xref: /illumos-gate/usr/src/uts/common/vm/vm_page.c (revision 4d8d108f42a089b7b4441353f2ad7a75e1c7b31d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2015, Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
24  * Copyright (c) 2015, 2016 by Delphix. All rights reserved.
25  * Copyright 2018 Joyent, Inc.
26  * Copyright 2021 Oxide Computer Company
27  */
28 
29 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989  AT&T */
30 /* All Rights Reserved */
31 
32 /*
33  * University Copyright- Copyright (c) 1982, 1986, 1988
34  * The Regents of the University of California
35  * All Rights Reserved
36  *
37  * University Acknowledgment- Portions of this document are derived from
38  * software developed by the University of California, Berkeley, and its
39  * contributors.
40  */
41 
42 /*
43  * VM - physical page management.
44  */
45 
46 #include <sys/types.h>
47 #include <sys/t_lock.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/errno.h>
51 #include <sys/time.h>
52 #include <sys/vnode.h>
53 #include <sys/vm.h>
54 #include <sys/vtrace.h>
55 #include <sys/swap.h>
56 #include <sys/cmn_err.h>
57 #include <sys/tuneable.h>
58 #include <sys/sysmacros.h>
59 #include <sys/cpuvar.h>
60 #include <sys/callb.h>
61 #include <sys/debug.h>
62 #include <sys/condvar_impl.h>
63 #include <sys/mem_config.h>
64 #include <sys/mem_cage.h>
65 #include <sys/kmem.h>
66 #include <sys/atomic.h>
67 #include <sys/strlog.h>
68 #include <sys/mman.h>
69 #include <sys/ontrap.h>
70 #include <sys/lgrp.h>
71 #include <sys/vfs.h>
72 
73 #include <vm/hat.h>
74 #include <vm/anon.h>
75 #include <vm/page.h>
76 #include <vm/seg.h>
77 #include <vm/pvn.h>
78 #include <vm/seg_kmem.h>
79 #include <vm/vm_dep.h>
80 #include <sys/vm_usage.h>
81 #include <fs/fs_subr.h>
82 #include <sys/ddi.h>
83 #include <sys/modctl.h>
84 
85 static pgcnt_t max_page_get;	/* max page_get request size in pages */
86 pgcnt_t total_pages = 0;	/* total number of pages (used by /proc) */
87 volatile uint64_t n_throttle = 0;
88 
89 /*
90  * freemem_lock protects all freemem variables:
91  * availrmem. Also this lock protects the globals which track the
92  * availrmem changes for accurate kernel footprint calculation.
93  * See below for an explanation of these
94  * globals.
95  */
96 kmutex_t freemem_lock;
97 pgcnt_t availrmem;
98 pgcnt_t availrmem_initial;
99 
100 /*
101  * These globals track availrmem changes to get a more accurate
102  * estimate of tke kernel size. Historically pp_kernel is used for
103  * kernel size and is based on availrmem. But availrmem is adjusted for
104  * locked pages in the system not just for kernel locked pages.
105  * These new counters will track the pages locked through segvn and
106  * by explicit user locking.
107  *
108  * pages_locked : How many pages are locked because of user specified
109  * locking through mlock or plock.
110  *
111  * pages_useclaim,pages_claimed : These two variables track the
112  * claim adjustments because of the protection changes on a segvn segment.
113  *
114  * All these globals are protected by the same lock which protects availrmem.
115  */
116 pgcnt_t pages_locked = 0;
117 pgcnt_t pages_useclaim = 0;
118 pgcnt_t pages_claimed = 0;
119 
120 
121 /*
122  * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
123  */
124 static kmutex_t	new_freemem_lock;
125 static uint_t	freemem_wait;	/* someone waiting for freemem */
126 static kcondvar_t freemem_cv;
127 
128 /*
129  * The logical page free list is maintained as two lists, the 'free'
130  * and the 'cache' lists.
131  * The free list contains those pages that should be reused first.
132  *
133  * The implementation of the lists is machine dependent.
134  * page_get_freelist(), page_get_cachelist(),
135  * page_list_sub(), and page_list_add()
136  * form the interface to the machine dependent implementation.
137  *
138  * Pages with p_free set are on the cache list.
139  * Pages with p_free and p_age set are on the free list,
140  *
141  * A page may be locked while on either list.
142  */
143 
144 /*
145  * free list accounting stuff.
146  *
147  *
148  * Spread out the value for the number of pages on the
149  * page free and page cache lists.  If there is just one
150  * value, then it must be under just one lock.
151  * The lock contention and cache traffic are a real bother.
152  *
153  * When we acquire and then drop a single pcf lock
154  * we can start in the middle of the array of pcf structures.
155  * If we acquire more than one pcf lock at a time, we need to
156  * start at the front to avoid deadlocking.
157  *
158  * pcf_count holds the number of pages in each pool.
159  *
160  * pcf_block is set when page_create_get_something() has asked the
161  * PSM page freelist and page cachelist routines without specifying
162  * a color and nothing came back.  This is used to block anything
163  * else from moving pages from one list to the other while the
164  * lists are searched again.  If a page is freeed while pcf_block is
165  * set, then pcf_reserve is incremented.  pcgs_unblock() takes care
166  * of clearning pcf_block, doing the wakeups, etc.
167  */
168 
169 #define	MAX_PCF_FANOUT NCPU
170 static uint_t pcf_fanout = 1; /* Will get changed at boot time */
171 static uint_t pcf_fanout_mask = 0;
172 
173 struct pcf {
174 	kmutex_t	pcf_lock;	/* protects the structure */
175 	uint_t		pcf_count;	/* page count */
176 	uint_t		pcf_wait;	/* number of waiters */
177 	uint_t		pcf_block;	/* pcgs flag to page_free() */
178 	uint_t		pcf_reserve;	/* pages freed after pcf_block set */
179 	uint_t		pcf_fill[10];	/* to line up on the caches */
180 };
181 
182 /*
183  * PCF_INDEX hash needs to be dynamic (every so often the hash changes where
184  * it will hash the cpu to).  This is done to prevent a drain condition
185  * from happening.  This drain condition will occur when pcf_count decrement
186  * occurs on cpu A and the increment of pcf_count always occurs on cpu B.  An
187  * example of this shows up with device interrupts.  The dma buffer is allocated
188  * by the cpu requesting the IO thus the pcf_count is decremented based on that.
189  * When the memory is returned by the interrupt thread, the pcf_count will be
190  * incremented based on the cpu servicing the interrupt.
191  */
192 static struct pcf pcf[MAX_PCF_FANOUT];
193 #define	PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \
194 	(randtick() >> 24)) & (pcf_fanout_mask))
195 
196 static int pcf_decrement_bucket(pgcnt_t);
197 static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int);
198 
199 kmutex_t	pcgs_lock;		/* serializes page_create_get_ */
200 kmutex_t	pcgs_cagelock;		/* serializes NOSLEEP cage allocs */
201 kmutex_t	pcgs_wait_lock;		/* used for delay in pcgs */
202 static kcondvar_t	pcgs_cv;	/* cv for delay in pcgs */
203 
204 #ifdef VM_STATS
205 
206 /*
207  * No locks, but so what, they are only statistics.
208  */
209 
210 static struct page_tcnt {
211 	int	pc_free_cache;		/* free's into cache list */
212 	int	pc_free_dontneed;	/* free's with dontneed */
213 	int	pc_free_pageout;	/* free's from pageout */
214 	int	pc_free_free;		/* free's into free list */
215 	int	pc_free_pages;		/* free's into large page free list */
216 	int	pc_destroy_pages;	/* large page destroy's */
217 	int	pc_get_cache;		/* get's from cache list */
218 	int	pc_get_free;		/* get's from free list */
219 	int	pc_reclaim;		/* reclaim's */
220 	int	pc_abortfree;		/* abort's of free pages */
221 	int	pc_find_hit;		/* find's that find page */
222 	int	pc_find_miss;		/* find's that don't find page */
223 	int	pc_destroy_free;	/* # of free pages destroyed */
224 #define	PC_HASH_CNT	(4*PAGE_HASHAVELEN)
225 	int	pc_find_hashlen[PC_HASH_CNT+1];
226 	int	pc_addclaim_pages;
227 	int	pc_subclaim_pages;
228 	int	pc_free_replacement_page[2];
229 	int	pc_try_demote_pages[6];
230 	int	pc_demote_pages[2];
231 } pagecnt;
232 
233 uint_t	hashin_count;
234 uint_t	hashin_not_held;
235 uint_t	hashin_already;
236 
237 uint_t	hashout_count;
238 uint_t	hashout_not_held;
239 
240 uint_t	page_create_count;
241 uint_t	page_create_not_enough;
242 uint_t	page_create_not_enough_again;
243 uint_t	page_create_zero;
244 uint_t	page_create_hashout;
245 uint_t	page_create_page_lock_failed;
246 uint_t	page_create_trylock_failed;
247 uint_t	page_create_found_one;
248 uint_t	page_create_hashin_failed;
249 uint_t	page_create_dropped_phm;
250 
251 uint_t	page_create_new;
252 uint_t	page_create_exists;
253 uint_t	page_create_putbacks;
254 uint_t	page_create_overshoot;
255 
256 uint_t	page_reclaim_zero;
257 uint_t	page_reclaim_zero_locked;
258 
259 uint_t	page_rename_exists;
260 uint_t	page_rename_count;
261 
262 uint_t	page_lookup_cnt[20];
263 uint_t	page_lookup_nowait_cnt[10];
264 uint_t	page_find_cnt;
265 uint_t	page_exists_cnt;
266 uint_t	page_exists_forreal_cnt;
267 uint_t	page_lookup_dev_cnt;
268 uint_t	get_cachelist_cnt;
269 uint_t	page_create_cnt[10];
270 uint_t	alloc_pages[9];
271 uint_t	page_exphcontg[19];
272 uint_t  page_create_large_cnt[10];
273 
274 #endif
275 
276 static inline page_t *
277 page_hash_search(ulong_t index, vnode_t *vnode, u_offset_t off)
278 {
279 	uint_t mylen = 0;
280 	page_t *page;
281 
282 	for (page = page_hash[index]; page; page = page->p_hash, mylen++)
283 		if (page->p_vnode == vnode && page->p_offset == off)
284 			break;
285 
286 #ifdef	VM_STATS
287 	if (page != NULL)
288 		pagecnt.pc_find_hit++;
289 	else
290 		pagecnt.pc_find_miss++;
291 
292 	pagecnt.pc_find_hashlen[MIN(mylen, PC_HASH_CNT)]++;
293 #endif
294 
295 	return (page);
296 }
297 
298 
299 #ifdef DEBUG
300 #define	MEMSEG_SEARCH_STATS
301 #endif
302 
303 #ifdef MEMSEG_SEARCH_STATS
304 struct memseg_stats {
305     uint_t nsearch;
306     uint_t nlastwon;
307     uint_t nhashwon;
308     uint_t nnotfound;
309 } memseg_stats;
310 
311 #define	MEMSEG_STAT_INCR(v) \
312 	atomic_inc_32(&memseg_stats.v)
313 #else
314 #define	MEMSEG_STAT_INCR(x)
315 #endif
316 
317 struct memseg *memsegs;		/* list of memory segments */
318 
319 /*
320  * /etc/system tunable to control large page allocation hueristic.
321  *
322  * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
323  * for large page allocation requests.  If a large page is not readily
324  * avaliable on the local freelists we will go through additional effort
325  * to create a large page, potentially moving smaller pages around to coalesce
326  * larger pages in the local lgroup.
327  * Default value of LPAP_DEFAULT will go to remote freelists if large pages
328  * are not readily available in the local lgroup.
329  */
330 enum lpap {
331 	LPAP_DEFAULT,	/* default large page allocation policy */
332 	LPAP_LOCAL	/* local large page allocation policy */
333 };
334 
335 enum lpap lpg_alloc_prefer = LPAP_DEFAULT;
336 
337 static void page_init_mem_config(void);
338 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
339 static void page_do_hashout(page_t *);
340 static void page_capture_init();
341 int page_capture_take_action(page_t *, uint_t, void *);
342 
343 static void page_demote_vp_pages(page_t *);
344 
345 
346 void
347 pcf_init(void)
348 {
349 	if (boot_ncpus != -1) {
350 		pcf_fanout = boot_ncpus;
351 	} else {
352 		pcf_fanout = max_ncpus;
353 	}
354 #ifdef sun4v
355 	/*
356 	 * Force at least 4 buckets if possible for sun4v.
357 	 */
358 	pcf_fanout = MAX(pcf_fanout, 4);
359 #endif /* sun4v */
360 
361 	/*
362 	 * Round up to the nearest power of 2.
363 	 */
364 	pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT);
365 	if (!ISP2(pcf_fanout)) {
366 		pcf_fanout = 1 << highbit(pcf_fanout);
367 
368 		if (pcf_fanout > MAX_PCF_FANOUT) {
369 			pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1);
370 		}
371 	}
372 	pcf_fanout_mask = pcf_fanout - 1;
373 }
374 
375 /*
376  * vm subsystem related initialization
377  */
378 void
379 vm_init(void)
380 {
381 	boolean_t callb_vm_cpr(void *, int);
382 
383 	(void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
384 	page_init_mem_config();
385 	page_retire_init();
386 	vm_usage_init();
387 	page_capture_init();
388 }
389 
390 /*
391  * This function is called at startup and when memory is added or deleted.
392  */
393 void
394 init_pages_pp_maximum()
395 {
396 	static pgcnt_t p_min;
397 	static pgcnt_t pages_pp_maximum_startup;
398 	static pgcnt_t avrmem_delta;
399 	static int init_done;
400 	static int user_set;	/* true if set in /etc/system */
401 
402 	if (init_done == 0) {
403 
404 		/* If the user specified a value, save it */
405 		if (pages_pp_maximum != 0) {
406 			user_set = 1;
407 			pages_pp_maximum_startup = pages_pp_maximum;
408 		}
409 
410 		/*
411 		 * Setting of pages_pp_maximum is based first time
412 		 * on the value of availrmem just after the start-up
413 		 * allocations. To preserve this relationship at run
414 		 * time, use a delta from availrmem_initial.
415 		 */
416 		ASSERT(availrmem_initial >= availrmem);
417 		avrmem_delta = availrmem_initial - availrmem;
418 
419 		/* The allowable floor of pages_pp_maximum */
420 		p_min = tune.t_minarmem + 100;
421 
422 		/* Make sure we don't come through here again. */
423 		init_done = 1;
424 	}
425 	/*
426 	 * Determine pages_pp_maximum, the number of currently available
427 	 * pages (availrmem) that can't be `locked'. If not set by
428 	 * the user, we set it to 4% of the currently available memory
429 	 * plus 4MB.
430 	 * But we also insist that it be greater than tune.t_minarmem;
431 	 * otherwise a process could lock down a lot of memory, get swapped
432 	 * out, and never have enough to get swapped back in.
433 	 */
434 	if (user_set)
435 		pages_pp_maximum = pages_pp_maximum_startup;
436 	else
437 		pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
438 		    + btop(4 * 1024 * 1024);
439 
440 	if (pages_pp_maximum <= p_min) {
441 		pages_pp_maximum = p_min;
442 	}
443 }
444 
445 /*
446  * In the past, we limited the maximum pages that could be gotten to essentially
447  * 1/2 of the total pages on the system. However, this is too conservative for
448  * some cases. For example, if we want to host a large virtual machine which
449  * needs to use a significant portion of the system's memory. In practice,
450  * allowing more than 1/2 of the total pages is fine, but becomes problematic
451  * as we approach or exceed 75% of the pages on the system. Thus, we limit the
452  * maximum to 23/32 of the total pages, which is ~72%.
453  */
454 void
455 set_max_page_get(pgcnt_t target_total_pages)
456 {
457 	max_page_get = (target_total_pages >> 5) * 23;
458 	ASSERT3U(max_page_get, >, 0);
459 }
460 
461 pgcnt_t
462 get_max_page_get()
463 {
464 	return (max_page_get);
465 }
466 
467 static pgcnt_t pending_delete;
468 
469 /*ARGSUSED*/
470 static void
471 page_mem_config_post_add(
472 	void *arg,
473 	pgcnt_t delta_pages)
474 {
475 	set_max_page_get(total_pages - pending_delete);
476 	init_pages_pp_maximum();
477 }
478 
479 /*ARGSUSED*/
480 static int
481 page_mem_config_pre_del(
482 	void *arg,
483 	pgcnt_t delta_pages)
484 {
485 	pgcnt_t nv;
486 
487 	nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
488 	set_max_page_get(total_pages - nv);
489 	return (0);
490 }
491 
492 /*ARGSUSED*/
493 static void
494 page_mem_config_post_del(
495 	void *arg,
496 	pgcnt_t delta_pages,
497 	int cancelled)
498 {
499 	pgcnt_t nv;
500 
501 	nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
502 	set_max_page_get(total_pages - nv);
503 	if (!cancelled)
504 		init_pages_pp_maximum();
505 }
506 
507 static kphysm_setup_vector_t page_mem_config_vec = {
508 	KPHYSM_SETUP_VECTOR_VERSION,
509 	page_mem_config_post_add,
510 	page_mem_config_pre_del,
511 	page_mem_config_post_del,
512 };
513 
514 static void
515 page_init_mem_config(void)
516 {
517 	int ret;
518 
519 	ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
520 	ASSERT(ret == 0);
521 }
522 
523 /*
524  * Evenly spread out the PCF counters for large free pages
525  */
526 static void
527 page_free_large_ctr(pgcnt_t npages)
528 {
529 	static struct pcf	*p = pcf;
530 	pgcnt_t			lump;
531 
532 	freemem += npages;
533 
534 	lump = roundup(npages, pcf_fanout) / pcf_fanout;
535 
536 	while (npages > 0) {
537 
538 		ASSERT(!p->pcf_block);
539 
540 		if (lump < npages) {
541 			p->pcf_count += (uint_t)lump;
542 			npages -= lump;
543 		} else {
544 			p->pcf_count += (uint_t)npages;
545 			npages = 0;
546 		}
547 
548 		ASSERT(!p->pcf_wait);
549 
550 		if (++p > &pcf[pcf_fanout - 1])
551 			p = pcf;
552 	}
553 
554 	ASSERT(npages == 0);
555 }
556 
557 /*
558  * Add a physical chunk of memory to the system free lists during startup.
559  * Platform specific startup() allocates the memory for the page structs.
560  *
561  * num	- number of page structures
562  * base - page number (pfn) to be associated with the first page.
563  *
564  * Since we are doing this during startup (ie. single threaded), we will
565  * use shortcut routines to avoid any locking overhead while putting all
566  * these pages on the freelists.
567  *
568  * NOTE: Any changes performed to page_free(), must also be performed to
569  *	 add_physmem() since this is how we initialize all page_t's at
570  *	 boot time.
571  */
572 void
573 add_physmem(
574 	page_t	*pp,
575 	pgcnt_t	num,
576 	pfn_t	pnum)
577 {
578 	page_t	*root = NULL;
579 	uint_t	szc = page_num_pagesizes() - 1;
580 	pgcnt_t	large = page_get_pagecnt(szc);
581 	pgcnt_t	cnt = 0;
582 
583 	TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
584 	    "add_physmem:pp %p num %lu", pp, num);
585 
586 	/*
587 	 * Arbitrarily limit the max page_get request
588 	 * to 1/2 of the page structs we have.
589 	 */
590 	total_pages += num;
591 	set_max_page_get(total_pages);
592 
593 	PLCNT_MODIFY_MAX(pnum, (long)num);
594 
595 	/*
596 	 * The physical space for the pages array
597 	 * representing ram pages has already been
598 	 * allocated.  Here we initialize each lock
599 	 * in the page structure, and put each on
600 	 * the free list
601 	 */
602 	for (; num; pp++, pnum++, num--) {
603 
604 		/*
605 		 * this needs to fill in the page number
606 		 * and do any other arch specific initialization
607 		 */
608 		add_physmem_cb(pp, pnum);
609 
610 		pp->p_lckcnt = 0;
611 		pp->p_cowcnt = 0;
612 		pp->p_slckcnt = 0;
613 
614 		/*
615 		 * Initialize the page lock as unlocked, since nobody
616 		 * can see or access this page yet.
617 		 */
618 		pp->p_selock = 0;
619 
620 		/*
621 		 * Initialize IO lock
622 		 */
623 		page_iolock_init(pp);
624 
625 		/*
626 		 * initialize other fields in the page_t
627 		 */
628 		PP_SETFREE(pp);
629 		page_clr_all_props(pp);
630 		PP_SETAGED(pp);
631 		pp->p_offset = (u_offset_t)-1;
632 		pp->p_next = pp;
633 		pp->p_prev = pp;
634 
635 		/*
636 		 * Simple case: System doesn't support large pages.
637 		 */
638 		if (szc == 0) {
639 			pp->p_szc = 0;
640 			page_free_at_startup(pp);
641 			continue;
642 		}
643 
644 		/*
645 		 * Handle unaligned pages, we collect them up onto
646 		 * the root page until we have a full large page.
647 		 */
648 		if (!IS_P2ALIGNED(pnum, large)) {
649 
650 			/*
651 			 * If not in a large page,
652 			 * just free as small page.
653 			 */
654 			if (root == NULL) {
655 				pp->p_szc = 0;
656 				page_free_at_startup(pp);
657 				continue;
658 			}
659 
660 			/*
661 			 * Link a constituent page into the large page.
662 			 */
663 			pp->p_szc = szc;
664 			page_list_concat(&root, &pp);
665 
666 			/*
667 			 * When large page is fully formed, free it.
668 			 */
669 			if (++cnt == large) {
670 				page_free_large_ctr(cnt);
671 				page_list_add_pages(root, PG_LIST_ISINIT);
672 				root = NULL;
673 				cnt = 0;
674 			}
675 			continue;
676 		}
677 
678 		/*
679 		 * At this point we have a page number which
680 		 * is aligned. We assert that we aren't already
681 		 * in a different large page.
682 		 */
683 		ASSERT(IS_P2ALIGNED(pnum, large));
684 		ASSERT(root == NULL && cnt == 0);
685 
686 		/*
687 		 * If insufficient number of pages left to form
688 		 * a large page, just free the small page.
689 		 */
690 		if (num < large) {
691 			pp->p_szc = 0;
692 			page_free_at_startup(pp);
693 			continue;
694 		}
695 
696 		/*
697 		 * Otherwise start a new large page.
698 		 */
699 		pp->p_szc = szc;
700 		cnt++;
701 		root = pp;
702 	}
703 	ASSERT(root == NULL && cnt == 0);
704 }
705 
706 /*
707  * Find a page representing the specified [vp, offset].
708  * If we find the page but it is intransit coming in,
709  * it will have an "exclusive" lock and we wait for
710  * the i/o to complete.  A page found on the free list
711  * is always reclaimed and then locked.  On success, the page
712  * is locked, its data is valid and it isn't on the free
713  * list, while a NULL is returned if the page doesn't exist.
714  */
715 page_t *
716 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
717 {
718 	return (page_lookup_create(vp, off, se, NULL, NULL, 0));
719 }
720 
721 /*
722  * Find a page representing the specified [vp, offset].
723  * We either return the one we found or, if passed in,
724  * create one with identity of [vp, offset] of the
725  * pre-allocated page. If we find existing page but it is
726  * intransit coming in, it will have an "exclusive" lock
727  * and we wait for the i/o to complete.  A page found on
728  * the free list is always reclaimed and then locked.
729  * On success, the page is locked, its data is valid and
730  * it isn't on the free list, while a NULL is returned
731  * if the page doesn't exist and newpp is NULL;
732  */
733 page_t *
734 page_lookup_create(
735 	vnode_t *vp,
736 	u_offset_t off,
737 	se_t se,
738 	page_t *newpp,
739 	spgcnt_t *nrelocp,
740 	int flags)
741 {
742 	page_t		*pp;
743 	kmutex_t	*phm;
744 	ulong_t		index;
745 	uint_t		hash_locked;
746 	uint_t		es;
747 
748 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
749 	VM_STAT_ADD(page_lookup_cnt[0]);
750 	ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
751 
752 	/*
753 	 * Acquire the appropriate page hash lock since
754 	 * we have to search the hash list.  Pages that
755 	 * hash to this list can't change identity while
756 	 * this lock is held.
757 	 */
758 	hash_locked = 0;
759 	index = PAGE_HASH_FUNC(vp, off);
760 	phm = NULL;
761 top:
762 	pp = page_hash_search(index, vp, off);
763 	if (pp != NULL) {
764 		VM_STAT_ADD(page_lookup_cnt[1]);
765 		es = (newpp != NULL) ? 1 : 0;
766 		es |= flags;
767 		if (!hash_locked) {
768 			VM_STAT_ADD(page_lookup_cnt[2]);
769 			if (!page_try_reclaim_lock(pp, se, es)) {
770 				/*
771 				 * On a miss, acquire the phm.  Then
772 				 * next time, page_lock() will be called,
773 				 * causing a wait if the page is busy.
774 				 * just looping with page_trylock() would
775 				 * get pretty boring.
776 				 */
777 				VM_STAT_ADD(page_lookup_cnt[3]);
778 				phm = PAGE_HASH_MUTEX(index);
779 				mutex_enter(phm);
780 				hash_locked = 1;
781 				goto top;
782 			}
783 		} else {
784 			VM_STAT_ADD(page_lookup_cnt[4]);
785 			if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
786 				VM_STAT_ADD(page_lookup_cnt[5]);
787 				goto top;
788 			}
789 		}
790 
791 		/*
792 		 * Since `pp' is locked it can not change identity now.
793 		 * Reconfirm we locked the correct page.
794 		 *
795 		 * Both the p_vnode and p_offset *must* be cast volatile
796 		 * to force a reload of their values: The page_hash_search
797 		 * function will have stuffed p_vnode and p_offset into
798 		 * registers before calling page_trylock(); another thread,
799 		 * actually holding the hash lock, could have changed the
800 		 * page's identity in memory, but our registers would not
801 		 * be changed, fooling the reconfirmation.  If the hash
802 		 * lock was held during the search, the casting would
803 		 * not be needed.
804 		 */
805 		VM_STAT_ADD(page_lookup_cnt[6]);
806 		if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
807 		    ((volatile u_offset_t)(pp->p_offset) != off)) {
808 			VM_STAT_ADD(page_lookup_cnt[7]);
809 			if (hash_locked) {
810 				panic("page_lookup_create: lost page %p",
811 				    (void *)pp);
812 				/*NOTREACHED*/
813 			}
814 			page_unlock(pp);
815 			phm = PAGE_HASH_MUTEX(index);
816 			mutex_enter(phm);
817 			hash_locked = 1;
818 			goto top;
819 		}
820 
821 		/*
822 		 * If page_trylock() was called, then pp may still be on
823 		 * the cachelist (can't be on the free list, it would not
824 		 * have been found in the search).  If it is on the
825 		 * cachelist it must be pulled now. To pull the page from
826 		 * the cachelist, it must be exclusively locked.
827 		 *
828 		 * The other big difference between page_trylock() and
829 		 * page_lock(), is that page_lock() will pull the
830 		 * page from whatever free list (the cache list in this
831 		 * case) the page is on.  If page_trylock() was used
832 		 * above, then we have to do the reclaim ourselves.
833 		 */
834 		if ((!hash_locked) && (PP_ISFREE(pp))) {
835 			ASSERT(PP_ISAGED(pp) == 0);
836 			VM_STAT_ADD(page_lookup_cnt[8]);
837 
838 			/*
839 			 * page_relcaim will insure that we
840 			 * have this page exclusively
841 			 */
842 
843 			if (!page_reclaim(pp, NULL)) {
844 				/*
845 				 * Page_reclaim dropped whatever lock
846 				 * we held.
847 				 */
848 				VM_STAT_ADD(page_lookup_cnt[9]);
849 				phm = PAGE_HASH_MUTEX(index);
850 				mutex_enter(phm);
851 				hash_locked = 1;
852 				goto top;
853 			} else if (se == SE_SHARED && newpp == NULL) {
854 				VM_STAT_ADD(page_lookup_cnt[10]);
855 				page_downgrade(pp);
856 			}
857 		}
858 
859 		if (hash_locked) {
860 			mutex_exit(phm);
861 		}
862 
863 		if (newpp != NULL && pp->p_szc < newpp->p_szc &&
864 		    PAGE_EXCL(pp) && nrelocp != NULL) {
865 			ASSERT(nrelocp != NULL);
866 			(void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
867 			    NULL);
868 			if (*nrelocp > 0) {
869 				VM_STAT_COND_ADD(*nrelocp == 1,
870 				    page_lookup_cnt[11]);
871 				VM_STAT_COND_ADD(*nrelocp > 1,
872 				    page_lookup_cnt[12]);
873 				pp = newpp;
874 				se = SE_EXCL;
875 			} else {
876 				if (se == SE_SHARED) {
877 					page_downgrade(pp);
878 				}
879 				VM_STAT_ADD(page_lookup_cnt[13]);
880 			}
881 		} else if (newpp != NULL && nrelocp != NULL) {
882 			if (PAGE_EXCL(pp) && se == SE_SHARED) {
883 				page_downgrade(pp);
884 			}
885 			VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
886 			    page_lookup_cnt[14]);
887 			VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
888 			    page_lookup_cnt[15]);
889 			VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
890 			    page_lookup_cnt[16]);
891 		} else if (newpp != NULL && PAGE_EXCL(pp)) {
892 			se = SE_EXCL;
893 		}
894 	} else if (!hash_locked) {
895 		VM_STAT_ADD(page_lookup_cnt[17]);
896 		phm = PAGE_HASH_MUTEX(index);
897 		mutex_enter(phm);
898 		hash_locked = 1;
899 		goto top;
900 	} else if (newpp != NULL) {
901 		/*
902 		 * If we have a preallocated page then
903 		 * insert it now and basically behave like
904 		 * page_create.
905 		 */
906 		VM_STAT_ADD(page_lookup_cnt[18]);
907 		/*
908 		 * Since we hold the page hash mutex and
909 		 * just searched for this page, page_hashin
910 		 * had better not fail.  If it does, that
911 		 * means some thread did not follow the
912 		 * page hash mutex rules.  Panic now and
913 		 * get it over with.  As usual, go down
914 		 * holding all the locks.
915 		 */
916 		ASSERT(MUTEX_HELD(phm));
917 		if (!page_hashin(newpp, vp, off, phm)) {
918 			ASSERT(MUTEX_HELD(phm));
919 			panic("page_lookup_create: hashin failed %p %p %llx %p",
920 			    (void *)newpp, (void *)vp, off, (void *)phm);
921 			/*NOTREACHED*/
922 		}
923 		ASSERT(MUTEX_HELD(phm));
924 		mutex_exit(phm);
925 		phm = NULL;
926 		page_set_props(newpp, P_REF);
927 		page_io_lock(newpp);
928 		pp = newpp;
929 		se = SE_EXCL;
930 	} else {
931 		VM_STAT_ADD(page_lookup_cnt[19]);
932 		mutex_exit(phm);
933 	}
934 
935 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
936 
937 	ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
938 
939 	return (pp);
940 }
941 
942 /*
943  * Search the hash list for the page representing the
944  * specified [vp, offset] and return it locked.  Skip
945  * free pages and pages that cannot be locked as requested.
