xref: /illumos-gate/usr/src/uts/common/vm/vm_page.c (revision 5084e753b79a753c8b532c06eb3ad1d025e8e472)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989  AT&T	*/
26 /*	  All Rights Reserved  	*/
27 
28 /*
29  * University Copyright- Copyright (c) 1982, 1986, 1988
30  * The Regents of the University of California
31  * All Rights Reserved
32  *
33  * University Acknowledgment- Portions of this document are derived from
34  * software developed by the University of California, Berkeley, and its
35  * contributors.
36  */
37 
38 /*
39  * VM - physical page management.
40  */
41 
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/errno.h>
47 #include <sys/time.h>
48 #include <sys/vnode.h>
49 #include <sys/vm.h>
50 #include <sys/vtrace.h>
51 #include <sys/swap.h>
52 #include <sys/cmn_err.h>
53 #include <sys/tuneable.h>
54 #include <sys/sysmacros.h>
55 #include <sys/cpuvar.h>
56 #include <sys/callb.h>
57 #include <sys/debug.h>
58 #include <sys/tnf_probe.h>
59 #include <sys/condvar_impl.h>
60 #include <sys/mem_config.h>
61 #include <sys/mem_cage.h>
62 #include <sys/kmem.h>
63 #include <sys/atomic.h>
64 #include <sys/strlog.h>
65 #include <sys/mman.h>
66 #include <sys/ontrap.h>
67 #include <sys/lgrp.h>
68 #include <sys/vfs.h>
69 
70 #include <vm/hat.h>
71 #include <vm/anon.h>
72 #include <vm/page.h>
73 #include <vm/seg.h>
74 #include <vm/pvn.h>
75 #include <vm/seg_kmem.h>
76 #include <vm/vm_dep.h>
77 #include <sys/vm_usage.h>
78 #include <fs/fs_subr.h>
79 #include <sys/ddi.h>
80 #include <sys/modctl.h>
81 
82 static int nopageage = 0;
83 
84 static pgcnt_t max_page_get;	/* max page_get request size in pages */
85 pgcnt_t total_pages = 0;	/* total number of pages (used by /proc) */
86 
87 /*
88  * freemem_lock protects all freemem variables:
89  * availrmem. Also this lock protects the globals which track the
90  * availrmem changes for accurate kernel footprint calculation.
91  * See below for an explanation of these
92  * globals.
93  */
94 kmutex_t freemem_lock;
95 pgcnt_t availrmem;
96 pgcnt_t availrmem_initial;
97 
98 /*
99  * These globals track availrmem changes to get a more accurate
100  * estimate of tke kernel size. Historically pp_kernel is used for
101  * kernel size and is based on availrmem. But availrmem is adjusted for
102  * locked pages in the system not just for kernel locked pages.
103  * These new counters will track the pages locked through segvn and
104  * by explicit user locking.
105  *
106  * pages_locked : How many pages are locked because of user specified
107  * locking through mlock or plock.
108  *
109  * pages_useclaim,pages_claimed : These two variables track the
110  * claim adjustments because of the protection changes on a segvn segment.
111  *
112  * The pages_locked is protected by pages_locked_lock lock.
113  * All other globals are protected by the same lock which protects availrmem.
114  */
115 pgcnt_t pages_locked = 0;
116 pgcnt_t pages_useclaim = 0;
117 pgcnt_t pages_claimed = 0;
118 kmutex_t pages_locked_lock;
119 
120 /*
121  * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
122  */
123 static kmutex_t	new_freemem_lock;
124 static uint_t	freemem_wait;	/* someone waiting for freemem */
125 static kcondvar_t freemem_cv;
126 
127 /*
128  * The logical page free list is maintained as two lists, the 'free'
129  * and the 'cache' lists.
130  * The free list contains those pages that should be reused first.
131  *
132  * The implementation of the lists is machine dependent.
133  * page_get_freelist(), page_get_cachelist(),
134  * page_list_sub(), and page_list_add()
135  * form the interface to the machine dependent implementation.
136  *
137  * Pages with p_free set are on the cache list.
138  * Pages with p_free and p_age set are on the free list,
139  *
140  * A page may be locked while on either list.
141  */
142 
143 /*
144  * free list accounting stuff.
145  *
146  *
147  * Spread out the value for the number of pages on the
148  * page free and page cache lists.  If there is just one
149  * value, then it must be under just one lock.
150  * The lock contention and cache traffic are a real bother.
151  *
152  * When we acquire and then drop a single pcf lock
153  * we can start in the middle of the array of pcf structures.
154  * If we acquire more than one pcf lock at a time, we need to
155  * start at the front to avoid deadlocking.
156  *
157  * pcf_count holds the number of pages in each pool.
158  *
159  * pcf_block is set when page_create_get_something() has asked the
160  * PSM page freelist and page cachelist routines without specifying
161  * a color and nothing came back.  This is used to block anything
162  * else from moving pages from one list to the other while the
163  * lists are searched again.  If a page is freeed while pcf_block is
164  * set, then pcf_reserve is incremented.  pcgs_unblock() takes care
165  * of clearning pcf_block, doing the wakeups, etc.
166  */
167 
168 #define	MAX_PCF_FANOUT NCPU
169 static uint_t pcf_fanout = 1; /* Will get changed at boot time */
170 static uint_t pcf_fanout_mask = 0;
171 
172 struct pcf {
173 	kmutex_t	pcf_lock;	/* protects the structure */
174 	uint_t		pcf_count;	/* page count */
175 	uint_t		pcf_wait;	/* number of waiters */
176 	uint_t		pcf_block; 	/* pcgs flag to page_free() */
177 	uint_t		pcf_reserve; 	/* pages freed after pcf_block set */
178 	uint_t		pcf_fill[10];	/* to line up on the caches */
179 };
180 
181 /*
182  * PCF_INDEX hash needs to be dynamic (every so often the hash changes where
183  * it will hash the cpu to).  This is done to prevent a drain condition
184  * from happening.  This drain condition will occur when pcf_count decrement
185  * occurs on cpu A and the increment of pcf_count always occurs on cpu B.  An
186  * example of this shows up with device interrupts.  The dma buffer is allocated
187  * by the cpu requesting the IO thus the pcf_count is decremented based on that.
188  * When the memory is returned by the interrupt thread, the pcf_count will be
189  * incremented based on the cpu servicing the interrupt.
190  */
191 static struct pcf pcf[MAX_PCF_FANOUT];
192 #define	PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \
193 	(randtick() >> 24)) & (pcf_fanout_mask))
194 
195 static int pcf_decrement_bucket(pgcnt_t);
196 static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int);
197 
198 kmutex_t	pcgs_lock;		/* serializes page_create_get_ */
199 kmutex_t	pcgs_cagelock;		/* serializes NOSLEEP cage allocs */
200 kmutex_t	pcgs_wait_lock;		/* used for delay in pcgs */
201 static kcondvar_t	pcgs_cv;	/* cv for delay in pcgs */
202 
203 #ifdef VM_STATS
204 
205 /*
206  * No locks, but so what, they are only statistics.
207  */
208 
209 static struct page_tcnt {
210 	int	pc_free_cache;		/* free's into cache list */
211 	int	pc_free_dontneed;	/* free's with dontneed */
212 	int	pc_free_pageout;	/* free's from pageout */
213 	int	pc_free_free;		/* free's into free list */
214 	int	pc_free_pages;		/* free's into large page free list */
215 	int	pc_destroy_pages;	/* large page destroy's */
216 	int	pc_get_cache;		/* get's from cache list */
217 	int	pc_get_free;		/* get's from free list */
218 	int	pc_reclaim;		/* reclaim's */
219 	int	pc_abortfree;		/* abort's of free pages */
220 	int	pc_find_hit;		/* find's that find page */
221 	int	pc_find_miss;		/* find's that don't find page */
222 	int	pc_destroy_free;	/* # of free pages destroyed */
223 #define	PC_HASH_CNT	(4*PAGE_HASHAVELEN)
224 	int	pc_find_hashlen[PC_HASH_CNT+1];
225 	int	pc_addclaim_pages;
226 	int	pc_subclaim_pages;
227 	int	pc_free_replacement_page[2];
228 	int	pc_try_demote_pages[6];
229 	int	pc_demote_pages[2];
230 } pagecnt;
231 
232 uint_t	hashin_count;
233 uint_t	hashin_not_held;
234 uint_t	hashin_already;
235 
236 uint_t	hashout_count;
237 uint_t	hashout_not_held;
238 
239 uint_t	page_create_count;
240 uint_t	page_create_not_enough;
241 uint_t	page_create_not_enough_again;
242 uint_t	page_create_zero;
243 uint_t	page_create_hashout;
244 uint_t	page_create_page_lock_failed;
245 uint_t	page_create_trylock_failed;
246 uint_t	page_create_found_one;
247 uint_t	page_create_hashin_failed;
248 uint_t	page_create_dropped_phm;
249 
250 uint_t	page_create_new;
251 uint_t	page_create_exists;
252 uint_t	page_create_putbacks;
253 uint_t	page_create_overshoot;
254 
255 uint_t	page_reclaim_zero;
256 uint_t	page_reclaim_zero_locked;
257 
258 uint_t	page_rename_exists;
259 uint_t	page_rename_count;
260 
261 uint_t	page_lookup_cnt[20];
262 uint_t	page_lookup_nowait_cnt[10];
263 uint_t	page_find_cnt;
264 uint_t	page_exists_cnt;
265 uint_t	page_exists_forreal_cnt;
266 uint_t	page_lookup_dev_cnt;
267 uint_t	get_cachelist_cnt;
268 uint_t	page_create_cnt[10];
269 uint_t	alloc_pages[9];
270 uint_t	page_exphcontg[19];
271 uint_t  page_create_large_cnt[10];
272 
273 /*
274  * Collects statistics.
275  */
276 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
277 	uint_t	mylen = 0; \
278 			\
279 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash, mylen++) { \
280 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
281 			break; \
282 	} \
283 	if ((pp) != NULL) \
284 		pagecnt.pc_find_hit++; \
285 	else \
286 		pagecnt.pc_find_miss++; \
287 	if (mylen > PC_HASH_CNT) \
288 		mylen = PC_HASH_CNT; \
289 	pagecnt.pc_find_hashlen[mylen]++; \
290 }
291 
292 #else	/* VM_STATS */
293 
294 /*
295  * Don't collect statistics
296  */
297 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
298 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
299 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
300 			break; \
301 	} \
302 }
303 
304 #endif	/* VM_STATS */
305 
306 
307 
308 #ifdef DEBUG
309 #define	MEMSEG_SEARCH_STATS
310 #endif
311 
312 #ifdef MEMSEG_SEARCH_STATS
313 struct memseg_stats {
314     uint_t nsearch;
315     uint_t nlastwon;
316     uint_t nhashwon;
317     uint_t nnotfound;
318 } memseg_stats;
319 
320 #define	MEMSEG_STAT_INCR(v) \
321 	atomic_add_32(&memseg_stats.v, 1)
322 #else
323 #define	MEMSEG_STAT_INCR(x)
324 #endif
325 
326 struct memseg *memsegs;		/* list of memory segments */
327 
328 /*
329  * /etc/system tunable to control large page allocation hueristic.
330  *
331  * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
332  * for large page allocation requests.  If a large page is not readily
333  * avaliable on the local freelists we will go through additional effort
334  * to create a large page, potentially moving smaller pages around to coalesce
335  * larger pages in the local lgroup.
336  * Default value of LPAP_DEFAULT will go to remote freelists if large pages
337  * are not readily available in the local lgroup.
338  */
339 enum lpap {
340 	LPAP_DEFAULT,	/* default large page allocation policy */
341 	LPAP_LOCAL	/* local large page allocation policy */
342 };
343 
344 enum lpap lpg_alloc_prefer = LPAP_DEFAULT;
345 
346 static void page_init_mem_config(void);
347 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
348 static void page_do_hashout(page_t *);
349 static void page_capture_init();
350 int page_capture_take_action(page_t *, uint_t, void *);
351 
352 static void page_demote_vp_pages(page_t *);
353 
354 
355 void
356 pcf_init(void)
357 
358 {
359 	if (boot_ncpus != -1) {
360 		pcf_fanout = boot_ncpus;
361 	} else {
362 		pcf_fanout = max_ncpus;
363 	}
364 #ifdef sun4v
365 	/*
366 	 * Force at least 4 buckets if possible for sun4v.
367 	 */
368 	pcf_fanout = MAX(pcf_fanout, 4);
369 #endif /* sun4v */
370 
371 	/*
372 	 * Round up to the nearest power of 2.
373 	 */
374 	pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT);
375 	if (!ISP2(pcf_fanout)) {
376 		pcf_fanout = 1 << highbit(pcf_fanout);
377 
378 		if (pcf_fanout > MAX_PCF_FANOUT) {
379 			pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1);
380 		}
381 	}
382 	pcf_fanout_mask = pcf_fanout - 1;
383 }
384 
385 /*
386  * vm subsystem related initialization
387  */
388 void
389 vm_init(void)
390 {
391 	boolean_t callb_vm_cpr(void *, int);
392 
393 	(void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
394 	page_init_mem_config();
395 	page_retire_init();
396 	vm_usage_init();
397 	page_capture_init();
398 }
399 
400 /*
401  * This function is called at startup and when memory is added or deleted.
402  */
403 void
404 init_pages_pp_maximum()
405 {
406 	static pgcnt_t p_min;
407 	static pgcnt_t pages_pp_maximum_startup;
408 	static pgcnt_t avrmem_delta;
409 	static int init_done;
410 	static int user_set;	/* true if set in /etc/system */
411 
412 	if (init_done == 0) {
413 
414 		/* If the user specified a value, save it */
415 		if (pages_pp_maximum != 0) {
416 			user_set = 1;
417 			pages_pp_maximum_startup = pages_pp_maximum;
418 		}
419 
420 		/*
421 		 * Setting of pages_pp_maximum is based first time
422 		 * on the value of availrmem just after the start-up
423 		 * allocations. To preserve this relationship at run
424 		 * time, use a delta from availrmem_initial.
425 		 */
426 		ASSERT(availrmem_initial >= availrmem);
427 		avrmem_delta = availrmem_initial - availrmem;
428 
429 		/* The allowable floor of pages_pp_maximum */
430 		p_min = tune.t_minarmem + 100;
431 
432 		/* Make sure we don't come through here again. */
433 		init_done = 1;
434 	}
435 	/*
436 	 * Determine pages_pp_maximum, the number of currently available
437 	 * pages (availrmem) that can't be `locked'. If not set by
438 	 * the user, we set it to 4% of the currently available memory
439 	 * plus 4MB.
440 	 * But we also insist that it be greater than tune.t_minarmem;
441 	 * otherwise a process could lock down a lot of memory, get swapped
442 	 * out, and never have enough to get swapped back in.
443 	 */
444 	if (user_set)
445 		pages_pp_maximum = pages_pp_maximum_startup;
446 	else
447 		pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
448 		    + btop(4 * 1024 * 1024);
449 
450 	if (pages_pp_maximum <= p_min) {
451 		pages_pp_maximum = p_min;
452 	}
453 }
454 
455 void
456 set_max_page_get(pgcnt_t target_total_pages)
457 {
458 	max_page_get = target_total_pages / 2;
459 }
460 
461 static pgcnt_t pending_delete;
462 
463 /*ARGSUSED*/
464 static void
465 page_mem_config_post_add(
466 	void *arg,
467 	pgcnt_t delta_pages)
468 {
469 	set_max_page_get(total_pages - pending_delete);
470 	init_pages_pp_maximum();
471 }
472 
473 /*ARGSUSED*/
474 static int
475 page_mem_config_pre_del(
476 	void *arg,
477 	pgcnt_t delta_pages)
478 {
479 	pgcnt_t nv;
480 
481 	nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
482 	set_max_page_get(total_pages - nv);
483 	return (0);
484 }
485 
486 /*ARGSUSED*/
487 static void
488 page_mem_config_post_del(
489 	void *arg,
490 	pgcnt_t delta_pages,
491 	int cancelled)
492 {
493 	pgcnt_t nv;
494 
495 	nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
496 	set_max_page_get(total_pages - nv);
497 	if (!cancelled)
498 		init_pages_pp_maximum();
499 }
500 
501 static kphysm_setup_vector_t page_mem_config_vec = {
502 	KPHYSM_SETUP_VECTOR_VERSION,
503 	page_mem_config_post_add,
504 	page_mem_config_pre_del,
505 	page_mem_config_post_del,
506 };
507 
508 static void
509 page_init_mem_config(void)
510 {
511 	int ret;
512 
513 	ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
514 	ASSERT(ret == 0);
515 }
516 
517 /*
518  * Evenly spread out the PCF counters for large free pages
519  */
520 static void
521 page_free_large_ctr(pgcnt_t npages)
522 {
523 	static struct pcf	*p = pcf;
524 	pgcnt_t			lump;
525 
526 	freemem += npages;
527 
528 	lump = roundup(npages, pcf_fanout) / pcf_fanout;
529 
530 	while (npages > 0) {
531 
532 		ASSERT(!p->pcf_block);
533 
534 		if (lump < npages) {
535 			p->pcf_count += (uint_t)lump;
536 			npages -= lump;
537 		} else {
538 			p->pcf_count += (uint_t)npages;
539 			npages = 0;
540 		}
541 
542 		ASSERT(!p->pcf_wait);
543 
544 		if (++p > &pcf[pcf_fanout - 1])
545 			p = pcf;
546 	}
547 
548 	ASSERT(npages == 0);
549 }
550 
551 /*
552  * Add a physical chunk of memory to the system free lists during startup.
553  * Platform specific startup() allocates the memory for the page structs.
554  *
555  * num	- number of page structures
556  * base - page number (pfn) to be associated with the first page.
557  *
558  * Since we are doing this during startup (ie. single threaded), we will
559  * use shortcut routines to avoid any locking overhead while putting all
560  * these pages on the freelists.
561  *
562  * NOTE: Any changes performed to page_free(), must also be performed to
563  *	 add_physmem() since this is how we initialize all page_t's at
564  *	 boot time.
565  */
566 void
567 add_physmem(
568 	page_t	*pp,
569 	pgcnt_t	num,
570 	pfn_t	pnum)
571 {
572 	page_t	*root = NULL;
573 	uint_t	szc = page_num_pagesizes() - 1;
574 	pgcnt_t	large = page_get_pagecnt(szc);
575 	pgcnt_t	cnt = 0;
576 
577 	TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
578 	    "add_physmem:pp %p num %lu", pp, num);
579 
580 	/*
581 	 * Arbitrarily limit the max page_get request
582 	 * to 1/2 of the page structs we have.
583 	 */
584 	total_pages += num;
585 	set_max_page_get(total_pages);
586 
587 	PLCNT_MODIFY_MAX(pnum, (long)num);
588 
589 	/*
590 	 * The physical space for the pages array
591 	 * representing ram pages has already been
592 	 * allocated.  Here we initialize each lock
593 	 * in the page structure, and put each on
594 	 * the free list
595 	 */
596 	for (; num; pp++, pnum++, num--) {
597 
598 		/*
599 		 * this needs to fill in the page number
600 		 * and do any other arch specific initialization
601 		 */
602 		add_physmem_cb(pp, pnum);
603 
604 		pp->p_lckcnt = 0;
605 		pp->p_cowcnt = 0;
606 		pp->p_slckcnt = 0;
607 
608 		/*
609 		 * Initialize the page lock as unlocked, since nobody
610 		 * can see or access this page yet.
611 		 */
612 		pp->p_selock = 0;
613 
614 		/*
615 		 * Initialize IO lock
616 		 */
617 		page_iolock_init(pp);
618 
619 		/*
620 		 * initialize other fields in the page_t
621 		 */
622 		PP_SETFREE(pp);
623 		page_clr_all_props(pp);
624 		PP_SETAGED(pp);
625 		pp->p_offset = (u_offset_t)-1;
626 		pp->p_next = pp;
627 		pp->p_prev = pp;
628 
629 		/*
630 		 * Simple case: System doesn't support large pages.
631 		 */
632 		if (szc == 0) {
633 			pp->p_szc = 0;
634 			page_free_at_startup(pp);
635 			continue;
636 		}
637 
638 		/*
639 		 * Handle unaligned pages, we collect them up onto
640 		 * the root page until we have a full large page.
641 		 */
642 		if (!IS_P2ALIGNED(pnum, large)) {
643 
644 			/*
645 			 * If not in a large page,
646 			 * just free as small page.
647 			 */
648 			if (root == NULL) {
649 				pp->p_szc = 0;
650 				page_free_at_startup(pp);
651 				continue;
652 			}
653 
654 			/*
655 			 * Link a constituent page into the large page.
656 			 */
657 			pp->p_szc = szc;
658 			page_list_concat(&root, &pp);
659 
660 			/*
661 			 * When large page is fully formed, free it.
662 			 */
663 			if (++cnt == large) {
664 				page_free_large_ctr(cnt);
665 				page_list_add_pages(root, PG_LIST_ISINIT);
666 				root = NULL;
667 				cnt = 0;
668 			}
669 			continue;
670 		}
671 
672 		/*
673 		 * At this point we have a page number which
674 		 * is aligned. We assert that we aren't already
675 		 * in a different large page.
676 		 */
677 		ASSERT(IS_P2ALIGNED(pnum, large));
678 		ASSERT(root == NULL && cnt == 0);
679 
680 		/*
681 		 * If insufficient number of pages left to form
682 		 * a large page, just free the small page.
683 		 */
684 		if (num < large) {
685 			pp->p_szc = 0;
686 			page_free_at_startup(pp);
687 			continue;
688 		}
689 
690 		/*
691 		 * Otherwise start a new large page.
692 		 */
693 		pp->p_szc = szc;
694 		cnt++;
695 		root = pp;
696 	}
697 	ASSERT(root == NULL && cnt == 0);
698 }
699 
700 /*
701  * Find a page representing the specified [vp, offset].
702  * If we find the page but it is intransit coming in,
703  * it will have an "exclusive" lock and we wait for
704  * the i/o to complete.  A page found on the free list
705  * is always reclaimed and then locked.  On success, the page
706  * is locked, its data is valid and it isn't on the free
707  * list, while a NULL is returned if the page doesn't exist.
708  */
709 page_t *
710 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
711 {
712 	return (page_lookup_create(vp, off, se, NULL, NULL, 0));
713 }
714 
715 /*
716  * Find a page representing the specified [vp, offset].
717  * We either return the one we found or, if passed in,
718  * create one with identity of [vp, offset] of the
719  * pre-allocated page. If we find existing page but it is
720  * intransit coming in, it will have an "exclusive" lock
721  * and we wait for the i/o to complete.  A page found on
722  * the free list is always reclaimed and then locked.
723  * On success, the page is locked, its data is valid and
724  * it isn't on the free list, while a NULL is returned
725  * if the page doesn't exist and newpp is NULL;
726  */
727 page_t *
728 page_lookup_create(
729 	vnode_t *vp,
730 	u_offset_t off,
731 	se_t se,
732 	page_t *newpp,
733 	spgcnt_t *nrelocp,
734 	int flags)
735 {
736 	page_t		*pp;
737 	kmutex_t	*phm;
738 	ulong_t		index;
739 	uint_t		hash_locked;
740 	uint_t		es;
741 
742 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
743 	VM_STAT_ADD(page_lookup_cnt[0]);
744 	ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
745 
746 	/*
747 	 * Acquire the appropriate page hash lock since
748 	 * we have to search the hash list.  Pages that
749 	 * hash to this list can't change identity while
750 	 * this lock is held.
751 	 */
752 	hash_locked = 0;
753 	index = PAGE_HASH_FUNC(vp, off);
754 	phm = NULL;
755 top:
756 	PAGE_HASH_SEARCH(index, pp, vp, off);
757 	if (pp != NULL) {
758 		VM_STAT_ADD(page_lookup_cnt[1]);
759 		es = (newpp != NULL) ? 1 : 0;
760 		es |= flags;
761 		if (!hash_locked) {
762 			VM_STAT_ADD(page_lookup_cnt[2]);
763 			if (!page_try_reclaim_lock(pp, se, es)) {
764 				/*
765 				 * On a miss, acquire the phm.  Then
766 				 * next time, page_lock() will be called,
767 				 * causing a wait if the page is busy.
768 				 * just looping with page_trylock() would
769 				 * get pretty boring.
770 				 */
771 				VM_STAT_ADD(page_lookup_cnt[3]);
772 				phm = PAGE_HASH_MUTEX(index);
773 				mutex_enter(phm);
774 				hash_locked = 1;
775 				goto top;
776 			}
777 		} else {
778 			VM_STAT_ADD(page_lookup_cnt[4]);
779 			if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
780 				VM_STAT_ADD(page_lookup_cnt[5]);
781 				goto top;
782 			}
783 		}
784 
785 		/*
786 		 * Since `pp' is locked it can not change identity now.
787 		 * Reconfirm we locked the correct page.
788 		 *
789 		 * Both the p_vnode and p_offset *must* be cast volatile
790 		 * to force a reload of their values: The PAGE_HASH_SEARCH
791 		 * macro will have stuffed p_vnode and p_offset into
792 		 * registers before calling page_trylock(); another thread,
793 		 * actually holding the hash lock, could have changed the
794 		 * page's identity in memory, but our registers would not
795 		 * be changed, fooling the reconfirmation.  If the hash
796 		 * lock was held during the search, the casting would
797 		 * not be needed.
798 		 */
799 		VM_STAT_ADD(page_lookup_cnt[6]);
800 		if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
801 		    ((volatile u_offset_t)(pp->p_offset) != off)) {
802 			VM_STAT_ADD(page_lookup_cnt[7]);
803 			if (hash_locked) {
804 				panic("page_lookup_create: lost page %p",
805 				    (void *)pp);
806 				/*NOTREACHED*/
807 			}
808 			page_unlock(pp);
809 			phm = PAGE_HASH_MUTEX(index);
810 			mutex_enter(phm);
811 			hash_locked = 1;
812 			goto top;
813 		}
814 
815 		/*
816 		 * If page_trylock() was called, then pp may still be on
817 		 * the cachelist (can't be on the free list, it would not
818 		 * have been found in the search).  If it is on the
819 		 * cachelist it must be pulled now. To pull the page from
820 		 * the cachelist, it must be exclusively locked.
821 		 *
822 		 * The other big difference between page_trylock() and
823 		 * page_lock(), is that page_lock() will pull the
824 		 * page from whatever free list (the cache list in this
825 		 * case) the page is on.  If page_trylock() was used
826 		 * above, then we have to do the reclaim ourselves.
827 		 */
828 		if ((!hash_locked) && (PP_ISFREE(pp))) {
829 			ASSERT(PP_ISAGED(pp) == 0);
830 			VM_STAT_ADD(page_lookup_cnt[8]);
831 
832 			/*
833 			 * page_relcaim will insure that we
834 			 * have this page exclusively
835 			 */
836 
837 			if (!page_reclaim(pp, NULL)) {
838 				/*
839 				 * Page_reclaim dropped whatever lock
840 				 * we held.
841 				 */
842 				VM_STAT_ADD(page_lookup_cnt[9]);
843 				phm = PAGE_HASH_MUTEX(index);
844 				mutex_enter(phm);
845 				hash_locked = 1;
846 				goto top;
847 			} else if (se == SE_SHARED && newpp == NULL) {
848 				VM_STAT_ADD(page_lookup_cnt[10]);
849 				page_downgrade(pp);
850 			}
851 		}
852 
853 		if (hash_locked) {
854 			mutex_exit(phm);
855 		}
856 
857 		if (newpp != NULL && pp->p_szc < newpp->p_szc &&
858 		    PAGE_EXCL(pp) && nrelocp != NULL) {
859 			ASSERT(nrelocp != NULL);
860 			(void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
861 			    NULL);
862 			if (*nrelocp > 0) {
863 				VM_STAT_COND_ADD(*nrelocp == 1,
864 				    page_lookup_cnt[11]);
865 				VM_STAT_COND_ADD(*nrelocp > 1,
866 				    page_lookup_cnt[12]);
867 				pp = newpp;
868 				se = SE_EXCL;
869 			} else {
870 				if (se == SE_SHARED) {
871 					page_downgrade(pp);
872 				}
873 				VM_STAT_ADD(page_lookup_cnt[13]);
874 			}
875 		} else if (newpp != NULL && nrelocp != NULL) {
876 			if (PAGE_EXCL(pp) && se == SE_SHARED) {
877 				page_downgrade(pp);
878 			}
879 			VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
880 			    page_lookup_cnt[14]);
881 			VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
882 			    page_lookup_cnt[15]);
883 			VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
884 			    page_lookup_cnt[16]);
885 		} else if (newpp != NULL && PAGE_EXCL(pp)) {
886 			se = SE_EXCL;
887 		}
888 	} else if (!hash_locked) {
889 		VM_STAT_ADD(page_lookup_cnt[17]);
890 		phm = PAGE_HASH_MUTEX(index);
891 		mutex_enter(phm);
892 		hash_locked = 1;
893 		goto top;
894 	} else if (newpp != NULL) {
895 		/*
896 		 * If we have a preallocated page then
897 		 * insert it now and basically behave like
898 		 * page_create.
899 		 */
900 		VM_STAT_ADD(page_lookup_cnt[18]);
901 		/*
902 		 * Since we hold the page hash mutex and
903 		 * just searched for this page, page_hashin
904 		 * had better not fail.  If it does, that
905 		 * means some thread did not follow the
906 		 * page hash mutex rules.  Panic now and
907 		 * get it over with.  As usual, go down
908 		 * holding all the locks.
909 		 */
910 		ASSERT(MUTEX_HELD(phm));
911 		if (!page_hashin(newpp, vp, off, phm)) {
912 			ASSERT(MUTEX_HELD(phm));
913 			panic("page_lookup_create: hashin failed %p %p %llx %p",
914 			    (void *)newpp, (void *)vp, off, (void *)phm);
915 			/*NOTREACHED*/
916 		}
917 		ASSERT(MUTEX_HELD(phm));
918 		mutex_exit(phm);
919 		phm = NULL;
920 		page_set_props(newpp, P_REF);
921 		page_io_lock(newpp);
922 		pp = newpp;
923 		se = SE_EXCL;
924 	} else {
925 		VM_STAT_ADD(page_lookup_cnt[19]);
926 		mutex_exit(phm);
927 	}
928 
929 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
930 
931 	ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
932 
933 	return (pp);
934 }
935 
936 /*
937  * Search the hash list for the page representing the
938  * specified [vp, offset] and return it locked.  Skip
939  * free pages and pages that cannot be locked as requested.
940  * Used while attempting to kluster pages.
941  */
942 page_t *
943 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
944 {
945 	page_t		*pp;
946 	kmutex_t	*phm;
947 	ulong_t		index;
948 	uint_t		locked;
949 
950 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
951 	VM_STAT_ADD(page_lookup_nowait_cnt[0]);
952 
953 	index = PAGE_HASH_FUNC(vp, off);
954 	PAGE_HASH_SEARCH(index, pp, vp, off);
955 	locked = 0;
956 	if (pp == NULL) {
957 top:
958 		VM_STAT_ADD(page_lookup_nowait_cnt[1]);
959 		locked = 1;
960 		phm = PAGE_HASH_MUTEX(index);
961 		mutex_enter(phm);
962 		PAGE_HASH_SEARCH(index, pp, vp, off);
963 	}
964 
965 	if (pp == NULL || PP_ISFREE(pp)) {
966 		VM_STAT_ADD(page_lookup_nowait_cnt[2]);
967 		pp = NULL;
968 	} else {
969 		if (!page_trylock(pp, se)) {
970 			VM_STAT_ADD(page_lookup_nowait_cnt[3]);
971 			pp = NULL;
972 		} else {
973 			VM_STAT_ADD(page_lookup_nowait_cnt[4]);
974 			/*
975 			 * See the comment in page_lookup()
976 			 */
977 			if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
978 			    ((u_offset_t)(pp->p_offset) != off)) {
979 				VM_STAT_ADD(page_lookup_nowait_cnt[5]);
980 				if (locked) {
981 					panic("page_lookup_nowait %p",
982 					    (void *)pp);
983 					/*NOTREACHED*/
984 				}
985 				page_unlock(pp);
986 				goto top;
987 			}
988 			if (PP_ISFREE(pp)) {
989 				VM_STAT_ADD(page_lookup_nowait_cnt[6]);
990 				page_unlock(pp);
991 				pp = NULL;
992 			}
993 		}
994 	}
995 	if (locked) {
996 		VM_STAT_ADD(page_lookup_nowait_cnt[7]);
997 		mutex_exit(phm);
998 	}
999 
1000 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
1001 
1002 	return (pp);
1003 }
1004 
1005 /*
1006  * Search the hash list for a page with the specified [vp, off]
1007  * that is known to exist and is already locked.  This routine
1008  * is typically used by segment SOFTUNLOCK routines.
