1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2015, Josef 'Jeff' Sipek <jeffpc@josefsipek.net> 24 * Copyright (c) 2015, 2016 by Delphix. All rights reserved. 25 * Copyright 2018 Joyent, Inc. 26 * Copyright 2021 Oxide Computer Company 27 */ 28 29 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 30 /* All Rights Reserved */ 31 32 /* 33 * University Copyright- Copyright (c) 1982, 1986, 1988 34 * The Regents of the University of California 35 * All Rights Reserved 36 * 37 * University Acknowledgment- Portions of this document are derived from 38 * software developed by the University of California, Berkeley, and its 39 * contributors. 40 */ 41 42 /* 43 * VM - physical page management. 44 */ 45 46 #include <sys/types.h> 47 #include <sys/t_lock.h> 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/errno.h> 51 #include <sys/time.h> 52 #include <sys/vnode.h> 53 #include <sys/vm.h> 54 #include <sys/vtrace.h> 55 #include <sys/swap.h> 56 #include <sys/cmn_err.h> 57 #include <sys/tuneable.h> 58 #include <sys/sysmacros.h> 59 #include <sys/cpuvar.h> 60 #include <sys/callb.h> 61 #include <sys/debug.h> 62 #include <sys/condvar_impl.h> 63 #include <sys/mem_config.h> 64 #include <sys/mem_cage.h> 65 #include <sys/kmem.h> 66 #include <sys/atomic.h> 67 #include <sys/strlog.h> 68 #include <sys/mman.h> 69 #include <sys/ontrap.h> 70 #include <sys/lgrp.h> 71 #include <sys/vfs.h> 72 73 #include <vm/hat.h> 74 #include <vm/anon.h> 75 #include <vm/page.h> 76 #include <vm/seg.h> 77 #include <vm/pvn.h> 78 #include <vm/seg_kmem.h> 79 #include <vm/vm_dep.h> 80 #include <sys/vm_usage.h> 81 #include <fs/fs_subr.h> 82 #include <sys/ddi.h> 83 #include <sys/modctl.h> 84 85 static pgcnt_t max_page_get; /* max page_get request size in pages */ 86 pgcnt_t total_pages = 0; /* total number of pages (used by /proc) */ 87 volatile uint64_t n_throttle = 0; 88 89 /* 90 * freemem_lock protects all freemem variables: 91 * availrmem. Also this lock protects the globals which track the 92 * availrmem changes for accurate kernel footprint calculation. 93 * See below for an explanation of these 94 * globals. 95 */ 96 kmutex_t freemem_lock; 97 pgcnt_t availrmem; 98 pgcnt_t availrmem_initial; 99 100 /* 101 * These globals track availrmem changes to get a more accurate 102 * estimate of tke kernel size. Historically pp_kernel is used for 103 * kernel size and is based on availrmem. But availrmem is adjusted for 104 * locked pages in the system not just for kernel locked pages. 105 * These new counters will track the pages locked through segvn and 106 * by explicit user locking. 107 * 108 * pages_locked : How many pages are locked because of user specified 109 * locking through mlock or plock. 110 * 111 * pages_useclaim,pages_claimed : These two variables track the 112 * claim adjustments because of the protection changes on a segvn segment. 113 * 114 * All these globals are protected by the same lock which protects availrmem. 115 */ 116 pgcnt_t pages_locked = 0; 117 pgcnt_t pages_useclaim = 0; 118 pgcnt_t pages_claimed = 0; 119 120 121 /* 122 * new_freemem_lock protects freemem, freemem_wait & freemem_cv. 123 */ 124 static kmutex_t new_freemem_lock; 125 static uint_t freemem_wait; /* someone waiting for freemem */ 126 static kcondvar_t freemem_cv; 127 128 /* 129 * The logical page free list is maintained as two lists, the 'free' 130 * and the 'cache' lists. 131 * The free list contains those pages that should be reused first. 132 * 133 * The implementation of the lists is machine dependent. 134 * page_get_freelist(), page_get_cachelist(), 135 * page_list_sub(), and page_list_add() 136 * form the interface to the machine dependent implementation. 137 * 138 * Pages with p_free set are on the cache list. 139 * Pages with p_free and p_age set are on the free list, 140 * 141 * A page may be locked while on either list. 142 */ 143 144 /* 145 * free list accounting stuff. 146 * 147 * 148 * Spread out the value for the number of pages on the 149 * page free and page cache lists. If there is just one 150 * value, then it must be under just one lock. 151 * The lock contention and cache traffic are a real bother. 152 * 153 * When we acquire and then drop a single pcf lock 154 * we can start in the middle of the array of pcf structures. 155 * If we acquire more than one pcf lock at a time, we need to 156 * start at the front to avoid deadlocking. 157 * 158 * pcf_count holds the number of pages in each pool. 159 * 160 * pcf_block is set when page_create_get_something() has asked the 161 * PSM page freelist and page cachelist routines without specifying 162 * a color and nothing came back. This is used to block anything 163 * else from moving pages from one list to the other while the 164 * lists are searched again. If a page is freeed while pcf_block is 165 * set, then pcf_reserve is incremented. pcgs_unblock() takes care 166 * of clearning pcf_block, doing the wakeups, etc. 167 */ 168 169 #define MAX_PCF_FANOUT NCPU 170 static uint_t pcf_fanout = 1; /* Will get changed at boot time */ 171 static uint_t pcf_fanout_mask = 0; 172 173 struct pcf { 174 kmutex_t pcf_lock; /* protects the structure */ 175 uint_t pcf_count; /* page count */ 176 uint_t pcf_wait; /* number of waiters */ 177 uint_t pcf_block; /* pcgs flag to page_free() */ 178 uint_t pcf_reserve; /* pages freed after pcf_block set */ 179 uint_t pcf_fill[10]; /* to line up on the caches */ 180 }; 181 182 /* 183 * PCF_INDEX hash needs to be dynamic (every so often the hash changes where 184 * it will hash the cpu to). This is done to prevent a drain condition 185 * from happening. This drain condition will occur when pcf_count decrement 186 * occurs on cpu A and the increment of pcf_count always occurs on cpu B. An 187 * example of this shows up with device interrupts. The dma buffer is allocated 188 * by the cpu requesting the IO thus the pcf_count is decremented based on that. 189 * When the memory is returned by the interrupt thread, the pcf_count will be 190 * incremented based on the cpu servicing the interrupt. 191 */ 192 static struct pcf pcf[MAX_PCF_FANOUT]; 193 #define PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \ 194 (randtick() >> 24)) & (pcf_fanout_mask)) 195 196 static int pcf_decrement_bucket(pgcnt_t); 197 static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int); 198 199 kmutex_t pcgs_lock; /* serializes page_create_get_ */ 200 kmutex_t pcgs_cagelock; /* serializes NOSLEEP cage allocs */ 201 kmutex_t pcgs_wait_lock; /* used for delay in pcgs */ 202 static kcondvar_t pcgs_cv; /* cv for delay in pcgs */ 203 204 #ifdef VM_STATS 205 206 /* 207 * No locks, but so what, they are only statistics. 208 */ 209 210 static struct page_tcnt { 211 int pc_free_cache; /* free's into cache list */ 212 int pc_free_dontneed; /* free's with dontneed */ 213 int pc_free_pageout; /* free's from pageout */ 214 int pc_free_free; /* free's into free list */ 215 int pc_free_pages; /* free's into large page free list */ 216 int pc_destroy_pages; /* large page destroy's */ 217 int pc_get_cache; /* get's from cache list */ 218 int pc_get_free; /* get's from free list */ 219 int pc_reclaim; /* reclaim's */ 220 int pc_abortfree; /* abort's of free pages */ 221 int pc_find_hit; /* find's that find page */ 222 int pc_find_miss; /* find's that don't find page */ 223 int pc_destroy_free; /* # of free pages destroyed */ 224 #define PC_HASH_CNT (4*PAGE_HASHAVELEN) 225 int pc_find_hashlen[PC_HASH_CNT+1]; 226 int pc_addclaim_pages; 227 int pc_subclaim_pages; 228 int pc_free_replacement_page[2]; 229 int pc_try_demote_pages[6]; 230 int pc_demote_pages[2]; 231 } pagecnt; 232 233 uint_t hashin_count; 234 uint_t hashin_not_held; 235 uint_t hashin_already; 236 237 uint_t hashout_count; 238 uint_t hashout_not_held; 239 240 uint_t page_create_count; 241 uint_t page_create_not_enough; 242 uint_t page_create_not_enough_again; 243 uint_t page_create_zero; 244 uint_t page_create_hashout; 245 uint_t page_create_page_lock_failed; 246 uint_t page_create_trylock_failed; 247 uint_t page_create_found_one; 248 uint_t page_create_hashin_failed; 249 uint_t page_create_dropped_phm; 250 251 uint_t page_create_new; 252 uint_t page_create_exists; 253 uint_t page_create_putbacks; 254 uint_t page_create_overshoot; 255 256 uint_t page_reclaim_zero; 257 uint_t page_reclaim_zero_locked; 258 259 uint_t page_rename_exists; 260 uint_t page_rename_count; 261 262 uint_t page_lookup_cnt[20]; 263 uint_t page_lookup_nowait_cnt[10]; 264 uint_t page_find_cnt; 265 uint_t page_exists_cnt; 266 uint_t page_exists_forreal_cnt; 267 uint_t page_lookup_dev_cnt; 268 uint_t get_cachelist_cnt; 269 uint_t page_create_cnt[10]; 270 uint_t alloc_pages[9]; 271 uint_t page_exphcontg[19]; 272 uint_t page_create_large_cnt[10]; 273 274 #endif 275 276 static inline page_t * 277 page_hash_search(ulong_t index, vnode_t *vnode, u_offset_t off) 278 { 279 uint_t mylen = 0; 280 page_t *page; 281 282 for (page = page_hash[index]; page; page = page->p_hash, mylen++) 283 if (page->p_vnode == vnode && page->p_offset == off) 284 break; 285 286 #ifdef VM_STATS 287 if (page != NULL) 288 pagecnt.pc_find_hit++; 289 else 290 pagecnt.pc_find_miss++; 291 292 pagecnt.pc_find_hashlen[MIN(mylen, PC_HASH_CNT)]++; 293 #endif 294 295 return (page); 296 } 297 298 299 #ifdef DEBUG 300 #define MEMSEG_SEARCH_STATS 301 #endif 302 303 #ifdef MEMSEG_SEARCH_STATS 304 struct memseg_stats { 305 uint_t nsearch; 306 uint_t nlastwon; 307 uint_t nhashwon; 308 uint_t nnotfound; 309 } memseg_stats; 310 311 #define MEMSEG_STAT_INCR(v) \ 312 atomic_inc_32(&memseg_stats.v) 313 #else 314 #define MEMSEG_STAT_INCR(x) 315 #endif 316 317 struct memseg *memsegs; /* list of memory segments */ 318 319 /* 320 * /etc/system tunable to control large page allocation hueristic. 321 * 322 * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup 323 * for large page allocation requests. If a large page is not readily 324 * avaliable on the local freelists we will go through additional effort 325 * to create a large page, potentially moving smaller pages around to coalesce 326 * larger pages in the local lgroup. 327 * Default value of LPAP_DEFAULT will go to remote freelists if large pages 328 * are not readily available in the local lgroup. 329 */ 330 enum lpap { 331 LPAP_DEFAULT, /* default large page allocation policy */ 332 LPAP_LOCAL /* local large page allocation policy */ 333 }; 334 335 enum lpap lpg_alloc_prefer = LPAP_DEFAULT; 336 337 static void page_init_mem_config(void); 338 static int page_do_hashin(page_t *, vnode_t *, u_offset_t); 339 static void page_do_hashout(page_t *); 340 static void page_capture_init(); 341 int page_capture_take_action(page_t *, uint_t, void *); 342 343 static void page_demote_vp_pages(page_t *); 344 345 346 void 347 pcf_init(void) 348 { 349 if (boot_ncpus != -1) { 350 pcf_fanout = boot_ncpus; 351 } else { 352 pcf_fanout = max_ncpus; 353 } 354 #ifdef sun4v 355 /* 356 * Force at least 4 buckets if possible for sun4v. 357 */ 358 pcf_fanout = MAX(pcf_fanout, 4); 359 #endif /* sun4v */ 360 361 /* 362 * Round up to the nearest power of 2. 363 */ 364 pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT); 365 if (!ISP2(pcf_fanout)) { 366 pcf_fanout = 1 << highbit(pcf_fanout); 367 368 if (pcf_fanout > MAX_PCF_FANOUT) { 369 pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1); 370 } 371 } 372 pcf_fanout_mask = pcf_fanout - 1; 373 } 374 375 /* 376 * vm subsystem related initialization 377 */ 378 void 379 vm_init(void) 380 { 381 boolean_t callb_vm_cpr(void *, int); 382 383 (void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm"); 384 page_init_mem_config(); 385 page_retire_init(); 386 vm_usage_init(); 387 page_capture_init(); 388 } 389 390 /* 391 * This function is called at startup and when memory is added or deleted. 392 */ 393 void 394 init_pages_pp_maximum() 395 { 396 static pgcnt_t p_min; 397 static pgcnt_t pages_pp_maximum_startup; 398 static pgcnt_t avrmem_delta; 399 static int init_done; 400 static int user_set; /* true if set in /etc/system */ 401 402 if (init_done == 0) { 403 404 /* If the user specified a value, save it */ 405 if (pages_pp_maximum != 0) { 406 user_set = 1; 407 pages_pp_maximum_startup = pages_pp_maximum; 408 } 409 410 /* 411 * Setting of pages_pp_maximum is based first time 412 * on the value of availrmem just after the start-up 413 * allocations. To preserve this relationship at run 414 * time, use a delta from availrmem_initial. 415 */ 416 ASSERT(availrmem_initial >= availrmem); 417 avrmem_delta = availrmem_initial - availrmem; 418 419 /* The allowable floor of pages_pp_maximum */ 420 p_min = tune.t_minarmem + 100; 421 422 /* Make sure we don't come through here again. */ 423 init_done = 1; 424 } 425 /* 426 * Determine pages_pp_maximum, the number of currently available 427 * pages (availrmem) that can't be `locked'. If not set by 428 * the user, we set it to 4% of the currently available memory 429 * plus 4MB. 430 * But we also insist that it be greater than tune.t_minarmem; 431 * otherwise a process could lock down a lot of memory, get swapped 432 * out, and never have enough to get swapped back in. 433 */ 434 if (user_set) 435 pages_pp_maximum = pages_pp_maximum_startup; 436 else 437 pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25) 438 + btop(4 * 1024 * 1024); 439 440 if (pages_pp_maximum <= p_min) { 441 pages_pp_maximum = p_min; 442 } 443 } 444 445 /* 446 * In the past, we limited the maximum pages that could be gotten to essentially 447 * 1/2 of the total pages on the system. However, this is too conservative for 448 * some cases. For example, if we want to host a large virtual machine which 449 * needs to use a significant portion of the system's memory. In practice, 450 * allowing more than 1/2 of the total pages is fine, but becomes problematic 451 * as we approach or exceed 75% of the pages on the system. Thus, we limit the 452 * maximum to 23/32 of the total pages, which is ~72%. 453 */ 454 void 455 set_max_page_get(pgcnt_t target_total_pages) 456 { 457 max_page_get = (target_total_pages >> 5) * 23; 458 ASSERT3U(max_page_get, >, 0); 459 } 460 461 pgcnt_t 462 get_max_page_get() 463 { 464 return (max_page_get); 465 } 466 467 static pgcnt_t pending_delete; 468 469 /*ARGSUSED*/ 470 static void 471 page_mem_config_post_add( 472 void *arg, 473 pgcnt_t delta_pages) 474 { 475 set_max_page_get(total_pages - pending_delete); 476 init_pages_pp_maximum(); 477 } 478 479 /*ARGSUSED*/ 480 static int 481 page_mem_config_pre_del( 482 void *arg, 483 pgcnt_t delta_pages) 484 { 485 pgcnt_t nv; 486 487 nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages); 488 set_max_page_get(total_pages - nv); 489 return (0); 490 } 491 492 /*ARGSUSED*/ 493 static void 494 page_mem_config_post_del( 495 void *arg, 496 pgcnt_t delta_pages, 497 int cancelled) 498 { 499 pgcnt_t nv; 500 501 nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages); 502 set_max_page_get(total_pages - nv); 503 if (!cancelled) 504 init_pages_pp_maximum(); 505 } 506 507 static kphysm_setup_vector_t page_mem_config_vec = { 508 KPHYSM_SETUP_VECTOR_VERSION, 509 page_mem_config_post_add, 510 page_mem_config_pre_del, 511 page_mem_config_post_del, 512 }; 513 514 static void 515 page_init_mem_config(void) 516 { 517 int ret; 518 519 ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL); 520 ASSERT(ret == 0); 521 } 522 523 /* 524 * Evenly spread out the PCF counters for large free pages 525 */ 526 static void 527 page_free_large_ctr(pgcnt_t npages) 528 { 529 static struct pcf *p = pcf; 530 pgcnt_t lump; 531 532 freemem += npages; 533 534 lump = roundup(npages, pcf_fanout) / pcf_fanout; 535 536 while (npages > 0) { 537 538 ASSERT(!p->pcf_block); 539 540 if (lump < npages) { 541 p->pcf_count += (uint_t)lump; 542 npages -= lump; 543 } else { 544 p->pcf_count += (uint_t)npages; 545 npages = 0; 546 } 547 548 ASSERT(!p->pcf_wait); 549 550 if (++p > &pcf[pcf_fanout - 1]) 551 p = pcf; 552 } 553 554 ASSERT(npages == 0); 555 } 556 557 /* 558 * Add a physical chunk of memory to the system free lists during startup. 559 * Platform specific startup() allocates the memory for the page structs. 560 * 561 * num - number of page structures 562 * base - page number (pfn) to be associated with the first page. 563 * 564 * Since we are doing this during startup (ie. single threaded), we will 565 * use shortcut routines to avoid any locking overhead while putting all 566 * these pages on the freelists. 567 * 568 * NOTE: Any changes performed to page_free(), must also be performed to 569 * add_physmem() since this is how we initialize all page_t's at 570 * boot time. 571 */ 572 void 573 add_physmem( 574 page_t *pp, 575 pgcnt_t num, 576 pfn_t pnum) 577 { 578 page_t *root = NULL; 579 uint_t szc = page_num_pagesizes() - 1; 580 pgcnt_t large = page_get_pagecnt(szc); 581 pgcnt_t cnt = 0; 582 583 TRACE_2(TR_FAC_VM, TR_PAGE_INIT, 584 "add_physmem:pp %p num %lu", pp, num); 585 586 /* 587 * Arbitrarily limit the max page_get request 588 * to 1/2 of the page structs we have. 589 */ 590 total_pages += num; 591 set_max_page_get(total_pages); 592 593 PLCNT_MODIFY_MAX(pnum, (long)num); 594 595 /* 596 * The physical space for the pages array 597 * representing ram pages has already been 598 * allocated. Here we initialize each lock 599 * in the page structure, and put each on 600 * the free list 601 */ 602 for (; num; pp++, pnum++, num--) { 603 604 /* 605 * this needs to fill in the page number 606 * and do any other arch specific initialization 607 */ 608 add_physmem_cb(pp, pnum); 609 610 pp->p_lckcnt = 0; 611 pp->p_cowcnt = 0; 612 pp->p_slckcnt = 0; 613 614 /* 615 * Initialize the page lock as unlocked, since nobody 616 * can see or access this page yet. 617 */ 618 pp->p_selock = 0; 619 620 /* 621 * Initialize IO lock 622 */ 623 page_iolock_init(pp); 624 625 /* 626 * initialize other fields in the page_t 627 */ 628 PP_SETFREE(pp); 629 page_clr_all_props(pp); 630 PP_SETAGED(pp); 631 pp->p_offset = (u_offset_t)-1; 632 pp->p_next = pp; 633 pp->p_prev = pp; 634 635 /* 636 * Simple case: System doesn't support large pages. 637 */ 638 if (szc == 0) { 639 pp->p_szc = 0; 640 page_free_at_startup(pp); 641 continue; 642 } 643 644 /* 645 * Handle unaligned pages, we collect them up onto 646 * the root page until we have a full large page. 647 */ 648 if (!IS_P2ALIGNED(pnum, large)) { 649 650 /* 651 * If not in a large page, 652 * just free as small page. 653 */ 654 if (root == NULL) { 655 pp->p_szc = 0; 656 page_free_at_startup(pp); 657 continue; 658 } 659 660 /* 661 * Link a constituent page into the large page. 662 */ 663 pp->p_szc = szc; 664 page_list_concat(&root, &pp); 665 666 /* 667 * When large page is fully formed, free it. 668 */ 669 if (++cnt == large) { 670 page_free_large_ctr(cnt); 671 page_list_add_pages(root, PG_LIST_ISINIT); 672 root = NULL; 673 cnt = 0; 674 } 675 continue; 676 } 677 678 /* 679 * At this point we have a page number which 680 * is aligned. We assert that we aren't already 681 * in a different large page. 682 */ 683 ASSERT(IS_P2ALIGNED(pnum, large)); 684 ASSERT(root == NULL && cnt == 0); 685 686 /* 687 * If insufficient number of pages left to form 688 * a large page, just free the small page. 689 */ 690 if (num < large) { 691 pp->p_szc = 0; 692 page_free_at_startup(pp); 693 continue; 694 } 695 696 /* 697 * Otherwise start a new large page. 698 */ 699 pp->p_szc = szc; 700 cnt++; 701 root = pp; 702 } 703 ASSERT(root == NULL && cnt == 0); 704 } 705 706 /* 707 * Find a page representing the specified [vp, offset]. 708 * If we find the page but it is intransit coming in, 709 * it will have an "exclusive" lock and we wait for 710 * the i/o to complete. A page found on the free list 711 * is always reclaimed and then locked. On success, the page 712 * is locked, its data is valid and it isn't on the free 713 * list, while a NULL is returned if the page doesn't exist. 714 */ 715 page_t * 716 page_lookup(vnode_t *vp, u_offset_t off, se_t se) 717 { 718 return (page_lookup_create(vp, off, se, NULL, NULL, 0)); 719 } 720 721 /* 722 * Find a page representing the specified [vp, offset]. 723 * We either return the one we found or, if passed in, 724 * create one with identity of [vp, offset] of the 725 * pre-allocated page. If we find existing page but it is 726 * intransit coming in, it will have an "exclusive" lock 727 * and we wait for the i/o to complete. A page found on 728 * the free list is always reclaimed and then locked. 729 * On success, the page is locked, its data is valid and 730 * it isn't on the free list, while a NULL is returned 731 * if the page doesn't exist and newpp is NULL; 732 */ 733 page_t * 734 page_lookup_create( 735 vnode_t *vp, 736 u_offset_t off, 737 se_t se, 738 page_t *newpp, 739 spgcnt_t *nrelocp, 740 int flags) 741 { 742 page_t *pp; 743 kmutex_t *phm; 744 ulong_t index; 745 uint_t hash_locked; 746 uint_t es; 747 748 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 749 VM_STAT_ADD(page_lookup_cnt[0]); 750 ASSERT(newpp ? PAGE_EXCL(newpp) : 1); 751 752 /* 753 * Acquire the appropriate page hash lock since 754 * we have to search the hash list. Pages that 755 * hash to this list can't change identity while 756 * this lock is held. 757 */ 758 hash_locked = 0; 759 index = PAGE_HASH_FUNC(vp, off); 760 phm = NULL; 761 top: 762 pp = page_hash_search(index, vp, off); 763 if (pp != NULL) { 764 VM_STAT_ADD(page_lookup_cnt[1]); 765 es = (newpp != NULL) ? 1 : 0; 766 es |= flags; 767 if (!hash_locked) { 768 VM_STAT_ADD(page_lookup_cnt[2]); 769 if (!page_try_reclaim_lock(pp, se, es)) { 770 /* 771 * On a miss, acquire the phm. Then 772 * next time, page_lock() will be called, 773 * causing a wait if the page is busy. 774 * just looping with page_trylock() would 775 * get pretty boring. 776 */ 777 VM_STAT_ADD(page_lookup_cnt[3]); 778 phm = PAGE_HASH_MUTEX(index); 779 mutex_enter(phm); 780 hash_locked = 1; 781 goto top; 782 } 783 } else { 784 VM_STAT_ADD(page_lookup_cnt[4]); 785 if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) { 786 VM_STAT_ADD(page_lookup_cnt[5]); 787 goto top; 788 } 789 } 790 791 /* 792 * Since `pp' is locked it can not change identity now. 793 * Reconfirm we locked the correct page. 794 * 795 * Both the p_vnode and p_offset *must* be cast volatile 796 * to force a reload of their values: The page_hash_search 797 * function will have stuffed p_vnode and p_offset into 798 * registers before calling page_trylock(); another thread, 799 * actually holding the hash lock, could have changed the 800 * page's identity in memory, but our registers would not 801 * be changed, fooling the reconfirmation. If the hash 802 * lock was held during the search, the casting would 803 * not be needed. 804 */ 805 VM_STAT_ADD(page_lookup_cnt[6]); 806 if (((volatile struct vnode *)(pp->p_vnode) != vp) || 807 ((volatile u_offset_t)(pp->p_offset) != off)) { 808 VM_STAT_ADD(page_lookup_cnt[7]); 809 if (hash_locked) { 810 panic("page_lookup_create: lost page %p", 811 (void *)pp); 812 /*NOTREACHED*/ 813 } 814 page_unlock(pp); 815 phm = PAGE_HASH_MUTEX(index); 816 mutex_enter(phm); 817 hash_locked = 1; 818 goto top; 819 } 820 821 /* 822 * If page_trylock() was called, then pp may still be on 823 * the cachelist (can't be on the free list, it would not 824 * have been found in the search). If it is on the 825 * cachelist it must be pulled now. To pull the page from 826 * the cachelist, it must be exclusively locked. 827 * 828 * The other big difference between page_trylock() and 829 * page_lock(), is that page_lock() will pull the 830 * page from whatever free list (the cache list in this 831 * case) the page is on. If page_trylock() was used 832 * above, then we have to do the reclaim ourselves. 833 */ 834 if ((!hash_locked) && (PP_ISFREE(pp))) { 835 ASSERT(PP_ISAGED(pp) == 0); 836 VM_STAT_ADD(page_lookup_cnt[8]); 837 838 /* 839 * page_relcaim will insure that we 840 * have this page exclusively 841 */ 842 843 if (!page_reclaim(pp, NULL)) { 844 /* 845 * Page_reclaim dropped whatever lock 846 * we held. 847 */ 848 VM_STAT_ADD(page_lookup_cnt[9]); 849 phm = PAGE_HASH_MUTEX(index); 850 mutex_enter(phm); 851 hash_locked = 1; 852 goto top; 853 } else if (se == SE_SHARED && newpp == NULL) { 854 VM_STAT_ADD(page_lookup_cnt[10]); 855 page_downgrade(pp); 856 } 857 } 858 859 if (hash_locked) { 860 mutex_exit(phm); 861 } 862 863 if (newpp != NULL && pp->p_szc < newpp->p_szc && 864 PAGE_EXCL(pp) && nrelocp != NULL) { 865 ASSERT(nrelocp != NULL); 866 (void) page_relocate(&pp, &newpp, 1, 1, nrelocp, 867 NULL); 868 if (*nrelocp > 0) { 869 VM_STAT_COND_ADD(*nrelocp == 1, 870 page_lookup_cnt[11]); 871 VM_STAT_COND_ADD(*nrelocp > 1, 872 page_lookup_cnt[12]); 873 pp = newpp; 874 se = SE_EXCL; 875 } else { 876 if (se == SE_SHARED) { 877 page_downgrade(pp); 878 } 879 VM_STAT_ADD(page_lookup_cnt[13]); 880 } 881 } else if (newpp != NULL && nrelocp != NULL) { 882 if (PAGE_EXCL(pp) && se == SE_SHARED) { 883 page_downgrade(pp); 884 } 885 VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc, 886 page_lookup_cnt[14]); 887 VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc, 888 page_lookup_cnt[15]); 889 VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc, 890 page_lookup_cnt[16]); 891 } else if (newpp != NULL && PAGE_EXCL(pp)) { 892 se = SE_EXCL; 893 } 894 } else if (!hash_locked) { 895 VM_STAT_ADD(page_lookup_cnt[17]); 896 phm = PAGE_HASH_MUTEX(index); 897 mutex_enter(phm); 898 hash_locked = 1; 899 goto top; 900 } else if (newpp != NULL) { 901 /* 902 * If we have a preallocated page then 903 * insert it now and basically behave like 904 * page_create. 905 */ 906 VM_STAT_ADD(page_lookup_cnt[18]); 907 /* 908 * Since we hold the page hash mutex and 909 * just searched for this page, page_hashin 910 * had better not fail. If it does, that 911 * means some thread did not follow the 912 * page hash mutex rules. Panic now and 913 * get it over with. As usual, go down 914 * holding all the locks. 915 */ 916 ASSERT(MUTEX_HELD(phm)); 917 if (!page_hashin(newpp, vp, off, phm)) { 918 ASSERT(MUTEX_HELD(phm)); 919 panic("page_lookup_create: hashin failed %p %p %llx %p", 920 (void *)newpp, (void *)vp, off, (void *)phm); 921 /*NOTREACHED*/ 922 } 923 ASSERT(MUTEX_HELD(phm)); 924 mutex_exit(phm); 925 phm = NULL; 926 page_set_props(newpp, P_REF); 927 page_io_lock(newpp); 928 pp = newpp; 929 se = SE_EXCL; 930 } else { 931 VM_STAT_ADD(page_lookup_cnt[19]); 932 mutex_exit(phm); 933 } 934 935 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1); 936 937 ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1); 938 939 return (pp); 940 } 941 942 /* 943 * Search the hash list for the page representing the 944 * specified [vp, offset] and return it locked. Skip 945 * free pages and pages that cannot be locked as requested. 