946  * Used while attempting to kluster pages.
947  */
948 page_t *
949 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
950 {
951 	page_t		*pp;
952 	kmutex_t	*phm;
953 	ulong_t		index;
954 	uint_t		locked;
955 
956 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
957 	VM_STAT_ADD(page_lookup_nowait_cnt[0]);
958 
959 	index = PAGE_HASH_FUNC(vp, off);
960 	pp = page_hash_search(index, vp, off);
961 	locked = 0;
962 	if (pp == NULL) {
963 top:
964 		VM_STAT_ADD(page_lookup_nowait_cnt[1]);
965 		locked = 1;
966 		phm = PAGE_HASH_MUTEX(index);
967 		mutex_enter(phm);
968 		pp = page_hash_search(index, vp, off);
969 	}
970 
971 	if (pp == NULL || PP_ISFREE(pp)) {
972 		VM_STAT_ADD(page_lookup_nowait_cnt[2]);
973 		pp = NULL;
974 	} else {
975 		if (!page_trylock(pp, se)) {
976 			VM_STAT_ADD(page_lookup_nowait_cnt[3]);
977 			pp = NULL;
978 		} else {
979 			VM_STAT_ADD(page_lookup_nowait_cnt[4]);
980 			/*
981 			 * See the comment in page_lookup()
982 			 */
983 			if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
984 			    ((u_offset_t)(pp->p_offset) != off)) {
985 				VM_STAT_ADD(page_lookup_nowait_cnt[5]);
986 				if (locked) {
987 					panic("page_lookup_nowait %p",
988 					    (void *)pp);
989 					/*NOTREACHED*/
990 				}
991 				page_unlock(pp);
992 				goto top;
993 			}
994 			if (PP_ISFREE(pp)) {
995 				VM_STAT_ADD(page_lookup_nowait_cnt[6]);
996 				page_unlock(pp);
997 				pp = NULL;
998 			}
999 		}
1000 	}
1001 	if (locked) {
1002 		VM_STAT_ADD(page_lookup_nowait_cnt[7]);
1003 		mutex_exit(phm);
1004 	}
1005 
1006 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
1007 
1008 	return (pp);
1009 }
1010 
1011 /*
1012  * Search the hash list for a page with the specified [vp, off]
1013  * that is known to exist and is already locked.  This routine
1014  * is typically used by segment SOFTUNLOCK routines.
1015  */
1016 page_t *
1017 page_find(vnode_t *vp, u_offset_t off)
1018 {
1019 	page_t		*pp;
1020 	kmutex_t	*phm;
1021 	ulong_t		index;
1022 
1023 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1024 	VM_STAT_ADD(page_find_cnt);
1025 
1026 	index = PAGE_HASH_FUNC(vp, off);
1027 	phm = PAGE_HASH_MUTEX(index);
1028 
1029 	mutex_enter(phm);
1030 	pp = page_hash_search(index, vp, off);
1031 	mutex_exit(phm);
1032 
1033 	ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
1034 	return (pp);
1035 }
1036 
1037 /*
1038  * Determine whether a page with the specified [vp, off]
1039  * currently exists in the system.  Obviously this should
1040  * only be considered as a hint since nothing prevents the
1041  * page from disappearing or appearing immediately after
1042  * the return from this routine. Subsequently, we don't
1043  * even bother to lock the list.
1044  */
1045 page_t *
1046 page_exists(vnode_t *vp, u_offset_t off)
1047 {
1048 	ulong_t		index;
1049 
1050 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1051 	VM_STAT_ADD(page_exists_cnt);
1052 
1053 	index = PAGE_HASH_FUNC(vp, off);
1054 
1055 	return (page_hash_search(index, vp, off));
1056 }
1057 
1058 /*
1059  * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1060  * page_size(szc)) range.  if they exist and ppa is not NULL fill ppa array
1061  * with these pages locked SHARED. If necessary reclaim pages from
1062  * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1063  *
1064  * If we fail to lock pages still return 1 if pages exist and contiguous.
1065  * But in this case return value is just a hint. ppa array won't be filled.
1066  * Caller should initialize ppa[0] as NULL to distinguish return value.
1067  *
1068  * Returns 0 if pages don't exist or not physically contiguous.
1069  *
1070  * This routine doesn't work for anonymous(swapfs) pages.
1071  */
1072 int
1073 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1074 {
1075 	pgcnt_t pages;
1076 	pfn_t pfn;
1077 	page_t *rootpp;
1078 	pgcnt_t i;
1079 	pgcnt_t j;
1080 	u_offset_t save_off = off;
1081 	ulong_t index;
1082 	kmutex_t *phm;
1083 	page_t *pp;
1084 	uint_t pszc;
1085 	int loopcnt = 0;
1086 
1087 	ASSERT(szc != 0);
1088 	ASSERT(vp != NULL);
1089 	ASSERT(!IS_SWAPFSVP(vp));
1090 	ASSERT(!VN_ISKAS(vp));
1091 
1092 again:
1093 	if (++loopcnt > 3) {
1094 		VM_STAT_ADD(page_exphcontg[0]);
1095 		return (0);
1096 	}
1097 
1098 	index = PAGE_HASH_FUNC(vp, off);
1099 	phm = PAGE_HASH_MUTEX(index);
1100 
1101 	mutex_enter(phm);
1102 	pp = page_hash_search(index, vp, off);
1103 	mutex_exit(phm);
1104 
1105 	VM_STAT_ADD(page_exphcontg[1]);
1106 
1107 	if (pp == NULL) {
1108 		VM_STAT_ADD(page_exphcontg[2]);
1109 		return (0);
1110 	}
1111 
1112 	pages = page_get_pagecnt(szc);
1113 	rootpp = pp;
1114 	pfn = rootpp->p_pagenum;
1115 
1116 	if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1117 		VM_STAT_ADD(page_exphcontg[3]);
1118 		if (!page_trylock(pp, SE_SHARED)) {
1119 			VM_STAT_ADD(page_exphcontg[4]);
1120 			return (1);
1121 		}
1122 		/*
1123 		 * Also check whether p_pagenum was modified by DR.
1124 		 */
1125 		if (pp->p_szc != pszc || pp->p_vnode != vp ||
1126 		    pp->p_offset != off || pp->p_pagenum != pfn) {
1127 			VM_STAT_ADD(page_exphcontg[5]);
1128 			page_unlock(pp);
1129 			off = save_off;
1130 			goto again;
1131 		}
1132 		/*
1133 		 * szc was non zero and vnode and offset matched after we
1134 		 * locked the page it means it can't become free on us.
1135 		 */
1136 		ASSERT(!PP_ISFREE(pp));
1137 		if (!IS_P2ALIGNED(pfn, pages)) {
1138 			page_unlock(pp);
1139 			return (0);
1140 		}
1141 		ppa[0] = pp;
1142 		pp++;
1143 		off += PAGESIZE;
1144 		pfn++;
1145 		for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1146 			if (!page_trylock(pp, SE_SHARED)) {
1147 				VM_STAT_ADD(page_exphcontg[6]);
1148 				pp--;
1149 				while (i-- > 0) {
1150 					page_unlock(pp);
1151 					pp--;
1152 				}
1153 				ppa[0] = NULL;
1154 				return (1);
1155 			}
1156 			if (pp->p_szc != pszc) {
1157 				VM_STAT_ADD(page_exphcontg[7]);
1158 				page_unlock(pp);
1159 				pp--;
1160 				while (i-- > 0) {
1161 					page_unlock(pp);
1162 					pp--;
1163 				}
1164 				ppa[0] = NULL;
1165 				off = save_off;
1166 				goto again;
1167 			}
1168 			/*
1169 			 * szc the same as for previous already locked pages
1170 			 * with right identity. Since this page had correct
1171 			 * szc after we locked it can't get freed or destroyed
1172 			 * and therefore must have the expected identity.
1173 			 */
1174 			ASSERT(!PP_ISFREE(pp));
1175 			if (pp->p_vnode != vp ||
1176 			    pp->p_offset != off) {
1177 				panic("page_exists_physcontig: "
1178 				    "large page identity doesn't match");
1179 			}
1180 			ppa[i] = pp;
1181 			ASSERT(pp->p_pagenum == pfn);
1182 		}
1183 		VM_STAT_ADD(page_exphcontg[8]);
1184 		ppa[pages] = NULL;
1185 		return (1);
1186 	} else if (pszc >= szc) {
1187 		VM_STAT_ADD(page_exphcontg[9]);
1188 		if (!IS_P2ALIGNED(pfn, pages)) {
1189 			return (0);
1190 		}
1191 		return (1);
1192 	}
1193 
1194 	if (!IS_P2ALIGNED(pfn, pages)) {
1195 		VM_STAT_ADD(page_exphcontg[10]);
1196 		return (0);
1197 	}
1198 
1199 	if (page_numtomemseg_nolock(pfn) !=
1200 	    page_numtomemseg_nolock(pfn + pages - 1)) {
1201 		VM_STAT_ADD(page_exphcontg[11]);
1202 		return (0);
1203 	}
1204 
1205 	/*
1206 	 * We loop up 4 times across pages to promote page size.
1207 	 * We're extra cautious to promote page size atomically with respect
1208 	 * to everybody else.  But we can probably optimize into 1 loop if
1209 	 * this becomes an issue.
1210 	 */
1211 
1212 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1213 		if (!page_trylock(pp, SE_EXCL)) {
1214 			VM_STAT_ADD(page_exphcontg[12]);
1215 			break;
1216 		}
1217 		/*
1218 		 * Check whether p_pagenum was modified by DR.
1219 		 */
1220 		if (pp->p_pagenum != pfn) {
1221 			page_unlock(pp);
1222 			break;
1223 		}
1224 		if (pp->p_vnode != vp ||
1225 		    pp->p_offset != off) {
1226 			VM_STAT_ADD(page_exphcontg[13]);
1227 			page_unlock(pp);
1228 			break;
1229 		}
1230 		if (pp->p_szc >= szc) {
1231 			ASSERT(i == 0);
1232 			page_unlock(pp);
1233 			off = save_off;
1234 			goto again;
1235 		}
1236 	}
1237 
1238 	if (i != pages) {
1239 		VM_STAT_ADD(page_exphcontg[14]);
1240 		--pp;
1241 		while (i-- > 0) {
1242 			page_unlock(pp);
1243 			--pp;
1244 		}
1245 		return (0);
1246 	}
1247 
1248 	pp = rootpp;
1249 	for (i = 0; i < pages; i++, pp++) {
1250 		if (PP_ISFREE(pp)) {
1251 			VM_STAT_ADD(page_exphcontg[15]);
1252 			ASSERT(!PP_ISAGED(pp));
1253 			ASSERT(pp->p_szc == 0);
1254 			if (!page_reclaim(pp, NULL)) {
1255 				break;
1256 			}
1257 		} else {
1258 			ASSERT(pp->p_szc < szc);
1259 			VM_STAT_ADD(page_exphcontg[16]);
1260 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1261 		}
1262 	}
1263 	if (i < pages) {
1264 		VM_STAT_ADD(page_exphcontg[17]);
1265 		/*
1266 		 * page_reclaim failed because we were out of memory.
1267 		 * drop the rest of the locks and return because this page
1268 		 * must be already reallocated anyway.
1269 		 */
1270 		pp = rootpp;
1271 		for (j = 0; j < pages; j++, pp++) {
1272 			if (j != i) {
1273 				page_unlock(pp);
1274 			}
1275 		}
1276 		return (0);
1277 	}
1278 
1279 	off = save_off;
1280 	pp = rootpp;
1281 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1282 		ASSERT(PAGE_EXCL(pp));
1283 		ASSERT(!PP_ISFREE(pp));
1284 		ASSERT(!hat_page_is_mapped(pp));
1285 		ASSERT(pp->p_vnode == vp);
1286 		ASSERT(pp->p_offset == off);
1287 		pp->p_szc = szc;
1288 	}
1289 	pp = rootpp;
1290 	for (i = 0; i < pages; i++, pp++) {
1291 		if (ppa == NULL) {
1292 			page_unlock(pp);
1293 		} else {
1294 			ppa[i] = pp;
1295 			page_downgrade(ppa[i]);
1296 		}
1297 	}
1298 	if (ppa != NULL) {
1299 		ppa[pages] = NULL;
1300 	}
1301 	VM_STAT_ADD(page_exphcontg[18]);
1302 	ASSERT(vp->v_pages != NULL);
1303 	return (1);
1304 }
1305 
1306 /*
1307  * Determine whether a page with the specified [vp, off]
1308  * currently exists in the system and if so return its
1309  * size code. Obviously this should only be considered as
1310  * a hint since nothing prevents the page from disappearing
1311  * or appearing immediately after the return from this routine.
1312  */
1313 int
1314 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1315 {
1316 	page_t		*pp;
1317 	kmutex_t	*phm;
1318 	ulong_t		index;
1319 	int		rc = 0;
1320 
1321 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1322 	ASSERT(szc != NULL);
1323 	VM_STAT_ADD(page_exists_forreal_cnt);
1324 
1325 	index = PAGE_HASH_FUNC(vp, off);
1326 	phm = PAGE_HASH_MUTEX(index);
1327 
1328 	mutex_enter(phm);
1329 	pp = page_hash_search(index, vp, off);
1330 	if (pp != NULL) {
1331 		*szc = pp->p_szc;
1332 		rc = 1;
1333 	}
1334 	mutex_exit(phm);
1335 	return (rc);
1336 }
1337 
1338 /* wakeup threads waiting for pages in page_create_get_something() */
1339 void
1340 wakeup_pcgs(void)
1341 {
1342 	if (!CV_HAS_WAITERS(&pcgs_cv))
1343 		return;
1344 	cv_broadcast(&pcgs_cv);
1345 }
1346 
1347 /*
1348  * 'freemem' is used all over the kernel as an indication of how many
1349  * pages are free (either on the cache list or on the free page list)
1350  * in the system.  In very few places is a really accurate 'freemem'
1351  * needed.  To avoid contention of the lock protecting a the
1352  * single freemem, it was spread out into NCPU buckets.  Set_freemem
1353  * sets freemem to the total of all NCPU buckets.  It is called from
1354  * clock() on each TICK.
1355  */
1356 void
1357 set_freemem(void)
1358 {
1359 	struct pcf	*p;
1360 	ulong_t		t;
1361 	uint_t		i;
1362 
1363 	t = 0;
1364 	p = pcf;
1365 	for (i = 0;  i < pcf_fanout; i++) {
1366 		t += p->pcf_count;
1367 		p++;
1368 	}
1369 	freemem = t;
1370 
1371 	/*
1372 	 * Don't worry about grabbing mutex.  It's not that
1373 	 * critical if we miss a tick or two.  This is
1374 	 * where we wakeup possible delayers in
1375 	 * page_create_get_something().
1376 	 */
1377 	wakeup_pcgs();
1378 }
1379 
1380 ulong_t
1381 get_freemem()
1382 {
1383 	struct pcf	*p;
1384 	ulong_t		t;
1385 	uint_t		i;
1386 
1387 	t = 0;
1388 	p = pcf;
1389 	for (i = 0; i < pcf_fanout; i++) {
1390 		t += p->pcf_count;
1391 		p++;
1392 	}
1393 	/*
1394 	 * We just calculated it, might as well set it.
1395 	 */
1396 	freemem = t;
1397 	return (t);
1398 }
1399 
1400 /*
1401  * Acquire all of the page cache & free (pcf) locks.
1402  */
1403 void
1404 pcf_acquire_all()
1405 {
1406 	struct pcf	*p;
1407 	uint_t		i;
1408 
1409 	p = pcf;
1410 	for (i = 0; i < pcf_fanout; i++) {
1411 		mutex_enter(&p->pcf_lock);
1412 		p++;
1413 	}
1414 }
1415 
1416 /*
1417  * Release all the pcf_locks.
1418  */
1419 void
1420 pcf_release_all()
1421 {
1422 	struct pcf	*p;
1423 	uint_t		i;
1424 
1425 	p = pcf;
1426 	for (i = 0; i < pcf_fanout; i++) {
1427 		mutex_exit(&p->pcf_lock);
1428 		p++;
1429 	}
1430 }
1431 
1432 /*
1433  * Inform the VM system that we need some pages freed up.
1434  * Calls must be symmetric, e.g.:
1435  *
1436  *	page_needfree(100);
1437  *	wait a bit;
1438  *	page_needfree(-100);
1439  */
1440 void
1441 page_needfree(spgcnt_t npages)
1442 {
1443 	mutex_enter(&new_freemem_lock);
1444 	needfree += npages;
1445 	mutex_exit(&new_freemem_lock);
1446 }
1447 
1448 /*
1449  * Throttle for page_create(): try to prevent freemem from dropping
1450  * below throttlefree.  We can't provide a 100% guarantee because
1451  * KM_NOSLEEP allocations, page_reclaim(), and various other things
1452  * nibble away at the freelist.  However, we can block all PG_WAIT
1453  * allocations until memory becomes available.  The motivation is
1454  * that several things can fall apart when there's no free memory:
1455  *
1456  * (1) If pageout() needs memory to push a page, the system deadlocks.
1457  *
1458  * (2) By (broken) specification, timeout(9F) can neither fail nor
1459  *     block, so it has no choice but to panic the system if it
1460  *     cannot allocate a callout structure.
1461  *
1462  * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1463  *     it panics if it cannot allocate a callback structure.
1464  *
1465  * (4) Untold numbers of third-party drivers have not yet been hardened
1466  *     against KM_NOSLEEP and/or allocb() failures; they simply assume
1467  *     success and panic the system with a data fault on failure.
1468  *     (The long-term solution to this particular problem is to ship
1469  *     hostile fault-injecting DEBUG kernels with the DDK.)
1470  *
1471  * It is theoretically impossible to guarantee success of non-blocking
1472  * allocations, but in practice, this throttle is very hard to break.
1473  */
1474 static int
1475 page_create_throttle(pgcnt_t npages, int flags)
1476 {
1477 	ulong_t	fm;
1478 	uint_t	i;
1479 	pgcnt_t tf;	/* effective value of throttlefree */
1480 
1481 	atomic_inc_64(&n_throttle);
1482 
1483 	/*
1484 	 * Normal priority allocations.
1485 	 */
1486 	if ((flags & (PG_WAIT | PG_NORMALPRI)) == PG_NORMALPRI) {
1487 		ASSERT(!(flags & (PG_PANIC | PG_PUSHPAGE)));
1488 		return (freemem >= npages + throttlefree);
1489 	}
1490 
1491 	/*
1492 	 * Never deny pages when:
1493 	 * - it's a thread that cannot block [NOMEMWAIT()]
1494 	 * - the allocation cannot block and must not fail
1495 	 * - the allocation cannot block and is pageout dispensated
1496 	 */
1497 	if (NOMEMWAIT() ||
1498 	    ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1499 	    ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1500 		return (1);
1501 
1502 	/*
1503 	 * If the allocation can't block, we look favorably upon it
1504 	 * unless we're below pageout_reserve.  In that case we fail
1505 	 * the allocation because we want to make sure there are a few
1506 	 * pages available for pageout.
1507 	 */
1508 	if ((flags & PG_WAIT) == 0)
1509 		return (freemem >= npages + pageout_reserve);
1510 
1511 	/* Calculate the effective throttlefree value */
1512 	tf = throttlefree -
1513 	    ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1514 
1515 	WAKE_PAGEOUT_SCANNER(page__create__throttle);
1516 
1517 	for (;;) {
1518 		fm = 0;
1519 		pcf_acquire_all();
1520 		mutex_enter(&new_freemem_lock);
1521 		for (i = 0; i < pcf_fanout; i++) {
1522 			fm += pcf[i].pcf_count;
1523 			pcf[i].pcf_wait++;
1524 			mutex_exit(&pcf[i].pcf_lock);
1525 		}
1526 		freemem = fm;
1527 		if (freemem >= npages + tf) {
1528 			mutex_exit(&new_freemem_lock);
1529 			break;
1530 		}
1531 		needfree += npages;
1532 		freemem_wait++;
1533 		cv_wait(&freemem_cv, &new_freemem_lock);
1534 		freemem_wait--;
1535 		needfree -= npages;
1536 		mutex_exit(&new_freemem_lock);
1537 	}
1538 	return (1);
1539 }
1540 
1541 /*
1542  * page_create_wait() is called to either coalesce pages from the
1543  * different pcf buckets or to wait because there simply are not
1544  * enough pages to satisfy the caller's request.
1545  *
1546  * Sadly, this is called from platform/vm/vm_machdep.c
1547  */
1548 int
1549 page_create_wait(pgcnt_t npages, uint_t flags)
1550 {
1551 	pgcnt_t		total;
1552 	uint_t		i;
1553 	struct pcf	*p;
1554 
1555 	/*
1556 	 * Wait until there are enough free pages to satisfy our
1557 	 * entire request.
1558 	 * We set needfree += npages before prodding pageout, to make sure
1559 	 * it does real work when npages > lotsfree > freemem.
1560 	 */
1561 	VM_STAT_ADD(page_create_not_enough);
1562 
1563 	ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1564 checkagain:
1565 	if ((flags & PG_NORELOC) &&
1566 	    kcage_freemem < kcage_throttlefree + npages)
1567 		(void) kcage_create_throttle(npages, flags);
1568 
1569 	if (freemem < npages + throttlefree)
1570 		if (!page_create_throttle(npages, flags))
1571 			return (0);
1572 
1573 	if (pcf_decrement_bucket(npages) ||
1574 	    pcf_decrement_multiple(&total, npages, 0))
1575 		return (1);
1576 
1577 	/*
1578 	 * All of the pcf locks are held, there are not enough pages
1579 	 * to satisfy the request (npages < total).
1580 	 * Be sure to acquire the new_freemem_lock before dropping
1581 	 * the pcf locks.  This prevents dropping wakeups in page_free().
1582 	 * The order is always pcf_lock then new_freemem_lock.
1583 	 *
1584 	 * Since we hold all the pcf locks, it is a good time to set freemem.
1585 	 *
1586 	 * If the caller does not want to wait, return now.
1587 	 * Else turn the pageout daemon loose to find something
1588 	 * and wait till it does.
1589 	 *
1590 	 */
1591 	freemem = total;
1592 
1593 	if ((flags & PG_WAIT) == 0) {
1594 		pcf_release_all();
1595 
1596 		TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1597 		"page_create_nomem:npages %ld freemem %ld", npages, freemem);
1598 		return (0);
1599 	}
1600 
1601 	ASSERT(proc_pageout != NULL);
1602 	WAKE_PAGEOUT_SCANNER(page__create__wait);
1603 
1604 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1605 	    "page_create_sleep_start: freemem %ld needfree %ld",
1606 	    freemem, needfree);
1607 
1608 	/*
1609 	 * We are going to wait.
1610 	 * We currently hold all of the pcf_locks,
1611 	 * get the new_freemem_lock (it protects freemem_wait),
1612 	 * before dropping the pcf_locks.
1613 	 */
1614 	mutex_enter(&new_freemem_lock);
1615 
1616 	p = pcf;
1617 	for (i = 0; i < pcf_fanout; i++) {
1618 		p->pcf_wait++;
1619 		mutex_exit(&p->pcf_lock);
1620 		p++;
1621 	}
1622 
1623 	needfree += npages;
1624 	freemem_wait++;
1625 
1626 	cv_wait(&freemem_cv, &new_freemem_lock);
1627 
1628 	freemem_wait--;
1629 	needfree -= npages;
1630 
1631 	mutex_exit(&new_freemem_lock);
1632 
1633 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1634 	    "page_create_sleep_end: freemem %ld needfree %ld",
1635 	    freemem, needfree);
1636 
1637 	VM_STAT_ADD(page_create_not_enough_again);
1638 	goto checkagain;
1639 }
1640 /*
1641  * A routine to do the opposite of page_create_wait().
1642  */
1643 void
1644 page_create_putback(spgcnt_t npages)
1645 {
1646 	struct pcf	*p;
1647 	pgcnt_t		lump;
1648 	uint_t		*which;
1649 
1650 	/*
1651 	 * When a contiguous lump is broken up, we have to
1652 	 * deal with lots of pages (min 64) so lets spread
1653 	 * the wealth around.
1654 	 */
1655 	lump = roundup(npages, pcf_fanout) / pcf_fanout;
1656 	freemem += npages;
1657 
1658 	for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) {
1659 		which = &p->pcf_count;
1660 
1661 		mutex_enter(&p->pcf_lock);
1662 
1663 		if (p->pcf_block) {
1664 			which = &p->pcf_reserve;
1665 		}
1666 
1667 		if (lump < npages) {
1668 			*which += (uint_t)lump;
1669 			npages -= lump;
1670 		} else {
1671 			*which += (uint_t)npages;
1672 			npages = 0;
1673 		}
1674 
1675 		if (p->pcf_wait) {
1676 			mutex_enter(&new_freemem_lock);
1677 			/*
1678 			 * Check to see if some other thread
1679 			 * is actually waiting.  Another bucket
1680 			 * may have woken it up by now.  If there
1681 			 * are no waiters, then set our pcf_wait
1682 			 * count to zero to avoid coming in here
1683 			 * next time.
1684 			 */
1685 			if (freemem_wait) {
1686 				if (npages > 1) {
1687 					cv_broadcast(&freemem_cv);
1688 				} else {
1689 					cv_signal(&freemem_cv);
1690 				}
1691 				p->pcf_wait--;
1692 			} else {
1693 				p->pcf_wait = 0;
1694 			}
1695 			mutex_exit(&new_freemem_lock);
1696 		}
1697 		mutex_exit(&p->pcf_lock);
1698 	}
1699 	ASSERT(npages == 0);
1700 }
1701 
1702 /*
1703  * A helper routine for page_create_get_something.
1704  * The indenting got to deep down there.
1705  * Unblock the pcf counters.  Any pages freed after
1706  * pcf_block got set are moved to pcf_count and
1707  * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1708  */
1709 static void
1710 pcgs_unblock(void)
1711 {
1712 	int		i;
1713 	struct pcf	*p;
1714 
1715 	/* Update freemem while we're here. */
1716 	freemem = 0;
1717 	p = pcf;
1718 	for (i = 0; i < pcf_fanout; i++) {
1719 		mutex_enter(&p->pcf_lock);
1720 		ASSERT(p->pcf_count == 0);
1721 		p->pcf_count = p->pcf_reserve;
1722 		p->pcf_block = 0;
1723 		freemem += p->pcf_count;
1724 		if (p->pcf_wait) {
1725 			mutex_enter(&new_freemem_lock);
1726 			if (freemem_wait) {
1727 				if (p->pcf_reserve > 1) {
1728 					cv_broadcast(&freemem_cv);
1729 					p->pcf_wait = 0;
1730 				} else {
1731 					cv_signal(&freemem_cv);
1732 					p->pcf_wait--;
1733 				}
1734 			} else {
1735 				p->pcf_wait = 0;
1736 			}
1737 			mutex_exit(&new_freemem_lock);
1738 		}
1739 		p->pcf_reserve = 0;
1740 		mutex_exit(&p->pcf_lock);
1741 		p++;
1742 	}
1743 }
1744 
1745 /*
1746  * Called from page_create_va() when both the cache and free lists
1747  * have been checked once.
1748  *
1749  * Either returns a page or panics since the accounting was done
1750  * way before we got here.
1751  *
1752  * We don't come here often, so leave the accounting on permanently.
1753  */
1754 
1755 #define	MAX_PCGS	100
1756 
1757 #ifdef	DEBUG
1758 #define	PCGS_TRIES	100
1759 #else	/* DEBUG */
1760 #define	PCGS_TRIES	10
1761 #endif	/* DEBUG */
1762 
1763 #ifdef	VM_STATS
1764 uint_t	pcgs_counts[PCGS_TRIES];
1765 uint_t	pcgs_too_many;
1766 uint_t	pcgs_entered;
1767 uint_t	pcgs_entered_noreloc;
1768 uint_t	pcgs_locked;
1769 uint_t	pcgs_cagelocked;
1770 #endif	/* VM_STATS */
1771 
1772 static page_t *
1773 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1774     caddr_t vaddr, uint_t flags)
1775 {
1776 	uint_t		count;
1777 	page_t		*pp;
1778 	uint_t		locked, i;
1779 	struct	pcf	*p;
1780 	lgrp_t		*lgrp;
1781 	int		cagelocked = 0;
1782 
1783 	VM_STAT_ADD(pcgs_entered);
1784 
1785 	/*
1786 	 * Tap any reserve freelists: if we fail now, we'll die
1787 	 * since the page(s) we're looking for have already been
1788 	 * accounted for.
1789 	 */
1790 	flags |= PG_PANIC;
1791 
1792 	if ((flags & PG_NORELOC) != 0) {
1793 		VM_STAT_ADD(pcgs_entered_noreloc);
1794 		/*
1795 		 * Requests for free pages from critical threads
1796 		 * such as pageout still won't throttle here, but
1797 		 * we must try again, to give the cageout thread
1798 		 * another chance to catch up. Since we already
1799 		 * accounted for the pages, we had better get them
1800 		 * this time.
1801 		 *
1802 		 * N.B. All non-critical threads acquire the pcgs_cagelock
1803 		 * to serialize access to the freelists. This implements a
1804 		 * turnstile-type synchornization to avoid starvation of
1805 		 * critical requests for PG_NORELOC memory by non-critical
1806 		 * threads: all non-critical threads must acquire a 'ticket'
1807 		 * before passing through, which entails making sure
1808 		 * kcage_freemem won't fall below minfree prior to grabbing
1809 		 * pages from the freelists.
1810 		 */
1811 		if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1812 			mutex_enter(&pcgs_cagelock);
1813 			cagelocked = 1;
1814 			VM_STAT_ADD(pcgs_cagelocked);
1815 		}
1816 	}
1817 
1818 	/*
1819 	 * Time to get serious.
1820 	 * We failed to get a `correctly colored' page from both the
1821 	 * free and cache lists.
1822 	 * We escalate in stage.
1823 	 *
1824 	 * First try both lists without worring about color.
1825 	 *
1826 	 * Then, grab all page accounting locks (ie. pcf[]) and
1827 	 * steal any pages that they have and set the pcf_block flag to
1828 	 * stop deletions from the lists.  This will help because
1829 	 * a page can get added to the free list while we are looking
1830 	 * at the cache list, then another page could be added to the cache
1831 	 * list allowing the page on the free list to be removed as we
1832 	 * move from looking at the cache list to the free list. This
1833 	 * could happen over and over. We would never find the page
1834 	 * we have accounted for.
1835 	 *
1836 	 * Noreloc pages are a subset of the global (relocatable) page pool.
1837 	 * They are not tracked separately in the pcf bins, so it is
1838 	 * impossible to know when doing pcf accounting if the available
1839 	 * page(s) are noreloc pages or not. When looking for a noreloc page
1840 	 * it is quite easy to end up here even if the global (relocatable)
1841 	 * page pool has plenty of free pages but the noreloc pool is empty.