1009  */
1010 page_t *
1011 page_find(vnode_t *vp, u_offset_t off)
1012 {
1013 	page_t		*pp;
1014 	kmutex_t	*phm;
1015 	ulong_t		index;
1016 
1017 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1018 	VM_STAT_ADD(page_find_cnt);
1019 
1020 	index = PAGE_HASH_FUNC(vp, off);
1021 	phm = PAGE_HASH_MUTEX(index);
1022 
1023 	mutex_enter(phm);
1024 	PAGE_HASH_SEARCH(index, pp, vp, off);
1025 	mutex_exit(phm);
1026 
1027 	ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
1028 	return (pp);
1029 }
1030 
1031 /*
1032  * Determine whether a page with the specified [vp, off]
1033  * currently exists in the system.  Obviously this should
1034  * only be considered as a hint since nothing prevents the
1035  * page from disappearing or appearing immediately after
1036  * the return from this routine. Subsequently, we don't
1037  * even bother to lock the list.
1038  */
1039 page_t *
1040 page_exists(vnode_t *vp, u_offset_t off)
1041 {
1042 	page_t	*pp;
1043 	ulong_t		index;
1044 
1045 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1046 	VM_STAT_ADD(page_exists_cnt);
1047 
1048 	index = PAGE_HASH_FUNC(vp, off);
1049 	PAGE_HASH_SEARCH(index, pp, vp, off);
1050 
1051 	return (pp);
1052 }
1053 
1054 /*
1055  * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1056  * page_size(szc)) range.  if they exist and ppa is not NULL fill ppa array
1057  * with these pages locked SHARED. If necessary reclaim pages from
1058  * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1059  *
1060  * If we fail to lock pages still return 1 if pages exist and contiguous.
1061  * But in this case return value is just a hint. ppa array won't be filled.
1062  * Caller should initialize ppa[0] as NULL to distinguish return value.
1063  *
1064  * Returns 0 if pages don't exist or not physically contiguous.
1065  *
1066  * This routine doesn't work for anonymous(swapfs) pages.
1067  */
1068 int
1069 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1070 {
1071 	pgcnt_t pages;
1072 	pfn_t pfn;
1073 	page_t *rootpp;
1074 	pgcnt_t i;
1075 	pgcnt_t j;
1076 	u_offset_t save_off = off;
1077 	ulong_t index;
1078 	kmutex_t *phm;
1079 	page_t *pp;
1080 	uint_t pszc;
1081 	int loopcnt = 0;
1082 
1083 	ASSERT(szc != 0);
1084 	ASSERT(vp != NULL);
1085 	ASSERT(!IS_SWAPFSVP(vp));
1086 	ASSERT(!VN_ISKAS(vp));
1087 
1088 again:
1089 	if (++loopcnt > 3) {
1090 		VM_STAT_ADD(page_exphcontg[0]);
1091 		return (0);
1092 	}
1093 
1094 	index = PAGE_HASH_FUNC(vp, off);
1095 	phm = PAGE_HASH_MUTEX(index);
1096 
1097 	mutex_enter(phm);
1098 	PAGE_HASH_SEARCH(index, pp, vp, off);
1099 	mutex_exit(phm);
1100 
1101 	VM_STAT_ADD(page_exphcontg[1]);
1102 
1103 	if (pp == NULL) {
1104 		VM_STAT_ADD(page_exphcontg[2]);
1105 		return (0);
1106 	}
1107 
1108 	pages = page_get_pagecnt(szc);
1109 	rootpp = pp;
1110 	pfn = rootpp->p_pagenum;
1111 
1112 	if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1113 		VM_STAT_ADD(page_exphcontg[3]);
1114 		if (!page_trylock(pp, SE_SHARED)) {
1115 			VM_STAT_ADD(page_exphcontg[4]);
1116 			return (1);
1117 		}
1118 		/*
1119 		 * Also check whether p_pagenum was modified by DR.
1120 		 */
1121 		if (pp->p_szc != pszc || pp->p_vnode != vp ||
1122 		    pp->p_offset != off || pp->p_pagenum != pfn) {
1123 			VM_STAT_ADD(page_exphcontg[5]);
1124 			page_unlock(pp);
1125 			off = save_off;
1126 			goto again;
1127 		}
1128 		/*
1129 		 * szc was non zero and vnode and offset matched after we
1130 		 * locked the page it means it can't become free on us.
1131 		 */
1132 		ASSERT(!PP_ISFREE(pp));
1133 		if (!IS_P2ALIGNED(pfn, pages)) {
1134 			page_unlock(pp);
1135 			return (0);
1136 		}
1137 		ppa[0] = pp;
1138 		pp++;
1139 		off += PAGESIZE;
1140 		pfn++;
1141 		for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1142 			if (!page_trylock(pp, SE_SHARED)) {
1143 				VM_STAT_ADD(page_exphcontg[6]);
1144 				pp--;
1145 				while (i-- > 0) {
1146 					page_unlock(pp);
1147 					pp--;
1148 				}
1149 				ppa[0] = NULL;
1150 				return (1);
1151 			}
1152 			if (pp->p_szc != pszc) {
1153 				VM_STAT_ADD(page_exphcontg[7]);
1154 				page_unlock(pp);
1155 				pp--;
1156 				while (i-- > 0) {
1157 					page_unlock(pp);
1158 					pp--;
1159 				}
1160 				ppa[0] = NULL;
1161 				off = save_off;
1162 				goto again;
1163 			}
1164 			/*
1165 			 * szc the same as for previous already locked pages
1166 			 * with right identity. Since this page had correct
1167 			 * szc after we locked it can't get freed or destroyed
1168 			 * and therefore must have the expected identity.
1169 			 */
1170 			ASSERT(!PP_ISFREE(pp));
1171 			if (pp->p_vnode != vp ||
1172 			    pp->p_offset != off) {
1173 				panic("page_exists_physcontig: "
1174 				    "large page identity doesn't match");
1175 			}
1176 			ppa[i] = pp;
1177 			ASSERT(pp->p_pagenum == pfn);
1178 		}
1179 		VM_STAT_ADD(page_exphcontg[8]);
1180 		ppa[pages] = NULL;
1181 		return (1);
1182 	} else if (pszc >= szc) {
1183 		VM_STAT_ADD(page_exphcontg[9]);
1184 		if (!IS_P2ALIGNED(pfn, pages)) {
1185 			return (0);
1186 		}
1187 		return (1);
1188 	}
1189 
1190 	if (!IS_P2ALIGNED(pfn, pages)) {
1191 		VM_STAT_ADD(page_exphcontg[10]);
1192 		return (0);
1193 	}
1194 
1195 	if (page_numtomemseg_nolock(pfn) !=
1196 	    page_numtomemseg_nolock(pfn + pages - 1)) {
1197 		VM_STAT_ADD(page_exphcontg[11]);
1198 		return (0);
1199 	}
1200 
1201 	/*
1202 	 * We loop up 4 times across pages to promote page size.
1203 	 * We're extra cautious to promote page size atomically with respect
1204 	 * to everybody else.  But we can probably optimize into 1 loop if
1205 	 * this becomes an issue.
1206 	 */
1207 
1208 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1209 		if (!page_trylock(pp, SE_EXCL)) {
1210 			VM_STAT_ADD(page_exphcontg[12]);
1211 			break;
1212 		}
1213 		/*
1214 		 * Check whether p_pagenum was modified by DR.
1215 		 */
1216 		if (pp->p_pagenum != pfn) {
1217 			page_unlock(pp);
1218 			break;
1219 		}
1220 		if (pp->p_vnode != vp ||
1221 		    pp->p_offset != off) {
1222 			VM_STAT_ADD(page_exphcontg[13]);
1223 			page_unlock(pp);
1224 			break;
1225 		}
1226 		if (pp->p_szc >= szc) {
1227 			ASSERT(i == 0);
1228 			page_unlock(pp);
1229 			off = save_off;
1230 			goto again;
1231 		}
1232 	}
1233 
1234 	if (i != pages) {
1235 		VM_STAT_ADD(page_exphcontg[14]);
1236 		--pp;
1237 		while (i-- > 0) {
1238 			page_unlock(pp);
1239 			--pp;
1240 		}
1241 		return (0);
1242 	}
1243 
1244 	pp = rootpp;
1245 	for (i = 0; i < pages; i++, pp++) {
1246 		if (PP_ISFREE(pp)) {
1247 			VM_STAT_ADD(page_exphcontg[15]);
1248 			ASSERT(!PP_ISAGED(pp));
1249 			ASSERT(pp->p_szc == 0);
1250 			if (!page_reclaim(pp, NULL)) {
1251 				break;
1252 			}
1253 		} else {
1254 			ASSERT(pp->p_szc < szc);
1255 			VM_STAT_ADD(page_exphcontg[16]);
1256 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1257 		}
1258 	}
1259 	if (i < pages) {
1260 		VM_STAT_ADD(page_exphcontg[17]);
1261 		/*
1262 		 * page_reclaim failed because we were out of memory.
1263 		 * drop the rest of the locks and return because this page
1264 		 * must be already reallocated anyway.
1265 		 */
1266 		pp = rootpp;
1267 		for (j = 0; j < pages; j++, pp++) {
1268 			if (j != i) {
1269 				page_unlock(pp);
1270 			}
1271 		}
1272 		return (0);
1273 	}
1274 
1275 	off = save_off;
1276 	pp = rootpp;
1277 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1278 		ASSERT(PAGE_EXCL(pp));
1279 		ASSERT(!PP_ISFREE(pp));
1280 		ASSERT(!hat_page_is_mapped(pp));
1281 		ASSERT(pp->p_vnode == vp);
1282 		ASSERT(pp->p_offset == off);
1283 		pp->p_szc = szc;
1284 	}
1285 	pp = rootpp;
1286 	for (i = 0; i < pages; i++, pp++) {
1287 		if (ppa == NULL) {
1288 			page_unlock(pp);
1289 		} else {
1290 			ppa[i] = pp;
1291 			page_downgrade(ppa[i]);
1292 		}
1293 	}
1294 	if (ppa != NULL) {
1295 		ppa[pages] = NULL;
1296 	}
1297 	VM_STAT_ADD(page_exphcontg[18]);
1298 	ASSERT(vp->v_pages != NULL);
1299 	return (1);
1300 }
1301 
1302 /*
1303  * Determine whether a page with the specified [vp, off]
1304  * currently exists in the system and if so return its
1305  * size code. Obviously this should only be considered as
1306  * a hint since nothing prevents the page from disappearing
1307  * or appearing immediately after the return from this routine.
1308  */
1309 int
1310 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1311 {
1312 	page_t		*pp;
1313 	kmutex_t	*phm;
1314 	ulong_t		index;
1315 	int		rc = 0;
1316 
1317 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1318 	ASSERT(szc != NULL);
1319 	VM_STAT_ADD(page_exists_forreal_cnt);
1320 
1321 	index = PAGE_HASH_FUNC(vp, off);
1322 	phm = PAGE_HASH_MUTEX(index);
1323 
1324 	mutex_enter(phm);
1325 	PAGE_HASH_SEARCH(index, pp, vp, off);
1326 	if (pp != NULL) {
1327 		*szc = pp->p_szc;
1328 		rc = 1;
1329 	}
1330 	mutex_exit(phm);
1331 	return (rc);
1332 }
1333 
1334 /* wakeup threads waiting for pages in page_create_get_something() */
1335 void
1336 wakeup_pcgs(void)
1337 {
1338 	if (!CV_HAS_WAITERS(&pcgs_cv))
1339 		return;
1340 	cv_broadcast(&pcgs_cv);
1341 }
1342 
1343 /*
1344  * 'freemem' is used all over the kernel as an indication of how many
1345  * pages are free (either on the cache list or on the free page list)
1346  * in the system.  In very few places is a really accurate 'freemem'
1347  * needed.  To avoid contention of the lock protecting a the
1348  * single freemem, it was spread out into NCPU buckets.  Set_freemem
1349  * sets freemem to the total of all NCPU buckets.  It is called from
1350  * clock() on each TICK.
1351  */
1352 void
1353 set_freemem()
1354 {
1355 	struct pcf	*p;
1356 	ulong_t		t;
1357 	uint_t		i;
1358 
1359 	t = 0;
1360 	p = pcf;
1361 	for (i = 0;  i < pcf_fanout; i++) {
1362 		t += p->pcf_count;
1363 		p++;
1364 	}
1365 	freemem = t;
1366 
1367 	/*
1368 	 * Don't worry about grabbing mutex.  It's not that
1369 	 * critical if we miss a tick or two.  This is
1370 	 * where we wakeup possible delayers in
1371 	 * page_create_get_something().
1372 	 */
1373 	wakeup_pcgs();
1374 }
1375 
1376 ulong_t
1377 get_freemem()
1378 {
1379 	struct pcf	*p;
1380 	ulong_t		t;
1381 	uint_t		i;
1382 
1383 	t = 0;
1384 	p = pcf;
1385 	for (i = 0; i < pcf_fanout; i++) {
1386 		t += p->pcf_count;
1387 		p++;
1388 	}
1389 	/*
1390 	 * We just calculated it, might as well set it.
1391 	 */
1392 	freemem = t;
1393 	return (t);
1394 }
1395 
1396 /*
1397  * Acquire all of the page cache & free (pcf) locks.
1398  */
1399 void
1400 pcf_acquire_all()
1401 {
1402 	struct pcf	*p;
1403 	uint_t		i;
1404 
1405 	p = pcf;
1406 	for (i = 0; i < pcf_fanout; i++) {
1407 		mutex_enter(&p->pcf_lock);
1408 		p++;
1409 	}
1410 }
1411 
1412 /*
1413  * Release all the pcf_locks.
1414  */
1415 void
1416 pcf_release_all()
1417 {
1418 	struct pcf	*p;
1419 	uint_t		i;
1420 
1421 	p = pcf;
1422 	for (i = 0; i < pcf_fanout; i++) {
1423 		mutex_exit(&p->pcf_lock);
1424 		p++;
1425 	}
1426 }
1427 
1428 /*
1429  * Inform the VM system that we need some pages freed up.
1430  * Calls must be symmetric, e.g.:
1431  *
1432  *	page_needfree(100);
1433  *	wait a bit;
1434  *	page_needfree(-100);
1435  */
1436 void
1437 page_needfree(spgcnt_t npages)
1438 {
1439 	mutex_enter(&new_freemem_lock);
1440 	needfree += npages;
1441 	mutex_exit(&new_freemem_lock);
1442 }
1443 
1444 /*
1445  * Throttle for page_create(): try to prevent freemem from dropping
1446  * below throttlefree.  We can't provide a 100% guarantee because
1447  * KM_NOSLEEP allocations, page_reclaim(), and various other things
1448  * nibble away at the freelist.  However, we can block all PG_WAIT
1449  * allocations until memory becomes available.  The motivation is
1450  * that several things can fall apart when there's no free memory:
1451  *
1452  * (1) If pageout() needs memory to push a page, the system deadlocks.
1453  *
1454  * (2) By (broken) specification, timeout(9F) can neither fail nor
1455  *     block, so it has no choice but to panic the system if it
1456  *     cannot allocate a callout structure.
1457  *
1458  * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1459  *     it panics if it cannot allocate a callback structure.
1460  *
1461  * (4) Untold numbers of third-party drivers have not yet been hardened
1462  *     against KM_NOSLEEP and/or allocb() failures; they simply assume
1463  *     success and panic the system with a data fault on failure.
1464  *     (The long-term solution to this particular problem is to ship
1465  *     hostile fault-injecting DEBUG kernels with the DDK.)
1466  *
1467  * It is theoretically impossible to guarantee success of non-blocking
1468  * allocations, but in practice, this throttle is very hard to break.
1469  */
1470 static int
1471 page_create_throttle(pgcnt_t npages, int flags)
1472 {
1473 	ulong_t	fm;
1474 	uint_t	i;
1475 	pgcnt_t tf;	/* effective value of throttlefree */
1476 
1477 	/*
1478 	 * Normal priority allocations.
1479 	 */
1480 	if ((flags & (PG_WAIT | PG_NORMALPRI)) == PG_NORMALPRI) {
1481 		ASSERT(!(flags & (PG_PANIC | PG_PUSHPAGE)));
1482 		return (freemem >= npages + throttlefree);
1483 	}
1484 
1485 	/*
1486 	 * Never deny pages when:
1487 	 * - it's a thread that cannot block [NOMEMWAIT()]
1488 	 * - the allocation cannot block and must not fail
1489 	 * - the allocation cannot block and is pageout dispensated
1490 	 */
1491 	if (NOMEMWAIT() ||
1492 	    ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1493 	    ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1494 		return (1);
1495 
1496 	/*
1497 	 * If the allocation can't block, we look favorably upon it
1498 	 * unless we're below pageout_reserve.  In that case we fail
1499 	 * the allocation because we want to make sure there are a few
1500 	 * pages available for pageout.
1501 	 */
1502 	if ((flags & PG_WAIT) == 0)
1503 		return (freemem >= npages + pageout_reserve);
1504 
1505 	/* Calculate the effective throttlefree value */
1506 	tf = throttlefree -
1507 	    ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1508 
1509 	cv_signal(&proc_pageout->p_cv);
1510 
1511 	for (;;) {
1512 		fm = 0;
1513 		pcf_acquire_all();
1514 		mutex_enter(&new_freemem_lock);
1515 		for (i = 0; i < pcf_fanout; i++) {
1516 			fm += pcf[i].pcf_count;
1517 			pcf[i].pcf_wait++;
1518 			mutex_exit(&pcf[i].pcf_lock);
1519 		}
1520 		freemem = fm;
1521 		if (freemem >= npages + tf) {
1522 			mutex_exit(&new_freemem_lock);
1523 			break;
1524 		}
1525 		needfree += npages;
1526 		freemem_wait++;
1527 		cv_wait(&freemem_cv, &new_freemem_lock);
1528 		freemem_wait--;
1529 		needfree -= npages;
1530 		mutex_exit(&new_freemem_lock);
1531 	}
1532 	return (1);
1533 }
1534 
1535 /*
1536  * page_create_wait() is called to either coalesce pages from the
1537  * different pcf buckets or to wait because there simply are not
1538  * enough pages to satisfy the caller's request.
1539  *
1540  * Sadly, this is called from platform/vm/vm_machdep.c
1541  */
1542 int
1543 page_create_wait(pgcnt_t npages, uint_t flags)
1544 {
1545 	pgcnt_t		total;
1546 	uint_t		i;
1547 	struct pcf	*p;
1548 
1549 	/*
1550 	 * Wait until there are enough free pages to satisfy our
1551 	 * entire request.
1552 	 * We set needfree += npages before prodding pageout, to make sure
1553 	 * it does real work when npages > lotsfree > freemem.
1554 	 */
1555 	VM_STAT_ADD(page_create_not_enough);
1556 
1557 	ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1558 checkagain:
1559 	if ((flags & PG_NORELOC) &&
1560 	    kcage_freemem < kcage_throttlefree + npages)
1561 		(void) kcage_create_throttle(npages, flags);
1562 
1563 	if (freemem < npages + throttlefree)
1564 		if (!page_create_throttle(npages, flags))
1565 			return (0);
1566 
1567 	if (pcf_decrement_bucket(npages) ||
1568 	    pcf_decrement_multiple(&total, npages, 0))
1569 		return (1);
1570 
1571 	/*
1572 	 * All of the pcf locks are held, there are not enough pages
1573 	 * to satisfy the request (npages < total).
1574 	 * Be sure to acquire the new_freemem_lock before dropping
1575 	 * the pcf locks.  This prevents dropping wakeups in page_free().
1576 	 * The order is always pcf_lock then new_freemem_lock.
1577 	 *
1578 	 * Since we hold all the pcf locks, it is a good time to set freemem.
1579 	 *
1580 	 * If the caller does not want to wait, return now.
1581 	 * Else turn the pageout daemon loose to find something
1582 	 * and wait till it does.
1583 	 *
1584 	 */
1585 	freemem = total;
1586 
1587 	if ((flags & PG_WAIT) == 0) {
1588 		pcf_release_all();
1589 
1590 		TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1591 		"page_create_nomem:npages %ld freemem %ld", npages, freemem);
1592 		return (0);
1593 	}
1594 
1595 	ASSERT(proc_pageout != NULL);
1596 	cv_signal(&proc_pageout->p_cv);
1597 
1598 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1599 	    "page_create_sleep_start: freemem %ld needfree %ld",
1600 	    freemem, needfree);
1601 
1602 	/*
1603 	 * We are going to wait.
1604 	 * We currently hold all of the pcf_locks,
1605 	 * get the new_freemem_lock (it protects freemem_wait),
1606 	 * before dropping the pcf_locks.
1607 	 */
1608 	mutex_enter(&new_freemem_lock);
1609 
1610 	p = pcf;
1611 	for (i = 0; i < pcf_fanout; i++) {
1612 		p->pcf_wait++;
1613 		mutex_exit(&p->pcf_lock);
1614 		p++;
1615 	}
1616 
1617 	needfree += npages;
1618 	freemem_wait++;
1619 
1620 	cv_wait(&freemem_cv, &new_freemem_lock);
1621 
1622 	freemem_wait--;
1623 	needfree -= npages;
1624 
1625 	mutex_exit(&new_freemem_lock);
1626 
1627 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1628 	    "page_create_sleep_end: freemem %ld needfree %ld",
1629 	    freemem, needfree);
1630 
1631 	VM_STAT_ADD(page_create_not_enough_again);
1632 	goto checkagain;
1633 }
1634 /*
1635  * A routine to do the opposite of page_create_wait().
1636  */
1637 void
1638 page_create_putback(spgcnt_t npages)
1639 {
1640 	struct pcf	*p;
1641 	pgcnt_t		lump;
1642 	uint_t		*which;
1643 
1644 	/*
1645 	 * When a contiguous lump is broken up, we have to
1646 	 * deal with lots of pages (min 64) so lets spread
1647 	 * the wealth around.
1648 	 */
1649 	lump = roundup(npages, pcf_fanout) / pcf_fanout;
1650 	freemem += npages;
1651 
1652 	for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) {
1653 		which = &p->pcf_count;
1654 
1655 		mutex_enter(&p->pcf_lock);
1656 
1657 		if (p->pcf_block) {
1658 			which = &p->pcf_reserve;
1659 		}
1660 
1661 		if (lump < npages) {
1662 			*which += (uint_t)lump;
1663 			npages -= lump;
1664 		} else {
1665 			*which += (uint_t)npages;
1666 			npages = 0;
1667 		}
1668 
1669 		if (p->pcf_wait) {
1670 			mutex_enter(&new_freemem_lock);
1671 			/*
1672 			 * Check to see if some other thread
1673 			 * is actually waiting.  Another bucket
1674 			 * may have woken it up by now.  If there
1675 			 * are no waiters, then set our pcf_wait
1676 			 * count to zero to avoid coming in here
1677 			 * next time.
1678 			 */
1679 			if (freemem_wait) {
1680 				if (npages > 1) {
1681 					cv_broadcast(&freemem_cv);
1682 				} else {
1683 					cv_signal(&freemem_cv);
1684 				}
1685 				p->pcf_wait--;
1686 			} else {
1687 				p->pcf_wait = 0;
1688 			}
1689 			mutex_exit(&new_freemem_lock);
1690 		}
1691 		mutex_exit(&p->pcf_lock);
1692 	}
1693 	ASSERT(npages == 0);
1694 }
1695 
1696 /*
1697  * A helper routine for page_create_get_something.
1698  * The indenting got to deep down there.
1699  * Unblock the pcf counters.  Any pages freed after
1700  * pcf_block got set are moved to pcf_count and
1701  * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1702  */
1703 static void
1704 pcgs_unblock(void)
1705 {
1706 	int		i;
1707 	struct pcf	*p;
1708 
1709 	/* Update freemem while we're here. */
1710 	freemem = 0;
1711 	p = pcf;
1712 	for (i = 0; i < pcf_fanout; i++) {
1713 		mutex_enter(&p->pcf_lock);
1714 		ASSERT(p->pcf_count == 0);
1715 		p->pcf_count = p->pcf_reserve;
1716 		p->pcf_block = 0;
1717 		freemem += p->pcf_count;
1718 		if (p->pcf_wait) {
1719 			mutex_enter(&new_freemem_lock);
1720 			if (freemem_wait) {
1721 				if (p->pcf_reserve > 1) {
1722 					cv_broadcast(&freemem_cv);
1723 					p->pcf_wait = 0;
1724 				} else {
1725 					cv_signal(&freemem_cv);
1726 					p->pcf_wait--;
1727 				}
1728 			} else {
1729 				p->pcf_wait = 0;
1730 			}
1731 			mutex_exit(&new_freemem_lock);
1732 		}
1733 		p->pcf_reserve = 0;
1734 		mutex_exit(&p->pcf_lock);
1735 		p++;
1736 	}
1737 }
1738 
1739 /*
1740  * Called from page_create_va() when both the cache and free lists
1741  * have been checked once.
1742  *
1743  * Either returns a page or panics since the accounting was done
1744  * way before we got here.
1745  *
1746  * We don't come here often, so leave the accounting on permanently.
1747  */
1748 
1749 #define	MAX_PCGS	100
1750 
1751 #ifdef	DEBUG
1752 #define	PCGS_TRIES	100
1753 #else	/* DEBUG */
1754 #define	PCGS_TRIES	10
1755 #endif	/* DEBUG */
1756 
1757 #ifdef	VM_STATS
1758 uint_t	pcgs_counts[PCGS_TRIES];
1759 uint_t	pcgs_too_many;
1760 uint_t	pcgs_entered;
1761 uint_t	pcgs_entered_noreloc;
1762 uint_t	pcgs_locked;
1763 uint_t	pcgs_cagelocked;
1764 #endif	/* VM_STATS */
1765 
1766 static page_t *
1767 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1768     caddr_t vaddr, uint_t flags)
1769 {
1770 	uint_t		count;
1771 	page_t		*pp;
1772 	uint_t		locked, i;
1773 	struct	pcf	*p;
1774 	lgrp_t		*lgrp;
1775 	int		cagelocked = 0;
1776 
1777 	VM_STAT_ADD(pcgs_entered);
1778 
1779 	/*
1780 	 * Tap any reserve freelists: if we fail now, we'll die
1781 	 * since the page(s) we're looking for have already been
1782 	 * accounted for.
1783 	 */
1784 	flags |= PG_PANIC;
1785 
1786 	if ((flags & PG_NORELOC) != 0) {
1787 		VM_STAT_ADD(pcgs_entered_noreloc);
1788 		/*
1789 		 * Requests for free pages from critical threads
1790 		 * such as pageout still won't throttle here, but
1791 		 * we must try again, to give the cageout thread
1792 		 * another chance to catch up. Since we already
1793 		 * accounted for the pages, we had better get them
1794 		 * this time.
1795 		 *
1796 		 * N.B. All non-critical threads acquire the pcgs_cagelock
1797 		 * to serialize access to the freelists. This implements a
1798 		 * turnstile-type synchornization to avoid starvation of
1799 		 * critical requests for PG_NORELOC memory by non-critical
1800 		 * threads: all non-critical threads must acquire a 'ticket'
1801 		 * before passing through, which entails making sure
1802 		 * kcage_freemem won't fall below minfree prior to grabbing
1803 		 * pages from the freelists.
1804 		 */
1805 		if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1806 			mutex_enter(&pcgs_cagelock);
1807 			cagelocked = 1;
1808 			VM_STAT_ADD(pcgs_cagelocked);
1809 		}
1810 	}
1811 
1812 	/*
1813 	 * Time to get serious.
1814 	 * We failed to get a `correctly colored' page from both the
1815 	 * free and cache lists.
1816 	 * We escalate in stage.
1817 	 *
1818 	 * First try both lists without worring about color.
1819 	 *
1820 	 * Then, grab all page accounting locks (ie. pcf[]) and
1821 	 * steal any pages that they have and set the pcf_block flag to
1822 	 * stop deletions from the lists.  This will help because
1823 	 * a page can get added to the free list while we are looking
1824 	 * at the cache list, then another page could be added to the cache
1825 	 * list allowing the page on the free list to be removed as we
1826 	 * move from looking at the cache list to the free list. This
1827 	 * could happen over and over. We would never find the page
1828 	 * we have accounted for.
1829 	 *
1830 	 * Noreloc pages are a subset of the global (relocatable) page pool.
1831 	 * They are not tracked separately in the pcf bins, so it is
1832 	 * impossible to know when doing pcf accounting if the available
1833 	 * page(s) are noreloc pages or not. When looking for a noreloc page
1834 	 * it is quite easy to end up here even if the global (relocatable)
1835 	 * page pool has plenty of free pages but the noreloc pool is empty.
1836 	 *
1837 	 * When the noreloc pool is empty (or low), additional noreloc pages
1838 	 * are created by converting pages from the global page pool. This
1839 	 * process will stall during pcf accounting if the pcf bins are
1840 	 * already locked. Such is the case when a noreloc allocation is
1841 	 * looping here in page_create_get_something waiting for more noreloc
1842 	 * pages to appear.
1843 	 *
1844 	 * Short of adding a new field to the pcf bins to accurately track
1845 	 * the number of free noreloc pages, we instead do not grab the
1846 	 * pcgs_lock, do not set the pcf blocks and do not timeout when
1847 	 * allocating a noreloc page. This allows noreloc allocations to
1848 	 * loop without blocking global page pool allocations.
1849 	 *
1850 	 * NOTE: the behaviour of page_create_get_something has not changed
1851 	 * for the case of global page pool allocations.
1852 	 */
1853 
1854 	flags &= ~PG_MATCH_COLOR;
1855 	locked = 0;
1856 #if defined(__i386) || defined(__amd64)
1857 	flags = page_create_update_flags_x86(flags);
1858 #endif
1859 
1860 	lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1861 
1862 	for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1863 		pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1864 		    flags, lgrp);
1865 		if (pp == NULL) {
1866 			pp = page_get_cachelist(vp, off, seg, vaddr,
1867 			    flags, lgrp);
1868 		}
1869 		if (pp == NULL) {
1870 			/*
1871 			 * Serialize.  Don't fight with other pcgs().
1872 			 */
1873 			if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1874 				mutex_enter(&pcgs_lock);
1875 				VM_STAT_ADD(pcgs_locked);
1876 				locked = 1;
1877 				p = pcf;
1878 				for (i = 0; i < pcf_fanout; i++) {
1879 					mutex_enter(&p->pcf_lock);
1880 					ASSERT(p->pcf_block == 0);
1881 					p->pcf_block = 1;
1882 					p->pcf_reserve = p->pcf_count;
1883 					p->pcf_count = 0;
1884 					mutex_exit(&p->pcf_lock);
1885 					p++;
1886 				}
1887 				freemem = 0;
1888 			}
1889 
1890 			if (count) {
1891 				/*
1892 				 * Since page_free() puts pages on
1893 				 * a list then accounts for it, we
1894 				 * just have to wait for page_free()
1895 				 * to unlock any page it was working
1896 				 * with. The page_lock()-page_reclaim()
1897 				 * path falls in the same boat.
1898 				 *
1899 				 * We don't need to check on the
1900 				 * PG_WAIT flag, we have already
1901 				 * accounted for the page we are
1902 				 * looking for in page_create_va().
1903 				 *
1904 				 * We just wait a moment to let any
1905 				 * locked pages on the lists free up,
1906 				 * then continue around and try again.
1907 				 *
1908 				 * Will be awakened by set_freemem().