946 * Used while attempting to kluster pages. 947 */ 948 page_t * 949 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se) 950 { 951 page_t *pp; 952 kmutex_t *phm; 953 ulong_t index; 954 uint_t locked; 955 956 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 957 VM_STAT_ADD(page_lookup_nowait_cnt[0]); 958 959 index = PAGE_HASH_FUNC(vp, off); 960 pp = page_hash_search(index, vp, off); 961 locked = 0; 962 if (pp == NULL) { 963 top: 964 VM_STAT_ADD(page_lookup_nowait_cnt[1]); 965 locked = 1; 966 phm = PAGE_HASH_MUTEX(index); 967 mutex_enter(phm); 968 pp = page_hash_search(index, vp, off); 969 } 970 971 if (pp == NULL || PP_ISFREE(pp)) { 972 VM_STAT_ADD(page_lookup_nowait_cnt[2]); 973 pp = NULL; 974 } else { 975 if (!page_trylock(pp, se)) { 976 VM_STAT_ADD(page_lookup_nowait_cnt[3]); 977 pp = NULL; 978 } else { 979 VM_STAT_ADD(page_lookup_nowait_cnt[4]); 980 /* 981 * See the comment in page_lookup() 982 */ 983 if (((volatile struct vnode *)(pp->p_vnode) != vp) || 984 ((u_offset_t)(pp->p_offset) != off)) { 985 VM_STAT_ADD(page_lookup_nowait_cnt[5]); 986 if (locked) { 987 panic("page_lookup_nowait %p", 988 (void *)pp); 989 /*NOTREACHED*/ 990 } 991 page_unlock(pp); 992 goto top; 993 } 994 if (PP_ISFREE(pp)) { 995 VM_STAT_ADD(page_lookup_nowait_cnt[6]); 996 page_unlock(pp); 997 pp = NULL; 998 } 999 } 1000 } 1001 if (locked) { 1002 VM_STAT_ADD(page_lookup_nowait_cnt[7]); 1003 mutex_exit(phm); 1004 } 1005 1006 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1); 1007 1008 return (pp); 1009 } 1010 1011 /* 1012 * Search the hash list for a page with the specified [vp, off] 1013 * that is known to exist and is already locked. This routine 1014 * is typically used by segment SOFTUNLOCK routines. 1015 */ 1016 page_t * 1017 page_find(vnode_t *vp, u_offset_t off) 1018 { 1019 page_t *pp; 1020 kmutex_t *phm; 1021 ulong_t index; 1022 1023 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 1024 VM_STAT_ADD(page_find_cnt); 1025 1026 index = PAGE_HASH_FUNC(vp, off); 1027 phm = PAGE_HASH_MUTEX(index); 1028 1029 mutex_enter(phm); 1030 pp = page_hash_search(index, vp, off); 1031 mutex_exit(phm); 1032 1033 ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr); 1034 return (pp); 1035 } 1036 1037 /* 1038 * Determine whether a page with the specified [vp, off] 1039 * currently exists in the system. Obviously this should 1040 * only be considered as a hint since nothing prevents the 1041 * page from disappearing or appearing immediately after 1042 * the return from this routine. Subsequently, we don't 1043 * even bother to lock the list. 1044 */ 1045 page_t * 1046 page_exists(vnode_t *vp, u_offset_t off) 1047 { 1048 ulong_t index; 1049 1050 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 1051 VM_STAT_ADD(page_exists_cnt); 1052 1053 index = PAGE_HASH_FUNC(vp, off); 1054 1055 return (page_hash_search(index, vp, off)); 1056 } 1057 1058 /* 1059 * Determine if physically contiguous pages exist for [vp, off] - [vp, off + 1060 * page_size(szc)) range. if they exist and ppa is not NULL fill ppa array 1061 * with these pages locked SHARED. If necessary reclaim pages from 1062 * freelist. Return 1 if contiguous pages exist and 0 otherwise. 1063 * 1064 * If we fail to lock pages still return 1 if pages exist and contiguous. 1065 * But in this case return value is just a hint. ppa array won't be filled. 1066 * Caller should initialize ppa[0] as NULL to distinguish return value. 1067 * 1068 * Returns 0 if pages don't exist or not physically contiguous. 1069 * 1070 * This routine doesn't work for anonymous(swapfs) pages. 1071 */ 1072 int 1073 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[]) 1074 { 1075 pgcnt_t pages; 1076 pfn_t pfn; 1077 page_t *rootpp; 1078 pgcnt_t i; 1079 pgcnt_t j; 1080 u_offset_t save_off = off; 1081 ulong_t index; 1082 kmutex_t *phm; 1083 page_t *pp; 1084 uint_t pszc; 1085 int loopcnt = 0; 1086 1087 ASSERT(szc != 0); 1088 ASSERT(vp != NULL); 1089 ASSERT(!IS_SWAPFSVP(vp)); 1090 ASSERT(!VN_ISKAS(vp)); 1091 1092 again: 1093 if (++loopcnt > 3) { 1094 VM_STAT_ADD(page_exphcontg[0]); 1095 return (0); 1096 } 1097 1098 index = PAGE_HASH_FUNC(vp, off); 1099 phm = PAGE_HASH_MUTEX(index); 1100 1101 mutex_enter(phm); 1102 pp = page_hash_search(index, vp, off); 1103 mutex_exit(phm); 1104 1105 VM_STAT_ADD(page_exphcontg[1]); 1106 1107 if (pp == NULL) { 1108 VM_STAT_ADD(page_exphcontg[2]); 1109 return (0); 1110 } 1111 1112 pages = page_get_pagecnt(szc); 1113 rootpp = pp; 1114 pfn = rootpp->p_pagenum; 1115 1116 if ((pszc = pp->p_szc) >= szc && ppa != NULL) { 1117 VM_STAT_ADD(page_exphcontg[3]); 1118 if (!page_trylock(pp, SE_SHARED)) { 1119 VM_STAT_ADD(page_exphcontg[4]); 1120 return (1); 1121 } 1122 /* 1123 * Also check whether p_pagenum was modified by DR. 1124 */ 1125 if (pp->p_szc != pszc || pp->p_vnode != vp || 1126 pp->p_offset != off || pp->p_pagenum != pfn) { 1127 VM_STAT_ADD(page_exphcontg[5]); 1128 page_unlock(pp); 1129 off = save_off; 1130 goto again; 1131 } 1132 /* 1133 * szc was non zero and vnode and offset matched after we 1134 * locked the page it means it can't become free on us. 1135 */ 1136 ASSERT(!PP_ISFREE(pp)); 1137 if (!IS_P2ALIGNED(pfn, pages)) { 1138 page_unlock(pp); 1139 return (0); 1140 } 1141 ppa[0] = pp; 1142 pp++; 1143 off += PAGESIZE; 1144 pfn++; 1145 for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) { 1146 if (!page_trylock(pp, SE_SHARED)) { 1147 VM_STAT_ADD(page_exphcontg[6]); 1148 pp--; 1149 while (i-- > 0) { 1150 page_unlock(pp); 1151 pp--; 1152 } 1153 ppa[0] = NULL; 1154 return (1); 1155 } 1156 if (pp->p_szc != pszc) { 1157 VM_STAT_ADD(page_exphcontg[7]); 1158 page_unlock(pp); 1159 pp--; 1160 while (i-- > 0) { 1161 page_unlock(pp); 1162 pp--; 1163 } 1164 ppa[0] = NULL; 1165 off = save_off; 1166 goto again; 1167 } 1168 /* 1169 * szc the same as for previous already locked pages 1170 * with right identity. Since this page had correct 1171 * szc after we locked it can't get freed or destroyed 1172 * and therefore must have the expected identity. 1173 */ 1174 ASSERT(!PP_ISFREE(pp)); 1175 if (pp->p_vnode != vp || 1176 pp->p_offset != off) { 1177 panic("page_exists_physcontig: " 1178 "large page identity doesn't match"); 1179 } 1180 ppa[i] = pp; 1181 ASSERT(pp->p_pagenum == pfn); 1182 } 1183 VM_STAT_ADD(page_exphcontg[8]); 1184 ppa[pages] = NULL; 1185 return (1); 1186 } else if (pszc >= szc) { 1187 VM_STAT_ADD(page_exphcontg[9]); 1188 if (!IS_P2ALIGNED(pfn, pages)) { 1189 return (0); 1190 } 1191 return (1); 1192 } 1193 1194 if (!IS_P2ALIGNED(pfn, pages)) { 1195 VM_STAT_ADD(page_exphcontg[10]); 1196 return (0); 1197 } 1198 1199 if (page_numtomemseg_nolock(pfn) != 1200 page_numtomemseg_nolock(pfn + pages - 1)) { 1201 VM_STAT_ADD(page_exphcontg[11]); 1202 return (0); 1203 } 1204 1205 /* 1206 * We loop up 4 times across pages to promote page size. 1207 * We're extra cautious to promote page size atomically with respect 1208 * to everybody else. But we can probably optimize into 1 loop if 1209 * this becomes an issue. 1210 */ 1211 1212 for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) { 1213 if (!page_trylock(pp, SE_EXCL)) { 1214 VM_STAT_ADD(page_exphcontg[12]); 1215 break; 1216 } 1217 /* 1218 * Check whether p_pagenum was modified by DR. 1219 */ 1220 if (pp->p_pagenum != pfn) { 1221 page_unlock(pp); 1222 break; 1223 } 1224 if (pp->p_vnode != vp || 1225 pp->p_offset != off) { 1226 VM_STAT_ADD(page_exphcontg[13]); 1227 page_unlock(pp); 1228 break; 1229 } 1230 if (pp->p_szc >= szc) { 1231 ASSERT(i == 0); 1232 page_unlock(pp); 1233 off = save_off; 1234 goto again; 1235 } 1236 } 1237 1238 if (i != pages) { 1239 VM_STAT_ADD(page_exphcontg[14]); 1240 --pp; 1241 while (i-- > 0) { 1242 page_unlock(pp); 1243 --pp; 1244 } 1245 return (0); 1246 } 1247 1248 pp = rootpp; 1249 for (i = 0; i < pages; i++, pp++) { 1250 if (PP_ISFREE(pp)) { 1251 VM_STAT_ADD(page_exphcontg[15]); 1252 ASSERT(!PP_ISAGED(pp)); 1253 ASSERT(pp->p_szc == 0); 1254 if (!page_reclaim(pp, NULL)) { 1255 break; 1256 } 1257 } else { 1258 ASSERT(pp->p_szc < szc); 1259 VM_STAT_ADD(page_exphcontg[16]); 1260 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 1261 } 1262 } 1263 if (i < pages) { 1264 VM_STAT_ADD(page_exphcontg[17]); 1265 /* 1266 * page_reclaim failed because we were out of memory. 1267 * drop the rest of the locks and return because this page 1268 * must be already reallocated anyway. 1269 */ 1270 pp = rootpp; 1271 for (j = 0; j < pages; j++, pp++) { 1272 if (j != i) { 1273 page_unlock(pp); 1274 } 1275 } 1276 return (0); 1277 } 1278 1279 off = save_off; 1280 pp = rootpp; 1281 for (i = 0; i < pages; i++, pp++, off += PAGESIZE) { 1282 ASSERT(PAGE_EXCL(pp)); 1283 ASSERT(!PP_ISFREE(pp)); 1284 ASSERT(!hat_page_is_mapped(pp)); 1285 ASSERT(pp->p_vnode == vp); 1286 ASSERT(pp->p_offset == off); 1287 pp->p_szc = szc; 1288 } 1289 pp = rootpp; 1290 for (i = 0; i < pages; i++, pp++) { 1291 if (ppa == NULL) { 1292 page_unlock(pp); 1293 } else { 1294 ppa[i] = pp; 1295 page_downgrade(ppa[i]); 1296 } 1297 } 1298 if (ppa != NULL) { 1299 ppa[pages] = NULL; 1300 } 1301 VM_STAT_ADD(page_exphcontg[18]); 1302 ASSERT(vp->v_pages != NULL); 1303 return (1); 1304 } 1305 1306 /* 1307 * Determine whether a page with the specified [vp, off] 1308 * currently exists in the system and if so return its 1309 * size code. Obviously this should only be considered as 1310 * a hint since nothing prevents the page from disappearing 1311 * or appearing immediately after the return from this routine. 1312 */ 1313 int 1314 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc) 1315 { 1316 page_t *pp; 1317 kmutex_t *phm; 1318 ulong_t index; 1319 int rc = 0; 1320 1321 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 1322 ASSERT(szc != NULL); 1323 VM_STAT_ADD(page_exists_forreal_cnt); 1324 1325 index = PAGE_HASH_FUNC(vp, off); 1326 phm = PAGE_HASH_MUTEX(index); 1327 1328 mutex_enter(phm); 1329 pp = page_hash_search(index, vp, off); 1330 if (pp != NULL) { 1331 *szc = pp->p_szc; 1332 rc = 1; 1333 } 1334 mutex_exit(phm); 1335 return (rc); 1336 } 1337 1338 /* wakeup threads waiting for pages in page_create_get_something() */ 1339 void 1340 wakeup_pcgs(void) 1341 { 1342 if (!CV_HAS_WAITERS(&pcgs_cv)) 1343 return; 1344 cv_broadcast(&pcgs_cv); 1345 } 1346 1347 /* 1348 * 'freemem' is used all over the kernel as an indication of how many 1349 * pages are free (either on the cache list or on the free page list) 1350 * in the system. In very few places is a really accurate 'freemem' 1351 * needed. To avoid contention of the lock protecting a the 1352 * single freemem, it was spread out into NCPU buckets. Set_freemem 1353 * sets freemem to the total of all NCPU buckets. It is called from 1354 * clock() on each TICK. 1355 */ 1356 void 1357 set_freemem(void) 1358 { 1359 struct pcf *p; 1360 ulong_t t; 1361 uint_t i; 1362 1363 t = 0; 1364 p = pcf; 1365 for (i = 0; i < pcf_fanout; i++) { 1366 t += p->pcf_count; 1367 p++; 1368 } 1369 freemem = t; 1370 1371 /* 1372 * Don't worry about grabbing mutex. It's not that 1373 * critical if we miss a tick or two. This is 1374 * where we wakeup possible delayers in 1375 * page_create_get_something(). 1376 */ 1377 wakeup_pcgs(); 1378 } 1379 1380 ulong_t 1381 get_freemem() 1382 { 1383 struct pcf *p; 1384 ulong_t t; 1385 uint_t i; 1386 1387 t = 0; 1388 p = pcf; 1389 for (i = 0; i < pcf_fanout; i++) { 1390 t += p->pcf_count; 1391 p++; 1392 } 1393 /* 1394 * We just calculated it, might as well set it. 1395 */ 1396 freemem = t; 1397 return (t); 1398 } 1399 1400 /* 1401 * Acquire all of the page cache & free (pcf) locks. 1402 */ 1403 void 1404 pcf_acquire_all() 1405 { 1406 struct pcf *p; 1407 uint_t i; 1408 1409 p = pcf; 1410 for (i = 0; i < pcf_fanout; i++) { 1411 mutex_enter(&p->pcf_lock); 1412 p++; 1413 } 1414 } 1415 1416 /* 1417 * Release all the pcf_locks. 1418 */ 1419 void 1420 pcf_release_all() 1421 { 1422 struct pcf *p; 1423 uint_t i; 1424 1425 p = pcf; 1426 for (i = 0; i < pcf_fanout; i++) { 1427 mutex_exit(&p->pcf_lock); 1428 p++; 1429 } 1430 } 1431 1432 /* 1433 * Inform the VM system that we need some pages freed up. 1434 * Calls must be symmetric, e.g.: 1435 * 1436 * page_needfree(100); 1437 * wait a bit; 1438 * page_needfree(-100); 1439 */ 1440 void 1441 page_needfree(spgcnt_t npages) 1442 { 1443 mutex_enter(&new_freemem_lock); 1444 needfree += npages; 1445 mutex_exit(&new_freemem_lock); 1446 } 1447 1448 /* 1449 * Throttle for page_create(): try to prevent freemem from dropping 1450 * below throttlefree. We can't provide a 100% guarantee because 1451 * KM_NOSLEEP allocations, page_reclaim(), and various other things 1452 * nibble away at the freelist. However, we can block all PG_WAIT 1453 * allocations until memory becomes available. The motivation is 1454 * that several things can fall apart when there's no free memory: 1455 * 1456 * (1) If pageout() needs memory to push a page, the system deadlocks. 1457 * 1458 * (2) By (broken) specification, timeout(9F) can neither fail nor 1459 * block, so it has no choice but to panic the system if it 1460 * cannot allocate a callout structure. 1461 * 1462 * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block; 1463 * it panics if it cannot allocate a callback structure. 1464 * 1465 * (4) Untold numbers of third-party drivers have not yet been hardened 1466 * against KM_NOSLEEP and/or allocb() failures; they simply assume 1467 * success and panic the system with a data fault on failure. 1468 * (The long-term solution to this particular problem is to ship 1469 * hostile fault-injecting DEBUG kernels with the DDK.) 1470 * 1471 * It is theoretically impossible to guarantee success of non-blocking 1472 * allocations, but in practice, this throttle is very hard to break. 1473 */ 1474 static int 1475 page_create_throttle(pgcnt_t npages, int flags) 1476 { 1477 ulong_t fm; 1478 uint_t i; 1479 pgcnt_t tf; /* effective value of throttlefree */ 1480 1481 atomic_inc_64(&n_throttle); 1482 1483 /* 1484 * Normal priority allocations. 1485 */ 1486 if ((flags & (PG_WAIT | PG_NORMALPRI)) == PG_NORMALPRI) { 1487 ASSERT(!(flags & (PG_PANIC | PG_PUSHPAGE))); 1488 return (freemem >= npages + throttlefree); 1489 } 1490 1491 /* 1492 * Never deny pages when: 1493 * - it's a thread that cannot block [NOMEMWAIT()] 1494 * - the allocation cannot block and must not fail 1495 * - the allocation cannot block and is pageout dispensated 1496 */ 1497 if (NOMEMWAIT() || 1498 ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) || 1499 ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE)) 1500 return (1); 1501 1502 /* 1503 * If the allocation can't block, we look favorably upon it 1504 * unless we're below pageout_reserve. In that case we fail 1505 * the allocation because we want to make sure there are a few 1506 * pages available for pageout. 1507 */ 1508 if ((flags & PG_WAIT) == 0) 1509 return (freemem >= npages + pageout_reserve); 1510 1511 /* Calculate the effective throttlefree value */ 1512 tf = throttlefree - 1513 ((flags & PG_PUSHPAGE) ? pageout_reserve : 0); 1514 1515 WAKE_PAGEOUT_SCANNER(page__create__throttle); 1516 1517 for (;;) { 1518 fm = 0; 1519 pcf_acquire_all(); 1520 mutex_enter(&new_freemem_lock); 1521 for (i = 0; i < pcf_fanout; i++) { 1522 fm += pcf[i].pcf_count; 1523 pcf[i].pcf_wait++; 1524 mutex_exit(&pcf[i].pcf_lock); 1525 } 1526 freemem = fm; 1527 if (freemem >= npages + tf) { 1528 mutex_exit(&new_freemem_lock); 1529 break; 1530 } 1531 needfree += npages; 1532 freemem_wait++; 1533 cv_wait(&freemem_cv, &new_freemem_lock); 1534 freemem_wait--; 1535 needfree -= npages; 1536 mutex_exit(&new_freemem_lock); 1537 } 1538 return (1); 1539 } 1540 1541 /* 1542 * page_create_wait() is called to either coalesce pages from the 1543 * different pcf buckets or to wait because there simply are not 1544 * enough pages to satisfy the caller's request. 1545 * 1546 * Sadly, this is called from platform/vm/vm_machdep.c 1547 */ 1548 int 1549 page_create_wait(pgcnt_t npages, uint_t flags) 1550 { 1551 pgcnt_t total; 1552 uint_t i; 1553 struct pcf *p; 1554 1555 /* 1556 * Wait until there are enough free pages to satisfy our 1557 * entire request. 1558 * We set needfree += npages before prodding pageout, to make sure 1559 * it does real work when npages > lotsfree > freemem. 1560 */ 1561 VM_STAT_ADD(page_create_not_enough); 1562 1563 ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1); 1564 checkagain: 1565 if ((flags & PG_NORELOC) && 1566 kcage_freemem < kcage_throttlefree + npages) 1567 (void) kcage_create_throttle(npages, flags); 1568 1569 if (freemem < npages + throttlefree) 1570 if (!page_create_throttle(npages, flags)) 1571 return (0); 1572 1573 if (pcf_decrement_bucket(npages) || 1574 pcf_decrement_multiple(&total, npages, 0)) 1575 return (1); 1576 1577 /* 1578 * All of the pcf locks are held, there are not enough pages 1579 * to satisfy the request (npages < total). 1580 * Be sure to acquire the new_freemem_lock before dropping 1581 * the pcf locks. This prevents dropping wakeups in page_free(). 1582 * The order is always pcf_lock then new_freemem_lock. 1583 * 1584 * Since we hold all the pcf locks, it is a good time to set freemem. 1585 * 1586 * If the caller does not want to wait, return now. 1587 * Else turn the pageout daemon loose to find something 1588 * and wait till it does. 1589 * 1590 */ 1591 freemem = total; 1592 1593 if ((flags & PG_WAIT) == 0) { 1594 pcf_release_all(); 1595 1596 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM, 1597 "page_create_nomem:npages %ld freemem %ld", npages, freemem); 1598 return (0); 1599 } 1600 1601 ASSERT(proc_pageout != NULL); 1602 WAKE_PAGEOUT_SCANNER(page__create__wait); 1603 1604 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START, 1605 "page_create_sleep_start: freemem %ld needfree %ld", 1606 freemem, needfree); 1607 1608 /* 1609 * We are going to wait. 1610 * We currently hold all of the pcf_locks, 1611 * get the new_freemem_lock (it protects freemem_wait), 1612 * before dropping the pcf_locks. 1613 */ 1614 mutex_enter(&new_freemem_lock); 1615 1616 p = pcf; 1617 for (i = 0; i < pcf_fanout; i++) { 1618 p->pcf_wait++; 1619 mutex_exit(&p->pcf_lock); 1620 p++; 1621 } 1622 1623 needfree += npages; 1624 freemem_wait++; 1625 1626 cv_wait(&freemem_cv, &new_freemem_lock); 1627 1628 freemem_wait--; 1629 needfree -= npages; 1630 1631 mutex_exit(&new_freemem_lock); 1632 1633 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END, 1634 "page_create_sleep_end: freemem %ld needfree %ld", 1635 freemem, needfree); 1636 1637 VM_STAT_ADD(page_create_not_enough_again); 1638 goto checkagain; 1639 } 1640 /* 1641 * A routine to do the opposite of page_create_wait(). 1642 */ 1643 void 1644 page_create_putback(spgcnt_t npages) 1645 { 1646 struct pcf *p; 1647 pgcnt_t lump; 1648 uint_t *which; 1649 1650 /* 1651 * When a contiguous lump is broken up, we have to 1652 * deal with lots of pages (min 64) so lets spread 1653 * the wealth around. 1654 */ 1655 lump = roundup(npages, pcf_fanout) / pcf_fanout; 1656 freemem += npages; 1657 1658 for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) { 1659 which = &p->pcf_count; 1660 1661 mutex_enter(&p->pcf_lock); 1662 1663 if (p->pcf_block) { 1664 which = &p->pcf_reserve; 1665 } 1666 1667 if (lump < npages) { 1668 *which += (uint_t)lump; 1669 npages -= lump; 1670 } else { 1671 *which += (uint_t)npages; 1672 npages = 0; 1673 } 1674 1675 if (p->pcf_wait) { 1676 mutex_enter(&new_freemem_lock); 1677 /* 1678 * Check to see if some other thread 1679 * is actually waiting. Another bucket 1680 * may have woken it up by now. If there 1681 * are no waiters, then set our pcf_wait 1682 * count to zero to avoid coming in here 1683 * next time. 1684 */ 1685 if (freemem_wait) { 1686 if (npages > 1) { 1687 cv_broadcast(&freemem_cv); 1688 } else { 1689 cv_signal(&freemem_cv); 1690 } 1691 p->pcf_wait--; 1692 } else { 1693 p->pcf_wait = 0; 1694 } 1695 mutex_exit(&new_freemem_lock); 1696 } 1697 mutex_exit(&p->pcf_lock); 1698 } 1699 ASSERT(npages == 0); 1700 } 1701 1702 /* 1703 * A helper routine for page_create_get_something. 1704 * The indenting got to deep down there. 1705 * Unblock the pcf counters. Any pages freed after 1706 * pcf_block got set are moved to pcf_count and 1707 * wakeups (cv_broadcast() or cv_signal()) are done as needed. 1708 */ 1709 static void 1710 pcgs_unblock(void) 1711 { 1712 int i; 1713 struct pcf *p; 1714 1715 /* Update freemem while we're here. */ 1716 freemem = 0; 1717 p = pcf; 1718 for (i = 0; i < pcf_fanout; i++) { 1719 mutex_enter(&p->pcf_lock); 1720 ASSERT(p->pcf_count == 0); 1721 p->pcf_count = p->pcf_reserve; 1722 p->pcf_block = 0; 1723 freemem += p->pcf_count; 1724 if (p->pcf_wait) { 1725 mutex_enter(&new_freemem_lock); 1726 if (freemem_wait) { 1727 if (p->pcf_reserve > 1) { 1728 cv_broadcast(&freemem_cv); 1729 p->pcf_wait = 0; 1730 } else { 1731 cv_signal(&freemem_cv); 1732 p->pcf_wait--; 1733 } 1734 } else { 1735 p->pcf_wait = 0; 1736 } 1737 mutex_exit(&new_freemem_lock); 1738 } 1739 p->pcf_reserve = 0; 1740 mutex_exit(&p->pcf_lock); 1741 p++; 1742 } 1743 } 1744 1745 /* 1746 * Called from page_create_va() when both the cache and free lists 1747 * have been checked once. 1748 * 1749 * Either returns a page or panics since the accounting was done 1750 * way before we got here. 1751 * 1752 * We don't come here often, so leave the accounting on permanently. 1753 */ 1754 1755 #define MAX_PCGS 100 1756 1757 #ifdef DEBUG 1758 #define PCGS_TRIES 100 1759 #else /* DEBUG */ 1760 #define PCGS_TRIES 10 1761 #endif /* DEBUG */ 1762 1763 #ifdef VM_STATS 1764 uint_t pcgs_counts[PCGS_TRIES]; 1765 uint_t pcgs_too_many; 1766 uint_t pcgs_entered; 1767 uint_t pcgs_entered_noreloc; 1768 uint_t pcgs_locked; 1769 uint_t pcgs_cagelocked; 1770 #endif /* VM_STATS */ 1771 1772 static page_t * 1773 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg, 1774 caddr_t vaddr, uint_t flags) 1775 { 1776 uint_t count; 1777 page_t *pp; 1778 uint_t locked, i; 1779 struct pcf *p; 1780 lgrp_t *lgrp; 1781 int cagelocked = 0; 1782 1783 VM_STAT_ADD(pcgs_entered); 1784 1785 /* 1786 * Tap any reserve freelists: if we fail now, we'll die 1787 * since the page(s) we're looking for have already been 1788 * accounted for. 1789 */ 1790 flags |= PG_PANIC; 1791 1792 if ((flags & PG_NORELOC) != 0) { 1793 VM_STAT_ADD(pcgs_entered_noreloc); 1794 /* 1795 * Requests for free pages from critical threads 1796 * such as pageout still won't throttle here, but 1797 * we must try again, to give the cageout thread 1798 * another chance to catch up. Since we already 1799 * accounted for the pages, we had better get them 1800 * this time. 1801 * 1802 * N.B. All non-critical threads acquire the pcgs_cagelock 1803 * to serialize access to the freelists. This implements a 1804 * turnstile-type synchornization to avoid starvation of 1805 * critical requests for PG_NORELOC memory by non-critical 1806 * threads: all non-critical threads must acquire a 'ticket' 1807 * before passing through, which entails making sure 1808 * kcage_freemem won't fall below minfree prior to grabbing 1809 * pages from the freelists. 1810 */ 1811 if (kcage_create_throttle(1, flags) == KCT_NONCRIT) { 1812 mutex_enter(&pcgs_cagelock); 1813 cagelocked = 1; 1814 VM_STAT_ADD(pcgs_cagelocked); 1815 } 1816 } 1817 1818 /* 1819 * Time to get serious. 1820 * We failed to get a `correctly colored' page from both the 1821 * free and cache lists. 1822 * We escalate in stage. 1823 * 1824 * First try both lists without worring about color. 1825 * 1826 * Then, grab all page accounting locks (ie. pcf[]) and 1827 * steal any pages that they have and set the pcf_block flag to 1828 * stop deletions from the lists. This will help because 1829 * a page can get added to the free list while we are looking 1830 * at the cache list, then another page could be added to the cache 1831 * list allowing the page on the free list to be removed as we 1832 * move from looking at the cache list to the free list. This 1833 * could happen over and over. We would never find the page 1834 * we have accounted for. 1835 * 1836 * Noreloc pages are a subset of the global (relocatable) page pool. 1837 * They are not tracked separately in the pcf bins, so it is 1838 * impossible to know when doing pcf accounting if the available 1839 * page(s) are noreloc pages or not. When looking for a noreloc page 1840 * it is quite easy to end up here even if the global (relocatable) 1841 * page pool has plenty of free pages but the noreloc pool is empty. 1842 * 1843 * When the noreloc pool is empty (or low), additional noreloc pages 1844 * are created by converting pages from the global page pool. This 1845 * process will stall during pcf accounting if the pcf bins are 1846 * already locked. Such is the case when a noreloc allocation is 1847 * looping here in page_create_get_something waiting for more noreloc 1848 * pages to appear. 1849 * 1850 * Short of adding a new field to the pcf bins to accurately track 1851 * the number of free noreloc pages, we instead do not grab the 1852 * pcgs_lock, do not set the pcf blocks and do not timeout when 1853 * allocating a noreloc page. This allows noreloc allocations to 1854 * loop without blocking global page pool allocations. 1855 * 1856 * NOTE: the behaviour of page_create_get_something has not changed 1857 * for the case of global page pool allocations. 1858 */ 1859 1860 flags &= ~PG_MATCH_COLOR; 1861 locked = 0; 1862 #if defined(__x86) 1863 flags = page_create_update_flags_x86(flags); 1864 #endif 1865 1866 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE); 1867 1868 for (count = 0; kcage_on || count < MAX_PCGS; count++) { 1869 pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE, 1870 flags, lgrp); 1871 if (pp == NULL) { 1872 pp = page_get_cachelist(vp, off, seg, vaddr, 1873 flags, lgrp); 1874 } 1875 if (pp == NULL) { 1876 /* 1877 * Serialize. Don't fight with other pcgs(). 1878 */ 1879 if (!locked && (!kcage_on || !