERT(tpp->p_vnode != NULL);
5261 
5262 		if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5263 			break;
5264 		ASSERT(tpp->p_szc == rootpp->p_szc);
5265 		ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5266 	}
5267 
5268 	/*
5269 	 * If we failed to lock them all then unlock what we have
5270 	 * locked so far and bail.
5271 	 */
5272 	if (i < npgs) {
5273 		tpp = rootpp;
5274 		while (i-- > 0) {
5275 			if (tpp != pp)
5276 				page_unlock(tpp);
5277 			tpp++;
5278 		}
5279 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5280 		return (0);
5281 	}
5282 
5283 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5284 		ASSERT(PAGE_EXCL(tpp));
5285 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5286 		tpp->p_szc = 0;
5287 	}
5288 
5289 	/*
5290 	 * Unlock all pages except the page passed in.
5291 	 */
5292 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5293 		ASSERT(!hat_page_is_mapped(tpp));
5294 		if (tpp != pp)
5295 			page_unlock(tpp);
5296 	}
5297 
5298 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5299 	return (1);
5300 }
5301 
5302 /*
5303  * Called by page_free() and page_destroy() to demote the page size code
5304  * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5305  * p_szc on free list, neither can we just clear p_szc of a single page_t
5306  * within a large page since it will break other code that relies on p_szc
5307  * being the same for all page_t's of a large page). Anonymous pages should
5308  * never end up here because anon_map_getpages() cannot deal with p_szc
5309  * changes after a single constituent page is locked.  While anonymous or
5310  * kernel large pages are demoted or freed the entire large page at a time
5311  * with all constituent pages locked EXCL for the file system pages we
5312  * have to be able to demote a large page (i.e. decrease all constituent pages
5313  * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5314  * we can easily deal with anonymous page demotion the entire large page at a
5315  * time is that those operation originate at address space level and concern
5316  * the entire large page region with actual demotion only done when pages are
5317  * not shared with any other processes (therefore we can always get EXCL lock
5318  * on all anonymous constituent pages after clearing segment page
5319  * cache). However file system pages can be truncated or invalidated at a
5320  * PAGESIZE level from the file system side and end up in page_free() or
5321  * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5322  * and therfore pageout should be able to demote a large page by EXCL locking
5323  * any constituent page that is not under SOFTLOCK). In those cases we cannot
5324  * rely on being able to lock EXCL all constituent pages.
5325  *
5326  * To prevent szc changes on file system pages one has to lock all constituent
5327  * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5328  * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5329  * prevent szc changes is hat layer that uses its own page level mlist
5330  * locks. hat assumes that szc doesn't change after mlist lock for a page is
5331  * taken. Therefore we need to change szc under hat level locks if we only
5332  * have an EXCL lock on a single constituent page and hat still references any
5333  * of constituent pages.  (Note we can't "ignore" hat layer by simply
5334  * hat_pageunload() all constituent pages without having EXCL locks on all of
5335  * constituent pages). We use hat_page_demote() call to safely demote szc of
5336  * all constituent pages under hat locks when we only have an EXCL lock on one
5337  * of constituent pages.
5338  *
5339  * This routine calls page_szc_lock() before calling hat_page_demote() to
5340  * allow segvn in one special case not to lock all constituent pages SHARED
5341  * before calling hat_memload_array() that relies on p_szc not changeing even
5342  * before hat level mlist lock is taken.  In that case segvn uses
5343  * page_szc_lock() to prevent hat_page_demote() changeing p_szc values.
5344  *
5345  * Anonymous or kernel page demotion still has to lock all pages exclusively
5346  * and do hat_pageunload() on all constituent pages before demoting the page
5347  * therefore there's no need for anonymous or kernel page demotion to use
5348  * hat_page_demote() mechanism.
5349  *
5350  * hat_page_demote() removes all large mappings that map pp and then decreases
5351  * p_szc starting from the last constituent page of the large page. By working
5352  * from the tail of a large page in pfn decreasing order allows one looking at
5353  * the root page to know that hat_page_demote() is done for root's szc area.
5354  * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5355  * pages within szc 1 area to prevent szc changes because hat_page_demote()
5356  * that started on this page when it had szc > 1 is done for this szc 1 area.