1909 				 */
1910 				mutex_enter(&pcgs_wait_lock);
1911 				cv_wait(&pcgs_cv, &pcgs_wait_lock);
1912 				mutex_exit(&pcgs_wait_lock);
1913 			}
1914 		} else {
1915 #ifdef VM_STATS
1916 			if (count >= PCGS_TRIES) {
1917 				VM_STAT_ADD(pcgs_too_many);
1918 			} else {
1919 				VM_STAT_ADD(pcgs_counts[count]);
1920 			}
1921 #endif
1922 			if (locked) {
1923 				pcgs_unblock();
1924 				mutex_exit(&pcgs_lock);
1925 			}
1926 			if (cagelocked)
1927 				mutex_exit(&pcgs_cagelock);
1928 			return (pp);
1929 		}
1930 	}
1931 	/*
1932 	 * we go down holding the pcf locks.
1933 	 */
1934 	panic("no %spage found %d",
1935 	    ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1936 	/*NOTREACHED*/
1937 }
1938 
1939 /*
1940  * Create enough pages for "bytes" worth of data starting at
1941  * "off" in "vp".
1942  *
1943  *	Where flag must be one of:
1944  *
1945  *		PG_EXCL:	Exclusive create (fail if any page already
1946  *				exists in the page cache) which does not
1947  *				wait for memory to become available.
1948  *
1949  *		PG_WAIT:	Non-exclusive create which can wait for
1950  *				memory to become available.
1951  *
1952  *		PG_PHYSCONTIG:	Allocate physically contiguous pages.
1953  *				(Not Supported)
1954  *
1955  * A doubly linked list of pages is returned to the caller.  Each page
1956  * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1957  * lock.
1958  *
1959  * Unable to change the parameters to page_create() in a minor release,
1960  * we renamed page_create() to page_create_va(), changed all known calls
1961  * from page_create() to page_create_va(), and created this wrapper.
1962  *
1963  * Upon a major release, we should break compatibility by deleting this
1964  * wrapper, and replacing all the strings "page_create_va", with "page_create".
1965  *
1966  * NOTE: There is a copy of this interface as page_create_io() in
1967  *	 i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1968  *	 there.
1969  */
1970 page_t *
1971 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1972 {
1973 	caddr_t random_vaddr;
1974 	struct seg kseg;
1975 
1976 #ifdef DEBUG
1977 	cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1978 	    (void *)caller());
1979 #endif
1980 
1981 	random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1982 	    (uintptr_t)(off >> PAGESHIFT));
1983 	kseg.s_as = &kas;
1984 
1985 	return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1986 }
1987 
1988 #ifdef DEBUG
1989 uint32_t pg_alloc_pgs_mtbf = 0;
1990 #endif
1991 
1992 /*
1993  * Used for large page support. It will attempt to allocate
1994  * a large page(s) off the freelist.
1995  *
1996  * Returns non zero on failure.
1997  */
1998 int
1999 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
2000     page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags)
2001 {
2002 	pgcnt_t		npgs, curnpgs, totpgs;
2003 	size_t		pgsz;
2004 	page_t		*pplist = NULL, *pp;
2005 	int		err = 0;
2006 	lgrp_t		*lgrp;
2007 
2008 	ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
2009 	ASSERT(pgflags == 0 || pgflags == PG_LOCAL);
2010 
2011 	/*
2012 	 * Check if system heavily prefers local large pages over remote
2013 	 * on systems with multiple lgroups.
2014 	 */
2015 	if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) {
2016 		pgflags = PG_LOCAL;
2017 	}
2018 
2019 	VM_STAT_ADD(alloc_pages[0]);
2020 
2021 #ifdef DEBUG
2022 	if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
2023 		return (ENOMEM);
2024 	}
2025 #endif
2026 
2027 	/*
2028 	 * One must be NULL but not both.
2029 	 * And one must be non NULL but not both.
2030 	 */
2031 	ASSERT(basepp != NULL || ppa != NULL);
2032 	ASSERT(basepp == NULL || ppa == NULL);
2033 
2034 #if defined(__i386) || defined(__amd64)
2035 	while (page_chk_freelist(szc) == 0) {
2036 		VM_STAT_ADD(alloc_pages[8]);
2037 		if (anypgsz == 0 || --szc == 0)
2038 			return (ENOMEM);
2039 	}
2040 #endif
2041 
2042 	pgsz = page_get_pagesize(szc);
2043 	totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
2044 
2045 	ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
2046 
2047 	(void) page_create_wait(npgs, PG_WAIT);
2048 
2049 	while (npgs && szc) {
2050 		lgrp = lgrp_mem_choose(seg, addr, pgsz);
2051 		if (pgflags == PG_LOCAL) {
2052 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2053 			    pgflags, lgrp);
2054 			if (pp == NULL) {
2055 				pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2056 				    0, lgrp);
2057 			}
2058 		} else {
2059 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2060 			    0, lgrp);
2061 		}
2062 		if (pp != NULL) {
2063 			VM_STAT_ADD(alloc_pages[1]);
2064 			page_list_concat(&pplist, &pp);
2065 			ASSERT(npgs >= curnpgs);
2066 			npgs -= curnpgs;
2067 		} else if (anypgsz) {
2068 			VM_STAT_ADD(alloc_pages[2]);
2069 			szc--;
2070 			pgsz = page_get_pagesize(szc);
2071 			curnpgs = pgsz >> PAGESHIFT;
2072 		} else {
2073 			VM_STAT_ADD(alloc_pages[3]);
2074 			ASSERT(npgs == totpgs);
2075 			page_create_putback(npgs);
2076 			return (ENOMEM);
2077 		}
2078 	}
2079 	if (szc == 0) {
2080 		VM_STAT_ADD(alloc_pages[4]);
2081 		ASSERT(npgs != 0);
2082 		page_create_putback(npgs);
2083 		err = ENOMEM;
2084 	} else if (basepp != NULL) {
2085 		ASSERT(npgs == 0);
2086 		ASSERT(ppa == NULL);
2087 		*basepp = pplist;
2088 	}
2089 
2090 	npgs = totpgs - npgs;
2091 	pp = pplist;
2092 
2093 	/*
2094 	 * Clear the free and age bits. Also if we were passed in a ppa then
2095 	 * fill it in with all the constituent pages from the large page. But
2096 	 * if we failed to allocate all the pages just free what we got.
2097 	 */
2098 	while (npgs != 0) {
2099 		ASSERT(PP_ISFREE(pp));
2100 		ASSERT(PP_ISAGED(pp));
2101 		if (ppa != NULL || err != 0) {
2102 			if (err == 0) {
2103 				VM_STAT_ADD(alloc_pages[5]);
2104 				PP_CLRFREE(pp);
2105 				PP_CLRAGED(pp);
2106 				page_sub(&pplist, pp);
2107 				*ppa++ = pp;
2108 				npgs--;
2109 			} else {
2110 				VM_STAT_ADD(alloc_pages[6]);
2111 				ASSERT(pp->p_szc != 0);
2112 				curnpgs = page_get_pagecnt(pp->p_szc);
2113 				page_list_break(&pp, &pplist, curnpgs);
2114 				page_list_add_pages(pp, 0);
2115 				page_create_putback(curnpgs);
2116 				ASSERT(npgs >= curnpgs);
2117 				npgs -= curnpgs;
2118 			}
2119 			pp = pplist;
2120 		} else {
2121 			VM_STAT_ADD(alloc_pages[7]);
2122 			PP_CLRFREE(pp);
2123 			PP_CLRAGED(pp);
2124 			pp = pp->p_next;
2125 			npgs--;
2126 		}
2127 	}
2128 	return (err);
2129 }
2130 
2131 /*
2132  * Get a single large page off of the freelists, and set it up for use.
2133  * Number of bytes requested must be a supported page size.
2134  *
2135  * Note that this call may fail even if there is sufficient
2136  * memory available or PG_WAIT is set, so the caller must
2137  * be willing to fallback on page_create_va(), block and retry,
2138  * or fail the requester.
2139  */
2140 page_t *
2141 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2142     struct seg *seg, caddr_t vaddr, void *arg)
2143 {
2144 	pgcnt_t		npages;
2145 	page_t		*pp;
2146 	page_t		*rootpp;
2147 	lgrp_t		*lgrp;
2148 	lgrp_id_t	*lgrpid = (lgrp_id_t *)arg;
2149 
2150 	ASSERT(vp != NULL);
2151 
2152 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2153 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2154 	/* but no others */
2155 
2156 	ASSERT((flags & PG_EXCL) == PG_EXCL);
2157 
2158 	npages = btop(bytes);
2159 
2160 	if (!kcage_on || panicstr) {
2161 		/*
2162 		 * Cage is OFF, or we are single threaded in
2163 		 * panic, so make everything a RELOC request.
2164 		 */
2165 		flags &= ~PG_NORELOC;
2166 	}
2167 
2168 	/*
2169 	 * Make sure there's adequate physical memory available.
2170 	 * Note: PG_WAIT is ignored here.
2171 	 */
2172 	if (freemem <= throttlefree + npages) {
2173 		VM_STAT_ADD(page_create_large_cnt[1]);
2174 		return (NULL);
2175 	}
2176 
2177 	/*
2178 	 * If cage is on, dampen draw from cage when available
2179 	 * cage space is low.
2180 	 */
2181 	if ((flags & (PG_NORELOC | PG_WAIT)) ==  (PG_NORELOC | PG_WAIT) &&
2182 	    kcage_freemem < kcage_throttlefree + npages) {
2183 
2184 		/*
2185 		 * The cage is on, the caller wants PG_NORELOC
2186 		 * pages and available cage memory is very low.
2187 		 * Call kcage_create_throttle() to attempt to
2188 		 * control demand on the cage.
2189 		 */
2190 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2191 			VM_STAT_ADD(page_create_large_cnt[2]);
2192 			return (NULL);
2193 		}
2194 	}
2195 
2196 	if (!pcf_decrement_bucket(npages) &&
2197 	    !pcf_decrement_multiple(NULL, npages, 1)) {
2198 		VM_STAT_ADD(page_create_large_cnt[4]);
2199 		return (NULL);
2200 	}
2201 
2202 	/*
2203 	 * This is where this function behaves fundamentally differently
2204 	 * than page_create_va(); since we're intending to map the page
2205 	 * with a single TTE, we have to get it as a physically contiguous
2206 	 * hardware pagesize chunk.  If we can't, we fail.
2207 	 */
2208 	if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2209 	    LGRP_EXISTS(lgrp_table[*lgrpid]))
2210 		lgrp = lgrp_table[*lgrpid];
2211 	else
2212 		lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2213 
2214 	if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2215 	    bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2216 		page_create_putback(npages);
2217 		VM_STAT_ADD(page_create_large_cnt[5]);
2218 		return (NULL);
2219 	}
2220 
2221 	/*
2222 	 * if we got the page with the wrong mtype give it back this is a
2223 	 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2224 	 * inside "if" and the workaround becomes just a nop
2225 	 */
2226 	if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2227 		page_list_add_pages(rootpp, 0);
2228 		page_create_putback(npages);
2229 		VM_STAT_ADD(page_create_large_cnt[6]);
2230 		return (NULL);
2231 	}
2232 
2233 	/*
2234 	 * If satisfying this request has left us with too little
2235 	 * memory, start the wheels turning to get some back.  The
2236 	 * first clause of the test prevents waking up the pageout
2237 	 * daemon in situations where it would decide that there's
2238 	 * nothing to do.
2239 	 */
2240 	if (nscan < desscan && freemem < minfree) {
2241 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2242 		    "pageout_cv_signal:freemem %ld", freemem);
2243 		cv_signal(&proc_pageout->p_cv);
2244 	}
2245 
2246 	pp = rootpp;
2247 	while (npages--) {
2248 		ASSERT(PAGE_EXCL(pp));
2249 		ASSERT(pp->p_vnode == NULL);
2250 		ASSERT(!hat_page_is_mapped(pp));
2251 		PP_CLRFREE(pp);
2252 		PP_CLRAGED(pp);
2253 		if (!page_hashin(pp, vp, off, NULL))
2254 			panic("page_create_large: hashin failed: page %p",
2255 			    (void *)pp);
2256 		page_io_lock(pp);
2257 		off += PAGESIZE;
2258 		pp = pp->p_next;
2259 	}
2260 
2261 	VM_STAT_ADD(page_create_large_cnt[0]);
2262 	return (rootpp);
2263 }
2264 
2265 page_t *
2266 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2267     struct seg *seg, caddr_t vaddr)
2268 {
2269 	page_t		*plist = NULL;
2270 	pgcnt_t		npages;
2271 	pgcnt_t		found_on_free = 0;
2272 	pgcnt_t		pages_req;
2273 	page_t		*npp = NULL;
2274 	struct pcf	*p;
2275 	lgrp_t		*lgrp;
2276 
2277 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2278 	    "page_create_start:vp %p off %llx bytes %lu flags %x",
2279 	    vp, off, bytes, flags);
2280 
2281 	ASSERT(bytes != 0 && vp != NULL);
2282 
2283 	if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2284 		panic("page_create: invalid flags");
2285 		/*NOTREACHED*/
2286 	}
2287 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2288 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2289 	    /* but no others */
2290 
2291 	pages_req = npages = btopr(bytes);
2292 	/*
2293 	 * Try to see whether request is too large to *ever* be
2294 	 * satisfied, in order to prevent deadlock.  We arbitrarily
2295 	 * decide to limit maximum size requests to max_page_get.
2296 	 */
2297 	if (npages >= max_page_get) {
2298 		if ((flags & PG_WAIT) == 0) {
2299 			TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2300 			    "page_create_toobig:vp %p off %llx npages "
2301 			    "%lu max_page_get %lu",
2302 			    vp, off, npages, max_page_get);
2303 			return (NULL);
2304 		} else {
2305 			cmn_err(CE_WARN,
2306 			    "Request for too much kernel memory "
2307 			    "(%lu bytes), will hang forever", bytes);
2308 			for (;;)
2309 				delay(1000000000);
2310 		}
2311 	}
2312 
2313 	if (!kcage_on || panicstr) {
2314 		/*
2315 		 * Cage is OFF, or we are single threaded in
2316 		 * panic, so make everything a RELOC request.
2317 		 */
2318 		flags &= ~PG_NORELOC;
2319 	}
2320 
2321 	if (freemem <= throttlefree + npages)
2322 		if (!page_create_throttle(npages, flags))
2323 			return (NULL);
2324 
2325 	/*
2326 	 * If cage is on, dampen draw from cage when available
2327 	 * cage space is low.
2328 	 */
2329 	if ((flags & PG_NORELOC) &&
2330 	    kcage_freemem < kcage_throttlefree + npages) {
2331 
2332 		/*
2333 		 * The cage is on, the caller wants PG_NORELOC
2334 		 * pages and available cage memory is very low.
2335 		 * Call kcage_create_throttle() to attempt to
2336 		 * control demand on the cage.
2337 		 */
2338 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2339 			return (NULL);
2340 	}
2341 
2342 	VM_STAT_ADD(page_create_cnt[0]);
2343 
2344 	if (!pcf_decrement_bucket(npages)) {
2345 		/*
2346 		 * Have to look harder.  If npages is greater than
2347 		 * one, then we might have to coalesce the counters.
2348 		 *
2349 		 * Go wait.  We come back having accounted
2350 		 * for the memory.
2351 		 */
2352 		VM_STAT_ADD(page_create_cnt[1]);
2353 		if (!page_create_wait(npages, flags)) {
2354 			VM_STAT_ADD(page_create_cnt[2]);
2355 			return (NULL);
2356 		}
2357 	}
2358 
2359 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2360 	    "page_create_success:vp %p off %llx", vp, off);
2361 
2362 	/*
2363 	 * If satisfying this request has left us with too little
2364 	 * memory, start the wheels turning to get some back.  The
2365 	 * first clause of the test prevents waking up the pageout
2366 	 * daemon in situations where it would decide that there's
2367 	 * nothing to do.
2368 	 */
2369 	if (nscan < desscan && freemem < minfree) {
2370 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2371 		    "pageout_cv_signal:freemem %ld", freemem);
2372 		cv_signal(&proc_pageout->p_cv);
2373 	}
2374 
2375 	/*
2376 	 * Loop around collecting the requested number of pages.
2377 	 * Most of the time, we have to `create' a new page. With
2378 	 * this in mind, pull the page off the free list before
2379 	 * getting the hash lock.  This will minimize the hash
2380 	 * lock hold time, nesting, and the like.  If it turns
2381 	 * out we don't need the page, we put it back at the end.
2382 	 */
2383 	while (npages--) {
2384 		page_t		*pp;
2385 		kmutex_t	*phm = NULL;
2386 		ulong_t		index;
2387 
2388 		index = PAGE_HASH_FUNC(vp, off);
2389 top:
2390 		ASSERT(phm == NULL);
2391 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
2392 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2393 
2394 		if (npp == NULL) {
2395 			/*
2396 			 * Try to get a page from the freelist (ie,
2397 			 * a page with no [vp, off] tag).  If that
2398 			 * fails, use the cachelist.
2399 			 *
2400 			 * During the first attempt at both the free
2401 			 * and cache lists we try for the correct color.
2402 			 */
2403 			/*
2404 			 * XXXX-how do we deal with virtual indexed
2405 			 * caches and and colors?
2406 			 */
2407 			VM_STAT_ADD(page_create_cnt[4]);
2408 			/*
2409 			 * Get lgroup to allocate next page of shared memory
2410 			 * from and use it to specify where to allocate
2411 			 * the physical memory
2412 			 */
2413 			lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2414 			npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2415 			    flags | PG_MATCH_COLOR, lgrp);
2416 			if (npp == NULL) {
2417 				npp = page_get_cachelist(vp, off, seg,
2418 				    vaddr, flags | PG_MATCH_COLOR, lgrp);
2419 				if (npp == NULL) {
2420 					npp = page_create_get_something(vp,
2421 					    off, seg, vaddr,
2422 					    flags & ~PG_MATCH_COLOR);
2423 				}
2424 
2425 				if (PP_ISAGED(npp) == 0) {
2426 					/*
2427 					 * Since this page came from the
2428 					 * cachelist, we must destroy the
2429 					 * old vnode association.
2430 					 */
2431 					page_hashout(npp, NULL);
2432 				}
2433 			}
2434 		}
2435 
2436 		/*
2437 		 * We own this page!
2438 		 */
2439 		ASSERT(PAGE_EXCL(npp));
2440 		ASSERT(npp->p_vnode == NULL);
2441 		ASSERT(!hat_page_is_mapped(npp));
2442 		PP_CLRFREE(npp);
2443 		PP_CLRAGED(npp);
2444 
2445 		/*
2446 		 * Here we have a page in our hot little mits and are
2447 		 * just waiting to stuff it on the appropriate lists.
2448 		 * Get the mutex and check to see if it really does
2449 		 * not exist.
2450 		 */
2451 		phm = PAGE_HASH_MUTEX(index);
2452 		mutex_enter(phm);
2453 		PAGE_HASH_SEARCH(index, pp, vp, off);
2454 		if (pp == NULL) {
2455 			VM_STAT_ADD(page_create_new);
2456 			pp = npp;
2457 			npp = NULL;
2458 			if (!page_hashin(pp, vp, off, phm)) {
2459 				/*
2460 				 * Since we hold the page hash mutex and
2461 				 * just searched for this page, page_hashin
2462 				 * had better not fail.  If it does, that
2463 				 * means somethread did not follow the
2464 				 * page hash mutex rules.  Panic now and
2465 				 * get it over with.  As usual, go down
2466 				 * holding all the locks.
2467 				 */
2468 				ASSERT(MUTEX_HELD(phm));
2469 				panic("page_create: "
2470 				    "hashin failed %p %p %llx %p",
2471 				    (void *)pp, (void *)vp, off, (void *)phm);
2472 				/*NOTREACHED*/
2473 			}
2474 			ASSERT(MUTEX_HELD(phm));
2475 			mutex_exit(phm);
2476 			phm = NULL;
2477 
2478 			/*
2479 			 * Hat layer locking need not be done to set
2480 			 * the following bits since the page is not hashed
2481 			 * and was on the free list (i.e., had no mappings).
2482 			 *
2483 			 * Set the reference bit to protect
2484 			 * against immediate pageout
2485 			 *
2486 			 * XXXmh modify freelist code to set reference
2487 			 * bit so we don't have to do it here.
2488 			 */
2489 			page_set_props(pp, P_REF);
2490 			found_on_free++;
2491 		} else {
2492 			VM_STAT_ADD(page_create_exists);
2493 			if (flags & PG_EXCL) {
2494 				/*
2495 				 * Found an existing page, and the caller
2496 				 * wanted all new pages.  Undo all of the work
2497 				 * we have done.
2498 				 */
2499 				mutex_exit(phm);
2500 				phm = NULL;
2501 				while (plist != NULL) {
2502 					pp = plist;
2503 					page_sub(&plist, pp);
2504 					page_io_unlock(pp);
2505 					/* large pages should not end up here */
2506 					ASSERT(pp->p_szc == 0);
2507 					/*LINTED: constant in conditional ctx*/
2508 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
2509 				}
2510 				VM_STAT_ADD(page_create_found_one);
2511 				goto fail;
2512 			}
2513 			ASSERT(flags & PG_WAIT);
2514 			if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2515 				/*
2516 				 * Start all over again if we blocked trying
2517 				 * to lock the page.
2518 				 */
2519 				mutex_exit(phm);
2520 				VM_STAT_ADD(page_create_page_lock_failed);
2521 				phm = NULL;
2522 				goto top;
2523 			}
2524 			mutex_exit(phm);
2525 			phm = NULL;
2526 
2527 			if (PP_ISFREE(pp)) {
2528 				ASSERT(PP_ISAGED(pp) == 0);
2529 				VM_STAT_ADD(pagecnt.pc_get_cache);
2530 				page_list_sub(pp, PG_CACHE_LIST);
2531 				PP_CLRFREE(pp);
2532 				found_on_free++;
2533 			}
2534 		}
2535 
2536 		/*
2537 		 * Got a page!  It is locked.  Acquire the i/o
2538 		 * lock since we are going to use the p_next and
2539 		 * p_prev fields to link the requested pages together.
2540 		 */
2541 		page_io_lock(pp);
2542 		page_add(&plist, pp);
2543 		plist = plist->p_next;
2544 		off += PAGESIZE;
2545 		vaddr += PAGESIZE;
2546 	}
2547 
2548 	ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2549 fail:
2550 	if (npp != NULL) {
2551 		/*
2552 		 * Did not need this page after all.
2553 		 * Put it back on the free list.
2554 		 */
2555 		VM_STAT_ADD(page_create_putbacks);
2556 		PP_SETFREE(npp);
2557 		PP_SETAGED(npp);
2558 		npp->p_offset = (u_offset_t)-1;
2559 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2560 		page_unlock(npp);
2561 
2562 	}
2563 
2564 	ASSERT(pages_req >= found_on_free);
2565 
2566 	{
2567 		uint_t overshoot = (uint_t)(pages_req - found_on_free);
2568 
2569 		if (overshoot) {
2570 			VM_STAT_ADD(page_create_overshoot);
2571 			p = &pcf[PCF_INDEX()];
2572 			mutex_enter(&p->pcf_lock);
2573 			if (p->pcf_block) {
2574 				p->pcf_reserve += overshoot;
2575 			} else {
2576 				p->pcf_count += overshoot;
2577 				if (p->pcf_wait) {
2578 					mutex_enter(&new_freemem_lock);
2579 					if (freemem_wait) {
2580 						cv_signal(&freemem_cv);
2581 						p->pcf_wait--;
2582 					} else {
2583 						p->pcf_wait = 0;
2584 					}
2585 					mutex_exit(&new_freemem_lock);
2586 				}
2587 			}
2588 			mutex_exit(&p->pcf_lock);
2589 			/* freemem is approximate, so this test OK */
2590 			if (!p->pcf_block)
2591 				freemem += overshoot;
2592 		}
2593 	}
2594 
2595 	return (plist);
2596 }
2597 
2598 /*
2599  * One or more constituent pages of this large page has been marked
2600  * toxic. Simply demote the large page to PAGESIZE pages and let
2601  * page_free() handle it. This routine should only be called by
2602  * large page free routines (page_free_pages() and page_destroy_pages().
2603  * All pages are locked SE_EXCL and have already been marked free.
2604  */
2605 static void
2606 page_free_toxic_pages(page_t *rootpp)
2607 {
2608 	page_t	*tpp;
2609 	pgcnt_t	i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2610 	uint_t	szc = rootpp->p_szc;
2611 
2612 	for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2613 		ASSERT(tpp->p_szc == szc);
2614 		ASSERT((PAGE_EXCL(tpp) &&
2615 		    !page_iolock_assert(tpp)) || panicstr);
2616 		tpp->p_szc = 0;
2617 	}
2618 
2619 	while (rootpp != NULL) {
2620 		tpp = rootpp;
2621 		page_sub(&rootpp, tpp);
2622 		ASSERT(PP_ISFREE(tpp));
2623 		PP_CLRFREE(tpp);
2624 		page_free(tpp, 1);
2625 	}
2626 }
2627 
2628 /*
2629  * Put page on the "free" list.
2630  * The free list is really two lists maintained by
2631  * the PSM of whatever machine we happen to be on.
2632  */
2633 void
2634 page_free(page_t *pp, int dontneed)
2635 {
2636 	struct pcf	*p;
2637 	uint_t		pcf_index;
2638 
2639 	ASSERT((PAGE_EXCL(pp) &&
2640 	    !page_iolock_assert(pp)) || panicstr);
2641 
2642 	if (PP_ISFREE(pp)) {
2643 		panic("page_free: page %p is free", (void *)pp);
2644 	}
2645 
2646 	if (pp->p_szc != 0) {
2647 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2648 		    PP_ISKAS(pp)) {
2649 			panic("page_free: anon or kernel "
2650 			    "or no vnode large page %p", (void *)pp);
2651 		}
2652 		page_demote_vp_pages(pp);
2653 		ASSERT(pp->p_szc == 0);
2654 	}
2655 
2656 	/*
2657 	 * The page_struct_lock need not be acquired to examine these
2658 	 * fields since the page has an "exclusive" lock.
2659 	 */
2660 	if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
2661 	    pp->p_slckcnt != 0) {
2662 		panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2663 		    "slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt,
2664 		    pp->p_cowcnt, pp->p_slckcnt);
2665 		/*NOTREACHED*/
2666 	}
2667 
2668 	ASSERT(!hat_page_getshare(pp));
2669 
2670 	PP_SETFREE(pp);
2671 	ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2672 	    !hat_ismod(pp));
2673 	page_clr_all_props(pp);
2674 	ASSERT(!hat_page_getshare(pp));
2675 
2676 	/*
2677 	 * Now we add the page to the head of the free list.
2678 	 * But if this page is associated with a paged vnode
2679 	 * then we adjust the head forward so that the page is
2680 	 * effectively at the end of the list.
2681 	 */
2682 	if (pp->p_vnode == NULL) {
2683 		/*
2684 		 * Page has no identity, put it on the free list.
2685 		 */
2686 		PP_SETAGED(pp);
2687 		pp->p_offset = (u_offset_t)-1;
2688 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2689 		VM_STAT_ADD(pagecnt.pc_free_free);
2690 		TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2691 		    "page_free_free:pp %p", pp);
2692 	} else {
2693 		PP_CLRAGED(pp);
2694 
2695 		if (!dontneed || nopageage) {
2696 			/* move it to the tail of the list */
2697 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2698 
2699 			VM_STAT_ADD(pagecnt.pc_free_cache);
2700 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2701 			    "page_free_cache_tail:pp %p", pp);
2702 		} else {
2703 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2704 
2705 			VM_STAT_ADD(pagecnt.pc_free_dontneed);
2706 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2707 			    "page_free_cache_head:pp %p", pp);
2708 		}
2709 	}
2710 	page_unlock(pp);
2711 
2712 	/*
2713 	 * Now do the `freemem' accounting.
2714 	 */
2715 	pcf_index = PCF_INDEX();
2716 	p = &pcf[pcf_index];
2717 
2718 	mutex_enter(&p->pcf_lock);
2719 	if (p->pcf_block) {
2720 		p->pcf_reserve += 1;
2721 	} else {
2722 		p->pcf_count += 1;
2723 		if (p->pcf_wait) {
2724 			mutex_enter(&new_freemem_lock);
2725 			/*
2726 			 * Check to see if some other thread
2727 			 * is actually waiting.  Another bucket
2728 			 * may have woken it up by now.  If there
2729 			 * are no waiters, then set our pcf_wait
2730 			 * count to zero to avoid coming in here
2731 			 * next time.  Also, since only one page
2732 			 * was put on the free list, just wake
2733 			 * up one waiter.
2734 			 */
2735 			if (freemem_wait) {
2736 				cv_signal(&freemem_cv);
2737 				p->pcf_wait--;
2738 			} else {
2739 				p->pcf_wait = 0;
2740 			}
2741 			mutex_exit(&new_freemem_lock);
2742 		}
2743 	}
2744 	mutex_exit(&p->pcf_lock);
2745 
2746 	/* freemem is approximate, so this test OK */
2747 	if (!p->pcf_block)
2748 		freemem += 1;
2749 }
2750 
2751 /*
2752  * Put page on the "free" list during intial startup.
2753  * This happens during initial single threaded execution.
2754  */
2755 void
2756 page_free_at_startup(page_t *pp)
2757 {
2758 	struct pcf	*p;
2759 	uint_t		pcf_index;
2760 
2761 	page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2762 	VM_STAT_ADD(pagecnt.pc_free_free);
2763 
2764 	/*
2765 	 * Now do the `freemem' accounting.
2766 	 */
2767 	pcf_index = PCF_INDEX();
2768 	p = &pcf[pcf_index];
2769 
2770 	ASSERT(p->pcf_block == 0);
2771 	ASSERT(p->pcf_wait == 0);
2772 	p->pcf_count += 1;
2773 
2774 	/* freemem is approximate, so this is OK */
2775 	freemem += 1;
2776 }
2777 
2778 void
2779 page_free_pages(page_t *pp)
2780 {
2781 	page_t	*tpp, *rootpp = NULL;
2782 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
2783 	pgcnt_t	i;
2784 	uint_t	szc = pp->p_szc;
2785 
2786 	VM_STAT_ADD(pagecnt.pc_free_pages);
2787 	TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2788 	    "page_free_free:pp %p", pp);
2789 
2790 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2791 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2792 		panic("page_free_pages: not root page %p", (void *)pp);
2793 		/*NOTREACHED*/
2794 	}
2795 
2796 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2797 		ASSERT((PAGE_EXCL(tpp) &&
2798 		    !page_iolock_assert(tpp)) || panicstr);
2799 		if (PP_ISFREE(tpp)) {
2800 			panic("page_free_pages: page %p is free", (void *)tpp);
2801 			/*NOTREACHED*/
2802 		}
2803 		if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2804 		    tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
2805 			panic("page_free_pages %p", (void *)tpp);
2806 			/*NOTREACHED*/
2807 		}
2808 
2809 		ASSERT(!hat_page_getshare(tpp));
2810 		ASSERT(tpp->p_vnode == NULL);
2811 		ASSERT(tpp->p_szc == szc);
2812 
2813 		PP_SETFREE(tpp);
2814 		page_clr_all_props(tpp);
2815 		PP_SETAGED(tpp);
2816 		tpp->p_offset = (u_offset_t)-1;
2817 		ASSERT(tpp->p_next == tpp);
2818 		ASSERT(tpp->p_prev == tpp);
2819 		page_list_concat(&rootpp, &tpp);
2820 	}
2821 	ASSERT(rootpp == pp);
2822 
2823 	page_list_add_pages(rootpp, 0);
2824 	page_create_putback(pgcnt);
2825 }
2826 
2827 int free_pages = 1;
2828 
2829 /*
2830  * This routine attempts to return pages to the cachelist via page_release().
2831  * It does not *have* to be successful in all cases, since the pageout scanner
2832  * will catch any pages it misses.  It does need to be fast and not introduce
2833  * too much overhead.