1842 	 *
1843 	 * When the noreloc pool is empty (or low), additional noreloc pages
1844 	 * are created by converting pages from the global page pool. This
1845 	 * process will stall during pcf accounting if the pcf bins are
1846 	 * already locked. Such is the case when a noreloc allocation is
1847 	 * looping here in page_create_get_something waiting for more noreloc
1848 	 * pages to appear.
1849 	 *
1850 	 * Short of adding a new field to the pcf bins to accurately track
1851 	 * the number of free noreloc pages, we instead do not grab the
1852 	 * pcgs_lock, do not set the pcf blocks and do not timeout when
1853 	 * allocating a noreloc page. This allows noreloc allocations to
1854 	 * loop without blocking global page pool allocations.
1855 	 *
1856 	 * NOTE: the behaviour of page_create_get_something has not changed
1857 	 * for the case of global page pool allocations.
1858 	 */
1859 
1860 	flags &= ~PG_MATCH_COLOR;
1861 	locked = 0;
1862 #if defined(__x86)
1863 	flags = page_create_update_flags_x86(flags);
1864 #endif
1865 
1866 	lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1867 
1868 	for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1869 		pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1870 		    flags, lgrp);
1871 		if (pp == NULL) {
1872 			pp = page_get_cachelist(vp, off, seg, vaddr,
1873 			    flags, lgrp);
1874 		}
1875 		if (pp == NULL) {
1876 			/*
1877 			 * Serialize.  Don't fight with other pcgs().
1878 			 */
1879 			if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1880 				mutex_enter(&pcgs_lock);
1881 				VM_STAT_ADD(pcgs_locked);
1882 				locked = 1;
1883 				p = pcf;
1884 				for (i = 0; i < pcf_fanout; i++) {
1885 					mutex_enter(&p->pcf_lock);
1886 					ASSERT(p->pcf_block == 0);
1887 					p->pcf_block = 1;
1888 					p->pcf_reserve = p->pcf_count;
1889 					p->pcf_count = 0;
1890 					mutex_exit(&p->pcf_lock);
1891 					p++;
1892 				}
1893 				freemem = 0;
1894 			}
1895 
1896 			if (count) {
1897 				/*
1898 				 * Since page_free() puts pages on
1899 				 * a list then accounts for it, we
1900 				 * just have to wait for page_free()
1901 				 * to unlock any page it was working
1902 				 * with. The page_lock()-page_reclaim()
1903 				 * path falls in the same boat.
1904 				 *
1905 				 * We don't need to check on the
1906 				 * PG_WAIT flag, we have already
1907 				 * accounted for the page we are
1908 				 * looking for in page_create_va().
1909 				 *
1910 				 * We just wait a moment to let any
1911 				 * locked pages on the lists free up,
1912 				 * then continue around and try again.
1913 				 *
1914 				 * Will be awakened by set_freemem().
1915 				 */
1916 				mutex_enter(&pcgs_wait_lock);
1917 				cv_wait(&pcgs_cv, &pcgs_wait_lock);
1918 				mutex_exit(&pcgs_wait_lock);
1919 			}
1920 		} else {
1921 #ifdef VM_STATS
1922 			if (count >= PCGS_TRIES) {
1923 				VM_STAT_ADD(pcgs_too_many);
1924 			} else {
1925 				VM_STAT_ADD(pcgs_counts[count]);
1926 			}
1927 #endif
1928 			if (locked) {
1929 				pcgs_unblock();
1930 				mutex_exit(&pcgs_lock);
1931 			}
1932 			if (cagelocked)
1933 				mutex_exit(&pcgs_cagelock);
1934 			return (pp);
1935 		}
1936 	}
1937 	/*
1938 	 * we go down holding the pcf locks.
1939 	 */
1940 	panic("no %spage found %d",
1941 	    ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1942 	/*NOTREACHED*/
1943 }
1944 
1945 /*
1946  * Create enough pages for "bytes" worth of data starting at
1947  * "off" in "vp".
1948  *
1949  *	Where flag must be one of:
1950  *
1951  *		PG_EXCL:	Exclusive create (fail if any page already
1952  *				exists in the page cache) which does not
1953  *				wait for memory to become available.
1954  *
1955  *		PG_WAIT:	Non-exclusive create which can wait for
1956  *				memory to become available.
1957  *
1958  *		PG_PHYSCONTIG:	Allocate physically contiguous pages.
1959  *				(Not Supported)
1960  *
1961  * A doubly linked list of pages is returned to the caller.  Each page
1962  * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1963  * lock.
1964  *
1965  * Unable to change the parameters to page_create() in a minor release,
1966  * we renamed page_create() to page_create_va(), changed all known calls
1967  * from page_create() to page_create_va(), and created this wrapper.
1968  *
1969  * Upon a major release, we should break compatibility by deleting this
1970  * wrapper, and replacing all the strings "page_create_va", with "page_create".
1971  *
1972  * NOTE: There is a copy of this interface as page_create_io() in
1973  *	 i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1974  *	 there.
1975  */
1976 page_t *
1977 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1978 {
1979 	caddr_t random_vaddr;
1980 	struct seg kseg;
1981 
1982 #ifdef DEBUG
1983 	cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1984 	    (void *)caller());
1985 #endif
1986 
1987 	random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1988 	    (uintptr_t)(off >> PAGESHIFT));
1989 	kseg.s_as = &kas;
1990 
1991 	return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1992 }
1993 
1994 #ifdef DEBUG
1995 uint32_t pg_alloc_pgs_mtbf = 0;
1996 #endif
1997 
1998 /*
1999  * Used for large page support. It will attempt to allocate
2000  * a large page(s) off the freelist.
2001  *
2002  * Returns non zero on failure.
2003  */
2004 int
2005 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
2006     page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags)
2007 {
2008 	pgcnt_t		npgs, curnpgs, totpgs;
2009 	size_t		pgsz;
2010 	page_t		*pplist = NULL, *pp;
2011 	int		err = 0;
2012 	lgrp_t		*lgrp;
2013 
2014 	ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
2015 	ASSERT(pgflags == 0 || pgflags == PG_LOCAL);
2016 
2017 	/*
2018 	 * Check if system heavily prefers local large pages over remote
2019 	 * on systems with multiple lgroups.
2020 	 */
2021 	if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) {
2022 		pgflags = PG_LOCAL;
2023 	}
2024 
2025 	VM_STAT_ADD(alloc_pages[0]);
2026 
2027 #ifdef DEBUG
2028 	if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
2029 		return (ENOMEM);
2030 	}
2031 #endif
2032 
2033 	/*
2034 	 * One must be NULL but not both.
2035 	 * And one must be non NULL but not both.
2036 	 */
2037 	ASSERT(basepp != NULL || ppa != NULL);
2038 	ASSERT(basepp == NULL || ppa == NULL);
2039 
2040 #if defined(__x86)
2041 	while (page_chk_freelist(szc) == 0) {
2042 		VM_STAT_ADD(alloc_pages[8]);
2043 		if (anypgsz == 0 || --szc == 0)
2044 			return (ENOMEM);
2045 	}
2046 #endif
2047 
2048 	pgsz = page_get_pagesize(szc);
2049 	totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
2050 
2051 	ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
2052 
2053 	(void) page_create_wait(npgs, PG_WAIT);
2054 
2055 	while (npgs && szc) {
2056 		lgrp = lgrp_mem_choose(seg, addr, pgsz);
2057 		if (pgflags == PG_LOCAL) {
2058 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2059 			    pgflags, lgrp);
2060 			if (pp == NULL) {
2061 				pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2062 				    0, lgrp);
2063 			}
2064 		} else {
2065 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2066 			    0, lgrp);
2067 		}
2068 		if (pp != NULL) {
2069 			VM_STAT_ADD(alloc_pages[1]);
2070 			page_list_concat(&pplist, &pp);
2071 			ASSERT(npgs >= curnpgs);
2072 			npgs -= curnpgs;
2073 		} else if (anypgsz) {
2074 			VM_STAT_ADD(alloc_pages[2]);
2075 			szc--;
2076 			pgsz = page_get_pagesize(szc);
2077 			curnpgs = pgsz >> PAGESHIFT;
2078 		} else {
2079 			VM_STAT_ADD(alloc_pages[3]);
2080 			ASSERT(npgs == totpgs);
2081 			page_create_putback(npgs);
2082 			return (ENOMEM);
2083 		}
2084 	}
2085 	if (szc == 0) {
2086 		VM_STAT_ADD(alloc_pages[4]);
2087 		ASSERT(npgs != 0);
2088 		page_create_putback(npgs);
2089 		err = ENOMEM;
2090 	} else if (basepp != NULL) {
2091 		ASSERT(npgs == 0);
2092 		ASSERT(ppa == NULL);
2093 		*basepp = pplist;
2094 	}
2095 
2096 	npgs = totpgs - npgs;
2097 	pp = pplist;
2098 
2099 	/*
2100 	 * Clear the free and age bits. Also if we were passed in a ppa then
2101 	 * fill it in with all the constituent pages from the large page. But
2102 	 * if we failed to allocate all the pages just free what we got.
2103 	 */
2104 	while (npgs != 0) {
2105 		ASSERT(PP_ISFREE(pp));
2106 		ASSERT(PP_ISAGED(pp));
2107 		if (ppa != NULL || err != 0) {
2108 			if (err == 0) {
2109 				VM_STAT_ADD(alloc_pages[5]);
2110 				PP_CLRFREE(pp);
2111 				PP_CLRAGED(pp);
2112 				page_sub(&pplist, pp);
2113 				*ppa++ = pp;
2114 				npgs--;
2115 			} else {
2116 				VM_STAT_ADD(alloc_pages[6]);
2117 				ASSERT(pp->p_szc != 0);
2118 				curnpgs = page_get_pagecnt(pp->p_szc);
2119 				page_list_break(&pp, &pplist, curnpgs);
2120 				page_list_add_pages(pp, 0);
2121 				page_create_putback(curnpgs);
2122 				ASSERT(npgs >= curnpgs);
2123 				npgs -= curnpgs;
2124 			}
2125 			pp = pplist;
2126 		} else {
2127 			VM_STAT_ADD(alloc_pages[7]);
2128 			PP_CLRFREE(pp);
2129 			PP_CLRAGED(pp);
2130 			pp = pp->p_next;
2131 			npgs--;
2132 		}
2133 	}
2134 	return (err);
2135 }
2136 
2137 /*
2138  * Get a single large page off of the freelists, and set it up for use.
2139  * Number of bytes requested must be a supported page size.
2140  *
2141  * Note that this call may fail even if there is sufficient
2142  * memory available or PG_WAIT is set, so the caller must
2143  * be willing to fallback on page_create_va(), block and retry,
2144  * or fail the requester.
2145  */
2146 page_t *
2147 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2148     struct seg *seg, caddr_t vaddr, void *arg)
2149 {
2150 	pgcnt_t		npages;
2151 	page_t		*pp;
2152 	page_t		*rootpp;
2153 	lgrp_t		*lgrp;
2154 	lgrp_id_t	*lgrpid = (lgrp_id_t *)arg;
2155 
2156 	ASSERT(vp != NULL);
2157 
2158 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2159 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2160 	/* but no others */
2161 
2162 	ASSERT((flags & PG_EXCL) == PG_EXCL);
2163 
2164 	npages = btop(bytes);
2165 
2166 	if (!kcage_on || panicstr) {
2167 		/*
2168 		 * Cage is OFF, or we are single threaded in
2169 		 * panic, so make everything a RELOC request.
2170 		 */
2171 		flags &= ~PG_NORELOC;
2172 	}
2173 
2174 	/*
2175 	 * Make sure there's adequate physical memory available.
2176 	 * Note: PG_WAIT is ignored here.
2177 	 */
2178 	if (freemem <= throttlefree + npages) {
2179 		VM_STAT_ADD(page_create_large_cnt[1]);
2180 		return (NULL);
2181 	}
2182 
2183 	/*
2184 	 * If cage is on, dampen draw from cage when available
2185 	 * cage space is low.
2186 	 */
2187 	if ((flags & (PG_NORELOC | PG_WAIT)) ==  (PG_NORELOC | PG_WAIT) &&
2188 	    kcage_freemem < kcage_throttlefree + npages) {
2189 
2190 		/*
2191 		 * The cage is on, the caller wants PG_NORELOC
2192 		 * pages and available cage memory is very low.
2193 		 * Call kcage_create_throttle() to attempt to
2194 		 * control demand on the cage.
2195 		 */
2196 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2197 			VM_STAT_ADD(page_create_large_cnt[2]);
2198 			return (NULL);
2199 		}
2200 	}
2201 
2202 	if (!pcf_decrement_bucket(npages) &&
2203 	    !pcf_decrement_multiple(NULL, npages, 1)) {
2204 		VM_STAT_ADD(page_create_large_cnt[4]);
2205 		return (NULL);
2206 	}
2207 
2208 	/*
2209 	 * This is where this function behaves fundamentally differently
2210 	 * than page_create_va(); since we're intending to map the page
2211 	 * with a single TTE, we have to get it as a physically contiguous
2212 	 * hardware pagesize chunk.  If we can't, we fail.
2213 	 */
2214 	if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2215 	    LGRP_EXISTS(lgrp_table[*lgrpid]))
2216 		lgrp = lgrp_table[*lgrpid];
2217 	else
2218 		lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2219 
2220 	if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2221 	    bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2222 		page_create_putback(npages);
2223 		VM_STAT_ADD(page_create_large_cnt[5]);
2224 		return (NULL);
2225 	}
2226 
2227 	/*
2228 	 * if we got the page with the wrong mtype give it back this is a
2229 	 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2230 	 * inside "if" and the workaround becomes just a nop
2231 	 */
2232 	if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2233 		page_list_add_pages(rootpp, 0);
2234 		page_create_putback(npages);
2235 		VM_STAT_ADD(page_create_large_cnt[6]);
2236 		return (NULL);
2237 	}
2238 
2239 	/*
2240 	 * If satisfying this request has left us with too little
2241 	 * memory, start the wheels turning to get some back.  The
2242 	 * first clause of the test prevents waking up the pageout
2243 	 * daemon in situations where it would decide that there's
2244 	 * nothing to do.
2245 	 */
2246 	if (nscan < desscan && freemem < minfree) {
2247 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2248 		    "pageout_cv_signal:freemem %ld", freemem);
2249 		WAKE_PAGEOUT_SCANNER(va__large);
2250 	}
2251 
2252 	pp = rootpp;
2253 	while (npages--) {
2254 		ASSERT(PAGE_EXCL(pp));
2255 		ASSERT(pp->p_vnode == NULL);
2256 		ASSERT(!hat_page_is_mapped(pp));
2257 		PP_CLRFREE(pp);
2258 		PP_CLRAGED(pp);
2259 		if (!page_hashin(pp, vp, off, NULL))
2260 			panic("page_create_large: hashin failed: page %p",
2261 			    (void *)pp);
2262 		page_io_lock(pp);
2263 		off += PAGESIZE;
2264 		pp = pp->p_next;
2265 	}
2266 
2267 	VM_STAT_ADD(page_create_large_cnt[0]);
2268 	return (rootpp);
2269 }
2270 
2271 page_t *
2272 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2273     struct seg *seg, caddr_t vaddr)
2274 {
2275 	page_t		*plist = NULL;
2276 	pgcnt_t		npages;
2277 	pgcnt_t		found_on_free = 0;
2278 	pgcnt_t		pages_req;
2279 	page_t		*npp = NULL;
2280 	struct pcf	*p;
2281 	lgrp_t		*lgrp;
2282 
2283 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2284 	    "page_create_start:vp %p off %llx bytes %lu flags %x",
2285 	    vp, off, bytes, flags);
2286 
2287 	ASSERT(bytes != 0 && vp != NULL);
2288 
2289 	if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2290 		panic("page_create: invalid flags");
2291 		/*NOTREACHED*/
2292 	}
2293 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2294 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2295 	    /* but no others */
2296 
2297 	pages_req = npages = btopr(bytes);
2298 	/*
2299 	 * Try to see whether request is too large to *ever* be
2300 	 * satisfied, in order to prevent deadlock.  We arbitrarily
2301 	 * decide to limit maximum size requests to max_page_get.
2302 	 */
2303 	if (npages >= max_page_get) {
2304 		if ((flags & PG_WAIT) == 0) {
2305 			TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2306 			    "page_create_toobig:vp %p off %llx npages "
2307 			    "%lu max_page_get %lu",
2308 			    vp, off, npages, max_page_get);
2309 			return (NULL);
2310 		} else {
2311 			cmn_err(CE_WARN,
2312 			    "Request for too much kernel memory "
2313 			    "(%lu bytes), will hang forever", bytes);
2314 			for (;;)
2315 				delay(1000000000);
2316 		}
2317 	}
2318 
2319 	if (!kcage_on || panicstr) {
2320 		/*
2321 		 * Cage is OFF, or we are single threaded in
2322 		 * panic, so make everything a RELOC request.
2323 		 */
2324 		flags &= ~PG_NORELOC;
2325 	}
2326 
2327 	if (freemem <= throttlefree + npages)
2328 		if (!page_create_throttle(npages, flags))
2329 			return (NULL);
2330 
2331 	/*
2332 	 * If cage is on, dampen draw from cage when available
2333 	 * cage space is low.
2334 	 */
2335 	if ((flags & PG_NORELOC) &&
2336 	    kcage_freemem < kcage_throttlefree + npages) {
2337 
2338 		/*
2339 		 * The cage is on, the caller wants PG_NORELOC
2340 		 * pages and available cage memory is very low.
2341 		 * Call kcage_create_throttle() to attempt to
2342 		 * control demand on the cage.
2343 		 */
2344 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2345 			return (NULL);
2346 	}
2347 
2348 	VM_STAT_ADD(page_create_cnt[0]);
2349 
2350 	if (!pcf_decrement_bucket(npages)) {
2351 		/*
2352 		 * Have to look harder.  If npages is greater than
2353 		 * one, then we might have to coalesce the counters.
2354 		 *
2355 		 * Go wait.  We come back having accounted
2356 		 * for the memory.
2357 		 */
2358 		VM_STAT_ADD(page_create_cnt[1]);
2359 		if (!page_create_wait(npages, flags)) {
2360 			VM_STAT_ADD(page_create_cnt[2]);
2361 			return (NULL);
2362 		}
2363 	}
2364 
2365 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2366 	    "page_create_success:vp %p off %llx", vp, off);
2367 
2368 	/*
2369 	 * If satisfying this request has left us with too little
2370 	 * memory, start the wheels turning to get some back.  The
2371 	 * first clause of the test prevents waking up the pageout
2372 	 * daemon in situations where it would decide that there's
2373 	 * nothing to do.
2374 	 */
2375 	if (nscan < desscan && freemem < minfree) {
2376 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2377 		    "pageout_cv_signal:freemem %ld", freemem);
2378 		WAKE_PAGEOUT_SCANNER(va);
2379 	}
2380 
2381 	/*
2382 	 * Loop around collecting the requested number of pages.
2383 	 * Most of the time, we have to `create' a new page. With
2384 	 * this in mind, pull the page off the free list before
2385 	 * getting the hash lock.  This will minimize the hash
2386 	 * lock hold time, nesting, and the like.  If it turns
2387 	 * out we don't need the page, we put it back at the end.
2388 	 */
2389 	while (npages--) {
2390 		page_t		*pp;
2391 		kmutex_t	*phm = NULL;
2392 		ulong_t		index;
2393 
2394 		index = PAGE_HASH_FUNC(vp, off);
2395 top:
2396 		ASSERT(phm == NULL);
2397 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
2398 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2399 
2400 		if (npp == NULL) {
2401 			/*
2402 			 * Try to get a page from the freelist (ie,
2403 			 * a page with no [vp, off] tag).  If that
2404 			 * fails, use the cachelist.
2405 			 *
2406 			 * During the first attempt at both the free
2407 			 * and cache lists we try for the correct color.
2408 			 */
2409 			/*
2410 			 * XXXX-how do we deal with virtual indexed
2411 			 * caches and and colors?
2412 			 */
2413 			VM_STAT_ADD(page_create_cnt[4]);
2414 			/*
2415 			 * Get lgroup to allocate next page of shared memory
2416 			 * from and use it to specify where to allocate
2417 			 * the physical memory
2418 			 */
2419 			lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2420 			npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2421 			    flags | PG_MATCH_COLOR, lgrp);
2422 			if (npp == NULL) {
2423 				npp = page_get_cachelist(vp, off, seg,
2424 				    vaddr, flags | PG_MATCH_COLOR, lgrp);
2425 				if (npp == NULL) {
2426 					npp = page_create_get_something(vp,
2427 					    off, seg, vaddr,
2428 					    flags & ~PG_MATCH_COLOR);
2429 				}
2430 
2431 				if (PP_ISAGED(npp) == 0) {
2432 					/*
2433 					 * Since this page came from the
2434 					 * cachelist, we must destroy the
2435 					 * old vnode association.
2436 					 */
2437 					page_hashout(npp, NULL);
2438 				}
2439 			}
2440 		}
2441 
2442 		/*
2443 		 * We own this page!
2444 		 */
2445 		ASSERT(PAGE_EXCL(npp));
2446 		ASSERT(npp->p_vnode == NULL);
2447 		ASSERT(!hat_page_is_mapped(npp));
2448 		PP_CLRFREE(npp);
2449 		PP_CLRAGED(npp);
2450 
2451 		/*
2452 		 * Here we have a page in our hot little mits and are
2453 		 * just waiting to stuff it on the appropriate lists.
2454 		 * Get the mutex and check to see if it really does
2455 		 * not exist.
2456 		 */
2457 		phm = PAGE_HASH_MUTEX(index);
2458 		mutex_enter(phm);
2459 		pp = page_hash_search(index, vp, off);
2460 		if (pp == NULL) {
2461 			VM_STAT_ADD(page_create_new);
2462 			pp = npp;
2463 			npp = NULL;
2464 			if (!page_hashin(pp, vp, off, phm)) {
2465 				/*
2466 				 * Since we hold the page hash mutex and
2467 				 * just searched for this page, page_hashin
2468 				 * had better not fail.  If it does, that
2469 				 * means somethread did not follow the
2470 				 * page hash mutex rules.  Panic now and
2471 				 * get it over with.  As usual, go down
2472 				 * holding all the locks.
2473 				 */
2474 				ASSERT(MUTEX_HELD(phm));
2475 				panic("page_create: "
2476 				    "hashin failed %p %p %llx %p",
2477 				    (void *)pp, (void *)vp, off, (void *)phm);
2478 				/*NOTREACHED*/
2479 			}
2480 			ASSERT(MUTEX_HELD(phm));
2481 			mutex_exit(phm);
2482 			phm = NULL;
2483 
2484 			/*
2485 			 * Hat layer locking need not be done to set
2486 			 * the following bits since the page is not hashed
2487 			 * and was on the free list (i.e., had no mappings).
2488 			 *
2489 			 * Set the reference bit to protect
2490 			 * against immediate pageout
2491 			 *
2492 			 * XXXmh modify freelist code to set reference
2493 			 * bit so we don't have to do it here.
2494 			 */
2495 			page_set_props(pp, P_REF);
2496 			found_on_free++;
2497 		} else {
2498 			VM_STAT_ADD(page_create_exists);
2499 			if (flags & PG_EXCL) {
2500 				/*
2501 				 * Found an existing page, and the caller
2502 				 * wanted all new pages.  Undo all of the work
2503 				 * we have done.
2504 				 */
2505 				mutex_exit(phm);
2506 				phm = NULL;
2507 				while (plist != NULL) {
2508 					pp = plist;
2509 					page_sub(&plist, pp);
2510 					page_io_unlock(pp);
2511 					/* large pages should not end up here */
2512 					ASSERT(pp->p_szc == 0);
2513 					/*LINTED: constant in conditional ctx*/
2514 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
2515 				}
2516 				VM_STAT_ADD(page_create_found_one);
2517 				goto fail;
2518 			}
2519 			ASSERT(flags & PG_WAIT);
2520 			if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2521 				/*
2522 				 * Start all over again if we blocked trying
2523 				 * to lock the page.
2524 				 */
2525 				mutex_exit(phm);
2526 				VM_STAT_ADD(page_create_page_lock_failed);
2527 				phm = NULL;
2528 				goto top;
2529 			}
2530 			mutex_exit(phm);
2531 			phm = NULL;
2532 
2533 			if (PP_ISFREE(pp)) {
2534 				ASSERT(PP_ISAGED(pp) == 0);
2535 				VM_STAT_ADD(pagecnt.pc_get_cache);
2536 				page_list_sub(pp, PG_CACHE_LIST);
2537 				PP_CLRFREE(pp);
2538 				found_on_free++;
2539 			}
2540 		}
2541 
2542 		/*
2543 		 * Got a page!  It is locked.  Acquire the i/o
2544 		 * lock since we are going to use the p_next and
2545 		 * p_prev fields to link the requested pages together.
2546 		 */
2547 		page_io_lock(pp);
2548 		page_add(&plist, pp);
2549 		plist = plist->p_next;
2550 		off += PAGESIZE;
2551 		vaddr += PAGESIZE;
2552 	}
2553 
2554 	ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2555 fail:
2556 	if (npp != NULL) {
2557 		/*
2558 		 * Did not need this page after all.
2559 		 * Put it back on the free list.
2560 		 */
2561 		VM_STAT_ADD(page_create_putbacks);
2562 		PP_SETFREE(npp);
2563 		PP_SETAGED(npp);
2564 		npp->p_offset = (u_offset_t)-1;
2565 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2566 		page_unlock(npp);
2567 
2568 	}
2569 
2570 	ASSERT(pages_req >= found_on_free);
2571 
2572 	{
2573 		uint_t overshoot = (uint_t)(pages_req - found_on_free);
2574 
2575 		if (overshoot) {
2576 			VM_STAT_ADD(page_create_overshoot);
2577 			p = &pcf[PCF_INDEX()];
2578 			mutex_enter(&p->pcf_lock);
2579 			if (p->pcf_block) {
2580 				p->pcf_reserve += overshoot;
2581 			} else {
2582 				p->pcf_count += overshoot;
2583 				if (p->pcf_wait) {
2584 					mutex_enter(&new_freemem_lock);
2585 					if (freemem_wait) {
2586 						cv_signal(&freemem_cv);
2587 						p->pcf_wait--;
2588 					} else {
2589 						p->pcf_wait = 0;
2590 					}
2591 					mutex_exit(&new_freemem_lock);
2592 				}
2593 			}
2594 			mutex_exit(&p->pcf_lock);
2595 			/* freemem is approximate, so this test OK */
2596 			if (!p->pcf_block)
2597 				freemem += overshoot;
2598 		}
2599 	}
2600 
2601 	return (plist);
2602 }
2603 
2604 /*
2605  * One or more constituent pages of this large page has been marked
2606  * toxic. Simply demote the large page to PAGESIZE pages and let
2607  * page_free() handle it. This routine should only be called by
2608  * large page free routines (page_free_pages() and page_destroy_pages().
2609  * All pages are locked SE_EXCL and have already been marked free.
2610  */
2611 static void
2612 page_free_toxic_pages(page_t *rootpp)
2613 {
2614 	page_t	*tpp;
2615 	pgcnt_t	i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2616 	uint_t	szc = rootpp->p_szc;
2617 
2618 	for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2619 		ASSERT(tpp->p_szc == szc);
2620 		ASSERT((PAGE_EXCL(tpp) &&
2621 		    !page_iolock_assert(tpp)) || panicstr);
2622 		tpp->p_szc = 0;
2623 	}
2624 
2625 	while (rootpp != NULL) {
2626 		tpp = rootpp;
2627 		page_sub(&rootpp, tpp);
2628 		ASSERT(PP_ISFREE(tpp));
2629 		PP_CLRFREE(tpp);
2630 		page_free(tpp, 1);
2631 	}
2632 }
2633 
2634 /*
2635  * Put page on the "free" list.
2636  * The free list is really two lists maintained by
2637  * the PSM of whatever machine we happen to be on.
2638  */
2639 void
2640 page_free(page_t *pp, int dontneed)
2641 {
2642 	struct pcf	*p;
2643 	uint_t		pcf_index;
2644 
2645 	ASSERT((PAGE_EXCL(pp) &&
2646 	    !page_iolock_assert(pp)) || panicstr);
2647 
2648 	if (PP_ISFREE(pp)) {
2649 		panic("page_free: page %p is free", (void *)pp);
2650 	}
2651 
2652 	if (pp->p_szc != 0) {
2653 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2654 		    PP_ISKAS(pp)) {
2655 			panic("page_free: anon or kernel "
2656 			    "or no vnode large page %p", (void *)pp);
2657 		}
2658 		page_demote_vp_pages(pp);
2659 		ASSERT(pp->p_szc == 0);
2660 	}
2661 
2662 	/*
2663 	 * The page_struct_lock need not be acquired to examine these
2664 	 * fields since the page has an "exclusive" lock.
2665 	 */
2666 	if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
2667 	    pp->p_slckcnt != 0) {
2668 		panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2669 		    "slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt,
2670 		    pp->p_cowcnt, pp->p_slckcnt);
2671 		/*NOTREACHED*/
2672 	}
2673 
2674 	ASSERT(!hat_page_getshare(pp));
2675 
2676 	PP_SETFREE(pp);
2677 	ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2678 	    !hat_ismod(pp));
2679 	page_clr_all_props(pp);
2680 	ASSERT(!hat_page_getshare(pp));
2681 
2682 	/*
2683 	 * Now we add the page to the head of the free list.
2684 	 * But if this page is associated with a paged vnode
2685 	 * then we adjust the head forward so that the page is
2686 	 * effectively at the end of the list.
2687 	 */
2688 	if (pp->p_vnode == NULL) {
2689 		/*
2690 		 * Page has no identity, put it on the free list.
2691 		 */
2692 		PP_SETAGED(pp);
2693 		pp->p_offset = (u_offset_t)-1;
2694 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2695 		VM_STAT_ADD(pagecnt.pc_free_free);
2696 		TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2697 		    "page_free_free:pp %p", pp);
2698 	} else {
2699 		PP_CLRAGED(pp);
2700 
2701 		if (!dontneed) {
2702 			/* move it to the tail of the list */
2703 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2704 
2705 			VM_STAT_ADD(pagecnt.pc_free_cache);
2706 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2707 			    "page_free_cache_tail:pp %p", pp);
2708 		} else {
2709 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2710 
2711 			VM_STAT_ADD(pagecnt.pc_free_dontneed);
2712 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2713 			    "page_free_cache_head:pp %p", pp);
2714 		}
2715 	}
2716 	page_unlock(pp);
2717 
2718 	/*
2719 	 * Now do the `freemem' accounting.
2720 	 */
2721 	pcf_index = PCF_INDEX();
2722 	p = &pcf[pcf_index];
2723 
2724 	mutex_enter(&p->pcf_lock);
2725 	if (p->pcf_block) {
2726 		p->pcf_reserve += 1;
2727 	} else {
2728 		p->pcf_count += 1;
2729 		if (p->pcf_wait) {
2730 			mutex_enter(&new_freemem_lock);
2731 			/*
2732 			 * Check to see if some other thread
2733 			 * is actually waiting.  Another bucket
2734 			 * may have woken it up by now.  If there
2735 			 * are no waiters, then set our pcf_wait
2736 			 * count to zero to avoid coming in here
2737 			 * next time.  Also, since only one page
2738 			 * was put on the free list, just wake
2739 			 * up one waiter.