5357  *
5358  * We are guranteed that all constituent pages of pp's large page belong to
5359  * the same vnode with the consecutive offsets increasing in the direction of
5360  * the pfn i.e. the identity of constituent pages can't change until their
5361  * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5362  * large mappings to pp even though we don't lock any constituent page except
5363  * pp (i.e. we won't unload e.g. kernel locked page).
5364  */
5365 static void
5366 page_demote_vp_pages(page_t *pp)
5367 {
5368 	kmutex_t *mtx;
5369 
5370 	ASSERT(PAGE_EXCL(pp));
5371 	ASSERT(!PP_ISFREE(pp));
5372 	ASSERT(pp->p_vnode != NULL);
5373 	ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5374 	ASSERT(pp->p_vnode != &kvp);
5375 
5376 	VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5377 
5378 	mtx = page_szc_lock(pp);
5379 	if (mtx != NULL) {
5380 		hat_page_demote(pp);
5381 		mutex_exit(mtx);
5382 	}
5383 	ASSERT(pp->p_szc == 0);
5384 }
5385 
5386 /*
5387  * Mark any existing pages for migration in the given range
5388  */
5389 void
5390 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5391     struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5392     u_offset_t vnoff, int rflag)
5393 {
5394 	struct anon	*ap;
5395 	vnode_t		*curvp;
5396 	lgrp_t		*from;
5397 	pgcnt_t		i;
5398 	pgcnt_t		nlocked;
5399 	u_offset_t	off;
5400 	pfn_t		pfn;
5401 	size_t		pgsz;
5402 	size_t		segpgsz;
5403 	pgcnt_t		pages;
5404 	uint_t		pszc;
5405 	page_t		**ppa;
5406 	pgcnt_t		ppa_nentries;
5407 	page_t		*pp;
5408 	caddr_t		va;
5409 	ulong_t		an_idx;
5410 	anon_sync_obj_t	cookie;
5411 
5412 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5413 
5414 	/*
5415 	 * Don't do anything if don't need to do lgroup optimizations
5416 	 * on this system
5417 	 */
5418 	if (!lgrp_optimizations())
5419 		return;
5420 
5421 	/*
5422 	 * Align address and length to (potentially large) page boundary
5423 	 */
5424 	segpgsz = page_get_pagesize(seg->s_szc);
5425 	addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5426 	if (rflag)
5427 		len = P2ROUNDUP(len, segpgsz);
5428 
5429 	/*
5430 	 * Allocate page array to accomodate largest page size
5431 	 */
5432 	pgsz = page_get_pagesize(page_num_pagesizes() - 1);
5433 	ppa_nentries = btop(pgsz);
5434 	ppa = kmem_zalloc(ppa_nentries * sizeof (page_t *), KM_SLEEP);
5435 
5436 	/*
5437 	 * Do one (large) page at a time
5438 	 */
5439 	va = addr;
5440 	while (va < addr + len) {
5441 		/*
5442 		 * Lookup (root) page for vnode and offset corresponding to
5443 		 * this virtual address
5444 		 * Try anonmap first since there may be copy-on-write
5445 		 * pages, but initialize vnode pointer and offset using
5446 		 * vnode arguments just in case there isn't an amp.