2834  *
2835  * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2836  * don't lock and retry.  This is ok, since the page scanner will eventually
2837  * find any page we miss in free_vp_pages().
2838  */
2839 void
2840 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2841 {
2842 	page_t *pp;
2843 	u_offset_t eoff;
2844 	extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2845 
2846 	eoff = off + len;
2847 
2848 	if (free_pages == 0)
2849 		return;
2850 	if (swap_in_range(vp, off, len))
2851 		return;
2852 
2853 	for (; off < eoff; off += PAGESIZE) {
2854 
2855 		/*
2856 		 * find the page using a fast, but inexact search. It'll be OK
2857 		 * if a few pages slip through the cracks here.
2858 		 */
2859 		pp = page_exists(vp, off);
2860 
2861 		/*
2862 		 * If we didn't find the page (it may not exist), the page
2863 		 * is free, looks still in use (shared), or we can't lock it,
2864 		 * just give up.
2865 		 */
2866 		if (pp == NULL ||
2867 		    PP_ISFREE(pp) ||
2868 		    page_share_cnt(pp) > 0 ||
2869 		    !page_trylock(pp, SE_EXCL))
2870 			continue;
2871 
2872 		/*
2873 		 * Once we have locked pp, verify that it's still the
2874 		 * correct page and not already free
2875 		 */
2876 		ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2877 		if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2878 			page_unlock(pp);
2879 			continue;
2880 		}
2881 
2882 		/*
2883 		 * try to release the page...
2884 		 */
2885 		(void) page_release(pp, 1);
2886 	}
2887 }
2888 
2889 /*
2890  * Reclaim the given page from the free list.
2891  * If pp is part of a large pages, only the given constituent page is reclaimed
2892  * and the large page it belonged to will be demoted.  This can only happen
2893  * if the page is not on the cachelist.
2894  *
2895  * Returns 1 on success or 0 on failure.
2896  *
2897  * The page is unlocked if it can't be reclaimed (when freemem == 0).
2898  * If `lock' is non-null, it will be dropped and re-acquired if
2899  * the routine must wait while freemem is 0.
2900  *
2901  * As it turns out, boot_getpages() does this.  It picks a page,
2902  * based on where OBP mapped in some address, gets its pfn, searches
2903  * the memsegs, locks the page, then pulls it off the free list!
2904  */
2905 int
2906 page_reclaim(page_t *pp, kmutex_t *lock)
2907 {
2908 	struct pcf	*p;
2909 	struct cpu	*cpup;
2910 	int		enough;
2911 	uint_t		i;
2912 
2913 	ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
2914 	ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
2915 
2916 	/*
2917 	 * If `freemem' is 0, we cannot reclaim this page from the
2918 	 * freelist, so release every lock we might hold: the page,
2919 	 * and the `lock' before blocking.
2920 	 *
2921 	 * The only way `freemem' can become 0 while there are pages
2922 	 * marked free (have their p->p_free bit set) is when the
2923 	 * system is low on memory and doing a page_create().  In
2924 	 * order to guarantee that once page_create() starts acquiring
2925 	 * pages it will be able to get all that it needs since `freemem'
2926 	 * was decreased by the requested amount.  So, we need to release
2927 	 * this page, and let page_create() have it.
2928 	 *
2929 	 * Since `freemem' being zero is not supposed to happen, just
2930 	 * use the usual hash stuff as a starting point.  If that bucket
2931 	 * is empty, then assume the worst, and start at the beginning
2932 	 * of the pcf array.  If we always start at the beginning
2933 	 * when acquiring more than one pcf lock, there won't be any
2934 	 * deadlock problems.
2935 	 */
2936 
2937 	/* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
2938 
2939 	if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
2940 		pcf_acquire_all();
2941 		goto page_reclaim_nomem;
2942 	}
2943 
2944 	enough = pcf_decrement_bucket(1);
2945 
2946 	if (!enough) {
2947 		VM_STAT_ADD(page_reclaim_zero);
2948 		/*
2949 		 * Check again. Its possible that some other thread
2950 		 * could have been right behind us, and added one
2951 		 * to a list somewhere.  Acquire each of the pcf locks
2952 		 * until we find a page.
2953 		 */
2954 		p = pcf;
2955 		for (i = 0; i < pcf_fanout; i++) {
2956 			mutex_enter(&p->pcf_lock);
2957 			if (p->pcf_count >= 1) {
2958 				p->pcf_count -= 1;
2959 				/*
2960 				 * freemem is not protected by any lock. Thus,
2961 				 * we cannot have any assertion containing
2962 				 * freemem here.
2963 				 */
2964 				freemem -= 1;
2965 				enough = 1;
2966 				break;
2967 			}
2968 			p++;
2969 		}
2970 
2971 		if (!enough) {
2972 page_reclaim_nomem:
2973 			/*
2974 			 * We really can't have page `pp'.
2975 			 * Time for the no-memory dance with
2976 			 * page_free().  This is just like
2977 			 * page_create_wait().  Plus the added
2978 			 * attraction of releasing whatever mutex
2979 			 * we held when we were called with in `lock'.
2980 			 * Page_unlock() will wakeup any thread
2981 			 * waiting around for this page.
2982 			 */
2983 			if (lock) {
2984 				VM_STAT_ADD(page_reclaim_zero_locked);
2985 				mutex_exit(lock);
2986 			}
2987 			page_unlock(pp);
2988 
2989 			/*
2990 			 * get this before we drop all the pcf locks.
2991 			 */
2992 			mutex_enter(&new_freemem_lock);
2993 
2994 			p = pcf;
2995 			for (i = 0; i < pcf_fanout; i++) {
2996 				p->pcf_wait++;
2997 				mutex_exit(&p->pcf_lock);
2998 				p++;
2999 			}
3000 
3001 			freemem_wait++;
3002 			cv_wait(&freemem_cv, &new_freemem_lock);
3003 			freemem_wait--;
3004 
3005 			mutex_exit(&new_freemem_lock);
3006 
3007 			if (lock) {
3008 				mutex_enter(lock);
3009 			}
3010 			return (0);
3011 		}
3012 
3013 		/*
3014 		 * The pcf accounting has been done,
3015 		 * though none of the pcf_wait flags have been set,
3016 		 * drop the locks and continue on.
3017 		 */
3018 		while (p >= pcf) {
3019 			mutex_exit(&p->pcf_lock);
3020 			p--;
3021 		}
3022 	}
3023 
3024 
3025 	VM_STAT_ADD(pagecnt.pc_reclaim);
3026 
3027 	/*
3028 	 * page_list_sub will handle the case where pp is a large page.
3029 	 * It's possible that the page was promoted while on the freelist
3030 	 */
3031 	if (PP_ISAGED(pp)) {
3032 		page_list_sub(pp, PG_FREE_LIST);
3033 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3034 		    "page_reclaim_free:pp %p", pp);
3035 	} else {
3036 		page_list_sub(pp, PG_CACHE_LIST);
3037 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3038 		    "page_reclaim_cache:pp %p", pp);
3039 	}
3040 
3041 	/*
3042 	 * clear the p_free & p_age bits since this page is no longer
3043 	 * on the free list.  Notice that there was a brief time where
3044 	 * a page is marked as free, but is not on the list.
3045 	 *
3046 	 * Set the reference bit to protect against immediate pageout.
3047 	 */
3048 	PP_CLRFREE(pp);
3049 	PP_CLRAGED(pp);
3050 	page_set_props(pp, P_REF);
3051 
3052 	CPU_STATS_ENTER_K();
3053 	cpup = CPU;	/* get cpup now that CPU cannot change */
3054 	CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3055 	CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3056 	CPU_STATS_EXIT_K();
3057 	ASSERT(pp->p_szc == 0);
3058 
3059 	return (1);
3060 }
3061 
3062 /*
3063  * Destroy identity of the page and put it back on
3064  * the page free list.  Assumes that the caller has
3065  * acquired the "exclusive" lock on the page.
3066  */
3067 void
3068 page_destroy(page_t *pp, int dontfree)
3069 {
3070 	ASSERT((PAGE_EXCL(pp) &&
3071 	    !page_iolock_assert(pp)) || panicstr);
3072 	ASSERT(pp->p_slckcnt == 0 || panicstr);
3073 
3074 	if (pp->p_szc != 0) {
3075 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3076 		    PP_ISKAS(pp)) {
3077 			panic("page_destroy: anon or kernel or no vnode "
3078 			    "large page %p", (void *)pp);
3079 		}
3080 		page_demote_vp_pages(pp);
3081 		ASSERT(pp->p_szc == 0);
3082 	}
3083 
3084 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3085 
3086 	/*
3087 	 * Unload translations, if any, then hash out the
3088 	 * page to erase its identity.
3089 	 */
3090 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3091 	page_hashout(pp, NULL);
3092 
3093 	if (!dontfree) {
3094 		/*
3095 		 * Acquire the "freemem_lock" for availrmem.
3096 		 * The page_struct_lock need not be acquired for lckcnt
3097 		 * and cowcnt since the page has an "exclusive" lock.
3098 		 * We are doing a modified version of page_pp_unlock here.
3099 		 */
3100 		if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3101 			if (pp->p_lckcnt != 0) {
3102 				/*
3103 				 * Page has not been unlocked via
3104 				 * page_pp_unlock(). Therefore
3105 				 * anon_swap_restore() is called to unlock
3106 				 * swap for this page so its swap can be
3107 				 * unreserved.
3108 				 */
3109 				anon_swap_restore(1);
3110 				mutex_enter(&pages_locked_lock);
3111 				pages_locked--;
3112 				mutex_exit(&pages_locked_lock);
3113 				pp->p_lckcnt = 0;
3114 			}
3115 			if (pp->p_cowcnt != 0) {
3116 				anon_swap_restore(pp->p_cowcnt);
3117 				mutex_enter(&pages_locked_lock);
3118 				pages_locked -= pp->p_cowcnt;
3119 				mutex_exit(&pages_locked_lock);
3120 				pp->p_cowcnt = 0;
3121 			}
3122 		}
3123 		/*
3124 		 * Put the page on the "free" list.
3125 		 */
3126 		page_free(pp, 0);
3127 	}
3128 }
3129 
3130 void
3131 page_destroy_pages(page_t *pp)
3132 {
3133 
3134 	page_t	*tpp, *rootpp = NULL;
3135 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
3136 	pgcnt_t	i, pglcks = 0;
3137 	uint_t	szc = pp->p_szc;
3138 
3139 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3140 
3141 	VM_STAT_ADD(pagecnt.pc_destroy_pages);
3142 
3143 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3144 
3145 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3146 		panic("page_destroy_pages: not root page %p", (void *)pp);
3147 		/*NOTREACHED*/
3148 	}
3149 
3150 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3151 		ASSERT((PAGE_EXCL(tpp) &&
3152 		    !page_iolock_assert(tpp)) || panicstr);
3153 		ASSERT(tpp->p_slckcnt == 0 || panicstr);
3154 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3155 		page_hashout(tpp, NULL);
3156 		ASSERT(tpp->p_offset == (u_offset_t)-1);
3157 		if (tpp->p_lckcnt != 0) {
3158 			pglcks++;
3159 			tpp->p_lckcnt = 0;
3160 		} else if (tpp->p_cowcnt != 0) {
3161 			pglcks += tpp->p_cowcnt;
3162 			tpp->p_cowcnt = 0;
3163 		}
3164 		ASSERT(!hat_page_getshare(tpp));
3165 		ASSERT(tpp->p_vnode == NULL);
3166 		ASSERT(tpp->p_szc == szc);
3167 
3168 		PP_SETFREE(tpp);
3169 		page_clr_all_props(tpp);
3170 		PP_SETAGED(tpp);
3171 		ASSERT(tpp->p_next == tpp);
3172 		ASSERT(tpp->p_prev == tpp);
3173 		page_list_concat(&rootpp, &tpp);
3174 	}
3175 
3176 	ASSERT(rootpp == pp);
3177 	if (pglcks != 0) {
3178 		mutex_enter(&freemem_lock);
3179 		availrmem += pglcks;
3180 		mutex_exit(&freemem_lock);
3181 	}
3182 
3183 	page_list_add_pages(rootpp, 0);
3184 	page_create_putback(pgcnt);
3185 }
3186 
3187 /*
3188  * Similar to page_destroy(), but destroys pages which are
3189  * locked and known to be on the page free list.  Since
3190  * the page is known to be free and locked, no one can access
3191  * it.
3192  *
3193  * Also, the number of free pages does not change.
3194  */
3195 void
3196 page_destroy_free(page_t *pp)
3197 {
3198 	ASSERT(PAGE_EXCL(pp));
3199 	ASSERT(PP_ISFREE(pp));
3200 	ASSERT(pp->p_vnode);
3201 	ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3202 	ASSERT(!hat_page_is_mapped(pp));
3203 	ASSERT(PP_ISAGED(pp) == 0);
3204 	ASSERT(pp->p_szc == 0);
3205 
3206 	VM_STAT_ADD(pagecnt.pc_destroy_free);
3207 	page_list_sub(pp, PG_CACHE_LIST);
3208 
3209 	page_hashout(pp, NULL);
3210 	ASSERT(pp->p_vnode == NULL);
3211 	ASSERT(pp->p_offset == (u_offset_t)-1);
3212 	ASSERT(pp->p_hash == NULL);
3213 
3214 	PP_SETAGED(pp);
3215 	page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3216 	page_unlock(pp);
3217 
3218 	mutex_enter(&new_freemem_lock);
3219 	if (freemem_wait) {
3220 		cv_signal(&freemem_cv);
3221 	}
3222 	mutex_exit(&new_freemem_lock);
3223 }
3224 
3225 /*
3226  * Rename the page "opp" to have an identity specified
3227  * by [vp, off].  If a page already exists with this name
3228  * it is locked and destroyed.  Note that the page's
3229  * translations are not unloaded during the rename.
3230  *
3231  * This routine is used by the anon layer to "steal" the
3232  * original page and is not unlike destroying a page and
3233  * creating a new page using the same page frame.
3234  *
3235  * XXX -- Could deadlock if caller 1 tries to rename A to B while
3236  * caller 2 tries to rename B to A.
3237  */
3238 void
3239 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3240 {
3241 	page_t		*pp;
3242 	int		olckcnt = 0;
3243 	int		ocowcnt = 0;
3244 	kmutex_t	*phm;
3245 	ulong_t		index;
3246 
3247 	ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3248 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3249 	ASSERT(PP_ISFREE(opp) == 0);
3250 
3251 	VM_STAT_ADD(page_rename_count);
3252 
3253 	TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3254 	    "page rename:pp %p vp %p off %llx", opp, vp, off);
3255 
3256 	/*
3257 	 * CacheFS may call page_rename for a large NFS page
3258 	 * when both CacheFS and NFS mount points are used
3259 	 * by applications. Demote this large page before
3260 	 * renaming it, to ensure that there are no "partial"
3261 	 * large pages left lying around.
3262 	 */
3263 	if (opp->p_szc != 0) {
3264 		vnode_t *ovp = opp->p_vnode;
3265 		ASSERT(ovp != NULL);
3266 		ASSERT(!IS_SWAPFSVP(ovp));
3267 		ASSERT(!VN_ISKAS(ovp));
3268 		page_demote_vp_pages(opp);
3269 		ASSERT(opp->p_szc == 0);
3270 	}
3271 
3272 	page_hashout(opp, NULL);
3273 	PP_CLRAGED(opp);
3274 
3275 	/*
3276 	 * Acquire the appropriate page hash lock, since
3277 	 * we're going to rename the page.
3278 	 */
3279 	index = PAGE_HASH_FUNC(vp, off);
3280 	phm = PAGE_HASH_MUTEX(index);
3281 	mutex_enter(phm);
3282 top:
3283 	/*
3284 	 * Look for an existing page with this name and destroy it if found.
3285 	 * By holding the page hash lock all the way to the page_hashin()
3286 	 * call, we are assured that no page can be created with this
3287 	 * identity.  In the case when the phm lock is dropped to undo any
3288 	 * hat layer mappings, the existing page is held with an "exclusive"
3289 	 * lock, again preventing another page from being created with
3290 	 * this identity.
3291 	 */
3292 	PAGE_HASH_SEARCH(index, pp, vp, off);
3293 	if (pp != NULL) {
3294 		VM_STAT_ADD(page_rename_exists);
3295 
3296 		/*
3297 		 * As it turns out, this is one of only two places where
3298 		 * page_lock() needs to hold the passed in lock in the
3299 		 * successful case.  In all of the others, the lock could
3300 		 * be dropped as soon as the attempt is made to lock
3301 		 * the page.  It is tempting to add yet another arguement,
3302 		 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3303 		 */
3304 		if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3305 			/*
3306 			 * Went to sleep because the page could not
3307 			 * be locked.  We were woken up when the page
3308 			 * was unlocked, or when the page was destroyed.
3309 			 * In either case, `phm' was dropped while we
3310 			 * slept.  Hence we should not just roar through
3311 			 * this loop.
3312 			 */
3313 			goto top;
3314 		}
3315 
3316 		/*
3317 		 * If an existing page is a large page, then demote
3318 		 * it to ensure that no "partial" large pages are
3319 		 * "created" after page_rename. An existing page
3320 		 * can be a CacheFS page, and can't belong to swapfs.
3321 		 */
3322 		if (hat_page_is_mapped(pp)) {
3323 			/*
3324 			 * Unload translations.  Since we hold the
3325 			 * exclusive lock on this page, the page
3326 			 * can not be changed while we drop phm.
3327 			 * This is also not a lock protocol violation,
3328 			 * but rather the proper way to do things.
3329 			 */
3330 			mutex_exit(phm);
3331 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3332 			if (pp->p_szc != 0) {
3333 				ASSERT(!IS_SWAPFSVP(vp));
3334 				ASSERT(!VN_ISKAS(vp));
3335 				page_demote_vp_pages(pp);
3336 				ASSERT(pp->p_szc == 0);
3337 			}
3338 			mutex_enter(phm);
3339 		} else if (pp->p_szc != 0) {
3340 			ASSERT(!IS_SWAPFSVP(vp));
3341 			ASSERT(!VN_ISKAS(vp));
3342 			mutex_exit(phm);
3343 			page_demote_vp_pages(pp);
3344 			ASSERT(pp->p_szc == 0);
3345 			mutex_enter(phm);
3346 		}
3347 		page_hashout(pp, phm);
3348 	}
3349 	/*
3350 	 * Hash in the page with the new identity.
3351 	 */
3352 	if (!page_hashin(opp, vp, off, phm)) {
3353 		/*
3354 		 * We were holding phm while we searched for [vp, off]
3355 		 * and only dropped phm if we found and locked a page.
3356 		 * If we can't create this page now, then some thing
3357 		 * is really broken.
3358 		 */
3359 		panic("page_rename: Can't hash in page: %p", (void *)pp);
3360 		/*NOTREACHED*/
3361 	}
3362 
3363 	ASSERT(MUTEX_HELD(phm));
3364 	mutex_exit(phm);
3365 
3366 	/*
3367 	 * Now that we have dropped phm, lets get around to finishing up
3368 	 * with pp.
3369 	 */
3370 	if (pp != NULL) {
3371 		ASSERT(!hat_page_is_mapped(pp));
3372 		/* for now large pages should not end up here */
3373 		ASSERT(pp->p_szc == 0);
3374 		/*
3375 		 * Save the locks for transfer to the new page and then
3376 		 * clear them so page_free doesn't think they're important.
3377 		 * The page_struct_lock need not be acquired for lckcnt and
3378 		 * cowcnt since the page has an "exclusive" lock.
3379 		 */
3380 		olckcnt = pp->p_lckcnt;
3381 		ocowcnt = pp->p_cowcnt;
3382 		pp->p_lckcnt = pp->p_cowcnt = 0;
3383 
3384 		/*
3385 		 * Put the page on the "free" list after we drop
3386 		 * the lock.  The less work under the lock the better.
3387 		 */
3388 		/*LINTED: constant in conditional context*/
3389 		VN_DISPOSE(pp, B_FREE, 0, kcred);
3390 	}
3391 
3392 	/*
3393 	 * Transfer the lock count from the old page (if any).
3394 	 * The page_struct_lock need not be acquired for lckcnt and
3395 	 * cowcnt since the page has an "exclusive" lock.
3396 	 */
3397 	opp->p_lckcnt += olckcnt;
3398 	opp->p_cowcnt += ocowcnt;
3399 }
3400 
3401 /*
3402  * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3403  *
3404  * Pages are normally inserted at the start of a vnode's v_pages list.
3405  * If the vnode is VMODSORT and the page is modified, it goes at the end.
3406  * This can happen when a modified page is relocated for DR.
3407  *
3408  * Returns 1 on success and 0 on failure.
3409  */
3410 static int
3411 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3412 {
3413 	page_t		**listp;
3414 	page_t		*tp;
3415 	ulong_t		index;
3416 
3417 	ASSERT(PAGE_EXCL(pp));
3418 	ASSERT(vp != NULL);
3419 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3420 
3421 	/*
3422 	 * Be sure to set these up before the page is inserted on the hash
3423 	 * list.  As soon as the page is placed on the list some other
3424 	 * thread might get confused and wonder how this page could
3425 	 * possibly hash to this list.
3426 	 */
3427 	pp->p_vnode = vp;
3428 	pp->p_offset = offset;
3429 
3430 	/*
3431 	 * record if this page is on a swap vnode
3432 	 */
3433 	if ((vp->v_flag & VISSWAP) != 0)
3434 		PP_SETSWAP(pp);
3435 
3436 	index = PAGE_HASH_FUNC(vp, offset);
3437 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3438 	listp = &page_hash[index];
3439 
3440 	/*
3441 	 * If this page is already hashed in, fail this attempt to add it.
3442 	 */
3443 	for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3444 		if (tp->p_vnode == vp && tp->p_offset == offset) {
3445 			pp->p_vnode = NULL;
3446 			pp->p_offset = (u_offset_t)(-1);
3447 			return (0);
3448 		}
3449 	}
3450 	pp->p_hash = *listp;
3451 	*listp = pp;
3452 
3453 	/*
3454 	 * Add the page to the vnode's list of pages
3455 	 */
3456 	if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3457 		listp = &vp->v_pages->p_vpprev->p_vpnext;
3458 	else
3459 		listp = &vp->v_pages;
3460 
3461 	page_vpadd(listp, pp);
3462 
3463 	return (1);
3464 }
3465 
3466 /*
3467  * Add page `pp' to both the hash and vp chains for [vp, offset].
3468  *
3469  * Returns 1 on success and 0 on failure.
3470  * If hold is passed in, it is not dropped.
3471  */
3472 int
3473 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3474 {
3475 	kmutex_t	*phm = NULL;
3476 	kmutex_t	*vphm;
3477 	int		rc;
3478 
3479 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3480 	ASSERT(pp->p_fsdata == 0 || panicstr);
3481 
3482 	TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3483 	    "page_hashin:pp %p vp %p offset %llx",
3484 	    pp, vp, offset);
3485 
3486 	VM_STAT_ADD(hashin_count);
3487 
3488 	if (hold != NULL)
3489 		phm = hold;
3490 	else {
3491 		VM_STAT_ADD(hashin_not_held);
3492 		phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3493 		mutex_enter(phm);
3494 	}
3495 
3496 	vphm = page_vnode_mutex(vp);
3497 	mutex_enter(vphm);
3498 	rc = page_do_hashin(pp, vp, offset);
3499 	mutex_exit(vphm);
3500 	if (hold == NULL)
3501 		mutex_exit(phm);
3502 	if (rc == 0)
3503 		VM_STAT_ADD(hashin_already);
3504 	return (rc);
3505 }
3506 
3507 /*
3508  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3509  * All mutexes must be held
3510  */
3511 static void
3512 page_do_hashout(page_t *pp)
3513 {
3514 	page_t	**hpp;
3515 	page_t	*hp;
3516 	vnode_t	*vp = pp->p_vnode;
3517 
3518 	ASSERT(vp != NULL);
3519 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3520 
3521 	/*
3522 	 * First, take pp off of its hash chain.
3523 	 */
3524 	hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3525 
3526 	for (;;) {
3527 		hp = *hpp;
3528 		if (hp == pp)
3529 			break;
3530 		if (hp == NULL) {
3531 			panic("page_do_hashout");
3532 			/*NOTREACHED*/
3533 		}
3534 		hpp = &hp->p_hash;
3535 	}
3536 	*hpp = pp->p_hash;
3537 
3538 	/*
3539 	 * Now remove it from its associated vnode.
3540 	 */
3541 	if (vp->v_pages)
3542 		page_vpsub(&vp->v_pages, pp);
3543 
3544 	pp->p_hash = NULL;
3545 	page_clr_all_props(pp);
3546 	PP_CLRSWAP(pp);
3547 	pp->p_vnode = NULL;
3548 	pp->p_offset = (u_offset_t)-1;
3549 	pp->p_fsdata = 0;
3550 }
3551 
3552 /*
3553  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3554  *
3555  * When `phm' is non-NULL it contains the address of the mutex protecting the
3556  * hash list pp is on.  It is not dropped.
3557  */
3558 void
3559 page_hashout(page_t *pp, kmutex_t *phm)
3560 {
3561 	vnode_t		*vp;
3562 	ulong_t		index;
3563 	kmutex_t	*nphm;
3564 	kmutex_t	*vphm;
3565 	kmutex_t	*sep;
3566 
3567 	ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3568 	ASSERT(pp->p_vnode != NULL);
3569 	ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3570 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3571 
3572 	vp = pp->p_vnode;
3573 
3574 	TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3575 	    "page_hashout:pp %p vp %p", pp, vp);
3576 
3577 	/* Kernel probe */
3578 	TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */,
3579 	    tnf_opaque, vnode, vp,
3580 	    tnf_offset, offset, pp->p_offset);
3581 
3582 	/*
3583 	 *
3584 	 */
3585 	VM_STAT_ADD(hashout_count);
3586 	index = PAGE_HASH_FUNC(vp, pp->p_offset);
3587 	if (phm == NULL) {
3588 		VM_STAT_ADD(hashout_not_held);
3589 		nphm = PAGE_HASH_MUTEX(index);
3590 		mutex_enter(nphm);
3591 	}
3592 	ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3593 
3594 
3595 	/*
3596 	 * grab page vnode mutex and remove it...
3597 	 */
3598 	vphm = page_vnode_mutex(vp);
3599 	mutex_enter(vphm);
3600 
3601 	page_do_hashout(pp);
3602 
3603 	mutex_exit(vphm);
3604 	if (phm == NULL)
3605 		mutex_exit(nphm);
3606 
3607 	/*
3608 	 * Wake up processes waiting for this page.  The page's
3609 	 * identity has been changed, and is probably not the
3610 	 * desired page any longer.
3611 	 */
3612 	sep = page_se_mutex(pp);
3613 	mutex_enter(sep);
3614 	pp->p_selock &= ~SE_EWANTED;
3615 	if (CV_HAS_WAITERS(&pp->p_cv))
3616 		cv_broadcast(&pp->p_cv);
3617 	mutex_exit(sep);
3618 }
3619 
3620 /*
3621  * Add the page to the front of a linked list of pages
3622  * using the p_next & p_prev pointers for the list.
3623  * The caller is responsible for protecting the list pointers.
3624  */
3625 void
3626 page_add(page_t **ppp, page_t *pp)
3627 {
3628 	ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3629 
3630 	page_add_common(ppp, pp);
3631 }
3632 
3633 
3634 
3635 /*
3636  *  Common code for page_add() and mach_page_add()
3637  */
3638 void
3639 page_add_common(page_t **ppp, page_t *pp)
3640 {
3641 	if (*ppp == NULL) {
3642 		pp->p_next = pp->p_prev = pp;
3643 	} else {
3644 		pp->p_next = *ppp;
3645 		pp->p_prev = (*ppp)->p_prev;
3646 		(*ppp)->p_prev = pp;
3647 		pp->p_prev->p_next = pp;
3648 	}
3649 	*ppp = pp;
3650 }
3651 
3652 
3653 /*
3654  * Remove this page from a linked list of pages
3655  * using the p_next & p_prev pointers for the list.
3656  *
3657  * The caller is responsible for protecting the list pointers.
3658  */
3659 void
3660 page_sub(page_t **ppp, page_t *pp)
3661 {
3662 	ASSERT((PP_ISFREE(pp)) ? 1 :
3663 	    (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3664 
3665 	if (*ppp == NULL || pp == NULL) {
3666 		panic("page_sub: bad arg(s): pp %p, *ppp %p",
3667 		    (void *)pp, (void *)(*ppp));
3668 		/*NOTREACHED*/
3669 	}
3670 
3671 	page_sub_common(ppp, pp);
3672 }
3673 
3674 
3675 /*
3676  *  Common code for page_sub() and mach_page_sub()
3677  */
3678 void
3679 page_sub_common(page_t **ppp, page_t *pp)
3680 {
3681 	if (*ppp == pp)
3682 		*ppp = pp->p_next;		/* go to next page */
3683 
3684 	if (*ppp == pp)
3685 		*ppp = NULL;			/* page list is gone */
3686 	else {
3687 		pp->p_prev->p_next = pp->p_next;
3688 		pp->p_next->p_prev = pp->p_prev;
3689 	}
3690 	pp->p_prev = pp->p_next = pp;		/* make pp a list of one */
3691 }
3692 
3693 
3694 /*
3695  * Break page list cppp into two lists with npages in the first list.
3696  * The tail is returned in nppp.
3697  */
3698 void
3699 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3700 {
3701 	page_t *s1pp = *oppp;
3702 	page_t *s2pp;
3703 	page_t *e1pp, *e2pp;
3704 	long n = 0;
3705 
3706 	if (s1pp == NULL) {
3707 		*nppp = NULL;
3708 		return;
3709 	}
3710 	if (npages == 0) {
3711 		*nppp = s1pp;
3712 		*oppp = NULL;
3713 		return;
3714 	}
3715 	for (n = 0, s2pp = *oppp; n < npages; n++) {
3716 		s2pp = s2pp->p_next;
3717 	}
3718 	/* Fix head and tail of new lists */
3719 	e1pp = s2pp->p_prev;
3720 	e2pp = s1pp->p_prev;
3721 	s1pp->p_prev = e1pp;
3722 	e1pp->p_next = s1pp;
3723 	s2pp->p_prev = e2pp;
3724 	e2pp->p_next = s2pp;
3725 
3726 	/* second list empty */
3727 	if (s2pp == s1pp) {
3728 		*oppp = s1pp;
3729 		*nppp = NULL;
3730 	} else {
3731 		*oppp = s1pp;
3732 		*nppp = s2pp;
3733 	}
3734 }
3735 
3736 /*
3737  * Concatenate page list nppp onto the end of list ppp.
3738  */
3739 void
3740 page_list_concat(page_t **ppp, page_t **nppp)
3741 {
3742 	page_t *s1pp, *s2pp, *e1pp, *e2pp;
3743 
3744 	if (*nppp == NULL) {
3745 		return;
3746 	}
3747 	if (*ppp == NULL) {
3748 		*ppp = *nppp;
3749 		return;
3750 	}
3751 	s1pp = *ppp;
3752 	e1pp =  s1pp->p_prev;
3753 	s2pp = *nppp;
3754 	e2pp = s2pp->p_prev;
3755 	s1pp->p_prev = e2pp;
3756 	e2pp->p_next = s1pp;
3757 	e1pp->p_next = s2pp;
3758 	s2pp->p_prev = e1pp;
3759 }
3760 
3761 /*
3762  * return the next page in the page list
3763  */
3764 page_t *
3765 page_list_next(page_t *pp)
3766 {
3767 	return (pp->p_next);
3768 }
3769 
3770 
3771 /*
3772  * Add the page to the front of the linked list of pages
3773  * using p_vpnext/p_vpprev pointers for the list.
3774  *
3775  * The caller is responsible for protecting the lists.
3776  */
3777 void
3778 page_vpadd(page_t **ppp, page_t *pp)
3779 {
3780 	if (*ppp == NULL) {
3781 		pp->p_vpnext = pp->p_vpprev = pp;
3782 	} else {
3783 		pp->p_vpnext = *ppp;
3784 		pp->p_vpprev = (*ppp)->p_vpprev;
3785 		(*ppp)->p_vpprev = pp;
3786 		pp->p_vpprev->p_vpnext = pp;
3787 	}
3788 	*ppp = pp;
3789 }
3790 
3791 /*
3792  * Remove this page from the linked list of pages
3793  * using p_vpnext/p_vpprev pointers for the list.