(flags & PG_NORELOC))) { 1880 mutex_enter(&pcgs_lock); 1881 VM_STAT_ADD(pcgs_locked); 1882 locked = 1; 1883 p = pcf; 1884 for (i = 0; i < pcf_fanout; i++) { 1885 mutex_enter(&p->pcf_lock); 1886 ASSERT(p->pcf_block == 0); 1887 p->pcf_block = 1; 1888 p->pcf_reserve = p->pcf_count; 1889 p->pcf_count = 0; 1890 mutex_exit(&p->pcf_lock); 1891 p++; 1892 } 1893 freemem = 0; 1894 } 1895 1896 if (count) { 1897 /* 1898 * Since page_free() puts pages on 1899 * a list then accounts for it, we 1900 * just have to wait for page_free() 1901 * to unlock any page it was working 1902 * with. The page_lock()-page_reclaim() 1903 * path falls in the same boat. 1904 * 1905 * We don't need to check on the 1906 * PG_WAIT flag, we have already 1907 * accounted for the page we are 1908 * looking for in page_create_va(). 1909 * 1910 * We just wait a moment to let any 1911 * locked pages on the lists free up, 1912 * then continue around and try again. 1913 * 1914 * Will be awakened by set_freemem(). 1915 */ 1916 mutex_enter(&pcgs_wait_lock); 1917 cv_wait(&pcgs_cv, &pcgs_wait_lock); 1918 mutex_exit(&pcgs_wait_lock); 1919 } 1920 } else { 1921 #ifdef VM_STATS 1922 if (count >= PCGS_TRIES) { 1923 VM_STAT_ADD(pcgs_too_many); 1924 } else { 1925 VM_STAT_ADD(pcgs_counts[count]); 1926 } 1927 #endif 1928 if (locked) { 1929 pcgs_unblock(); 1930 mutex_exit(&pcgs_lock); 1931 } 1932 if (cagelocked) 1933 mutex_exit(&pcgs_cagelock); 1934 return (pp); 1935 } 1936 } 1937 /* 1938 * we go down holding the pcf locks. 1939 */ 1940 panic("no %spage found %d", 1941 ((flags & PG_NORELOC) ? "non-reloc " : ""), count); 1942 /*NOTREACHED*/ 1943 } 1944 1945 /* 1946 * Create enough pages for "bytes" worth of data starting at 1947 * "off" in "vp". 1948 * 1949 * Where flag must be one of: 1950 * 1951 * PG_EXCL: Exclusive create (fail if any page already 1952 * exists in the page cache) which does not 1953 * wait for memory to become available. 1954 * 1955 * PG_WAIT: Non-exclusive create which can wait for 1956 * memory to become available. 1957 * 1958 * PG_PHYSCONTIG: Allocate physically contiguous pages. 1959 * (Not Supported) 1960 * 1961 * A doubly linked list of pages is returned to the caller. Each page 1962 * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock) 1963 * lock. 1964 * 1965 * Unable to change the parameters to page_create() in a minor release, 1966 * we renamed page_create() to page_create_va(), changed all known calls 1967 * from page_create() to page_create_va(), and created this wrapper. 1968 * 1969 * Upon a major release, we should break compatibility by deleting this 1970 * wrapper, and replacing all the strings "page_create_va", with "page_create". 1971 * 1972 * NOTE: There is a copy of this interface as page_create_io() in 1973 * i86/vm/vm_machdep.c. Any bugs fixed here should be applied 1974 * there. 1975 */ 1976 page_t * 1977 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags) 1978 { 1979 caddr_t random_vaddr; 1980 struct seg kseg; 1981 1982 #ifdef DEBUG 1983 cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p", 1984 (void *)caller()); 1985 #endif 1986 1987 random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^ 1988 (uintptr_t)(off >> PAGESHIFT)); 1989 kseg.s_as = &kas; 1990 1991 return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr)); 1992 } 1993 1994 #ifdef DEBUG 1995 uint32_t pg_alloc_pgs_mtbf = 0; 1996 #endif 1997 1998 /* 1999 * Used for large page support. It will attempt to allocate 2000 * a large page(s) off the freelist. 2001 * 2002 * Returns non zero on failure. 2003 */ 2004 int 2005 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr, 2006 page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags) 2007 { 2008 pgcnt_t npgs, curnpgs, totpgs; 2009 size_t pgsz; 2010 page_t *pplist = NULL, *pp; 2011 int err = 0; 2012 lgrp_t *lgrp; 2013 2014 ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1)); 2015 ASSERT(pgflags == 0 || pgflags == PG_LOCAL); 2016 2017 /* 2018 * Check if system heavily prefers local large pages over remote 2019 * on systems with multiple lgroups. 2020 */ 2021 if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) { 2022 pgflags = PG_LOCAL; 2023 } 2024 2025 VM_STAT_ADD(alloc_pages[0]); 2026 2027 #ifdef DEBUG 2028 if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) { 2029 return (ENOMEM); 2030 } 2031 #endif 2032 2033 /* 2034 * One must be NULL but not both. 2035 * And one must be non NULL but not both. 2036 */ 2037 ASSERT(basepp != NULL || ppa != NULL); 2038 ASSERT(basepp == NULL || ppa == NULL); 2039 2040 #if defined(__x86) 2041 while (page_chk_freelist(szc) == 0) { 2042 VM_STAT_ADD(alloc_pages[8]); 2043 if (anypgsz == 0 || --szc == 0) 2044 return (ENOMEM); 2045 } 2046 #endif 2047 2048 pgsz = page_get_pagesize(szc); 2049 totpgs = curnpgs = npgs = pgsz >> PAGESHIFT; 2050 2051 ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0); 2052 2053 (void) page_create_wait(npgs, PG_WAIT); 2054 2055 while (npgs && szc) { 2056 lgrp = lgrp_mem_choose(seg, addr, pgsz); 2057 if (pgflags == PG_LOCAL) { 2058 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 2059 pgflags, lgrp); 2060 if (pp == NULL) { 2061 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 2062 0, lgrp); 2063 } 2064 } else { 2065 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 2066 0, lgrp); 2067 } 2068 if (pp != NULL) { 2069 VM_STAT_ADD(alloc_pages[1]); 2070 page_list_concat(&pplist, &pp); 2071 ASSERT(npgs >= curnpgs); 2072 npgs -= curnpgs; 2073 } else if (anypgsz) { 2074 VM_STAT_ADD(alloc_pages[2]); 2075 szc--; 2076 pgsz = page_get_pagesize(szc); 2077 curnpgs = pgsz >> PAGESHIFT; 2078 } else { 2079 VM_STAT_ADD(alloc_pages[3]); 2080 ASSERT(npgs == totpgs); 2081 page_create_putback(npgs); 2082 return (ENOMEM); 2083 } 2084 } 2085 if (szc == 0) { 2086 VM_STAT_ADD(alloc_pages[4]); 2087 ASSERT(npgs != 0); 2088 page_create_putback(npgs); 2089 err = ENOMEM; 2090 } else if (basepp != NULL) { 2091 ASSERT(npgs == 0); 2092 ASSERT(ppa == NULL); 2093 *basepp = pplist; 2094 } 2095 2096 npgs = totpgs - npgs; 2097 pp = pplist; 2098 2099 /* 2100 * Clear the free and age bits. Also if we were passed in a ppa then 2101 * fill it in with all the constituent pages from the large page. But 2102 * if we failed to allocate all the pages just free what we got. 2103 */ 2104 while (npgs != 0) { 2105 ASSERT(PP_ISFREE(pp)); 2106 ASSERT(PP_ISAGED(pp)); 2107 if (ppa != NULL || err != 0) { 2108 if (err == 0) { 2109 VM_STAT_ADD(alloc_pages[5]); 2110 PP_CLRFREE(pp); 2111 PP_CLRAGED(pp); 2112 page_sub(&pplist, pp); 2113 *ppa++ = pp; 2114 npgs--; 2115 } else { 2116 VM_STAT_ADD(alloc_pages[6]); 2117 ASSERT(pp->p_szc != 0); 2118 curnpgs = page_get_pagecnt(pp->p_szc); 2119 page_list_break(&pp, &pplist, curnpgs); 2120 page_list_add_pages(pp, 0); 2121 page_create_putback(curnpgs); 2122 ASSERT(npgs >= curnpgs); 2123 npgs -= curnpgs; 2124 } 2125 pp = pplist; 2126 } else { 2127 VM_STAT_ADD(alloc_pages[7]); 2128 PP_CLRFREE(pp); 2129 PP_CLRAGED(pp); 2130 pp = pp->p_next; 2131 npgs--; 2132 } 2133 } 2134 return (err); 2135 } 2136 2137 /* 2138 * Get a single large page off of the freelists, and set it up for use. 2139 * Number of bytes requested must be a supported page size. 2140 * 2141 * Note that this call may fail even if there is sufficient 2142 * memory available or PG_WAIT is set, so the caller must 2143 * be willing to fallback on page_create_va(), block and retry, 2144 * or fail the requester. 2145 */ 2146 page_t * 2147 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags, 2148 struct seg *seg, caddr_t vaddr, void *arg) 2149 { 2150 pgcnt_t npages; 2151 page_t *pp; 2152 page_t *rootpp; 2153 lgrp_t *lgrp; 2154 lgrp_id_t *lgrpid = (lgrp_id_t *)arg; 2155 2156 ASSERT(vp != NULL); 2157 2158 ASSERT((flags & ~(PG_EXCL | PG_WAIT | 2159 PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0); 2160 /* but no others */ 2161 2162 ASSERT((flags & PG_EXCL) == PG_EXCL); 2163 2164 npages = btop(bytes); 2165 2166 if (!kcage_on || panicstr) { 2167 /* 2168 * Cage is OFF, or we are single threaded in 2169 * panic, so make everything a RELOC request. 2170 */ 2171 flags &= ~PG_NORELOC; 2172 } 2173 2174 /* 2175 * Make sure there's adequate physical memory available. 2176 * Note: PG_WAIT is ignored here. 2177 */ 2178 if (freemem <= throttlefree + npages) { 2179 VM_STAT_ADD(page_create_large_cnt[1]); 2180 return (NULL); 2181 } 2182 2183 /* 2184 * If cage is on, dampen draw from cage when available 2185 * cage space is low. 2186 */ 2187 if ((flags & (PG_NORELOC | PG_WAIT)) == (PG_NORELOC | PG_WAIT) && 2188 kcage_freemem < kcage_throttlefree + npages) { 2189 2190 /* 2191 * The cage is on, the caller wants PG_NORELOC 2192 * pages and available cage memory is very low. 2193 * Call kcage_create_throttle() to attempt to 2194 * control demand on the cage. 2195 */ 2196 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) { 2197 VM_STAT_ADD(page_create_large_cnt[2]); 2198 return (NULL); 2199 } 2200 } 2201 2202 if (!pcf_decrement_bucket(npages) && 2203 !pcf_decrement_multiple(NULL, npages, 1)) { 2204 VM_STAT_ADD(page_create_large_cnt[4]); 2205 return (NULL); 2206 } 2207 2208 /* 2209 * This is where this function behaves fundamentally differently 2210 * than page_create_va(); since we're intending to map the page 2211 * with a single TTE, we have to get it as a physically contiguous 2212 * hardware pagesize chunk. If we can't, we fail. 2213 */ 2214 if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max && 2215 LGRP_EXISTS(lgrp_table[*lgrpid])) 2216 lgrp = lgrp_table[*lgrpid]; 2217 else 2218 lgrp = lgrp_mem_choose(seg, vaddr, bytes); 2219 2220 if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr, 2221 bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) { 2222 page_create_putback(npages); 2223 VM_STAT_ADD(page_create_large_cnt[5]); 2224 return (NULL); 2225 } 2226 2227 /* 2228 * if we got the page with the wrong mtype give it back this is a 2229 * workaround for CR 6249718. When CR 6249718 is fixed we never get 2230 * inside "if" and the workaround becomes just a nop 2231 */ 2232 if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) { 2233 page_list_add_pages(rootpp, 0); 2234 page_create_putback(npages); 2235 VM_STAT_ADD(page_create_large_cnt[6]); 2236 return (NULL); 2237 } 2238 2239 /* 2240 * If satisfying this request has left us with too little 2241 * memory, start the wheels turning to get some back. The 2242 * first clause of the test prevents waking up the pageout 2243 * daemon in situations where it would decide that there's 2244 * nothing to do. 2245 */ 2246 if (nscan < desscan && freemem < minfree) { 2247 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 2248 "pageout_cv_signal:freemem %ld", freemem); 2249 WAKE_PAGEOUT_SCANNER(va__large); 2250 } 2251 2252 pp = rootpp; 2253 while (npages--) { 2254 ASSERT(PAGE_EXCL(pp)); 2255 ASSERT(pp->p_vnode == NULL); 2256 ASSERT(!hat_page_is_mapped(pp)); 2257 PP_CLRFREE(pp); 2258 PP_CLRAGED(pp); 2259 if (!page_hashin(pp, vp, off, NULL)) 2260 panic("page_create_large: hashin failed: page %p", 2261 (void *)pp); 2262 page_io_lock(pp); 2263 off += PAGESIZE; 2264 pp = pp->p_next; 2265 } 2266 2267 VM_STAT_ADD(page_create_large_cnt[0]); 2268 return (rootpp); 2269 } 2270 2271 page_t * 2272 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags, 2273 struct seg *seg, caddr_t vaddr) 2274 { 2275 page_t *plist = NULL; 2276 pgcnt_t npages; 2277 pgcnt_t found_on_free = 0; 2278 pgcnt_t pages_req; 2279 page_t *npp = NULL; 2280 struct pcf *p; 2281 lgrp_t *lgrp; 2282 2283 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START, 2284 "page_create_start:vp %p off %llx bytes %lu flags %x", 2285 vp, off, bytes, flags); 2286 2287 ASSERT(bytes != 0 && vp != NULL); 2288 2289 if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) { 2290 panic("page_create: invalid flags"); 2291 /*NOTREACHED*/ 2292 } 2293 ASSERT((flags & ~(PG_EXCL | PG_WAIT | 2294 PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0); 2295 /* but no others */ 2296 2297 pages_req = npages = btopr(bytes); 2298 /* 2299 * Try to see whether request is too large to *ever* be 2300 * satisfied, in order to prevent deadlock. We arbitrarily 2301 * decide to limit maximum size requests to max_page_get. 2302 */ 2303 if (npages >= max_page_get) { 2304 if ((flags & PG_WAIT) == 0) { 2305 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG, 2306 "page_create_toobig:vp %p off %llx npages " 2307 "%lu max_page_get %lu", 2308 vp, off, npages, max_page_get); 2309 return (NULL); 2310 } else { 2311 cmn_err(CE_WARN, 2312 "Request for too much kernel memory " 2313 "(%lu bytes), will hang forever", bytes); 2314 for (;;) 2315 delay(1000000000); 2316 } 2317 } 2318 2319 if (!kcage_on || panicstr) { 2320 /* 2321 * Cage is OFF, or we are single threaded in 2322 * panic, so make everything a RELOC request. 2323 */ 2324 flags &= ~PG_NORELOC; 2325 } 2326 2327 if (freemem <= throttlefree + npages) 2328 if (!page_create_throttle(npages, flags)) 2329 return (NULL); 2330 2331 /* 2332 * If cage is on, dampen draw from cage when available 2333 * cage space is low. 2334 */ 2335 if ((flags & PG_NORELOC) && 2336 kcage_freemem < kcage_throttlefree + npages) { 2337 2338 /* 2339 * The cage is on, the caller wants PG_NORELOC 2340 * pages and available cage memory is very low. 2341 * Call kcage_create_throttle() to attempt to 2342 * control demand on the cage. 2343 */ 2344 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) 2345 return (NULL); 2346 } 2347 2348 VM_STAT_ADD(page_create_cnt[0]); 2349 2350 if (!pcf_decrement_bucket(npages)) { 2351 /* 2352 * Have to look harder. If npages is greater than 2353 * one, then we might have to coalesce the counters. 2354 * 2355 * Go wait. We come back having accounted 2356 * for the memory. 2357 */ 2358 VM_STAT_ADD(page_create_cnt[1]); 2359 if (!page_create_wait(npages, flags)) { 2360 VM_STAT_ADD(page_create_cnt[2]); 2361 return (NULL); 2362 } 2363 } 2364 2365 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS, 2366 "page_create_success:vp %p off %llx", vp, off); 2367 2368 /* 2369 * If satisfying this request has left us with too little 2370 * memory, start the wheels turning to get some back. The 2371 * first clause of the test prevents waking up the pageout 2372 * daemon in situations where it would decide that there's 2373 * nothing to do. 2374 */ 2375 if (nscan < desscan && freemem < minfree) { 2376 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 2377 "pageout_cv_signal:freemem %ld", freemem); 2378 WAKE_PAGEOUT_SCANNER(va); 2379 } 2380 2381 /* 2382 * Loop around collecting the requested number of pages. 2383 * Most of the time, we have to `create' a new page. With 2384 * this in mind, pull the page off the free list before 2385 * getting the hash lock. This will minimize the hash 2386 * lock hold time, nesting, and the like. If it turns 2387 * out we don't need the page, we put it back at the end. 2388 */ 2389 while (npages--) { 2390 page_t *pp; 2391 kmutex_t *phm = NULL; 2392 ulong_t index; 2393 2394 index = PAGE_HASH_FUNC(vp, off); 2395 top: 2396 ASSERT(phm == NULL); 2397 ASSERT(index == PAGE_HASH_FUNC(vp, off)); 2398 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 2399 2400 if (npp == NULL) { 2401 /* 2402 * Try to get a page from the freelist (ie, 2403 * a page with no [vp, off] tag). If that 2404 * fails, use the cachelist. 2405 * 2406 * During the first attempt at both the free 2407 * and cache lists we try for the correct color. 2408 */ 2409 /* 2410 * XXXX-how do we deal with virtual indexed 2411 * caches and and colors? 2412 */ 2413 VM_STAT_ADD(page_create_cnt[4]); 2414 /* 2415 * Get lgroup to allocate next page of shared memory 2416 * from and use it to specify where to allocate 2417 * the physical memory 2418 */ 2419 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE); 2420 npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE, 2421 flags | PG_MATCH_COLOR, lgrp); 2422 if (npp == NULL) { 2423 npp = page_get_cachelist(vp, off, seg, 2424 vaddr, flags | PG_MATCH_COLOR, lgrp); 2425 if (npp == NULL) { 2426 npp = page_create_get_something(vp, 2427 off, seg, vaddr, 2428 flags & ~PG_MATCH_COLOR); 2429 } 2430 2431 if (PP_ISAGED(npp) == 0) { 2432 /* 2433 * Since this page came from the 2434 * cachelist, we must destroy the 2435 * old vnode association. 2436 */ 2437 page_hashout(npp, NULL); 2438 } 2439 } 2440 } 2441 2442 /* 2443 * We own this page! 2444 */ 2445 ASSERT(PAGE_EXCL(npp)); 2446 ASSERT(npp->p_vnode == NULL); 2447 ASSERT(!hat_page_is_mapped(npp)); 2448 PP_CLRFREE(npp); 2449 PP_CLRAGED(npp); 2450 2451 /* 2452 * Here we have a page in our hot little mits and are 2453 * just waiting to stuff it on the appropriate lists. 2454 * Get the mutex and check to see if it really does 2455 * not exist. 2456 */ 2457 phm = PAGE_HASH_MUTEX(index); 2458 mutex_enter(phm); 2459 pp = page_hash_search(index, vp, off); 2460 if (pp == NULL) { 2461 VM_STAT_ADD(page_create_new); 2462 pp = npp; 2463 npp = NULL; 2464 if (!page_hashin(pp, vp, off, phm)) { 2465 /* 2466 * Since we hold the page hash mutex and 2467 * just searched for this page, page_hashin 2468 * had better not fail. If it does, that 2469 * means somethread did not follow the 2470 * page hash mutex rules. Panic now and 2471 * get it over with. As usual, go down 2472 * holding all the locks. 2473 */ 2474 ASSERT(MUTEX_HELD(phm)); 2475 panic("page_create: " 2476 "hashin failed %p %p %llx %p", 2477 (void *)pp, (void *)vp, off, (void *)phm); 2478 /*NOTREACHED*/ 2479 } 2480 ASSERT(MUTEX_HELD(phm)); 2481 mutex_exit(phm); 2482 phm = NULL; 2483 2484 /* 2485 * Hat layer locking need not be done to set 2486 * the following bits since the page is not hashed 2487 * and was on the free list (i.e., had no mappings). 2488 * 2489 * Set the reference bit to protect 2490 * against immediate pageout 2491 * 2492 * XXXmh modify freelist code to set reference 2493 * bit so we don't have to do it here. 2494 */ 2495 page_set_props(pp, P_REF); 2496 found_on_free++; 2497 } else { 2498 VM_STAT_ADD(page_create_exists); 2499 if (flags & PG_EXCL) { 2500 /* 2501 * Found an existing page, and the caller 2502 * wanted all new pages. Undo all of the work 2503 * we have done. 2504 */ 2505 mutex_exit(phm); 2506 phm = NULL; 2507 while (plist != NULL) { 2508 pp = plist; 2509 page_sub(&plist, pp); 2510 page_io_unlock(pp); 2511 /* large pages should not end up here */ 2512 ASSERT(pp->p_szc == 0); 2513 /*LINTED: constant in conditional ctx*/ 2514 VN_DISPOSE(pp, B_INVAL, 0, kcred); 2515 } 2516 VM_STAT_ADD(page_create_found_one); 2517 goto fail; 2518 } 2519 ASSERT(flags & PG_WAIT); 2520 if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) { 2521 /* 2522 * Start all over again if we blocked trying 2523 * to lock the page. 2524 */ 2525 mutex_exit(phm); 2526 VM_STAT_ADD(page_create_page_lock_failed); 2527 phm = NULL; 2528 goto top; 2529 } 2530 mutex_exit(phm); 2531 phm = NULL; 2532 2533 if (PP_ISFREE(pp)) { 2534 ASSERT(PP_ISAGED(pp) == 0); 2535 VM_STAT_ADD(pagecnt.pc_get_cache); 2536 page_list_sub(pp, PG_CACHE_LIST); 2537 PP_CLRFREE(pp); 2538 found_on_free++; 2539 } 2540 } 2541 2542 /* 2543 * Got a page! It is locked. Acquire the i/o 2544 * lock since we are going to use the p_next and 2545 * p_prev fields to link the requested pages together. 2546 */ 2547 page_io_lock(pp); 2548 page_add(&plist, pp); 2549 plist = plist->p_next; 2550 off += PAGESIZE; 2551 vaddr += PAGESIZE; 2552 } 2553 2554 ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1); 2555 fail: 2556 if (npp != NULL) { 2557 /* 2558 * Did not need this page after all. 2559 * Put it back on the free list. 2560 */ 2561 VM_STAT_ADD(page_create_putbacks); 2562 PP_SETFREE(npp); 2563 PP_SETAGED(npp); 2564 npp->p_offset = (u_offset_t)-1; 2565 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL); 2566 page_unlock(npp); 2567 2568 } 2569 2570 ASSERT(pages_req >= found_on_free); 2571 2572 { 2573 uint_t overshoot = (uint_t)(pages_req - found_on_free); 2574 2575 if (overshoot) { 2576 VM_STAT_ADD(page_create_overshoot); 2577 p = &pcf[PCF_INDEX()]; 2578 mutex_enter(&p->pcf_lock); 2579 if (p->pcf_block) { 2580 p->pcf_reserve += overshoot; 2581 } else { 2582 p->pcf_count += overshoot; 2583 if (p->pcf_wait) { 2584 mutex_enter(&new_freemem_lock); 2585 if (freemem_wait) { 2586 cv_signal(&freemem_cv); 2587 p->pcf_wait--; 2588 } else { 2589 p->pcf_wait = 0; 2590 } 2591 mutex_exit(&new_freemem_lock); 2592 } 2593 } 2594 mutex_exit(&p->pcf_lock); 2595 /* freemem is approximate, so this test OK */ 2596 if (!p->pcf_block) 2597 freemem += overshoot; 2598 } 2599 } 2600 2601 return (plist); 2602 } 2603 2604 /* 2605 * One or more constituent pages of this large page has been marked 2606 * toxic. Simply demote the large page to PAGESIZE pages and let 2607 * page_free() handle it. This routine should only be called by 2608 * large page free routines (page_free_pages() and page_destroy_pages(). 2609 * All pages are locked SE_EXCL and have already been marked free. 2610 */ 2611 static void 2612 page_free_toxic_pages(page_t *rootpp) 2613 { 2614 page_t *tpp; 2615 pgcnt_t i, pgcnt = page_get_pagecnt(rootpp->p_szc); 2616 uint_t szc = rootpp->p_szc; 2617 2618 for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) { 2619 ASSERT(tpp->p_szc == szc); 2620 ASSERT((PAGE_EXCL(tpp) && 2621 !page_iolock_assert(tpp)) || panicstr); 2622 tpp->p_szc = 0; 2623 } 2624 2625 while (rootpp != NULL) { 2626 tpp = rootpp; 2627 page_sub(&rootpp, tpp); 2628 ASSERT(PP_ISFREE(tpp)); 2629 PP_CLRFREE(tpp); 2630 page_free(tpp, 1); 2631 } 2632 } 2633 2634 /* 2635 * Put page on the "free" list. 2636 * The free list is really two lists maintained by 2637 * the PSM of whatever machine we happen to be on. 2638 */ 2639 void 2640 page_free(page_t *pp, int dontneed) 2641 { 2642 struct pcf *p; 2643 uint_t pcf_index; 2644 2645 ASSERT((PAGE_EXCL(pp) && 2646 !page_iolock_assert(pp)) || panicstr); 2647 2648 if (PP_ISFREE(pp)) { 2649 panic("page_free: page %p is free", (void *)pp); 2650 } 2651 2652 if (pp->p_szc != 0) { 2653 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) || 2654 PP_ISKAS(pp)) { 2655 panic("page_free: anon or kernel " 2656 "or no vnode large page %p", (void *)pp); 2657 } 2658 page_demote_vp_pages(pp); 2659 ASSERT(pp->p_szc == 0); 2660 } 2661 2662 /* 2663 * The page_struct_lock need not be acquired to examine these 2664 * fields since the page has an "exclusive" lock. 2665 */ 2666 if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 || 2667 pp->p_slckcnt != 0) { 2668 panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d " 2669 "slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt, 2670 pp->p_cowcnt, pp->p_slckcnt); 2671 /*NOTREACHED*/ 2672 } 2673 2674 ASSERT(!hat_page_getshare(pp)); 2675 2676 PP_SETFREE(pp); 2677 ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) || 2678 !hat_ismod(pp)); 2679 page_clr_all_props(pp); 2680 ASSERT(!hat_page_getshare(pp)); 2681 2682 /* 2683 * Now we add the page to the head of the free list. 2684 * But if this page is associated with a paged vnode 2685 * then we adjust the head forward so that the page is 2686 * effectively at the end of the list. 2687 */ 2688 if (pp->p_vnode == NULL) { 2689 /* 2690 * Page has no identity, put it on the free list. 2691 */ 2692 PP_SETAGED(pp); 2693 pp->p_offset = (u_offset_t)-1; 2694 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 2695 VM_STAT_ADD(pagecnt.pc_free_free); 2696 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE, 2697 "page_free_free:pp %p", pp); 2698 } else { 2699 PP_CLRAGED(pp); 2700 2701 if (!dontneed) { 2702 /* move it to the tail of the list */ 2703 page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL); 2704 2705 VM_STAT_ADD(pagecnt.pc_free_cache); 2706 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL, 2707 "page_free_cache_tail:pp %p", pp); 2708 } else { 2709 page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD); 2710 2711 VM_STAT_ADD(pagecnt.pc_free_dontneed); 2712 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD, 2713 "page_free_cache_head:pp %p", pp); 2714 } 2715 } 2716 page_unlock(pp); 2717 2718 /* 2719 * Now do the `freemem' accounting. 2720 */ 2721 pcf_index = PCF_INDEX(); 2722 p = &pcf[pcf_index]; 2723 2724 mutex_enter(&p->pcf_lock); 2725 if (p->pcf_block) { 2726 p->pcf_reserve += 1; 2727 } else { 2728 p->pcf_count += 1; 2729 if (p->pcf_wait) { 2730 mutex_enter(&new_freemem_lock); 2731 /* 2732 * Check to see if some other thread 2733 * is actually waiting. Another bucket 2734 * may have woken it up by now. If there 2735 * are no waiters, then set our pcf_wait 2736 * count to zero to avoid coming in here 2737 * next time. Also, since only one page 2738 * was put on the free list, just wake 2739 * up one waiter. 2740 */ 2741 if (freemem_wait) { 2742 cv_signal(&freemem_cv); 2743 p->pcf_wait--; 2744 } else { 2745 p->pcf_wait = 0; 2746 } 2747 mutex_exit(&new_freemem_lock); 2748 } 2749 } 2750 mutex_exit(&p->pcf_lock); 2751 2752 /* freemem is approximate, so this test OK */ 2753 if (!p->pcf_block) 2754 freemem += 1; 2755 } 2756 2757 /* 2758 * Put page on the "free" list during intial startup. 2759 * This happens during initial single threaded execution. 2760 */ 2761 void 2762 page_free_at_startup(page_t *pp) 2763 { 2764 struct pcf *p; 2765 uint_t pcf_index; 2766 2767 page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT); 2768 VM_STAT_ADD(pagecnt.pc_free_free); 2769 2770 /* 2771 * Now do the `freemem' accounting. 2772 */ 2773 pcf_index = PCF_INDEX(); 2774 p = &pcf[pcf_index]; 2775 2776 ASSERT(p->pcf_block == 0); 2777 ASSERT(p->pcf_wait == 0); 2778 p->pcf_count += 1; 2779 2780 /* freemem is approximate, so this is OK */ 2781 freemem += 1; 2782 } 2783 2784 void 2785 page_free_pages(page_t *pp) 2786 { 2787 page_t *tpp, *rootpp = NULL; 2788 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc); 2789 pgcnt_t i; 2790 uint_t szc = pp->p_szc; 2791 2792 VM_STAT_ADD(pagecnt.pc_free_pages); 2793 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE, 2794 "page_free_free:pp %p", pp); 2795 2796 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes()); 2797 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) { 2798 panic("page_free_pages: not root page %p", (void *)pp); 2799 /*NOTREACHED*/ 2800 } 2801 2802 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) { 2803 ASSERT((PAGE_EXCL(tpp) && 2804 !page_iolock_assert(tpp)) || panicstr); 2805 if (PP_ISFREE(tpp)) { 2806 panic("page_free_pages: page %p is free", (void *)tpp); 2807 /*NOTREACHED*/ 2808 } 2809 if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 || 2810 tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) { 2811 panic("page_free_pages %p", (void *)tpp); 2812 /*NOTREACHED*/ 2813 } 2814 2815 ASSERT(!hat_page_getshare(tpp)); 2816 ASSERT(tpp->p_vnode == NULL); 2817 ASSERT(tpp->p_szc == szc); 2818 2819 PP_SETFREE(tpp); 2820 page_clr_all_props(tpp); 2821 PP_SETAGED(tpp); 2822 tpp->p_offset = (u_offset_t)-1; 2823 ASSERT(tpp->p_next == tpp); 2824 ASSERT(tpp->p_prev == tpp); 2825 page_list_concat(&rootpp, &tpp); 2826 } 2827 ASSERT(rootpp == pp); 2828 2829 page_list_add_pages(rootpp, 0); 2830 page_create_putback(pgcnt); 2831 } 2832 2833 int free_pages = 1; 2834 2835 /* 2836 * This routine attempts to return pages to the cachelist via page_release(). 