5447 		 */
5448 		curvp = vp;
5449 		off = vnoff + va - seg->s_base;
5450 		if (amp) {
5451 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5452 			an_idx = anon_index + seg_page(seg, va);
5453 			anon_array_enter(amp, an_idx, &cookie);
5454 			ap = anon_get_ptr(amp->ahp, an_idx);
5455 			if (ap)
5456 				swap_xlate(ap, &curvp, &off);
5457 			anon_array_exit(&cookie);
5458 			ANON_LOCK_EXIT(&amp->a_rwlock);
5459 		}
5460 
5461 		pp = NULL;
5462 		if (curvp)
5463 			pp = page_lookup(curvp, off, SE_SHARED);
5464 
5465 		/*
5466 		 * If there isn't a page at this virtual address,
5467 		 * skip to next page
5468 		 */
5469 		if (pp == NULL) {
5470 			va += PAGESIZE;
5471 			continue;
5472 		}
5473 
5474 		/*
5475 		 * Figure out which lgroup this page is in for kstats
5476 		 */
5477 		pfn = page_pptonum(pp);
5478 		from = lgrp_pfn_to_lgrp(pfn);
5479 
5480 		/*
5481 		 * Get page size, and round up and skip to next page boundary
5482 		 * if unaligned address
5483 		 */
5484 		pszc = pp->p_szc;
5485 		pgsz = page_get_pagesize(pszc);
5486 		pages = btop(pgsz);
5487 		if (!IS_P2ALIGNED(va, pgsz) ||
5488 		    !IS_P2ALIGNED(pfn, pages) ||
5489 		    pgsz > segpgsz) {
5490 			pgsz = MIN(pgsz, segpgsz);
5491 			page_unlock(pp);
5492 			i = btop(P2END((uintptr_t)va, pgsz) -
5493 			    (uintptr_t)va);
5494 			va = (caddr_t)P2END((uintptr_t)va, pgsz);
5495 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, i);
5496 			continue;
5497 		}
5498 
5499 		/*
5500 		 * Upgrade to exclusive lock on page
5501 		 */
5502 		if (!page_tryupgrade(pp)) {
5503 			page_unlock(pp);
5504 			va += pgsz;
5505 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5506 			    btop(pgsz));
5507 			continue;
5508 		}
5509 
5510 		/*
5511 		 * Remember pages locked exclusively and how many
5512 		 */
5513 		ppa[0] = pp;
5514 		nlocked = 1;
5515 
5516 		/*
5517 		 * Lock constituent pages if this is large page
5518 		 */
5519 		if (pages > 1) {
5520 			/*
5521 			 * Lock all constituents except root page, since it
5522 			 * should be locked already.
5523 			 */
5524 			for (i = 1; i < pages; i++) {
5525 				pp++;
5526 				if (!page_trylock(pp, SE_EXCL)) {
5527 					break;
5528 				}
5529 				if (PP_ISFREE(pp) ||
5530 				    pp->p_szc != pszc) {
5531 					/*
5532 					 * hat_page_demote() raced in with us.
5533 					 */
5534 					ASSERT(!IS_SWAPFSVP(curvp));
5535 					page_unlock(pp);
5536 					break;
5537 				}
5538 				ppa[nlocked] = pp;
5539 				nlocked++;
5540 			}
5541 		}
5542 
5543 		/*
5544 		 * If all constituent pages couldn't be locked,
5545 		 * unlock pages locked so far and skip to next page.
5546 		 */
5547 		if (nlocked != pages) {
5548 			for (i = 0; i < nlocked; i++)
5549 				page_unlock(ppa[i]);
5550 			va += pgsz;
5551 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5552 			    btop(pgsz));
5553 			continue;
5554 		}
5555 
5556 		/*
5557 		 * hat_page_demote() can no longer happen
5558 		 * since last cons page had the right p_szc after
5559 		 * all cons pages were locked. all cons pages
5560 		 * should now have the same p_szc.
5561 		 */
5562 
5563 		/*
5564 		 * All constituent pages locked successfully, so mark
5565 		 * large page for migration and unload the mappings of
5566 		 * constituent pages, so a fault will occur on any part of the
5567 		 * large page
5568 		 */
5569 		PP_SETMIGRATE(ppa[0]);
5570 		for (i = 0; i < nlocked; i++) {
5571 			pp = ppa[i];
5572 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
5573 			ASSERT(hat_page_getshare(pp) == 0);
5574 			page_unlock(pp);
5575 		}
5576 		lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5577 
5578 		va += pgsz;
5579 	}
5580 	kmem_free(ppa, ppa_nentries * sizeof (page_t *));
5581 }
5582 
5583 /*
5584  * Migrate any pages that have been marked for migration in the given range
5585  */
5586 void
5587 page_migrate(
5588 	struct seg	*seg,
5589 	caddr_t		addr,
5590 	page_t		**ppa,
5591 	pgcnt_t		npages)
5592 {
5593 	lgrp_t		*from;
5594 	lgrp_t		*to;
5595 	page_t		*newpp;
5596 	page_t		*pp;
5597 	pfn_t		pfn;
5598 	size_t		pgsz;
5599 	spgcnt_t	page_cnt;
5600 	spgcnt_t	i;
5601 	uint_t		pszc;
5602 
5603 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5604 
5605 	while (npages > 0) {
5606 		pp = *ppa;
5607 		pszc = pp->p_szc;
5608 		pgsz = page_get_pagesize(pszc);
5609 		page_cnt = btop(pgsz);
5610 
5611 		/*
5612 		 * Check to see whether this page is marked for migration
5613 		 *
5614 		 * Assume that root page of large page is marked for
5615 		 * migration and none of the other constituent pages
5616 		 * are marked.  This really simplifies clearing the
5617 		 * migrate bit by not having to clear it from each
5618 		 * constituent page.