2740 			 */
2741 			if (freemem_wait) {
2742 				cv_signal(&freemem_cv);
2743 				p->pcf_wait--;
2744 			} else {
2745 				p->pcf_wait = 0;
2746 			}
2747 			mutex_exit(&new_freemem_lock);
2748 		}
2749 	}
2750 	mutex_exit(&p->pcf_lock);
2751 
2752 	/* freemem is approximate, so this test OK */
2753 	if (!p->pcf_block)
2754 		freemem += 1;
2755 }
2756 
2757 /*
2758  * Put page on the "free" list during intial startup.
2759  * This happens during initial single threaded execution.
2760  */
2761 void
2762 page_free_at_startup(page_t *pp)
2763 {
2764 	struct pcf	*p;
2765 	uint_t		pcf_index;
2766 
2767 	page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2768 	VM_STAT_ADD(pagecnt.pc_free_free);
2769 
2770 	/*
2771 	 * Now do the `freemem' accounting.
2772 	 */
2773 	pcf_index = PCF_INDEX();
2774 	p = &pcf[pcf_index];
2775 
2776 	ASSERT(p->pcf_block == 0);
2777 	ASSERT(p->pcf_wait == 0);
2778 	p->pcf_count += 1;
2779 
2780 	/* freemem is approximate, so this is OK */
2781 	freemem += 1;
2782 }
2783 
2784 void
2785 page_free_pages(page_t *pp)
2786 {
2787 	page_t	*tpp, *rootpp = NULL;
2788 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
2789 	pgcnt_t	i;
2790 	uint_t	szc = pp->p_szc;
2791 
2792 	VM_STAT_ADD(pagecnt.pc_free_pages);
2793 	TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2794 	    "page_free_free:pp %p", pp);
2795 
2796 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2797 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2798 		panic("page_free_pages: not root page %p", (void *)pp);
2799 		/*NOTREACHED*/
2800 	}
2801 
2802 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2803 		ASSERT((PAGE_EXCL(tpp) &&
2804 		    !page_iolock_assert(tpp)) || panicstr);
2805 		if (PP_ISFREE(tpp)) {
2806 			panic("page_free_pages: page %p is free", (void *)tpp);
2807 			/*NOTREACHED*/
2808 		}
2809 		if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2810 		    tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
2811 			panic("page_free_pages %p", (void *)tpp);
2812 			/*NOTREACHED*/
2813 		}
2814 
2815 		ASSERT(!hat_page_getshare(tpp));
2816 		ASSERT(tpp->p_vnode == NULL);
2817 		ASSERT(tpp->p_szc == szc);
2818 
2819 		PP_SETFREE(tpp);
2820 		page_clr_all_props(tpp);
2821 		PP_SETAGED(tpp);
2822 		tpp->p_offset = (u_offset_t)-1;
2823 		ASSERT(tpp->p_next == tpp);
2824 		ASSERT(tpp->p_prev == tpp);
2825 		page_list_concat(&rootpp, &tpp);
2826 	}
2827 	ASSERT(rootpp == pp);
2828 
2829 	page_list_add_pages(rootpp, 0);
2830 	page_create_putback(pgcnt);
2831 }
2832 
2833 int free_pages = 1;
2834 
2835 /*
2836  * This routine attempts to return pages to the cachelist via page_release().
2837  * It does not *have* to be successful in all cases, since the pageout scanner
2838  * will catch any pages it misses.  It does need to be fast and not introduce
2839  * too much overhead.
2840  *
2841  * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2842  * don't lock and retry.  This is ok, since the page scanner will eventually
2843  * find any page we miss in free_vp_pages().
2844  */
2845 void
2846 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2847 {
2848 	page_t *pp;
2849 	u_offset_t eoff;
2850 	extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2851 
2852 	eoff = off + len;
2853 
2854 	if (free_pages == 0)
2855 		return;
2856 	if (swap_in_range(vp, off, len))
2857 		return;
2858 
2859 	for (; off < eoff; off += PAGESIZE) {
2860 
2861 		/*
2862 		 * find the page using a fast, but inexact search. It'll be OK
2863 		 * if a few pages slip through the cracks here.
2864 		 */
2865 		pp = page_exists(vp, off);
2866 
2867 		/*
2868 		 * If we didn't find the page (it may not exist), the page
2869 		 * is free, looks still in use (shared), or we can't lock it,
2870 		 * just give up.
2871 		 */
2872 		if (pp == NULL ||
2873 		    PP_ISFREE(pp) ||
2874 		    page_share_cnt(pp) > 0 ||
2875 		    !page_trylock(pp, SE_EXCL))
2876 			continue;
2877 
2878 		/*
2879 		 * Once we have locked pp, verify that it's still the
2880 		 * correct page and not already free
2881 		 */
2882 		ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2883 		if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2884 			page_unlock(pp);
2885 			continue;
2886 		}
2887 
2888 		/*
2889 		 * try to release the page...
2890 		 */
2891 		(void) page_release(pp, 1);
2892 	}
2893 }
2894 
2895 /*
2896  * Reclaim the given page from the free list.
2897  * If pp is part of a large pages, only the given constituent page is reclaimed
2898  * and the large page it belonged to will be demoted.  This can only happen
2899  * if the page is not on the cachelist.
2900  *
2901  * Returns 1 on success or 0 on failure.
2902  *
2903  * The page is unlocked if it can't be reclaimed (when freemem == 0).
2904  * If `lock' is non-null, it will be dropped and re-acquired if
2905  * the routine must wait while freemem is 0.
2906  *
2907  * As it turns out, boot_getpages() does this.  It picks a page,
2908  * based on where OBP mapped in some address, gets its pfn, searches
2909  * the memsegs, locks the page, then pulls it off the free list!
2910  */
2911 int
2912 page_reclaim(page_t *pp, kmutex_t *lock)
2913 {
2914 	struct pcf	*p;
2915 	struct cpu	*cpup;
2916 	int		enough;
2917 	uint_t		i;
2918 
2919 	ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
2920 	ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
2921 
2922 	/*
2923 	 * If `freemem' is 0, we cannot reclaim this page from the
2924 	 * freelist, so release every lock we might hold: the page,
2925 	 * and the `lock' before blocking.
2926 	 *
2927 	 * The only way `freemem' can become 0 while there are pages
2928 	 * marked free (have their p->p_free bit set) is when the
2929 	 * system is low on memory and doing a page_create().  In
2930 	 * order to guarantee that once page_create() starts acquiring
2931 	 * pages it will be able to get all that it needs since `freemem'
2932 	 * was decreased by the requested amount.  So, we need to release
2933 	 * this page, and let page_create() have it.
2934 	 *
2935 	 * Since `freemem' being zero is not supposed to happen, just
2936 	 * use the usual hash stuff as a starting point.  If that bucket
2937 	 * is empty, then assume the worst, and start at the beginning
2938 	 * of the pcf array.  If we always start at the beginning
2939 	 * when acquiring more than one pcf lock, there won't be any
2940 	 * deadlock problems.
2941 	 */
2942 
2943 	/* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
2944 
2945 	if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
2946 		pcf_acquire_all();
2947 		goto page_reclaim_nomem;
2948 	}
2949 
2950 	enough = pcf_decrement_bucket(1);
2951 
2952 	if (!enough) {
2953 		VM_STAT_ADD(page_reclaim_zero);
2954 		/*
2955 		 * Check again. Its possible that some other thread
2956 		 * could have been right behind us, and added one
2957 		 * to a list somewhere.  Acquire each of the pcf locks
2958 		 * until we find a page.
2959 		 */
2960 		p = pcf;
2961 		for (i = 0; i < pcf_fanout; i++) {
2962 			mutex_enter(&p->pcf_lock);
2963 			if (p->pcf_count >= 1) {
2964 				p->pcf_count -= 1;
2965 				/*
2966 				 * freemem is not protected by any lock. Thus,
2967 				 * we cannot have any assertion containing
2968 				 * freemem here.
2969 				 */
2970 				freemem -= 1;
2971 				enough = 1;
2972 				break;
2973 			}
2974 			p++;
2975 		}
2976 
2977 		if (!enough) {
2978 page_reclaim_nomem:
2979 			/*
2980 			 * We really can't have page `pp'.
2981 			 * Time for the no-memory dance with
2982 			 * page_free().  This is just like
2983 			 * page_create_wait().  Plus the added
2984 			 * attraction of releasing whatever mutex
2985 			 * we held when we were called with in `lock'.
2986 			 * Page_unlock() will wakeup any thread
2987 			 * waiting around for this page.
2988 			 */
2989 			if (lock) {
2990 				VM_STAT_ADD(page_reclaim_zero_locked);
2991 				mutex_exit(lock);
2992 			}
2993 			page_unlock(pp);
2994 
2995 			/*
2996 			 * get this before we drop all the pcf locks.
2997 			 */
2998 			mutex_enter(&new_freemem_lock);
2999 
3000 			p = pcf;
3001 			for (i = 0; i < pcf_fanout; i++) {
3002 				p->pcf_wait++;
3003 				mutex_exit(&p->pcf_lock);
3004 				p++;
3005 			}
3006 
3007 			freemem_wait++;
3008 			cv_wait(&freemem_cv, &new_freemem_lock);
3009 			freemem_wait--;
3010 
3011 			mutex_exit(&new_freemem_lock);
3012 
3013 			if (lock) {
3014 				mutex_enter(lock);
3015 			}
3016 			return (0);
3017 		}
3018 
3019 		/*
3020 		 * The pcf accounting has been done,
3021 		 * though none of the pcf_wait flags have been set,
3022 		 * drop the locks and continue on.
3023 		 */
3024 		while (p >= pcf) {
3025 			mutex_exit(&p->pcf_lock);
3026 			p--;
3027 		}
3028 	}
3029 
3030 
3031 	VM_STAT_ADD(pagecnt.pc_reclaim);
3032 
3033 	/*
3034 	 * page_list_sub will handle the case where pp is a large page.
3035 	 * It's possible that the page was promoted while on the freelist
3036 	 */
3037 	if (PP_ISAGED(pp)) {
3038 		page_list_sub(pp, PG_FREE_LIST);
3039 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3040 		    "page_reclaim_free:pp %p", pp);
3041 	} else {
3042 		page_list_sub(pp, PG_CACHE_LIST);
3043 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3044 		    "page_reclaim_cache:pp %p", pp);
3045 	}
3046 
3047 	/*
3048 	 * clear the p_free & p_age bits since this page is no longer
3049 	 * on the free list.  Notice that there was a brief time where
3050 	 * a page is marked as free, but is not on the list.
3051 	 *
3052 	 * Set the reference bit to protect against immediate pageout.
3053 	 */
3054 	PP_CLRFREE(pp);
3055 	PP_CLRAGED(pp);
3056 	page_set_props(pp, P_REF);
3057 
3058 	CPU_STATS_ENTER_K();
3059 	cpup = CPU;	/* get cpup now that CPU cannot change */
3060 	CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3061 	CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3062 	CPU_STATS_EXIT_K();
3063 	ASSERT(pp->p_szc == 0);
3064 
3065 	return (1);
3066 }
3067 
3068 /*
3069  * Destroy identity of the page and put it back on
3070  * the page free list.  Assumes that the caller has
3071  * acquired the "exclusive" lock on the page.
3072  */
3073 void
3074 page_destroy(page_t *pp, int dontfree)
3075 {
3076 	ASSERT((PAGE_EXCL(pp) &&
3077 	    !page_iolock_assert(pp)) || panicstr);
3078 	ASSERT(pp->p_slckcnt == 0 || panicstr);
3079 
3080 	if (pp->p_szc != 0) {
3081 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3082 		    PP_ISKAS(pp)) {
3083 			panic("page_destroy: anon or kernel or no vnode "
3084 			    "large page %p", (void *)pp);
3085 		}
3086 		page_demote_vp_pages(pp);
3087 		ASSERT(pp->p_szc == 0);
3088 	}
3089 
3090 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3091 
3092 	/*
3093 	 * Unload translations, if any, then hash out the
3094 	 * page to erase its identity.
3095 	 */
3096 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3097 	page_hashout(pp, NULL);
3098 
3099 	if (!dontfree) {
3100 		/*
3101 		 * Acquire the "freemem_lock" for availrmem.
3102 		 * The page_struct_lock need not be acquired for lckcnt
3103 		 * and cowcnt since the page has an "exclusive" lock.
3104 		 * We are doing a modified version of page_pp_unlock here.
3105 		 */
3106 		if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3107 			mutex_enter(&freemem_lock);
3108 			if (pp->p_lckcnt != 0) {
3109 				availrmem++;
3110 				pages_locked--;
3111 				pp->p_lckcnt = 0;
3112 			}
3113 			if (pp->p_cowcnt != 0) {
3114 				availrmem += pp->p_cowcnt;
3115 				pages_locked -= pp->p_cowcnt;
3116 				pp->p_cowcnt = 0;
3117 			}
3118 			mutex_exit(&freemem_lock);
3119 		}
3120 		/*
3121 		 * Put the page on the "free" list.
3122 		 */
3123 		page_free(pp, 0);
3124 	}
3125 }
3126 
3127 void
3128 page_destroy_pages(page_t *pp)
3129 {
3130 
3131 	page_t	*tpp, *rootpp = NULL;
3132 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
3133 	pgcnt_t	i, pglcks = 0;
3134 	uint_t	szc = pp->p_szc;
3135 
3136 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3137 
3138 	VM_STAT_ADD(pagecnt.pc_destroy_pages);
3139 
3140 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3141 
3142 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3143 		panic("page_destroy_pages: not root page %p", (void *)pp);
3144 		/*NOTREACHED*/
3145 	}
3146 
3147 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3148 		ASSERT((PAGE_EXCL(tpp) &&
3149 		    !page_iolock_assert(tpp)) || panicstr);
3150 		ASSERT(tpp->p_slckcnt == 0 || panicstr);
3151 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3152 		page_hashout(tpp, NULL);
3153 		ASSERT(tpp->p_offset == (u_offset_t)-1);
3154 		if (tpp->p_lckcnt != 0) {
3155 			pglcks++;
3156 			tpp->p_lckcnt = 0;
3157 		} else if (tpp->p_cowcnt != 0) {
3158 			pglcks += tpp->p_cowcnt;
3159 			tpp->p_cowcnt = 0;
3160 		}
3161 		ASSERT(!hat_page_getshare(tpp));
3162 		ASSERT(tpp->p_vnode == NULL);
3163 		ASSERT(tpp->p_szc == szc);
3164 
3165 		PP_SETFREE(tpp);
3166 		page_clr_all_props(tpp);
3167 		PP_SETAGED(tpp);
3168 		ASSERT(tpp->p_next == tpp);
3169 		ASSERT(tpp->p_prev == tpp);
3170 		page_list_concat(&rootpp, &tpp);
3171 	}
3172 
3173 	ASSERT(rootpp == pp);
3174 	if (pglcks != 0) {
3175 		mutex_enter(&freemem_lock);
3176 		availrmem += pglcks;
3177 		mutex_exit(&freemem_lock);
3178 	}
3179 
3180 	page_list_add_pages(rootpp, 0);
3181 	page_create_putback(pgcnt);
3182 }
3183 
3184 /*
3185  * Similar to page_destroy(), but destroys pages which are
3186  * locked and known to be on the page free list.  Since
3187  * the page is known to be free and locked, no one can access
3188  * it.
3189  *
3190  * Also, the number of free pages does not change.
3191  */
3192 void
3193 page_destroy_free(page_t *pp)
3194 {
3195 	ASSERT(PAGE_EXCL(pp));
3196 	ASSERT(PP_ISFREE(pp));
3197 	ASSERT(pp->p_vnode);
3198 	ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3199 	ASSERT(!hat_page_is_mapped(pp));
3200 	ASSERT(PP_ISAGED(pp) == 0);
3201 	ASSERT(pp->p_szc == 0);
3202 
3203 	VM_STAT_ADD(pagecnt.pc_destroy_free);
3204 	page_list_sub(pp, PG_CACHE_LIST);
3205 
3206 	page_hashout(pp, NULL);
3207 	ASSERT(pp->p_vnode == NULL);
3208 	ASSERT(pp->p_offset == (u_offset_t)-1);
3209 	ASSERT(pp->p_hash == NULL);
3210 
3211 	PP_SETAGED(pp);
3212 	page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3213 	page_unlock(pp);
3214 
3215 	mutex_enter(&new_freemem_lock);
3216 	if (freemem_wait) {
3217 		cv_signal(&freemem_cv);
3218 	}
3219 	mutex_exit(&new_freemem_lock);
3220 }
3221 
3222 /*
3223  * Rename the page "opp" to have an identity specified
3224  * by [vp, off].  If a page already exists with this name
3225  * it is locked and destroyed.  Note that the page's
3226  * translations are not unloaded during the rename.
3227  *
3228  * This routine is used by the anon layer to "steal" the
3229  * original page and is not unlike destroying a page and
3230  * creating a new page using the same page frame.
3231  *
3232  * XXX -- Could deadlock if caller 1 tries to rename A to B while
3233  * caller 2 tries to rename B to A.
3234  */
3235 void
3236 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3237 {
3238 	page_t		*pp;
3239 	int		olckcnt = 0;
3240 	int		ocowcnt = 0;
3241 	kmutex_t	*phm;
3242 	ulong_t		index;
3243 
3244 	ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3245 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3246 	ASSERT(PP_ISFREE(opp) == 0);
3247 
3248 	VM_STAT_ADD(page_rename_count);
3249 
3250 	TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3251 	    "page rename:pp %p vp %p off %llx", opp, vp, off);
3252 
3253 	/*
3254 	 * CacheFS may call page_rename for a large NFS page
3255 	 * when both CacheFS and NFS mount points are used
3256 	 * by applications. Demote this large page before
3257 	 * renaming it, to ensure that there are no "partial"
3258 	 * large pages left lying around.
3259 	 */
3260 	if (opp->p_szc != 0) {
3261 		vnode_t *ovp = opp->p_vnode;
3262 		ASSERT(ovp != NULL);
3263 		ASSERT(!IS_SWAPFSVP(ovp));
3264 		ASSERT(!VN_ISKAS(ovp));
3265 		page_demote_vp_pages(opp);
3266 		ASSERT(opp->p_szc == 0);
3267 	}
3268 
3269 	page_hashout(opp, NULL);
3270 	PP_CLRAGED(opp);
3271 
3272 	/*
3273 	 * Acquire the appropriate page hash lock, since
3274 	 * we're going to rename the page.
3275 	 */
3276 	index = PAGE_HASH_FUNC(vp, off);
3277 	phm = PAGE_HASH_MUTEX(index);
3278 	mutex_enter(phm);
3279 top:
3280 	/*
3281 	 * Look for an existing page with this name and destroy it if found.
3282 	 * By holding the page hash lock all the way to the page_hashin()
3283 	 * call, we are assured that no page can be created with this
3284 	 * identity.  In the case when the phm lock is dropped to undo any
3285 	 * hat layer mappings, the existing page is held with an "exclusive"
3286 	 * lock, again preventing another page from being created with
3287 	 * this identity.
3288 	 */
3289 	pp = page_hash_search(index, vp, off);
3290 	if (pp != NULL) {
3291 		VM_STAT_ADD(page_rename_exists);
3292 
3293 		/*
3294 		 * As it turns out, this is one of only two places where
3295 		 * page_lock() needs to hold the passed in lock in the
3296 		 * successful case.  In all of the others, the lock could
3297 		 * be dropped as soon as the attempt is made to lock
3298 		 * the page.  It is tempting to add yet another arguement,
3299 		 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3300 		 */
3301 		if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3302 			/*
3303 			 * Went to sleep because the page could not
3304 			 * be locked.  We were woken up when the page
3305 			 * was unlocked, or when the page was destroyed.
3306 			 * In either case, `phm' was dropped while we
3307 			 * slept.  Hence we should not just roar through
3308 			 * this loop.
3309 			 */
3310 			goto top;
3311 		}
3312 
3313 		/*
3314 		 * If an existing page is a large page, then demote
3315 		 * it to ensure that no "partial" large pages are
3316 		 * "created" after page_rename. An existing page
3317 		 * can be a CacheFS page, and can't belong to swapfs.
3318 		 */
3319 		if (hat_page_is_mapped(pp)) {
3320 			/*
3321 			 * Unload translations.  Since we hold the
3322 			 * exclusive lock on this page, the page
3323 			 * can not be changed while we drop phm.
3324 			 * This is also not a lock protocol violation,
3325 			 * but rather the proper way to do things.
3326 			 */
3327 			mutex_exit(phm);
3328 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3329 			if (pp->p_szc != 0) {
3330 				ASSERT(!IS_SWAPFSVP(vp));
3331 				ASSERT(!VN_ISKAS(vp));
3332 				page_demote_vp_pages(pp);
3333 				ASSERT(pp->p_szc == 0);
3334 			}
3335 			mutex_enter(phm);
3336 		} else if (pp->p_szc != 0) {
3337 			ASSERT(!IS_SWAPFSVP(vp));
3338 			ASSERT(!VN_ISKAS(vp));
3339 			mutex_exit(phm);
3340 			page_demote_vp_pages(pp);
3341 			ASSERT(pp->p_szc == 0);
3342 			mutex_enter(phm);
3343 		}
3344 		page_hashout(pp, phm);
3345 	}
3346 	/*
3347 	 * Hash in the page with the new identity.
3348 	 */
3349 	if (!page_hashin(opp, vp, off, phm)) {
3350 		/*
3351 		 * We were holding phm while we searched for [vp, off]
3352 		 * and only dropped phm if we found and locked a page.
3353 		 * If we can't create this page now, then some thing
3354 		 * is really broken.
3355 		 */
3356 		panic("page_rename: Can't hash in page: %p", (void *)pp);
3357 		/*NOTREACHED*/
3358 	}
3359 
3360 	ASSERT(MUTEX_HELD(phm));
3361 	mutex_exit(phm);
3362 
3363 	/*
3364 	 * Now that we have dropped phm, lets get around to finishing up
3365 	 * with pp.
3366 	 */
3367 	if (pp != NULL) {
3368 		ASSERT(!hat_page_is_mapped(pp));
3369 		/* for now large pages should not end up here */
3370 		ASSERT(pp->p_szc == 0);
3371 		/*
3372 		 * Save the locks for transfer to the new page and then
3373 		 * clear them so page_free doesn't think they're important.
3374 		 * The page_struct_lock need not be acquired for lckcnt and
3375 		 * cowcnt since the page has an "exclusive" lock.
3376 		 */
3377 		olckcnt = pp->p_lckcnt;
3378 		ocowcnt = pp->p_cowcnt;
3379 		pp->p_lckcnt = pp->p_cowcnt = 0;
3380 
3381 		/*
3382 		 * Put the page on the "free" list after we drop
3383 		 * the lock.  The less work under the lock the better.
3384 		 */
3385 		/*LINTED: constant in conditional context*/
3386 		VN_DISPOSE(pp, B_FREE, 0, kcred);
3387 	}
3388 
3389 	/*
3390 	 * Transfer the lock count from the old page (if any).
3391 	 * The page_struct_lock need not be acquired for lckcnt and
3392 	 * cowcnt since the page has an "exclusive" lock.
3393 	 */
3394 	opp->p_lckcnt += olckcnt;
3395 	opp->p_cowcnt += ocowcnt;
3396 }
3397 
3398 /*
3399  * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3400  *
3401  * Pages are normally inserted at the start of a vnode's v_pages list.
3402  * If the vnode is VMODSORT and the page is modified, it goes at the end.
3403  * This can happen when a modified page is relocated for DR.
3404  *
3405  * Returns 1 on success and 0 on failure.
3406  */
3407 static int
3408 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3409 {
3410 	page_t		**listp;
3411 	page_t		*tp;
3412 	ulong_t		index;
3413 
3414 	ASSERT(PAGE_EXCL(pp));
3415 	ASSERT(vp != NULL);
3416 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3417 
3418 	/*
3419 	 * Be sure to set these up before the page is inserted on the hash
3420 	 * list.  As soon as the page is placed on the list some other
3421 	 * thread might get confused and wonder how this page could
3422 	 * possibly hash to this list.
3423 	 */
3424 	pp->p_vnode = vp;
3425 	pp->p_offset = offset;
3426 
3427 	/*
3428 	 * record if this page is on a swap vnode
3429 	 */
3430 	if ((vp->v_flag & VISSWAP) != 0)
3431 		PP_SETSWAP(pp);
3432 
3433 	index = PAGE_HASH_FUNC(vp, offset);
3434 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3435 	listp = &page_hash[index];
3436 
3437 	/*
3438 	 * If this page is already hashed in, fail this attempt to add it.
3439 	 */
3440 	for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3441 		if (tp->p_vnode == vp && tp->p_offset == offset) {
3442 			pp->p_vnode = NULL;
3443 			pp->p_offset = (u_offset_t)(-1);
3444 			return (0);
3445 		}
3446 	}
3447 	pp->p_hash = *listp;
3448 	*listp = pp;
3449 
3450 	/*
3451 	 * Add the page to the vnode's list of pages
3452 	 */
3453 	if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3454 		listp = &vp->v_pages->p_vpprev->p_vpnext;
3455 	else
3456 		listp = &vp->v_pages;
3457 
3458 	page_vpadd(listp, pp);
3459 
3460 	return (1);
3461 }
3462 
3463 /*
3464  * Add page `pp' to both the hash and vp chains for [vp, offset].
3465  *
3466  * Returns 1 on success and 0 on failure.
3467  * If hold is passed in, it is not dropped.
3468  */
3469 int
3470 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3471 {
3472 	kmutex_t	*phm = NULL;
3473 	kmutex_t	*vphm;
3474 	int		rc;
3475 
3476 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3477 	ASSERT(pp->p_fsdata == 0 || panicstr);
3478 
3479 	TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3480 	    "page_hashin:pp %p vp %p offset %llx",
3481 	    pp, vp, offset);
3482 
3483 	VM_STAT_ADD(hashin_count);
3484 
3485 	if (hold != NULL)
3486 		phm = hold;
3487 	else {
3488 		VM_STAT_ADD(hashin_not_held);
3489 		phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3490 		mutex_enter(phm);
3491 	}
3492 
3493 	vphm = page_vnode_mutex(vp);
3494 	mutex_enter(vphm);
3495 	rc = page_do_hashin(pp, vp, offset);
3496 	mutex_exit(vphm);
3497 	if (hold == NULL)
3498 		mutex_exit(phm);
3499 	if (rc == 0)
3500 		VM_STAT_ADD(hashin_already);
3501 	return (rc);
3502 }
3503 
3504 /*
3505  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3506  * All mutexes must be held
3507  */
3508 static void
3509 page_do_hashout(page_t *pp)
3510 {
3511 	page_t	**hpp;
3512 	page_t	*hp;
3513 	vnode_t	*vp = pp->p_vnode;
3514 
3515 	ASSERT(vp != NULL);
3516 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3517 
3518 	/*
3519 	 * First, take pp off of its hash chain.
3520 	 */
3521 	hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3522 
3523 	for (;;) {
3524 		hp = *hpp;
3525 		if (hp == pp)
3526 			break;
3527 		if (hp == NULL) {
3528 			panic("page_do_hashout");
3529 			/*NOTREACHED*/
3530 		}
3531 		hpp = &hp->p_hash;
3532 	}
3533 	*hpp = pp->p_hash;
3534 
3535 	/*
3536 	 * Now remove it from its associated vnode.
3537 	 */
3538 	if (vp->v_pages)
3539 		page_vpsub(&vp->v_pages, pp);
3540 
3541 	pp->p_hash = NULL;
3542 	page_clr_all_props(pp);
3543 	PP_CLRSWAP(pp);
3544 	pp->p_vnode = NULL;
3545 	pp->p_offset = (u_offset_t)-1;
3546 	pp->p_fsdata = 0;
3547 }
3548 
3549 /*
3550  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3551  *
3552  * When `phm' is non-NULL it contains the address of the mutex protecting the
3553  * hash list pp is on.  It is not dropped.
3554  */
3555 void
3556 page_hashout(page_t *pp, kmutex_t *phm)
3557 {
3558 	vnode_t		*vp;
3559 	ulong_t		index;
3560 	kmutex_t	*nphm;
3561 	kmutex_t	*vphm;
3562 	kmutex_t	*sep;
3563 
3564 	ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3565 	ASSERT(pp->p_vnode != NULL);
3566 	ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3567 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3568 
3569 	vp = pp->p_vnode;
3570 
3571 	TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3572 	    "page_hashout:pp %p vp %p", pp, vp);
3573 
3574 	/*
3575 	 *
3576 	 */
3577 	VM_STAT_ADD(hashout_count);
3578 	index = PAGE_HASH_FUNC(vp, pp->p_offset);
3579 	if (phm == NULL) {
3580 		VM_STAT_ADD(hashout_not_held);
3581 		nphm = PAGE_HASH_MUTEX(index);
3582 		mutex_enter(nphm);
3583 	}
3584 	ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3585 
3586 
3587 	/*
3588 	 * grab page vnode mutex and remove it...
3589 	 */
3590 	vphm = page_vnode_mutex(vp);
3591 	mutex_enter(vphm);
3592 
3593 	page_do_hashout(pp);
3594 
3595 	mutex_exit(vphm);
3596 	if (phm == NULL)
3597 		mutex_exit(nphm);
3598 
3599 	/*
3600 	 * Wake up processes waiting for this page.  The page's
3601 	 * identity has been changed, and is probably not the
3602 	 * desired page any longer.
3603 	 */
3604 	sep = page_se_mutex(pp);
3605 	mutex_enter(sep);
3606 	pp->p_selock &= ~SE_EWANTED;
3607 	if (CV_HAS_WAITERS(&pp->p_cv))
3608 		cv_broadcast(&pp->p_cv);
3609 	mutex_exit(sep);
3610 }
3611 
3612 /*
3613  * Add the page to the front of a linked list of pages
3614  * using the p_next & p_prev pointers for the list.
3615  * The caller is responsible for protecting the list pointers.
3616  */
3617 void
3618 page_add(page_t **ppp, page_t *pp)
3619 {
3620 	ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3621 
3622 	page_add_common(ppp, pp);
3623 }
3624 
3625 
3626 
3627 /*
3628  *  Common code for page_add() and mach_page_add()
3629  */
3630 void
3631 page_add_common(page_t **ppp, page_t *pp)
3632 {
3633 	if (*ppp == NULL) {
3634 		pp->p_next = pp->p_prev = pp;
3635 	} else {
3636 		pp->p_next = *ppp;
3637 		pp->p_prev = (*ppp)->p_prev;
3638 		(*ppp)->p_prev = pp;
3639 		pp->p_prev->p_next = pp;
3640 	}
3641 	*ppp = pp;
3642 }
3643 
3644 
3645 /*
3646  * Remove this page from a linked list of pages
3647  * using the p_next & p_prev pointers for the list.