2837 * It does not *have* to be successful in all cases, since the pageout scanner 2838 * will catch any pages it misses. It does need to be fast and not introduce 2839 * too much overhead. 2840 * 2841 * If a page isn't found on the unlocked sweep of the page_hash bucket, we 2842 * don't lock and retry. This is ok, since the page scanner will eventually 2843 * find any page we miss in free_vp_pages(). 2844 */ 2845 void 2846 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len) 2847 { 2848 page_t *pp; 2849 u_offset_t eoff; 2850 extern int swap_in_range(vnode_t *, u_offset_t, size_t); 2851 2852 eoff = off + len; 2853 2854 if (free_pages == 0) 2855 return; 2856 if (swap_in_range(vp, off, len)) 2857 return; 2858 2859 for (; off < eoff; off += PAGESIZE) { 2860 2861 /* 2862 * find the page using a fast, but inexact search. It'll be OK 2863 * if a few pages slip through the cracks here. 2864 */ 2865 pp = page_exists(vp, off); 2866 2867 /* 2868 * If we didn't find the page (it may not exist), the page 2869 * is free, looks still in use (shared), or we can't lock it, 2870 * just give up. 2871 */ 2872 if (pp == NULL || 2873 PP_ISFREE(pp) || 2874 page_share_cnt(pp) > 0 || 2875 !page_trylock(pp, SE_EXCL)) 2876 continue; 2877 2878 /* 2879 * Once we have locked pp, verify that it's still the 2880 * correct page and not already free 2881 */ 2882 ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL)); 2883 if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) { 2884 page_unlock(pp); 2885 continue; 2886 } 2887 2888 /* 2889 * try to release the page... 2890 */ 2891 (void) page_release(pp, 1); 2892 } 2893 } 2894 2895 /* 2896 * Reclaim the given page from the free list. 2897 * If pp is part of a large pages, only the given constituent page is reclaimed 2898 * and the large page it belonged to will be demoted. This can only happen 2899 * if the page is not on the cachelist. 2900 * 2901 * Returns 1 on success or 0 on failure. 2902 * 2903 * The page is unlocked if it can't be reclaimed (when freemem == 0). 2904 * If `lock' is non-null, it will be dropped and re-acquired if 2905 * the routine must wait while freemem is 0. 2906 * 2907 * As it turns out, boot_getpages() does this. It picks a page, 2908 * based on where OBP mapped in some address, gets its pfn, searches 2909 * the memsegs, locks the page, then pulls it off the free list! 2910 */ 2911 int 2912 page_reclaim(page_t *pp, kmutex_t *lock) 2913 { 2914 struct pcf *p; 2915 struct cpu *cpup; 2916 int enough; 2917 uint_t i; 2918 2919 ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1); 2920 ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp)); 2921 2922 /* 2923 * If `freemem' is 0, we cannot reclaim this page from the 2924 * freelist, so release every lock we might hold: the page, 2925 * and the `lock' before blocking. 2926 * 2927 * The only way `freemem' can become 0 while there are pages 2928 * marked free (have their p->p_free bit set) is when the 2929 * system is low on memory and doing a page_create(). In 2930 * order to guarantee that once page_create() starts acquiring 2931 * pages it will be able to get all that it needs since `freemem' 2932 * was decreased by the requested amount. So, we need to release 2933 * this page, and let page_create() have it. 2934 * 2935 * Since `freemem' being zero is not supposed to happen, just 2936 * use the usual hash stuff as a starting point. If that bucket 2937 * is empty, then assume the worst, and start at the beginning 2938 * of the pcf array. If we always start at the beginning 2939 * when acquiring more than one pcf lock, there won't be any 2940 * deadlock problems. 2941 */ 2942 2943 /* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */ 2944 2945 if (freemem <= throttlefree && !page_create_throttle(1l, 0)) { 2946 pcf_acquire_all(); 2947 goto page_reclaim_nomem; 2948 } 2949 2950 enough = pcf_decrement_bucket(1); 2951 2952 if (!enough) { 2953 VM_STAT_ADD(page_reclaim_zero); 2954 /* 2955 * Check again. Its possible that some other thread 2956 * could have been right behind us, and added one 2957 * to a list somewhere. Acquire each of the pcf locks 2958 * until we find a page. 2959 */ 2960 p = pcf; 2961 for (i = 0; i < pcf_fanout; i++) { 2962 mutex_enter(&p->pcf_lock); 2963 if (p->pcf_count >= 1) { 2964 p->pcf_count -= 1; 2965 /* 2966 * freemem is not protected by any lock. Thus, 2967 * we cannot have any assertion containing 2968 * freemem here. 2969 */ 2970 freemem -= 1; 2971 enough = 1; 2972 break; 2973 } 2974 p++; 2975 } 2976 2977 if (!enough) { 2978 page_reclaim_nomem: 2979 /* 2980 * We really can't have page `pp'. 2981 * Time for the no-memory dance with 2982 * page_free(). This is just like 2983 * page_create_wait(). Plus the added 2984 * attraction of releasing whatever mutex 2985 * we held when we were called with in `lock'. 2986 * Page_unlock() will wakeup any thread 2987 * waiting around for this page. 2988 */ 2989 if (lock) { 2990 VM_STAT_ADD(page_reclaim_zero_locked); 2991 mutex_exit(lock); 2992 } 2993 page_unlock(pp); 2994 2995 /* 2996 * get this before we drop all the pcf locks. 2997 */ 2998 mutex_enter(&new_freemem_lock); 2999 3000 p = pcf; 3001 for (i = 0; i < pcf_fanout; i++) { 3002 p->pcf_wait++; 3003 mutex_exit(&p->pcf_lock); 3004 p++; 3005 } 3006 3007 freemem_wait++; 3008 cv_wait(&freemem_cv, &new_freemem_lock); 3009 freemem_wait--; 3010 3011 mutex_exit(&new_freemem_lock); 3012 3013 if (lock) { 3014 mutex_enter(lock); 3015 } 3016 return (0); 3017 } 3018 3019 /* 3020 * The pcf accounting has been done, 3021 * though none of the pcf_wait flags have been set, 3022 * drop the locks and continue on. 3023 */ 3024 while (p >= pcf) { 3025 mutex_exit(&p->pcf_lock); 3026 p--; 3027 } 3028 } 3029 3030 3031 VM_STAT_ADD(pagecnt.pc_reclaim); 3032 3033 /* 3034 * page_list_sub will handle the case where pp is a large page. 3035 * It's possible that the page was promoted while on the freelist 3036 */ 3037 if (PP_ISAGED(pp)) { 3038 page_list_sub(pp, PG_FREE_LIST); 3039 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE, 3040 "page_reclaim_free:pp %p", pp); 3041 } else { 3042 page_list_sub(pp, PG_CACHE_LIST); 3043 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE, 3044 "page_reclaim_cache:pp %p", pp); 3045 } 3046 3047 /* 3048 * clear the p_free & p_age bits since this page is no longer 3049 * on the free list. Notice that there was a brief time where 3050 * a page is marked as free, but is not on the list. 3051 * 3052 * Set the reference bit to protect against immediate pageout. 3053 */ 3054 PP_CLRFREE(pp); 3055 PP_CLRAGED(pp); 3056 page_set_props(pp, P_REF); 3057 3058 CPU_STATS_ENTER_K(); 3059 cpup = CPU; /* get cpup now that CPU cannot change */ 3060 CPU_STATS_ADDQ(cpup, vm, pgrec, 1); 3061 CPU_STATS_ADDQ(cpup, vm, pgfrec, 1); 3062 CPU_STATS_EXIT_K(); 3063 ASSERT(pp->p_szc == 0); 3064 3065 return (1); 3066 } 3067 3068 /* 3069 * Destroy identity of the page and put it back on 3070 * the page free list. Assumes that the caller has 3071 * acquired the "exclusive" lock on the page. 3072 */ 3073 void 3074 page_destroy(page_t *pp, int dontfree) 3075 { 3076 ASSERT((PAGE_EXCL(pp) && 3077 !page_iolock_assert(pp)) || panicstr); 3078 ASSERT(pp->p_slckcnt == 0 || panicstr); 3079 3080 if (pp->p_szc != 0) { 3081 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) || 3082 PP_ISKAS(pp)) { 3083 panic("page_destroy: anon or kernel or no vnode " 3084 "large page %p", (void *)pp); 3085 } 3086 page_demote_vp_pages(pp); 3087 ASSERT(pp->p_szc == 0); 3088 } 3089 3090 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp); 3091 3092 /* 3093 * Unload translations, if any, then hash out the 3094 * page to erase its identity. 3095 */ 3096 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 3097 page_hashout(pp, NULL); 3098 3099 if (!dontfree) { 3100 /* 3101 * Acquire the "freemem_lock" for availrmem. 3102 * The page_struct_lock need not be acquired for lckcnt 3103 * and cowcnt since the page has an "exclusive" lock. 3104 * We are doing a modified version of page_pp_unlock here. 3105 */ 3106 if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) { 3107 mutex_enter(&freemem_lock); 3108 if (pp->p_lckcnt != 0) { 3109 availrmem++; 3110 pages_locked--; 3111 pp->p_lckcnt = 0; 3112 } 3113 if (pp->p_cowcnt != 0) { 3114 availrmem += pp->p_cowcnt; 3115 pages_locked -= pp->p_cowcnt; 3116 pp->p_cowcnt = 0; 3117 } 3118 mutex_exit(&freemem_lock); 3119 } 3120 /* 3121 * Put the page on the "free" list. 3122 */ 3123 page_free(pp, 0); 3124 } 3125 } 3126 3127 void 3128 page_destroy_pages(page_t *pp) 3129 { 3130 3131 page_t *tpp, *rootpp = NULL; 3132 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc); 3133 pgcnt_t i, pglcks = 0; 3134 uint_t szc = pp->p_szc; 3135 3136 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes()); 3137 3138 VM_STAT_ADD(pagecnt.pc_destroy_pages); 3139 3140 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp); 3141 3142 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) { 3143 panic("page_destroy_pages: not root page %p", (void *)pp); 3144 /*NOTREACHED*/ 3145 } 3146 3147 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) { 3148 ASSERT((PAGE_EXCL(tpp) && 3149 !page_iolock_assert(tpp)) || panicstr); 3150 ASSERT(tpp->p_slckcnt == 0 || panicstr); 3151 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD); 3152 page_hashout(tpp, NULL); 3153 ASSERT(tpp->p_offset == (u_offset_t)-1); 3154 if (tpp->p_lckcnt != 0) { 3155 pglcks++; 3156 tpp->p_lckcnt = 0; 3157 } else if (tpp->p_cowcnt != 0) { 3158 pglcks += tpp->p_cowcnt; 3159 tpp->p_cowcnt = 0; 3160 } 3161 ASSERT(!hat_page_getshare(tpp)); 3162 ASSERT(tpp->p_vnode == NULL); 3163 ASSERT(tpp->p_szc == szc); 3164 3165 PP_SETFREE(tpp); 3166 page_clr_all_props(tpp); 3167 PP_SETAGED(tpp); 3168 ASSERT(tpp->p_next == tpp); 3169 ASSERT(tpp->p_prev == tpp); 3170 page_list_concat(&rootpp, &tpp); 3171 } 3172 3173 ASSERT(rootpp == pp); 3174 if (pglcks != 0) { 3175 mutex_enter(&freemem_lock); 3176 availrmem += pglcks; 3177 mutex_exit(&freemem_lock); 3178 } 3179 3180 page_list_add_pages(rootpp, 0); 3181 page_create_putback(pgcnt); 3182 } 3183 3184 /* 3185 * Similar to page_destroy(), but destroys pages which are 3186 * locked and known to be on the page free list. Since 3187 * the page is known to be free and locked, no one can access 3188 * it. 3189 * 3190 * Also, the number of free pages does not change. 3191 */ 3192 void 3193 page_destroy_free(page_t *pp) 3194 { 3195 ASSERT(PAGE_EXCL(pp)); 3196 ASSERT(PP_ISFREE(pp)); 3197 ASSERT(pp->p_vnode); 3198 ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0); 3199 ASSERT(!hat_page_is_mapped(pp)); 3200 ASSERT(PP_ISAGED(pp) == 0); 3201 ASSERT(pp->p_szc == 0); 3202 3203 VM_STAT_ADD(pagecnt.pc_destroy_free); 3204 page_list_sub(pp, PG_CACHE_LIST); 3205 3206 page_hashout(pp, NULL); 3207 ASSERT(pp->p_vnode == NULL); 3208 ASSERT(pp->p_offset == (u_offset_t)-1); 3209 ASSERT(pp->p_hash == NULL); 3210 3211 PP_SETAGED(pp); 3212 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 3213 page_unlock(pp); 3214 3215 mutex_enter(&new_freemem_lock); 3216 if (freemem_wait) { 3217 cv_signal(&freemem_cv); 3218 } 3219 mutex_exit(&new_freemem_lock); 3220 } 3221 3222 /* 3223 * Rename the page "opp" to have an identity specified 3224 * by [vp, off]. If a page already exists with this name 3225 * it is locked and destroyed. Note that the page's 3226 * translations are not unloaded during the rename. 3227 * 3228 * This routine is used by the anon layer to "steal" the 3229 * original page and is not unlike destroying a page and 3230 * creating a new page using the same page frame. 3231 * 3232 * XXX -- Could deadlock if caller 1 tries to rename A to B while 3233 * caller 2 tries to rename B to A. 3234 */ 3235 void 3236 page_rename(page_t *opp, vnode_t *vp, u_offset_t off) 3237 { 3238 page_t *pp; 3239 int olckcnt = 0; 3240 int ocowcnt = 0; 3241 kmutex_t *phm; 3242 ulong_t index; 3243 3244 ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp)); 3245 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3246 ASSERT(PP_ISFREE(opp) == 0); 3247 3248 VM_STAT_ADD(page_rename_count); 3249 3250 TRACE_3(TR_FAC_VM, TR_PAGE_RENAME, 3251 "page rename:pp %p vp %p off %llx", opp, vp, off); 3252 3253 /* 3254 * CacheFS may call page_rename for a large NFS page 3255 * when both CacheFS and NFS mount points are used 3256 * by applications. Demote this large page before 3257 * renaming it, to ensure that there are no "partial" 3258 * large pages left lying around. 3259 */ 3260 if (opp->p_szc != 0) { 3261 vnode_t *ovp = opp->p_vnode; 3262 ASSERT(ovp != NULL); 3263 ASSERT(!IS_SWAPFSVP(ovp)); 3264 ASSERT(!VN_ISKAS(ovp)); 3265 page_demote_vp_pages(opp); 3266 ASSERT(opp->p_szc == 0); 3267 } 3268 3269 page_hashout(opp, NULL); 3270 PP_CLRAGED(opp); 3271 3272 /* 3273 * Acquire the appropriate page hash lock, since 3274 * we're going to rename the page. 3275 */ 3276 index = PAGE_HASH_FUNC(vp, off); 3277 phm = PAGE_HASH_MUTEX(index); 3278 mutex_enter(phm); 3279 top: 3280 /* 3281 * Look for an existing page with this name and destroy it if found. 3282 * By holding the page hash lock all the way to the page_hashin() 3283 * call, we are assured that no page can be created with this 3284 * identity. In the case when the phm lock is dropped to undo any 3285 * hat layer mappings, the existing page is held with an "exclusive" 3286 * lock, again preventing another page from being created with 3287 * this identity. 3288 */ 3289 pp = page_hash_search(index, vp, off); 3290 if (pp != NULL) { 3291 VM_STAT_ADD(page_rename_exists); 3292 3293 /* 3294 * As it turns out, this is one of only two places where 3295 * page_lock() needs to hold the passed in lock in the 3296 * successful case. In all of the others, the lock could 3297 * be dropped as soon as the attempt is made to lock 3298 * the page. It is tempting to add yet another arguement, 3299 * PL_KEEP or PL_DROP, to let page_lock know what to do. 3300 */ 3301 if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) { 3302 /* 3303 * Went to sleep because the page could not 3304 * be locked. We were woken up when the page 3305 * was unlocked, or when the page was destroyed. 3306 * In either case, `phm' was dropped while we 3307 * slept. Hence we should not just roar through 3308 * this loop. 3309 */ 3310 goto top; 3311 } 3312 3313 /* 3314 * If an existing page is a large page, then demote 3315 * it to ensure that no "partial" large pages are 3316 * "created" after page_rename. An existing page 3317 * can be a CacheFS page, and can't belong to swapfs. 3318 */ 3319 if (hat_page_is_mapped(pp)) { 3320 /* 3321 * Unload translations. Since we hold the 3322 * exclusive lock on this page, the page 3323 * can not be changed while we drop phm. 3324 * This is also not a lock protocol violation, 3325 * but rather the proper way to do things. 3326 */ 3327 mutex_exit(phm); 3328 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 3329 if (pp->p_szc != 0) { 3330 ASSERT(!IS_SWAPFSVP(vp)); 3331 ASSERT(!VN_ISKAS(vp)); 3332 page_demote_vp_pages(pp); 3333 ASSERT(pp->p_szc == 0); 3334 } 3335 mutex_enter(phm); 3336 } else if (pp->p_szc != 0) { 3337 ASSERT(!IS_SWAPFSVP(vp)); 3338 ASSERT(!VN_ISKAS(vp)); 3339 mutex_exit(phm); 3340 page_demote_vp_pages(pp); 3341 ASSERT(pp->p_szc == 0); 3342 mutex_enter(phm); 3343 } 3344 page_hashout(pp, phm); 3345 } 3346 /* 3347 * Hash in the page with the new identity. 3348 */ 3349 if (!page_hashin(opp, vp, off, phm)) { 3350 /* 3351 * We were holding phm while we searched for [vp, off] 3352 * and only dropped phm if we found and locked a page. 3353 * If we can't create this page now, then some thing 3354 * is really broken. 3355 */ 3356 panic("page_rename: Can't hash in page: %p", (void *)pp); 3357 /*NOTREACHED*/ 3358 } 3359 3360 ASSERT(MUTEX_HELD(phm)); 3361 mutex_exit(phm); 3362 3363 /* 3364 * Now that we have dropped phm, lets get around to finishing up 3365 * with pp. 3366 */ 3367 if (pp != NULL) { 3368 ASSERT(!hat_page_is_mapped(pp)); 3369 /* for now large pages should not end up here */ 3370 ASSERT(pp->p_szc == 0); 3371 /* 3372 * Save the locks for transfer to the new page and then 3373 * clear them so page_free doesn't think they're important. 3374 * The page_struct_lock need not be acquired for lckcnt and 3375 * cowcnt since the page has an "exclusive" lock. 3376 */ 3377 olckcnt = pp->p_lckcnt; 3378 ocowcnt = pp->p_cowcnt; 3379 pp->p_lckcnt = pp->p_cowcnt = 0; 3380 3381 /* 3382 * Put the page on the "free" list after we drop 3383 * the lock. The less work under the lock the better. 3384 */ 3385 /*LINTED: constant in conditional context*/ 3386 VN_DISPOSE(pp, B_FREE, 0, kcred); 3387 } 3388 3389 /* 3390 * Transfer the lock count from the old page (if any). 3391 * The page_struct_lock need not be acquired for lckcnt and 3392 * cowcnt since the page has an "exclusive" lock. 3393 */ 3394 opp->p_lckcnt += olckcnt; 3395 opp->p_cowcnt += ocowcnt; 3396 } 3397 3398 /* 3399 * low level routine to add page `pp' to the hash and vp chains for [vp, offset] 3400 * 3401 * Pages are normally inserted at the start of a vnode's v_pages list. 3402 * If the vnode is VMODSORT and the page is modified, it goes at the end. 3403 * This can happen when a modified page is relocated for DR. 3404 * 3405 * Returns 1 on success and 0 on failure. 3406 */ 3407 static int 3408 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset) 3409 { 3410 page_t **listp; 3411 page_t *tp; 3412 ulong_t index; 3413 3414 ASSERT(PAGE_EXCL(pp)); 3415 ASSERT(vp != NULL); 3416 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 3417 3418 /* 3419 * Be sure to set these up before the page is inserted on the hash 3420 * list. As soon as the page is placed on the list some other 3421 * thread might get confused and wonder how this page could 3422 * possibly hash to this list. 3423 */ 3424 pp->p_vnode = vp; 3425 pp->p_offset = offset; 3426 3427 /* 3428 * record if this page is on a swap vnode 3429 */ 3430 if ((vp->v_flag & VISSWAP) != 0) 3431 PP_SETSWAP(pp); 3432 3433 index = PAGE_HASH_FUNC(vp, offset); 3434 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index))); 3435 listp = &page_hash[index]; 3436 3437 /* 3438 * If this page is already hashed in, fail this attempt to add it. 3439 */ 3440 for (tp = *listp; tp != NULL; tp = tp->p_hash) { 3441 if (tp->p_vnode == vp && tp->p_offset == offset) { 3442 pp->p_vnode = NULL; 3443 pp->p_offset = (u_offset_t)(-1); 3444 return (0); 3445 } 3446 } 3447 pp->p_hash = *listp; 3448 *listp = pp; 3449 3450 /* 3451 * Add the page to the vnode's list of pages 3452 */ 3453 if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp)) 3454 listp = &vp->v_pages->p_vpprev->p_vpnext; 3455 else 3456 listp = &vp->v_pages; 3457 3458 page_vpadd(listp, pp); 3459 3460 return (1); 3461 } 3462 3463 /* 3464 * Add page `pp' to both the hash and vp chains for [vp, offset]. 3465 * 3466 * Returns 1 on success and 0 on failure. 3467 * If hold is passed in, it is not dropped. 3468 */ 3469 int 3470 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold) 3471 { 3472 kmutex_t *phm = NULL; 3473 kmutex_t *vphm; 3474 int rc; 3475 3476 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3477 ASSERT(pp->p_fsdata == 0 || panicstr); 3478 3479 TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN, 3480 "page_hashin:pp %p vp %p offset %llx", 3481 pp, vp, offset); 3482 3483 VM_STAT_ADD(hashin_count); 3484 3485 if (hold != NULL) 3486 phm = hold; 3487 else { 3488 VM_STAT_ADD(hashin_not_held); 3489 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset)); 3490 mutex_enter(phm); 3491 } 3492 3493 vphm = page_vnode_mutex(vp); 3494 mutex_enter(vphm); 3495 rc = page_do_hashin(pp, vp, offset); 3496 mutex_exit(vphm); 3497 if (hold == NULL) 3498 mutex_exit(phm); 3499 if (rc == 0) 3500 VM_STAT_ADD(hashin_already); 3501 return (rc); 3502 } 3503 3504 /* 3505 * Remove page ``pp'' from the hash and vp chains and remove vp association. 3506 * All mutexes must be held 3507 */ 3508 static void 3509 page_do_hashout(page_t *pp) 3510 { 3511 page_t **hpp; 3512 page_t *hp; 3513 vnode_t *vp = pp->p_vnode; 3514 3515 ASSERT(vp != NULL); 3516 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 3517 3518 /* 3519 * First, take pp off of its hash chain. 3520 */ 3521 hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)]; 3522 3523 for (;;) { 3524 hp = *hpp; 3525 if (hp == pp) 3526 break; 3527 if (hp == NULL) { 3528 panic("page_do_hashout"); 3529 /*NOTREACHED*/ 3530 } 3531 hpp = &hp->p_hash; 3532 } 3533 *hpp = pp->p_hash; 3534 3535 /* 3536 * Now remove it from its associated vnode. 3537 */ 3538 if (vp->v_pages) 3539 page_vpsub(&vp->v_pages, pp); 3540 3541 pp->p_hash = NULL; 3542 page_clr_all_props(pp); 3543 PP_CLRSWAP(pp); 3544 pp->p_vnode = NULL; 3545 pp->p_offset = (u_offset_t)-1; 3546 pp->p_fsdata = 0; 3547 } 3548 3549 /* 3550 * Remove page ``pp'' from the hash and vp chains and remove vp association. 3551 * 3552 * When `phm' is non-NULL it contains the address of the mutex protecting the 3553 * hash list pp is on. It is not dropped. 3554 */ 3555 void 3556 page_hashout(page_t *pp, kmutex_t *phm) 3557 { 3558 vnode_t *vp; 3559 ulong_t index; 3560 kmutex_t *nphm; 3561 kmutex_t *vphm; 3562 kmutex_t *sep; 3563 3564 ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1); 3565 ASSERT(pp->p_vnode != NULL); 3566 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 3567 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode))); 3568 3569 vp = pp->p_vnode; 3570 3571 TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT, 3572 "page_hashout:pp %p vp %p", pp, vp); 3573 3574 /* 3575 * 3576 */ 3577 VM_STAT_ADD(hashout_count); 3578 index = PAGE_HASH_FUNC(vp, pp->p_offset); 3579 if (phm == NULL) { 3580 VM_STAT_ADD(hashout_not_held); 3581 nphm = PAGE_HASH_MUTEX(index); 3582 mutex_enter(nphm); 3583 } 3584 ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1); 3585 3586 3587 /* 3588 * grab page vnode mutex and remove it... 3589 */ 3590 vphm = page_vnode_mutex(vp); 3591 mutex_enter(vphm); 3592 3593 page_do_hashout(pp); 3594 3595 mutex_exit(vphm); 3596 if (phm == NULL) 3597 mutex_exit(nphm); 3598 3599 /* 3600 * Wake up processes waiting for this page. The page's 3601 * identity has been changed, and is probably not the 3602 * desired page any longer. 3603 */ 3604 sep = page_se_mutex(pp); 3605 mutex_enter(sep); 3606 pp->p_selock &= ~SE_EWANTED; 3607 if (CV_HAS_WAITERS(&pp->p_cv)) 3608 cv_broadcast(&pp->p_cv); 3609 mutex_exit(sep); 3610 } 3611 3612 /* 3613 * Add the page to the front of a linked list of pages 3614 * using the p_next & p_prev pointers for the list. 3615 * The caller is responsible for protecting the list pointers. 3616 */ 3617 void 3618 page_add(page_t **ppp, page_t *pp) 3619 { 3620 ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp))); 3621 3622 page_add_common(ppp, pp); 3623 } 3624 3625 3626 3627 /* 3628 * Common code for page_add() and mach_page_add() 3629 */ 3630 void 3631 page_add_common(page_t **ppp, page_t *pp) 3632 { 3633 if (*ppp == NULL) { 3634 pp->p_next = pp->p_prev = pp; 3635 } else { 3636 pp->p_next = *ppp; 3637 pp->p_prev = (*ppp)->p_prev; 3638 (*ppp)->p_prev = pp; 3639 pp->p_prev->p_next = pp; 3640 } 3641 *ppp = pp; 3642 } 3643 3644 3645 /* 3646 * Remove this page from a linked list of pages 3647 * using the p_next & p_prev pointers for the list. 3648 * 3649 * The caller is responsible for protecting the list pointers. 3650 */ 3651 void 3652 page_sub(page_t **ppp, page_t *pp) 3653 { 3654 ASSERT(pp != NULL && (PP_ISFREE(pp)) ? 1 : 3655 (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp))); 3656 3657 if (*ppp == NULL || pp == NULL) { 3658 panic("page_sub: bad arg(s): pp %p, *ppp %p", 3659 (void *)pp, (void *)(*ppp)); 3660 /*NOTREACHED*/ 3661 } 3662 3663 page_sub_common(ppp, pp); 3664 } 3665 3666 3667 /* 3668 * Common code for page_sub() and mach_page_sub() 3669 */ 3670 void 3671 page_sub_common(page_t **ppp, page_t *pp) 3672 { 3673 if (*ppp == pp) 3674 *ppp = pp->p_next; /* go to next page */ 3675 3676 if (*ppp == pp) 3677 *ppp = NULL; /* page list is gone */ 3678 else { 3679 pp->p_prev->p_next = pp->p_next; 3680 pp->p_next->p_prev = pp->p_prev; 3681 } 3682 pp->p_prev = pp->p_next = pp; /* make pp a list of one */ 3683 } 3684 3685 3686 /* 3687 * Break page list cppp into two lists with npages in the first list. 3688 * The tail is returned in nppp. 3689 */ 3690 void 3691 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages) 3692 { 3693 page_t *s1pp = *oppp; 3694 page_t *s2pp; 3695 page_t *e1pp, *e2pp; 3696 long n = 0; 3697 3698 if (s1pp == NULL) { 3699 *nppp = NULL; 3700 return; 3701 } 3702 if (npages == 0) { 3703 *nppp = s1pp; 3704 *oppp = NULL; 3705 return; 3706 } 3707 for (n = 0, s2pp = *oppp; n < npages; n++) { 3708 s2pp = s2pp->p_next; 3709 } 3710 /* Fix head and tail of new lists */ 3711 e1pp = s2pp->p_prev; 3712 e2pp = s1pp->p_prev; 3713 s1pp->p_prev = e1pp; 3714 e1pp->p_next = s1pp; 3715 s2pp->p_prev = e2pp; 3716 e2pp->p_next = s2pp; 3717 3718 /* second list empty */ 3719 if (s2pp == s1pp) { 3720 *oppp = s1pp; 3721 *nppp = NULL; 3722 } else { 3723 *oppp = s1pp; 3724 *nppp = s2pp; 3725 } 3726 } 3727 3728 /* 3729 * Concatenate page list nppp onto the end of list ppp. 3730 */ 3731 void 3732 page_list_concat(page_t **ppp, page_t **nppp) 3733 { 3734 page_t *s1pp, *s2pp, *e1pp, *e2pp; 3735 3736 if (*nppp == NULL) { 3737 return; 3738 } 3739 if (*ppp == NULL) { 3740 *ppp = *nppp; 3741 return; 3742 } 3743 s1pp = *ppp; 3744 e1pp = s1pp->p_prev; 3745 s2pp = *nppp; 3746 e2pp = s2pp->p_prev; 3747 s1pp->p_prev = e2pp; 3748 e2pp->p_next = s1pp; 3749 e1pp->p_next = s2pp; 3750 s2pp->p_prev = e1pp; 3751 } 3752 3753 /* 3754 * return the next page in the page list 3755 */ 3756 page_t * 3757 page_list_next(page_t *pp) 3758 { 3759 return (pp->p_next); 3760 } 3761 3762 3763 /* 3764 * Add the page to the front of the linked list of pages 3765 * using p_vpnext/p_vpprev pointers for the list. 3766 * 3767 * The caller is responsible for protecting the lists. 3768 */ 3769 void 3770 page_vpadd(page_t **ppp, page_t *pp) 3771 { 3772 if (*ppp == NULL) { 3773 pp->p_vpnext = pp->p_vpprev = pp; 3774 } else { 3775 pp->p_vpnext = *ppp; 3776 pp->p_vpprev = (*ppp)->p_vpprev; 3777 (*ppp)->p_vpprev = pp; 3778 pp->p_vpprev->p_vpnext = pp; 3779 } 3780 *ppp = pp; 3781 } 3782 3783 /* 3784 * Remove this page from the linked list of pages 3785 * using p_vpnext/p_vpprev pointers for the list. 3786 * 3787 * The caller is responsible for protecting the lists. 