5619 		 *
5620 		 * note we don't want to relocate an entire large page if
5621 		 * someone is only using one subpage.
5622 		 */
5623 		if (npages < page_cnt)
5624 			break;
5625 
5626 		/*
5627 		 * Is it marked for migration?
5628 		 */
5629 		if (!PP_ISMIGRATE(pp))
5630 			goto next;
5631 
5632 		/*
5633 		 * Determine lgroups that page is being migrated between
5634 		 */
5635 		pfn = page_pptonum(pp);
5636 		if (!IS_P2ALIGNED(pfn, page_cnt)) {
5637 			break;
5638 		}
5639 		from = lgrp_pfn_to_lgrp(pfn);
5640 		to = lgrp_mem_choose(seg, addr, pgsz);
5641 
5642 		/*
5643 		 * Check to see whether we are trying to migrate page to lgroup
5644 		 * where it is allocated already
5645 		 */
5646 		if (to == from) {
5647 			PP_CLRMIGRATE(pp);
5648 			goto next;
5649 		}
5650 
5651 		/*
5652 		 * Need to get exclusive lock's to migrate
5653 		 */
5654 		for (i = 0; i < page_cnt; i++) {
5655 			ASSERT(PAGE_LOCKED(ppa[i]));
5656 			if (page_pptonum(ppa[i]) != pfn + i ||
5657 			    ppa[i]->p_szc != pszc) {
5658 				break;
5659 			}
5660 			if (!page_tryupgrade(ppa[i])) {
5661 				lgrp_stat_add(from->lgrp_id,
5662 				    LGRP_PM_FAIL_LOCK_PGS,
5663 				    page_cnt);
5664 				break;
5665 			}
5666 		}
5667 		if (i != page_cnt) {
5668 			while (--i != -1) {
5669 				page_downgrade(ppa[i]);
5670 			}
5671 			goto next;
5672 		}
5673 
5674 		(void) page_create_wait(page_cnt, PG_WAIT);
5675 		newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5676 		if (newpp == NULL) {
5677 			page_create_putback(page_cnt);
5678 			for (i = 0; i < page_cnt; i++) {
5679 				page_downgrade(ppa[i]);
5680 			}
5681 			lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5682 			    page_cnt);
5683 			goto next;
5684 		}
5685 		ASSERT(newpp->p_szc == pszc);
5686 		/*
5687 		 * Clear migrate bit and relocate page
5688 		 */
5689 		PP_CLRMIGRATE(pp);
5690 		if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5691 			panic("page_migrate: page_relocate failed");
5692 		}
5693 		ASSERT(page_cnt * PAGESIZE == pgsz);
5694 
5695 		/*
5696 		 * Keep stats for number of pages migrated from and to
5697 		 * each lgroup
5698 		 */
5699 		lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5700 		lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5701 		/*
5702 		 * update the page_t array we were passed in and
5703 		 * unlink constituent pages of a large page.
5704 		 */
5705 		for (i = 0; i < page_cnt; ++i, ++pp) {
5706 			ASSERT(PAGE_EXCL(newpp));
5707 			ASSERT(newpp->p_szc == pszc);
5708 			ppa[i] = newpp;
5709 			pp = newpp;
5710 			page_sub(&newpp, pp);
5711 			page_downgrade(pp);
5712 		}
5713 		ASSERT(newpp == NULL);
5714 next:
5715 		addr += pgsz;
5716 		ppa += page_cnt;
5717 		npages -= page_cnt;
5718 	}
5719 }
5720 
5721 ulong_t mem_waiters 	= 0;
5722 ulong_t	max_count 	= 20;
5723 #define	MAX_DELAY	0x1ff
5724 
5725 /*
5726  * Check if enough memory is available to proceed.
5727  * Depending on system configuration and how much memory is
5728  * reserved for swap we need to check against two variables.
5729  * e.g. on systems with little physical swap availrmem can be
5730  * more reliable indicator of how much memory is available.
5731  * On systems with large phys swap freemem can be better indicator.
5732  * If freemem drops below threshold level don't return an error
5733  * immediately but wake up pageout to free memory and block.