3794  *
3795  * The caller is responsible for protecting the lists.
3796  */
3797 void
3798 page_vpsub(page_t **ppp, page_t *pp)
3799 {
3800 	if (*ppp == NULL || pp == NULL) {
3801 		panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3802 		    (void *)pp, (void *)(*ppp));
3803 		/*NOTREACHED*/
3804 	}
3805 
3806 	if (*ppp == pp)
3807 		*ppp = pp->p_vpnext;		/* go to next page */
3808 
3809 	if (*ppp == pp)
3810 		*ppp = NULL;			/* page list is gone */
3811 	else {
3812 		pp->p_vpprev->p_vpnext = pp->p_vpnext;
3813 		pp->p_vpnext->p_vpprev = pp->p_vpprev;
3814 	}
3815 	pp->p_vpprev = pp->p_vpnext = pp;	/* make pp a list of one */
3816 }
3817 
3818 /*
3819  * Lock a physical page into memory "long term".  Used to support "lock
3820  * in memory" functions.  Accepts the page to be locked, and a cow variable
3821  * to indicate whether a the lock will travel to the new page during
3822  * a potential copy-on-write.
3823  */
3824 int
3825 page_pp_lock(
3826 	page_t *pp,			/* page to be locked */
3827 	int cow,			/* cow lock */
3828 	int kernel)			/* must succeed -- ignore checking */
3829 {
3830 	int r = 0;			/* result -- assume failure */
3831 
3832 	ASSERT(PAGE_LOCKED(pp));
3833 
3834 	page_struct_lock(pp);
3835 	/*
3836 	 * Acquire the "freemem_lock" for availrmem.
3837 	 */
3838 	if (cow) {
3839 		if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3840 			if (!anon_swap_adjust(1, pages_pp_maximum, 0)) {
3841 				mutex_enter(&pages_locked_lock);
3842 				pages_locked++;
3843 				mutex_exit(&pages_locked_lock);
3844 				r = 1;
3845 				if (++pp->p_cowcnt ==
3846 				    (ushort_t)PAGE_LOCK_MAXIMUM) {
3847 					cmn_err(CE_WARN,
3848 					    "COW lock limit on pfn 0x%lx",
3849 					page_pptonum(pp));
3850 				}
3851 			}
3852 		}
3853 	} else {
3854 		if (pp->p_lckcnt) {
3855 			if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3856 				r = 1;
3857 				if (++pp->p_lckcnt ==
3858 				    (ushort_t)PAGE_LOCK_MAXIMUM) {
3859 					cmn_err(CE_WARN, "Page lock limit "
3860 					    "reached on pfn 0x%lx",
3861 					    page_pptonum(pp));
3862 				}
3863 			}
3864 		} else {
3865 			if (kernel) {
3866 				/* availrmem accounting done by caller */
3867 				++pp->p_lckcnt;
3868 				r = 1;
3869 			} else {
3870 				if (!anon_swap_adjust(1, pages_pp_maximum, 0)) {
3871 					mutex_enter(&pages_locked_lock);
3872 					pages_locked++;
3873 					mutex_exit(&pages_locked_lock);
3874 					++pp->p_lckcnt;
3875 					r = 1;
3876 				}
3877 			}
3878 		}
3879 	}
3880 	page_struct_unlock(pp);
3881 	return (r);
3882 }
3883 
3884 /*
3885  * Decommit a lock on a physical page frame.  Account for cow locks if
3886  * appropriate.
3887  */
3888 void
3889 page_pp_unlock(
3890 	page_t *pp,			/* page to be unlocked */
3891 	int cow,			/* expect cow lock */
3892 	int kernel)			/* this was a kernel lock */
3893 {
3894 	ASSERT(PAGE_LOCKED(pp));
3895 
3896 	page_struct_lock(pp);
3897 	/*
3898 	 * Acquire the "freemem_lock" for availrmem.
3899 	 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3900 	 * could be called to unlock even if nothing is locked. This could
3901 	 * happen if locked file pages were truncated (removing the lock)
3902 	 * and the file was grown again and new pages faulted in; the new
3903 	 * pages are unlocked but the segment still thinks they're locked.
3904 	 */
3905 	if (cow) {
3906 		if (pp->p_cowcnt) {
3907 			anon_swap_restore(1);
3908 			pp->p_cowcnt--;
3909 			mutex_enter(&pages_locked_lock);
3910 			pages_locked--;
3911 			mutex_exit(&pages_locked_lock);
3912 		}
3913 	} else {
3914 		if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
3915 			if (!kernel) {
3916 				anon_swap_restore(1);
3917 				mutex_enter(&pages_locked_lock);
3918 				pages_locked--;
3919 				mutex_exit(&pages_locked_lock);
3920 			}
3921 		}
3922 	}
3923 	page_struct_unlock(pp);
3924 }
3925 
3926 /*
3927  * This routine reserves availrmem for npages;
3928  * 	flags: KM_NOSLEEP or KM_SLEEP
3929  * 	returns 1 on success or 0 on failure
3930  */
3931 int
3932 page_resv(pgcnt_t npages, uint_t flags)
3933 {
3934 	mutex_enter(&freemem_lock);
3935 	while (availrmem < tune.t_minarmem + npages) {
3936 		if (flags & KM_NOSLEEP) {
3937 			mutex_exit(&freemem_lock);
3938 			return (0);
3939 		}
3940 		mutex_exit(&freemem_lock);
3941 		page_needfree(npages);
3942 		kmem_reap();
3943 		delay(hz >> 2);
3944 		page_needfree(-(spgcnt_t)npages);
3945 		mutex_enter(&freemem_lock);
3946 	}
3947 	availrmem -= npages;
3948 	mutex_exit(&freemem_lock);
3949 	return (1);
3950 }
3951 
3952 /*
3953  * This routine unreserves availrmem for npages;
3954  */
3955 void
3956 page_unresv(pgcnt_t npages)
3957 {
3958 	mutex_enter(&freemem_lock);
3959 	availrmem += npages;
3960 	mutex_exit(&freemem_lock);
3961 }
3962 
3963 /*
3964  * See Statement at the beginning of segvn_lockop() regarding
3965  * the way we handle cowcnts and lckcnts.
3966  *
3967  * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
3968  * that breaks COW has PROT_WRITE.
3969  *
3970  * Note that, we may also break COW in case we are softlocking
3971  * on read access during physio;
3972  * in this softlock case, the vpage may not have PROT_WRITE.
3973  * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
3974  * if the vpage doesn't have PROT_WRITE.
3975  *
3976  * This routine is never called if we are stealing a page
3977  * in anon_private.
3978  *
3979  * The caller subtracted from availrmem for read only mapping.
3980  * if lckcnt is 1 increment availrmem.
3981  */
3982 void
3983 page_pp_useclaim(
3984 	page_t *opp,		/* original page frame losing lock */
3985 	page_t *npp,		/* new page frame gaining lock */
3986 	uint_t	write_perm) 	/* set if vpage has PROT_WRITE */
3987 {
3988 	int payback = 0;
3989 	int nidx, oidx;
3990 
3991 	ASSERT(PAGE_LOCKED(opp));
3992 	ASSERT(PAGE_LOCKED(npp));
3993 
3994 	/*
3995 	 * Since we have two pages we probably have two locks.  We need to take
3996 	 * them in a defined order to avoid deadlocks.  It's also possible they
3997 	 * both hash to the same lock in which case this is a non-issue.
3998 	 */
3999 	nidx = PAGE_LLOCK_HASH(PP_PAGEROOT(npp));
4000 	oidx = PAGE_LLOCK_HASH(PP_PAGEROOT(opp));
4001 	if (nidx < oidx) {
4002 		page_struct_lock(npp);
4003 		page_struct_lock(opp);
4004 	} else if (oidx < nidx) {
4005 		page_struct_lock(opp);
4006 		page_struct_lock(npp);
4007 	} else {	/* The pages hash to the same lock */
4008 		page_struct_lock(npp);
4009 	}
4010 
4011 	ASSERT(npp->p_cowcnt == 0);
4012 	ASSERT(npp->p_lckcnt == 0);
4013 
4014 	/* Don't use claim if nothing is locked (see page_pp_unlock above) */
4015 	if ((write_perm && opp->p_cowcnt != 0) ||
4016 	    (!write_perm && opp->p_lckcnt != 0)) {
4017 
4018 		if (write_perm) {
4019 			npp->p_cowcnt++;
4020 			ASSERT(opp->p_cowcnt != 0);
4021 			opp->p_cowcnt--;
4022 		} else {
4023 
4024 			ASSERT(opp->p_lckcnt != 0);
4025 
4026 			/*
4027 			 * We didn't need availrmem decremented if p_lckcnt on
4028 			 * original page is 1. Here, we are unlocking
4029 			 * read-only copy belonging to original page and
4030 			 * are locking a copy belonging to new page.
4031 			 */
4032 			if (opp->p_lckcnt == 1)
4033 				payback = 1;
4034 
4035 			npp->p_lckcnt++;
4036 			opp->p_lckcnt--;
4037 		}
4038 	}
4039 	if (payback) {
4040 		mutex_enter(&freemem_lock);
4041 		availrmem++;
4042 		pages_useclaim--;
4043 		mutex_exit(&freemem_lock);
4044 	}
4045 
4046 	if (nidx < oidx) {
4047 		page_struct_unlock(opp);
4048 		page_struct_unlock(npp);
4049 	} else if (oidx < nidx) {
4050 		page_struct_unlock(npp);
4051 		page_struct_unlock(opp);
4052 	} else {	/* The pages hash to the same lock */
4053 		page_struct_unlock(npp);
4054 	}
4055 }
4056 
4057 /*
4058  * Simple claim adjust functions -- used to support changes in
4059  * claims due to changes in access permissions.  Used by segvn_setprot().
4060  */
4061 int
4062 page_addclaim(page_t *pp)
4063 {
4064 	int r = 0;			/* result */
4065 
4066 	ASSERT(PAGE_LOCKED(pp));
4067 
4068 	page_struct_lock(pp);
4069 	ASSERT(pp->p_lckcnt != 0);
4070 
4071 	if (pp->p_lckcnt == 1) {
4072 		if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4073 			--pp->p_lckcnt;
4074 			r = 1;
4075 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4076 				cmn_err(CE_WARN,
4077 				    "COW lock limit reached on pfn 0x%lx",
4078 				    page_pptonum(pp));
4079 			}
4080 		}
4081 	} else {
4082 		mutex_enter(&freemem_lock);
4083 		if ((availrmem > pages_pp_maximum) &&
4084 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4085 			--availrmem;
4086 			++pages_claimed;
4087 			mutex_exit(&freemem_lock);
4088 			--pp->p_lckcnt;
4089 			r = 1;
4090 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4091 				cmn_err(CE_WARN,
4092 				    "COW lock limit reached on pfn 0x%lx",
4093 				    page_pptonum(pp));
4094 			}
4095 		} else
4096 			mutex_exit(&freemem_lock);
4097 	}
4098 	page_struct_unlock(pp);
4099 	return (r);
4100 }
4101 
4102 int
4103 page_subclaim(page_t *pp)
4104 {
4105 	int r = 0;
4106 
4107 	ASSERT(PAGE_LOCKED(pp));
4108 
4109 	page_struct_lock(pp);
4110 	ASSERT(pp->p_cowcnt != 0);
4111 
4112 	if (pp->p_lckcnt) {
4113 		if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4114 			r = 1;
4115 			/*
4116 			 * for availrmem
4117 			 */
4118 			mutex_enter(&freemem_lock);
4119 			availrmem++;
4120 			pages_claimed--;
4121 			mutex_exit(&freemem_lock);
4122 
4123 			pp->p_cowcnt--;
4124 
4125 			if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4126 				cmn_err(CE_WARN,
4127 				    "Page lock limit reached on pfn 0x%lx",
4128 				    page_pptonum(pp));
4129 			}
4130 		}
4131 	} else {
4132 		r = 1;
4133 		pp->p_cowcnt--;
4134 		pp->p_lckcnt++;
4135 	}
4136 	page_struct_unlock(pp);
4137 	return (r);
4138 }
4139 
4140 /*
4141  * Variant of page_addclaim(), where ppa[] contains the pages of a single large
4142  * page.
4143  */
4144 int
4145 page_addclaim_pages(page_t  **ppa)
4146 {
4147 	pgcnt_t	lckpgs = 0, pg_idx;
4148 
4149 	VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4150 
4151 	/*
4152 	 * Only need to take the page struct lock on the large page root.
4153 	 */
4154 	page_struct_lock(ppa[0]);
4155 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4156 
4157 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4158 		ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4159 		if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4160 			page_struct_unlock(ppa[0]);
4161 			return (0);
4162 		}
4163 		if (ppa[pg_idx]->p_lckcnt > 1)
4164 			lckpgs++;
4165 	}
4166 
4167 	if (lckpgs != 0) {
4168 		mutex_enter(&freemem_lock);
4169 		if (availrmem >= pages_pp_maximum + lckpgs) {
4170 			availrmem -= lckpgs;
4171 			pages_claimed += lckpgs;
4172 		} else {
4173 			mutex_exit(&freemem_lock);
4174 			page_struct_unlock(ppa[0]);
4175 			return (0);
4176 		}
4177 		mutex_exit(&freemem_lock);
4178 	}
4179 
4180 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4181 		ppa[pg_idx]->p_lckcnt--;
4182 		ppa[pg_idx]->p_cowcnt++;
4183 	}
4184 	page_struct_unlock(ppa[0]);
4185 	return (1);
4186 }
4187 
4188 /*
4189  * Variant of page_subclaim(), where ppa[] contains the pages of a single large
4190  * page.
4191  */
4192 int
4193 page_subclaim_pages(page_t  **ppa)
4194 {
4195 	pgcnt_t	ulckpgs = 0, pg_idx;
4196 
4197 	VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4198 
4199 	/*
4200 	 * Only need to take the page struct lock on the large page root.
4201 	 */
4202 	page_struct_lock(ppa[0]);
4203 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4204 
4205 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4206 		ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4207 		if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4208 			page_struct_unlock(ppa[0]);
4209 			return (0);
4210 		}
4211 		if (ppa[pg_idx]->p_lckcnt != 0)
4212 			ulckpgs++;
4213 	}
4214 
4215 	if (ulckpgs != 0) {
4216 		mutex_enter(&freemem_lock);
4217 		availrmem += ulckpgs;
4218 		pages_claimed -= ulckpgs;
4219 		mutex_exit(&freemem_lock);
4220 	}
4221 
4222 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4223 		ppa[pg_idx]->p_cowcnt--;
4224 		ppa[pg_idx]->p_lckcnt++;
4225 
4226 	}
4227 	page_struct_unlock(ppa[0]);
4228 	return (1);
4229 }
4230 
4231 page_t *
4232 page_numtopp(pfn_t pfnum, se_t se)
4233 {
4234 	page_t *pp;
4235 
4236 retry:
4237 	pp = page_numtopp_nolock(pfnum);
4238 	if (pp == NULL) {
4239 		return ((page_t *)NULL);
4240 	}
4241 
4242 	/*
4243 	 * Acquire the appropriate lock on the page.
4244 	 */
4245 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4246 		if (page_pptonum(pp) != pfnum)
4247 			goto retry;
4248 		continue;
4249 	}
4250 
4251 	if (page_pptonum(pp) != pfnum) {
4252 		page_unlock(pp);
4253 		goto retry;
4254 	}
4255 
4256 	return (pp);
4257 }
4258 
4259 page_t *
4260 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4261 {
4262 	page_t *pp;
4263 
4264 retry:
4265 	pp = page_numtopp_nolock(pfnum);
4266 	if (pp == NULL) {
4267 		return ((page_t *)NULL);
4268 	}
4269 
4270 	/*
4271 	 * Acquire the appropriate lock on the page.
4272 	 */
4273 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4274 		if (page_pptonum(pp) != pfnum)
4275 			goto retry;
4276 		continue;
4277 	}
4278 
4279 	if (page_pptonum(pp) != pfnum) {
4280 		page_unlock(pp);
4281 		goto retry;
4282 	}
4283 
4284 	return (pp);
4285 }
4286 
4287 /*
4288  * This routine is like page_numtopp, but will only return page structs
4289  * for pages which are ok for loading into hardware using the page struct.
4290  */
4291 page_t *
4292 page_numtopp_nowait(pfn_t pfnum, se_t se)
4293 {
4294 	page_t *pp;
4295 
4296 retry:
4297 	pp = page_numtopp_nolock(pfnum);
4298 	if (pp == NULL) {
4299 		return ((page_t *)NULL);
4300 	}
4301 
4302 	/*
4303 	 * Try to acquire the appropriate lock on the page.
4304 	 */
4305 	if (PP_ISFREE(pp))
4306 		pp = NULL;
4307 	else {
4308 		if (!page_trylock(pp, se))
4309 			pp = NULL;
4310 		else {
4311 			if (page_pptonum(pp) != pfnum) {
4312 				page_unlock(pp);
4313 				goto retry;
4314 			}
4315 			if (PP_ISFREE(pp)) {
4316 				page_unlock(pp);
4317 				pp = NULL;
4318 			}
4319 		}
4320 	}
4321 	return (pp);
4322 }
4323 
4324 #define	SYNC_PROGRESS_NPAGES	1000
4325 
4326 /*
4327  * Returns a count of dirty pages that are in the process
4328  * of being written out.  If 'cleanit' is set, try to push the page.
4329  */
4330 pgcnt_t
4331 page_busy(int cleanit)
4332 {
4333 	page_t *page0 = page_first();
4334 	page_t *pp = page0;
4335 	pgcnt_t nppbusy = 0;
4336 	int counter = 0;
4337 	u_offset_t off;
4338 
4339 	do {
4340 		vnode_t *vp = pp->p_vnode;
4341 
4342 		/*
4343 		 * Reset the sync timeout. The page list is very long
4344 		 * on large memory systems.
4345 		 */
4346 		if (++counter > SYNC_PROGRESS_NPAGES) {
4347 			counter = 0;
4348 			vfs_syncprogress();
4349 		}
4350 
4351 		/*
4352 		 * A page is a candidate for syncing if it is:
4353 		 *
4354 		 * (a)	On neither the freelist nor the cachelist
4355 		 * (b)	Hashed onto a vnode
4356 		 * (c)	Not a kernel page
4357 		 * (d)	Dirty
4358 		 * (e)	Not part of a swapfile
4359 		 * (f)	a page which belongs to a real vnode; eg has a non-null
4360 		 *	v_vfsp pointer.
4361 		 * (g)	Backed by a filesystem which doesn't have a
4362 		 *	stubbed-out sync operation
4363 		 */
4364 		if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
4365 		    hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4366 		    vfs_can_sync(vp->v_vfsp)) {
4367 			nppbusy++;
4368 
4369 			if (!cleanit)
4370 				continue;
4371 			if (!page_trylock(pp, SE_EXCL))
4372 				continue;
4373 
4374 			if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4375 			    pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4376 			    !(hat_pagesync(pp,
4377 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4378 				page_unlock(pp);
4379 				continue;
4380 			}
4381 			off = pp->p_offset;
4382 			VN_HOLD(vp);
4383 			page_unlock(pp);
4384 			(void) VOP_PUTPAGE(vp, off, PAGESIZE,
4385 			    B_ASYNC | B_FREE, kcred, NULL);
4386 			VN_RELE(vp);
4387 		}
4388 	} while ((pp = page_next(pp)) != page0);
4389 
4390 	vfs_syncprogress();
4391 	return (nppbusy);
4392 }
4393 
4394 void page_invalidate_pages(void);
4395 
4396 /*
4397  * callback handler to vm sub-system
4398  *
4399  * callers make sure no recursive entries to this func.
4400  */
4401 /*ARGSUSED*/
4402 boolean_t
4403 callb_vm_cpr(void *arg, int code)
4404 {
4405 	if (code == CB_CODE_CPR_CHKPT)
4406 		page_invalidate_pages();
4407 	return (B_TRUE);
4408 }
4409 
4410 /*
4411  * Invalidate all pages of the system.
4412  * It shouldn't be called until all user page activities are all stopped.
4413  */
4414 void
4415 page_invalidate_pages()
4416 {
4417 	page_t *pp;
4418 	page_t *page0;
4419 	pgcnt_t nbusypages;
4420 	int retry = 0;
4421 	const int MAXRETRIES = 4;
4422 top:
4423 	/*
4424 	 * Flush dirty pages and destroy the clean ones.
4425 	 */
4426 	nbusypages = 0;
4427 
4428 	pp = page0 = page_first();
4429 	do {
4430 		struct vnode	*vp;
4431 		u_offset_t	offset;
4432 		int		mod;
4433 
4434 		/*
4435 		 * skip the page if it has no vnode or the page associated
4436 		 * with the kernel vnode or prom allocated kernel mem.
4437 		 */
4438 		if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
4439 			continue;
4440 
4441 		/*
4442 		 * skip the page which is already free invalidated.
4443 		 */
4444 		if (PP_ISFREE(pp) && PP_ISAGED(pp))
4445 			continue;
4446 
4447 		/*
4448 		 * skip pages that are already locked or can't be "exclusively"
4449 		 * locked or are already free.  After we lock the page, check
4450 		 * the free and age bits again to be sure it's not destroyed
4451 		 * yet.
4452 		 * To achieve max. parallelization, we use page_trylock instead
4453 		 * of page_lock so that we don't get block on individual pages
4454 		 * while we have thousands of other pages to process.
4455 		 */
4456 		if (!page_trylock(pp, SE_EXCL)) {
4457 			nbusypages++;
4458 			continue;
4459 		} else if (PP_ISFREE(pp)) {
4460 			if (!PP_ISAGED(pp)) {
4461 				page_destroy_free(pp);
4462 			} else {
4463 				page_unlock(pp);
4464 			}
4465 			continue;
4466 		}
4467 		/*
4468 		 * Is this page involved in some I/O? shared?
4469 		 *
4470 		 * The page_struct_lock need not be acquired to
4471 		 * examine these fields since the page has an
4472 		 * "exclusive" lock.
4473 		 */
4474 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4475 			page_unlock(pp);
4476 			continue;
4477 		}
4478 
4479 		if (vp->v_type == VCHR) {
4480 			panic("vp->v_type == VCHR");
4481 			/*NOTREACHED*/
4482 		}
4483 
4484 		if (!page_try_demote_pages(pp)) {
4485 			page_unlock(pp);
4486 			continue;
4487 		}
4488 
4489 		/*
4490 		 * Check the modified bit. Leave the bits alone in hardware
4491 		 * (they will be modified if we do the putpage).
4492 		 */
4493 		mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4494 		    & P_MOD);
4495 		if (mod) {
4496 			offset = pp->p_offset;
4497 			/*
4498 			 * Hold the vnode before releasing the page lock
4499 			 * to prevent it from being freed and re-used by
4500 			 * some other thread.
4501 			 */
4502 			VN_HOLD(vp);
4503 			page_unlock(pp);
4504 			/*
4505 			 * No error return is checked here. Callers such as
4506 			 * cpr deals with the dirty pages at the dump time
4507 			 * if this putpage fails.
4508 			 */
4509 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4510 			    kcred, NULL);
4511 			VN_RELE(vp);
4512 		} else {
4513 			/*LINTED: constant in conditional context*/
4514 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
4515 		}
4516 	} while ((pp = page_next(pp)) != page0);
4517 	if (nbusypages && retry++ < MAXRETRIES) {
4518 		delay(1);
4519 		goto top;
4520 	}
4521 }
4522 
4523 /*
4524  * Replace the page "old" with the page "new" on the page hash and vnode lists
4525  *
4526  * the replacement must be done in place, ie the equivalent sequence:
4527  *
4528  *	vp = old->p_vnode;
4529  *	off = old->p_offset;
4530  *	page_do_hashout(old)
4531  *	page_do_hashin(new, vp, off)
4532  *
4533  * doesn't work, since
4534  *  1) if old is the only page on the vnode, the v_pages list has a window
4535  *     where it looks empty. This will break file system assumptions.
4536  * and
4537  *  2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4538  */
4539 static void
4540 page_do_relocate_hash(page_t *new, page_t *old)
4541 {
4542 	page_t	**hash_list;
4543 	vnode_t	*vp = old->p_vnode;
4544 	kmutex_t *sep;
4545 
4546 	ASSERT(PAGE_EXCL(old));
4547 	ASSERT(PAGE_EXCL(new));
4548 	ASSERT(vp != NULL);
4549 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4550 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4551 
4552 	/*
4553 	 * First find old page on the page hash list
4554 	 */
4555 	hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4556 
4557 	for (;;) {
4558 		if (*hash_list == old)
4559 			break;
4560 		if (*hash_list == NULL) {
4561 			panic("page_do_hashout");
4562 			/*NOTREACHED*/
4563 		}
4564 		hash_list = &(*hash_list)->p_hash;
4565 	}
4566 
4567 	/*
4568 	 * update new and replace old with new on the page hash list
4569 	 */
4570 	new->p_vnode = old->p_vnode;
4571 	new->p_offset = old->p_offset;
4572 	new->p_hash = old->p_hash;
4573 	*hash_list = new;
4574 
4575 	if ((new->p_vnode->v_flag & VISSWAP) != 0)
4576 		PP_SETSWAP(new);
4577 
4578 	/*
4579 	 * replace old with new on the vnode's page list
4580 	 */
4581 	if (old->p_vpnext == old) {
4582 		new->p_vpnext = new;
4583 		new->p_vpprev = new;
4584 	} else {
4585 		new->p_vpnext = old->p_vpnext;
4586 		new->p_vpprev = old->p_vpprev;
4587 		new->p_vpnext->p_vpprev = new;
4588 		new->p_vpprev->p_vpnext = new;
4589 	}
4590 	if (vp->v_pages == old)
4591 		vp->v_pages = new;
4592 
4593 	/*
4594 	 * clear out the old page
4595 	 */
4596 	old->p_hash = NULL;
4597 	old->p_vpnext = NULL;
4598 	old->p_vpprev = NULL;
4599 	old->p_vnode = NULL;
4600 	PP_CLRSWAP(old);
4601 	old->p_offset = (u_offset_t)-1;
4602 	page_clr_all_props(old);
4603 
4604 	/*
4605 	 * Wake up processes waiting for this page.  The page's
4606 	 * identity has been changed, and is probably not the
4607 	 * desired page any longer.
4608 	 */
4609 	sep = page_se_mutex(old);
4610 	mutex_enter(sep);
4611 	old->p_selock &= ~SE_EWANTED;
4612 	if (CV_HAS_WAITERS(&old->p_cv))
4613 		cv_broadcast(&old->p_cv);
4614 	mutex_exit(sep);
4615 }
4616 
4617 /*
4618  * This function moves the identity of page "pp_old" to page "pp_new".
4619  * Both pages must be locked on entry.  "pp_new" is free, has no identity,
4620  * and need not be hashed out from anywhere.
4621  */
4622 void
4623 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4624 {
4625 	vnode_t *vp = pp_old->p_vnode;
4626 	u_offset_t off = pp_old->p_offset;
4627 	kmutex_t *phm, *vphm;
4628 
4629 	/*
4630 	 * Rehash two pages
4631 	 */
4632 	ASSERT(PAGE_EXCL(pp_old));
4633 	ASSERT(PAGE_EXCL(pp_new));
4634 	ASSERT(vp != NULL);
4635 	ASSERT(pp_new->p_vnode == NULL);
4636 
4637 	/*
4638 	 * hashout then hashin while holding the mutexes
4639 	 */
4640 	phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4641 	mutex_enter(phm);
4642 	vphm = page_vnode_mutex(vp);
4643 	mutex_enter(vphm);
4644 
4645 	page_do_relocate_hash(pp_new, pp_old);
4646 
4647 	/* The following comment preserved from page_flip(). */
4648 	pp_new->p_fsdata = pp_old->p_fsdata;
4649 	pp_old->p_fsdata = 0;
4650 	mutex_exit(vphm);
4651 	mutex_exit(phm);
4652 
4653 	/*
4654 	 * The page_struct_lock need not be acquired for lckcnt and
4655 	 * cowcnt since the page has an "exclusive" lock.
4656 	 */
4657 	ASSERT(pp_new->p_lckcnt == 0);
4658 	ASSERT(pp_new->p_cowcnt == 0);
4659 	pp_new->p_lckcnt = pp_old->p_lckcnt;
4660 	pp_new->p_cowcnt = pp_old->p_cowcnt;
4661 	pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4662 
4663 }
4664 
4665 /*
4666  * Helper routine used to lock all remaining members of a
4667  * large page. The caller is responsible for passing in a locked
4668  * pp. If pp is a large page, then it succeeds in locking all the
4669  * remaining constituent pages or it returns with only the
4670  * original page locked.
4671  *
4672  * Returns 1 on success, 0 on failure.
4673  *
4674  * If success is returned this routine guarantees p_szc for all constituent
4675  * pages of a large page pp belongs to can't change. To achieve this we
4676  * recheck szc of pp after locking all constituent pages and retry if szc
4677  * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4678  * lock on one of constituent pages it can't be running after all constituent
4679  * pages are locked.  hat_page_demote() with a lock on a constituent page
4680  * outside of this large page (i.e. pp belonged to a larger large page) is
4681  * already done with all constituent pages of pp since the root's p_szc is
4682  * changed last. Therefore no need to synchronize with hat_page_demote() that
4683  * locked a constituent page outside of pp's current large page.
4684  */
4685 #ifdef DEBUG
4686 uint32_t gpg_trylock_mtbf = 0;
4687 #endif
4688 
4689 int
4690 group_page_trylock(page_t *pp, se_t se)
4691 {
4692 	page_t  *tpp;
4693 	pgcnt_t	npgs, i, j;
4694 	uint_t pszc = pp->p_szc;
4695 
4696 #ifdef DEBUG
4697 	if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4698 		return (0);
4699 	}
4700 #endif
4701 
4702 	if (pp != PP_GROUPLEADER(pp, pszc)) {
4703 		return (0);
4704 	}
4705 
4706 retry:
4707 	ASSERT(PAGE_LOCKED_SE(pp, se));
4708 	ASSERT(!PP_ISFREE(pp));
4709 	if (pszc == 0) {
4710 		return (1);
4711 	}
4712 	npgs = page_get_pagecnt(pszc);
4713 	tpp = pp + 1;
4714 	for (i = 1; i < npgs; i++, tpp++) {
4715 		if (!page_trylock(tpp, se)) {
4716 			tpp = pp + 1;
4717 			for (j = 1; j < i; j++, tpp++) {
4718 				page_unlock(tpp);
4719 			}
4720 			return (0);
4721 		}
4722 	}
4723 	if (pp->p_szc != pszc) {
4724 		ASSERT(pp->p_szc < pszc);
4725 		ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
4726 		    !IS_SWAPFSVP(pp->p_vnode));
4727 		tpp = pp + 1;
4728 		for (i = 1; i < npgs; i++, tpp++) {
4729 			page_unlock(tpp);
4730 		}
4731 		pszc = pp->p_szc;
4732 		goto retry;
4733 	}
4734 	return (1);
4735 }
4736 
4737 void
4738 group_page_unlock(page_t *pp)
4739 {
4740 	page_t *tpp;
4741 	pgcnt_t	npgs, i;
4742 
4743 	ASSERT(PAGE_LOCKED(pp));
4744 	ASSERT(!PP_ISFREE(pp));
4745 	ASSERT(pp == PP_PAGEROOT(pp));
4746 	npgs = page_get_pagecnt(pp->p_szc);
4747 	for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4748 		page_unlock(tpp);
4749 	}
4750 }
4751 
4752 /*
4753  * returns
4754  * 0 		: on success and *nrelocp is number of relocated PAGESIZE pages
4755  * ERANGE	: this is not a base page
4756  * EBUSY	: failure to get locks on the page/pages
4757  * ENOMEM	: failure to obtain replacement pages
4758  * EAGAIN	: OBP has not yet completed its boot-time handoff to the kernel
4759  * EIO		: An error occurred while trying to copy the page data
4760  *
4761  * Return with all constituent members of target and replacement
4762  * SE_EXCL locked. It is the callers responsibility to drop the
4763  * locks.