3788 */ 3789 void 3790 page_vpsub(page_t **ppp, page_t *pp) 3791 { 3792 if (*ppp == NULL || pp == NULL) { 3793 panic("page_vpsub: bad arg(s): pp %p, *ppp %p", 3794 (void *)pp, (void *)(*ppp)); 3795 /*NOTREACHED*/ 3796 } 3797 3798 if (*ppp == pp) 3799 *ppp = pp->p_vpnext; /* go to next page */ 3800 3801 if (*ppp == pp) 3802 *ppp = NULL; /* page list is gone */ 3803 else { 3804 pp->p_vpprev->p_vpnext = pp->p_vpnext; 3805 pp->p_vpnext->p_vpprev = pp->p_vpprev; 3806 } 3807 pp->p_vpprev = pp->p_vpnext = pp; /* make pp a list of one */ 3808 } 3809 3810 /* 3811 * Lock a physical page into memory "long term". Used to support "lock 3812 * in memory" functions. Accepts the page to be locked, and a cow variable 3813 * to indicate whether a the lock will travel to the new page during 3814 * a potential copy-on-write. 3815 */ 3816 int 3817 page_pp_lock( 3818 page_t *pp, /* page to be locked */ 3819 int cow, /* cow lock */ 3820 int kernel) /* must succeed -- ignore checking */ 3821 { 3822 int r = 0; /* result -- assume failure */ 3823 3824 ASSERT(PAGE_LOCKED(pp)); 3825 3826 page_struct_lock(pp); 3827 /* 3828 * Acquire the "freemem_lock" for availrmem. 3829 */ 3830 if (cow) { 3831 mutex_enter(&freemem_lock); 3832 if ((availrmem > pages_pp_maximum) && 3833 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) { 3834 availrmem--; 3835 pages_locked++; 3836 mutex_exit(&freemem_lock); 3837 r = 1; 3838 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 3839 cmn_err(CE_WARN, 3840 "COW lock limit reached on pfn 0x%lx", 3841 page_pptonum(pp)); 3842 } 3843 } else 3844 mutex_exit(&freemem_lock); 3845 } else { 3846 if (pp->p_lckcnt) { 3847 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 3848 r = 1; 3849 if (++pp->p_lckcnt == 3850 (ushort_t)PAGE_LOCK_MAXIMUM) { 3851 cmn_err(CE_WARN, "Page lock limit " 3852 "reached on pfn 0x%lx", 3853 page_pptonum(pp)); 3854 } 3855 } 3856 } else { 3857 if (kernel) { 3858 /* availrmem accounting done by caller */ 3859 ++pp->p_lckcnt; 3860 r = 1; 3861 } else { 3862 mutex_enter(&freemem_lock); 3863 if (availrmem > pages_pp_maximum) { 3864 availrmem--; 3865 pages_locked++; 3866 ++pp->p_lckcnt; 3867 r = 1; 3868 } 3869 mutex_exit(&freemem_lock); 3870 } 3871 } 3872 } 3873 page_struct_unlock(pp); 3874 return (r); 3875 } 3876 3877 /* 3878 * Decommit a lock on a physical page frame. Account for cow locks if 3879 * appropriate. 3880 */ 3881 void 3882 page_pp_unlock( 3883 page_t *pp, /* page to be unlocked */ 3884 int cow, /* expect cow lock */ 3885 int kernel) /* this was a kernel lock */ 3886 { 3887 ASSERT(PAGE_LOCKED(pp)); 3888 3889 page_struct_lock(pp); 3890 /* 3891 * Acquire the "freemem_lock" for availrmem. 3892 * If cowcnt or lcknt is already 0 do nothing; i.e., we 3893 * could be called to unlock even if nothing is locked. This could 3894 * happen if locked file pages were truncated (removing the lock) 3895 * and the file was grown again and new pages faulted in; the new 3896 * pages are unlocked but the segment still thinks they're locked. 3897 */ 3898 if (cow) { 3899 if (pp->p_cowcnt) { 3900 mutex_enter(&freemem_lock); 3901 pp->p_cowcnt--; 3902 availrmem++; 3903 pages_locked--; 3904 mutex_exit(&freemem_lock); 3905 } 3906 } else { 3907 if (pp->p_lckcnt && --pp->p_lckcnt == 0) { 3908 if (!kernel) { 3909 mutex_enter(&freemem_lock); 3910 availrmem++; 3911 pages_locked--; 3912 mutex_exit(&freemem_lock); 3913 } 3914 } 3915 } 3916 page_struct_unlock(pp); 3917 } 3918 3919 /* 3920 * This routine reserves availrmem for npages. 3921 * It returns 1 on success or 0 on failure. 3922 * 3923 * flags: KM_NOSLEEP or KM_SLEEP 3924 * cb_wait: called to induce delay when KM_SLEEP reservation requires kmem 3925 * reaping to potentially succeed. If the callback returns 0, the 3926 * reservation attempts will cease to repeat and page_xresv() may 3927 * report a failure. If cb_wait is NULL, the traditional delay(hz/2) 3928 * behavior will be used while waiting for a reap. 3929 */ 3930 int 3931 page_xresv(pgcnt_t npages, uint_t flags, int (*cb_wait)(void)) 3932 { 3933 mutex_enter(&freemem_lock); 3934 if (availrmem >= tune.t_minarmem + npages) { 3935 availrmem -= npages; 3936 mutex_exit(&freemem_lock); 3937 return (1); 3938 } else if ((flags & KM_NOSLEEP) != 0) { 3939 mutex_exit(&freemem_lock); 3940 return (0); 3941 } 3942 mutex_exit(&freemem_lock); 3943 3944 /* 3945 * We signal memory pressure to the system by elevating 'needfree'. 3946 * Processes such as kmem reaping, pageout, and ZFS ARC shrinking can 3947 * then respond to said pressure by freeing pages. 3948 */ 3949 page_needfree(npages); 3950 int nobail = 1; 3951 do { 3952 kmem_reap(); 3953 if (cb_wait == NULL) { 3954 delay(hz >> 2); 3955 } else { 3956 nobail = cb_wait(); 3957 } 3958 3959 mutex_enter(&freemem_lock); 3960 if (availrmem >= tune.t_minarmem + npages) { 3961 availrmem -= npages; 3962 mutex_exit(&freemem_lock); 3963 page_needfree(-(spgcnt_t)npages); 3964 return (1); 3965 } 3966 mutex_exit(&freemem_lock); 3967 } while (nobail != 0); 3968 page_needfree(-(spgcnt_t)npages); 3969 3970 return (0); 3971 } 3972 3973 /* 3974 * This routine reserves availrmem for npages; 3975 * flags: KM_NOSLEEP or KM_SLEEP 3976 * returns 1 on success or 0 on failure 3977 */ 3978 int 3979 page_resv(pgcnt_t npages, uint_t flags) 3980 { 3981 return (page_xresv(npages, flags, NULL)); 3982 } 3983 3984 /* 3985 * This routine unreserves availrmem for npages; 3986 */ 3987 void 3988 page_unresv(pgcnt_t npages) 3989 { 3990 mutex_enter(&freemem_lock); 3991 availrmem += npages; 3992 mutex_exit(&freemem_lock); 3993 } 3994 3995 /* 3996 * See Statement at the beginning of segvn_lockop() regarding 3997 * the way we handle cowcnts and lckcnts. 3998 * 3999 * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage 4000 * that breaks COW has PROT_WRITE. 4001 * 4002 * Note that, we may also break COW in case we are softlocking 4003 * on read access during physio; 4004 * in this softlock case, the vpage may not have PROT_WRITE. 4005 * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp' 4006 * if the vpage doesn't have PROT_WRITE. 4007 * 4008 * This routine is never called if we are stealing a page 4009 * in anon_private. 4010 * 4011 * The caller subtracted from availrmem for read only mapping. 4012 * if lckcnt is 1 increment availrmem. 4013 */ 4014 void 4015 page_pp_useclaim( 4016 page_t *opp, /* original page frame losing lock */ 4017 page_t *npp, /* new page frame gaining lock */ 4018 uint_t write_perm) /* set if vpage has PROT_WRITE */ 4019 { 4020 int payback = 0; 4021 int nidx, oidx; 4022 4023 ASSERT(PAGE_LOCKED(opp)); 4024 ASSERT(PAGE_LOCKED(npp)); 4025 4026 /* 4027 * Since we have two pages we probably have two locks. We need to take 4028 * them in a defined order to avoid deadlocks. It's also possible they 4029 * both hash to the same lock in which case this is a non-issue. 4030 */ 4031 nidx = PAGE_LLOCK_HASH(PP_PAGEROOT(npp)); 4032 oidx = PAGE_LLOCK_HASH(PP_PAGEROOT(opp)); 4033 if (nidx < oidx) { 4034 page_struct_lock(npp); 4035 page_struct_lock(opp); 4036 } else if (oidx < nidx) { 4037 page_struct_lock(opp); 4038 page_struct_lock(npp); 4039 } else { /* The pages hash to the same lock */ 4040 page_struct_lock(npp); 4041 } 4042 4043 ASSERT(npp->p_cowcnt == 0); 4044 ASSERT(npp->p_lckcnt == 0); 4045 4046 /* Don't use claim if nothing is locked (see page_pp_unlock above) */ 4047 if ((write_perm && opp->p_cowcnt != 0) || 4048 (!write_perm && opp->p_lckcnt != 0)) { 4049 4050 if (write_perm) { 4051 npp->p_cowcnt++; 4052 ASSERT(opp->p_cowcnt != 0); 4053 opp->p_cowcnt--; 4054 } else { 4055 4056 ASSERT(opp->p_lckcnt != 0); 4057 4058 /* 4059 * We didn't need availrmem decremented if p_lckcnt on 4060 * original page is 1. Here, we are unlocking 4061 * read-only copy belonging to original page and 4062 * are locking a copy belonging to new page. 4063 */ 4064 if (opp->p_lckcnt == 1) 4065 payback = 1; 4066 4067 npp->p_lckcnt++; 4068 opp->p_lckcnt--; 4069 } 4070 } 4071 if (payback) { 4072 mutex_enter(&freemem_lock); 4073 availrmem++; 4074 pages_useclaim--; 4075 mutex_exit(&freemem_lock); 4076 } 4077 4078 if (nidx < oidx) { 4079 page_struct_unlock(opp); 4080 page_struct_unlock(npp); 4081 } else if (oidx < nidx) { 4082 page_struct_unlock(npp); 4083 page_struct_unlock(opp); 4084 } else { /* The pages hash to the same lock */ 4085 page_struct_unlock(npp); 4086 } 4087 } 4088 4089 /* 4090 * Simple claim adjust functions -- used to support changes in 4091 * claims due to changes in access permissions. Used by segvn_setprot(). 4092 */ 4093 int 4094 page_addclaim(page_t *pp) 4095 { 4096 int r = 0; /* result */ 4097 4098 ASSERT(PAGE_LOCKED(pp)); 4099 4100 page_struct_lock(pp); 4101 ASSERT(pp->p_lckcnt != 0); 4102 4103 if (pp->p_lckcnt == 1) { 4104 if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 4105 --pp->p_lckcnt; 4106 r = 1; 4107 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4108 cmn_err(CE_WARN, 4109 "COW lock limit reached on pfn 0x%lx", 4110 page_pptonum(pp)); 4111 } 4112 } 4113 } else { 4114 mutex_enter(&freemem_lock); 4115 if ((availrmem > pages_pp_maximum) && 4116 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) { 4117 --availrmem; 4118 ++pages_claimed; 4119 mutex_exit(&freemem_lock); 4120 --pp->p_lckcnt; 4121 r = 1; 4122 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4123 cmn_err(CE_WARN, 4124 "COW lock limit reached on pfn 0x%lx", 4125 page_pptonum(pp)); 4126 } 4127 } else 4128 mutex_exit(&freemem_lock); 4129 } 4130 page_struct_unlock(pp); 4131 return (r); 4132 } 4133 4134 int 4135 page_subclaim(page_t *pp) 4136 { 4137 int r = 0; 4138 4139 ASSERT(PAGE_LOCKED(pp)); 4140 4141 page_struct_lock(pp); 4142 ASSERT(pp->p_cowcnt != 0); 4143 4144 if (pp->p_lckcnt) { 4145 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 4146 r = 1; 4147 /* 4148 * for availrmem 4149 */ 4150 mutex_enter(&freemem_lock); 4151 availrmem++; 4152 pages_claimed--; 4153 mutex_exit(&freemem_lock); 4154 4155 pp->p_cowcnt--; 4156 4157 if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4158 cmn_err(CE_WARN, 4159 "Page lock limit reached on pfn 0x%lx", 4160 page_pptonum(pp)); 4161 } 4162 } 4163 } else { 4164 r = 1; 4165 pp->p_cowcnt--; 4166 pp->p_lckcnt++; 4167 } 4168 page_struct_unlock(pp); 4169 return (r); 4170 } 4171 4172 /* 4173 * Variant of page_addclaim(), where ppa[] contains the pages of a single large 4174 * page. 4175 */ 4176 int 4177 page_addclaim_pages(page_t **ppa) 4178 { 4179 pgcnt_t lckpgs = 0, pg_idx; 4180 4181 VM_STAT_ADD(pagecnt.pc_addclaim_pages); 4182 4183 /* 4184 * Only need to take the page struct lock on the large page root. 4185 */ 4186 page_struct_lock(ppa[0]); 4187 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4188 4189 ASSERT(PAGE_LOCKED(ppa[pg_idx])); 4190 ASSERT(ppa[pg_idx]->p_lckcnt != 0); 4191 if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4192 page_struct_unlock(ppa[0]); 4193 return (0); 4194 } 4195 if (ppa[pg_idx]->p_lckcnt > 1) 4196 lckpgs++; 4197 } 4198 4199 if (lckpgs != 0) { 4200 mutex_enter(&freemem_lock); 4201 if (availrmem >= pages_pp_maximum + lckpgs) { 4202 availrmem -= lckpgs; 4203 pages_claimed += lckpgs; 4204 } else { 4205 mutex_exit(&freemem_lock); 4206 page_struct_unlock(ppa[0]); 4207 return (0); 4208 } 4209 mutex_exit(&freemem_lock); 4210 } 4211 4212 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4213 ppa[pg_idx]->p_lckcnt--; 4214 ppa[pg_idx]->p_cowcnt++; 4215 } 4216 page_struct_unlock(ppa[0]); 4217 return (1); 4218 } 4219 4220 /* 4221 * Variant of page_subclaim(), where ppa[] contains the pages of a single large 4222 * page. 4223 */ 4224 int 4225 page_subclaim_pages(page_t **ppa) 4226 { 4227 pgcnt_t ulckpgs = 0, pg_idx; 4228 4229 VM_STAT_ADD(pagecnt.pc_subclaim_pages); 4230 4231 /* 4232 * Only need to take the page struct lock on the large page root. 4233 */ 4234 page_struct_lock(ppa[0]); 4235 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4236 4237 ASSERT(PAGE_LOCKED(ppa[pg_idx])); 4238 ASSERT(ppa[pg_idx]->p_cowcnt != 0); 4239 if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4240 page_struct_unlock(ppa[0]); 4241 return (0); 4242 } 4243 if (ppa[pg_idx]->p_lckcnt != 0) 4244 ulckpgs++; 4245 } 4246 4247 if (ulckpgs != 0) { 4248 mutex_enter(&freemem_lock); 4249 availrmem += ulckpgs; 4250 pages_claimed -= ulckpgs; 4251 mutex_exit(&freemem_lock); 4252 } 4253 4254 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4255 ppa[pg_idx]->p_cowcnt--; 4256 ppa[pg_idx]->p_lckcnt++; 4257 4258 } 4259 page_struct_unlock(ppa[0]); 4260 return (1); 4261 } 4262 4263 page_t * 4264 page_numtopp(pfn_t pfnum, se_t se) 4265 { 4266 page_t *pp; 4267 4268 retry: 4269 pp = page_numtopp_nolock(pfnum); 4270 if (pp == NULL) { 4271 return ((page_t *)NULL); 4272 } 4273 4274 /* 4275 * Acquire the appropriate lock on the page. 4276 */ 4277 while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) { 4278 if (page_pptonum(pp) != pfnum) 4279 goto retry; 4280 continue; 4281 } 4282 4283 if (page_pptonum(pp) != pfnum) { 4284 page_unlock(pp); 4285 goto retry; 4286 } 4287 4288 return (pp); 4289 } 4290 4291 page_t * 4292 page_numtopp_noreclaim(pfn_t pfnum, se_t se) 4293 { 4294 page_t *pp; 4295 4296 retry: 4297 pp = page_numtopp_nolock(pfnum); 4298 if (pp == NULL) { 4299 return ((page_t *)NULL); 4300 } 4301 4302 /* 4303 * Acquire the appropriate lock on the page. 4304 */ 4305 while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) { 4306 if (page_pptonum(pp) != pfnum) 4307 goto retry; 4308 continue; 4309 } 4310 4311 if (page_pptonum(pp) != pfnum) { 4312 page_unlock(pp); 4313 goto retry; 4314 } 4315 4316 return (pp); 4317 } 4318 4319 /* 4320 * This routine is like page_numtopp, but will only return page structs 4321 * for pages which are ok for loading into hardware using the page struct. 4322 */ 4323 page_t * 4324 page_numtopp_nowait(pfn_t pfnum, se_t se) 4325 { 4326 page_t *pp; 4327 4328 retry: 4329 pp = page_numtopp_nolock(pfnum); 4330 if (pp == NULL) { 4331 return ((page_t *)NULL); 4332 } 4333 4334 /* 4335 * Try to acquire the appropriate lock on the page. 4336 */ 4337 if (PP_ISFREE(pp)) 4338 pp = NULL; 4339 else { 4340 if (!page_trylock(pp, se)) 4341 pp = NULL; 4342 else { 4343 if (page_pptonum(pp) != pfnum) { 4344 page_unlock(pp); 4345 goto retry; 4346 } 4347 if (PP_ISFREE(pp)) { 4348 page_unlock(pp); 4349 pp = NULL; 4350 } 4351 } 4352 } 4353 return (pp); 4354 } 4355 4356 /* 4357 * Returns a count of dirty pages that are in the process 4358 * of being written out. If 'cleanit' is set, try to push the page. 4359 */ 4360 pgcnt_t 4361 page_busy(int cleanit) 4362 { 4363 page_t *page0 = page_first(); 4364 page_t *pp = page0; 4365 pgcnt_t nppbusy = 0; 4366 u_offset_t off; 4367 4368 do { 4369 vnode_t *vp = pp->p_vnode; 4370 /* 4371 * A page is a candidate for syncing if it is: 4372 * 4373 * (a) On neither the freelist nor the cachelist 4374 * (b) Hashed onto a vnode 4375 * (c) Not a kernel page 4376 * (d) Dirty 4377 * (e) Not part of a swapfile 4378 * (f) a page which belongs to a real vnode; eg has a non-null 4379 * v_vfsp pointer. 4380 * (g) Backed by a filesystem which doesn't have a 4381 * stubbed-out sync operation 4382 */ 4383 if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) && 4384 hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL && 4385 vfs_can_sync(vp->v_vfsp)) { 4386 nppbusy++; 4387 4388 if (!cleanit) 4389 continue; 4390 if (!page_trylock(pp, SE_EXCL)) 4391 continue; 4392 4393 if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) || 4394 pp->p_lckcnt != 0 || pp->p_cowcnt != 0 || 4395 !(hat_pagesync(pp, 4396 HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) { 4397 page_unlock(pp); 4398 continue; 4399 } 4400 off = pp->p_offset; 4401 VN_HOLD(vp); 4402 page_unlock(pp); 4403 (void) VOP_PUTPAGE(vp, off, PAGESIZE, 4404 B_ASYNC | B_FREE, kcred, NULL); 4405 VN_RELE(vp); 4406 } 4407 } while ((pp = page_next(pp)) != page0); 4408 4409 return (nppbusy); 4410 } 4411 4412 void page_invalidate_pages(void); 4413 4414 /* 4415 * callback handler to vm sub-system 4416 * 4417 * callers make sure no recursive entries to this func. 4418 */ 4419 /*ARGSUSED*/ 4420 boolean_t 4421 callb_vm_cpr(void *arg, int code) 4422 { 4423 if (code == CB_CODE_CPR_CHKPT) 4424 page_invalidate_pages(); 4425 return (B_TRUE); 4426 } 4427 4428 /* 4429 * Invalidate all pages of the system. 4430 * It shouldn't be called until all user page activities are all stopped. 4431 */ 4432 void 4433 page_invalidate_pages() 4434 { 4435 page_t *pp; 4436 page_t *page0; 4437 pgcnt_t nbusypages; 4438 int retry = 0; 4439 const int MAXRETRIES = 4; 4440 top: 4441 /* 4442 * Flush dirty pages and destroy the clean ones. 4443 */ 4444 nbusypages = 0; 4445 4446 pp = page0 = page_first(); 4447 do { 4448 struct vnode *vp; 4449 u_offset_t offset; 4450 int mod; 4451 4452 /* 4453 * skip the page if it has no vnode or the page associated 4454 * with the kernel vnode or prom allocated kernel mem. 4455 */ 4456 if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp)) 4457 continue; 4458 4459 /* 4460 * skip the page which is already free invalidated. 4461 */ 4462 if (PP_ISFREE(pp) && PP_ISAGED(pp)) 4463 continue; 4464 4465 /* 4466 * skip pages that are already locked or can't be "exclusively" 4467 * locked or are already free. After we lock the page, check 4468 * the free and age bits again to be sure it's not destroyed 4469 * yet. 4470 * To achieve max. parallelization, we use page_trylock instead 4471 * of page_lock so that we don't get block on individual pages 4472 * while we have thousands of other pages to process. 4473 */ 4474 if (!page_trylock(pp, SE_EXCL)) { 4475 nbusypages++; 4476 continue; 4477 } else if (PP_ISFREE(pp)) { 4478 if (!PP_ISAGED(pp)) { 4479 page_destroy_free(pp); 4480 } else { 4481 page_unlock(pp); 4482 } 4483 continue; 4484 } 4485 /* 4486 * Is this page involved in some I/O? shared? 4487 * 4488 * The page_struct_lock need not be acquired to 4489 * examine these fields since the page has an 4490 * "exclusive" lock. 4491 */ 4492 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { 4493 page_unlock(pp); 4494 continue; 4495 } 4496 4497 if (vp->v_type == VCHR) { 4498 panic("vp->v_type == VCHR"); 4499 /*NOTREACHED*/ 4500 } 4501 4502 if (!page_try_demote_pages(pp)) { 4503 page_unlock(pp); 4504 continue; 4505 } 4506 4507 /* 4508 * Check the modified bit. Leave the bits alone in hardware 4509 * (they will be modified if we do the putpage). 4510 */ 4511 mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) 4512 & P_MOD); 4513 if (mod) { 4514 offset = pp->p_offset; 4515 /* 4516 * Hold the vnode before releasing the page lock 4517 * to prevent it from being freed and re-used by 4518 * some other thread. 4519 */ 4520 VN_HOLD(vp); 4521 page_unlock(pp); 4522 /* 4523 * No error return is checked here. Callers such as 4524 * cpr deals with the dirty pages at the dump time 4525 * if this putpage fails. 4526 */ 4527 (void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL, 4528 kcred, NULL); 4529 VN_RELE(vp); 4530 } else { 4531 /*LINTED: constant in conditional context*/ 4532 VN_DISPOSE(pp, B_INVAL, 0, kcred); 4533 } 4534 } while ((pp = page_next(pp)) != page0); 4535 if (nbusypages && retry++ < MAXRETRIES) { 4536 delay(1); 4537 goto top; 4538 } 4539 } 4540 4541 /* 4542 * Replace the page "old" with the page "new" on the page hash and vnode lists 4543 * 4544 * the replacement must be done in place, ie the equivalent sequence: 4545 * 4546 * vp = old->p_vnode; 4547 * off = old->p_offset; 4548 * page_do_hashout(old) 4549 * page_do_hashin(new, vp, off) 4550 * 4551 * doesn't work, since 4552 * 1) if old is the only page on the vnode, the v_pages list has a window 4553 * where it looks empty. This will break file system assumptions. 4554 * and 4555 * 2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list. 4556 */ 4557 static void 4558 page_do_relocate_hash(page_t *new, page_t *old) 4559 { 4560 page_t **hash_list; 4561 vnode_t *vp = old->p_vnode; 4562 kmutex_t *sep; 4563 4564 ASSERT(PAGE_EXCL(old)); 4565 ASSERT(PAGE_EXCL(new)); 4566 ASSERT(vp != NULL); 4567 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 4568 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset)))); 4569 4570 /* 4571 * First find old page on the page hash list 4572 */ 4573 hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)]; 4574 4575 for (;;) { 4576 if (*hash_list == old) 4577 break; 4578 if (*hash_list == NULL) { 4579 panic("page_do_hashout"); 4580 /*NOTREACHED*/ 4581 } 4582 hash_list = &(*hash_list)->p_hash; 4583 } 4584 4585 /* 4586 * update new and replace old with new on the page hash list 4587 */ 4588 new->p_vnode = old->p_vnode; 4589 new->p_offset = old->p_offset; 4590 new->p_hash = old->p_hash; 4591 *hash_list = new; 4592 4593 if ((new->p_vnode->v_flag & VISSWAP) != 0) 4594 PP_SETSWAP(new); 4595 4596 /* 4597 * replace old with new on the vnode's page list 4598 */ 4599 if (old->p_vpnext == old) { 4600 new->p_vpnext = new; 4601 new->p_vpprev = new; 4602 } else { 4603 new->p_vpnext = old->p_vpnext; 4604 new->p_vpprev = old->p_vpprev; 4605 new->p_vpnext->p_vpprev = new; 4606 new->p_vpprev->p_vpnext = new; 4607 } 4608 if (vp->v_pages == old) 4609 vp->v_pages = new; 4610 4611 /* 4612 * clear out the old page 4613 */ 4614 old->p_hash = NULL; 4615 old->p_vpnext = NULL; 4616 old->p_vpprev = NULL; 4617 old->p_vnode = NULL; 4618 PP_CLRSWAP(old); 4619 old->p_offset = (u_offset_t)-1; 4620 page_clr_all_props(old); 4621 4622 /* 4623 * Wake up processes waiting for this page. The page's 4624 * identity has been changed, and is probably not the 4625 * desired page any longer. 4626 */ 4627 sep = page_se_mutex(old); 4628 mutex_enter(sep); 4629 old->p_selock &= ~SE_EWANTED; 4630 if (CV_HAS_WAITERS(&old->p_cv)) 4631 cv_broadcast(&old->p_cv); 4632 mutex_exit(sep); 4633 } 4634 4635 /* 4636 * This function moves the identity of page "pp_old" to page "pp_new". 4637 * Both pages must be locked on entry. "pp_new" is free, has no identity, 4638 * and need not be hashed out from anywhere. 4639 */ 4640 void 4641 page_relocate_hash(page_t *pp_new, page_t *pp_old) 4642 { 4643 vnode_t *vp = pp_old->p_vnode; 4644 u_offset_t off = pp_old->p_offset; 4645 kmutex_t *phm, *vphm; 4646 4647 /* 4648 * Rehash two pages 4649 */ 4650 ASSERT(PAGE_EXCL(pp_old)); 4651 ASSERT(PAGE_EXCL(pp_new)); 4652 ASSERT(vp != NULL); 4653 ASSERT(pp_new->p_vnode == NULL); 4654 4655 /* 4656 * hashout then hashin while holding the mutexes 4657 */ 4658 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off)); 4659 mutex_enter(phm); 4660 vphm = page_vnode_mutex(vp); 4661 mutex_enter(vphm); 4662 4663 page_do_relocate_hash(pp_new, pp_old); 4664 4665 /* The following comment preserved from page_flip(). */ 4666 pp_new->p_fsdata = pp_old->p_fsdata; 4667 pp_old->p_fsdata = 0; 4668 mutex_exit(vphm); 4669 mutex_exit(phm); 4670 4671 /* 4672 * The page_struct_lock need not be acquired for lckcnt and 4673 * cowcnt since the page has an "exclusive" lock. 4674 */ 4675 ASSERT(pp_new->p_lckcnt == 0); 4676 ASSERT(pp_new->p_cowcnt == 0); 4677 pp_new->p_lckcnt = pp_old->p_lckcnt; 4678 pp_new->p_cowcnt = pp_old->p_cowcnt; 4679 pp_old->p_lckcnt = pp_old->p_cowcnt = 0; 4680 4681 } 4682 4683 /* 4684 * Helper routine used to lock all remaining members of a 4685 * large page. The caller is responsible for passing in a locked 4686 * pp. If pp is a large page, then it succeeds in locking all the 4687 * remaining constituent pages or it returns with only the 4688 * original page locked. 4689 * 4690 * Returns 1 on success, 0 on failure. 4691 * 4692 * If success is returned this routine guarantees p_szc for all constituent 4693 * pages of a large page pp belongs to can't change. To achieve this we 4694 * recheck szc of pp after locking all constituent pages and retry if szc 4695 * changed (it could only decrease). Since hat_page_demote() needs an EXCL 4696 * lock on one of constituent pages it can't be running after all constituent 4697 * pages are locked. hat_page_demote() with a lock on a constituent page 4698 * outside of this large page (i.e. pp belonged to a larger large page) is 4699 * already done with all constituent pages of pp since the root's p_szc is 4700 * changed last. Therefore no need to synchronize with hat_page_demote() that 4701 * locked a constituent page outside of pp's current large page. 4702 */ 4703 #ifdef DEBUG 4704 uint32_t gpg_trylock_mtbf = 0; 4705 #endif 4706 4707 int 4708 group_page_trylock(page_t *pp, se_t se) 4709 { 4710 page_t *tpp; 4711 pgcnt_t npgs, i, j; 4712 uint_t pszc = pp->p_szc; 4713 4714 #ifdef DEBUG 4715 if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) { 4716 return (0); 4717 } 4718 #endif 4719 4720 if (pp != PP_GROUPLEADER(pp, pszc)) { 4721 return (0); 4722 } 4723 4724 retry: 4725 ASSERT(PAGE_LOCKED_SE(pp, se)); 4726 ASSERT(!PP_ISFREE(pp)); 4727 if (pszc == 0) { 4728 return (1); 4729 } 4730 npgs = page_get_pagecnt(pszc); 4731 tpp = pp + 1; 4732 for (i = 1; i < npgs; i++, tpp++) { 4733 if (!page_trylock(tpp, se)) { 4734 tpp = pp + 1; 4735 for (j = 1; j < i; j++, tpp++) { 4736 page_unlock(tpp); 4737 } 4738 return (0); 4739 } 4740 } 4741 if (pp->p_szc != pszc) { 4742 ASSERT(pp->p_szc < pszc); 4743 ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) && 4744 !IS_SWAPFSVP(pp->p_vnode)); 4745 tpp = pp + 1; 4746 for (i = 1; i < npgs; i++, tpp++) { 4747 page_unlock(tpp); 4748 } 4749 pszc = pp->p_szc; 4750 goto retry; 4751 } 4752 return (1); 4753 } 4754 4755 void 4756 group_page_unlock(page_t *pp) 4757 { 4758 page_t *tpp; 4759 pgcnt_t npgs, i; 4760 4761 ASSERT(PAGE_LOCKED(pp)); 4762 ASSERT(!PP_ISFREE(pp)); 4763 ASSERT(pp == PP_PAGEROOT(pp)); 4764 npgs = page_get_pagecnt(pp->p_szc); 4765 for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) { 4766 page_unlock(tpp); 4767 } 4768 } 4769 4770 /* 4771 * returns 4772 * 0 : on success and *nrelocp is number of relocated PAGESIZE pages 4773 * ERANGE : this is not a base page 4774 * EBUSY : failure to get locks on the page/pages 4775 * ENOMEM : failure to obtain replacement pages 4776 * EAGAIN : OBP has not yet completed its boot-time handoff to the kernel 4777 * EIO : An error occurred while trying to copy the page data 4778 * 4779 * Return with all constituent members of target and replacement 4780 * SE_EXCL locked. It is the callers responsibility to drop the 4781 * locks. 