5734  * This is done number of times. If pageout is not able to free
5735  * memory within certain time return an error.
5736  * The same applies for availrmem but kmem_reap is used to
5737  * free memory.
5738  */
5739 int
5740 page_mem_avail(pgcnt_t npages)
5741 {
5742 	ulong_t count;
5743 
5744 #if defined(__i386)
5745 	if (freemem > desfree + npages &&
5746 	    availrmem > swapfs_reserve + npages &&
5747 	    btop(vmem_size(heap_arena, VMEM_FREE)) > tune.t_minarmem +
5748 	    npages)
5749 		return (1);
5750 #else
5751 	if (freemem > desfree + npages &&
5752 	    availrmem > swapfs_reserve + npages)
5753 		return (1);
5754 #endif
5755 
5756 	count = max_count;
5757 	atomic_add_long(&mem_waiters, 1);
5758 
5759 	while (freemem < desfree + npages && --count) {
5760 		cv_signal(&proc_pageout->p_cv);
5761 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
5762 			atomic_add_long(&mem_waiters, -1);
5763 			return (0);
5764 		}
5765 	}
5766 	if (count == 0) {
5767 		atomic_add_long(&mem_waiters, -1);
5768 		return (0);
5769 	}
5770 
5771 	count = max_count;
5772 	while (availrmem < swapfs_reserve + npages && --count) {
5773 		kmem_reap();
5774 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
5775 			atomic_add_long(&mem_waiters, -1);
5776 			return (0);
5777 		}
5778 	}
5779 	atomic_add_long(&mem_waiters, -1);
5780 	if (count == 0)
5781 		return (0);
5782 
5783 #if defined(__i386)
5784 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
5785 	    tune.t_minarmem + npages)
5786 		return (0);
5787 #endif
5788 	return (1);
5789 }
5790 
5791 
5792 /*
5793  * Search the memory segments to locate the desired page.  Within a
5794  * segment, pages increase linearly with one page structure per
5795  * physical page frame (size PAGESIZE).  The search begins
5796  * with the segment that was accessed last, to take advantage of locality.
5797  * If the hint misses, we start from the beginning of the sorted memseg list
5798  */
5799 
5800 
5801 /*
5802  * Some data structures for pfn to pp lookup.
5803  */
5804 ulong_t mhash_per_slot;
5805 struct memseg *memseg_hash[N_MEM_SLOTS];
5806 
5807 page_t *
5808 page_numtopp_nolock(pfn_t pfnum)
5809 {
5810 	struct memseg *seg;
5811 	page_t *pp;
5812 	vm_cpu_data_t *vc = CPU->cpu_vm_data;
5813 
5814 	ASSERT(vc != NULL);
5815 
5816 	MEMSEG_STAT_INCR(nsearch);
5817 
5818 	/* Try last winner first */
5819 	if (((seg = vc->vc_pnum_memseg) != NULL) &&
5820 		(pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5821 		MEMSEG_STAT_INCR(nlastwon);
5822 		pp = seg->pages + (pfnum - seg->pages_base);
5823 		if (pp->p_pagenum == pfnum)
5824 			return ((page_t *)pp);
5825 	}
5826 
5827 	/* Else Try hash */
5828 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5829 		(pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5830 		MEMSEG_STAT_INCR(nhashwon);
5831 		vc->vc_pnum_memseg = seg;
5832 		pp = seg->pages + (pfnum - seg->pages_base);
5833 		if (pp->p_pagenum == pfnum)
5834 			return ((page_t *)pp);
5835 	}
5836 
5837 	/* Else Brute force */
5838 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5839 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5840 			vc->vc_pnum_memseg = seg;
5841 			pp = seg->pages + (pfnum - seg->pages_base);
5842 			return ((page_t *)pp);
5843 		}
5844 	}
5845 	vc->vc_pnum_memseg = NULL;
5846 	MEMSEG_STAT_INCR(nnotfound);
5847 	return ((page_t *)NULL);
5848 
5849 }
5850 
5851 struct memseg *
5852 page_numtomemseg_nolock(pfn_t pfnum)
5853 {
5854 	struct memseg *seg;
5855 	page_t *pp;
5856 
5857 	/* Try hash */
5858 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5859 		(pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5860 		pp = seg->pages + (pfnum - seg->pages_base);
5861 		if (pp->p_pagenum == pfnum)
5862 			return (seg);
5863 	}
5864 
5865 	/* Else Brute force */
5866 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5867 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5868 			return (seg);
5869 		}
5870 	}
5871 	return ((struct memseg *)NULL);
5872 }
5873 
5874 /*
5875  * Given a page and a count return the page struct that is
5876  * n structs away from the current one in the global page
5877  * list.