4764  */
4765 int
4766 do_page_relocate(
4767 	page_t **target,
4768 	page_t **replacement,
4769 	int grouplock,
4770 	spgcnt_t *nrelocp,
4771 	lgrp_t *lgrp)
4772 {
4773 	page_t *first_repl;
4774 	page_t *repl;
4775 	page_t *targ;
4776 	page_t *pl = NULL;
4777 	uint_t ppattr;
4778 	pfn_t   pfn, repl_pfn;
4779 	uint_t	szc;
4780 	spgcnt_t npgs, i;
4781 	int repl_contig = 0;
4782 	uint_t flags = 0;
4783 	spgcnt_t dofree = 0;
4784 
4785 	*nrelocp = 0;
4786 
4787 #if defined(__sparc)
4788 	/*
4789 	 * We need to wait till OBP has completed
4790 	 * its boot-time handoff of its resources to the kernel
4791 	 * before we allow page relocation
4792 	 */
4793 	if (page_relocate_ready == 0) {
4794 		return (EAGAIN);
4795 	}
4796 #endif
4797 
4798 	/*
4799 	 * If this is not a base page,
4800 	 * just return with 0x0 pages relocated.
4801 	 */
4802 	targ = *target;
4803 	ASSERT(PAGE_EXCL(targ));
4804 	ASSERT(!PP_ISFREE(targ));
4805 	szc = targ->p_szc;
4806 	ASSERT(szc < mmu_page_sizes);
4807 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4808 	pfn = targ->p_pagenum;
4809 	if (pfn != PFN_BASE(pfn, szc)) {
4810 		VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4811 		return (ERANGE);
4812 	}
4813 
4814 	if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4815 		repl_pfn = repl->p_pagenum;
4816 		if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4817 			VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4818 			return (ERANGE);
4819 		}
4820 		repl_contig = 1;
4821 	}
4822 
4823 	/*
4824 	 * We must lock all members of this large page or we cannot
4825 	 * relocate any part of it.
4826 	 */
4827 	if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4828 		VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4829 		return (EBUSY);
4830 	}
4831 
4832 	/*
4833 	 * reread szc it could have been decreased before
4834 	 * group_page_trylock() was done.
4835 	 */
4836 	szc = targ->p_szc;
4837 	ASSERT(szc < mmu_page_sizes);
4838 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4839 	ASSERT(pfn == PFN_BASE(pfn, szc));
4840 
4841 	npgs = page_get_pagecnt(targ->p_szc);
4842 
4843 	if (repl == NULL) {
4844 		dofree = npgs;		/* Size of target page in MMU pages */
4845 		if (!page_create_wait(dofree, 0)) {
4846 			if (grouplock != 0) {
4847 				group_page_unlock(targ);
4848 			}
4849 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4850 			return (ENOMEM);
4851 		}
4852 
4853 		/*
4854 		 * seg kmem pages require that the target and replacement
4855 		 * page be the same pagesize.
4856 		 */
4857 		flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
4858 		repl = page_get_replacement_page(targ, lgrp, flags);
4859 		if (repl == NULL) {
4860 			if (grouplock != 0) {
4861 				group_page_unlock(targ);
4862 			}
4863 			page_create_putback(dofree);
4864 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4865 			return (ENOMEM);
4866 		}
4867 	}
4868 #ifdef DEBUG
4869 	else {
4870 		ASSERT(PAGE_LOCKED(repl));
4871 	}
4872 #endif /* DEBUG */
4873 
4874 #if defined(__sparc)
4875 	/*
4876 	 * Let hat_page_relocate() complete the relocation if it's kernel page
4877 	 */
4878 	if (VN_ISKAS(targ->p_vnode)) {
4879 		*replacement = repl;
4880 		if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4881 			if (grouplock != 0) {
4882 				group_page_unlock(targ);
4883 			}
4884 			if (dofree) {
4885 				*replacement = NULL;
4886 				page_free_replacement_page(repl);
4887 				page_create_putback(dofree);
4888 			}
4889 			VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4890 			return (EAGAIN);
4891 		}
4892 		VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4893 		return (0);
4894 	}
4895 #else
4896 #if defined(lint)
4897 	dofree = dofree;
4898 #endif
4899 #endif
4900 
4901 	first_repl = repl;
4902 
4903 	for (i = 0; i < npgs; i++) {
4904 		ASSERT(PAGE_EXCL(targ));
4905 		ASSERT(targ->p_slckcnt == 0);
4906 		ASSERT(repl->p_slckcnt == 0);
4907 
4908 		(void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4909 
4910 		ASSERT(hat_page_getshare(targ) == 0);
4911 		ASSERT(!PP_ISFREE(targ));
4912 		ASSERT(targ->p_pagenum == (pfn + i));
4913 		ASSERT(repl_contig == 0 ||
4914 		    repl->p_pagenum == (repl_pfn + i));
4915 
4916 		/*
4917 		 * Copy the page contents and attributes then
4918 		 * relocate the page in the page hash.
4919 		 */
4920 		if (ppcopy(targ, repl) == 0) {
4921 			targ = *target;
4922 			repl = first_repl;
4923 			VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
4924 			if (grouplock != 0) {
4925 				group_page_unlock(targ);
4926 			}
4927 			if (dofree) {
4928 				*replacement = NULL;
4929 				page_free_replacement_page(repl);
4930 				page_create_putback(dofree);
4931 			}
4932 			return (EIO);
4933 		}
4934 
4935 		targ++;
4936 		if (repl_contig != 0) {
4937 			repl++;
4938 		} else {
4939 			repl = repl->p_next;
4940 		}
4941 	}
4942 
4943 	repl = first_repl;
4944 	targ = *target;
4945 
4946 	for (i = 0; i < npgs; i++) {
4947 		ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
4948 		page_clr_all_props(repl);
4949 		page_set_props(repl, ppattr);
4950 		page_relocate_hash(repl, targ);
4951 
4952 		ASSERT(hat_page_getshare(targ) == 0);
4953 		ASSERT(hat_page_getshare(repl) == 0);
4954 		/*
4955 		 * Now clear the props on targ, after the
4956 		 * page_relocate_hash(), they no longer
4957 		 * have any meaning.
4958 		 */
4959 		page_clr_all_props(targ);
4960 		ASSERT(targ->p_next == targ);
4961 		ASSERT(targ->p_prev == targ);
4962 		page_list_concat(&pl, &targ);
4963 
4964 		targ++;
4965 		if (repl_contig != 0) {
4966 			repl++;
4967 		} else {
4968 			repl = repl->p_next;
4969 		}
4970 	}
4971 	/* assert that we have come full circle with repl */
4972 	ASSERT(repl_contig == 1 || first_repl == repl);
4973 
4974 	*target = pl;
4975 	if (*replacement == NULL) {
4976 		ASSERT(first_repl == repl);
4977 		*replacement = repl;
4978 	}
4979 	VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4980 	*nrelocp = npgs;
4981 	return (0);
4982 }
4983 /*
4984  * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
4985  */
4986 int
4987 page_relocate(
4988 	page_t **target,
4989 	page_t **replacement,
4990 	int grouplock,
4991 	int freetarget,
4992 	spgcnt_t *nrelocp,
4993 	lgrp_t *lgrp)
4994 {
4995 	spgcnt_t ret;
4996 
4997 	/* do_page_relocate returns 0 on success or errno value */
4998 	ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
4999 
5000 	if (ret != 0 || freetarget == 0) {
5001 		return (ret);
5002 	}
5003 	if (*nrelocp == 1) {
5004 		ASSERT(*target != NULL);
5005 		page_free(*target, 1);
5006 	} else {
5007 		page_t *tpp = *target;
5008 		uint_t szc = tpp->p_szc;
5009 		pgcnt_t npgs = page_get_pagecnt(szc);
5010 		ASSERT(npgs > 1);
5011 		ASSERT(szc != 0);
5012 		do {
5013 			ASSERT(PAGE_EXCL(tpp));
5014 			ASSERT(!hat_page_is_mapped(tpp));
5015 			ASSERT(tpp->p_szc == szc);
5016 			PP_SETFREE(tpp);
5017 			PP_SETAGED(tpp);
5018 			npgs--;
5019 		} while ((tpp = tpp->p_next) != *target);
5020 		ASSERT(npgs == 0);
5021 		page_list_add_pages(*target, 0);
5022 		npgs = page_get_pagecnt(szc);
5023 		page_create_putback(npgs);
5024 	}
5025 	return (ret);
5026 }
5027 
5028 /*
5029  * it is up to the caller to deal with pcf accounting.
5030  */
5031 void
5032 page_free_replacement_page(page_t *pplist)
5033 {
5034 	page_t *pp;
5035 
5036 	while (pplist != NULL) {
5037 		/*
5038 		 * pp_targ is a linked list.
5039 		 */
5040 		pp = pplist;
5041 		if (pp->p_szc == 0) {
5042 			page_sub(&pplist, pp);
5043 			page_clr_all_props(pp);
5044 			PP_SETFREE(pp);
5045 			PP_SETAGED(pp);
5046 			page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5047 			page_unlock(pp);
5048 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5049 		} else {
5050 			spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5051 			page_t *tpp;
5052 			page_list_break(&pp, &pplist, curnpgs);
5053 			tpp = pp;
5054 			do {
5055 				ASSERT(PAGE_EXCL(tpp));
5056 				ASSERT(!hat_page_is_mapped(tpp));
5057 				page_clr_all_props(tpp);
5058 				PP_SETFREE(tpp);
5059 				PP_SETAGED(tpp);
5060 			} while ((tpp = tpp->p_next) != pp);
5061 			page_list_add_pages(pp, 0);
5062 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5063 		}
5064 	}
5065 }
5066 
5067 /*
5068  * Relocate target to non-relocatable replacement page.
5069  */
5070 int
5071 page_relocate_cage(page_t **target, page_t **replacement)
5072 {
5073 	page_t *tpp, *rpp;
5074 	spgcnt_t pgcnt, npgs;
5075 	int result;
5076 
5077 	tpp = *target;
5078 
5079 	ASSERT(PAGE_EXCL(tpp));
5080 	ASSERT(tpp->p_szc == 0);
5081 
5082 	pgcnt = btop(page_get_pagesize(tpp->p_szc));
5083 
5084 	do {
5085 		(void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5086 		rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5087 		if (rpp == NULL) {
5088 			page_create_putback(pgcnt);
5089 			kcage_cageout_wakeup();
5090 		}
5091 	} while (rpp == NULL);
5092 
5093 	ASSERT(PP_ISNORELOC(rpp));
5094 
5095 	result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5096 
5097 	if (result == 0) {
5098 		*replacement = rpp;
5099 		if (pgcnt != npgs)
5100 			panic("page_relocate_cage: partial relocation");
5101 	}
5102 
5103 	return (result);
5104 }
5105 
5106 /*
5107  * Release the page lock on a page, place on cachelist
5108  * tail if no longer mapped. Caller can let us know if
5109  * the page is known to be clean.
5110  */
5111 int
5112 page_release(page_t *pp, int checkmod)
5113 {
5114 	int status;
5115 
5116 	ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5117 	    (pp->p_vnode != NULL));
5118 
5119 	if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5120 	    ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5121 	    pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5122 	    !hat_page_is_mapped(pp)) {
5123 
5124 		/*
5125 		 * If page is modified, unlock it
5126 		 *
5127 		 * (p_nrm & P_MOD) bit has the latest stuff because:
5128 		 * (1) We found that this page doesn't have any mappings
5129 		 *	_after_ holding SE_EXCL and
5130 		 * (2) We didn't drop SE_EXCL lock after the check in (1)
5131 		 */
5132 		if (checkmod && hat_ismod(pp)) {
5133 			page_unlock(pp);
5134 			status = PGREL_MOD;
5135 		} else {
5136 			/*LINTED: constant in conditional context*/
5137 			VN_DISPOSE(pp, B_FREE, 0, kcred);
5138 			status = PGREL_CLEAN;
5139 		}
5140 	} else {
5141 		page_unlock(pp);
5142 		status = PGREL_NOTREL;
5143 	}
5144 	return (status);
5145 }
5146 
5147 /*
5148  * Given a constituent page, try to demote the large page on the freelist.
5149  *
5150  * Returns nonzero if the page could be demoted successfully. Returns with
5151  * the constituent page still locked.
5152  */
5153 int
5154 page_try_demote_free_pages(page_t *pp)
5155 {
5156 	page_t *rootpp = pp;
5157 	pfn_t	pfn = page_pptonum(pp);
5158 	spgcnt_t npgs;
5159 	uint_t	szc = pp->p_szc;
5160 
5161 	ASSERT(PP_ISFREE(pp));
5162 	ASSERT(PAGE_EXCL(pp));
5163 
5164 	/*
5165 	 * Adjust rootpp and lock it, if `pp' is not the base
5166 	 * constituent page.
5167 	 */
5168 	npgs = page_get_pagecnt(pp->p_szc);
5169 	if (npgs == 1) {
5170 		return (0);
5171 	}
5172 
5173 	if (!IS_P2ALIGNED(pfn, npgs)) {
5174 		pfn = P2ALIGN(pfn, npgs);
5175 		rootpp = page_numtopp_nolock(pfn);
5176 	}
5177 
5178 	if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5179 		return (0);
5180 	}
5181 
5182 	if (rootpp->p_szc != szc) {
5183 		if (pp != rootpp)
5184 			page_unlock(rootpp);
5185 		return (0);
5186 	}
5187 
5188 	page_demote_free_pages(rootpp);
5189 
5190 	if (pp != rootpp)
5191 		page_unlock(rootpp);
5192 
5193 	ASSERT(PP_ISFREE(pp));
5194 	ASSERT(PAGE_EXCL(pp));
5195 	return (1);
5196 }
5197 
5198 /*
5199  * Given a constituent page, try to demote the large page.
5200  *
5201  * Returns nonzero if the page could be demoted successfully. Returns with
5202  * the constituent page still locked.
5203  */
5204 int
5205 page_try_demote_pages(page_t *pp)
5206 {
5207 	page_t *tpp, *rootpp = pp;
5208 	pfn_t	pfn = page_pptonum(pp);
5209 	spgcnt_t i, npgs;
5210 	uint_t	szc = pp->p_szc;
5211 	vnode_t *vp = pp->p_vnode;
5212 
5213 	ASSERT(PAGE_EXCL(pp));
5214 
5215 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5216 
5217 	if (pp->p_szc == 0) {
5218 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5219 		return (1);
5220 	}
5221 
5222 	if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
5223 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5224 		page_demote_vp_pages(pp);
5225 		ASSERT(pp->p_szc == 0);
5226 		return (1);
5227 	}
5228 
5229 	/*
5230 	 * Adjust rootpp if passed in is not the base
5231 	 * constituent page.
5232 	 */
5233 	npgs = page_get_pagecnt(pp->p_szc);
5234 	ASSERT(npgs > 1);
5235 	if (!IS_P2ALIGNED(pfn, npgs)) {
5236 		pfn = P2ALIGN(pfn, npgs);
5237 		rootpp = page_numtopp_nolock(pfn);
5238 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5239 		ASSERT(rootpp->p_vnode != NULL);
5240 		ASSERT(rootpp->p_szc == szc);
5241 	}
5242 
5243 	/*
5244 	 * We can't demote kernel pages since we can't hat_unload()
5245 	 * the mappings.
5246 	 */
5247 	if (VN_ISKAS(rootpp->p_vnode))
5248 		return (0);
5249 
5250 	/*
5251 	 * Attempt to lock all constituent pages except the page passed
5252 	 * in since it's already locked.
5253 	 */
5254 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5255 		ASSERT(!PP_ISFREE(tpp));
5256 		ASSERT(tpp->p_vnode != NULL);
5257 
5258 		if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5259 			break;
5260 		ASSERT(tpp->p_szc == rootpp->p_szc);
5261 		ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5262 	}
5263 
5264 	/*
5265 	 * If we failed to lock them all then unlock what we have
5266 	 * locked so far and bail.
5267 	 */
5268 	if (i < npgs) {
5269 		tpp = rootpp;
5270 		while (i-- > 0) {
5271 			if (tpp != pp)
5272 				page_unlock(tpp);
5273 			tpp++;
5274 		}
5275 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5276 		return (0);
5277 	}
5278 
5279 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5280 		ASSERT(PAGE_EXCL(tpp));
5281 		ASSERT(tpp->p_slckcnt == 0);
5282 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5283 		tpp->p_szc = 0;
5284 	}
5285 
5286 	/*
5287 	 * Unlock all pages except the page passed in.
5288 	 */
5289 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5290 		ASSERT(!hat_page_is_mapped(tpp));
5291 		if (tpp != pp)
5292 			page_unlock(tpp);
5293 	}
5294 
5295 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5296 	return (1);
5297 }
5298 
5299 /*
5300  * Called by page_free() and page_destroy() to demote the page size code
5301  * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5302  * p_szc on free list, neither can we just clear p_szc of a single page_t
5303  * within a large page since it will break other code that relies on p_szc
5304  * being the same for all page_t's of a large page). Anonymous pages should
5305  * never end up here because anon_map_getpages() cannot deal with p_szc
5306  * changes after a single constituent page is locked.  While anonymous or
5307  * kernel large pages are demoted or freed the entire large page at a time
5308  * with all constituent pages locked EXCL for the file system pages we
5309  * have to be able to demote a large page (i.e. decrease all constituent pages
5310  * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5311  * we can easily deal with anonymous page demotion the entire large page at a
5312  * time is that those operation originate at address space level and concern
5313  * the entire large page region with actual demotion only done when pages are
5314  * not shared with any other processes (therefore we can always get EXCL lock
5315  * on all anonymous constituent pages after clearing segment page
5316  * cache). However file system pages can be truncated or invalidated at a
5317  * PAGESIZE level from the file system side and end up in page_free() or
5318  * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5319  * and therefore pageout should be able to demote a large page by EXCL locking
5320  * any constituent page that is not under SOFTLOCK). In those cases we cannot
5321  * rely on being able to lock EXCL all constituent pages.
5322  *
5323  * To prevent szc changes on file system pages one has to lock all constituent
5324  * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5325  * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5326  * prevent szc changes is hat layer that uses its own page level mlist
5327  * locks. hat assumes that szc doesn't change after mlist lock for a page is
5328  * taken. Therefore we need to change szc under hat level locks if we only
5329  * have an EXCL lock on a single constituent page and hat still references any
5330  * of constituent pages.  (Note we can't "ignore" hat layer by simply
5331  * hat_pageunload() all constituent pages without having EXCL locks on all of
5332  * constituent pages). We use hat_page_demote() call to safely demote szc of
5333  * all constituent pages under hat locks when we only have an EXCL lock on one
5334  * of constituent pages.
5335  *
5336  * This routine calls page_szc_lock() before calling hat_page_demote() to
5337  * allow segvn in one special case not to lock all constituent pages SHARED
5338  * before calling hat_memload_array() that relies on p_szc not changing even
5339  * before hat level mlist lock is taken.  In that case segvn uses
5340  * page_szc_lock() to prevent hat_page_demote() changing p_szc values.
5341  *
5342  * Anonymous or kernel page demotion still has to lock all pages exclusively
5343  * and do hat_pageunload() on all constituent pages before demoting the page
5344  * therefore there's no need for anonymous or kernel page demotion to use
5345  * hat_page_demote() mechanism.
5346  *
5347  * hat_page_demote() removes all large mappings that map pp and then decreases
5348  * p_szc starting from the last constituent page of the large page. By working
5349  * from the tail of a large page in pfn decreasing order allows one looking at
5350  * the root page to know that hat_page_demote() is done for root's szc area.
5351  * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5352  * pages within szc 1 area to prevent szc changes because hat_page_demote()
5353  * that started on this page when it had szc > 1 is done for this szc 1 area.
5354  *
5355  * We are guaranteed that all constituent pages of pp's large page belong to
5356  * the same vnode with the consecutive offsets increasing in the direction of
5357  * the pfn i.e. the identity of constituent pages can't change until their
5358  * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5359  * large mappings to pp even though we don't lock any constituent page except
5360  * pp (i.e. we won't unload e.g. kernel locked page).
5361  */
5362 static void
5363 page_demote_vp_pages(page_t *pp)
5364 {
5365 	kmutex_t *mtx;
5366 
5367 	ASSERT(PAGE_EXCL(pp));
5368 	ASSERT(!PP_ISFREE(pp));
5369 	ASSERT(pp->p_vnode != NULL);
5370 	ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5371 	ASSERT(!PP_ISKAS(pp));
5372 
5373 	VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5374 
5375 	mtx = page_szc_lock(pp);
5376 	if (mtx != NULL) {
5377 		hat_page_demote(pp);
5378 		mutex_exit(mtx);
5379 	}
5380 	ASSERT(pp->p_szc == 0);
5381 }
5382 
5383 /*
5384  * Mark any existing pages for migration in the given range
5385  */
5386 void
5387 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5388     struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5389     u_offset_t vnoff, int rflag)
5390 {
5391 	struct anon	*ap;
5392 	vnode_t		*curvp;
5393 	lgrp_t		*from;
5394 	pgcnt_t		nlocked;
5395 	u_offset_t	off;
5396 	pfn_t		pfn;
5397 	size_t		pgsz;
5398 	size_t		segpgsz;
5399 	pgcnt_t		pages;
5400 	uint_t		pszc;
5401 	page_t		*pp0, *pp;
5402 	caddr_t		va;
5403 	ulong_t		an_idx;
5404 	anon_sync_obj_t	cookie;
5405 
5406 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5407 
5408 	/*
5409 	 * Don't do anything if don't need to do lgroup optimizations
5410 	 * on this system
5411 	 */
5412 	if (!lgrp_optimizations())
5413 		return;
5414 
5415 	/*
5416 	 * Align address and length to (potentially large) page boundary
5417 	 */
5418 	segpgsz = page_get_pagesize(seg->s_szc);
5419 	addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5420 	if (rflag)
5421 		len = P2ROUNDUP(len, segpgsz);
5422 
5423 	/*
5424 	 * Do one (large) page at a time
5425 	 */
5426 	va = addr;
5427 	while (va < addr + len) {
5428 		/*
5429 		 * Lookup (root) page for vnode and offset corresponding to
5430 		 * this virtual address
5431 		 * Try anonmap first since there may be copy-on-write
5432 		 * pages, but initialize vnode pointer and offset using
5433 		 * vnode arguments just in case there isn't an amp.
5434 		 */
5435 		curvp = vp;
5436 		off = vnoff + va - seg->s_base;
5437 		if (amp) {
5438 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5439 			an_idx = anon_index + seg_page(seg, va);
5440 			anon_array_enter(amp, an_idx, &cookie);
5441 			ap = anon_get_ptr(amp->ahp, an_idx);
5442 			if (ap)
5443 				swap_xlate(ap, &curvp, &off);
5444 			anon_array_exit(&cookie);
5445 			ANON_LOCK_EXIT(&amp->a_rwlock);
5446 		}
5447 
5448 		pp = NULL;
5449 		if (curvp)
5450 			pp = page_lookup(curvp, off, SE_SHARED);
5451 
5452 		/*
5453 		 * If there isn't a page at this virtual address,
5454 		 * skip to next page
5455 		 */
5456 		if (pp == NULL) {
5457 			va += PAGESIZE;
5458 			continue;
5459 		}
5460 
5461 		/*
5462 		 * Figure out which lgroup this page is in for kstats
5463 		 */
5464 		pfn = page_pptonum(pp);
5465 		from = lgrp_pfn_to_lgrp(pfn);
5466 
5467 		/*
5468 		 * Get page size, and round up and skip to next page boundary
5469 		 * if unaligned address
5470 		 */
5471 		pszc = pp->p_szc;
5472 		pgsz = page_get_pagesize(pszc);
5473 		pages = btop(pgsz);
5474 		if (!IS_P2ALIGNED(va, pgsz) ||
5475 		    !IS_P2ALIGNED(pfn, pages) ||
5476 		    pgsz > segpgsz) {
5477 			pgsz = MIN(pgsz, segpgsz);
5478 			page_unlock(pp);
5479 			pages = btop(P2END((uintptr_t)va, pgsz) -
5480 			    (uintptr_t)va);
5481 			va = (caddr_t)P2END((uintptr_t)va, pgsz);
5482 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, pages);
5483 			continue;
5484 		}
5485 
5486 		/*
5487 		 * Upgrade to exclusive lock on page
5488 		 */
5489 		if (!page_tryupgrade(pp)) {
5490 			page_unlock(pp);
5491 			va += pgsz;
5492 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5493 			    btop(pgsz));
5494 			continue;
5495 		}
5496 
5497 		pp0 = pp++;
5498 		nlocked = 1;
5499 
5500 		/*
5501 		 * Lock constituent pages if this is large page
5502 		 */
5503 		if (pages > 1) {
5504 			/*
5505 			 * Lock all constituents except root page, since it
5506 			 * should be locked already.
5507 			 */
5508 			for (; nlocked < pages; nlocked++) {
5509 				if (!page_trylock(pp, SE_EXCL)) {
5510 					break;
5511 				}
5512 				if (PP_ISFREE(pp) ||
5513 				    pp->p_szc != pszc) {
5514 					/*
5515 					 * hat_page_demote() raced in with us.
5516 					 */
5517 					ASSERT(!IS_SWAPFSVP(curvp));
5518 					page_unlock(pp);
5519 					break;
5520 				}
5521 				pp++;
5522 			}
5523 		}
5524 
5525 		/*
5526 		 * If all constituent pages couldn't be locked,
5527 		 * unlock pages locked so far and skip to next page.
5528 		 */
5529 		if (nlocked < pages) {
5530 			while (pp0 < pp) {
5531 				page_unlock(pp0++);
5532 			}
5533 			va += pgsz;
5534 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5535 			    btop(pgsz));
5536 			continue;
5537 		}
5538 
5539 		/*
5540 		 * hat_page_demote() can no longer happen
5541 		 * since last cons page had the right p_szc after
5542 		 * all cons pages were locked. all cons pages
5543 		 * should now have the same p_szc.
5544 		 */
5545 
5546 		/*
5547 		 * All constituent pages locked successfully, so mark
5548 		 * large page for migration and unload the mappings of
5549 		 * constituent pages, so a fault will occur on any part of the
5550 		 * large page
5551 		 */
5552 		PP_SETMIGRATE(pp0);
5553 		while (pp0 < pp) {
5554 			(void) hat_pageunload(pp0, HAT_FORCE_PGUNLOAD);
5555 			ASSERT(hat_page_getshare(pp0) == 0);
5556 			page_unlock(pp0++);
5557 		}
5558 		lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5559 
5560 		va += pgsz;
5561 	}
5562 }
5563 
5564 /*
5565  * Migrate any pages that have been marked for migration in the given range
5566  */
5567 void
5568 page_migrate(
5569 	struct seg	*seg,
5570 	caddr_t		addr,
5571 	page_t		**ppa,
5572 	pgcnt_t		npages)
5573 {
5574 	lgrp_t		*from;
5575 	lgrp_t		*to;
5576 	page_t		*newpp;
5577 	page_t		*pp;
5578 	pfn_t		pfn;
5579 	size_t		pgsz;
5580 	spgcnt_t	page_cnt;
5581 	spgcnt_t	i;
5582 	uint_t		pszc;
5583 
5584 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5585 
5586 	while (npages > 0) {
5587 		pp = *ppa;
5588 		pszc = pp->p_szc;
5589 		pgsz = page_get_pagesize(pszc);
5590 		page_cnt = btop(pgsz);
5591 
5592 		/*
5593 		 * Check to see whether this page is marked for migration
5594 		 *
5595 		 * Assume that root page of large page is marked for
5596 		 * migration and none of the other constituent pages
5597 		 * are marked.  This really simplifies clearing the
5598 		 * migrate bit by not having to clear it from each
5599 		 * constituent page.
5600 		 *
5601 		 * note we don't want to relocate an entire large page if
5602 		 * someone is only using one subpage.
5603 		 */
5604 		if (npages < page_cnt)
5605 			break;
5606 
5607 		/*
5608 		 * Is it marked for migration?
5609 		 */
5610 		if (!PP_ISMIGRATE(pp))
5611 			goto next;
5612 
5613 		/*
5614 		 * Determine lgroups that page is being migrated between
5615 		 */
5616 		pfn = page_pptonum(pp);
5617 		if (!IS_P2ALIGNED(pfn, page_cnt)) {
5618 			break;
5619 		}
5620 		from = lgrp_pfn_to_lgrp(pfn);
5621 		to = lgrp_mem_choose(seg, addr, pgsz);
5622 
5623 		/*
5624 		 * Need to get exclusive lock's to migrate
5625 		 */
5626 		for (i = 0; i < page_cnt; i++) {
5627 			ASSERT(PAGE_LOCKED(ppa[i]));
5628 			if (page_pptonum(ppa[i]) != pfn + i ||
5629 			    ppa[i]->p_szc != pszc) {
5630 				break;
5631 			}
5632 			if (!page_tryupgrade(ppa[i])) {
5633 				lgrp_stat_add(from->lgrp_id,
5634 				    LGRP_PM_FAIL_LOCK_PGS,
5635 				    page_cnt);
5636 				break;
5637 			}
5638 
5639 			/*
5640 			 * Check to see whether we are trying to migrate
5641 			 * page to lgroup where it is allocated already.
5642 			 * If so, clear the migrate bit and skip to next
5643 			 * page.
5644 			 */
5645 			if (i == 0 && to == from) {
5646 				PP_CLRMIGRATE(ppa[0]);
5647 				page_downgrade(ppa[0]);
5648 				goto next;
5649 			}
5650 		}
5651 
5652 		/*
5653 		 * If all constituent pages couldn't be locked,
5654 		 * unlock pages locked so far and skip to next page.
5655 		 */
5656 		if (i != page_cnt) {
5657 			while (--i != -1) {
5658 				page_downgrade(ppa[i]);
5659 			}
5660 			goto next;
5661 		}
5662 
5663 		(void) page_create_wait(page_cnt, PG_WAIT);
5664 		newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5665 		if (newpp == NULL) {
5666 			page_create_putback(page_cnt);
5667 			for (i = 0; i < page_cnt; i++) {
5668 				page_downgrade(ppa[i]);
5669 			}
5670 			lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5671 			    page_cnt);
5672 			goto next;
5673 		}
5674 		ASSERT(newpp->p_szc == pszc);
5675 		/*
5676 		 * Clear migrate bit and relocate page
5677 		 */
5678 		PP_CLRMIGRATE(pp);
5679 		if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5680 			panic("page_migrate: page_relocate failed");
5681 		}
5682 		ASSERT(page_cnt * PAGESIZE == pgsz);
5683 
5684 		/*
5685 		 * Keep stats for number of pages migrated from and to
5686 		 * each lgroup
5687 		 */
5688 		lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5689 		lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5690 		/*
5691 		 * update the page_t array we were passed in and
5692 		 * unlink constituent pages of a large page.
5693 		 */
5694 		for (i = 0; i < page_cnt; ++i, ++pp) {
5695 			ASSERT(PAGE_EXCL(newpp));
5696 			ASSERT(newpp->p_szc == pszc);
5697 			ppa[i] = newpp;
5698 			pp = newpp;
5699 			page_sub(&newpp, pp);
5700 			page_downgrade(pp);
5701 		}
5702 		ASSERT(newpp == NULL);
5703 next:
5704 		addr += pgsz;
5705 		ppa += page_cnt;
5706 		npages -= page_cnt;
5707 	}
5708 }
5709 
5710 ulong_t mem_waiters 	= 0;
5711 ulong_t	max_count 	= 20;
5712 #define	MAX_DELAY	0x1ff
5713 
5714 /*
5715  * Check if enough memory is available to proceed.
5716  * Depending on system configuration and how much memory is
5717  * reserved for swap we need to check against two variables.
5718  * e.g. on systems with little physical swap availrmem can be
5719  * more reliable indicator of how much memory is available.
5720  * On systems with large phys swap freemem can be better indicator.