4782 */ 4783 int 4784 do_page_relocate( 4785 page_t **target, 4786 page_t **replacement, 4787 int grouplock, 4788 spgcnt_t *nrelocp, 4789 lgrp_t *lgrp) 4790 { 4791 page_t *first_repl; 4792 page_t *repl; 4793 page_t *targ; 4794 page_t *pl = NULL; 4795 uint_t ppattr; 4796 pfn_t pfn, repl_pfn; 4797 uint_t szc; 4798 spgcnt_t npgs, i; 4799 int repl_contig = 0; 4800 uint_t flags = 0; 4801 spgcnt_t dofree = 0; 4802 4803 *nrelocp = 0; 4804 4805 #if defined(__sparc) 4806 /* 4807 * We need to wait till OBP has completed 4808 * its boot-time handoff of its resources to the kernel 4809 * before we allow page relocation 4810 */ 4811 if (page_relocate_ready == 0) { 4812 return (EAGAIN); 4813 } 4814 #endif 4815 4816 /* 4817 * If this is not a base page, 4818 * just return with 0x0 pages relocated. 4819 */ 4820 targ = *target; 4821 ASSERT(PAGE_EXCL(targ)); 4822 ASSERT(!PP_ISFREE(targ)); 4823 szc = targ->p_szc; 4824 ASSERT(szc < mmu_page_sizes); 4825 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]); 4826 pfn = targ->p_pagenum; 4827 if (pfn != PFN_BASE(pfn, szc)) { 4828 VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]); 4829 return (ERANGE); 4830 } 4831 4832 if ((repl = *replacement) != NULL && repl->p_szc >= szc) { 4833 repl_pfn = repl->p_pagenum; 4834 if (repl_pfn != PFN_BASE(repl_pfn, szc)) { 4835 VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]); 4836 return (ERANGE); 4837 } 4838 repl_contig = 1; 4839 } 4840 4841 /* 4842 * We must lock all members of this large page or we cannot 4843 * relocate any part of it. 4844 */ 4845 if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) { 4846 VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]); 4847 return (EBUSY); 4848 } 4849 4850 /* 4851 * reread szc it could have been decreased before 4852 * group_page_trylock() was done. 4853 */ 4854 szc = targ->p_szc; 4855 ASSERT(szc < mmu_page_sizes); 4856 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]); 4857 ASSERT(pfn == PFN_BASE(pfn, szc)); 4858 4859 npgs = page_get_pagecnt(targ->p_szc); 4860 4861 if (repl == NULL) { 4862 dofree = npgs; /* Size of target page in MMU pages */ 4863 if (!page_create_wait(dofree, 0)) { 4864 if (grouplock != 0) { 4865 group_page_unlock(targ); 4866 } 4867 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]); 4868 return (ENOMEM); 4869 } 4870 4871 /* 4872 * seg kmem pages require that the target and replacement 4873 * page be the same pagesize. 4874 */ 4875 flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0; 4876 repl = page_get_replacement_page(targ, lgrp, flags); 4877 if (repl == NULL) { 4878 if (grouplock != 0) { 4879 group_page_unlock(targ); 4880 } 4881 page_create_putback(dofree); 4882 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]); 4883 return (ENOMEM); 4884 } 4885 } 4886 #ifdef DEBUG 4887 else { 4888 ASSERT(PAGE_LOCKED(repl)); 4889 } 4890 #endif /* DEBUG */ 4891 4892 #if defined(__sparc) 4893 /* 4894 * Let hat_page_relocate() complete the relocation if it's kernel page 4895 */ 4896 if (VN_ISKAS(targ->p_vnode)) { 4897 *replacement = repl; 4898 if (hat_page_relocate(target, replacement, nrelocp) != 0) { 4899 if (grouplock != 0) { 4900 group_page_unlock(targ); 4901 } 4902 if (dofree) { 4903 *replacement = NULL; 4904 page_free_replacement_page(repl); 4905 page_create_putback(dofree); 4906 } 4907 VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]); 4908 return (EAGAIN); 4909 } 4910 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]); 4911 return (0); 4912 } 4913 #else 4914 #if defined(lint) 4915 dofree = dofree; 4916 #endif 4917 #endif 4918 4919 first_repl = repl; 4920 4921 for (i = 0; i < npgs; i++) { 4922 ASSERT(PAGE_EXCL(targ)); 4923 ASSERT(targ->p_slckcnt == 0); 4924 ASSERT(repl->p_slckcnt == 0); 4925 4926 (void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD); 4927 4928 ASSERT(hat_page_getshare(targ) == 0); 4929 ASSERT(!PP_ISFREE(targ)); 4930 ASSERT(targ->p_pagenum == (pfn + i)); 4931 ASSERT(repl_contig == 0 || 4932 repl->p_pagenum == (repl_pfn + i)); 4933 4934 /* 4935 * Copy the page contents and attributes then 4936 * relocate the page in the page hash. 4937 */ 4938 if (ppcopy(targ, repl) == 0) { 4939 targ = *target; 4940 repl = first_repl; 4941 VM_STAT_ADD(vmm_vmstats.ppr_copyfail); 4942 if (grouplock != 0) { 4943 group_page_unlock(targ); 4944 } 4945 if (dofree) { 4946 *replacement = NULL; 4947 page_free_replacement_page(repl); 4948 page_create_putback(dofree); 4949 } 4950 return (EIO); 4951 } 4952 4953 targ++; 4954 if (repl_contig != 0) { 4955 repl++; 4956 } else { 4957 repl = repl->p_next; 4958 } 4959 } 4960 4961 repl = first_repl; 4962 targ = *target; 4963 4964 for (i = 0; i < npgs; i++) { 4965 ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO)); 4966 page_clr_all_props(repl); 4967 page_set_props(repl, ppattr); 4968 page_relocate_hash(repl, targ); 4969 4970 ASSERT(hat_page_getshare(targ) == 0); 4971 ASSERT(hat_page_getshare(repl) == 0); 4972 /* 4973 * Now clear the props on targ, after the 4974 * page_relocate_hash(), they no longer 4975 * have any meaning. 4976 */ 4977 page_clr_all_props(targ); 4978 ASSERT(targ->p_next == targ); 4979 ASSERT(targ->p_prev == targ); 4980 page_list_concat(&pl, &targ); 4981 4982 targ++; 4983 if (repl_contig != 0) { 4984 repl++; 4985 } else { 4986 repl = repl->p_next; 4987 } 4988 } 4989 /* assert that we have come full circle with repl */ 4990 ASSERT(repl_contig == 1 || first_repl == repl); 4991 4992 *target = pl; 4993 if (*replacement == NULL) { 4994 ASSERT(first_repl == repl); 4995 *replacement = repl; 4996 } 4997 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]); 4998 *nrelocp = npgs; 4999 return (0); 5000 } 5001 /* 5002 * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated. 5003 */ 5004 int 5005 page_relocate( 5006 page_t **target, 5007 page_t **replacement, 5008 int grouplock, 5009 int freetarget, 5010 spgcnt_t *nrelocp, 5011 lgrp_t *lgrp) 5012 { 5013 spgcnt_t ret; 5014 5015 /* do_page_relocate returns 0 on success or errno value */ 5016 ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp); 5017 5018 if (ret != 0 || freetarget == 0) { 5019 return (ret); 5020 } 5021 if (*nrelocp == 1) { 5022 ASSERT(*target != NULL); 5023 page_free(*target, 1); 5024 } else { 5025 page_t *tpp = *target; 5026 uint_t szc = tpp->p_szc; 5027 pgcnt_t npgs = page_get_pagecnt(szc); 5028 ASSERT(npgs > 1); 5029 ASSERT(szc != 0); 5030 do { 5031 ASSERT(PAGE_EXCL(tpp)); 5032 ASSERT(!hat_page_is_mapped(tpp)); 5033 ASSERT(tpp->p_szc == szc); 5034 PP_SETFREE(tpp); 5035 PP_SETAGED(tpp); 5036 npgs--; 5037 } while ((tpp = tpp->p_next) != *target); 5038 ASSERT(npgs == 0); 5039 page_list_add_pages(*target, 0); 5040 npgs = page_get_pagecnt(szc); 5041 page_create_putback(npgs); 5042 } 5043 return (ret); 5044 } 5045 5046 /* 5047 * it is up to the caller to deal with pcf accounting. 5048 */ 5049 void 5050 page_free_replacement_page(page_t *pplist) 5051 { 5052 page_t *pp; 5053 5054 while (pplist != NULL) { 5055 /* 5056 * pp_targ is a linked list. 5057 */ 5058 pp = pplist; 5059 if (pp->p_szc == 0) { 5060 page_sub(&pplist, pp); 5061 page_clr_all_props(pp); 5062 PP_SETFREE(pp); 5063 PP_SETAGED(pp); 5064 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 5065 page_unlock(pp); 5066 VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]); 5067 } else { 5068 spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc); 5069 page_t *tpp; 5070 page_list_break(&pp, &pplist, curnpgs); 5071 tpp = pp; 5072 do { 5073 ASSERT(PAGE_EXCL(tpp)); 5074 ASSERT(!hat_page_is_mapped(tpp)); 5075 page_clr_all_props(tpp); 5076 PP_SETFREE(tpp); 5077 PP_SETAGED(tpp); 5078 } while ((tpp = tpp->p_next) != pp); 5079 page_list_add_pages(pp, 0); 5080 VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]); 5081 } 5082 } 5083 } 5084 5085 /* 5086 * Relocate target to non-relocatable replacement page. 5087 */ 5088 int 5089 page_relocate_cage(page_t **target, page_t **replacement) 5090 { 5091 page_t *tpp, *rpp; 5092 spgcnt_t pgcnt, npgs; 5093 int result; 5094 5095 tpp = *target; 5096 5097 ASSERT(PAGE_EXCL(tpp)); 5098 ASSERT(tpp->p_szc == 0); 5099 5100 pgcnt = btop(page_get_pagesize(tpp->p_szc)); 5101 5102 do { 5103 (void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC); 5104 rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC); 5105 if (rpp == NULL) { 5106 page_create_putback(pgcnt); 5107 kcage_cageout_wakeup(); 5108 } 5109 } while (rpp == NULL); 5110 5111 ASSERT(PP_ISNORELOC(rpp)); 5112 5113 result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL); 5114 5115 if (result == 0) { 5116 *replacement = rpp; 5117 if (pgcnt != npgs) 5118 panic("page_relocate_cage: partial relocation"); 5119 } 5120 5121 return (result); 5122 } 5123 5124 /* 5125 * Release the page lock on a page, place on cachelist 5126 * tail if no longer mapped. Caller can let us know if 5127 * the page is known to be clean. 5128 */ 5129 int 5130 page_release(page_t *pp, int checkmod) 5131 { 5132 int status; 5133 5134 ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) && 5135 (pp->p_vnode != NULL)); 5136 5137 if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) && 5138 ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) && 5139 pp->p_lckcnt == 0 && pp->p_cowcnt == 0 && 5140 !hat_page_is_mapped(pp)) { 5141 5142 /* 5143 * If page is modified, unlock it 5144 * 5145 * (p_nrm & P_MOD) bit has the latest stuff because: 5146 * (1) We found that this page doesn't have any mappings 5147 * _after_ holding SE_EXCL and 5148 * (2) We didn't drop SE_EXCL lock after the check in (1) 5149 */ 5150 if (checkmod && hat_ismod(pp)) { 5151 page_unlock(pp); 5152 status = PGREL_MOD; 5153 } else { 5154 /*LINTED: constant in conditional context*/ 5155 VN_DISPOSE(pp, B_FREE, 0, kcred); 5156 status = PGREL_CLEAN; 5157 } 5158 } else { 5159 page_unlock(pp); 5160 status = PGREL_NOTREL; 5161 } 5162 return (status); 5163 } 5164 5165 /* 5166 * Given a constituent page, try to demote the large page on the freelist. 5167 * 5168 * Returns nonzero if the page could be demoted successfully. Returns with 5169 * the constituent page still locked. 5170 */ 5171 int 5172 page_try_demote_free_pages(page_t *pp) 5173 { 5174 page_t *rootpp = pp; 5175 pfn_t pfn = page_pptonum(pp); 5176 spgcnt_t npgs; 5177 uint_t szc = pp->p_szc; 5178 5179 ASSERT(PP_ISFREE(pp)); 5180 ASSERT(PAGE_EXCL(pp)); 5181 5182 /* 5183 * Adjust rootpp and lock it, if `pp' is not the base 5184 * constituent page. 5185 */ 5186 npgs = page_get_pagecnt(pp->p_szc); 5187 if (npgs == 1) { 5188 return (0); 5189 } 5190 5191 if (!IS_P2ALIGNED(pfn, npgs)) { 5192 pfn = P2ALIGN(pfn, npgs); 5193 rootpp = page_numtopp_nolock(pfn); 5194 } 5195 5196 if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) { 5197 return (0); 5198 } 5199 5200 if (rootpp->p_szc != szc) { 5201 if (pp != rootpp) 5202 page_unlock(rootpp); 5203 return (0); 5204 } 5205 5206 page_demote_free_pages(rootpp); 5207 5208 if (pp != rootpp) 5209 page_unlock(rootpp); 5210 5211 ASSERT(PP_ISFREE(pp)); 5212 ASSERT(PAGE_EXCL(pp)); 5213 return (1); 5214 } 5215 5216 /* 5217 * Given a constituent page, try to demote the large page. 5218 * 5219 * Returns nonzero if the page could be demoted successfully. Returns with 5220 * the constituent page still locked. 5221 */ 5222 int 5223 page_try_demote_pages(page_t *pp) 5224 { 5225 page_t *tpp, *rootpp = pp; 5226 pfn_t pfn = page_pptonum(pp); 5227 spgcnt_t i, npgs; 5228 uint_t szc = pp->p_szc; 5229 vnode_t *vp = pp->p_vnode; 5230 5231 ASSERT(PAGE_EXCL(pp)); 5232 5233 VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]); 5234 5235 if (pp->p_szc == 0) { 5236 VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]); 5237 return (1); 5238 } 5239 5240 if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) { 5241 VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]); 5242 page_demote_vp_pages(pp); 5243 ASSERT(pp->p_szc == 0); 5244 return (1); 5245 } 5246 5247 /* 5248 * Adjust rootpp if passed in is not the base 5249 * constituent page. 5250 */ 5251 npgs = page_get_pagecnt(pp->p_szc); 5252 ASSERT(npgs > 1); 5253 if (!IS_P2ALIGNED(pfn, npgs)) { 5254 pfn = P2ALIGN(pfn, npgs); 5255 rootpp = page_numtopp_nolock(pfn); 5256 VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]); 5257 ASSERT(rootpp->p_vnode != NULL); 5258 ASSERT(rootpp->p_szc == szc); 5259 } 5260 5261 /* 5262 * We can't demote kernel pages since we can't hat_unload() 5263 * the mappings. 5264 */ 5265 if (VN_ISKAS(rootpp->p_vnode)) 5266 return (0); 5267 5268 /* 5269 * Attempt to lock all constituent pages except the page passed 5270 * in since it's already locked. 5271 */ 5272 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5273 ASSERT(!PP_ISFREE(tpp)); 5274 ASSERT(tpp->p_vnode != NULL); 5275 5276 if (tpp != pp && !page_trylock(tpp, SE_EXCL)) 5277 break; 5278 ASSERT(tpp->p_szc == rootpp->p_szc); 5279 ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i); 5280 } 5281 5282 /* 5283 * If we failed to lock them all then unlock what we have 5284 * locked so far and bail. 5285 */ 5286 if (i < npgs) { 5287 tpp = rootpp; 5288 while (i-- > 0) { 5289 if (tpp != pp) 5290 page_unlock(tpp); 5291 tpp++; 5292 } 5293 VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]); 5294 return (0); 5295 } 5296 5297 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5298 ASSERT(PAGE_EXCL(tpp)); 5299 ASSERT(tpp->p_slckcnt == 0); 5300 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD); 5301 tpp->p_szc = 0; 5302 } 5303 5304 /* 5305 * Unlock all pages except the page passed in. 5306 */ 5307 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5308 ASSERT(!hat_page_is_mapped(tpp)); 5309 if (tpp != pp) 5310 page_unlock(tpp); 5311 } 5312 5313 VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]); 5314 return (1); 5315 } 5316 5317 /* 5318 * Called by page_free() and page_destroy() to demote the page size code 5319 * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero 5320 * p_szc on free list, neither can we just clear p_szc of a single page_t 5321 * within a large page since it will break other code that relies on p_szc 5322 * being the same for all page_t's of a large page). Anonymous pages should 5323 * never end up here because anon_map_getpages() cannot deal with p_szc 5324 * changes after a single constituent page is locked. While anonymous or 5325 * kernel large pages are demoted or freed the entire large page at a time 5326 * with all constituent pages locked EXCL for the file system pages we 5327 * have to be able to demote a large page (i.e. decrease all constituent pages 5328 * p_szc) with only just an EXCL lock on one of constituent pages. The reason 5329 * we can easily deal with anonymous page demotion the entire large page at a 5330 * time is that those operation originate at address space level and concern 5331 * the entire large page region with actual demotion only done when pages are 5332 * not shared with any other processes (therefore we can always get EXCL lock 5333 * on all anonymous constituent pages after clearing segment page 5334 * cache). However file system pages can be truncated or invalidated at a 5335 * PAGESIZE level from the file system side and end up in page_free() or 5336 * page_destroy() (we also allow only part of the large page to be SOFTLOCKed 5337 * and therefore pageout should be able to demote a large page by EXCL locking 5338 * any constituent page that is not under SOFTLOCK). In those cases we cannot 5339 * rely on being able to lock EXCL all constituent pages. 5340 * 5341 * To prevent szc changes on file system pages one has to lock all constituent 5342 * pages at least SHARED (or call page_szc_lock()). The only subsystem that 5343 * doesn't rely on locking all constituent pages (or using page_szc_lock()) to 5344 * prevent szc changes is hat layer that uses its own page level mlist 5345 * locks. hat assumes that szc doesn't change after mlist lock for a page is 5346 * taken. Therefore we need to change szc under hat level locks if we only 5347 * have an EXCL lock on a single constituent page and hat still references any 5348 * of constituent pages. (Note we can't "ignore" hat layer by simply 5349 * hat_pageunload() all constituent pages without having EXCL locks on all of 5350 * constituent pages). We use hat_page_demote() call to safely demote szc of 5351 * all constituent pages under hat locks when we only have an EXCL lock on one 5352 * of constituent pages. 5353 * 5354 * This routine calls page_szc_lock() before calling hat_page_demote() to 5355 * allow segvn in one special case not to lock all constituent pages SHARED 5356 * before calling hat_memload_array() that relies on p_szc not changing even 5357 * before hat level mlist lock is taken. In that case segvn uses 5358 * page_szc_lock() to prevent hat_page_demote() changing p_szc values. 5359 * 5360 * Anonymous or kernel page demotion still has to lock all pages exclusively 5361 * and do hat_pageunload() on all constituent pages before demoting the page 5362 * therefore there's no need for anonymous or kernel page demotion to use 5363 * hat_page_demote() mechanism. 5364 * 5365 * hat_page_demote() removes all large mappings that map pp and then decreases 5366 * p_szc starting from the last constituent page of the large page. By working 5367 * from the tail of a large page in pfn decreasing order allows one looking at 5368 * the root page to know that hat_page_demote() is done for root's szc area. 5369 * e.g. if a root page has szc 1 one knows it only has to lock all constituent 5370 * pages within szc 1 area to prevent szc changes because hat_page_demote() 5371 * that started on this page when it had szc > 1 is done for this szc 1 area. 5372 * 5373 * We are guaranteed that all constituent pages of pp's large page belong to 5374 * the same vnode with the consecutive offsets increasing in the direction of 5375 * the pfn i.e. the identity of constituent pages can't change until their 5376 * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove 5377 * large mappings to pp even though we don't lock any constituent page except 5378 * pp (i.e. we won't unload e.g. kernel locked page). 5379 */ 5380 static void 5381 page_demote_vp_pages(page_t *pp) 5382 { 5383 kmutex_t *mtx; 5384 5385 ASSERT(PAGE_EXCL(pp)); 5386 ASSERT(!PP_ISFREE(pp)); 5387 ASSERT(pp->p_vnode != NULL); 5388 ASSERT(!IS_SWAPFSVP(pp->p_vnode)); 5389 ASSERT(!PP_ISKAS(pp)); 5390 5391 VM_STAT_ADD(pagecnt.pc_demote_pages[0]); 5392 5393 mtx = page_szc_lock(pp); 5394 if (mtx != NULL) { 5395 hat_page_demote(pp); 5396 mutex_exit(mtx); 5397 } 5398 ASSERT(pp->p_szc == 0); 5399 } 5400 5401 /* 5402 * Mark any existing pages for migration in the given range 5403 */ 5404 void 5405 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len, 5406 struct anon_map *amp, ulong_t anon_index, vnode_t *vp, 5407 u_offset_t vnoff, int rflag) 5408 { 5409 struct anon *ap; 5410 vnode_t *curvp; 5411 lgrp_t *from; 5412 pgcnt_t nlocked; 5413 u_offset_t off; 5414 pfn_t pfn; 5415 size_t pgsz; 5416 size_t segpgsz; 5417 pgcnt_t pages; 5418 uint_t pszc; 5419 page_t *pp0, *pp; 5420 caddr_t va; 5421 ulong_t an_idx; 5422 anon_sync_obj_t cookie; 5423 5424 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 5425 5426 /* 5427 * Don't do anything if don't need to do lgroup optimizations 5428 * on this system 5429 */ 5430 if (!lgrp_optimizations()) 5431 return; 5432 5433 /* 5434 * Align address and length to (potentially large) page boundary 5435 */ 5436 segpgsz = page_get_pagesize(seg->s_szc); 5437 addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz); 5438 if (rflag) 5439 len = P2ROUNDUP(len, segpgsz); 5440 5441 /* 5442 * Do one (large) page at a time 5443 */ 5444 va = addr; 5445 while (va < addr + len) { 5446 /* 5447 * Lookup (root) page for vnode and offset corresponding to 5448 * this virtual address 5449 * Try anonmap first since there may be copy-on-write 5450 * pages, but initialize vnode pointer and offset using 5451 * vnode arguments just in case there isn't an amp. 5452 */ 5453 curvp = vp; 5454 off = vnoff + va - seg->s_base; 5455 if (amp) { 5456 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5457 an_idx = anon_index + seg_page(seg, va); 5458 anon_array_enter(amp, an_idx, &cookie); 5459 ap = anon_get_ptr(amp->ahp, an_idx); 5460 if (ap) 5461 swap_xlate(ap, &curvp, &off); 5462 anon_array_exit(&cookie); 5463 ANON_LOCK_EXIT(&->a_rwlock); 5464 } 5465 5466 pp = NULL; 5467 if (curvp) 5468 pp = page_lookup(curvp, off, SE_SHARED); 5469 5470 /* 5471 * If there isn't a page at this virtual address, 5472 * skip to next page 5473 */ 5474 if (pp == NULL) { 5475 va += PAGESIZE; 5476 continue; 5477 } 5478 5479 /* 5480 * Figure out which lgroup this page is in for kstats 5481 */ 5482 pfn = page_pptonum(pp); 5483 from = lgrp_pfn_to_lgrp(pfn); 5484 5485 /* 5486 * Get page size, and round up and skip to next page boundary 5487 * if unaligned address 5488 */ 5489 pszc = pp->p_szc; 5490 pgsz = page_get_pagesize(pszc); 5491 pages = btop(pgsz); 5492 if (!IS_P2ALIGNED(va, pgsz) || 5493 !IS_P2ALIGNED(pfn, pages) || 5494 pgsz > segpgsz) { 5495 pgsz = MIN(pgsz, segpgsz); 5496 page_unlock(pp); 5497 pages = btop(P2END((uintptr_t)va, pgsz) - 5498 (uintptr_t)va); 5499 va = (caddr_t)P2END((uintptr_t)va, pgsz); 5500 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, pages); 5501 continue; 5502 } 5503 5504 /* 5505 * Upgrade to exclusive lock on page 5506 */ 5507 if (!page_tryupgrade(pp)) { 5508 page_unlock(pp); 5509 va += pgsz; 5510 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, 5511 btop(pgsz)); 5512 continue; 5513 } 5514 5515 pp0 = pp++; 5516 nlocked = 1; 5517 5518 /* 5519 * Lock constituent pages if this is large page 5520 */ 5521 if (pages > 1) { 5522 /* 5523 * Lock all constituents except root page, since it 5524 * should be locked already. 5525 */ 5526 for (; nlocked < pages; nlocked++) { 5527 if (!page_trylock(pp, SE_EXCL)) { 5528 break; 5529 } 5530 if (PP_ISFREE(pp) || 5531 pp->p_szc != pszc) { 5532 /* 5533 * hat_page_demote() raced in with us. 5534 */ 5535 ASSERT(!IS_SWAPFSVP(curvp)); 5536 page_unlock(pp); 5537 break; 5538 } 5539 pp++; 5540 } 5541 } 5542 5543 /* 5544 * If all constituent pages couldn't be locked, 5545 * unlock pages locked so far and skip to next page. 5546 */ 5547 if (nlocked < pages) { 5548 while (pp0 < pp) { 5549 page_unlock(pp0++); 5550 } 5551 va += pgsz; 5552 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, 5553 btop(pgsz)); 5554 continue; 5555 } 5556 5557 /* 5558 * hat_page_demote() can no longer happen 5559 * since last cons page had the right p_szc after 5560 * all cons pages were locked. all cons pages 5561 * should now have the same p_szc. 5562 */ 5563 5564 /* 5565 * All constituent pages locked successfully, so mark 5566 * large page for migration and unload the mappings of 5567 * constituent pages, so a fault will occur on any part of the 5568 * large page 5569 */ 5570 PP_SETMIGRATE(pp0); 5571 while (pp0 < pp) { 5572 (void) hat_pageunload(pp0, HAT_FORCE_PGUNLOAD); 5573 ASSERT(hat_page_getshare(pp0) == 0); 5574 page_unlock(pp0++); 5575 } 5576 lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked); 5577 5578 va += pgsz; 5579 } 5580 } 5581 5582 /* 5583 * Migrate any pages that have been marked for migration in the given range 5584 */ 5585 void 5586 page_migrate( 5587 struct seg *seg, 5588 caddr_t addr, 5589 page_t **ppa, 5590 pgcnt_t npages) 5591 { 5592 lgrp_t *from; 5593 lgrp_t *to; 5594 page_t *newpp; 5595 page_t *pp; 5596 pfn_t pfn; 5597 size_t pgsz; 5598 spgcnt_t page_cnt; 5599 spgcnt_t i; 5600 uint_t pszc; 5601 5602 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 5603 5604 while (npages > 0) { 5605 pp = *ppa; 5606 pszc = pp->p_szc; 5607 pgsz = page_get_pagesize(pszc); 5608 page_cnt = btop(pgsz); 5609 5610 /* 5611 * Check to see whether this page is marked for migration 5612 * 5613 * Assume that root page of large page is marked for 5614 * migration and none of the other constituent pages 5615 * are marked. This really simplifies clearing the 5616 * migrate bit by not having to clear it from each 5617 * constituent page. 5618 * 5619 * note we don't want to relocate an entire large page if 5620 * someone is only using one subpage. 5621 */ 5622 if (npages < page_cnt) 5623 break; 5624 5625 /* 5626 * Is it marked for migration? 5627 */ 5628 if (!PP_ISMIGRATE(pp)) 5629 goto next; 5630 5631 /* 5632 * Determine lgroups that page is being migrated between 5633 */ 5634 pfn = page_pptonum(pp); 5635 if (!IS_P2ALIGNED(pfn, page_cnt)) { 5636 break; 5637 } 5638 from = lgrp_pfn_to_lgrp(pfn); 5639 to = lgrp_mem_choose(seg, addr, pgsz); 5640 5641 /* 5642 * Need to get exclusive lock's to migrate 5643 */ 5644 for (i = 0; i < page_cnt; i++) { 5645 ASSERT(PAGE_LOCKED(ppa[i])); 5646 if (page_pptonum(ppa[i]) != pfn + i || 5647 ppa[i]->p_szc != pszc) { 5648 break; 5649 } 5650 if (!page_tryupgrade(ppa[i])) { 5651 lgrp_stat_add(from->lgrp_id, 5652 LGRP_PM_FAIL_LOCK_PGS, 5653 page_cnt); 5654 break; 5655 } 5656 5657 /* 5658 * Check to see whether we are trying to migrate 5659 * page to lgroup where it is allocated already. 5660 * If so, clear the migrate bit and skip to next 5661 * page. 5662 */ 5663 if (i == 0 && to == from) { 5664 PP_CLRMIGRATE(ppa[0]); 5665 page_downgrade(ppa[0]); 5666 goto next; 5667 } 5668 } 5669 5670 /* 5671 * If all constituent pages couldn't be locked, 5672 * unlock pages locked so far and skip to next page. 5673 */ 5674 if (i != page_cnt) { 5675 while (--i != -1) { 5676 page_downgrade(ppa[i]); 5677 } 5678 goto next; 5679 } 5680 5681 (void) page_create_wait(page_cnt, PG_WAIT); 5682 newpp = page_get_replacement_page(pp, to, PGR_SAMESZC); 5683 if (newpp == NULL) { 5684 page_create_putback(page_cnt); 5685 for (i = 0; i < page_cnt; i++) { 5686 page_downgrade(ppa[i]); 5687 } 5688 lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS, 5689 page_cnt); 5690 goto next; 5691 } 5692 ASSERT(newpp->p_szc == pszc); 5693 /* 5694 * Clear migrate bit and relocate page 5695 */ 5696 PP_CLRMIGRATE(pp); 5697 if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) { 5698 panic("page_migrate: page_relocate failed"); 5699 } 5700 ASSERT(page_cnt * PAGESIZE == pgsz); 5701 5702 /* 5703 * Keep stats for number of pages migrated from and to 5704 * each lgroup 5705 */ 5706 lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt); 5707 lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt); 5708 /* 5709 * update the page_t array we were passed in and 5710 * unlink constituent pages of a large page. 5711 */ 5712 for (i = 0; i < page_cnt; ++i, ++pp) { 5713 ASSERT(PAGE_EXCL(newpp)); 5714 ASSERT(newpp->p_szc == pszc); 5715 ppa[i] = newpp; 5716 pp = newpp; 5717 page_sub(&newpp, pp); 5718 page_downgrade(pp); 5719 } 5720 ASSERT(newpp == NULL); 5721 next: 5722 addr += pgsz; 5723 ppa += page_cnt; 5724 npages -= page_cnt; 5725 } 5726 } 5727 5728 uint_t page_reclaim_maxcnt = 60; /* max total iterations */ 5729 uint_t page_reclaim_nofree_maxcnt = 3; /* max iterations without progress */ 5730 /* 5731 * Reclaim/reserve availrmem for npages. 