5878  *
5879  * This function wraps to the first page upon
5880  * reaching the end of the memseg list.
5881  */
5882 page_t *
5883 page_nextn(page_t *pp, ulong_t n)
5884 {
5885 	struct memseg *seg;
5886 	page_t *ppn;
5887 	vm_cpu_data_t *vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5888 
5889 	ASSERT(vc != NULL);
5890 
5891 	if (((seg = vc->vc_pnext_memseg) == NULL) ||
5892 	    (seg->pages_base == seg->pages_end) ||
5893 	    !(pp >= seg->pages && pp < seg->epages)) {
5894 
5895 		for (seg = memsegs; seg; seg = seg->next) {
5896 			if (pp >= seg->pages && pp < seg->epages)
5897 				break;
5898 		}
5899 
5900 		if (seg == NULL) {
5901 			/* Memory delete got in, return something valid. */
5902 			/* TODO: fix me. */
5903 			seg = memsegs;
5904 			pp = seg->pages;
5905 		}
5906 	}
5907 
5908 	/* check for wraparound - possible if n is large */
5909 	while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
5910 		n -= seg->epages - pp;
5911 		seg = seg->next;
5912 		if (seg == NULL)
5913 			seg = memsegs;
5914 		pp = seg->pages;
5915 	}
5916 	vc->vc_pnext_memseg = seg;
5917 	return (ppn);
5918 }
5919 
5920 /*
5921  * Initialize for a loop using page_next_scan_large().
5922  */
5923 page_t *
5924 page_next_scan_init(void **cookie)
5925 {
5926 	ASSERT(cookie != NULL);
5927 	*cookie = (void *)memsegs;
5928 	return ((page_t *)memsegs->pages);
5929 }
5930 
5931 /*
5932  * Return the next page in a scan of page_t's, assuming we want
5933  * to skip over sub-pages within larger page sizes.
5934  *
5935  * The cookie is used to keep track of the current memseg.
5936  */
5937 page_t *
5938 page_next_scan_large(
5939 	page_t		*pp,
5940 	ulong_t		*n,
5941 	void		**cookie)
5942 {
5943 	struct memseg	*seg = (struct memseg *)*cookie;
5944 	page_t		*new_pp;
5945 	ulong_t		cnt;
5946 	pfn_t		pfn;
5947 
5948 
5949 	/*
5950 	 * get the count of page_t's to skip based on the page size
5951 	 */
5952 	ASSERT(pp != NULL);
5953 	if (pp->p_szc == 0) {
5954 		cnt = 1;
5955 	} else {
5956 		pfn = page_pptonum(pp);
5957 		cnt = page_get_pagecnt(pp->p_szc);
5958 		cnt -= pfn & (cnt - 1);
5959 	}
5960 	*n += cnt;
5961 	new_pp = pp + cnt;
5962 
5963 	/*
5964 	 * Catch if we went past the end of the current memory segment. If so,
5965 	 * just move to the next segment with pages.
5966 	 */
5967 	if (new_pp >= seg->epages) {
5968 		do {
5969 			seg = seg->next;
5970 			if (seg == NULL)
5971 				seg = memsegs;
5972 		} while (seg->pages == seg->epages);
5973 		new_pp = seg->pages;
5974 		*cookie = (void *)seg;
5975 	}
5976 
5977 	return (new_pp);
5978 }
5979 
5980 
5981 /*
5982  * Returns next page in list. Note: this function wraps
5983  * to the first page in the list upon reaching the end
5984  * of the list. Callers should be aware of this fact.
5985  */
5986 
5987 /* We should change this be a #define */
5988 
5989 page_t *
5990 page_next(page_t *pp)
5991 {
5992 	return (page_nextn(pp, 1));
5993 }
5994 
5995 page_t *
5996 page_first()
5997 {
5998 	return ((page_t *)memsegs->pages);
5999 }
6000 
6001 
6002 /*
6003  * This routine is called at boot with the initial memory configuration
6004  * and when memory is added or removed.