5721  * If freemem drops below threshold level don't return an error
5722  * immediately but wake up pageout to free memory and block.
5723  * This is done number of times. If pageout is not able to free
5724  * memory within certain time return an error.
5725  * The same applies for availrmem but kmem_reap is used to
5726  * free memory.
5727  */
5728 int
5729 page_mem_avail(pgcnt_t npages)
5730 {
5731 	ulong_t count;
5732 
5733 #if defined(__i386)
5734 	if (freemem > desfree + npages &&
5735 	    availrmem > swapfs_reserve + npages &&
5736 	    btop(vmem_size(heap_arena, VMEM_FREE)) > tune.t_minarmem +
5737 	    npages)
5738 		return (1);
5739 #else
5740 	if (freemem > desfree + npages &&
5741 	    availrmem > swapfs_reserve + npages)
5742 		return (1);
5743 #endif
5744 
5745 	count = max_count;
5746 	atomic_add_long(&mem_waiters, 1);
5747 
5748 	while (freemem < desfree + npages && --count) {
5749 		cv_signal(&proc_pageout->p_cv);
5750 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
5751 			atomic_add_long(&mem_waiters, -1);
5752 			return (0);
5753 		}
5754 	}
5755 	if (count == 0) {
5756 		atomic_add_long(&mem_waiters, -1);
5757 		return (0);
5758 	}
5759 
5760 	count = max_count;
5761 	while (availrmem < swapfs_reserve + npages && --count) {
5762 		kmem_reap();
5763 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
5764 			atomic_add_long(&mem_waiters, -1);
5765 			return (0);
5766 		}
5767 	}
5768 	atomic_add_long(&mem_waiters, -1);
5769 	if (count == 0)
5770 		return (0);
5771 
5772 #if defined(__i386)
5773 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
5774 	    tune.t_minarmem + npages)
5775 		return (0);
5776 #endif
5777 	return (1);
5778 }
5779 
5780 /*
5781  * Reclaim/reserve availrmem for npages.
5782  * If there is not enough memory start reaping seg, kmem caches.
5783  * Start pageout scanner (via page_needfree()).
5784  * Exit after max_cnt tries regardless of how much memory has been released.
5785  * Note: There is no guarantee that any availrmem will be freed as
5786  * this memory typically is locked (kernel heap) or reserved for swap.
5787  * Also due to memory fragmentation kmem allocator may not be able
5788  * to free any memory (single user allocated buffer will prevent
5789  * freeing slab or a page).
5790  */
5791 int
5792 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust, int max_cnt)
5793 {
5794 	int	i = 0;
5795 	int	ret = 0;
5796 	pgcnt_t	deficit;
5797 	pgcnt_t old_availrmem;
5798 
5799 	mutex_enter(&freemem_lock);
5800 	old_availrmem = availrmem - 1;
5801 	while ((availrmem < tune.t_minarmem + npages + epages) &&
5802 	    (old_availrmem < availrmem) && (i++ < max_cnt)) {
5803 		old_availrmem = availrmem;
5804 		deficit = tune.t_minarmem + npages + epages - availrmem;
5805 		mutex_exit(&freemem_lock);
5806 		page_needfree(deficit);
5807 		kmem_reap();
5808 		delay(hz);
5809 		page_needfree(-(spgcnt_t)deficit);
5810 		mutex_enter(&freemem_lock);
5811 	}
5812 
5813 	if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
5814 		availrmem -= npages;
5815 		ret = 1;
5816 	}
5817 
5818 	mutex_exit(&freemem_lock);
5819 
5820 	return (ret);
5821 }
5822 
5823 /*
5824  * Search the memory segments to locate the desired page.  Within a
5825  * segment, pages increase linearly with one page structure per
5826  * physical page frame (size PAGESIZE).  The search begins
5827  * with the segment that was accessed last, to take advantage of locality.
5828  * If the hint misses, we start from the beginning of the sorted memseg list
5829  */
5830 
5831 
5832 /*
5833  * Some data structures for pfn to pp lookup.
5834  */
5835 ulong_t mhash_per_slot;
5836 struct memseg *memseg_hash[N_MEM_SLOTS];
5837 
5838 page_t *
5839 page_numtopp_nolock(pfn_t pfnum)
5840 {
5841 	struct memseg *seg;
5842 	page_t *pp;
5843 	vm_cpu_data_t *vc;
5844 
5845 	/*
5846 	 * We need to disable kernel preemption while referencing the
5847 	 * cpu_vm_data field in order to prevent us from being switched to
5848 	 * another cpu and trying to reference it after it has been freed.
5849 	 * This will keep us on cpu and prevent it from being removed while
5850 	 * we are still on it.
5851 	 *
5852 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5853 	 * which is being resued by DR who will flush those references
5854 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5855 	 */
5856 	kpreempt_disable();
5857 	vc = CPU->cpu_vm_data;
5858 	ASSERT(vc != NULL);
5859 
5860 	MEMSEG_STAT_INCR(nsearch);
5861 
5862 	/* Try last winner first */
5863 	if (((seg = vc->vc_pnum_memseg) != NULL) &&
5864 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5865 		MEMSEG_STAT_INCR(nlastwon);
5866 		pp = seg->pages + (pfnum - seg->pages_base);
5867 		if (pp->p_pagenum == pfnum) {
5868 			kpreempt_enable();
5869 			return ((page_t *)pp);
5870 		}
5871 	}
5872 
5873 	/* Else Try hash */
5874 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5875 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5876 		MEMSEG_STAT_INCR(nhashwon);
5877 		vc->vc_pnum_memseg = seg;
5878 		pp = seg->pages + (pfnum - seg->pages_base);
5879 		if (pp->p_pagenum == pfnum) {
5880 			kpreempt_enable();
5881 			return ((page_t *)pp);
5882 		}
5883 	}
5884 
5885 	/* Else Brute force */
5886 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5887 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5888 			vc->vc_pnum_memseg = seg;
5889 			pp = seg->pages + (pfnum - seg->pages_base);
5890 			if (pp->p_pagenum == pfnum) {
5891 				kpreempt_enable();
5892 				return ((page_t *)pp);
5893 			}
5894 		}
5895 	}
5896 	vc->vc_pnum_memseg = NULL;
5897 	kpreempt_enable();
5898 	MEMSEG_STAT_INCR(nnotfound);
5899 	return ((page_t *)NULL);
5900 
5901 }
5902 
5903 struct memseg *
5904 page_numtomemseg_nolock(pfn_t pfnum)
5905 {
5906 	struct memseg *seg;
5907 	page_t *pp;
5908 
5909 	/*
5910 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5911 	 * which is being resued by DR who will flush those references
5912 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5913 	 */
5914 	kpreempt_disable();
5915 	/* Try hash */
5916 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5917 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5918 		pp = seg->pages + (pfnum - seg->pages_base);
5919 		if (pp->p_pagenum == pfnum) {
5920 			kpreempt_enable();
5921 			return (seg);
5922 		}
5923 	}
5924 
5925 	/* Else Brute force */
5926 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5927 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5928 			pp = seg->pages + (pfnum - seg->pages_base);
5929 			if (pp->p_pagenum == pfnum) {
5930 				kpreempt_enable();
5931 				return (seg);
5932 			}
5933 		}
5934 	}
5935 	kpreempt_enable();
5936 	return ((struct memseg *)NULL);
5937 }
5938 
5939 /*
5940  * Given a page and a count return the page struct that is
5941  * n structs away from the current one in the global page
5942  * list.
5943  *
5944  * This function wraps to the first page upon
5945  * reaching the end of the memseg list.
5946  */
5947 page_t *
5948 page_nextn(page_t *pp, ulong_t n)
5949 {
5950 	struct memseg *seg;
5951 	page_t *ppn;
5952 	vm_cpu_data_t *vc;
5953 
5954 	/*
5955 	 * We need to disable kernel preemption while referencing the
5956 	 * cpu_vm_data field in order to prevent us from being switched to
5957 	 * another cpu and trying to reference it after it has been freed.
5958 	 * This will keep us on cpu and prevent it from being removed while
5959 	 * we are still on it.
5960 	 *
5961 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5962 	 * which is being resued by DR who will flush those references
5963 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5964 	 */
5965 	kpreempt_disable();
5966 	vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5967 
5968 	ASSERT(vc != NULL);
5969 
5970 	if (((seg = vc->vc_pnext_memseg) == NULL) ||
5971 	    (seg->pages_base == seg->pages_end) ||
5972 	    !(pp >= seg->pages && pp < seg->epages)) {
5973 
5974 		for (seg = memsegs; seg; seg = seg->next) {
5975 			if (pp >= seg->pages && pp < seg->epages)
5976 				break;
5977 		}
5978 
5979 		if (seg == NULL) {
5980 			/* Memory delete got in, return something valid. */
5981 			/* TODO: fix me. */
5982 			seg = memsegs;
5983 			pp = seg->pages;
5984 		}
5985 	}
5986 
5987 	/* check for wraparound - possible if n is large */
5988 	while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
5989 		n -= seg->epages - pp;
5990 		seg = seg->next;
5991 		if (seg == NULL)
5992 			seg = memsegs;
5993 		pp = seg->pages;
5994 	}
5995 	vc->vc_pnext_memseg = seg;
5996 	kpreempt_enable();
5997 	return (ppn);
5998 }
5999 
6000 /*
6001  * Initialize for a loop using page_next_scan_large().
6002  */
6003 page_t *
6004 page_next_scan_init(void **cookie)
6005 {
6006 	ASSERT(cookie != NULL);
6007 	*cookie = (void *)memsegs;
6008 	return ((page_t *)memsegs->pages);
6009 }
6010 
6011 /*
6012  * Return the next page in a scan of page_t's, assuming we want
6013  * to skip over sub-pages within larger page sizes.
6014  *
6015  * The cookie is used to keep track of the current memseg.
6016  */
6017 page_t *
6018 page_next_scan_large(
6019 	page_t		*pp,
6020 	ulong_t		*n,
6021 	void		**cookie)
6022 {
6023 	struct memseg	*seg = (struct memseg *)*cookie;
6024 	page_t		*new_pp;
6025 	ulong_t		cnt;
6026 	pfn_t		pfn;
6027 
6028 
6029 	/*
6030 	 * get the count of page_t's to skip based on the page size
6031 	 */
6032 	ASSERT(pp != NULL);
6033 	if (pp->p_szc == 0) {
6034 		cnt = 1;
6035 	} else {
6036 		pfn = page_pptonum(pp);
6037 		cnt = page_get_pagecnt(pp->p_szc);
6038 		cnt -= pfn & (cnt - 1);
6039 	}
6040 	*n += cnt;
6041 	new_pp = pp + cnt;
6042 
6043 	/*
6044 	 * Catch if we went past the end of the current memory segment. If so,
6045 	 * just move to the next segment with pages.
6046 	 */
6047 	if (new_pp >= seg->epages || seg->pages_base == seg->pages_end) {
6048 		do {
6049 			seg = seg->next;
6050 			if (seg == NULL)
6051 				seg = memsegs;
6052 		} while (seg->pages_base == seg->pages_end);
6053 		new_pp = seg->pages;
6054 		*cookie = (void *)seg;
6055 	}
6056 
6057 	return (new_pp);
6058 }
6059 
6060 
6061 /*
6062  * Returns next page in list. Note: this function wraps
6063  * to the first page in the list upon reaching the end
6064  * of the list. Callers should be aware of this fact.
6065  */
6066 
6067 /* We should change this be a #define */
6068 
6069 page_t *
6070 page_next(page_t *pp)
6071 {
6072 	return (page_nextn(pp, 1));
6073 }
6074 
6075 page_t *
6076 page_first()
6077 {
6078 	return ((page_t *)memsegs->pages);
6079 }
6080 
6081 
6082 /*
6083  * This routine is called at boot with the initial memory configuration
6084  * and when memory is added or removed.
6085  */
6086 void
6087 build_pfn_hash()
6088 {
6089 	pfn_t cur;
6090 	pgcnt_t index;
6091 	struct memseg *pseg;
6092 	int	i;
6093 
6094 	/*
6095 	 * Clear memseg_hash array.
6096 	 * Since memory add/delete is designed to operate concurrently
6097 	 * with normal operation, the hash rebuild must be able to run
6098 	 * concurrently with page_numtopp_nolock(). To support this
6099 	 * functionality, assignments to memseg_hash array members must
6100 	 * be done atomically.
6101 	 *
6102 	 * NOTE: bzero() does not currently guarantee this for kernel
6103 	 * threads, and cannot be used here.
6104 	 */
6105 	for (i = 0; i < N_MEM_SLOTS; i++)
6106 		memseg_hash[i] = NULL;
6107 
6108 	hat_kpm_mseghash_clear(N_MEM_SLOTS);
6109 
6110 	/*
6111 	 * Physmax is the last valid pfn.
6112 	 */
6113 	mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6114 	for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6115 		index = MEMSEG_PFN_HASH(pseg->pages_base);
6116 		cur = pseg->pages_base;
6117 		do {
6118 			if (index >= N_MEM_SLOTS)
6119 				index = MEMSEG_PFN_HASH(cur);
6120 
6121 			if (memseg_hash[index] == NULL ||
6122 			    memseg_hash[index]->pages_base > pseg->pages_base) {
6123 				memseg_hash[index] = pseg;
6124 				hat_kpm_mseghash_update(index, pseg);
6125 			}
6126 			cur += mhash_per_slot;
6127 			index++;
6128 		} while (cur < pseg->pages_end);
6129 	}
6130 }
6131 
6132 /*
6133  * Return the pagenum for the pp
6134  */
6135 pfn_t
6136 page_pptonum(page_t *pp)
6137 {
6138 	return (pp->p_pagenum);
6139 }
6140 
6141 /*
6142  * interface to the referenced and modified etc bits
6143  * in the PSM part of the page struct
6144  * when no locking is desired.
6145  */
6146 void
6147 page_set_props(page_t *pp, uint_t flags)
6148 {
6149 	ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6150 	pp->p_nrm |= (uchar_t)flags;
6151 }
6152 
6153 void
6154 page_clr_all_props(page_t *pp)
6155 {
6156 	pp->p_nrm = 0;
6157 }
6158 
6159 /*
6160  * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6161  */
6162 int
6163 page_clear_lck_cow(page_t *pp, int adjust)
6164 {
6165 	int	f_amount;
6166 
6167 	ASSERT(PAGE_EXCL(pp));
6168 
6169 	/*
6170 	 * The page_struct_lock need not be acquired here since
6171 	 * we require the caller hold the page exclusively locked.
6172 	 */
6173 	f_amount = 0;
6174 	if (pp->p_lckcnt) {
6175 		f_amount = 1;
6176 		pp->p_lckcnt = 0;
6177 	}
6178 	if (pp->p_cowcnt) {
6179 		f_amount += pp->p_cowcnt;
6180 		pp->p_cowcnt = 0;
6181 	}
6182 
6183 	if (adjust && f_amount) {
6184 		mutex_enter(&freemem_lock);
6185 		availrmem += f_amount;
6186 		mutex_exit(&freemem_lock);
6187 	}
6188 
6189 	return (f_amount);
6190 }
6191 
6192 /*
6193  * The following functions is called from free_vp_pages()
6194  * for an inexact estimate of a newly free'd page...
6195  */
6196 ulong_t
6197 page_share_cnt(page_t *pp)
6198 {
6199 	return (hat_page_getshare(pp));
6200 }
6201 
6202 int
6203 page_isshared(page_t *pp)
6204 {
6205 	return (hat_page_checkshare(pp, 1));
6206 }
6207 
6208 int
6209 page_isfree(page_t *pp)
6210 {
6211 	return (PP_ISFREE(pp));
6212 }
6213 
6214 int
6215 page_isref(page_t *pp)
6216 {
6217 	return (hat_page_getattr(pp, P_REF));
6218 }
6219 
6220 int
6221 page_ismod(page_t *pp)
6222 {
6223 	return (hat_page_getattr(pp, P_MOD));
6224 }
6225 
6226 /*
6227  * The following code all currently relates to the page capture logic:
6228  *
6229  * This logic is used for cases where there is a desire to claim a certain
6230  * physical page in the system for the caller.  As it may not be possible
6231  * to capture the page immediately, the p_toxic bits are used in the page
6232  * structure to indicate that someone wants to capture this page.  When the
6233  * page gets unlocked, the toxic flag will be noted and an attempt to capture
6234  * the page will be made.  If it is successful, the original callers callback
6235  * will be called with the page to do with it what they please.
6236  *
6237  * There is also an async thread which wakes up to attempt to capture
6238  * pages occasionally which have the capture bit set.  All of the pages which
6239  * need to be captured asynchronously have been inserted into the
6240  * page_capture_hash and thus this thread walks that hash list.  Items in the
6241  * hash have an expiration time so this thread handles that as well by removing
6242  * the item from the hash if it has expired.
6243  *
6244  * Some important things to note are:
6245  * - if the PR_CAPTURE bit is set on a page, then the page is in the
6246  *   page_capture_hash.  The page_capture_hash_head.pchh_mutex is needed
6247  *   to set and clear this bit, and while the lock is held is the only time
6248  *   you can add or remove an entry from the hash.
6249  * - the PR_CAPTURE bit can only be set and cleared while holding the
6250  *   page_capture_hash_head.pchh_mutex
6251  * - the t_flag field of the thread struct is used with the T_CAPTURING
6252  *   flag to prevent recursion while dealing with large pages.
6253  * - pages which need to be retired never expire on the page_capture_hash.
6254  */
6255 
6256 static void page_capture_thread(void);
6257 static kthread_t *pc_thread_id;
6258 kcondvar_t pc_cv;
6259 static kmutex_t pc_thread_mutex;
6260 static clock_t pc_thread_shortwait;
6261 static clock_t pc_thread_longwait;
6262 static int pc_thread_retry;
6263 
6264 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
6265 
6266 /* Note that this is a circular linked list */
6267 typedef struct page_capture_hash_bucket {
6268 	page_t *pp;
6269 	uchar_t szc;
6270 	uchar_t pri;
6271 	uint_t flags;
6272 	clock_t expires;	/* lbolt at which this request expires. */
6273 	void *datap;		/* Cached data passed in for callback */
6274 	struct page_capture_hash_bucket *next;
6275 	struct page_capture_hash_bucket *prev;
6276 } page_capture_hash_bucket_t;
6277 
6278 #define	PC_PRI_HI	0	/* capture now */
6279 #define	PC_PRI_LO	1	/* capture later */
6280 #define	PC_NUM_PRI	2
6281 
6282 #define	PAGE_CAPTURE_PRIO(pp) (PP_ISRAF(pp) ? PC_PRI_LO : PC_PRI_HI)
6283 
6284 
6285 /*
6286  * Each hash bucket will have it's own mutex and two lists which are:
6287  * active (0):	represents requests which have not been processed by
6288  *		the page_capture async thread yet.
6289  * walked (1):	represents requests which have been processed by the
6290  *		page_capture async thread within it's given walk of this bucket.
6291  *
6292  * These are all needed so that we can synchronize all async page_capture
6293  * events.  When the async thread moves to a new bucket, it will append the
6294  * walked list to the active list and walk each item one at a time, moving it
6295  * from the active list to the walked list.  Thus if there is an async request
6296  * outstanding for a given page, it will always be in one of the two lists.
6297  * New requests will always be added to the active list.
6298  * If we were not able to capture a page before the request expired, we'd free
6299  * up the request structure which would indicate to page_capture that there is
6300  * no longer a need for the given page, and clear the PR_CAPTURE flag if
6301  * possible.
6302  */
6303 typedef struct page_capture_hash_head {
6304 	kmutex_t pchh_mutex;
6305 	uint_t num_pages[PC_NUM_PRI];
6306 	page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
6307 } page_capture_hash_head_t;
6308 
6309 #ifdef DEBUG
6310 #define	NUM_PAGE_CAPTURE_BUCKETS 4
6311 #else
6312 #define	NUM_PAGE_CAPTURE_BUCKETS 64
6313 #endif
6314 
6315 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
6316 
6317 /* for now use a very simple hash based upon the size of a page struct */
6318 #define	PAGE_CAPTURE_HASH(pp)	\
6319 	((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
6320 
6321 extern pgcnt_t swapfs_minfree;
6322 
6323 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
6324 
6325 /*
6326  * a callback function is required for page capture requests.
6327  */
6328 void
6329 page_capture_register_callback(uint_t index, clock_t duration,
6330     int (*cb_func)(page_t *, void *, uint_t))
6331 {
6332 	ASSERT(pc_cb[index].cb_active == 0);
6333 	ASSERT(cb_func != NULL);
6334 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6335 	pc_cb[index].duration = duration;
6336 	pc_cb[index].cb_func = cb_func;
6337 	pc_cb[index].cb_active = 1;
6338 	rw_exit(&pc_cb[index].cb_rwlock);
6339 }
6340 
6341 void
6342 page_capture_unregister_callback(uint_t index)
6343 {
6344 	int i, j;
6345 	struct page_capture_hash_bucket *bp1;
6346 	struct page_capture_hash_bucket *bp2;
6347 	struct page_capture_hash_bucket *head = NULL;
6348 	uint_t flags = (1 << index);
6349 
6350 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6351 	ASSERT(pc_cb[index].cb_active == 1);
6352 	pc_cb[index].duration = 0;	/* Paranoia */
6353 	pc_cb[index].cb_func = NULL;	/* Paranoia */
6354 	pc_cb[index].cb_active = 0;
6355 	rw_exit(&pc_cb[index].cb_rwlock);
6356 
6357 	/*
6358 	 * Just move all the entries to a private list which we can walk
6359 	 * through without the need to hold any locks.
6360 	 * No more requests can get added to the hash lists for this consumer
6361 	 * as the cb_active field for the callback has been cleared.
6362 	 */
6363 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6364 		mutex_enter(&page_capture_hash[i].pchh_mutex);
6365 		for (j = 0; j < 2; j++) {
6366 			bp1 = page_capture_hash[i].lists[j].next;
6367 			/* walk through all but first (sentinel) element */
6368 			while (bp1 != &page_capture_hash[i].lists[j]) {
6369 				bp2 = bp1;
6370 				if (bp2->flags & flags) {
6371 					bp1 = bp2->next;
6372 					bp1->prev = bp2->prev;
6373 					bp2->prev->next = bp1;
6374 					bp2->next = head;
6375 					head = bp2;
6376 					/*
6377 					 * Clear the PR_CAPTURE bit as we
6378 					 * hold appropriate locks here.
6379 					 */
6380 					page_clrtoxic(head->pp, PR_CAPTURE);
6381 					page_capture_hash[i].
6382 					    num_pages[bp2->pri]--;
6383 					continue;
6384 				}
6385 				bp1 = bp1->next;
6386 			}
6387 		}
6388 		mutex_exit(&page_capture_hash[i].pchh_mutex);
6389 	}
6390 
6391 	while (head != NULL) {
6392 		bp1 = head;
6393 		head = head->next;
6394 		kmem_free(bp1, sizeof (*bp1));
6395 	}
6396 }
6397 
6398 
6399 /*
6400  * Find pp in the active list and move it to the walked list if it
6401  * exists.
6402  * Note that most often pp should be at the front of the active list
6403  * as it is currently used and thus there is no other sort of optimization
6404  * being done here as this is a linked list data structure.
6405  * Returns 1 on successful move or 0 if page could not be found.
6406  */
6407 static int
6408 page_capture_move_to_walked(page_t *pp)
6409 {
6410 	page_capture_hash_bucket_t *bp;
6411 	int index;
6412 
6413 	index = PAGE_CAPTURE_HASH(pp);
6414 
6415 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6416 	bp = page_capture_hash[index].lists[0].next;
6417 	while (bp != &page_capture_hash[index].lists[0]) {
6418 		if (bp->pp == pp) {
6419 			/* Remove from old list */
6420 			bp->next->prev = bp->prev;
6421 			bp->prev->next = bp->next;
6422 
6423 			/* Add to new list */
6424 			bp->next = page_capture_hash[index].lists[1].next;
6425 			bp->prev = &page_capture_hash[index].lists[1];
6426 			page_capture_hash[index].lists[1].next = bp;
6427 			bp->next->prev = bp;
6428 
6429 			/*
6430 			 * There is a small probability of page on a free
6431 			 * list being retired while being allocated
6432 			 * and before P_RAF is set on it. The page may
6433 			 * end up marked as high priority request instead
6434 			 * of low priority request.
6435 			 * If P_RAF page is not marked as low priority request
6436 			 * change it to low priority request.
6437 			 */
6438 			page_capture_hash[index].num_pages[bp->pri]--;
6439 			bp->pri = PAGE_CAPTURE_PRIO(pp);
6440 			page_capture_hash[index].num_pages[bp->pri]++;
6441 			mutex_exit(&page_capture_hash[index].pchh_mutex);
6442 			return (1);
6443 		}
6444 		bp = bp->next;
6445 	}
6446 	mutex_exit(&page_capture_hash[index].pchh_mutex);
6447 	return (0);
6448 }
6449 
6450 /*
6451  * Add a new entry to the page capture hash.  The only case where a new
6452  * entry is not added is when the page capture consumer is no longer registered.
6453  * In this case, we'll silently not add the page to the hash.  We know that
6454  * page retire will always be registered for the case where we are currently
6455  * unretiring a page and thus there are no conflicts.
6456  */
6457 static void
6458 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
6459 {
6460 	page_capture_hash_bucket_t *bp1;
6461 	page_capture_hash_bucket_t *bp2;
6462 	int index;
6463 	int cb_index;
6464 	int i;
6465 	uchar_t pri;
6466 #ifdef DEBUG
6467 	page_capture_hash_bucket_t *tp1;
6468 	int l;
6469 #endif
6470 
6471 	ASSERT(!(flags & CAPTURE_ASYNC));
6472 
6473 	bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
6474 
6475 	bp1->pp = pp;
6476 	bp1->szc = szc;
6477 	bp1->flags = flags;
6478 	bp1->datap = datap;
6479 
6480 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6481 		if ((flags >> cb_index) & 1) {
6482 			break;
6483 		}
6484 	}
6485 
6486 	ASSERT(cb_index != PC_NUM_CALLBACKS);
6487 
6488 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6489 	if (pc_cb[cb_index].cb_active) {
6490 		if (pc_cb[cb_index].duration == -1) {
6491 			bp1->expires = (clock_t)-1;
6492 		} else {
6493 			bp1->expires = ddi_get_lbolt() +
6494 			    pc_cb[cb_index].duration;
6495 		}
6496 	} else {
6497 		/* There's no callback registered so don't add to the hash */
6498 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6499 		kmem_free(bp1, sizeof (*bp1));
6500 		return;
6501 	}
6502 
6503 	index = PAGE_CAPTURE_HASH(pp);
6504 
6505 	/*
6506 	 * Only allow capture flag to be modified under this mutex.
6507 	 * Prevents multiple entries for same page getting added.
6508 	 */
6509 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6510 
6511 	/*
6512 	 * if not already on the hash, set capture bit and add to the hash
6513 	 */
6514 	if (!(pp->p_toxic & PR_CAPTURE)) {
6515 #ifdef DEBUG
6516 		/* Check for duplicate entries */
6517 		for (l = 0; l < 2; l++) {
6518 			tp1 = page_capture_hash[index].lists[l].next;
6519 			while (tp1 != &page_capture_hash[index].lists[l]) {
6520 				if (tp1->pp == pp) {
6521 					panic("page pp 0x%p already on hash "
6522 					    "at 0x%p\n",
6523 					    (void *)pp, (void *)tp1);
6524 				}
6525 				tp1 = tp1->next;
6526 			}
6527 		}
6528 
6529 #endif
6530 		page_settoxic(pp, PR_CAPTURE);
6531 		pri = PAGE_CAPTURE_PRIO(pp);
6532 		bp1->pri = pri;
6533 		bp1->next = page_capture_hash[index].lists[0].next;
6534 		bp1->prev = &page_capture_hash[index].lists[0];
6535 		bp1->next->prev = bp1;
6536 		page_capture_hash[index].lists[0].next = bp1;
6537 		page_capture_hash[index].num_pages[pri]++;
6538 		if (flags & CAPTURE_RETIRE) {
6539 			page_retire_incr_pend_count(datap);
6540 		}
6541 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6542 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6543 		cv_signal(&pc_cv);
6544 		return;
6545 	}
6546 
6547 	/*
6548 	 * A page retire request will replace any other request.
6549 	 * A second physmem request which is for a different process than
6550 	 * the currently registered one will be dropped as there is
6551 	 * no way to hold the private data for both calls.
6552 	 * In the future, once there are more callers, this will have to
6553 	 * be worked out better as there needs to be private storage for
6554 	 * at least each type of caller (maybe have datap be an array of
6555 	 * *void's so that we can index based upon callers index).
6556 	 */
6557 
6558 	/* walk hash list to update expire time */
6559 	for (i = 0; i < 2; i++) {
6560 		bp2 = page_capture_hash[index].lists[i].next;
6561 		while (bp2 != &page_capture_hash[index].lists[i]) {
6562 			if (bp2->pp == pp) {
6563 				if (flags & CAPTURE_RETIRE) {
6564 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6565 						page_retire_incr_pend_count(
6566 						    datap);
6567 						bp2->flags = flags;
6568 						bp2->expires = bp1->expires;
6569 						bp2->datap = datap;
6570 					}
6571 				} else {
6572 					ASSERT(flags & CAPTURE_PHYSMEM);
6573 					if (!(bp2->flags & CAPTURE_RETIRE) &&
6574 					    (datap == bp2->datap)) {
6575 						bp2->expires = bp1->expires;
6576 					}
6577 				}
6578 				mutex_exit(&page_capture_hash[index].
6579 				    pchh_mutex);
6580 				rw_exit(&pc_cb[cb_index].cb_rwlock);
6581 				kmem_free(bp1, sizeof (*bp1));
6582 				return;
6583 			}
6584 			bp2 = bp2->next;
6585 		}
6586 	}
6587 
6588 	/*
6589 	 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6590 	 * and thus it either has to be set or not set and can't change
6591 	 * while holding the mutex above.
6592 	 */
6593 	panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n",
6594 	    (void *)pp);
6595 }
6596 
6597 /*
6598  * We have a page in our hands, lets try and make it ours by turning
6599  * it into a clean page like it had just come off the freelists.
6600  *
6601  * Returns 0 on success, with the page still EXCL locked.
6602  * On failure, the page will be unlocked, and returns EAGAIN
6603  */
6604 static int
6605 page_capture_clean_page(page_t *pp)
6606 {
6607 	page_t *newpp;
6608 	int skip_unlock = 0;
6609 	spgcnt_t count;
6610 	page_t *tpp;
6611 	int ret = 0;
6612 	int extra;
6613 
6614 	ASSERT(PAGE_EXCL(pp));
6615 	ASSERT(!PP_RETIRED(pp));
6616 	ASSERT(curthread->t_flag & T_CAPTURING);
6617 
6618 	if (PP_ISFREE(pp)) {
6619 		if (!page_reclaim(pp, NULL)) {
6620 			skip_unlock = 1;
6621 			ret = EAGAIN;
6622 			goto cleanup;
6623 		}
6624 		ASSERT(pp->p_szc == 0);
6625 		if (pp->p_vnode != NULL) {
6626 			/*
6627 			 * Since this page came from the
6628 			 * cachelist, we must destroy the
6629 			 * old vnode association.
6630 			 */
6631 			page_hashout(pp, NULL);
6632 		}
6633 		goto cleanup;
6634 	}
6635 
6636 	/*
6637 	 * If we know page_relocate will fail, skip it
6638 	 * It could still fail due to a UE on another page but we
6639 	 * can't do anything about that.
6640 	 */
6641 	if (pp->p_toxic & PR_UE) {
6642 		goto skip_relocate;
6643 	}
6644 
6645 	/*
6646 	 * It's possible that pages can not have a vnode as fsflush comes
6647 	 * through and cleans up these pages.  It's ugly but that's how it is.
6648 	 */
6649 	if (pp->p_vnode == NULL) {
6650 		goto skip_relocate;
6651 	}
6652 
6653 	/*
6654 	 * Page was not free, so lets try to relocate it.