5732 * If there is not enough memory start reaping seg, kmem caches. 5733 * Start pageout scanner (via page_needfree()). 5734 * Exit after ~ MAX_CNT s regardless of how much memory has been released. 5735 * Note: There is no guarantee that any availrmem will be freed as 5736 * this memory typically is locked (kernel heap) or reserved for swap. 5737 * Also due to memory fragmentation kmem allocator may not be able 5738 * to free any memory (single user allocated buffer will prevent 5739 * freeing slab or a page). 5740 */ 5741 int 5742 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust) 5743 { 5744 int i = 0; 5745 int i_nofree = 0; 5746 int ret = 0; 5747 pgcnt_t deficit; 5748 pgcnt_t old_availrmem = 0; 5749 5750 mutex_enter(&freemem_lock); 5751 while (availrmem < tune.t_minarmem + npages + epages && 5752 i++ < page_reclaim_maxcnt) { 5753 /* ensure we made some progress in the last few iterations */ 5754 if (old_availrmem < availrmem) { 5755 old_availrmem = availrmem; 5756 i_nofree = 0; 5757 } else if (i_nofree++ >= page_reclaim_nofree_maxcnt) { 5758 break; 5759 } 5760 5761 deficit = tune.t_minarmem + npages + epages - availrmem; 5762 mutex_exit(&freemem_lock); 5763 page_needfree(deficit); 5764 kmem_reap(); 5765 delay(hz); 5766 page_needfree(-(spgcnt_t)deficit); 5767 mutex_enter(&freemem_lock); 5768 } 5769 5770 if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) { 5771 availrmem -= npages; 5772 ret = 1; 5773 } 5774 5775 mutex_exit(&freemem_lock); 5776 5777 return (ret); 5778 } 5779 5780 /* 5781 * Search the memory segments to locate the desired page. Within a 5782 * segment, pages increase linearly with one page structure per 5783 * physical page frame (size PAGESIZE). The search begins 5784 * with the segment that was accessed last, to take advantage of locality. 5785 * If the hint misses, we start from the beginning of the sorted memseg list 5786 */ 5787 5788 5789 /* 5790 * Some data structures for pfn to pp lookup. 5791 */ 5792 ulong_t mhash_per_slot; 5793 struct memseg *memseg_hash[N_MEM_SLOTS]; 5794 5795 page_t * 5796 page_numtopp_nolock(pfn_t pfnum) 5797 { 5798 struct memseg *seg; 5799 page_t *pp; 5800 vm_cpu_data_t *vc; 5801 5802 /* 5803 * We need to disable kernel preemption while referencing the 5804 * cpu_vm_data field in order to prevent us from being switched to 5805 * another cpu and trying to reference it after it has been freed. 5806 * This will keep us on cpu and prevent it from being removed while 5807 * we are still on it. 5808 * 5809 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg 5810 * which is being resued by DR who will flush those references 5811 * before modifying the reused memseg. See memseg_cpu_vm_flush(). 5812 */ 5813 kpreempt_disable(); 5814 vc = CPU->cpu_vm_data; 5815 ASSERT(vc != NULL); 5816 5817 MEMSEG_STAT_INCR(nsearch); 5818 5819 /* Try last winner first */ 5820 if (((seg = vc->vc_pnum_memseg) != NULL) && 5821 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5822 MEMSEG_STAT_INCR(nlastwon); 5823 pp = seg->pages + (pfnum - seg->pages_base); 5824 if (pp->p_pagenum == pfnum) { 5825 kpreempt_enable(); 5826 return ((page_t *)pp); 5827 } 5828 } 5829 5830 /* Else Try hash */ 5831 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) && 5832 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5833 MEMSEG_STAT_INCR(nhashwon); 5834 vc->vc_pnum_memseg = seg; 5835 pp = seg->pages + (pfnum - seg->pages_base); 5836 if (pp->p_pagenum == pfnum) { 5837 kpreempt_enable(); 5838 return ((page_t *)pp); 5839 } 5840 } 5841 5842 /* Else Brute force */ 5843 for (seg = memsegs; seg != NULL; seg = seg->next) { 5844 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) { 5845 vc->vc_pnum_memseg = seg; 5846 pp = seg->pages + (pfnum - seg->pages_base); 5847 if (pp->p_pagenum == pfnum) { 5848 kpreempt_enable(); 5849 return ((page_t *)pp); 5850 } 5851 } 5852 } 5853 vc->vc_pnum_memseg = NULL; 5854 kpreempt_enable(); 5855 MEMSEG_STAT_INCR(nnotfound); 5856 return ((page_t *)NULL); 5857 5858 } 5859 5860 struct memseg * 5861 page_numtomemseg_nolock(pfn_t pfnum) 5862 { 5863 struct memseg *seg; 5864 page_t *pp; 5865 5866 /* 5867 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg 5868 * which is being resued by DR who will flush those references 5869 * before modifying the reused memseg. See memseg_cpu_vm_flush(). 5870 */ 5871 kpreempt_disable(); 5872 /* Try hash */ 5873 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) && 5874 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5875 pp = seg->pages + (pfnum - seg->pages_base); 5876 if (pp->p_pagenum == pfnum) { 5877 kpreempt_enable(); 5878 return (seg); 5879 } 5880 } 5881 5882 /* Else Brute force */ 5883 for (seg = memsegs; seg != NULL; seg = seg->next) { 5884 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) { 5885 pp = seg->pages + (pfnum - seg->pages_base); 5886 if (pp->p_pagenum == pfnum) { 5887 kpreempt_enable(); 5888 return (seg); 5889 } 5890 } 5891 } 5892 kpreempt_enable(); 5893 return ((struct memseg *)NULL); 5894 } 5895 5896 /* 5897 * Given a page and a count return the page struct that is 5898 * n structs away from the current one in the global page 5899 * list. 5900 * 5901 * This function wraps to the first page upon 5902 * reaching the end of the memseg list. 5903 */ 5904 page_t * 5905 page_nextn(page_t *pp, ulong_t n) 5906 { 5907 struct memseg *seg; 5908 page_t *ppn; 5909 vm_cpu_data_t *vc; 5910 5911 /* 5912 * We need to disable kernel preemption while referencing the 5913 * cpu_vm_data field in order to prevent us from being switched to 5914 * another cpu and trying to reference it after it has been freed. 5915 * This will keep us on cpu and prevent it from being removed while 5916 * we are still on it. 5917 * 5918 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg 5919 * which is being resued by DR who will flush those references 5920 * before modifying the reused memseg. See memseg_cpu_vm_flush(). 5921 */ 5922 kpreempt_disable(); 5923 vc = (vm_cpu_data_t *)CPU->cpu_vm_data; 5924 5925 ASSERT(vc != NULL); 5926 5927 if (((seg = vc->vc_pnext_memseg) == NULL) || 5928 (seg->pages_base == seg->pages_end) || 5929 !(pp >= seg->pages && pp < seg->epages)) { 5930 5931 for (seg = memsegs; seg; seg = seg->next) { 5932 if (pp >= seg->pages && pp < seg->epages) 5933 break; 5934 } 5935 5936 if (seg == NULL) { 5937 /* Memory delete got in, return something valid. */ 5938 /* TODO: fix me. */ 5939 seg = memsegs; 5940 pp = seg->pages; 5941 } 5942 } 5943 5944 /* check for wraparound - possible if n is large */ 5945 while ((ppn = (pp + n)) >= seg->epages || ppn < pp) { 5946 n -= seg->epages - pp; 5947 seg = seg->next; 5948 if (seg == NULL) 5949 seg = memsegs; 5950 pp = seg->pages; 5951 } 5952 vc->vc_pnext_memseg = seg; 5953 kpreempt_enable(); 5954 return (ppn); 5955 } 5956 5957 /* 5958 * Initialize for a loop using page_next_scan_large(). 5959 */ 5960 page_t * 5961 page_next_scan_init(void **cookie) 5962 { 5963 ASSERT(cookie != NULL); 5964 *cookie = (void *)memsegs; 5965 return ((page_t *)memsegs->pages); 5966 } 5967 5968 /* 5969 * Return the next page in a scan of page_t's, assuming we want 5970 * to skip over sub-pages within larger page sizes. 5971 * 5972 * The cookie is used to keep track of the current memseg. 5973 */ 5974 page_t * 5975 page_next_scan_large( 5976 page_t *pp, 5977 ulong_t *n, 5978 void **cookie) 5979 { 5980 struct memseg *seg = (struct memseg *)*cookie; 5981 page_t *new_pp; 5982 ulong_t cnt; 5983 pfn_t pfn; 5984 5985 5986 /* 5987 * get the count of page_t's to skip based on the page size 5988 */ 5989 ASSERT(pp != NULL); 5990 if (pp->p_szc == 0) { 5991 cnt = 1; 5992 } else { 5993 pfn = page_pptonum(pp); 5994 cnt = page_get_pagecnt(pp->p_szc); 5995 cnt -= pfn & (cnt - 1); 5996 } 5997 *n += cnt; 5998 new_pp = pp + cnt; 5999 6000 /* 6001 * Catch if we went past the end of the current memory segment. If so, 6002 * just move to the next segment with pages. 6003 */ 6004 if (new_pp >= seg->epages || seg->pages_base == seg->pages_end) { 6005 do { 6006 seg = seg->next; 6007 if (seg == NULL) 6008 seg = memsegs; 6009 } while (seg->pages_base == seg->pages_end); 6010 new_pp = seg->pages; 6011 *cookie = (void *)seg; 6012 } 6013 6014 return (new_pp); 6015 } 6016 6017 6018 /* 6019 * Returns next page in list. Note: this function wraps 6020 * to the first page in the list upon reaching the end 6021 * of the list. Callers should be aware of this fact. 6022 */ 6023 6024 /* We should change this be a #define */ 6025 6026 page_t * 6027 page_next(page_t *pp) 6028 { 6029 return (page_nextn(pp, 1)); 6030 } 6031 6032 page_t * 6033 page_first() 6034 { 6035 return ((page_t *)memsegs->pages); 6036 } 6037 6038 6039 /* 6040 * This routine is called at boot with the initial memory configuration 6041 * and when memory is added or removed. 6042 */ 6043 void 6044 build_pfn_hash() 6045 { 6046 pfn_t cur; 6047 pgcnt_t index; 6048 struct memseg *pseg; 6049 int i; 6050 6051 /* 6052 * Clear memseg_hash array. 6053 * Since memory add/delete is designed to operate concurrently 6054 * with normal operation, the hash rebuild must be able to run 6055 * concurrently with page_numtopp_nolock(). To support this 6056 * functionality, assignments to memseg_hash array members must 6057 * be done atomically. 6058 * 6059 * NOTE: bzero() does not currently guarantee this for kernel 6060 * threads, and cannot be used here. 6061 */ 6062 for (i = 0; i < N_MEM_SLOTS; i++) 6063 memseg_hash[i] = NULL; 6064 6065 hat_kpm_mseghash_clear(N_MEM_SLOTS); 6066 6067 /* 6068 * Physmax is the last valid pfn. 6069 */ 6070 mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT; 6071 for (pseg = memsegs; pseg != NULL; pseg = pseg->next) { 6072 index = MEMSEG_PFN_HASH(pseg->pages_base); 6073 cur = pseg->pages_base; 6074 do { 6075 if (index >= N_MEM_SLOTS) 6076 index = MEMSEG_PFN_HASH(cur); 6077 6078 if (memseg_hash[index] == NULL || 6079 memseg_hash[index]->pages_base > pseg->pages_base) { 6080 memseg_hash[index] = pseg; 6081 hat_kpm_mseghash_update(index, pseg); 6082 } 6083 cur += mhash_per_slot; 6084 index++; 6085 } while (cur < pseg->pages_end); 6086 } 6087 } 6088 6089 /* 6090 * Return the pagenum for the pp 6091 */ 6092 pfn_t 6093 page_pptonum(page_t *pp) 6094 { 6095 return (pp->p_pagenum); 6096 } 6097 6098 /* 6099 * interface to the referenced and modified etc bits 6100 * in the PSM part of the page struct 6101 * when no locking is desired. 6102 */ 6103 void 6104 page_set_props(page_t *pp, uint_t flags) 6105 { 6106 ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0); 6107 pp->p_nrm |= (uchar_t)flags; 6108 } 6109 6110 void 6111 page_clr_all_props(page_t *pp) 6112 { 6113 pp->p_nrm = 0; 6114 } 6115 6116 /* 6117 * Clear p_lckcnt and p_cowcnt, adjusting freemem if required. 6118 */ 6119 int 6120 page_clear_lck_cow(page_t *pp, int adjust) 6121 { 6122 int f_amount; 6123 6124 ASSERT(PAGE_EXCL(pp)); 6125 6126 /* 6127 * The page_struct_lock need not be acquired here since 6128 * we require the caller hold the page exclusively locked. 6129 */ 6130 f_amount = 0; 6131 if (pp->p_lckcnt) { 6132 f_amount = 1; 6133 pp->p_lckcnt = 0; 6134 } 6135 if (pp->p_cowcnt) { 6136 f_amount += pp->p_cowcnt; 6137 pp->p_cowcnt = 0; 6138 } 6139 6140 if (adjust && f_amount) { 6141 mutex_enter(&freemem_lock); 6142 availrmem += f_amount; 6143 mutex_exit(&freemem_lock); 6144 } 6145 6146 return (f_amount); 6147 } 6148 6149 /* 6150 * The following functions is called from free_vp_pages() 6151 * for an inexact estimate of a newly free'd page... 6152 */ 6153 ulong_t 6154 page_share_cnt(page_t *pp) 6155 { 6156 return (hat_page_getshare(pp)); 6157 } 6158 6159 int 6160 page_isshared(page_t *pp) 6161 { 6162 return (hat_page_checkshare(pp, 1)); 6163 } 6164 6165 int 6166 page_isfree(page_t *pp) 6167 { 6168 return (PP_ISFREE(pp)); 6169 } 6170 6171 int 6172 page_isref(page_t *pp) 6173 { 6174 return (hat_page_getattr(pp, P_REF)); 6175 } 6176 6177 int 6178 page_ismod(page_t *pp) 6179 { 6180 return (hat_page_getattr(pp, P_MOD)); 6181 } 6182 6183 /* 6184 * The following code all currently relates to the page capture logic: 6185 * 6186 * This logic is used for cases where there is a desire to claim a certain 6187 * physical page in the system for the caller. As it may not be possible 6188 * to capture the page immediately, the p_toxic bits are used in the page 6189 * structure to indicate that someone wants to capture this page. When the 6190 * page gets unlocked, the toxic flag will be noted and an attempt to capture 6191 * the page will be made. If it is successful, the original callers callback 6192 * will be called with the page to do with it what they please. 6193 * 6194 * There is also an async thread which wakes up to attempt to capture 6195 * pages occasionally which have the capture bit set. All of the pages which 6196 * need to be captured asynchronously have been inserted into the 6197 * page_capture_hash and thus this thread walks that hash list. Items in the 6198 * hash have an expiration time so this thread handles that as well by removing 6199 * the item from the hash if it has expired. 6200 * 6201 * Some important things to note are: 6202 * - if the PR_CAPTURE bit is set on a page, then the page is in the 6203 * page_capture_hash. The page_capture_hash_head.pchh_mutex is needed 6204 * to set and clear this bit, and while the lock is held is the only time 6205 * you can add or remove an entry from the hash. 6206 * - the PR_CAPTURE bit can only be set and cleared while holding the 6207 * page_capture_hash_head.pchh_mutex 6208 * - the t_flag field of the thread struct is used with the T_CAPTURING 6209 * flag to prevent recursion while dealing with large pages. 6210 * - pages which need to be retired never expire on the page_capture_hash. 6211 */ 6212 6213 static void page_capture_thread(void); 6214 static kthread_t *pc_thread_id; 6215 kcondvar_t pc_cv; 6216 static kmutex_t pc_thread_mutex; 6217 static clock_t pc_thread_shortwait; 6218 static clock_t pc_thread_longwait; 6219 static int pc_thread_retry; 6220 6221 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS]; 6222 6223 /* Note that this is a circular linked list */ 6224 typedef struct page_capture_hash_bucket { 6225 page_t *pp; 6226 uchar_t szc; 6227 uchar_t pri; 6228 uint_t flags; 6229 clock_t expires; /* lbolt at which this request expires. */ 6230 void *datap; /* Cached data passed in for callback */ 6231 struct page_capture_hash_bucket *next; 6232 struct page_capture_hash_bucket *prev; 6233 } page_capture_hash_bucket_t; 6234 6235 #define PC_PRI_HI 0 /* capture now */ 6236 #define PC_PRI_LO 1 /* capture later */ 6237 #define PC_NUM_PRI 2 6238 6239 #define PAGE_CAPTURE_PRIO(pp) (PP_ISRAF(pp) ? PC_PRI_LO : PC_PRI_HI) 6240 6241 6242 /* 6243 * Each hash bucket will have it's own mutex and two lists which are: 6244 * active (0): represents requests which have not been processed by 6245 * the page_capture async thread yet. 6246 * walked (1): represents requests which have been processed by the 6247 * page_capture async thread within it's given walk of this bucket. 6248 * 6249 * These are all needed so that we can synchronize all async page_capture 6250 * events. When the async thread moves to a new bucket, it will append the 6251 * walked list to the active list and walk each item one at a time, moving it 6252 * from the active list to the walked list. Thus if there is an async request 6253 * outstanding for a given page, it will always be in one of the two lists. 6254 * New requests will always be added to the active list. 6255 * If we were not able to capture a page before the request expired, we'd free 6256 * up the request structure which would indicate to page_capture that there is 6257 * no longer a need for the given page, and clear the PR_CAPTURE flag if 6258 * possible. 6259 */ 6260 typedef struct page_capture_hash_head { 6261 kmutex_t pchh_mutex; 6262 uint_t num_pages[PC_NUM_PRI]; 6263 page_capture_hash_bucket_t lists[2]; /* sentinel nodes */ 6264 } page_capture_hash_head_t; 6265 6266 #ifdef DEBUG 6267 #define NUM_PAGE_CAPTURE_BUCKETS 4 6268 #else 6269 #define NUM_PAGE_CAPTURE_BUCKETS 64 6270 #endif 6271 6272 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS]; 6273 6274 /* for now use a very simple hash based upon the size of a page struct */ 6275 #define PAGE_CAPTURE_HASH(pp) \ 6276 ((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1))) 6277 6278 extern pgcnt_t swapfs_minfree; 6279 6280 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap); 6281 6282 /* 6283 * a callback function is required for page capture requests. 6284 */ 6285 void 6286 page_capture_register_callback(uint_t index, clock_t duration, 6287 int (*cb_func)(page_t *, void *, uint_t)) 6288 { 6289 ASSERT(pc_cb[index].cb_active == 0); 6290 ASSERT(cb_func != NULL); 6291 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER); 6292 pc_cb[index].duration = duration; 6293 pc_cb[index].cb_func = cb_func; 6294 pc_cb[index].cb_active = 1; 6295 rw_exit(&pc_cb[index].cb_rwlock); 6296 } 6297 6298 void 6299 page_capture_unregister_callback(uint_t index) 6300 { 6301 int i, j; 6302 struct page_capture_hash_bucket *bp1; 6303 struct page_capture_hash_bucket *bp2; 6304 struct page_capture_hash_bucket *head = NULL; 6305 uint_t flags = (1 << index); 6306 6307 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER); 6308 ASSERT(pc_cb[index].cb_active == 1); 6309 pc_cb[index].duration = 0; /* Paranoia */ 6310 pc_cb[index].cb_func = NULL; /* Paranoia */ 6311 pc_cb[index].cb_active = 0; 6312 rw_exit(&pc_cb[index].cb_rwlock); 6313 6314 /* 6315 * Just move all the entries to a private list which we can walk 6316 * through without the need to hold any locks. 6317 * No more requests can get added to the hash lists for this consumer 6318 * as the cb_active field for the callback has been cleared. 6319 */ 6320 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 6321 mutex_enter(&page_capture_hash[i].pchh_mutex); 6322 for (j = 0; j < 2; j++) { 6323 bp1 = page_capture_hash[i].lists[j].next; 6324 /* walk through all but first (sentinel) element */ 6325 while (bp1 != &page_capture_hash[i].lists[j]) { 6326 bp2 = bp1; 6327 if (bp2->flags & flags) { 6328 bp1 = bp2->next; 6329 bp1->prev = bp2->prev; 6330 bp2->prev->next = bp1; 6331 bp2->next = head; 6332 head = bp2; 6333 /* 6334 * Clear the PR_CAPTURE bit as we 6335 * hold appropriate locks here. 6336 */ 6337 page_clrtoxic(head->pp, PR_CAPTURE); 6338 page_capture_hash[i]. 6339 num_pages[bp2->pri]--; 6340 continue; 6341 } 6342 bp1 = bp1->next; 6343 } 6344 } 6345 mutex_exit(&page_capture_hash[i].pchh_mutex); 6346 } 6347 6348 while (head != NULL) { 6349 bp1 = head; 6350 head = head->next; 6351 kmem_free(bp1, sizeof (*bp1)); 6352 } 6353 } 6354 6355 6356 /* 6357 * Find pp in the active list and move it to the walked list if it 6358 * exists. 6359 * Note that most often pp should be at the front of the active list 6360 * as it is currently used and thus there is no other sort of optimization 6361 * being done here as this is a linked list data structure. 6362 * Returns 1 on successful move or 0 if page could not be found. 6363 */ 6364 static int 6365 page_capture_move_to_walked(page_t *pp) 6366 { 6367 page_capture_hash_bucket_t *bp; 6368 int index; 6369 6370 index = PAGE_CAPTURE_HASH(pp); 6371 6372 mutex_enter(&page_capture_hash[index].pchh_mutex); 6373 bp = page_capture_hash[index].lists[0].next; 6374 while (bp != &page_capture_hash[index].lists[0]) { 6375 if (bp->pp == pp) { 6376 /* Remove from old list */ 6377 bp->next->prev = bp->prev; 6378 bp->prev->next = bp->next; 6379 6380 /* Add to new list */ 6381 bp->next = page_capture_hash[index].lists[1].next; 6382 bp->prev = &page_capture_hash[index].lists[1]; 6383 page_capture_hash[index].lists[1].next = bp; 6384 bp->next->prev = bp; 6385 6386 /* 6387 * There is a small probability of page on a free 6388 * list being retired while being allocated 6389 * and before P_RAF is set on it. The page may 6390 * end up marked as high priority request instead 6391 * of low priority request. 6392 * If P_RAF page is not marked as low priority request 6393 * change it to low priority request. 6394 */ 6395 page_capture_hash[index].num_pages[bp->pri]--; 6396 bp->pri = PAGE_CAPTURE_PRIO(pp); 6397 page_capture_hash[index].num_pages[bp->pri]++; 6398 mutex_exit(&page_capture_hash[index].pchh_mutex); 6399 return (1); 6400 } 6401 bp = bp->next; 6402 } 6403 mutex_exit(&page_capture_hash[index].pchh_mutex); 6404 return (0); 6405 } 6406 6407 /* 6408 * Add a new entry to the page capture hash. The only case where a new 6409 * entry is not added is when the page capture consumer is no longer registered. 6410 * In this case, we'll silently not add the page to the hash. We know that 6411 * page retire will always be registered for the case where we are currently 6412 * unretiring a page and thus there are no conflicts. 6413 */ 6414 static void 6415 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap) 6416 { 6417 page_capture_hash_bucket_t *bp1; 6418 page_capture_hash_bucket_t *bp2; 6419 int index; 6420 int cb_index; 6421 int i; 6422 uchar_t pri; 6423 #ifdef DEBUG 6424 page_capture_hash_bucket_t *tp1; 6425 int l; 6426 #endif 6427 6428 ASSERT(!(flags & CAPTURE_ASYNC)); 6429 6430 bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP); 6431 6432 bp1->pp = pp; 6433 bp1->szc = szc; 6434 bp1->flags = flags; 6435 bp1->datap = datap; 6436 6437 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) { 6438 if ((flags >> cb_index) & 1) { 6439 break; 6440 } 6441 } 6442 6443 ASSERT(cb_index != PC_NUM_CALLBACKS); 6444 6445 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER); 6446 if (pc_cb[cb_index].cb_active) { 6447 if (pc_cb[cb_index].duration == -1) { 6448 bp1->expires = (clock_t)-1; 6449 } else { 6450 bp1->expires = ddi_get_lbolt() + 6451 pc_cb[cb_index].duration; 6452 } 6453 } else { 6454 /* There's no callback registered so don't add to the hash */ 6455 rw_exit(&pc_cb[cb_index].cb_rwlock); 6456 kmem_free(bp1, sizeof (*bp1)); 6457 return; 6458 } 6459 6460 index = PAGE_CAPTURE_HASH(pp); 6461 6462 /* 6463 * Only allow capture flag to be modified under this mutex. 6464 * Prevents multiple entries for same page getting added. 6465 */ 6466 mutex_enter(&page_capture_hash[index].pchh_mutex); 6467 6468 /* 6469 * if not already on the hash, set capture bit and add to the hash 6470 */ 6471 if (!(pp->p_toxic & PR_CAPTURE)) { 6472 #ifdef DEBUG 6473 /* Check for duplicate entries */ 6474 for (l = 0; l < 2; l++) { 6475 tp1 = page_capture_hash[index].lists[l].next; 6476 while (tp1 != &page_capture_hash[index].lists[l]) { 6477 if (tp1->pp == pp) { 6478 panic("page pp 0x%p already on hash " 6479 "at 0x%p\n", 6480 (void *)pp, (void *)tp1); 6481 } 6482 tp1 = tp1->next; 6483 } 6484 } 6485 6486 #endif 6487 page_settoxic(pp, PR_CAPTURE); 6488 pri = PAGE_CAPTURE_PRIO(pp); 6489 bp1->pri = pri; 6490 bp1->next = page_capture_hash[index].lists[0].next; 6491 bp1->prev = &page_capture_hash[index].lists[0]; 6492 bp1->next->prev = bp1; 6493 page_capture_hash[index].lists[0].next = bp1; 6494 page_capture_hash[index].num_pages[pri]++; 6495 if (flags & CAPTURE_RETIRE) { 6496 page_retire_incr_pend_count(datap); 6497 } 6498 mutex_exit(&page_capture_hash[index].pchh_mutex); 6499 rw_exit(&pc_cb[cb_index].cb_rwlock); 6500 cv_signal(&pc_cv); 6501 return; 6502 } 6503 6504 /* 6505 * A page retire request will replace any other request. 6506 * A second physmem request which is for a different process than 6507 * the currently registered one will be dropped as there is 6508 * no way to hold the private data for both calls. 6509 * In the future, once there are more callers, this will have to 6510 * be worked out better as there needs to be private storage for 6511 * at least each type of caller (maybe have datap be an array of 6512 * *void's so that we can index based upon callers index). 6513 */ 6514 6515 /* walk hash list to update expire time */ 6516 for (i = 0; i < 2; i++) { 6517 bp2 = page_capture_hash[index].lists[i].next; 6518 while (bp2 != &page_capture_hash[index].lists[i]) { 6519 if (bp2->pp == pp) { 6520 if (flags & CAPTURE_RETIRE) { 6521 if (!(bp2->flags & CAPTURE_RETIRE)) { 6522 page_retire_incr_pend_count( 6523 datap); 6524 bp2->flags = flags; 6525 bp2->expires = bp1->expires; 6526 bp2->datap = datap; 6527 } 6528 } else { 6529 ASSERT(flags & CAPTURE_PHYSMEM); 6530 if (!(bp2->flags & CAPTURE_RETIRE) && 6531 (datap == bp2->datap)) { 6532 bp2->expires = bp1->expires; 6533 } 6534 } 6535 mutex_exit(&page_capture_hash[index]. 6536 pchh_mutex); 6537 rw_exit(&pc_cb[cb_index].cb_rwlock); 6538 kmem_free(bp1, sizeof (*bp1)); 6539 return; 6540 } 6541 bp2 = bp2->next; 6542 } 6543 } 6544 6545 /* 6546 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes 6547 * and thus it either has to be set or not set and can't change 6548 * while holding the mutex above. 6549 */ 6550 panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n", 6551 (void *)pp); 6552 } 6553 6554 /* 6555 * We have a page in our hands, lets try and make it ours by turning 6556 * it into a clean page like it had just come off the freelists. 6557 * 6558 * Returns 0 on success, with the page still EXCL locked. 6559 * On failure, the page will be unlocked, and returns EAGAIN 6560 */ 6561 static int 6562 page_capture_clean_page(page_t *pp) 6563 { 6564 page_t *newpp; 6565 int skip_unlock = 0; 6566 spgcnt_t count; 6567 page_t *tpp; 6568 int ret = 0; 6569 int extra; 6570 6571 ASSERT(PAGE_EXCL(pp)); 6572 ASSERT(!PP_RETIRED(pp)); 6573 ASSERT(curthread->t_flag & T_CAPTURING); 6574 6575 if (PP_ISFREE(pp)) { 6576 if (!page_reclaim(pp, NULL)) { 6577 skip_unlock = 1; 6578 ret = EAGAIN; 6579 goto cleanup; 6580 } 6581 ASSERT(pp->p_szc == 0); 6582 if (pp->p_vnode != NULL) { 6583 /* 6584 * Since this page came from the 6585 * cachelist, we must destroy the 6586 * old vnode association. 