3648  *
3649  * The caller is responsible for protecting the list pointers.
3650  */
3651 void
3652 page_sub(page_t **ppp, page_t *pp)
3653 {
3654 	ASSERT(pp != NULL && (PP_ISFREE(pp)) ? 1 :
3655 	    (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3656 
3657 	if (*ppp == NULL || pp == NULL) {
3658 		panic("page_sub: bad arg(s): pp %p, *ppp %p",
3659 		    (void *)pp, (void *)(*ppp));
3660 		/*NOTREACHED*/
3661 	}
3662 
3663 	page_sub_common(ppp, pp);
3664 }
3665 
3666 
3667 /*
3668  *  Common code for page_sub() and mach_page_sub()
3669  */
3670 void
3671 page_sub_common(page_t **ppp, page_t *pp)
3672 {
3673 	if (*ppp == pp)
3674 		*ppp = pp->p_next;		/* go to next page */
3675 
3676 	if (*ppp == pp)
3677 		*ppp = NULL;			/* page list is gone */
3678 	else {
3679 		pp->p_prev->p_next = pp->p_next;
3680 		pp->p_next->p_prev = pp->p_prev;
3681 	}
3682 	pp->p_prev = pp->p_next = pp;		/* make pp a list of one */
3683 }
3684 
3685 
3686 /*
3687  * Break page list cppp into two lists with npages in the first list.
3688  * The tail is returned in nppp.
3689  */
3690 void
3691 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3692 {
3693 	page_t *s1pp = *oppp;
3694 	page_t *s2pp;
3695 	page_t *e1pp, *e2pp;
3696 	long n = 0;
3697 
3698 	if (s1pp == NULL) {
3699 		*nppp = NULL;
3700 		return;
3701 	}
3702 	if (npages == 0) {
3703 		*nppp = s1pp;
3704 		*oppp = NULL;
3705 		return;
3706 	}
3707 	for (n = 0, s2pp = *oppp; n < npages; n++) {
3708 		s2pp = s2pp->p_next;
3709 	}
3710 	/* Fix head and tail of new lists */
3711 	e1pp = s2pp->p_prev;
3712 	e2pp = s1pp->p_prev;
3713 	s1pp->p_prev = e1pp;
3714 	e1pp->p_next = s1pp;
3715 	s2pp->p_prev = e2pp;
3716 	e2pp->p_next = s2pp;
3717 
3718 	/* second list empty */
3719 	if (s2pp == s1pp) {
3720 		*oppp = s1pp;
3721 		*nppp = NULL;
3722 	} else {
3723 		*oppp = s1pp;
3724 		*nppp = s2pp;
3725 	}
3726 }
3727 
3728 /*
3729  * Concatenate page list nppp onto the end of list ppp.
3730  */
3731 void
3732 page_list_concat(page_t **ppp, page_t **nppp)
3733 {
3734 	page_t *s1pp, *s2pp, *e1pp, *e2pp;
3735 
3736 	if (*nppp == NULL) {
3737 		return;
3738 	}
3739 	if (*ppp == NULL) {
3740 		*ppp = *nppp;
3741 		return;
3742 	}
3743 	s1pp = *ppp;
3744 	e1pp =  s1pp->p_prev;
3745 	s2pp = *nppp;
3746 	e2pp = s2pp->p_prev;
3747 	s1pp->p_prev = e2pp;
3748 	e2pp->p_next = s1pp;
3749 	e1pp->p_next = s2pp;
3750 	s2pp->p_prev = e1pp;
3751 }
3752 
3753 /*
3754  * return the next page in the page list
3755  */
3756 page_t *
3757 page_list_next(page_t *pp)
3758 {
3759 	return (pp->p_next);
3760 }
3761 
3762 
3763 /*
3764  * Add the page to the front of the linked list of pages
3765  * using p_vpnext/p_vpprev pointers for the list.
3766  *
3767  * The caller is responsible for protecting the lists.
3768  */
3769 void
3770 page_vpadd(page_t **ppp, page_t *pp)
3771 {
3772 	if (*ppp == NULL) {
3773 		pp->p_vpnext = pp->p_vpprev = pp;
3774 	} else {
3775 		pp->p_vpnext = *ppp;
3776 		pp->p_vpprev = (*ppp)->p_vpprev;
3777 		(*ppp)->p_vpprev = pp;
3778 		pp->p_vpprev->p_vpnext = pp;
3779 	}
3780 	*ppp = pp;
3781 }
3782 
3783 /*
3784  * Remove this page from the linked list of pages
3785  * using p_vpnext/p_vpprev pointers for the list.
3786  *
3787  * The caller is responsible for protecting the lists.
3788  */
3789 void
3790 page_vpsub(page_t **ppp, page_t *pp)
3791 {
3792 	if (*ppp == NULL || pp == NULL) {
3793 		panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3794 		    (void *)pp, (void *)(*ppp));
3795 		/*NOTREACHED*/
3796 	}
3797 
3798 	if (*ppp == pp)
3799 		*ppp = pp->p_vpnext;		/* go to next page */
3800 
3801 	if (*ppp == pp)
3802 		*ppp = NULL;			/* page list is gone */
3803 	else {
3804 		pp->p_vpprev->p_vpnext = pp->p_vpnext;
3805 		pp->p_vpnext->p_vpprev = pp->p_vpprev;
3806 	}
3807 	pp->p_vpprev = pp->p_vpnext = pp;	/* make pp a list of one */
3808 }
3809 
3810 /*
3811  * Lock a physical page into memory "long term".  Used to support "lock
3812  * in memory" functions.  Accepts the page to be locked, and a cow variable
3813  * to indicate whether a the lock will travel to the new page during
3814  * a potential copy-on-write.
3815  */
3816 int
3817 page_pp_lock(
3818 	page_t *pp,			/* page to be locked */
3819 	int cow,			/* cow lock */
3820 	int kernel)			/* must succeed -- ignore checking */
3821 {
3822 	int r = 0;			/* result -- assume failure */
3823 
3824 	ASSERT(PAGE_LOCKED(pp));
3825 
3826 	page_struct_lock(pp);
3827 	/*
3828 	 * Acquire the "freemem_lock" for availrmem.
3829 	 */
3830 	if (cow) {
3831 		mutex_enter(&freemem_lock);
3832 		if ((availrmem > pages_pp_maximum) &&
3833 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3834 			availrmem--;
3835 			pages_locked++;
3836 			mutex_exit(&freemem_lock);
3837 			r = 1;
3838 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3839 				cmn_err(CE_WARN,
3840 				    "COW lock limit reached on pfn 0x%lx",
3841 				    page_pptonum(pp));
3842 			}
3843 		} else
3844 			mutex_exit(&freemem_lock);
3845 	} else {
3846 		if (pp->p_lckcnt) {
3847 			if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3848 				r = 1;
3849 				if (++pp->p_lckcnt ==
3850 				    (ushort_t)PAGE_LOCK_MAXIMUM) {
3851 					cmn_err(CE_WARN, "Page lock limit "
3852 					    "reached on pfn 0x%lx",
3853 					    page_pptonum(pp));
3854 				}
3855 			}
3856 		} else {
3857 			if (kernel) {
3858 				/* availrmem accounting done by caller */
3859 				++pp->p_lckcnt;
3860 				r = 1;
3861 			} else {
3862 				mutex_enter(&freemem_lock);
3863 				if (availrmem > pages_pp_maximum) {
3864 					availrmem--;
3865 					pages_locked++;
3866 					++pp->p_lckcnt;
3867 					r = 1;
3868 				}
3869 				mutex_exit(&freemem_lock);
3870 			}
3871 		}
3872 	}
3873 	page_struct_unlock(pp);
3874 	return (r);
3875 }
3876 
3877 /*
3878  * Decommit a lock on a physical page frame.  Account for cow locks if
3879  * appropriate.
3880  */
3881 void
3882 page_pp_unlock(
3883 	page_t *pp,			/* page to be unlocked */
3884 	int cow,			/* expect cow lock */
3885 	int kernel)			/* this was a kernel lock */
3886 {
3887 	ASSERT(PAGE_LOCKED(pp));
3888 
3889 	page_struct_lock(pp);
3890 	/*
3891 	 * Acquire the "freemem_lock" for availrmem.
3892 	 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3893 	 * could be called to unlock even if nothing is locked. This could
3894 	 * happen if locked file pages were truncated (removing the lock)
3895 	 * and the file was grown again and new pages faulted in; the new
3896 	 * pages are unlocked but the segment still thinks they're locked.
3897 	 */
3898 	if (cow) {
3899 		if (pp->p_cowcnt) {
3900 			mutex_enter(&freemem_lock);
3901 			pp->p_cowcnt--;
3902 			availrmem++;
3903 			pages_locked--;
3904 			mutex_exit(&freemem_lock);
3905 		}
3906 	} else {
3907 		if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
3908 			if (!kernel) {
3909 				mutex_enter(&freemem_lock);
3910 				availrmem++;
3911 				pages_locked--;
3912 				mutex_exit(&freemem_lock);
3913 			}
3914 		}
3915 	}
3916 	page_struct_unlock(pp);
3917 }
3918 
3919 /*
3920  * This routine reserves availrmem for npages.
3921  * It returns 1 on success or 0 on failure.
3922  *
3923  * flags: KM_NOSLEEP or KM_SLEEP
3924  * cb_wait: called to induce delay when KM_SLEEP reservation requires kmem
3925  *     reaping to potentially succeed.  If the callback returns 0, the
3926  *     reservation attempts will cease to repeat and page_xresv() may
3927  *     report a failure.  If cb_wait is NULL, the traditional delay(hz/2)
3928  *     behavior will be used while waiting for a reap.
3929  */
3930 int
3931 page_xresv(pgcnt_t npages, uint_t flags, int (*cb_wait)(void))
3932 {
3933 	mutex_enter(&freemem_lock);
3934 	if (availrmem >= tune.t_minarmem + npages) {
3935 		availrmem -= npages;
3936 		mutex_exit(&freemem_lock);
3937 		return (1);
3938 	} else if ((flags & KM_NOSLEEP) != 0) {
3939 		mutex_exit(&freemem_lock);
3940 		return (0);
3941 	}
3942 	mutex_exit(&freemem_lock);
3943 
3944 	/*
3945 	 * We signal memory pressure to the system by elevating 'needfree'.
3946 	 * Processes such as kmem reaping, pageout, and ZFS ARC shrinking can
3947 	 * then respond to said pressure by freeing pages.
3948 	 */
3949 	page_needfree(npages);
3950 	int nobail = 1;
3951 	do {
3952 		kmem_reap();
3953 		if (cb_wait == NULL) {
3954 			delay(hz >> 2);
3955 		} else {
3956 			nobail = cb_wait();
3957 		}
3958 
3959 		mutex_enter(&freemem_lock);
3960 		if (availrmem >= tune.t_minarmem + npages) {
3961 			availrmem -= npages;
3962 			mutex_exit(&freemem_lock);
3963 			page_needfree(-(spgcnt_t)npages);
3964 			return (1);
3965 		}
3966 		mutex_exit(&freemem_lock);
3967 	} while (nobail != 0);
3968 	page_needfree(-(spgcnt_t)npages);
3969 
3970 	return (0);
3971 }
3972 
3973 /*
3974  * This routine reserves availrmem for npages;
3975  *	flags: KM_NOSLEEP or KM_SLEEP
3976  *	returns 1 on success or 0 on failure
3977  */
3978 int
3979 page_resv(pgcnt_t npages, uint_t flags)
3980 {
3981 	return (page_xresv(npages, flags, NULL));
3982 }
3983 
3984 /*
3985  * This routine unreserves availrmem for npages;
3986  */
3987 void
3988 page_unresv(pgcnt_t npages)
3989 {
3990 	mutex_enter(&freemem_lock);
3991 	availrmem += npages;
3992 	mutex_exit(&freemem_lock);
3993 }
3994 
3995 /*
3996  * See Statement at the beginning of segvn_lockop() regarding
3997  * the way we handle cowcnts and lckcnts.
3998  *
3999  * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
4000  * that breaks COW has PROT_WRITE.
4001  *
4002  * Note that, we may also break COW in case we are softlocking
4003  * on read access during physio;
4004  * in this softlock case, the vpage may not have PROT_WRITE.
4005  * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
4006  * if the vpage doesn't have PROT_WRITE.
4007  *
4008  * This routine is never called if we are stealing a page
4009  * in anon_private.
4010  *
4011  * The caller subtracted from availrmem for read only mapping.
4012  * if lckcnt is 1 increment availrmem.
4013  */
4014 void
4015 page_pp_useclaim(
4016 	page_t *opp,		/* original page frame losing lock */
4017 	page_t *npp,		/* new page frame gaining lock */
4018 	uint_t write_perm)	/* set if vpage has PROT_WRITE */
4019 {
4020 	int payback = 0;
4021 	int nidx, oidx;
4022 
4023 	ASSERT(PAGE_LOCKED(opp));
4024 	ASSERT(PAGE_LOCKED(npp));
4025 
4026 	/*
4027 	 * Since we have two pages we probably have two locks.  We need to take
4028 	 * them in a defined order to avoid deadlocks.  It's also possible they
4029 	 * both hash to the same lock in which case this is a non-issue.
4030 	 */
4031 	nidx = PAGE_LLOCK_HASH(PP_PAGEROOT(npp));
4032 	oidx = PAGE_LLOCK_HASH(PP_PAGEROOT(opp));
4033 	if (nidx < oidx) {
4034 		page_struct_lock(npp);
4035 		page_struct_lock(opp);
4036 	} else if (oidx < nidx) {
4037 		page_struct_lock(opp);
4038 		page_struct_lock(npp);
4039 	} else {	/* The pages hash to the same lock */
4040 		page_struct_lock(npp);
4041 	}
4042 
4043 	ASSERT(npp->p_cowcnt == 0);
4044 	ASSERT(npp->p_lckcnt == 0);
4045 
4046 	/* Don't use claim if nothing is locked (see page_pp_unlock above) */
4047 	if ((write_perm && opp->p_cowcnt != 0) ||
4048 	    (!write_perm && opp->p_lckcnt != 0)) {
4049 
4050 		if (write_perm) {
4051 			npp->p_cowcnt++;
4052 			ASSERT(opp->p_cowcnt != 0);
4053 			opp->p_cowcnt--;
4054 		} else {
4055 
4056 			ASSERT(opp->p_lckcnt != 0);
4057 
4058 			/*
4059 			 * We didn't need availrmem decremented if p_lckcnt on
4060 			 * original page is 1. Here, we are unlocking
4061 			 * read-only copy belonging to original page and
4062 			 * are locking a copy belonging to new page.
4063 			 */
4064 			if (opp->p_lckcnt == 1)
4065 				payback = 1;
4066 
4067 			npp->p_lckcnt++;
4068 			opp->p_lckcnt--;
4069 		}
4070 	}
4071 	if (payback) {
4072 		mutex_enter(&freemem_lock);
4073 		availrmem++;
4074 		pages_useclaim--;
4075 		mutex_exit(&freemem_lock);
4076 	}
4077 
4078 	if (nidx < oidx) {
4079 		page_struct_unlock(opp);
4080 		page_struct_unlock(npp);
4081 	} else if (oidx < nidx) {
4082 		page_struct_unlock(npp);
4083 		page_struct_unlock(opp);
4084 	} else {	/* The pages hash to the same lock */
4085 		page_struct_unlock(npp);
4086 	}
4087 }
4088 
4089 /*
4090  * Simple claim adjust functions -- used to support changes in
4091  * claims due to changes in access permissions.  Used by segvn_setprot().
4092  */
4093 int
4094 page_addclaim(page_t *pp)
4095 {
4096 	int r = 0;			/* result */
4097 
4098 	ASSERT(PAGE_LOCKED(pp));
4099 
4100 	page_struct_lock(pp);
4101 	ASSERT(pp->p_lckcnt != 0);
4102 
4103 	if (pp->p_lckcnt == 1) {
4104 		if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4105 			--pp->p_lckcnt;
4106 			r = 1;
4107 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4108 				cmn_err(CE_WARN,
4109 				    "COW lock limit reached on pfn 0x%lx",
4110 				    page_pptonum(pp));
4111 			}
4112 		}
4113 	} else {
4114 		mutex_enter(&freemem_lock);
4115 		if ((availrmem > pages_pp_maximum) &&
4116 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4117 			--availrmem;
4118 			++pages_claimed;
4119 			mutex_exit(&freemem_lock);
4120 			--pp->p_lckcnt;
4121 			r = 1;
4122 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4123 				cmn_err(CE_WARN,
4124 				    "COW lock limit reached on pfn 0x%lx",
4125 				    page_pptonum(pp));
4126 			}
4127 		} else
4128 			mutex_exit(&freemem_lock);
4129 	}
4130 	page_struct_unlock(pp);
4131 	return (r);
4132 }
4133 
4134 int
4135 page_subclaim(page_t *pp)
4136 {
4137 	int r = 0;
4138 
4139 	ASSERT(PAGE_LOCKED(pp));
4140 
4141 	page_struct_lock(pp);
4142 	ASSERT(pp->p_cowcnt != 0);
4143 
4144 	if (pp->p_lckcnt) {
4145 		if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4146 			r = 1;
4147 			/*
4148 			 * for availrmem
4149 			 */
4150 			mutex_enter(&freemem_lock);
4151 			availrmem++;
4152 			pages_claimed--;
4153 			mutex_exit(&freemem_lock);
4154 
4155 			pp->p_cowcnt--;
4156 
4157 			if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4158 				cmn_err(CE_WARN,
4159 				    "Page lock limit reached on pfn 0x%lx",
4160 				    page_pptonum(pp));
4161 			}
4162 		}
4163 	} else {
4164 		r = 1;
4165 		pp->p_cowcnt--;
4166 		pp->p_lckcnt++;
4167 	}
4168 	page_struct_unlock(pp);
4169 	return (r);
4170 }
4171 
4172 /*
4173  * Variant of page_addclaim(), where ppa[] contains the pages of a single large
4174  * page.
4175  */
4176 int
4177 page_addclaim_pages(page_t  **ppa)
4178 {
4179 	pgcnt_t	lckpgs = 0, pg_idx;
4180 
4181 	VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4182 
4183 	/*
4184 	 * Only need to take the page struct lock on the large page root.
4185 	 */
4186 	page_struct_lock(ppa[0]);
4187 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4188 
4189 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4190 		ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4191 		if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4192 			page_struct_unlock(ppa[0]);
4193 			return (0);
4194 		}
4195 		if (ppa[pg_idx]->p_lckcnt > 1)
4196 			lckpgs++;
4197 	}
4198 
4199 	if (lckpgs != 0) {
4200 		mutex_enter(&freemem_lock);
4201 		if (availrmem >= pages_pp_maximum + lckpgs) {
4202 			availrmem -= lckpgs;
4203 			pages_claimed += lckpgs;
4204 		} else {
4205 			mutex_exit(&freemem_lock);
4206 			page_struct_unlock(ppa[0]);
4207 			return (0);
4208 		}
4209 		mutex_exit(&freemem_lock);
4210 	}
4211 
4212 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4213 		ppa[pg_idx]->p_lckcnt--;
4214 		ppa[pg_idx]->p_cowcnt++;
4215 	}
4216 	page_struct_unlock(ppa[0]);
4217 	return (1);
4218 }
4219 
4220 /*
4221  * Variant of page_subclaim(), where ppa[] contains the pages of a single large
4222  * page.
4223  */
4224 int
4225 page_subclaim_pages(page_t  **ppa)
4226 {
4227 	pgcnt_t	ulckpgs = 0, pg_idx;
4228 
4229 	VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4230 
4231 	/*
4232 	 * Only need to take the page struct lock on the large page root.
4233 	 */
4234 	page_struct_lock(ppa[0]);
4235 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4236 
4237 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4238 		ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4239 		if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4240 			page_struct_unlock(ppa[0]);
4241 			return (0);
4242 		}
4243 		if (ppa[pg_idx]->p_lckcnt != 0)
4244 			ulckpgs++;
4245 	}
4246 
4247 	if (ulckpgs != 0) {
4248 		mutex_enter(&freemem_lock);
4249 		availrmem += ulckpgs;
4250 		pages_claimed -= ulckpgs;
4251 		mutex_exit(&freemem_lock);
4252 	}
4253 
4254 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4255 		ppa[pg_idx]->p_cowcnt--;
4256 		ppa[pg_idx]->p_lckcnt++;
4257 
4258 	}
4259 	page_struct_unlock(ppa[0]);
4260 	return (1);
4261 }
4262 
4263 page_t *
4264 page_numtopp(pfn_t pfnum, se_t se)
4265 {
4266 	page_t *pp;
4267 
4268 retry:
4269 	pp = page_numtopp_nolock(pfnum);
4270 	if (pp == NULL) {
4271 		return ((page_t *)NULL);
4272 	}
4273 
4274 	/*
4275 	 * Acquire the appropriate lock on the page.
4276 	 */
4277 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4278 		if (page_pptonum(pp) != pfnum)
4279 			goto retry;
4280 		continue;
4281 	}
4282 
4283 	if (page_pptonum(pp) != pfnum) {
4284 		page_unlock(pp);
4285 		goto retry;
4286 	}
4287 
4288 	return (pp);
4289 }
4290 
4291 page_t *
4292 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4293 {
4294 	page_t *pp;
4295 
4296 retry:
4297 	pp = page_numtopp_nolock(pfnum);
4298 	if (pp == NULL) {
4299 		return ((page_t *)NULL);
4300 	}
4301 
4302 	/*
4303 	 * Acquire the appropriate lock on the page.
4304 	 */
4305 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4306 		if (page_pptonum(pp) != pfnum)
4307 			goto retry;
4308 		continue;
4309 	}
4310 
4311 	if (page_pptonum(pp) != pfnum) {
4312 		page_unlock(pp);
4313 		goto retry;
4314 	}
4315 
4316 	return (pp);
4317 }
4318 
4319 /*
4320  * This routine is like page_numtopp, but will only return page structs
4321  * for pages which are ok for loading into hardware using the page struct.
4322  */
4323 page_t *
4324 page_numtopp_nowait(pfn_t pfnum, se_t se)
4325 {
4326 	page_t *pp;
4327 
4328 retry:
4329 	pp = page_numtopp_nolock(pfnum);
4330 	if (pp == NULL) {
4331 		return ((page_t *)NULL);
4332 	}
4333 
4334 	/*
4335 	 * Try to acquire the appropriate lock on the page.
4336 	 */
4337 	if (PP_ISFREE(pp))
4338 		pp = NULL;
4339 	else {
4340 		if (!page_trylock(pp, se))
4341 			pp = NULL;
4342 		else {
4343 			if (page_pptonum(pp) != pfnum) {
4344 				page_unlock(pp);
4345 				goto retry;
4346 			}
4347 			if (PP_ISFREE(pp)) {
4348 				page_unlock(pp);
4349 				pp = NULL;
4350 			}
4351 		}
4352 	}
4353 	return (pp);
4354 }
4355 
4356 /*
4357  * Returns a count of dirty pages that are in the process
4358  * of being written out.  If 'cleanit' is set, try to push the page.
4359  */
4360 pgcnt_t
4361 page_busy(int cleanit)
4362 {
4363 	page_t *page0 = page_first();
4364 	page_t *pp = page0;
4365 	pgcnt_t nppbusy = 0;
4366 	u_offset_t off;
4367 
4368 	do {
4369 		vnode_t *vp = pp->p_vnode;
4370 		/*
4371 		 * A page is a candidate for syncing if it is:
4372 		 *
4373 		 * (a)	On neither the freelist nor the cachelist
4374 		 * (b)	Hashed onto a vnode
4375 		 * (c)	Not a kernel page
4376 		 * (d)	Dirty
4377 		 * (e)	Not part of a swapfile
4378 		 * (f)	a page which belongs to a real vnode; eg has a non-null
4379 		 *	v_vfsp pointer.
4380 		 * (g)	Backed by a filesystem which doesn't have a
4381 		 *	stubbed-out sync operation
4382 		 */
4383 		if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
4384 		    hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4385 		    vfs_can_sync(vp->v_vfsp)) {
4386 			nppbusy++;
4387 
4388 			if (!cleanit)
4389 				continue;
4390 			if (!page_trylock(pp, SE_EXCL))
4391 				continue;
4392 
4393 			if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4394 			    pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4395 			    !(hat_pagesync(pp,
4396 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4397 				page_unlock(pp);
4398 				continue;
4399 			}
4400 			off = pp->p_offset;
4401 			VN_HOLD(vp);
4402 			page_unlock(pp);
4403 			(void) VOP_PUTPAGE(vp, off, PAGESIZE,
4404 			    B_ASYNC | B_FREE, kcred, NULL);
4405 			VN_RELE(vp);
4406 		}
4407 	} while ((pp = page_next(pp)) != page0);
4408 
4409 	return (nppbusy);
4410 }
4411 
4412 void page_invalidate_pages(void);
4413 
4414 /*
4415  * callback handler to vm sub-system
4416  *
4417  * callers make sure no recursive entries to this func.
4418  */
4419 /*ARGSUSED*/
4420 boolean_t
4421 callb_vm_cpr(void *arg, int code)
4422 {
4423 	if (code == CB_CODE_CPR_CHKPT)
4424 		page_invalidate_pages();
4425 	return (B_TRUE);
4426 }
4427 
4428 /*
4429  * Invalidate all pages of the system.
4430  * It shouldn't be called until all user page activities are all stopped.
4431  */
4432 void
4433 page_invalidate_pages()
4434 {
4435 	page_t *pp;
4436 	page_t *page0;
4437 	pgcnt_t nbusypages;
4438 	int retry = 0;
4439 	const int MAXRETRIES = 4;
4440 top:
4441 	/*
4442 	 * Flush dirty pages and destroy the clean ones.
4443 	 */
4444 	nbusypages = 0;
4445 
4446 	pp = page0 = page_first();
4447 	do {
4448 		struct vnode	*vp;
4449 		u_offset_t	offset;
4450 		int		mod;
4451 
4452 		/*
4453 		 * skip the page if it has no vnode or the page associated
4454 		 * with the kernel vnode or prom allocated kernel mem.
4455 		 */
4456 		if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
4457 			continue;
4458 
4459 		/*
4460 		 * skip the page which is already free invalidated.
4461 		 */
4462 		if (PP_ISFREE(pp) && PP_ISAGED(pp))
4463 			continue;
4464 
4465 		/*
4466 		 * skip pages that are already locked or can't be "exclusively"
4467 		 * locked or are already free.  After we lock the page, check
4468 		 * the free and age bits again to be sure it's not destroyed
4469 		 * yet.
4470 		 * To achieve max. parallelization, we use page_trylock instead
4471 		 * of page_lock so that we don't get block on individual pages
4472 		 * while we have thousands of other pages to process.
4473 		 */
4474 		if (!page_trylock(pp, SE_EXCL)) {
4475 			nbusypages++;
4476 			continue;
4477 		} else if (PP_ISFREE(pp)) {
4478 			if (!PP_ISAGED(pp)) {
4479 				page_destroy_free(pp);
4480 			} else {
4481 				page_unlock(pp);
4482 			}
4483 			continue;
4484 		}
4485 		/*
4486 		 * Is this page involved in some I/O? shared?
4487 		 *
4488 		 * The page_struct_lock need not be acquired to
4489 		 * examine these fields since the page has an
4490 		 * "exclusive" lock.
4491 		 */
4492 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4493 			page_unlock(pp);
4494 			continue;
4495 		}
4496 
4497 		if (vp->v_type == VCHR) {
4498 			panic("vp->v_type == VCHR");
4499 			/*NOTREACHED*/
4500 		}
4501 
4502 		if (!page_try_demote_pages(pp)) {
4503 			page_unlock(pp);
4504 			continue;
4505 		}
4506 
4507 		/*
4508 		 * Check the modified bit. Leave the bits alone in hardware
4509 		 * (they will be modified if we do the putpage).
4510 		 */
4511 		mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4512 		    & P_MOD);
4513 		if (mod) {
4514 			offset = pp->p_offset;
4515 			/*
4516 			 * Hold the vnode before releasing the page lock
4517 			 * to prevent it from being freed and re-used by
4518 			 * some other thread.
4519 			 */
4520 			VN_HOLD(vp);
4521 			page_unlock(pp);
4522 			/*
4523 			 * No error return is checked here. Callers such as
4524 			 * cpr deals with the dirty pages at the dump time
4525 			 * if this putpage fails.
4526 			 */
4527 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4528 			    kcred, NULL);
4529 			VN_RELE(vp);
4530 		} else {
4531 			/*LINTED: constant in conditional context*/
4532 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
4533 		}
4534 	} while ((pp = page_next(pp)) != page0);
4535 	if (nbusypages && retry++ < MAXRETRIES) {
4536 		delay(1);
4537 		goto top;
4538 	}
4539 }
4540 
4541 /*
4542  * Replace the page "old" with the page "new" on the page hash and vnode lists
4543  *
4544  * the replacement must be done in place, ie the equivalent sequence:
4545  *
4546  *	vp = old->p_vnode;
4547  *	off = old->p_offset;
4548  *	page_do_hashout(old)
4549  *	page_do_hashin(new, vp, off)
4550  *
4551  * doesn't work, since
4552  *  1) if old is the only page on the vnode, the v_pages list has a window
4553  *     where it looks empty. This will break file system assumptions.
4554  * and
4555  *  2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4556  */
4557 static void
4558 page_do_relocate_hash(page_t *new, page_t *old)
4559 {
4560 	page_t	**hash_list;
4561 	vnode_t	*vp = old->p_vnode;
4562 	kmutex_t *sep;
4563 
4564 	ASSERT(PAGE_EXCL(old));
4565 	ASSERT(PAGE_EXCL(new));
4566 	ASSERT(vp != NULL);
4567 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4568 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4569 
4570 	/*
4571 	 * First find old page on the page hash list
4572 	 */
4573 	hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4574 
4575 	for (;;) {
4576 		if (*hash_list == old)
4577 			break;
4578 		if (*hash_list == NULL) {
4579 			panic("page_do_hashout");
4580 			/*NOTREACHED*/
4581 		}
4582 		hash_list = &(*hash_list)->p_hash;
4583 	}
4584 
4585 	/*
4586 	 * update new and replace old with new on the page hash list
4587 	 */
4588 	new->p_vnode = old->p_vnode;
4589 	new->p_offset = old->p_offset;
4590 	new->p_hash = old->p_hash;
4591 	*hash_list = new;
4592 
4593 	if ((new->p_vnode->v_flag & VISSWAP) != 0)
4594 		PP_SETSWAP(new);
4595 
4596 	/*
4597 	 * replace old with new on the vnode's page list
4598 	 */
4599 	if (old->p_vpnext == old) {
4600 		new->p_vpnext = new;
4601 		new->p_vpprev = new;
4602 	} else {
4603 		new->p_vpnext = old->p_vpnext;
4604 		new->p_vpprev = old->p_vpprev;
4605 		new->p_vpnext->p_vpprev = new;
4606 		new->p_vpprev->p_vpnext = new;
4607 	}
4608 	if (vp->v_pages == old)
4609 		vp->v_pages = new;
4610 
4611 	/*
4612 	 * clear out the old page
4613 	 */
4614 	old->p_hash = NULL;
4615 	old->p_vpnext = NULL;
4616 	old->p_vpprev = NULL;
4617 	old->p_vnode = NULL;
4618 	PP_CLRSWAP(old);
4619 	old->p_offset = (u_offset_t)-1;
4620 	page_clr_all_props(old);
4621 
4622 	/*
4623 	 * Wake up processes waiting for this page.  The page's
4624 	 * identity has been changed, and is probably not the
4625 	 * desired page any longer.