6655 	 * page_relocate only works with root pages, so if this is not a root
6656 	 * page, we need to demote it to try and relocate it.
6657 	 * Unfortunately this is the best we can do right now.
6658 	 */
6659 	newpp = NULL;
6660 	if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
6661 		if (page_try_demote_pages(pp) == 0) {
6662 			ret = EAGAIN;
6663 			goto cleanup;
6664 		}
6665 	}
6666 	ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
6667 	if (ret == 0) {
6668 		page_t *npp;
6669 		/* unlock the new page(s) */
6670 		while (count-- > 0) {
6671 			ASSERT(newpp != NULL);
6672 			npp = newpp;
6673 			page_sub(&newpp, npp);
6674 			page_unlock(npp);
6675 		}
6676 		ASSERT(newpp == NULL);
6677 		/*
6678 		 * Check to see if the page we have is too large.
6679 		 * If so, demote it freeing up the extra pages.
6680 		 */
6681 		if (pp->p_szc > 0) {
6682 			/* For now demote extra pages to szc == 0 */
6683 			extra = page_get_pagecnt(pp->p_szc) - 1;
6684 			while (extra > 0) {
6685 				tpp = pp->p_next;
6686 				page_sub(&pp, tpp);
6687 				tpp->p_szc = 0;
6688 				page_free(tpp, 1);
6689 				extra--;
6690 			}
6691 			/* Make sure to set our page to szc 0 as well */
6692 			ASSERT(pp->p_next == pp && pp->p_prev == pp);
6693 			pp->p_szc = 0;
6694 		}
6695 		goto cleanup;
6696 	} else if (ret == EIO) {
6697 		ret = EAGAIN;
6698 		goto cleanup;
6699 	} else {
6700 		/*
6701 		 * Need to reset return type as we failed to relocate the page
6702 		 * but that does not mean that some of the next steps will not
6703 		 * work.
6704 		 */
6705 		ret = 0;
6706 	}
6707 
6708 skip_relocate:
6709 
6710 	if (pp->p_szc > 0) {
6711 		if (page_try_demote_pages(pp) == 0) {
6712 			ret = EAGAIN;
6713 			goto cleanup;
6714 		}
6715 	}
6716 
6717 	ASSERT(pp->p_szc == 0);
6718 
6719 	if (hat_ismod(pp)) {
6720 		ret = EAGAIN;
6721 		goto cleanup;
6722 	}
6723 	if (PP_ISKAS(pp)) {
6724 		ret = EAGAIN;
6725 		goto cleanup;
6726 	}
6727 	if (pp->p_lckcnt || pp->p_cowcnt) {
6728 		ret = EAGAIN;
6729 		goto cleanup;
6730 	}
6731 
6732 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
6733 	ASSERT(!hat_page_is_mapped(pp));
6734 
6735 	if (hat_ismod(pp)) {
6736 		/*
6737 		 * This is a semi-odd case as the page is now modified but not
6738 		 * mapped as we just unloaded the mappings above.
6739 		 */
6740 		ret = EAGAIN;
6741 		goto cleanup;
6742 	}
6743 	if (pp->p_vnode != NULL) {
6744 		page_hashout(pp, NULL);
6745 	}
6746 
6747 	/*
6748 	 * At this point, the page should be in a clean state and
6749 	 * we can do whatever we want with it.
6750 	 */
6751 
6752 cleanup:
6753 	if (ret != 0) {
6754 		if (!skip_unlock) {
6755 			page_unlock(pp);
6756 		}
6757 	} else {
6758 		ASSERT(pp->p_szc == 0);
6759 		ASSERT(PAGE_EXCL(pp));
6760 
6761 		pp->p_next = pp;
6762 		pp->p_prev = pp;
6763 	}
6764 	return (ret);
6765 }
6766 
6767 /*
6768  * Various callers of page_trycapture() can have different restrictions upon
6769  * what memory they have access to.
6770  * Returns 0 on success, with the following error codes on failure:
6771  *      EPERM - The requested page is long term locked, and thus repeated
6772  *              requests to capture this page will likely fail.
6773  *      ENOMEM - There was not enough free memory in the system to safely
6774  *              map the requested page.
6775  *      ENOENT - The requested page was inside the kernel cage, and the
6776  *              PHYSMEM_CAGE flag was not set.
6777  */
6778 int
6779 page_capture_pre_checks(page_t *pp, uint_t flags)
6780 {
6781 	ASSERT(pp != NULL);
6782 
6783 #if defined(__sparc)
6784 	if (pp->p_vnode == &promvp) {
6785 		return (EPERM);
6786 	}
6787 
6788 	if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) &&
6789 	    (flags & CAPTURE_PHYSMEM)) {
6790 		return (ENOENT);
6791 	}
6792 
6793 	if (PP_ISNORELOCKERNEL(pp)) {
6794 		return (EPERM);
6795 	}
6796 #else
6797 	if (PP_ISKAS(pp)) {
6798 		return (EPERM);
6799 	}
6800 #endif /* __sparc */
6801 
6802 	/* only physmem currently has the restrictions checked below */
6803 	if (!(flags & CAPTURE_PHYSMEM)) {
6804 		return (0);
6805 	}
6806 
6807 	if (availrmem < swapfs_minfree) {
6808 		/*
6809 		 * We won't try to capture this page as we are
6810 		 * running low on memory.
6811 		 */
6812 		return (ENOMEM);
6813 	}
6814 	return (0);
6815 }
6816 
6817 /*
6818  * Once we have a page in our mits, go ahead and complete the capture
6819  * operation.
6820  * Returns 1 on failure where page is no longer needed
6821  * Returns 0 on success
6822  * Returns -1 if there was a transient failure.
6823  * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6824  */
6825 int
6826 page_capture_take_action(page_t *pp, uint_t flags, void *datap)
6827 {
6828 	int cb_index;
6829 	int ret = 0;
6830 	page_capture_hash_bucket_t *bp1;
6831 	page_capture_hash_bucket_t *bp2;
6832 	int index;
6833 	int found = 0;
6834 	int i;
6835 
6836 	ASSERT(PAGE_EXCL(pp));
6837 	ASSERT(curthread->t_flag & T_CAPTURING);
6838 
6839 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6840 		if ((flags >> cb_index) & 1) {
6841 			break;
6842 		}
6843 	}
6844 	ASSERT(cb_index < PC_NUM_CALLBACKS);
6845 
6846 	/*
6847 	 * Remove the entry from the page_capture hash, but don't free it yet
6848 	 * as we may need to put it back.
6849 	 * Since we own the page at this point in time, we should find it
6850 	 * in the hash if this is an ASYNC call.  If we don't it's likely
6851 	 * that the page_capture_async() thread decided that this request
6852 	 * had expired, in which case we just continue on.
6853 	 */
6854 	if (flags & CAPTURE_ASYNC) {
6855 
6856 		index = PAGE_CAPTURE_HASH(pp);
6857 
6858 		mutex_enter(&page_capture_hash[index].pchh_mutex);
6859 		for (i = 0; i < 2 && !found; i++) {
6860 			bp1 = page_capture_hash[index].lists[i].next;
6861 			while (bp1 != &page_capture_hash[index].lists[i]) {
6862 				if (bp1->pp == pp) {
6863 					bp1->next->prev = bp1->prev;
6864 					bp1->prev->next = bp1->next;
6865 					page_capture_hash[index].
6866 					    num_pages[bp1->pri]--;
6867 					page_clrtoxic(pp, PR_CAPTURE);
6868 					found = 1;
6869 					break;
6870 				}
6871 				bp1 = bp1->next;
6872 			}
6873 		}
6874 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6875 	}
6876 
6877 	/* Synchronize with the unregister func. */
6878 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6879 	if (!pc_cb[cb_index].cb_active) {
6880 		page_free(pp, 1);
6881 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6882 		if (found) {
6883 			kmem_free(bp1, sizeof (*bp1));
6884 		}
6885 		return (1);
6886 	}
6887 
6888 	/*
6889 	 * We need to remove the entry from the page capture hash and turn off
6890 	 * the PR_CAPTURE bit before calling the callback.  We'll need to cache
6891 	 * the entry here, and then based upon the return value, cleanup
6892 	 * appropriately or re-add it to the hash, making sure that someone else
6893 	 * hasn't already done so.
6894 	 * It should be rare for the callback to fail and thus it's ok for
6895 	 * the failure path to be a bit complicated as the success path is
6896 	 * cleaner and the locking rules are easier to follow.
6897 	 */
6898 
6899 	ret = pc_cb[cb_index].cb_func(pp, datap, flags);
6900 
6901 	rw_exit(&pc_cb[cb_index].cb_rwlock);
6902 
6903 	/*
6904 	 * If this was an ASYNC request, we need to cleanup the hash if the
6905 	 * callback was successful or if the request was no longer valid.
6906 	 * For non-ASYNC requests, we return failure to map and the caller
6907 	 * will take care of adding the request to the hash.
6908 	 * Note also that the callback itself is responsible for the page
6909 	 * at this point in time in terms of locking ...  The most common
6910 	 * case for the failure path should just be a page_free.
6911 	 */
6912 	if (ret >= 0) {
6913 		if (found) {
6914 			if (bp1->flags & CAPTURE_RETIRE) {
6915 				page_retire_decr_pend_count(datap);
6916 			}
6917 			kmem_free(bp1, sizeof (*bp1));
6918 		}
6919 		return (ret);
6920 	}
6921 	if (!found) {
6922 		return (ret);
6923 	}
6924 
6925 	ASSERT(flags & CAPTURE_ASYNC);
6926 
6927 	/*
6928 	 * Check for expiration time first as we can just free it up if it's
6929 	 * expired.
6930 	 */
6931 	if (ddi_get_lbolt() > bp1->expires && bp1->expires != -1) {
6932 		kmem_free(bp1, sizeof (*bp1));
6933 		return (ret);
6934 	}
6935 
6936 	/*
6937 	 * The callback failed and there used to be an entry in the hash for
6938 	 * this page, so we need to add it back to the hash.
6939 	 */
6940 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6941 	if (!(pp->p_toxic & PR_CAPTURE)) {
6942 		/* just add bp1 back to head of walked list */
6943 		page_settoxic(pp, PR_CAPTURE);
6944 		bp1->next = page_capture_hash[index].lists[1].next;
6945 		bp1->prev = &page_capture_hash[index].lists[1];
6946 		bp1->next->prev = bp1;
6947 		bp1->pri = PAGE_CAPTURE_PRIO(pp);
6948 		page_capture_hash[index].lists[1].next = bp1;
6949 		page_capture_hash[index].num_pages[bp1->pri]++;
6950 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6951 		return (ret);
6952 	}
6953 
6954 	/*
6955 	 * Otherwise there was a new capture request added to list
6956 	 * Need to make sure that our original data is represented if
6957 	 * appropriate.
6958 	 */
6959 	for (i = 0; i < 2; i++) {
6960 		bp2 = page_capture_hash[index].lists[i].next;
6961 		while (bp2 != &page_capture_hash[index].lists[i]) {
6962 			if (bp2->pp == pp) {
6963 				if (bp1->flags & CAPTURE_RETIRE) {
6964 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6965 						bp2->szc = bp1->szc;
6966 						bp2->flags = bp1->flags;
6967 						bp2->expires = bp1->expires;
6968 						bp2->datap = bp1->datap;
6969 					}
6970 				} else {
6971 					ASSERT(bp1->flags & CAPTURE_PHYSMEM);
6972 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6973 						bp2->szc = bp1->szc;
6974 						bp2->flags = bp1->flags;
6975 						bp2->expires = bp1->expires;
6976 						bp2->datap = bp1->datap;
6977 					}
6978 				}
6979 				page_capture_hash[index].num_pages[bp2->pri]--;
6980 				bp2->pri = PAGE_CAPTURE_PRIO(pp);
6981 				page_capture_hash[index].num_pages[bp2->pri]++;
6982 				mutex_exit(&page_capture_hash[index].
6983 				    pchh_mutex);
6984 				kmem_free(bp1, sizeof (*bp1));
6985 				return (ret);
6986 			}
6987 			bp2 = bp2->next;
6988 		}
6989 	}
6990 	panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp);
6991 	/*NOTREACHED*/
6992 }
6993 
6994 /*
6995  * Try to capture the given page for the caller specified in the flags
6996  * parameter.  The page will either be captured and handed over to the
6997  * appropriate callback, or will be queued up in the page capture hash
6998  * to be captured asynchronously.
6999  * If the current request is due to an async capture, the page must be
7000  * exclusively locked before calling this function.
7001  * Currently szc must be 0 but in the future this should be expandable to
7002  * other page sizes.
7003  * Returns 0 on success, with the following error codes on failure:
7004  *      EPERM - The requested page is long term locked, and thus repeated
7005  *              requests to capture this page will likely fail.
7006  *      ENOMEM - There was not enough free memory in the system to safely
7007  *              map the requested page.
7008  *      ENOENT - The requested page was inside the kernel cage, and the
7009  *              CAPTURE_GET_CAGE flag was not set.
7010  *	EAGAIN - The requested page could not be capturead at this point in
7011  *		time but future requests will likely work.
7012  *	EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
7013  *		was not set.
7014  */
7015 int
7016 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7017 {
7018 	int ret;
7019 	int cb_index;
7020 
7021 	if (flags & CAPTURE_ASYNC) {
7022 		ASSERT(PAGE_EXCL(pp));
7023 		goto async;
7024 	}
7025 
7026 	/* Make sure there's enough availrmem ... */
7027 	ret = page_capture_pre_checks(pp, flags);
7028 	if (ret != 0) {
7029 		return (ret);
7030 	}
7031 
7032 	if (!page_trylock(pp, SE_EXCL)) {
7033 		for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
7034 			if ((flags >> cb_index) & 1) {
7035 				break;
7036 			}
7037 		}
7038 		ASSERT(cb_index < PC_NUM_CALLBACKS);
7039 		ret = EAGAIN;
7040 		/* Special case for retired pages */
7041 		if (PP_RETIRED(pp)) {
7042 			if (flags & CAPTURE_GET_RETIRED) {
7043 				if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
7044 					/*
7045 					 * Need to set capture bit and add to
7046 					 * hash so that the page will be
7047 					 * retired when freed.
7048 					 */
7049 					page_capture_add_hash(pp, szc,
7050 					    CAPTURE_RETIRE, NULL);
7051 					ret = 0;
7052 					goto own_page;
7053 				}
7054 			} else {
7055 				return (EBUSY);
7056 			}
7057 		}
7058 		page_capture_add_hash(pp, szc, flags, datap);
7059 		return (ret);
7060 	}
7061 
7062 async:
7063 	ASSERT(PAGE_EXCL(pp));
7064 
7065 	/* Need to check for physmem async requests that availrmem is sane */
7066 	if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
7067 	    (CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
7068 	    (availrmem < swapfs_minfree)) {
7069 		page_unlock(pp);
7070 		return (ENOMEM);
7071 	}
7072 
7073 	ret = page_capture_clean_page(pp);
7074 
7075 	if (ret != 0) {
7076 		/* We failed to get the page, so lets add it to the hash */
7077 		if (!(flags & CAPTURE_ASYNC)) {
7078 			page_capture_add_hash(pp, szc, flags, datap);
7079 		}
7080 		return (ret);
7081 	}
7082 
7083 own_page:
7084 	ASSERT(PAGE_EXCL(pp));
7085 	ASSERT(pp->p_szc == 0);
7086 
7087 	/* Call the callback */
7088 	ret = page_capture_take_action(pp, flags, datap);
7089 
7090 	if (ret == 0) {
7091 		return (0);
7092 	}
7093 
7094 	/*
7095 	 * Note that in the failure cases from page_capture_take_action, the
7096 	 * EXCL lock will have already been dropped.
7097 	 */
7098 	if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
7099 		page_capture_add_hash(pp, szc, flags, datap);
7100 	}
7101 	return (EAGAIN);
7102 }
7103 
7104 int
7105 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7106 {
7107 	int ret;
7108 
7109 	curthread->t_flag |= T_CAPTURING;
7110 	ret = page_itrycapture(pp, szc, flags, datap);
7111 	curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
7112 	return (ret);
7113 }
7114 
7115 /*
7116  * When unlocking a page which has the PR_CAPTURE bit set, this routine
7117  * gets called to try and capture the page.
7118  */
7119 void
7120 page_unlock_capture(page_t *pp)
7121 {
7122 	page_capture_hash_bucket_t *bp;
7123 	int index;
7124 	int i;
7125 	uint_t szc;
7126 	uint_t flags = 0;
7127 	void *datap;
7128 	kmutex_t *mp;
7129 	extern vnode_t retired_pages;
7130 
7131 	/*
7132 	 * We need to protect against a possible deadlock here where we own
7133 	 * the vnode page hash mutex and want to acquire it again as there
7134 	 * are locations in the code, where we unlock a page while holding
7135 	 * the mutex which can lead to the page being captured and eventually
7136 	 * end up here.  As we may be hashing out the old page and hashing into
7137 	 * the retire vnode, we need to make sure we don't own them.
7138 	 * Other callbacks who do hash operations also need to make sure that
7139 	 * before they hashin to a vnode that they do not currently own the
7140 	 * vphm mutex otherwise there will be a panic.
7141 	 */
7142 	if (mutex_owned(page_vnode_mutex(&retired_pages))) {
7143 		page_unlock_nocapture(pp);
7144 		return;
7145 	}
7146 	if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
7147 		page_unlock_nocapture(pp);
7148 		return;
7149 	}
7150 
7151 	index = PAGE_CAPTURE_HASH(pp);
7152 
7153 	mp = &page_capture_hash[index].pchh_mutex;
7154 	mutex_enter(mp);
7155 	for (i = 0; i < 2; i++) {
7156 		bp = page_capture_hash[index].lists[i].next;
7157 		while (bp != &page_capture_hash[index].lists[i]) {
7158 			if (bp->pp == pp) {
7159 				szc = bp->szc;
7160 				flags = bp->flags | CAPTURE_ASYNC;
7161 				datap = bp->datap;
7162 				mutex_exit(mp);
7163 				(void) page_trycapture(pp, szc, flags, datap);
7164 				return;
7165 			}
7166 			bp = bp->next;
7167 		}
7168 	}
7169 
7170 	/* Failed to find page in hash so clear flags and unlock it. */
7171 	page_clrtoxic(pp, PR_CAPTURE);
7172 	page_unlock(pp);
7173 
7174 	mutex_exit(mp);
7175 }
7176 
7177 void
7178 page_capture_init()
7179 {
7180 	int i;
7181 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7182 		page_capture_hash[i].lists[0].next =
7183 		    &page_capture_hash[i].lists[0];
7184 		page_capture_hash[i].lists[0].prev =
7185 		    &page_capture_hash[i].lists[0];
7186 		page_capture_hash[i].lists[1].next =
7187 		    &page_capture_hash[i].lists[1];
7188 		page_capture_hash[i].lists[1].prev =
7189 		    &page_capture_hash[i].lists[1];
7190 	}
7191 
7192 	pc_thread_shortwait = 23 * hz;
7193 	pc_thread_longwait = 1201 * hz;
7194 	pc_thread_retry = 3;
7195 	mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
7196 	cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
7197 	pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
7198 	    TS_RUN, minclsyspri);
7199 }
7200 
7201 /*
7202  * It is necessary to scrub any failing pages prior to reboot in order to
7203  * prevent a latent error trap from occurring on the next boot.
7204  */
7205 void
7206 page_retire_mdboot()
7207 {
7208 	page_t *pp;
7209 	int i, j;
7210 	page_capture_hash_bucket_t *bp;
7211 	uchar_t pri;
7212 
7213 	/* walk lists looking for pages to scrub */
7214 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7215 		for (pri = 0; pri < PC_NUM_PRI; pri++) {
7216 			if (page_capture_hash[i].num_pages[pri] != 0) {
7217 				break;
7218 			}
7219 		}
7220 		if (pri == PC_NUM_PRI)
7221 			continue;
7222 
7223 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7224 
7225 		for (j = 0; j < 2; j++) {
7226 			bp = page_capture_hash[i].lists[j].next;
7227 			while (bp != &page_capture_hash[i].lists[j]) {
7228 				pp = bp->pp;
7229 				if (PP_TOXIC(pp)) {
7230 					if (page_trylock(pp, SE_EXCL)) {
7231 						PP_CLRFREE(pp);
7232 						pagescrub(pp, 0, PAGESIZE);
7233 						page_unlock(pp);
7234 					}
7235 				}
7236 				bp = bp->next;
7237 			}
7238 		}
7239 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7240 	}
7241 }
7242 
7243 /*
7244  * Walk the page_capture_hash trying to capture pages and also cleanup old
7245  * entries which have expired.
7246  */
7247 void
7248 page_capture_async()
7249 {
7250 	page_t *pp;
7251 	int i;
7252 	int ret;
7253 	page_capture_hash_bucket_t *bp1, *bp2;
7254 	uint_t szc;
7255 	uint_t flags;
7256 	void *datap;
7257 	uchar_t pri;
7258 
7259 	/* If there are outstanding pages to be captured, get to work */
7260 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7261 		for (pri = 0; pri < PC_NUM_PRI; pri++) {
7262 			if (page_capture_hash[i].num_pages[pri] != 0)
7263 				break;
7264 		}
7265 		if (pri == PC_NUM_PRI)
7266 			continue;
7267 
7268 		/* Append list 1 to list 0 and then walk through list 0 */
7269 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7270 		bp1 = &page_capture_hash[i].lists[1];
7271 		bp2 = bp1->next;
7272 		if (bp1 != bp2) {
7273 			bp1->prev->next = page_capture_hash[i].lists[0].next;
7274 			bp2->prev = &page_capture_hash[i].lists[0];
7275 			page_capture_hash[i].lists[0].next->prev = bp1->prev;
7276 			page_capture_hash[i].lists[0].next = bp2;
7277 			bp1->next = bp1;
7278 			bp1->prev = bp1;
7279 		}
7280 
7281 		/* list[1] will be empty now */
7282 
7283 		bp1 = page_capture_hash[i].lists[0].next;
7284 		while (bp1 != &page_capture_hash[i].lists[0]) {
7285 			/* Check expiration time */
7286 			if ((ddi_get_lbolt() > bp1->expires &&
7287 			    bp1->expires != -1) ||
7288 			    page_deleted(bp1->pp)) {
7289 				page_capture_hash[i].lists[0].next = bp1->next;
7290 				bp1->next->prev =
7291 				    &page_capture_hash[i].lists[0];
7292 				page_capture_hash[i].num_pages[bp1->pri]--;
7293 
7294 				/*
7295 				 * We can safely remove the PR_CAPTURE bit
7296 				 * without holding the EXCL lock on the page
7297 				 * as the PR_CAPTURE bit requres that the
7298 				 * page_capture_hash[].pchh_mutex be held
7299 				 * to modify it.
7300 				 */
7301 				page_clrtoxic(bp1->pp, PR_CAPTURE);
7302 				mutex_exit(&page_capture_hash[i].pchh_mutex);
7303 				kmem_free(bp1, sizeof (*bp1));
7304 				mutex_enter(&page_capture_hash[i].pchh_mutex);
7305 				bp1 = page_capture_hash[i].lists[0].next;
7306 				continue;
7307 			}
7308 			pp = bp1->pp;
7309 			szc = bp1->szc;
7310 			flags = bp1->flags;
7311 			datap = bp1->datap;
7312 			mutex_exit(&page_capture_hash[i].pchh_mutex);
7313 			if (page_trylock(pp, SE_EXCL)) {
7314 				ret = page_trycapture(pp, szc,
7315 				    flags | CAPTURE_ASYNC, datap);
7316 			} else {
7317 				ret = 1;	/* move to walked hash */
7318 			}
7319 
7320 			if (ret != 0) {
7321 				/* Move to walked hash */
7322 				(void) page_capture_move_to_walked(pp);
7323 			}
7324 			mutex_enter(&page_capture_hash[i].pchh_mutex);
7325 			bp1 = page_capture_hash[i].lists[0].next;
7326 		}
7327 
7328 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7329 	}
7330 }
7331 
7332 /*
7333  * This function is called by the page_capture_thread, and is needed in
7334  * in order to initiate aio cleanup, so that pages used in aio
7335  * will be unlocked and subsequently retired by page_capture_thread.
7336  */
7337 static int
7338 do_aio_cleanup(void)
7339 {
7340 	proc_t *procp;
7341 	int (*aio_cleanup_dr_delete_memory)(proc_t *);
7342 	int cleaned = 0;
7343 
7344 	if (modload("sys", "kaio") == -1) {
7345 		cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
7346 		return (0);
7347 	}
7348 	/*
7349 	 * We use the aio_cleanup_dr_delete_memory function to
7350 	 * initiate the actual clean up; this function will wake
7351 	 * up the per-process aio_cleanup_thread.
7352 	 */
7353 	aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
7354 	    modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
7355 	if (aio_cleanup_dr_delete_memory == NULL) {
7356 		cmn_err(CE_WARN,
7357 	    "aio_cleanup_dr_delete_memory not found in kaio");
7358 		return (0);
7359 	}
7360 	mutex_enter(&pidlock);
7361 	for (procp = practive; (procp != NULL); procp = procp->p_next) {
7362 		mutex_enter(&procp->p_lock);
7363 		if (procp->p_aio != NULL) {
7364 			/* cleanup proc's outstanding kaio */
7365 			cleaned += (*aio_cleanup_dr_delete_memory)(procp);
7366 		}
7367 		mutex_exit(&procp->p_lock);
7368 	}
7369 	mutex_exit(&pidlock);
7370 	return (cleaned);
7371 }
7372 
7373 /*
7374  * helper function for page_capture_thread
7375  */
7376 static void
7377 page_capture_handle_outstanding(void)
7378 {
7379 	int ntry;
7380 
7381 	/* Reap pages before attempting capture pages */
7382 	kmem_reap();
7383 
7384 	if ((page_retire_pend_count() > page_retire_pend_kas_count()) &&
7385 	    hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
7386 		/*
7387 		 * Note: Purging only for platforms that support
7388 		 * ISM hat_pageunload() - mainly SPARC. On x86/x64
7389 		 * platforms ISM pages SE_SHARED locked until destroyed.
7390 		 */
7391 
7392 		/* disable and purge seg_pcache */
7393 		(void) seg_p_disable();
7394 		for (ntry = 0; ntry < pc_thread_retry; ntry++) {
7395 			if (!page_retire_pend_count())
7396 				break;
7397 			if (do_aio_cleanup()) {
7398 				/*
7399 				 * allow the apps cleanup threads
7400 				 * to run
7401 				 */
7402 				delay(pc_thread_shortwait);
7403 			}
7404 			page_capture_async();
7405 		}
7406 		/* reenable seg_pcache */
7407 		seg_p_enable();
7408 
7409 		/* completed what can be done.  break out */
7410 		return;
7411 	}
7412 
7413 	/*
7414 	 * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap
7415 	 * and then attempt to capture.
7416 	 */
7417 	seg_preap();
7418 	page_capture_async();
7419 }
7420 
7421 /*
7422  * The page_capture_thread loops forever, looking to see if there are
7423  * pages still waiting to be captured.
7424  */
7425 static void
7426 page_capture_thread(void)
7427 {
7428 	callb_cpr_t c;
7429 	int i;
7430 	int high_pri_pages;
7431 	int low_pri_pages;
7432 	clock_t timeout;
7433 
7434 	CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
7435 
7436 	mutex_enter(&pc_thread_mutex);
7437 	for (;;) {
7438 		high_pri_pages = 0;
7439 		low_pri_pages = 0;
7440 		for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7441 			high_pri_pages +=
7442 			    page_capture_hash[i].num_pages[PC_PRI_HI];
7443 			low_pri_pages +=
7444 			    page_capture_hash[i].num_pages[PC_PRI_LO];
7445 		}
7446 
7447 		timeout = pc_thread_longwait;
7448 		if (high_pri_pages != 0) {
7449 			timeout = pc_thread_shortwait;
7450 			page_capture_handle_outstanding();
7451 		} else if (low_pri_pages != 0) {
7452 			page_capture_async();
7453 		}
7454 		CALLB_CPR_SAFE_BEGIN(&c);
7455 		(void) cv_reltimedwait(&pc_cv, &pc_thread_mutex,
7456 		    timeout, TR_CLOCK_TICK);
7457 		CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7458 	}
7459 	/*NOTREACHED*/
7460 }
7461 /*
7462  * Attempt to locate a bucket that has enough pages to satisfy the request.
7463  * The initial check is done without the lock to avoid unneeded contention.
7464  * The function returns 1 if enough pages were found, else 0 if it could not
7465  * find enough pages in a bucket.
7466  */
7467 static int
7468 pcf_decrement_bucket(pgcnt_t npages)
7469 {
7470 	struct pcf	*p;
7471 	struct pcf	*q;
7472 	int i;
7473 
7474 	p = &pcf[PCF_INDEX()];
7475 	q = &pcf[pcf_fanout];
7476 	for (i = 0; i < pcf_fanout; i++) {
7477 		if (p->pcf_count > npages) {
7478 			/*
7479 			 * a good one to try.
7480 			 */
7481 			mutex_enter(&p->pcf_lock);
7482 			if (p->pcf_count > npages) {
7483 				p->pcf_count -= (uint_t)npages;
7484 				/*
7485 				 * freemem is not protected by any lock.
7486 				 * Thus, we cannot have any assertion
7487 				 * containing freemem here.
7488 				 */
7489 				freemem -= npages;
7490 				mutex_exit(&p->pcf_lock);
7491 				return (1);
7492 			}
7493 			mutex_exit(&p->pcf_lock);
7494 		}
7495 		p++;
7496 		if (p >= q) {
7497 			p = pcf;
7498 		}
7499 	}
7500 	return (0);
7501 }
7502 
7503 /*
7504  * Arguments:
7505  *	pcftotal_ret:	If the value is not NULL and we have walked all the
7506  *			buckets but did not find enough pages then it will
7507  *			be set to the total number of pages in all the pcf
7508  *			buckets.
7509  *	npages:		Is the number of pages we have been requested to
7510  *			find.
7511  *	unlock:		If set to 0 we will leave the buckets locked if the
7512  *			requested number of pages are not found.
7513  *
7514  * Go and try to satisfy the page request  from any number of buckets.
7515  * This can be a very expensive operation as we have to lock the buckets
7516  * we are checking (and keep them locked), starting at bucket 0.
7517  *
7518  * The function returns 1 if enough pages were found, else 0 if it could not
7519  * find enough pages in the buckets.
7520  *
7521  */
7522 static int
7523 pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock)
7524 {
7525 	struct pcf	*p;
7526 	pgcnt_t pcftotal;
7527 	int i;
7528 
7529 	p = pcf;
7530 	/* try to collect pages from several pcf bins */
7531 	for (pcftotal = 0, i = 0; i < pcf_fanout; i++) {
7532 		mutex_enter(&p->pcf_lock);
7533 		pcftotal += p->pcf_count;
7534 		if (pcftotal >= npages) {
7535 			/*
7536 			 * Wow!  There are enough pages laying around
7537 			 * to satisfy the request.  Do the accounting,
7538 			 * drop the locks we acquired, and go back.
7539 			 *
7540 			 * freemem is not protected by any lock. So,
7541 			 * we cannot have any assertion containing
7542 			 * freemem.
7543 			 */
7544 			freemem -= npages;
7545 			while (p >= pcf) {
7546 				if (p->pcf_count <= npages) {
7547 					npages -= p->pcf_count;
7548 					p->pcf_count = 0;
7549 				} else {
7550 					p->pcf_count -= (uint_t)npages;
7551 					npages = 0;
7552 				}
7553 				mutex_exit(&p->pcf_lock);
7554 				p--;
7555 			}
7556 			ASSERT(npages == 0);
7557 			return (1);
7558 		}
7559 		p++;
7560 	}
7561 	if (unlock) {
7562 		/* failed to collect pages - release the locks */
7563 		while (--p >= pcf) {
7564 			mutex_exit(&p->pcf_lock);
7565 		}
7566 	}
7567 	if (pcftotal_ret != NULL)
7568 		*pcftotal_ret = pcftotal;
7569 	return (0);
7570 }
7571