6005  */
6006 void
6007 build_pfn_hash()
6008 {
6009 	pfn_t cur;
6010 	pgcnt_t index;
6011 	struct memseg *pseg;
6012 	int	i;
6013 
6014 	/*
6015 	 * Clear memseg_hash array.
6016 	 * Since memory add/delete is designed to operate concurrently
6017 	 * with normal operation, the hash rebuild must be able to run
6018 	 * concurrently with page_numtopp_nolock(). To support this
6019 	 * functionality, assignments to memseg_hash array members must
6020 	 * be done atomically.
6021 	 *
6022 	 * NOTE: bzero() does not currently guarantee this for kernel
6023 	 * threads, and cannot be used here.
6024 	 */
6025 	for (i = 0; i < N_MEM_SLOTS; i++)
6026 		memseg_hash[i] = NULL;
6027 
6028 	hat_kpm_mseghash_clear(N_MEM_SLOTS);
6029 
6030 	/*
6031 	 * Physmax is the last valid pfn.
6032 	 */
6033 	mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6034 	for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6035 		index = MEMSEG_PFN_HASH(pseg->pages_base);
6036 		cur = pseg->pages_base;
6037 		do {
6038 			if (index >= N_MEM_SLOTS)
6039 				index = MEMSEG_PFN_HASH(cur);
6040 
6041 			if (memseg_hash[index] == NULL ||
6042 			    memseg_hash[index]->pages_base > pseg->pages_base) {
6043 				memseg_hash[index] = pseg;
6044 				hat_kpm_mseghash_update(index, pseg);
6045 			}
6046 			cur += mhash_per_slot;
6047 			index++;
6048 		} while (cur < pseg->pages_end);
6049 	}
6050 }
6051 
6052 /*
6053  * Return the pagenum for the pp
6054  */
6055 pfn_t
6056 page_pptonum(page_t *pp)
6057 {
6058 	return (pp->p_pagenum);
6059 }
6060 
6061 /*
6062  * interface to the referenced and modified etc bits
6063  * in the PSM part of the page struct
6064  * when no locking is desired.
6065  */
6066 void
6067 page_set_props(page_t *pp, uint_t flags)
6068 {
6069 	ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6070 	pp->p_nrm |= (uchar_t)flags;
6071 }
6072 
6073 void
6074 page_clr_all_props(page_t *pp)
6075 {
6076 	pp->p_nrm = 0;
6077 }
6078 
6079 /*
6080  * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6081  */
6082 int
6083 page_clear_lck_cow(page_t *pp, int adjust)
6084 {
6085 	int	f_amount;
6086 
6087 	ASSERT(PAGE_EXCL(pp));
6088 
6089 	/*
6090 	 * The page_struct_lock need not be acquired here since
6091 	 * we require the caller hold the page exclusively locked.
6092 	 */
6093 	f_amount = 0;
6094 	if (pp->p_lckcnt) {
6095 		f_amount = 1;
6096 		pp->p_lckcnt = 0;
6097 	}
6098 	if (pp->p_cowcnt) {
6099 		f_amount += pp->p_cowcnt;
6100 		pp->p_cowcnt = 0;
6101 	}
6102 
6103 	if (adjust && f_amount) {
6104 		mutex_enter(&freemem_lock);
6105 		availrmem += f_amount;
6106 		mutex_exit(&freemem_lock);
6107 	}
6108 
6109 	return (f_amount);
6110 }
6111 
6112 /*
6113  * The following functions is called from free_vp_pages()
6114  * for an inexact estimate of a newly free'd page...
6115  */
6116 ulong_t
6117 page_share_cnt(page_t *pp)
6118 {
6119 	return (hat_page_getshare(pp));
6120 }
6121 
6122 int
6123 page_isshared(page_t *pp)
6124 {
6125 	return (hat_page_getshare(pp) > 1);
6126 }
6127 
6128 int
6129 page_isfree(page_t *pp)
6130 {
6131 	return (PP_ISFREE(pp));
6132 }
6133 
6134 int
6135 page_isref(page_t *pp)
6136 {
6137 	return (hat_page_getattr(pp, P_REF));
6138 }
6139 
6140 int
6141 page_ismod(page_t *pp)
6142 {
6143 	return (hat_page_getattr(pp, P_MOD));
6144 }
6145