4626 	 */
4627 	sep = page_se_mutex(old);
4628 	mutex_enter(sep);
4629 	old->p_selock &= ~SE_EWANTED;
4630 	if (CV_HAS_WAITERS(&old->p_cv))
4631 		cv_broadcast(&old->p_cv);
4632 	mutex_exit(sep);
4633 }
4634 
4635 /*
4636  * This function moves the identity of page "pp_old" to page "pp_new".
4637  * Both pages must be locked on entry.  "pp_new" is free, has no identity,
4638  * and need not be hashed out from anywhere.
4639  */
4640 void
4641 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4642 {
4643 	vnode_t *vp = pp_old->p_vnode;
4644 	u_offset_t off = pp_old->p_offset;
4645 	kmutex_t *phm, *vphm;
4646 
4647 	/*
4648 	 * Rehash two pages
4649 	 */
4650 	ASSERT(PAGE_EXCL(pp_old));
4651 	ASSERT(PAGE_EXCL(pp_new));
4652 	ASSERT(vp != NULL);
4653 	ASSERT(pp_new->p_vnode == NULL);
4654 
4655 	/*
4656 	 * hashout then hashin while holding the mutexes
4657 	 */
4658 	phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4659 	mutex_enter(phm);
4660 	vphm = page_vnode_mutex(vp);
4661 	mutex_enter(vphm);
4662 
4663 	page_do_relocate_hash(pp_new, pp_old);
4664 
4665 	/* The following comment preserved from page_flip(). */
4666 	pp_new->p_fsdata = pp_old->p_fsdata;
4667 	pp_old->p_fsdata = 0;
4668 	mutex_exit(vphm);
4669 	mutex_exit(phm);
4670 
4671 	/*
4672 	 * The page_struct_lock need not be acquired for lckcnt and
4673 	 * cowcnt since the page has an "exclusive" lock.
4674 	 */
4675 	ASSERT(pp_new->p_lckcnt == 0);
4676 	ASSERT(pp_new->p_cowcnt == 0);
4677 	pp_new->p_lckcnt = pp_old->p_lckcnt;
4678 	pp_new->p_cowcnt = pp_old->p_cowcnt;
4679 	pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4680 
4681 }
4682 
4683 /*
4684  * Helper routine used to lock all remaining members of a
4685  * large page. The caller is responsible for passing in a locked
4686  * pp. If pp is a large page, then it succeeds in locking all the
4687  * remaining constituent pages or it returns with only the
4688  * original page locked.
4689  *
4690  * Returns 1 on success, 0 on failure.
4691  *
4692  * If success is returned this routine guarantees p_szc for all constituent
4693  * pages of a large page pp belongs to can't change. To achieve this we
4694  * recheck szc of pp after locking all constituent pages and retry if szc
4695  * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4696  * lock on one of constituent pages it can't be running after all constituent
4697  * pages are locked.  hat_page_demote() with a lock on a constituent page
4698  * outside of this large page (i.e. pp belonged to a larger large page) is
4699  * already done with all constituent pages of pp since the root's p_szc is
4700  * changed last. Therefore no need to synchronize with hat_page_demote() that
4701  * locked a constituent page outside of pp's current large page.
4702  */
4703 #ifdef DEBUG
4704 uint32_t gpg_trylock_mtbf = 0;
4705 #endif
4706 
4707 int
4708 group_page_trylock(page_t *pp, se_t se)
4709 {
4710 	page_t  *tpp;
4711 	pgcnt_t	npgs, i, j;
4712 	uint_t pszc = pp->p_szc;
4713 
4714 #ifdef DEBUG
4715 	if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4716 		return (0);
4717 	}
4718 #endif
4719 
4720 	if (pp != PP_GROUPLEADER(pp, pszc)) {
4721 		return (0);
4722 	}
4723 
4724 retry:
4725 	ASSERT(PAGE_LOCKED_SE(pp, se));
4726 	ASSERT(!PP_ISFREE(pp));
4727 	if (pszc == 0) {
4728 		return (1);
4729 	}
4730 	npgs = page_get_pagecnt(pszc);
4731 	tpp = pp + 1;
4732 	for (i = 1; i < npgs; i++, tpp++) {
4733 		if (!page_trylock(tpp, se)) {
4734 			tpp = pp + 1;
4735 			for (j = 1; j < i; j++, tpp++) {
4736 				page_unlock(tpp);
4737 			}
4738 			return (0);
4739 		}
4740 	}
4741 	if (pp->p_szc != pszc) {
4742 		ASSERT(pp->p_szc < pszc);
4743 		ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
4744 		    !IS_SWAPFSVP(pp->p_vnode));
4745 		tpp = pp + 1;
4746 		for (i = 1; i < npgs; i++, tpp++) {
4747 			page_unlock(tpp);
4748 		}
4749 		pszc = pp->p_szc;
4750 		goto retry;
4751 	}
4752 	return (1);
4753 }
4754 
4755 void
4756 group_page_unlock(page_t *pp)
4757 {
4758 	page_t *tpp;
4759 	pgcnt_t	npgs, i;
4760 
4761 	ASSERT(PAGE_LOCKED(pp));
4762 	ASSERT(!PP_ISFREE(pp));
4763 	ASSERT(pp == PP_PAGEROOT(pp));
4764 	npgs = page_get_pagecnt(pp->p_szc);
4765 	for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4766 		page_unlock(tpp);
4767 	}
4768 }
4769 
4770 /*
4771  * returns
4772  * 0		: on success and *nrelocp is number of relocated PAGESIZE pages
4773  * ERANGE	: this is not a base page
4774  * EBUSY	: failure to get locks on the page/pages
4775  * ENOMEM	: failure to obtain replacement pages
4776  * EAGAIN	: OBP has not yet completed its boot-time handoff to the kernel
4777  * EIO		: An error occurred while trying to copy the page data
4778  *
4779  * Return with all constituent members of target and replacement
4780  * SE_EXCL locked. It is the callers responsibility to drop the
4781  * locks.
4782  */
4783 int
4784 do_page_relocate(
4785 	page_t **target,
4786 	page_t **replacement,
4787 	int grouplock,
4788 	spgcnt_t *nrelocp,
4789 	lgrp_t *lgrp)
4790 {
4791 	page_t *first_repl;
4792 	page_t *repl;
4793 	page_t *targ;
4794 	page_t *pl = NULL;
4795 	uint_t ppattr;
4796 	pfn_t   pfn, repl_pfn;
4797 	uint_t	szc;
4798 	spgcnt_t npgs, i;
4799 	int repl_contig = 0;
4800 	uint_t flags = 0;
4801 	spgcnt_t dofree = 0;
4802 
4803 	*nrelocp = 0;
4804 
4805 #if defined(__sparc)
4806 	/*
4807 	 * We need to wait till OBP has completed
4808 	 * its boot-time handoff of its resources to the kernel
4809 	 * before we allow page relocation
4810 	 */
4811 	if (page_relocate_ready == 0) {
4812 		return (EAGAIN);
4813 	}
4814 #endif
4815 
4816 	/*
4817 	 * If this is not a base page,
4818 	 * just return with 0x0 pages relocated.
4819 	 */
4820 	targ = *target;
4821 	ASSERT(PAGE_EXCL(targ));
4822 	ASSERT(!PP_ISFREE(targ));
4823 	szc = targ->p_szc;
4824 	ASSERT(szc < mmu_page_sizes);
4825 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4826 	pfn = targ->p_pagenum;
4827 	if (pfn != PFN_BASE(pfn, szc)) {
4828 		VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4829 		return (ERANGE);
4830 	}
4831 
4832 	if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4833 		repl_pfn = repl->p_pagenum;
4834 		if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4835 			VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4836 			return (ERANGE);
4837 		}
4838 		repl_contig = 1;
4839 	}
4840 
4841 	/*
4842 	 * We must lock all members of this large page or we cannot
4843 	 * relocate any part of it.
4844 	 */
4845 	if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4846 		VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4847 		return (EBUSY);
4848 	}
4849 
4850 	/*
4851 	 * reread szc it could have been decreased before
4852 	 * group_page_trylock() was done.
4853 	 */
4854 	szc = targ->p_szc;
4855 	ASSERT(szc < mmu_page_sizes);
4856 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4857 	ASSERT(pfn == PFN_BASE(pfn, szc));
4858 
4859 	npgs = page_get_pagecnt(targ->p_szc);
4860 
4861 	if (repl == NULL) {
4862 		dofree = npgs;		/* Size of target page in MMU pages */
4863 		if (!page_create_wait(dofree, 0)) {
4864 			if (grouplock != 0) {
4865 				group_page_unlock(targ);
4866 			}
4867 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4868 			return (ENOMEM);
4869 		}
4870 
4871 		/*
4872 		 * seg kmem pages require that the target and replacement
4873 		 * page be the same pagesize.
4874 		 */
4875 		flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
4876 		repl = page_get_replacement_page(targ, lgrp, flags);
4877 		if (repl == NULL) {
4878 			if (grouplock != 0) {
4879 				group_page_unlock(targ);
4880 			}
4881 			page_create_putback(dofree);
4882 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4883 			return (ENOMEM);
4884 		}
4885 	}
4886 #ifdef DEBUG
4887 	else {
4888 		ASSERT(PAGE_LOCKED(repl));
4889 	}
4890 #endif /* DEBUG */
4891 
4892 #if defined(__sparc)
4893 	/*
4894 	 * Let hat_page_relocate() complete the relocation if it's kernel page
4895 	 */
4896 	if (VN_ISKAS(targ->p_vnode)) {
4897 		*replacement = repl;
4898 		if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4899 			if (grouplock != 0) {
4900 				group_page_unlock(targ);
4901 			}
4902 			if (dofree) {
4903 				*replacement = NULL;
4904 				page_free_replacement_page(repl);
4905 				page_create_putback(dofree);
4906 			}
4907 			VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4908 			return (EAGAIN);
4909 		}
4910 		VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4911 		return (0);
4912 	}
4913 #else
4914 #if defined(lint)
4915 	dofree = dofree;
4916 #endif
4917 #endif
4918 
4919 	first_repl = repl;
4920 
4921 	for (i = 0; i < npgs; i++) {
4922 		ASSERT(PAGE_EXCL(targ));
4923 		ASSERT(targ->p_slckcnt == 0);
4924 		ASSERT(repl->p_slckcnt == 0);
4925 
4926 		(void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4927 
4928 		ASSERT(hat_page_getshare(targ) == 0);
4929 		ASSERT(!PP_ISFREE(targ));
4930 		ASSERT(targ->p_pagenum == (pfn + i));
4931 		ASSERT(repl_contig == 0 ||
4932 		    repl->p_pagenum == (repl_pfn + i));
4933 
4934 		/*
4935 		 * Copy the page contents and attributes then
4936 		 * relocate the page in the page hash.
4937 		 */
4938 		if (ppcopy(targ, repl) == 0) {
4939 			targ = *target;
4940 			repl = first_repl;
4941 			VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
4942 			if (grouplock != 0) {
4943 				group_page_unlock(targ);
4944 			}
4945 			if (dofree) {
4946 				*replacement = NULL;
4947 				page_free_replacement_page(repl);
4948 				page_create_putback(dofree);
4949 			}
4950 			return (EIO);
4951 		}
4952 
4953 		targ++;
4954 		if (repl_contig != 0) {
4955 			repl++;
4956 		} else {
4957 			repl = repl->p_next;
4958 		}
4959 	}
4960 
4961 	repl = first_repl;
4962 	targ = *target;
4963 
4964 	for (i = 0; i < npgs; i++) {
4965 		ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
4966 		page_clr_all_props(repl);
4967 		page_set_props(repl, ppattr);
4968 		page_relocate_hash(repl, targ);
4969 
4970 		ASSERT(hat_page_getshare(targ) == 0);
4971 		ASSERT(hat_page_getshare(repl) == 0);
4972 		/*
4973 		 * Now clear the props on targ, after the
4974 		 * page_relocate_hash(), they no longer
4975 		 * have any meaning.
4976 		 */
4977 		page_clr_all_props(targ);
4978 		ASSERT(targ->p_next == targ);
4979 		ASSERT(targ->p_prev == targ);
4980 		page_list_concat(&pl, &targ);
4981 
4982 		targ++;
4983 		if (repl_contig != 0) {
4984 			repl++;
4985 		} else {
4986 			repl = repl->p_next;
4987 		}
4988 	}
4989 	/* assert that we have come full circle with repl */
4990 	ASSERT(repl_contig == 1 || first_repl == repl);
4991 
4992 	*target = pl;
4993 	if (*replacement == NULL) {
4994 		ASSERT(first_repl == repl);
4995 		*replacement = repl;
4996 	}
4997 	VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4998 	*nrelocp = npgs;
4999 	return (0);
5000 }
5001 /*
5002  * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
5003  */
5004 int
5005 page_relocate(
5006 	page_t **target,
5007 	page_t **replacement,
5008 	int grouplock,
5009 	int freetarget,
5010 	spgcnt_t *nrelocp,
5011 	lgrp_t *lgrp)
5012 {
5013 	spgcnt_t ret;
5014 
5015 	/* do_page_relocate returns 0 on success or errno value */
5016 	ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
5017 
5018 	if (ret != 0 || freetarget == 0) {
5019 		return (ret);
5020 	}
5021 	if (*nrelocp == 1) {
5022 		ASSERT(*target != NULL);
5023 		page_free(*target, 1);
5024 	} else {
5025 		page_t *tpp = *target;
5026 		uint_t szc = tpp->p_szc;
5027 		pgcnt_t npgs = page_get_pagecnt(szc);
5028 		ASSERT(npgs > 1);
5029 		ASSERT(szc != 0);
5030 		do {
5031 			ASSERT(PAGE_EXCL(tpp));
5032 			ASSERT(!hat_page_is_mapped(tpp));
5033 			ASSERT(tpp->p_szc == szc);
5034 			PP_SETFREE(tpp);
5035 			PP_SETAGED(tpp);
5036 			npgs--;
5037 		} while ((tpp = tpp->p_next) != *target);
5038 		ASSERT(npgs == 0);
5039 		page_list_add_pages(*target, 0);
5040 		npgs = page_get_pagecnt(szc);
5041 		page_create_putback(npgs);
5042 	}
5043 	return (ret);
5044 }
5045 
5046 /*
5047  * it is up to the caller to deal with pcf accounting.
5048  */
5049 void
5050 page_free_replacement_page(page_t *pplist)
5051 {
5052 	page_t *pp;
5053 
5054 	while (pplist != NULL) {
5055 		/*
5056 		 * pp_targ is a linked list.
5057 		 */
5058 		pp = pplist;
5059 		if (pp->p_szc == 0) {
5060 			page_sub(&pplist, pp);
5061 			page_clr_all_props(pp);
5062 			PP_SETFREE(pp);
5063 			PP_SETAGED(pp);
5064 			page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5065 			page_unlock(pp);
5066 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5067 		} else {
5068 			spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5069 			page_t *tpp;
5070 			page_list_break(&pp, &pplist, curnpgs);
5071 			tpp = pp;
5072 			do {
5073 				ASSERT(PAGE_EXCL(tpp));
5074 				ASSERT(!hat_page_is_mapped(tpp));
5075 				page_clr_all_props(tpp);
5076 				PP_SETFREE(tpp);
5077 				PP_SETAGED(tpp);
5078 			} while ((tpp = tpp->p_next) != pp);
5079 			page_list_add_pages(pp, 0);
5080 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5081 		}
5082 	}
5083 }
5084 
5085 /*
5086  * Relocate target to non-relocatable replacement page.
5087  */
5088 int
5089 page_relocate_cage(page_t **target, page_t **replacement)
5090 {
5091 	page_t *tpp, *rpp;
5092 	spgcnt_t pgcnt, npgs;
5093 	int result;
5094 
5095 	tpp = *target;
5096 
5097 	ASSERT(PAGE_EXCL(tpp));
5098 	ASSERT(tpp->p_szc == 0);
5099 
5100 	pgcnt = btop(page_get_pagesize(tpp->p_szc));
5101 
5102 	do {
5103 		(void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5104 		rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5105 		if (rpp == NULL) {
5106 			page_create_putback(pgcnt);
5107 			kcage_cageout_wakeup();
5108 		}
5109 	} while (rpp == NULL);
5110 
5111 	ASSERT(PP_ISNORELOC(rpp));
5112 
5113 	result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5114 
5115 	if (result == 0) {
5116 		*replacement = rpp;
5117 		if (pgcnt != npgs)
5118 			panic("page_relocate_cage: partial relocation");
5119 	}
5120 
5121 	return (result);
5122 }
5123 
5124 /*
5125  * Release the page lock on a page, place on cachelist
5126  * tail if no longer mapped. Caller can let us know if
5127  * the page is known to be clean.
5128  */
5129 int
5130 page_release(page_t *pp, int checkmod)
5131 {
5132 	int status;
5133 
5134 	ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5135 	    (pp->p_vnode != NULL));
5136 
5137 	if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5138 	    ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5139 	    pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5140 	    !hat_page_is_mapped(pp)) {
5141 
5142 		/*
5143 		 * If page is modified, unlock it
5144 		 *
5145 		 * (p_nrm & P_MOD) bit has the latest stuff because:
5146 		 * (1) We found that this page doesn't have any mappings
5147 		 *	_after_ holding SE_EXCL and
5148 		 * (2) We didn't drop SE_EXCL lock after the check in (1)
5149 		 */
5150 		if (checkmod && hat_ismod(pp)) {
5151 			page_unlock(pp);
5152 			status = PGREL_MOD;
5153 		} else {
5154 			/*LINTED: constant in conditional context*/
5155 			VN_DISPOSE(pp, B_FREE, 0, kcred);
5156 			status = PGREL_CLEAN;
5157 		}
5158 	} else {
5159 		page_unlock(pp);
5160 		status = PGREL_NOTREL;
5161 	}
5162 	return (status);
5163 }
5164 
5165 /*
5166  * Given a constituent page, try to demote the large page on the freelist.
5167  *
5168  * Returns nonzero if the page could be demoted successfully. Returns with
5169  * the constituent page still locked.
5170  */
5171 int
5172 page_try_demote_free_pages(page_t *pp)
5173 {
5174 	page_t *rootpp = pp;
5175 	pfn_t	pfn = page_pptonum(pp);
5176 	spgcnt_t npgs;
5177 	uint_t	szc = pp->p_szc;
5178 
5179 	ASSERT(PP_ISFREE(pp));
5180 	ASSERT(PAGE_EXCL(pp));
5181 
5182 	/*
5183 	 * Adjust rootpp and lock it, if `pp' is not the base
5184 	 * constituent page.
5185 	 */
5186 	npgs = page_get_pagecnt(pp->p_szc);
5187 	if (npgs == 1) {
5188 		return (0);
5189 	}
5190 
5191 	if (!IS_P2ALIGNED(pfn, npgs)) {
5192 		pfn = P2ALIGN(pfn, npgs);
5193 		rootpp = page_numtopp_nolock(pfn);
5194 	}
5195 
5196 	if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5197 		return (0);
5198 	}
5199 
5200 	if (rootpp->p_szc != szc) {
5201 		if (pp != rootpp)
5202 			page_unlock(rootpp);
5203 		return (0);
5204 	}
5205 
5206 	page_demote_free_pages(rootpp);
5207 
5208 	if (pp != rootpp)
5209 		page_unlock(rootpp);
5210 
5211 	ASSERT(PP_ISFREE(pp));
5212 	ASSERT(PAGE_EXCL(pp));
5213 	return (1);
5214 }
5215 
5216 /*
5217  * Given a constituent page, try to demote the large page.
5218  *
5219  * Returns nonzero if the page could be demoted successfully. Returns with
5220  * the constituent page still locked.
5221  */
5222 int
5223 page_try_demote_pages(page_t *pp)
5224 {
5225 	page_t *tpp, *rootpp = pp;
5226 	pfn_t	pfn = page_pptonum(pp);
5227 	spgcnt_t i, npgs;
5228 	uint_t	szc = pp->p_szc;
5229 	vnode_t *vp = pp->p_vnode;
5230 
5231 	ASSERT(PAGE_EXCL(pp));
5232 
5233 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5234 
5235 	if (pp->p_szc == 0) {
5236 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5237 		return (1);
5238 	}
5239 
5240 	if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
5241 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5242 		page_demote_vp_pages(pp);
5243 		ASSERT(pp->p_szc == 0);
5244 		return (1);
5245 	}
5246 
5247 	/*
5248 	 * Adjust rootpp if passed in is not the base
5249 	 * constituent page.
5250 	 */
5251 	npgs = page_get_pagecnt(pp->p_szc);
5252 	ASSERT(npgs > 1);
5253 	if (!IS_P2ALIGNED(pfn, npgs)) {
5254 		pfn = P2ALIGN(pfn, npgs);
5255 		rootpp = page_numtopp_nolock(pfn);
5256 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5257 		ASSERT(rootpp->p_vnode != NULL);
5258 		ASSERT(rootpp->p_szc == szc);
5259 	}
5260 
5261 	/*
5262 	 * We can't demote kernel pages since we can't hat_unload()
5263 	 * the mappings.
5264 	 */
5265 	if (VN_ISKAS(rootpp->p_vnode))
5266 		return (0);
5267 
5268 	/*
5269 	 * Attempt to lock all constituent pages except the page passed
5270 	 * in since it's already locked.
5271 	 */
5272 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5273 		ASSERT(!PP_ISFREE(tpp));
5274 		ASSERT(tpp->p_vnode != NULL);
5275 
5276 		if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5277 			break;
5278 		ASSERT(tpp->p_szc == rootpp->p_szc);
5279 		ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5280 	}
5281 
5282 	/*
5283 	 * If we failed to lock them all then unlock what we have
5284 	 * locked so far and bail.
5285 	 */
5286 	if (i < npgs) {
5287 		tpp = rootpp;
5288 		while (i-- > 0) {
5289 			if (tpp != pp)
5290 				page_unlock(tpp);
5291 			tpp++;
5292 		}
5293 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5294 		return (0);
5295 	}
5296 
5297 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5298 		ASSERT(PAGE_EXCL(tpp));
5299 		ASSERT(tpp->p_slckcnt == 0);
5300 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5301 		tpp->p_szc = 0;
5302 	}
5303 
5304 	/*
5305 	 * Unlock all pages except the page passed in.
5306 	 */
5307 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5308 		ASSERT(!hat_page_is_mapped(tpp));
5309 		if (tpp != pp)
5310 			page_unlock(tpp);
5311 	}
5312 
5313 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5314 	return (1);
5315 }
5316 
5317 /*
5318  * Called by page_free() and page_destroy() to demote the page size code
5319  * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5320  * p_szc on free list, neither can we just clear p_szc of a single page_t
5321  * within a large page since it will break other code that relies on p_szc
5322  * being the same for all page_t's of a large page). Anonymous pages should
5323  * never end up here because anon_map_getpages() cannot deal with p_szc
5324  * changes after a single constituent page is locked.  While anonymous or
5325  * kernel large pages are demoted or freed the entire large page at a time
5326  * with all constituent pages locked EXCL for the file system pages we
5327  * have to be able to demote a large page (i.e. decrease all constituent pages
5328  * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5329  * we can easily deal with anonymous page demotion the entire large page at a
5330  * time is that those operation originate at address space level and concern
5331  * the entire large page region with actual demotion only done when pages are
5332  * not shared with any other processes (therefore we can always get EXCL lock
5333  * on all anonymous constituent pages after clearing segment page
5334  * cache). However file system pages can be truncated or invalidated at a
5335  * PAGESIZE level from the file system side and end up in page_free() or
5336  * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5337  * and therefore pageout should be able to demote a large page by EXCL locking
5338  * any constituent page that is not under SOFTLOCK). In those cases we cannot
5339  * rely on being able to lock EXCL all constituent pages.
5340  *
5341  * To prevent szc changes on file system pages one has to lock all constituent
5342  * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5343  * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5344  * prevent szc changes is hat layer that uses its own page level mlist
5345  * locks. hat assumes that szc doesn't change after mlist lock for a page is
5346  * taken. Therefore we need to change szc under hat level locks if we only
5347  * have an EXCL lock on a single constituent page and hat still references any
5348  * of constituent pages.  (Note we can't "ignore" hat layer by simply
5349  * hat_pageunload() all constituent pages without having EXCL locks on all of
5350  * constituent pages). We use hat_page_demote() call to safely demote szc of
5351  * all constituent pages under hat locks when we only have an EXCL lock on one
5352  * of constituent pages.
5353  *
5354  * This routine calls page_szc_lock() before calling hat_page_demote() to
5355  * allow segvn in one special case not to lock all constituent pages SHARED
5356  * before calling hat_memload_array() that relies on p_szc not changing even
5357  * before hat level mlist lock is taken.  In that case segvn uses
5358  * page_szc_lock() to prevent hat_page_demote() changing p_szc values.
5359  *
5360  * Anonymous or kernel page demotion still has to lock all pages exclusively
5361  * and do hat_pageunload() on all constituent pages before demoting the page
5362  * therefore there's no need for anonymous or kernel page demotion to use
5363  * hat_page_demote() mechanism.
5364  *
5365  * hat_page_demote() removes all large mappings that map pp and then decreases
5366  * p_szc starting from the last constituent page of the large page. By working
5367  * from the tail of a large page in pfn decreasing order allows one looking at
5368  * the root page to know that hat_page_demote() is done for root's szc area.
5369  * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5370  * pages within szc 1 area to prevent szc changes because hat_page_demote()
5371  * that started on this page when it had szc > 1 is done for this szc 1 area.
5372  *
5373  * We are guaranteed that all constituent pages of pp's large page belong to
5374  * the same vnode with the consecutive offsets increasing in the direction of
5375  * the pfn i.e. the identity of constituent pages can't change until their
5376  * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5377  * large mappings to pp even though we don't lock any constituent page except
5378  * pp (i.e. we won't unload e.g. kernel locked page).
5379  */
5380 static void
5381 page_demote_vp_pages(page_t *pp)
5382 {
5383 	kmutex_t *mtx;
5384 
5385 	ASSERT(PAGE_EXCL(pp));
5386 	ASSERT(!PP_ISFREE(pp));
5387 	ASSERT(pp->p_vnode != NULL);
5388 	ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5389 	ASSERT(!PP_ISKAS(pp));
5390 
5391 	VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5392 
5393 	mtx = page_szc_lock(pp);
5394 	if (mtx != NULL) {
5395 		hat_page_demote(pp);
5396 		mutex_exit(mtx);
5397 	}
5398 	ASSERT(pp->p_szc == 0);
5399 }
5400 
5401 /*
5402  * Mark any existing pages for migration in the given range
5403  */
5404 void
5405 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5406     struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5407     u_offset_t vnoff, int rflag)
5408 {
5409 	struct anon	*ap;
5410 	vnode_t		*curvp;
5411 	lgrp_t		*from;
5412 	pgcnt_t		nlocked;
5413 	u_offset_t	off;
5414 	pfn_t		pfn;
5415 	size_t		pgsz;
5416 	size_t		segpgsz;
5417 	pgcnt_t		pages;
5418 	uint_t		pszc;
5419 	page_t		*pp0, *pp;
5420 	caddr_t		va;
5421 	ulong_t		an_idx;
5422 	anon_sync_obj_t	cookie;
5423 
5424 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5425 
5426 	/*
5427 	 * Don't do anything if don't need to do lgroup optimizations
5428 	 * on this system
5429 	 */
5430 	if (!lgrp_optimizations())
5431 		return;
5432 
5433 	/*
5434 	 * Align address and length to (potentially large) page boundary
5435 	 */
5436 	segpgsz = page_get_pagesize(seg->s_szc);
5437 	addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5438 	if (rflag)
5439 		len = P2ROUNDUP(len, segpgsz);
5440 
5441 	/*
5442 	 * Do one (large) page at a time
5443 	 */
5444 	va = addr;
5445 	while (va < addr + len) {
5446 		/*
5447 		 * Lookup (root) page for vnode and offset corresponding to
5448 		 * this virtual address
5449 		 * Try anonmap first since there may be copy-on-write
5450 		 * pages, but initialize vnode pointer and offset using
5451 		 * vnode arguments just in case there isn't an amp.
5452 		 */
5453 		curvp = vp;
5454 		off = vnoff + va - seg->s_base;
5455 		if (amp) {
5456 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5457 			an_idx = anon_index + seg_page(seg, va);
5458 			anon_array_enter(amp, an_idx, &cookie);
5459 			ap = anon_get_ptr(amp->ahp, an_idx);
5460 			if (ap)
5461 				swap_xlate(ap, &curvp, &off);
5462 			anon_array_exit(&cookie);
5463 			ANON_LOCK_EXIT(&amp->a_rwlock);
5464 		}
5465 
5466 		pp = NULL;
5467 		if (curvp)
5468 			pp = page_lookup(curvp, off, SE_SHARED);
5469 
5470 		/*
5471 		 * If there isn't a page at this virtual address,
5472 		 * skip to next page
5473 		 */
5474 		if (pp == NULL) {
5475 			va += PAGESIZE;
5476 			continue;
5477 		}
5478 
5479 		/*
5480 		 * Figure out which lgroup this page is in for kstats
5481 		 */
5482 		pfn = page_pptonum(pp);
5483 		from = lgrp_pfn_to_lgrp(pfn);
5484 
5485 		/*
5486 		 * Get page size, and round up and skip to next page boundary
5487 		 * if unaligned address
5488 		 */
5489 		pszc = pp->p_szc;
5490 		pgsz = page_get_pagesize(pszc);
5491 		pages = btop(pgsz);
5492 		if (!IS_P2ALIGNED(va, pgsz) ||
5493 		    !IS_P2ALIGNED(pfn, pages) ||
5494 		    pgsz > segpgsz) {
5495 			pgsz = MIN(pgsz, segpgsz);
5496 			page_unlock(pp);
5497 			pages = btop(P2END((uintptr_t)va, pgsz) -
5498 			    (uintptr_t)va);
5499 			va = (caddr_t)P2END((uintptr_t)va, pgsz);
5500 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, pages);
5501 			continue;
5502 		}
5503 
5504 		/*
5505 		 * Upgrade to exclusive lock on page
5506 		 */
5507 		if (!page_tryupgrade(pp)) {
5508 			page_unlock(pp);
5509 			va += pgsz;
5510 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5511 			    btop(pgsz));
5512 			continue;
5513 		}
5514 
5515 		pp0 = pp++;
5516 		nlocked = 1;
5517 
5518 		/*
5519 		 * Lock constituent pages if this is large page
5520 		 */
5521 		if (pages > 1) {
5522 			/*
5523 			 * Lock all constituents except root page, since it
5524 			 * should be locked already.