6587 */ 6588 page_hashout(pp, NULL); 6589 } 6590 goto cleanup; 6591 } 6592 6593 /* 6594 * If we know page_relocate will fail, skip it 6595 * It could still fail due to a UE on another page but we 6596 * can't do anything about that. 6597 */ 6598 if (pp->p_toxic & PR_UE) { 6599 goto skip_relocate; 6600 } 6601 6602 /* 6603 * It's possible that pages can not have a vnode as fsflush comes 6604 * through and cleans up these pages. It's ugly but that's how it is. 6605 */ 6606 if (pp->p_vnode == NULL) { 6607 goto skip_relocate; 6608 } 6609 6610 /* 6611 * Page was not free, so lets try to relocate it. 6612 * page_relocate only works with root pages, so if this is not a root 6613 * page, we need to demote it to try and relocate it. 6614 * Unfortunately this is the best we can do right now. 6615 */ 6616 newpp = NULL; 6617 if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) { 6618 if (page_try_demote_pages(pp) == 0) { 6619 ret = EAGAIN; 6620 goto cleanup; 6621 } 6622 } 6623 ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL); 6624 if (ret == 0) { 6625 page_t *npp; 6626 /* unlock the new page(s) */ 6627 while (count-- > 0) { 6628 ASSERT(newpp != NULL); 6629 npp = newpp; 6630 page_sub(&newpp, npp); 6631 page_unlock(npp); 6632 } 6633 ASSERT(newpp == NULL); 6634 /* 6635 * Check to see if the page we have is too large. 6636 * If so, demote it freeing up the extra pages. 6637 */ 6638 if (pp->p_szc > 0) { 6639 /* For now demote extra pages to szc == 0 */ 6640 extra = page_get_pagecnt(pp->p_szc) - 1; 6641 while (extra > 0) { 6642 tpp = pp->p_next; 6643 page_sub(&pp, tpp); 6644 tpp->p_szc = 0; 6645 page_free(tpp, 1); 6646 extra--; 6647 } 6648 /* Make sure to set our page to szc 0 as well */ 6649 ASSERT(pp->p_next == pp && pp->p_prev == pp); 6650 pp->p_szc = 0; 6651 } 6652 goto cleanup; 6653 } else if (ret == EIO) { 6654 ret = EAGAIN; 6655 goto cleanup; 6656 } else { 6657 /* 6658 * Need to reset return type as we failed to relocate the page 6659 * but that does not mean that some of the next steps will not 6660 * work. 6661 */ 6662 ret = 0; 6663 } 6664 6665 skip_relocate: 6666 6667 if (pp->p_szc > 0) { 6668 if (page_try_demote_pages(pp) == 0) { 6669 ret = EAGAIN; 6670 goto cleanup; 6671 } 6672 } 6673 6674 ASSERT(pp->p_szc == 0); 6675 6676 if (hat_ismod(pp)) { 6677 ret = EAGAIN; 6678 goto cleanup; 6679 } 6680 if (PP_ISKAS(pp)) { 6681 ret = EAGAIN; 6682 goto cleanup; 6683 } 6684 if (pp->p_lckcnt || pp->p_cowcnt) { 6685 ret = EAGAIN; 6686 goto cleanup; 6687 } 6688 6689 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 6690 ASSERT(!hat_page_is_mapped(pp)); 6691 6692 if (hat_ismod(pp)) { 6693 /* 6694 * This is a semi-odd case as the page is now modified but not 6695 * mapped as we just unloaded the mappings above. 6696 */ 6697 ret = EAGAIN; 6698 goto cleanup; 6699 } 6700 if (pp->p_vnode != NULL) { 6701 page_hashout(pp, NULL); 6702 } 6703 6704 /* 6705 * At this point, the page should be in a clean state and 6706 * we can do whatever we want with it. 6707 */ 6708 6709 cleanup: 6710 if (ret != 0) { 6711 if (!skip_unlock) { 6712 page_unlock(pp); 6713 } 6714 } else { 6715 ASSERT(pp->p_szc == 0); 6716 ASSERT(PAGE_EXCL(pp)); 6717 6718 pp->p_next = pp; 6719 pp->p_prev = pp; 6720 } 6721 return (ret); 6722 } 6723 6724 /* 6725 * Various callers of page_trycapture() can have different restrictions upon 6726 * what memory they have access to. 6727 * Returns 0 on success, with the following error codes on failure: 6728 * EPERM - The requested page is long term locked, and thus repeated 6729 * requests to capture this page will likely fail. 6730 * ENOMEM - There was not enough free memory in the system to safely 6731 * map the requested page. 6732 * ENOENT - The requested page was inside the kernel cage, and the 6733 * PHYSMEM_CAGE flag was not set. 6734 */ 6735 int 6736 page_capture_pre_checks(page_t *pp, uint_t flags) 6737 { 6738 ASSERT(pp != NULL); 6739 6740 #if defined(__sparc) 6741 if (pp->p_vnode == &promvp) { 6742 return (EPERM); 6743 } 6744 6745 if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) && 6746 (flags & CAPTURE_PHYSMEM)) { 6747 return (ENOENT); 6748 } 6749 6750 if (PP_ISNORELOCKERNEL(pp)) { 6751 return (EPERM); 6752 } 6753 #else 6754 if (PP_ISKAS(pp)) { 6755 return (EPERM); 6756 } 6757 #endif /* __sparc */ 6758 6759 /* only physmem currently has the restrictions checked below */ 6760 if (!(flags & CAPTURE_PHYSMEM)) { 6761 return (0); 6762 } 6763 6764 if (availrmem < swapfs_minfree) { 6765 /* 6766 * We won't try to capture this page as we are 6767 * running low on memory. 6768 */ 6769 return (ENOMEM); 6770 } 6771 return (0); 6772 } 6773 6774 /* 6775 * Once we have a page in our mits, go ahead and complete the capture 6776 * operation. 6777 * Returns 1 on failure where page is no longer needed 6778 * Returns 0 on success 6779 * Returns -1 if there was a transient failure. 6780 * Failure cases must release the SE_EXCL lock on pp (usually via page_free). 6781 */ 6782 int 6783 page_capture_take_action(page_t *pp, uint_t flags, void *datap) 6784 { 6785 int cb_index; 6786 int ret = 0; 6787 page_capture_hash_bucket_t *bp1; 6788 page_capture_hash_bucket_t *bp2; 6789 int index; 6790 int found = 0; 6791 int i; 6792 6793 ASSERT(PAGE_EXCL(pp)); 6794 ASSERT(curthread->t_flag & T_CAPTURING); 6795 6796 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) { 6797 if ((flags >> cb_index) & 1) { 6798 break; 6799 } 6800 } 6801 ASSERT(cb_index < PC_NUM_CALLBACKS); 6802 6803 /* 6804 * Remove the entry from the page_capture hash, but don't free it yet 6805 * as we may need to put it back. 6806 * Since we own the page at this point in time, we should find it 6807 * in the hash if this is an ASYNC call. If we don't it's likely 6808 * that the page_capture_async() thread decided that this request 6809 * had expired, in which case we just continue on. 6810 */ 6811 if (flags & CAPTURE_ASYNC) { 6812 6813 index = PAGE_CAPTURE_HASH(pp); 6814 6815 mutex_enter(&page_capture_hash[index].pchh_mutex); 6816 for (i = 0; i < 2 && !found; i++) { 6817 bp1 = page_capture_hash[index].lists[i].next; 6818 while (bp1 != &page_capture_hash[index].lists[i]) { 6819 if (bp1->pp == pp) { 6820 bp1->next->prev = bp1->prev; 6821 bp1->prev->next = bp1->next; 6822 page_capture_hash[index]. 6823 num_pages[bp1->pri]--; 6824 page_clrtoxic(pp, PR_CAPTURE); 6825 found = 1; 6826 break; 6827 } 6828 bp1 = bp1->next; 6829 } 6830 } 6831 mutex_exit(&page_capture_hash[index].pchh_mutex); 6832 } 6833 6834 /* Synchronize with the unregister func. */ 6835 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER); 6836 if (!pc_cb[cb_index].cb_active) { 6837 page_free(pp, 1); 6838 rw_exit(&pc_cb[cb_index].cb_rwlock); 6839 if (found) { 6840 kmem_free(bp1, sizeof (*bp1)); 6841 } 6842 return (1); 6843 } 6844 6845 /* 6846 * We need to remove the entry from the page capture hash and turn off 6847 * the PR_CAPTURE bit before calling the callback. We'll need to cache 6848 * the entry here, and then based upon the return value, cleanup 6849 * appropriately or re-add it to the hash, making sure that someone else 6850 * hasn't already done so. 6851 * It should be rare for the callback to fail and thus it's ok for 6852 * the failure path to be a bit complicated as the success path is 6853 * cleaner and the locking rules are easier to follow. 6854 */ 6855 6856 ret = pc_cb[cb_index].cb_func(pp, datap, flags); 6857 6858 rw_exit(&pc_cb[cb_index].cb_rwlock); 6859 6860 /* 6861 * If this was an ASYNC request, we need to cleanup the hash if the 6862 * callback was successful or if the request was no longer valid. 6863 * For non-ASYNC requests, we return failure to map and the caller 6864 * will take care of adding the request to the hash. 6865 * Note also that the callback itself is responsible for the page 6866 * at this point in time in terms of locking ... The most common 6867 * case for the failure path should just be a page_free. 6868 */ 6869 if (ret >= 0) { 6870 if (found) { 6871 if (bp1->flags & CAPTURE_RETIRE) { 6872 page_retire_decr_pend_count(datap); 6873 } 6874 kmem_free(bp1, sizeof (*bp1)); 6875 } 6876 return (ret); 6877 } 6878 if (!found) { 6879 return (ret); 6880 } 6881 6882 ASSERT(flags & CAPTURE_ASYNC); 6883 6884 /* 6885 * Check for expiration time first as we can just free it up if it's 6886 * expired. 6887 */ 6888 if (ddi_get_lbolt() > bp1->expires && bp1->expires != -1) { 6889 kmem_free(bp1, sizeof (*bp1)); 6890 return (ret); 6891 } 6892 6893 /* 6894 * The callback failed and there used to be an entry in the hash for 6895 * this page, so we need to add it back to the hash. 6896 */ 6897 mutex_enter(&page_capture_hash[index].pchh_mutex); 6898 if (!(pp->p_toxic & PR_CAPTURE)) { 6899 /* just add bp1 back to head of walked list */ 6900 page_settoxic(pp, PR_CAPTURE); 6901 bp1->next = page_capture_hash[index].lists[1].next; 6902 bp1->prev = &page_capture_hash[index].lists[1]; 6903 bp1->next->prev = bp1; 6904 bp1->pri = PAGE_CAPTURE_PRIO(pp); 6905 page_capture_hash[index].lists[1].next = bp1; 6906 page_capture_hash[index].num_pages[bp1->pri]++; 6907 mutex_exit(&page_capture_hash[index].pchh_mutex); 6908 return (ret); 6909 } 6910 6911 /* 6912 * Otherwise there was a new capture request added to list 6913 * Need to make sure that our original data is represented if 6914 * appropriate. 6915 */ 6916 for (i = 0; i < 2; i++) { 6917 bp2 = page_capture_hash[index].lists[i].next; 6918 while (bp2 != &page_capture_hash[index].lists[i]) { 6919 if (bp2->pp == pp) { 6920 if (bp1->flags & CAPTURE_RETIRE) { 6921 if (!(bp2->flags & CAPTURE_RETIRE)) { 6922 bp2->szc = bp1->szc; 6923 bp2->flags = bp1->flags; 6924 bp2->expires = bp1->expires; 6925 bp2->datap = bp1->datap; 6926 } 6927 } else { 6928 ASSERT(bp1->flags & CAPTURE_PHYSMEM); 6929 if (!(bp2->flags & CAPTURE_RETIRE)) { 6930 bp2->szc = bp1->szc; 6931 bp2->flags = bp1->flags; 6932 bp2->expires = bp1->expires; 6933 bp2->datap = bp1->datap; 6934 } 6935 } 6936 page_capture_hash[index].num_pages[bp2->pri]--; 6937 bp2->pri = PAGE_CAPTURE_PRIO(pp); 6938 page_capture_hash[index].num_pages[bp2->pri]++; 6939 mutex_exit(&page_capture_hash[index]. 6940 pchh_mutex); 6941 kmem_free(bp1, sizeof (*bp1)); 6942 return (ret); 6943 } 6944 bp2 = bp2->next; 6945 } 6946 } 6947 panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp); 6948 /*NOTREACHED*/ 6949 } 6950 6951 /* 6952 * Try to capture the given page for the caller specified in the flags 6953 * parameter. The page will either be captured and handed over to the 6954 * appropriate callback, or will be queued up in the page capture hash 6955 * to be captured asynchronously. 6956 * If the current request is due to an async capture, the page must be 6957 * exclusively locked before calling this function. 6958 * Currently szc must be 0 but in the future this should be expandable to 6959 * other page sizes. 6960 * Returns 0 on success, with the following error codes on failure: 6961 * EPERM - The requested page is long term locked, and thus repeated 6962 * requests to capture this page will likely fail. 6963 * ENOMEM - There was not enough free memory in the system to safely 6964 * map the requested page. 6965 * ENOENT - The requested page was inside the kernel cage, and the 6966 * CAPTURE_GET_CAGE flag was not set. 6967 * EAGAIN - The requested page could not be capturead at this point in 6968 * time but future requests will likely work. 6969 * EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag 6970 * was not set. 6971 */ 6972 int 6973 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap) 6974 { 6975 int ret; 6976 int cb_index; 6977 6978 if (flags & CAPTURE_ASYNC) { 6979 ASSERT(PAGE_EXCL(pp)); 6980 goto async; 6981 } 6982 6983 /* Make sure there's enough availrmem ... */ 6984 ret = page_capture_pre_checks(pp, flags); 6985 if (ret != 0) { 6986 return (ret); 6987 } 6988 6989 if (!page_trylock(pp, SE_EXCL)) { 6990 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) { 6991 if ((flags >> cb_index) & 1) { 6992 break; 6993 } 6994 } 6995 ASSERT(cb_index < PC_NUM_CALLBACKS); 6996 ret = EAGAIN; 6997 /* Special case for retired pages */ 6998 if (PP_RETIRED(pp)) { 6999 if (flags & CAPTURE_GET_RETIRED) { 7000 if (!page_unretire_pp(pp, PR_UNR_TEMP)) { 7001 /* 7002 * Need to set capture bit and add to 7003 * hash so that the page will be 7004 * retired when freed. 7005 */ 7006 page_capture_add_hash(pp, szc, 7007 CAPTURE_RETIRE, NULL); 7008 ret = 0; 7009 goto own_page; 7010 } 7011 } else { 7012 return (EBUSY); 7013 } 7014 } 7015 page_capture_add_hash(pp, szc, flags, datap); 7016 return (ret); 7017 } 7018 7019 async: 7020 ASSERT(PAGE_EXCL(pp)); 7021 7022 /* Need to check for physmem async requests that availrmem is sane */ 7023 if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) == 7024 (CAPTURE_ASYNC | CAPTURE_PHYSMEM) && 7025 (availrmem < swapfs_minfree)) { 7026 page_unlock(pp); 7027 return (ENOMEM); 7028 } 7029 7030 ret = page_capture_clean_page(pp); 7031 7032 if (ret != 0) { 7033 /* We failed to get the page, so lets add it to the hash */ 7034 if (!(flags & CAPTURE_ASYNC)) { 7035 page_capture_add_hash(pp, szc, flags, datap); 7036 } 7037 return (ret); 7038 } 7039 7040 own_page: 7041 ASSERT(PAGE_EXCL(pp)); 7042 ASSERT(pp->p_szc == 0); 7043 7044 /* Call the callback */ 7045 ret = page_capture_take_action(pp, flags, datap); 7046 7047 if (ret == 0) { 7048 return (0); 7049 } 7050 7051 /* 7052 * Note that in the failure cases from page_capture_take_action, the 7053 * EXCL lock will have already been dropped. 7054 */ 7055 if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) { 7056 page_capture_add_hash(pp, szc, flags, datap); 7057 } 7058 return (EAGAIN); 7059 } 7060 7061 int 7062 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap) 7063 { 7064 int ret; 7065 7066 curthread->t_flag |= T_CAPTURING; 7067 ret = page_itrycapture(pp, szc, flags, datap); 7068 curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */ 7069 return (ret); 7070 } 7071 7072 /* 7073 * When unlocking a page which has the PR_CAPTURE bit set, this routine 7074 * gets called to try and capture the page. 7075 */ 7076 void 7077 page_unlock_capture(page_t *pp) 7078 { 7079 page_capture_hash_bucket_t *bp; 7080 int index; 7081 int i; 7082 uint_t szc; 7083 uint_t flags = 0; 7084 void *datap; 7085 kmutex_t *mp; 7086 extern vnode_t retired_pages; 7087 7088 /* 7089 * We need to protect against a possible deadlock here where we own 7090 * the vnode page hash mutex and want to acquire it again as there 7091 * are locations in the code, where we unlock a page while holding 7092 * the mutex which can lead to the page being captured and eventually 7093 * end up here. As we may be hashing out the old page and hashing into 7094 * the retire vnode, we need to make sure we don't own them. 7095 * Other callbacks who do hash operations also need to make sure that 7096 * before they hashin to a vnode that they do not currently own the 7097 * vphm mutex otherwise there will be a panic. 7098 */ 7099 if (mutex_owned(page_vnode_mutex(&retired_pages))) { 7100 page_unlock_nocapture(pp); 7101 return; 7102 } 7103 if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) { 7104 page_unlock_nocapture(pp); 7105 return; 7106 } 7107 7108 index = PAGE_CAPTURE_HASH(pp); 7109 7110 mp = &page_capture_hash[index].pchh_mutex; 7111 mutex_enter(mp); 7112 for (i = 0; i < 2; i++) { 7113 bp = page_capture_hash[index].lists[i].next; 7114 while (bp != &page_capture_hash[index].lists[i]) { 7115 if (bp->pp == pp) { 7116 szc = bp->szc; 7117 flags = bp->flags | CAPTURE_ASYNC; 7118 datap = bp->datap; 7119 mutex_exit(mp); 7120 (void) page_trycapture(pp, szc, flags, datap); 7121 return; 7122 } 7123 bp = bp->next; 7124 } 7125 } 7126 7127 /* Failed to find page in hash so clear flags and unlock it. */ 7128 page_clrtoxic(pp, PR_CAPTURE); 7129 page_unlock(pp); 7130 7131 mutex_exit(mp); 7132 } 7133 7134 void 7135 page_capture_init() 7136 { 7137 int i; 7138 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7139 page_capture_hash[i].lists[0].next = 7140 &page_capture_hash[i].lists[0]; 7141 page_capture_hash[i].lists[0].prev = 7142 &page_capture_hash[i].lists[0]; 7143 page_capture_hash[i].lists[1].next = 7144 &page_capture_hash[i].lists[1]; 7145 page_capture_hash[i].lists[1].prev = 7146 &page_capture_hash[i].lists[1]; 7147 } 7148 7149 pc_thread_shortwait = 23 * hz; 7150 pc_thread_longwait = 1201 * hz; 7151 pc_thread_retry = 3; 7152 mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL); 7153 cv_init(&pc_cv, NULL, CV_DEFAULT, NULL); 7154 pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0, 7155 TS_RUN, minclsyspri); 7156 } 7157 7158 /* 7159 * It is necessary to scrub any failing pages prior to reboot in order to 7160 * prevent a latent error trap from occurring on the next boot. 7161 */ 7162 void 7163 page_retire_mdboot() 7164 { 7165 page_t *pp; 7166 int i, j; 7167 page_capture_hash_bucket_t *bp; 7168 uchar_t pri; 7169 7170 /* walk lists looking for pages to scrub */ 7171 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7172 for (pri = 0; pri < PC_NUM_PRI; pri++) { 7173 if (page_capture_hash[i].num_pages[pri] != 0) { 7174 break; 7175 } 7176 } 7177 if (pri == PC_NUM_PRI) 7178 continue; 7179 7180 mutex_enter(&page_capture_hash[i].pchh_mutex); 7181 7182 for (j = 0; j < 2; j++) { 7183 bp = page_capture_hash[i].lists[j].next; 7184 while (bp != &page_capture_hash[i].lists[j]) { 7185 pp = bp->pp; 7186 if (PP_TOXIC(pp)) { 7187 if (page_trylock(pp, SE_EXCL)) { 7188 PP_CLRFREE(pp); 7189 pagescrub(pp, 0, PAGESIZE); 7190 page_unlock(pp); 7191 } 7192 } 7193 bp = bp->next; 7194 } 7195 } 7196 mutex_exit(&page_capture_hash[i].pchh_mutex); 7197 } 7198 } 7199 7200 /* 7201 * Walk the page_capture_hash trying to capture pages and also cleanup old 7202 * entries which have expired. 7203 */ 7204 void 7205 page_capture_async() 7206 { 7207 page_t *pp; 7208 int i; 7209 int ret; 7210 page_capture_hash_bucket_t *bp1, *bp2; 7211 uint_t szc; 7212 uint_t flags; 7213 void *datap; 7214 uchar_t pri; 7215 7216 /* If there are outstanding pages to be captured, get to work */ 7217 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7218 for (pri = 0; pri < PC_NUM_PRI; pri++) { 7219 if (page_capture_hash[i].num_pages[pri] != 0) 7220 break; 7221 } 7222 if (pri == PC_NUM_PRI) 7223 continue; 7224 7225 /* Append list 1 to list 0 and then walk through list 0 */ 7226 mutex_enter(&page_capture_hash[i].pchh_mutex); 7227 bp1 = &page_capture_hash[i].lists[1]; 7228 bp2 = bp1->next; 7229 if (bp1 != bp2) { 7230 bp1->prev->next = page_capture_hash[i].lists[0].next; 7231 bp2->prev = &page_capture_hash[i].lists[0]; 7232 page_capture_hash[i].lists[0].next->prev = bp1->prev; 7233 page_capture_hash[i].lists[0].next = bp2; 7234 bp1->next = bp1; 7235 bp1->prev = bp1; 7236 } 7237 7238 /* list[1] will be empty now */ 7239 7240 bp1 = page_capture_hash[i].lists[0].next; 7241 while (bp1 != &page_capture_hash[i].lists[0]) { 7242 /* Check expiration time */ 7243 if ((ddi_get_lbolt() > bp1->expires && 7244 bp1->expires != -1) || 7245 page_deleted(bp1->pp)) { 7246 page_capture_hash[i].lists[0].next = bp1->next; 7247 bp1->next->prev = 7248 &page_capture_hash[i].lists[0]; 7249 page_capture_hash[i].num_pages[bp1->pri]--; 7250 7251 /* 7252 * We can safely remove the PR_CAPTURE bit 7253 * without holding the EXCL lock on the page 7254 * as the PR_CAPTURE bit requres that the 7255 * page_capture_hash[].pchh_mutex be held 7256 * to modify it. 7257 */ 7258 page_clrtoxic(bp1->pp, PR_CAPTURE); 7259 mutex_exit(&page_capture_hash[i].pchh_mutex); 7260 kmem_free(bp1, sizeof (*bp1)); 7261 mutex_enter(&page_capture_hash[i].pchh_mutex); 7262 bp1 = page_capture_hash[i].lists[0].next; 7263 continue; 7264 } 7265 pp = bp1->pp; 7266 szc = bp1->szc; 7267 flags = bp1->flags; 7268 datap = bp1->datap; 7269 mutex_exit(&page_capture_hash[i].pchh_mutex); 7270 if (page_trylock(pp, SE_EXCL)) { 7271 ret = page_trycapture(pp, szc, 7272 flags | CAPTURE_ASYNC, datap); 7273 } else { 7274 ret = 1; /* move to walked hash */ 7275 } 7276 7277 if (ret != 0) { 7278 /* Move to walked hash */ 7279 (void) page_capture_move_to_walked(pp); 7280 } 7281 mutex_enter(&page_capture_hash[i].pchh_mutex); 7282 bp1 = page_capture_hash[i].lists[0].next; 7283 } 7284 7285 mutex_exit(&page_capture_hash[i].pchh_mutex); 7286 } 7287 } 7288 7289 /* 7290 * This function is called by the page_capture_thread, and is needed in 7291 * in order to initiate aio cleanup, so that pages used in aio 7292 * will be unlocked and subsequently retired by page_capture_thread. 7293 */ 7294 static int 7295 do_aio_cleanup(void) 7296 { 7297 proc_t *procp; 7298 int (*aio_cleanup_dr_delete_memory)(proc_t *); 7299 int cleaned = 0; 7300 7301 if (modload("sys", "kaio") == -1) { 7302 cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio"); 7303 return (0); 7304 } 7305 /* 7306 * We use the aio_cleanup_dr_delete_memory function to 7307 * initiate the actual clean up; this function will wake 7308 * up the per-process aio_cleanup_thread. 7309 */ 7310 aio_cleanup_dr_delete_memory = (int (*)(proc_t *)) 7311 modgetsymvalue("aio_cleanup_dr_delete_memory", 0); 7312 if (aio_cleanup_dr_delete_memory == NULL) { 7313 cmn_err(CE_WARN, 7314 "aio_cleanup_dr_delete_memory not found in kaio"); 7315 return (0); 7316 } 7317 mutex_enter(&pidlock); 7318 for (procp = practive; (procp != NULL); procp = procp->p_next) { 7319 mutex_enter(&procp->p_lock); 7320 if (procp->p_aio != NULL) { 7321 /* cleanup proc's outstanding kaio */ 7322 cleaned += (*aio_cleanup_dr_delete_memory)(procp); 7323 } 7324 mutex_exit(&procp->p_lock); 7325 } 7326 mutex_exit(&pidlock); 7327 return (cleaned); 7328 } 7329 7330 /* 7331 * helper function for page_capture_thread 7332 */ 7333 static void 7334 page_capture_handle_outstanding(void) 7335 { 7336 int ntry; 7337 7338 /* Reap pages before attempting capture pages */ 7339 kmem_reap(); 7340 7341 if ((page_retire_pend_count() > page_retire_pend_kas_count()) && 7342 hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) { 7343 /* 7344 * Note: Purging only for platforms that support 7345 * ISM hat_pageunload() - mainly SPARC. On x86/x64 7346 * platforms ISM pages SE_SHARED locked until destroyed. 7347 */ 7348 7349 /* disable and purge seg_pcache */ 7350 (void) seg_p_disable(); 7351 for (ntry = 0; ntry < pc_thread_retry; ntry++) { 7352 if (!page_retire_pend_count()) 7353 break; 7354 if (do_aio_cleanup()) { 7355 /* 7356 * allow the apps cleanup threads 7357 * to run 7358 */ 7359 delay(pc_thread_shortwait); 7360 } 7361 page_capture_async(); 7362 } 7363 /* reenable seg_pcache */ 7364 seg_p_enable(); 7365 7366 /* completed what can be done. break out */ 7367 return; 7368 } 7369 7370 /* 7371 * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap 7372 * and then attempt to capture. 7373 */ 7374 seg_preap(); 7375 page_capture_async(); 7376 } 7377 7378 /* 7379 * The page_capture_thread loops forever, looking to see if there are 7380 * pages still waiting to be captured. 7381 */ 7382 static void 7383 page_capture_thread(void) 7384 { 7385 callb_cpr_t c; 7386 int i; 7387 int high_pri_pages; 7388 int low_pri_pages; 7389 clock_t timeout; 7390 7391 CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture"); 7392 7393 mutex_enter(&pc_thread_mutex); 7394 for (;;) { 7395 high_pri_pages = 0; 7396 low_pri_pages = 0; 7397 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7398 high_pri_pages += 7399 page_capture_hash[i].num_pages[PC_PRI_HI]; 7400 low_pri_pages += 7401 page_capture_hash[i].num_pages[PC_PRI_LO]; 7402 } 7403 7404 timeout = pc_thread_longwait; 7405 if (high_pri_pages != 0) { 7406 timeout = pc_thread_shortwait; 7407 page_capture_handle_outstanding(); 7408 } else if (low_pri_pages != 0) { 7409 page_capture_async(); 7410 } 7411 CALLB_CPR_SAFE_BEGIN(&c); 7412 (void) cv_reltimedwait(&pc_cv, &pc_thread_mutex, 7413 timeout, TR_CLOCK_TICK); 7414 CALLB_CPR_SAFE_END(&c, &pc_thread_mutex); 7415 } 7416 /*NOTREACHED*/ 7417 } 7418 /* 7419 * Attempt to locate a bucket that has enough pages to satisfy the request. 7420 * The initial check is done without the lock to avoid unneeded contention. 7421 * The function returns 1 if enough pages were found, else 0 if it could not 7422 * find enough pages in a bucket. 7423 */ 7424 static int 7425 pcf_decrement_bucket(pgcnt_t npages) 7426 { 7427 struct pcf *p; 7428 struct pcf *q; 7429 int i; 7430 7431 p = &pcf[PCF_INDEX()]; 7432 q = &pcf[pcf_fanout]; 7433 for (i = 0; i < pcf_fanout; i++) { 7434 if (p->pcf_count > npages) { 7435 /* 7436 * a good one to try. 7437 */ 7438 mutex_enter(&p->pcf_lock); 7439 if (p->pcf_count > npages) { 7440 p->pcf_count -= (uint_t)npages; 7441 /* 7442 * freemem is not protected by any lock. 7443 * Thus, we cannot have any assertion 7444 * containing freemem here. 7445 */ 7446 freemem -= npages; 7447 mutex_exit(&p->pcf_lock); 7448 return (1); 7449 } 7450 mutex_exit(&p->pcf_lock); 7451 } 7452 p++; 7453 if (p >= q) { 7454 p = pcf; 7455 } 7456 } 7457 return (0); 7458 } 7459 7460 /* 7461 * Arguments: 7462 * pcftotal_ret: If the value is not NULL and we have walked all the 7463 * buckets but did not find enough pages then it will 7464 * be set to the total number of pages in all the pcf 7465 * buckets. 7466 * npages: Is the number of pages we have been requested to 7467 * find. 7468 * unlock: If set to 0 we will leave the buckets locked if the 7469 * requested number of pages are not found. 7470 * 7471 * Go and try to satisfy the page request from any number of buckets. 7472 * This can be a very expensive operation as we have to lock the buckets 7473 * we are checking (and keep them locked), starting at bucket 0. 7474 * 7475 * The function returns 1 if enough pages were found, else 0 if it could not 7476 * find enough pages in the buckets. 7477 * 7478 */ 7479 static int 7480 pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock) 7481 { 7482 struct pcf *p; 7483 pgcnt_t pcftotal; 7484 int i; 7485 7486 p = pcf; 7487 /* try to collect pages from several pcf bins */ 7488 for (pcftotal = 0, i = 0; i < pcf_fanout; i++) { 7489 mutex_enter(&p->pcf_lock); 7490 pcftotal += p->pcf_count; 7491 if (pcftotal >= npages) { 7492 /* 7493 * Wow! There are enough pages laying around 7494 * to satisfy the request. Do the accounting, 7495 * drop the locks we acquired, and go back. 7496 * 7497 * freemem is not protected by any lock. So, 7498 * we cannot have any assertion containing 7499 * freemem. 7500 */ 7501 freemem -= npages; 7502 while (p >= pcf) { 7503 if (p->pcf_count <= npages) { 7504 npages -= p->pcf_count; 7505 p->pcf_count = 0; 7506 } else { 7507 p->pcf_count -= (uint_t)npages; 7508 npages = 0; 7509 } 7510 mutex_exit(&p->pcf_lock); 7511 p--; 7512 } 7513 ASSERT(npages == 0); 7514 return (1); 7515 } 7516 p++; 7517 } 7518 if (unlock) { 7519 /* failed to collect pages - release the locks */ 7520 while (--p >= pcf) { 7521 mutex_exit(&p->pcf_lock); 7522 } 7523 } 7524 if (pcftotal_ret != NULL) 7525 *pcftotal_ret = pcftotal; 7526 return (0); 7527 } 7528