5525 			 */
5526 			for (; nlocked < pages; nlocked++) {
5527 				if (!page_trylock(pp, SE_EXCL)) {
5528 					break;
5529 				}
5530 				if (PP_ISFREE(pp) ||
5531 				    pp->p_szc != pszc) {
5532 					/*
5533 					 * hat_page_demote() raced in with us.
5534 					 */
5535 					ASSERT(!IS_SWAPFSVP(curvp));
5536 					page_unlock(pp);
5537 					break;
5538 				}
5539 				pp++;
5540 			}
5541 		}
5542 
5543 		/*
5544 		 * If all constituent pages couldn't be locked,
5545 		 * unlock pages locked so far and skip to next page.
5546 		 */
5547 		if (nlocked < pages) {
5548 			while (pp0 < pp) {
5549 				page_unlock(pp0++);
5550 			}
5551 			va += pgsz;
5552 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5553 			    btop(pgsz));
5554 			continue;
5555 		}
5556 
5557 		/*
5558 		 * hat_page_demote() can no longer happen
5559 		 * since last cons page had the right p_szc after
5560 		 * all cons pages were locked. all cons pages
5561 		 * should now have the same p_szc.
5562 		 */
5563 
5564 		/*
5565 		 * All constituent pages locked successfully, so mark
5566 		 * large page for migration and unload the mappings of
5567 		 * constituent pages, so a fault will occur on any part of the
5568 		 * large page
5569 		 */
5570 		PP_SETMIGRATE(pp0);
5571 		while (pp0 < pp) {
5572 			(void) hat_pageunload(pp0, HAT_FORCE_PGUNLOAD);
5573 			ASSERT(hat_page_getshare(pp0) == 0);
5574 			page_unlock(pp0++);
5575 		}
5576 		lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5577 
5578 		va += pgsz;
5579 	}
5580 }
5581 
5582 /*
5583  * Migrate any pages that have been marked for migration in the given range
5584  */
5585 void
5586 page_migrate(
5587 	struct seg	*seg,
5588 	caddr_t		addr,
5589 	page_t		**ppa,
5590 	pgcnt_t		npages)
5591 {
5592 	lgrp_t		*from;
5593 	lgrp_t		*to;
5594 	page_t		*newpp;
5595 	page_t		*pp;
5596 	pfn_t		pfn;
5597 	size_t		pgsz;
5598 	spgcnt_t	page_cnt;
5599 	spgcnt_t	i;
5600 	uint_t		pszc;
5601 
5602 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5603 
5604 	while (npages > 0) {
5605 		pp = *ppa;
5606 		pszc = pp->p_szc;
5607 		pgsz = page_get_pagesize(pszc);
5608 		page_cnt = btop(pgsz);
5609 
5610 		/*
5611 		 * Check to see whether this page is marked for migration
5612 		 *
5613 		 * Assume that root page of large page is marked for
5614 		 * migration and none of the other constituent pages
5615 		 * are marked.  This really simplifies clearing the
5616 		 * migrate bit by not having to clear it from each
5617 		 * constituent page.
5618 		 *
5619 		 * note we don't want to relocate an entire large page if
5620 		 * someone is only using one subpage.
5621 		 */
5622 		if (npages < page_cnt)
5623 			break;
5624 
5625 		/*
5626 		 * Is it marked for migration?
5627 		 */
5628 		if (!PP_ISMIGRATE(pp))
5629 			goto next;
5630 
5631 		/*
5632 		 * Determine lgroups that page is being migrated between
5633 		 */
5634 		pfn = page_pptonum(pp);
5635 		if (!IS_P2ALIGNED(pfn, page_cnt)) {
5636 			break;
5637 		}
5638 		from = lgrp_pfn_to_lgrp(pfn);
5639 		to = lgrp_mem_choose(seg, addr, pgsz);
5640 
5641 		/*
5642 		 * Need to get exclusive lock's to migrate
5643 		 */
5644 		for (i = 0; i < page_cnt; i++) {
5645 			ASSERT(PAGE_LOCKED(ppa[i]));
5646 			if (page_pptonum(ppa[i]) != pfn + i ||
5647 			    ppa[i]->p_szc != pszc) {
5648 				break;
5649 			}
5650 			if (!page_tryupgrade(ppa[i])) {
5651 				lgrp_stat_add(from->lgrp_id,
5652 				    LGRP_PM_FAIL_LOCK_PGS,
5653 				    page_cnt);
5654 				break;
5655 			}
5656 
5657 			/*
5658 			 * Check to see whether we are trying to migrate
5659 			 * page to lgroup where it is allocated already.
5660 			 * If so, clear the migrate bit and skip to next
5661 			 * page.
5662 			 */
5663 			if (i == 0 && to == from) {
5664 				PP_CLRMIGRATE(ppa[0]);
5665 				page_downgrade(ppa[0]);
5666 				goto next;
5667 			}
5668 		}
5669 
5670 		/*
5671 		 * If all constituent pages couldn't be locked,
5672 		 * unlock pages locked so far and skip to next page.
5673 		 */
5674 		if (i != page_cnt) {
5675 			while (--i != -1) {
5676 				page_downgrade(ppa[i]);
5677 			}
5678 			goto next;
5679 		}
5680 
5681 		(void) page_create_wait(page_cnt, PG_WAIT);
5682 		newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5683 		if (newpp == NULL) {
5684 			page_create_putback(page_cnt);
5685 			for (i = 0; i < page_cnt; i++) {
5686 				page_downgrade(ppa[i]);
5687 			}
5688 			lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5689 			    page_cnt);
5690 			goto next;
5691 		}
5692 		ASSERT(newpp->p_szc == pszc);
5693 		/*
5694 		 * Clear migrate bit and relocate page
5695 		 */
5696 		PP_CLRMIGRATE(pp);
5697 		if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5698 			panic("page_migrate: page_relocate failed");
5699 		}
5700 		ASSERT(page_cnt * PAGESIZE == pgsz);
5701 
5702 		/*
5703 		 * Keep stats for number of pages migrated from and to
5704 		 * each lgroup
5705 		 */
5706 		lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5707 		lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5708 		/*
5709 		 * update the page_t array we were passed in and
5710 		 * unlink constituent pages of a large page.
5711 		 */
5712 		for (i = 0; i < page_cnt; ++i, ++pp) {
5713 			ASSERT(PAGE_EXCL(newpp));
5714 			ASSERT(newpp->p_szc == pszc);
5715 			ppa[i] = newpp;
5716 			pp = newpp;
5717 			page_sub(&newpp, pp);
5718 			page_downgrade(pp);
5719 		}
5720 		ASSERT(newpp == NULL);
5721 next:
5722 		addr += pgsz;
5723 		ppa += page_cnt;
5724 		npages -= page_cnt;
5725 	}
5726 }
5727 
5728 uint_t page_reclaim_maxcnt = 60; /* max total iterations */
5729 uint_t page_reclaim_nofree_maxcnt = 3; /* max iterations without progress */
5730 /*
5731  * Reclaim/reserve availrmem for npages.
5732  * If there is not enough memory start reaping seg, kmem caches.
5733  * Start pageout scanner (via page_needfree()).
5734  * Exit after ~ MAX_CNT s regardless of how much memory has been released.
5735  * Note: There is no guarantee that any availrmem will be freed as
5736  * this memory typically is locked (kernel heap) or reserved for swap.
5737  * Also due to memory fragmentation kmem allocator may not be able
5738  * to free any memory (single user allocated buffer will prevent
5739  * freeing slab or a page).
5740  */
5741 int
5742 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust)
5743 {
5744 	int	i = 0;
5745 	int	i_nofree = 0;
5746 	int	ret = 0;
5747 	pgcnt_t	deficit;
5748 	pgcnt_t old_availrmem = 0;
5749 
5750 	mutex_enter(&freemem_lock);
5751 	while (availrmem < tune.t_minarmem + npages + epages &&
5752 	    i++ < page_reclaim_maxcnt) {
5753 		/* ensure we made some progress in the last few iterations */
5754 		if (old_availrmem < availrmem) {
5755 			old_availrmem = availrmem;
5756 			i_nofree = 0;
5757 		} else if (i_nofree++ >= page_reclaim_nofree_maxcnt) {
5758 			break;
5759 		}
5760 
5761 		deficit = tune.t_minarmem + npages + epages - availrmem;
5762 		mutex_exit(&freemem_lock);
5763 		page_needfree(deficit);
5764 		kmem_reap();
5765 		delay(hz);
5766 		page_needfree(-(spgcnt_t)deficit);
5767 		mutex_enter(&freemem_lock);
5768 	}
5769 
5770 	if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
5771 		availrmem -= npages;
5772 		ret = 1;
5773 	}
5774 
5775 	mutex_exit(&freemem_lock);
5776 
5777 	return (ret);
5778 }
5779 
5780 /*
5781  * Search the memory segments to locate the desired page.  Within a
5782  * segment, pages increase linearly with one page structure per
5783  * physical page frame (size PAGESIZE).  The search begins
5784  * with the segment that was accessed last, to take advantage of locality.
5785  * If the hint misses, we start from the beginning of the sorted memseg list
5786  */
5787 
5788 
5789 /*
5790  * Some data structures for pfn to pp lookup.
5791  */
5792 ulong_t mhash_per_slot;
5793 struct memseg *memseg_hash[N_MEM_SLOTS];
5794 
5795 page_t *
5796 page_numtopp_nolock(pfn_t pfnum)
5797 {
5798 	struct memseg *seg;
5799 	page_t *pp;
5800 	vm_cpu_data_t *vc;
5801 
5802 	/*
5803 	 * We need to disable kernel preemption while referencing the
5804 	 * cpu_vm_data field in order to prevent us from being switched to
5805 	 * another cpu and trying to reference it after it has been freed.
5806 	 * This will keep us on cpu and prevent it from being removed while
5807 	 * we are still on it.
5808 	 *
5809 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5810 	 * which is being resued by DR who will flush those references
5811 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5812 	 */
5813 	kpreempt_disable();
5814 	vc = CPU->cpu_vm_data;
5815 	ASSERT(vc != NULL);
5816 
5817 	MEMSEG_STAT_INCR(nsearch);
5818 
5819 	/* Try last winner first */
5820 	if (((seg = vc->vc_pnum_memseg) != NULL) &&
5821 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5822 		MEMSEG_STAT_INCR(nlastwon);
5823 		pp = seg->pages + (pfnum - seg->pages_base);
5824 		if (pp->p_pagenum == pfnum) {
5825 			kpreempt_enable();
5826 			return ((page_t *)pp);
5827 		}
5828 	}
5829 
5830 	/* Else Try hash */
5831 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5832 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5833 		MEMSEG_STAT_INCR(nhashwon);
5834 		vc->vc_pnum_memseg = seg;
5835 		pp = seg->pages + (pfnum - seg->pages_base);
5836 		if (pp->p_pagenum == pfnum) {
5837 			kpreempt_enable();
5838 			return ((page_t *)pp);
5839 		}
5840 	}
5841 
5842 	/* Else Brute force */
5843 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5844 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5845 			vc->vc_pnum_memseg = seg;
5846 			pp = seg->pages + (pfnum - seg->pages_base);
5847 			if (pp->p_pagenum == pfnum) {
5848 				kpreempt_enable();
5849 				return ((page_t *)pp);
5850 			}
5851 		}
5852 	}
5853 	vc->vc_pnum_memseg = NULL;
5854 	kpreempt_enable();
5855 	MEMSEG_STAT_INCR(nnotfound);
5856 	return ((page_t *)NULL);
5857 
5858 }
5859 
5860 struct memseg *
5861 page_numtomemseg_nolock(pfn_t pfnum)
5862 {
5863 	struct memseg *seg;
5864 	page_t *pp;
5865 
5866 	/*
5867 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5868 	 * which is being resued by DR who will flush those references
5869 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5870 	 */
5871 	kpreempt_disable();
5872 	/* Try hash */
5873 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5874 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5875 		pp = seg->pages + (pfnum - seg->pages_base);
5876 		if (pp->p_pagenum == pfnum) {
5877 			kpreempt_enable();
5878 			return (seg);
5879 		}
5880 	}
5881 
5882 	/* Else Brute force */
5883 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5884 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5885 			pp = seg->pages + (pfnum - seg->pages_base);
5886 			if (pp->p_pagenum == pfnum) {
5887 				kpreempt_enable();
5888 				return (seg);
5889 			}
5890 		}
5891 	}
5892 	kpreempt_enable();
5893 	return ((struct memseg *)NULL);
5894 }
5895 
5896 /*
5897  * Given a page and a count return the page struct that is
5898  * n structs away from the current one in the global page
5899  * list.
5900  *
5901  * This function wraps to the first page upon
5902  * reaching the end of the memseg list.
5903  */
5904 page_t *
5905 page_nextn(page_t *pp, ulong_t n)
5906 {
5907 	struct memseg *seg;
5908 	page_t *ppn;
5909 	vm_cpu_data_t *vc;
5910 
5911 	/*
5912 	 * We need to disable kernel preemption while referencing the
5913 	 * cpu_vm_data field in order to prevent us from being switched to
5914 	 * another cpu and trying to reference it after it has been freed.
5915 	 * This will keep us on cpu and prevent it from being removed while
5916 	 * we are still on it.
5917 	 *
5918 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5919 	 * which is being resued by DR who will flush those references
5920 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5921 	 */
5922 	kpreempt_disable();
5923 	vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5924 
5925 	ASSERT(vc != NULL);
5926 
5927 	if (((seg = vc->vc_pnext_memseg) == NULL) ||
5928 	    (seg->pages_base == seg->pages_end) ||
5929 	    !(pp >= seg->pages && pp < seg->epages)) {
5930 
5931 		for (seg = memsegs; seg; seg = seg->next) {
5932 			if (pp >= seg->pages && pp < seg->epages)
5933 				break;
5934 		}
5935 
5936 		if (seg == NULL) {
5937 			/* Memory delete got in, return something valid. */
5938 			/* TODO: fix me. */
5939 			seg = memsegs;
5940 			pp = seg->pages;
5941 		}
5942 	}
5943 
5944 	/* check for wraparound - possible if n is large */
5945 	while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
5946 		n -= seg->epages - pp;
5947 		seg = seg->next;
5948 		if (seg == NULL)
5949 			seg = memsegs;
5950 		pp = seg->pages;
5951 	}
5952 	vc->vc_pnext_memseg = seg;
5953 	kpreempt_enable();
5954 	return (ppn);
5955 }
5956 
5957 /*
5958  * Initialize for a loop using page_next_scan_large().
5959  */
5960 page_t *
5961 page_next_scan_init(void **cookie)
5962 {
5963 	ASSERT(cookie != NULL);
5964 	*cookie = (void *)memsegs;
5965 	return ((page_t *)memsegs->pages);
5966 }
5967 
5968 /*
5969  * Return the next page in a scan of page_t's, assuming we want
5970  * to skip over sub-pages within larger page sizes.
5971  *
5972  * The cookie is used to keep track of the current memseg.
5973  */
5974 page_t *
5975 page_next_scan_large(
5976 	page_t		*pp,
5977 	ulong_t		*n,
5978 	void		**cookie)
5979 {
5980 	struct memseg	*seg = (struct memseg *)*cookie;
5981 	page_t		*new_pp;
5982 	ulong_t		cnt;
5983 	pfn_t		pfn;
5984 
5985 
5986 	/*
5987 	 * get the count of page_t's to skip based on the page size
5988 	 */
5989 	ASSERT(pp != NULL);
5990 	if (pp->p_szc == 0) {
5991 		cnt = 1;
5992 	} else {
5993 		pfn = page_pptonum(pp);
5994 		cnt = page_get_pagecnt(pp->p_szc);
5995 		cnt -= pfn & (cnt - 1);
5996 	}
5997 	*n += cnt;
5998 	new_pp = pp + cnt;
5999 
6000 	/*
6001 	 * Catch if we went past the end of the current memory segment. If so,
6002 	 * just move to the next segment with pages.
6003 	 */
6004 	if (new_pp >= seg->epages || seg->pages_base == seg->pages_end) {
6005 		do {
6006 			seg = seg->next;
6007 			if (seg == NULL)
6008 				seg = memsegs;
6009 		} while (seg->pages_base == seg->pages_end);
6010 		new_pp = seg->pages;
6011 		*cookie = (void *)seg;
6012 	}
6013 
6014 	return (new_pp);
6015 }
6016 
6017 
6018 /*
6019  * Returns next page in list. Note: this function wraps
6020  * to the first page in the list upon reaching the end
6021  * of the list. Callers should be aware of this fact.
6022  */
6023 
6024 /* We should change this be a #define */
6025 
6026 page_t *
6027 page_next(page_t *pp)
6028 {
6029 	return (page_nextn(pp, 1));
6030 }
6031 
6032 page_t *
6033 page_first()
6034 {
6035 	return ((page_t *)memsegs->pages);
6036 }
6037 
6038 
6039 /*
6040  * This routine is called at boot with the initial memory configuration
6041  * and when memory is added or removed.
6042  */
6043 void
6044 build_pfn_hash()
6045 {
6046 	pfn_t cur;
6047 	pgcnt_t index;
6048 	struct memseg *pseg;
6049 	int	i;
6050 
6051 	/*
6052 	 * Clear memseg_hash array.
6053 	 * Since memory add/delete is designed to operate concurrently
6054 	 * with normal operation, the hash rebuild must be able to run
6055 	 * concurrently with page_numtopp_nolock(). To support this
6056 	 * functionality, assignments to memseg_hash array members must
6057 	 * be done atomically.
6058 	 *
6059 	 * NOTE: bzero() does not currently guarantee this for kernel
6060 	 * threads, and cannot be used here.
6061 	 */
6062 	for (i = 0; i < N_MEM_SLOTS; i++)
6063 		memseg_hash[i] = NULL;
6064 
6065 	hat_kpm_mseghash_clear(N_MEM_SLOTS);
6066 
6067 	/*
6068 	 * Physmax is the last valid pfn.
6069 	 */
6070 	mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6071 	for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6072 		index = MEMSEG_PFN_HASH(pseg->pages_base);
6073 		cur = pseg->pages_base;
6074 		do {
6075 			if (index >= N_MEM_SLOTS)
6076 				index = MEMSEG_PFN_HASH(cur);
6077 
6078 			if (memseg_hash[index] == NULL ||
6079 			    memseg_hash[index]->pages_base > pseg->pages_base) {
6080 				memseg_hash[index] = pseg;
6081 				hat_kpm_mseghash_update(index, pseg);
6082 			}
6083 			cur += mhash_per_slot;
6084 			index++;
6085 		} while (cur < pseg->pages_end);
6086 	}
6087 }
6088 
6089 /*
6090  * Return the pagenum for the pp
6091  */
6092 pfn_t
6093 page_pptonum(page_t *pp)
6094 {
6095 	return (pp->p_pagenum);
6096 }
6097 
6098 /*
6099  * interface to the referenced and modified etc bits
6100  * in the PSM part of the page struct
6101  * when no locking is desired.
6102  */
6103 void
6104 page_set_props(page_t *pp, uint_t flags)
6105 {
6106 	ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6107 	pp->p_nrm |= (uchar_t)flags;
6108 }
6109 
6110 void
6111 page_clr_all_props(page_t *pp)
6112 {
6113 	pp->p_nrm = 0;
6114 }
6115 
6116 /*
6117  * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6118  */
6119 int
6120 page_clear_lck_cow(page_t *pp, int adjust)
6121 {
6122 	int	f_amount;
6123 
6124 	ASSERT(PAGE_EXCL(pp));
6125 
6126 	/*
6127 	 * The page_struct_lock need not be acquired here since
6128 	 * we require the caller hold the page exclusively locked.
6129 	 */
6130 	f_amount = 0;
6131 	if (pp->p_lckcnt) {
6132 		f_amount = 1;
6133 		pp->p_lckcnt = 0;
6134 	}
6135 	if (pp->p_cowcnt) {
6136 		f_amount += pp->p_cowcnt;
6137 		pp->p_cowcnt = 0;
6138 	}
6139 
6140 	if (adjust && f_amount) {
6141 		mutex_enter(&freemem_lock);
6142 		availrmem += f_amount;
6143 		mutex_exit(&freemem_lock);
6144 	}
6145 
6146 	return (f_amount);
6147 }
6148 
6149 /*
6150  * The following functions is called from free_vp_pages()
6151  * for an inexact estimate of a newly free'd page...
6152  */
6153 ulong_t
6154 page_share_cnt(page_t *pp)
6155 {
6156 	return (hat_page_getshare(pp));
6157 }
6158 
6159 int
6160 page_isshared(page_t *pp)
6161 {
6162 	return (hat_page_checkshare(pp, 1));
6163 }
6164 
6165 int
6166 page_isfree(page_t *pp)
6167 {
6168 	return (PP_ISFREE(pp));
6169 }
6170 
6171 int
6172 page_isref(page_t *pp)
6173 {
6174 	return (hat_page_getattr(pp, P_REF));
6175 }
6176 
6177 int
6178 page_ismod(page_t *pp)
6179 {
6180 	return (hat_page_getattr(pp, P_MOD));
6181 }
6182 
6183 /*
6184  * The following code all currently relates to the page capture logic:
6185  *
6186  * This logic is used for cases where there is a desire to claim a certain
6187  * physical page in the system for the caller.  As it may not be possible
6188  * to capture the page immediately, the p_toxic bits are used in the page
6189  * structure to indicate that someone wants to capture this page.  When the
6190  * page gets unlocked, the toxic flag will be noted and an attempt to capture
6191  * the page will be made.  If it is successful, the original callers callback
6192  * will be called with the page to do with it what they please.
6193  *
6194  * There is also an async thread which wakes up to attempt to capture
6195  * pages occasionally which have the capture bit set.  All of the pages which
6196  * need to be captured asynchronously have been inserted into the
6197  * page_capture_hash and thus this thread walks that hash list.  Items in the
6198  * hash have an expiration time so this thread handles that as well by removing
6199  * the item from the hash if it has expired.
6200  *
6201  * Some important things to note are:
6202  * - if the PR_CAPTURE bit is set on a page, then the page is in the
6203  *   page_capture_hash.  The page_capture_hash_head.pchh_mutex is needed
6204  *   to set and clear this bit, and while the lock is held is the only time
6205  *   you can add or remove an entry from the hash.
6206  * - the PR_CAPTURE bit can only be set and cleared while holding the
6207  *   page_capture_hash_head.pchh_mutex
6208  * - the t_flag field of the thread struct is used with the T_CAPTURING
6209  *   flag to prevent recursion while dealing with large pages.
6210  * - pages which need to be retired never expire on the page_capture_hash.
6211  */
6212 
6213 static void page_capture_thread(void);
6214 static kthread_t *pc_thread_id;
6215 kcondvar_t pc_cv;
6216 static kmutex_t pc_thread_mutex;
6217 static clock_t pc_thread_shortwait;
6218 static clock_t pc_thread_longwait;
6219 static int pc_thread_retry;
6220 
6221 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
6222 
6223 /* Note that this is a circular linked list */
6224 typedef struct page_capture_hash_bucket {
6225 	page_t *pp;
6226 	uchar_t szc;
6227 	uchar_t pri;
6228 	uint_t flags;
6229 	clock_t expires;	/* lbolt at which this request expires. */
6230 	void *datap;		/* Cached data passed in for callback */
6231 	struct page_capture_hash_bucket *next;
6232 	struct page_capture_hash_bucket *prev;
6233 } page_capture_hash_bucket_t;
6234 
6235 #define	PC_PRI_HI	0	/* capture now */
6236 #define	PC_PRI_LO	1	/* capture later */
6237 #define	PC_NUM_PRI	2
6238 
6239 #define	PAGE_CAPTURE_PRIO(pp) (PP_ISRAF(pp) ? PC_PRI_LO : PC_PRI_HI)
6240 
6241 
6242 /*
6243  * Each hash bucket will have it's own mutex and two lists which are:
6244  * active (0):	represents requests which have not been processed by
6245  *		the page_capture async thread yet.
6246  * walked (1):	represents requests which have been processed by the
6247  *		page_capture async thread within it's given walk of this bucket.
6248  *
6249  * These are all needed so that we can synchronize all async page_capture
6250  * events.  When the async thread moves to a new bucket, it will append the
6251  * walked list to the active list and walk each item one at a time, moving it
6252  * from the active list to the walked list.  Thus if there is an async request
6253  * outstanding for a given page, it will always be in one of the two lists.
6254  * New requests will always be added to the active list.
6255  * If we were not able to capture a page before the request expired, we'd free
6256  * up the request structure which would indicate to page_capture that there is
6257  * no longer a need for the given page, and clear the PR_CAPTURE flag if
6258  * possible.
6259  */
6260 typedef struct page_capture_hash_head {
6261 	kmutex_t pchh_mutex;
6262 	uint_t num_pages[PC_NUM_PRI];
6263 	page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
6264 } page_capture_hash_head_t;
6265 
6266 #ifdef DEBUG
6267 #define	NUM_PAGE_CAPTURE_BUCKETS 4
6268 #else
6269 #define	NUM_PAGE_CAPTURE_BUCKETS 64
6270 #endif
6271 
6272 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
6273 
6274 /* for now use a very simple hash based upon the size of a page struct */
6275 #define	PAGE_CAPTURE_HASH(pp)	\
6276 	((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
6277 
6278 extern pgcnt_t swapfs_minfree;
6279 
6280 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
6281 
6282 /*
6283  * a callback function is required for page capture requests.
6284  */
6285 void
6286 page_capture_register_callback(uint_t index, clock_t duration,
6287     int (*cb_func)(page_t *, void *, uint_t))
6288 {
6289 	ASSERT(pc_cb[index].cb_active == 0);
6290 	ASSERT(cb_func != NULL);
6291 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6292 	pc_cb[index].duration = duration;
6293 	pc_cb[index].cb_func = cb_func;
6294 	pc_cb[index].cb_active = 1;
6295 	rw_exit(&pc_cb[index].cb_rwlock);
6296 }
6297 
6298 void
6299 page_capture_unregister_callback(uint_t index)
6300 {
6301 	int i, j;
6302 	struct page_capture_hash_bucket *bp1;
6303 	struct page_capture_hash_bucket *bp2;
6304 	struct page_capture_hash_bucket *head = NULL;
6305 	uint_t flags = (1 << index);
6306 
6307 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6308 	ASSERT(pc_cb[index].cb_active == 1);
6309 	pc_cb[index].duration = 0;	/* Paranoia */
6310 	pc_cb[index].cb_func = NULL;	/* Paranoia */
6311 	pc_cb[index].cb_active = 0;
6312 	rw_exit(&pc_cb[index].cb_rwlock);
6313 
6314 	/*
6315 	 * Just move all the entries to a private list which we can walk
6316 	 * through without the need to hold any locks.
6317 	 * No more requests can get added to the hash lists for this consumer
6318 	 * as the cb_active field for the callback has been cleared.
6319 	 */
6320 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6321 		mutex_enter(&page_capture_hash[i].pchh_mutex);
6322 		for (j = 0; j < 2; j++) {
6323 			bp1 = page_capture_hash[i].lists[j].next;
6324 			/* walk through all but first (sentinel) element */
6325 			while (bp1 != &page_capture_hash[i].lists[j]) {
6326 				bp2 = bp1;
6327 				if (bp2->flags & flags) {
6328 					bp1 = bp2->next;
6329 					bp1->prev = bp2->prev;
6330 					bp2->prev->next = bp1;
6331 					bp2->next = head;
6332 					head = bp2;
6333 					/*
6334 					 * Clear the PR_CAPTURE bit as we
6335 					 * hold appropriate locks here.
6336 					 */
6337 					page_clrtoxic(head->pp, PR_CAPTURE);
6338 					page_capture_hash[i].
6339 					    num_pages[bp2->pri]--;
6340 					continue;
6341 				}
6342 				bp1 = bp1->next;
6343 			}
6344 		}
6345 		mutex_exit(&page_capture_hash[i].pchh_mutex);
6346 	}
6347 
6348 	while (head != NULL) {
6349 		bp1 = head;
6350 		head = head->next;
6351 		kmem_free(bp1, sizeof (*bp1));
6352 	}
6353 }
6354 
6355 
6356 /*
6357  * Find pp in the active list and move it to the walked list if it
6358  * exists.
6359  * Note that most often pp should be at the front of the active list
6360  * as it is currently used and thus there is no other sort of optimization
6361  * being done here as this is a linked list data structure.
6362  * Returns 1 on successful move or 0 if page could not be found.
6363  */
6364 static int
6365 page_capture_move_to_walked(page_t *pp)
6366 {
6367 	page_capture_hash_bucket_t *bp;
6368 	int index;
6369 
6370 	index = PAGE_CAPTURE_HASH(pp);
6371 
6372 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6373 	bp = page_capture_hash[index].lists[0].next;
6374 	while (bp != &page_capture_hash[index].lists[0]) {
6375 		if (bp->pp == pp) {
6376 			/* Remove from old list */
6377 			bp->next->prev = bp->prev;
6378 			bp->prev->next = bp->next;
6379 
6380 			/* Add to new list */
6381 			bp->next = page_capture_hash[index].lists[1].next;
6382 			bp->prev = &page_capture_hash[index].lists[1];
6383 			page_capture_hash[index].lists[1].next = bp;
6384 			bp->next->prev = bp;
6385 
6386 			/*
6387 			 * There is a small probability of page on a free
6388 			 * list being retired while being allocated
6389 			 * and before P_RAF is set on it. The page may
6390 			 * end up marked as high priority request instead
6391 			 * of low priority request.
6392 			 * If P_RAF page is not marked as low priority request
6393 			 * change it to low priority request.
6394 			 */
6395 			page_capture_hash[index].num_pages[bp->pri]--;
6396 			bp->pri = PAGE_CAPTURE_PRIO(pp);
6397 			page_capture_hash[index].num_pages[bp->pri]++;
6398 			mutex_exit(&page_capture_hash[index].pchh_mutex);
6399 			return (1);
6400 		}
6401 		bp = bp->next;
6402 	}
6403 	mutex_exit(&page_capture_hash[index].pchh_mutex);
6404 	return (0);
6405 }
6406 
6407 /*
6408  * Add a new entry to the page capture hash.  The only case where a new
6409  * entry is not added is when the page capture consumer is no longer registered.
6410  * In this case, we'll silently not add the page to the hash.  We know that
6411  * page retire will always be registered for the case where we are currently
6412  * unretiring a page and thus there are no conflicts.
6413  */
6414 static void
6415 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
6416 {
6417 	page_capture_hash_bucket_t *bp1;
6418 	page_capture_hash_bucket_t *bp2;
6419 	int index;
6420 	int cb_index;
6421 	int i;
6422 	uchar_t pri;
6423 #ifdef DEBUG
6424 	page_capture_hash_bucket_t *tp1;
6425 	int l;
6426 #endif
6427 
6428 	ASSERT(!(flags & CAPTURE_ASYNC));
6429 
6430 	bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
6431 
6432 	bp1->pp = pp;
6433 	bp1->szc = szc;
6434 	bp1->flags = flags;
6435 	bp1->datap = datap;
6436 
6437 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6438 		if ((flags >> cb_index) & 1) {
6439 			break;
6440 		}
6441 	}
6442 
6443 	ASSERT(cb_index != PC_NUM_CALLBACKS);
6444 
6445 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6446 	if (pc_cb[cb_index].cb_active) {
6447 		if (pc_cb[cb_index].duration == -1) {
6448 			bp1->expires = (clock_t)-1;
6449 		} else {
6450 			bp1->expires = ddi_get_lbolt() +
6451 			    pc_cb[cb_index].duration;
6452 		}
6453 	} else {
6454 		/* There's no callback registered so don't add to the hash */
6455 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6456 		kmem_free(bp1, sizeof (*bp1));
6457 		return;
6458 	}
6459 
6460 	index = PAGE_CAPTURE_HASH(pp);
6461 
6462 	/*
6463 	 * Only allow capture flag to be modified under this mutex.
6464 	 * Prevents multiple entries for same page getting added.
6465 	 */
6466 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6467 
6468 	/*
6469 	 * if not already on the hash, set capture bit and add to the hash
6470 	 */
6471 	if (!(pp->p_toxic & PR_CAPTURE)) {
6472 #ifdef DEBUG
6473 		/* Check for duplicate entries */
6474 		for (l = 0; l < 2; l++) {
6475 			tp1 = page_capture_hash[index].lists[l].next;
6476 			while (tp1 != &page_capture_hash[index].lists[l]) {
6477 				if (tp1->pp == pp) {
6478 					panic("page pp 0x%p already on hash "
6479 					    "at 0x%p\n",
6480 					    (void *)pp, (void *)tp1);
6481 				}
6482 				tp1 = tp1->next;
6483 			}
6484 		}
6485 
6486 #endif
6487 		page_settoxic(pp, PR_CAPTURE);
6488 		pri = PAGE_CAPTURE_PRIO(pp);
6489 		bp1->pri = pri;
6490 		bp1->next = page_capture_hash[index].lists[0].next;
6491 		bp1->prev = &page_capture_hash[index].lists[0];
6492 		bp1->next->prev = bp1;
6493 		page_capture_hash[index].lists[0].next = bp1;
6494 		page_capture_hash[index].num_pages[pri]++;
6495 		if (flags & CAPTURE_RETIRE) {
6496 			page_retire_incr_pend_count(datap);
6497 		}
6498 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6499 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6500 		cv_signal(&pc_cv);
6501 		return;
6502 	}
6503 
6504 	/*
6505 	 * A page retire request will replace any other request.
6506 	 * A second physmem request which is for a different process than
6507 	 * the currently registered one will be dropped as there is
6508 	 * no way to hold the private data for both calls.
6509 	 * In the future, once there are more callers, this will have to
6510 	 * be worked out better as there needs to be private storage for
6511 	 * at least each type of caller (maybe have datap be an array of
6512 	 * *void's so that we can index based upon callers index).
6513 	 */
6514 
6515 	/* walk hash list to update expire time */
6516 	for (i = 0; i < 2; i++) {
6517 		bp2 = page_capture_hash[index].lists[i].next;
6518 		while (bp2 != &page_capture_hash[index].lists[i]) {
6519 			if (bp2->pp == pp) {
6520 				if (flags & CAPTURE_RETIRE) {
6521 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6522 						page_retire_incr_pend_count(
6523 						    datap);
6524 						bp2->flags = flags;
6525 						bp2->expires = bp1->expires;
6526 						bp2->datap = datap;
6527 					}
6528 				} else {
6529 					ASSERT(flags & CAPTURE_PHYSMEM);
6530 					if (!(bp2->flags & CAPTURE_RETIRE) &&
6531 					    (datap == bp2->datap)) {
6532 						bp2->expires = bp1->expires;
6533 					}
6534 				}
6535 				mutex_exit(&page_capture_hash[index].
6536 				    pchh_mutex);
6537 				rw_exit(&pc_cb[cb_index].cb_rwlock);
6538 				kmem_free(bp1, sizeof (*bp1));
6539 				return;
6540 			}
6541 			bp2 = bp2->next;
6542 		}
6543 	}
6544 
6545 	/*
6546 	 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6547 	 * and thus it either has to be set or not set and can't change
6548 	 * while holding the mutex above.
6549 	 */
6550 	panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n",
6551 	    (void *)pp);
6552 }
6553 
6554 /*
6555  * We have a page in our hands, lets try and make it ours by turning
6556  * it into a clean page like it had just come off the freelists.
6557  *
6558  * Returns 0 on success, with the page still EXCL locked.
6559  * On failure, the page will be unlocked, and returns EAGAIN
6560  */
6561 static int
6562 page_capture_clean_page(page_t *pp)
6563 {
6564 	page_t *newpp;
6565 	int skip_unlock = 0;
6566 	spgcnt_t count;
6567 	page_t *tpp;
6568 	int ret = 0;
6569 	int extra;
6570 
6571 	ASSERT(PAGE_EXCL(pp));
6572 	ASSERT(!PP_RETIRED(pp));
6573 	ASSERT(curthread->t_flag & T_CAPTURING);
6574 
6575 	if (PP_ISFREE(pp)) {
6576 		if (!page_reclaim(pp, NULL)) {
6577 			skip_unlock = 1;
6578 			ret = EAGAIN;
6579 			goto cleanup;
6580 		}
6581 		ASSERT(pp->p_szc == 0);
6582 		if (pp->p_vnode != NULL) {
6583 			/*
6584 			 * Since this page came from the
6585 			 * cachelist, we must destroy the
6586 			 * old vnode association.
6587 			 */
6588 			page_hashout(pp, NULL);
6589 		}
6590 		goto cleanup;
6591 	}
6592 
6593 	/*
6594 	 * If we know page_relocate will fail, skip it
6595 	 * It could still fail due to a UE on another page but we
6596 	 * can't do anything about that.
6597 	 */
6598 	if (pp->p_toxic & PR_UE) {
6599 		goto skip_relocate;
6600 	}
6601 
6602 	/*
6603 	 * It's possible that pages can not have a vnode as fsflush comes
6604 	 * through and cleans up these pages.  It's ugly but that's how it is.
6605 	 */
6606 	if (pp->p_vnode == NULL) {
6607 		goto skip_relocate;
6608 	}
6609 
6610 	/*
6611 	 * Page was not free, so lets try to relocate it.
6612 	 * page_relocate only works with root pages, so if this is not a root
6613 	 * page, we need to demote it to try and relocate it.
6614 	 * Unfortunately this is the best we can do right now.
6615 	 */
6616 	newpp = NULL;
6617 	if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
6618 		if (page_try_demote_pages(pp) == 0) {
6619 			ret = EAGAIN;
6620 			goto cleanup;
6621 		}
6622 	}
6623 	ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
6624 	if (ret == 0) {
6625 		page_t *npp;
6626 		/* unlock the new page(s) */
6627 		while (count-- > 0) {
6628 			ASSERT(newpp != NULL);
6629 			npp = newpp;
6630 			page_sub(&newpp, npp);
6631 			page_unlock(npp);
6632 		}
6633 		ASSERT(newpp == NULL);
6634 		/*
6635 		 * Check to see if the page we have is too large.
6636 		 * If so, demote it freeing up the extra pages.
6637 		 */
6638 		if (pp->p_szc > 0) {
6639 			/* For now demote extra pages to szc == 0 */
6640 			extra = page_get_pagecnt(pp->p_szc) - 1;
6641 			while (extra > 0) {
6642 				tpp = pp->p_next;
6643 				page_sub(&pp, tpp);
6644 				tpp->p_szc = 0;
6645 				page_free(tpp, 1);
6646 				extra--;
6647 			}
6648 			/* Make sure to set our page to szc 0 as well */
6649 			ASSERT(pp->p_next == pp && pp->p_prev == pp);
6650 			pp->p_szc = 0;
6651 		}
6652 		goto cleanup;
6653 	} else if (ret == EIO) {
6654 		ret = EAGAIN;
6655 		goto cleanup;
6656 	} else {
6657 		/*
6658 		 * Need to reset return type as we failed to relocate the page
6659 		 * but that does not mean that some of the next steps will not
6660 		 * work.
6661 		 */
6662 		ret = 0;
6663 	}
6664 
6665 skip_relocate:
6666 
6667 	if (pp->p_szc > 0) {
6668 		if (page_try_demote_pages(pp) == 0) {
6669 			ret = EAGAIN;
6670 			goto cleanup;
6671 		}
6672 	}
6673 
6674 	ASSERT(pp->p_szc == 0);
6675 
6676 	if (hat_ismod(pp)) {
6677 		ret = EAGAIN;
6678 		goto cleanup;
6679 	}
6680 	if (PP_ISKAS(pp)) {
6681 		ret = EAGAIN;
6682 		goto cleanup;
6683 	}
6684 	if (pp->p_lckcnt || pp->p_cowcnt) {
6685 		ret = EAGAIN;
6686 		goto cleanup;
6687 	}
6688 
6689 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
6690 	ASSERT(!hat_page_is_mapped(pp));
6691 
6692 	if (hat_ismod(pp)) {
6693 		/*
6694 		 * This is a semi-odd case as the page is now modified but not
6695 		 * mapped as we just unloaded the mappings above.
6696 		 */
6697 		ret = EAGAIN;
6698 		goto cleanup;
6699 	}
6700 	if (pp->p_vnode != NULL) {
6701 		page_hashout(pp, NULL);
6702 	}
6703 
6704 	/*
6705 	 * At this point, the page should be in a clean state and
6706 	 * we can do whatever we want with it.
6707 	 */
6708 
6709 cleanup:
6710 	if (ret != 0) {
6711 		if (!skip_unlock) {
6712 			page_unlock(pp);
6713 		}
6714 	} else {
6715 		ASSERT(pp->p_szc == 0);
6716 		ASSERT(PAGE_EXCL(pp));
6717 
6718 		pp->p_next = pp;
6719 		pp->p_prev = pp;
6720 	}
6721 	return (ret);
6722 }
6723 
6724 /*
6725  * Various callers of page_trycapture() can have different restrictions upon
6726  * what memory they have access to.
6727  * Returns 0 on success, with the following error codes on failure:
6728  *      EPERM - The requested page is long term locked, and thus repeated
6729  *              requests to capture this page will likely fail.
6730  *      ENOMEM - There was not enough free memory in the system to safely
6731  *              map the requested page.
6732  *      ENOENT - The requested page was inside the kernel cage, and the
6733  *              PHYSMEM_CAGE flag was not set.
6734  */
6735 int
6736 page_capture_pre_checks(page_t *pp, uint_t flags)
6737 {
6738 	ASSERT(pp != NULL);
6739 
6740 #if defined(__sparc)
6741 	if (pp->p_vnode == &promvp) {
6742 		return (EPERM);
6743 	}
6744 
6745 	if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) &&
6746 	    (flags & CAPTURE_PHYSMEM)) {
6747 		return (ENOENT);
6748 	}
6749 
6750 	if (PP_ISNORELOCKERNEL(pp)) {
6751 		return (EPERM);
6752 	}
6753 #else
6754 	if (PP_ISKAS(pp)) {
6755 		return (EPERM);
6756 	}
6757 #endif /* __sparc */
6758 
6759 	/* only physmem currently has the restrictions checked below */
6760 	if (!(flags & CAPTURE_PHYSMEM)) {
6761 		return (0);
6762 	}
6763 
6764 	if (availrmem < swapfs_minfree) {
6765 		/*
6766 		 * We won't try to capture this page as we are
6767 		 * running low on memory.
6768 		 */
6769 		return (ENOMEM);
6770 	}
6771 	return (0);
6772 }
6773 
6774 /*
6775  * Once we have a page in our mits, go ahead and complete the capture
6776  * operation.
6777  * Returns 1 on failure where page is no longer needed
6778  * Returns 0 on success
6779  * Returns -1 if there was a transient failure.
6780  * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6781  */
6782 int
6783 page_capture_take_action(page_t *pp, uint_t flags, void *datap)
6784 {
6785 	int cb_index;
6786 	int ret = 0;
6787 	page_capture_hash_bucket_t *bp1;
6788 	page_capture_hash_bucket_t *bp2;
6789 	int index;
6790 	int found = 0;
6791 	int i;
6792 
6793 	ASSERT(PAGE_EXCL(pp));
6794 	ASSERT(curthread->t_flag & T_CAPTURING);
6795 
6796 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6797 		if ((flags >> cb_index) & 1) {
6798 			break;
6799 		}
6800 	}
6801 	ASSERT(cb_index < PC_NUM_CALLBACKS);
6802 
6803 	/*
6804 	 * Remove the entry from the page_capture hash, but don't free it yet
6805 	 * as we may need to put it back.
6806 	 * Since we own the page at this point in time, we should find it
6807 	 * in the hash if this is an ASYNC call.  If we don't it's likely
6808 	 * that the page_capture_async() thread decided that this request
6809 	 * had expired, in which case we just continue on.
6810 	 */
6811 	if (flags & CAPTURE_ASYNC) {
6812 
6813 		index = PAGE_CAPTURE_HASH(pp);
6814 
6815 		mutex_enter(&page_capture_hash[index].pchh_mutex);
6816 		for (i = 0; i < 2 && !found; i++) {
6817 			bp1 = page_capture_hash[index].lists[i].next;
6818 			while (bp1 != &page_capture_hash[index].lists[i]) {
6819 				if (bp1->pp == pp) {
6820 					bp1->next->prev = bp1->prev;
6821 					bp1->prev->next = bp1->next;
6822 					page_capture_hash[index].
6823 					    num_pages[bp1->pri]--;
6824 					page_clrtoxic(pp, PR_CAPTURE);
6825 					found = 1;
6826 					break;
6827 				}
6828 				bp1 = bp1->next;
6829 			}
6830 		}
6831 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6832 	}
6833 
6834 	/* Synchronize with the unregister func. */
6835 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6836 	if (!pc_cb[cb_index].cb_active) {
6837 		page_free(pp, 1);
6838 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6839 		if (found) {
6840 			kmem_free(bp1, sizeof (*bp1));
6841 		}
6842 		return (1);
6843 	}
6844 
6845 	/*
6846 	 * We need to remove the entry from the page capture hash and turn off
6847 	 * the PR_CAPTURE bit before calling the callback.  We'll need to cache
6848 	 * the entry here, and then based upon the return value, cleanup
6849 	 * appropriately or re-add it to the hash, making sure that someone else
6850 	 * hasn't already done so.
6851 	 * It should be rare for the callback to fail and thus it's ok for
6852 	 * the failure path to be a bit complicated as the success path is
6853 	 * cleaner and the locking rules are easier to follow.
6854 	 */
6855 
6856 	ret = pc_cb[cb_index].cb_func(pp, datap, flags);
6857 
6858 	rw_exit(&pc_cb[cb_index].cb_rwlock);
6859 
6860 	/*
6861 	 * If this was an ASYNC request, we need to cleanup the hash if the
6862 	 * callback was successful or if the request was no longer valid.
6863 	 * For non-ASYNC requests, we return failure to map and the caller
6864 	 * will take care of adding the request to the hash.
6865 	 * Note also that the callback itself is responsible for the page
6866 	 * at this point in time in terms of locking ...  The most common
6867 	 * case for the failure path should just be a page_free.
6868 	 */
6869 	if (ret >= 0) {
6870 		if (found) {
6871 			if (bp1->flags & CAPTURE_RETIRE) {
6872 				page_retire_decr_pend_count(datap);
6873 			}
6874 			kmem_free(bp1, sizeof (*bp1));
6875 		}
6876 		return (ret);
6877 	}
6878 	if (!found) {
6879 		return (ret);
6880 	}
6881 
6882 	ASSERT(flags & CAPTURE_ASYNC);
6883 
6884 	/*
6885 	 * Check for expiration time first as we can just free it up if it's
6886 	 * expired.
6887 	 */
6888 	if (ddi_get_lbolt() > bp1->expires && bp1->expires != -1) {
6889 		kmem_free(bp1, sizeof (*bp1));
6890 		return (ret);
6891 	}
6892 
6893 	/*
6894 	 * The callback failed and there used to be an entry in the hash for
6895 	 * this page, so we need to add it back to the hash.
6896 	 */
6897 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6898 	if (!(pp->p_toxic & PR_CAPTURE)) {
6899 		/* just add bp1 back to head of walked list */
6900 		page_settoxic(pp, PR_CAPTURE);
6901 		bp1->next = page_capture_hash[index].lists[1].next;
6902 		bp1->prev = &page_capture_hash[index].lists[1];
6903 		bp1->next->prev = bp1;
6904 		bp1->pri = PAGE_CAPTURE_PRIO(pp);
6905 		page_capture_hash[index].lists[1].next = bp1;
6906 		page_capture_hash[index].num_pages[bp1->pri]++;
6907 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6908 		return (ret);
6909 	}
6910 
6911 	/*
6912 	 * Otherwise there was a new capture request added to list
6913 	 * Need to make sure that our original data is represented if
6914 	 * appropriate.
6915 	 */
6916 	for (i = 0; i < 2; i++) {
6917 		bp2 = page_capture_hash[index].lists[i].next;
6918 		while (bp2 != &page_capture_hash[index].lists[i]) {
6919 			if (bp2->pp == pp) {
6920 				if (bp1->flags & CAPTURE_RETIRE) {
6921 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6922 						bp2->szc = bp1->szc;
6923 						bp2->flags = bp1->flags;
6924 						bp2->expires = bp1->expires;
6925 						bp2->datap = bp1->datap;
6926 					}
6927 				} else {
6928 					ASSERT(bp1->flags & CAPTURE_PHYSMEM);
6929 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6930 						bp2->szc = bp1->szc;
6931 						bp2->flags = bp1->flags;
6932 						bp2->expires = bp1->expires;
6933 						bp2->datap = bp1->datap;
6934 					}
6935 				}
6936 				page_capture_hash[index].num_pages[bp2->pri]--;
6937 				bp2->pri = PAGE_CAPTURE_PRIO(pp);
6938 				page_capture_hash[index].num_pages[bp2->pri]++;
6939 				mutex_exit(&page_capture_hash[index].
6940 				    pchh_mutex);
6941 				kmem_free(bp1, sizeof (*bp1));
6942 				return (ret);
6943 			}
6944 			bp2 = bp2->next;
6945 		}
6946 	}
6947 	panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp);
6948 	/*NOTREACHED*/
6949 }
6950 
6951 /*
6952  * Try to capture the given page for the caller specified in the flags
6953  * parameter.  The page will either be captured and handed over to the
6954  * appropriate callback, or will be queued up in the page capture hash
6955  * to be captured asynchronously.
6956  * If the current request is due to an async capture, the page must be
6957  * exclusively locked before calling this function.
6958  * Currently szc must be 0 but in the future this should be expandable to
6959  * other page sizes.
6960  * Returns 0 on success, with the following error codes on failure:
6961  *      EPERM - The requested page is long term locked, and thus repeated
6962  *              requests to capture this page will likely fail.
6963  *      ENOMEM - There was not enough free memory in the system to safely
6964  *              map the requested page.
6965  *      ENOENT - The requested page was inside the kernel cage, and the
6966  *              CAPTURE_GET_CAGE flag was not set.
6967  *	EAGAIN - The requested page could not be capturead at this point in
6968  *		time but future requests will likely work.
6969  *	EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
6970  *		was not set.
6971  */
6972 int
6973 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
6974 {
6975 	int ret;
6976 	int cb_index;
6977 
6978 	if (flags & CAPTURE_ASYNC) {
6979 		ASSERT(PAGE_EXCL(pp));
6980 		goto async;
6981 	}
6982 
6983 	/* Make sure there's enough availrmem ... */
6984 	ret = page_capture_pre_checks(pp, flags);
6985 	if (ret != 0) {
6986 		return (ret);
6987 	}
6988 
6989 	if (!page_trylock(pp, SE_EXCL)) {
6990 		for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6991 			if ((flags >> cb_index) & 1) {
6992 				break;
6993 			}
6994 		}
6995 		ASSERT(cb_index < PC_NUM_CALLBACKS);
6996 		ret = EAGAIN;
6997 		/* Special case for retired pages */
6998 		if (PP_RETIRED(pp)) {
6999 			if (flags & CAPTURE_GET_RETIRED) {
7000 				if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
7001 					/*
7002 					 * Need to set capture bit and add to
7003 					 * hash so that the page will be
7004 					 * retired when freed.
7005 					 */
7006 					page_capture_add_hash(pp, szc,
7007 					    CAPTURE_RETIRE, NULL);
7008 					ret = 0;
7009 					goto own_page;
7010 				}
7011 			} else {
7012 				return (EBUSY);
7013 			}
7014 		}
7015 		page_capture_add_hash(pp, szc, flags, datap);
7016 		return (ret);
7017 	}
7018 
7019 async:
7020 	ASSERT(PAGE_EXCL(pp));
7021 
7022 	/* Need to check for physmem async requests that availrmem is sane */
7023 	if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
7024 	    (CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
7025 	    (availrmem < swapfs_minfree)) {
7026 		page_unlock(pp);
7027 		return (ENOMEM);
7028 	}
7029 
7030 	ret = page_capture_clean_page(pp);
7031 
7032 	if (ret != 0) {
7033 		/* We failed to get the page, so lets add it to the hash */
7034 		if (!(flags & CAPTURE_ASYNC)) {
7035 			page_capture_add_hash(pp, szc, flags, datap);
7036 		}
7037 		return (ret);
7038 	}
7039 
7040 own_page:
7041 	ASSERT(PAGE_EXCL(pp));
7042 	ASSERT(pp->p_szc == 0);
7043 
7044 	/* Call the callback */
7045 	ret = page_capture_take_action(pp, flags, datap);
7046 
7047 	if (ret == 0) {
7048 		return (0);
7049 	}
7050 
7051 	/*
7052 	 * Note that in the failure cases from page_capture_take_action, the
7053 	 * EXCL lock will have already been dropped.
7054 	 */
7055 	if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
7056 		page_capture_add_hash(pp, szc, flags, datap);
7057 	}
7058 	return (EAGAIN);
7059 }
7060 
7061 int
7062 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7063 {
7064 	int ret;
7065 
7066 	curthread->t_flag |= T_CAPTURING;
7067 	ret = page_itrycapture(pp, szc, flags, datap);
7068 	curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
7069 	return (ret);
7070 }
7071 
7072 /*
7073  * When unlocking a page which has the PR_CAPTURE bit set, this routine
7074  * gets called to try and capture the page.
7075  */
7076 void
7077 page_unlock_capture(page_t *pp)
7078 {
7079 	page_capture_hash_bucket_t *bp;
7080 	int index;
7081 	int i;
7082 	uint_t szc;
7083 	uint_t flags = 0;
7084 	void *datap;
7085 	kmutex_t *mp;
7086 	extern vnode_t retired_pages;
7087 
7088 	/*
7089 	 * We need to protect against a possible deadlock here where we own
7090 	 * the vnode page hash mutex and want to acquire it again as there
7091 	 * are locations in the code, where we unlock a page while holding
7092 	 * the mutex which can lead to the page being captured and eventually
7093 	 * end up here.  As we may be hashing out the old page and hashing into
7094 	 * the retire vnode, we need to make sure we don't own them.
7095 	 * Other callbacks who do hash operations also need to make sure that
7096 	 * before they hashin to a vnode that they do not currently own the
7097 	 * vphm mutex otherwise there will be a panic.
7098 	 */
7099 	if (mutex_owned(page_vnode_mutex(&retired_pages))) {
7100 		page_unlock_nocapture(pp);
7101 		return;
7102 	}
7103 	if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
7104 		page_unlock_nocapture(pp);
7105 		return;
7106 	}
7107 
7108 	index = PAGE_CAPTURE_HASH(pp);
7109 
7110 	mp = &page_capture_hash[index].pchh_mutex;
7111 	mutex_enter(mp);
7112 	for (i = 0; i < 2; i++) {
7113 		bp = page_capture_hash[index].lists[i].next;
7114 		while (bp != &page_capture_hash[index].lists[i]) {
7115 			if (bp->pp == pp) {
7116 				szc = bp->szc;
7117 				flags = bp->flags | CAPTURE_ASYNC;
7118 				datap = bp->datap;
7119 				mutex_exit(mp);
7120 				(void) page_trycapture(pp, szc, flags, datap);
7121 				return;
7122 			}
7123 			bp = bp->next;
7124 		}
7125 	}
7126 
7127 	/* Failed to find page in hash so clear flags and unlock it. */
7128 	page_clrtoxic(pp, PR_CAPTURE);
7129 	page_unlock(pp);
7130 
7131 	mutex_exit(mp);
7132 }
7133 
7134 void
7135 page_capture_init()
7136 {
7137 	int i;
7138 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7139 		page_capture_hash[i].lists[0].next =
7140 		    &page_capture_hash[i].lists[0];
7141 		page_capture_hash[i].lists[0].prev =
7142 		    &page_capture_hash[i].lists[0];
7143 		page_capture_hash[i].lists[1].next =
7144 		    &page_capture_hash[i].lists[1];
7145 		page_capture_hash[i].lists[1].prev =
7146 		    &page_capture_hash[i].lists[1];
7147 	}
7148 
7149 	pc_thread_shortwait = 23 * hz;
7150 	pc_thread_longwait = 1201 * hz;
7151 	pc_thread_retry = 3;
7152 	mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
7153 	cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
7154 	pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
7155 	    TS_RUN, minclsyspri);
7156 }
7157 
7158 /*
7159  * It is necessary to scrub any failing pages prior to reboot in order to
7160  * prevent a latent error trap from occurring on the next boot.
7161  */
7162 void
7163 page_retire_mdboot()
7164 {
7165 	page_t *pp;
7166 	int i, j;
7167 	page_capture_hash_bucket_t *bp;
7168 	uchar_t pri;
7169 
7170 	/* walk lists looking for pages to scrub */
7171 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7172 		for (pri = 0; pri < PC_NUM_PRI; pri++) {
7173 			if (page_capture_hash[i].num_pages[pri] != 0) {
7174 				break;
7175 			}
7176 		}
7177 		if (pri == PC_NUM_PRI)
7178 			continue;
7179 
7180 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7181 
7182 		for (j = 0; j < 2; j++) {
7183 			bp = page_capture_hash[i].lists[j].next;
7184 			while (bp != &page_capture_hash[i].lists[j]) {
7185 				pp = bp->pp;
7186 				if (PP_TOXIC(pp)) {
7187 					if (page_trylock(pp, SE_EXCL)) {
7188 						PP_CLRFREE(pp);
7189 						pagescrub(pp, 0, PAGESIZE);
7190 						page_unlock(pp);
7191 					}
7192 				}
7193 				bp = bp->next;
7194 			}
7195 		}
7196 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7197 	}
7198 }
7199 
7200 /*
7201  * Walk the page_capture_hash trying to capture pages and also cleanup old
7202  * entries which have expired.
7203  */
7204 void
7205 page_capture_async()
7206 {
7207 	page_t *pp;
7208 	int i;
7209 	int ret;
7210 	page_capture_hash_bucket_t *bp1, *bp2;
7211 	uint_t szc;
7212 	uint_t flags;
7213 	void *datap;
7214 	uchar_t pri;
7215 
7216 	/* If there are outstanding pages to be captured, get to work */
7217 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7218 		for (pri = 0; pri < PC_NUM_PRI; pri++) {
7219 			if (page_capture_hash[i].num_pages[pri] != 0)
7220 				break;
7221 		}
7222 		if (pri == PC_NUM_PRI)
7223 			continue;
7224 
7225 		/* Append list 1 to list 0 and then walk through list 0 */
7226 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7227 		bp1 = &page_capture_hash[i].lists[1];
7228 		bp2 = bp1->next;
7229 		if (bp1 != bp2) {
7230 			bp1->prev->next = page_capture_hash[i].lists[0].next;
7231 			bp2->prev = &page_capture_hash[i].lists[0];
7232 			page_capture_hash[i].lists[0].next->prev = bp1->prev;
7233 			page_capture_hash[i].lists[0].next = bp2;
7234 			bp1->next = bp1;
7235 			bp1->prev = bp1;
7236 		}
7237 
7238 		/* list[1] will be empty now */
7239 
7240 		bp1 = page_capture_hash[i].lists[0].next;
7241 		while (bp1 != &page_capture_hash[i].lists[0]) {
7242 			/* Check expiration time */
7243 			if ((ddi_get_lbolt() > bp1->expires &&
7244 			    bp1->expires != -1) ||
7245 			    page_deleted(bp1->pp)) {
7246 				page_capture_hash[i].lists[0].next = bp1->next;
7247 				bp1->next->prev =
7248 				    &page_capture_hash[i].lists[0];
7249 				page_capture_hash[i].num_pages[bp1->pri]--;
7250 
7251 				/*
7252 				 * We can safely remove the PR_CAPTURE bit
7253 				 * without holding the EXCL lock on the page
7254 				 * as the PR_CAPTURE bit requres that the
7255 				 * page_capture_hash[].pchh_mutex be held
7256 				 * to modify it.
7257 				 */
7258 				page_clrtoxic(bp1->pp, PR_CAPTURE);
7259 				mutex_exit(&page_capture_hash[i].pchh_mutex);
7260 				kmem_free(bp1, sizeof (*bp1));
7261 				mutex_enter(&page_capture_hash[i].pchh_mutex);
7262 				bp1 = page_capture_hash[i].lists[0].next;
7263 				continue;
7264 			}
7265 			pp = bp1->pp;
7266 			szc = bp1->szc;
7267 			flags = bp1->flags;
7268 			datap = bp1->datap;
7269 			mutex_exit(&page_capture_hash[i].pchh_mutex);
7270 			if (page_trylock(pp, SE_EXCL)) {
7271 				ret = page_trycapture(pp, szc,
7272 				    flags | CAPTURE_ASYNC, datap);
7273 			} else {
7274 				ret = 1;	/* move to walked hash */
7275 			}
7276 
7277 			if (ret != 0) {
7278 				/* Move to walked hash */
7279 				(void) page_capture_move_to_walked(pp);
7280 			}
7281 			mutex_enter(&page_capture_hash[i].pchh_mutex);
7282 			bp1 = page_capture_hash[i].lists[0].next;
7283 		}
7284 
7285 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7286 	}
7287 }
7288 
7289 /*
7290  * This function is called by the page_capture_thread, and is needed in
7291  * in order to initiate aio cleanup, so that pages used in aio
7292  * will be unlocked and subsequently retired by page_capture_thread.
7293  */
7294 static int
7295 do_aio_cleanup(void)
7296 {
7297 	proc_t *procp;
7298 	int (*aio_cleanup_dr_delete_memory)(proc_t *);
7299 	int cleaned = 0;
7300 
7301 	if (modload("sys", "kaio") == -1) {
7302 		cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
7303 		return (0);
7304 	}
7305 	/*
7306 	 * We use the aio_cleanup_dr_delete_memory function to
7307 	 * initiate the actual clean up; this function will wake
7308 	 * up the per-process aio_cleanup_thread.
7309 	 */
7310 	aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
7311 	    modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
7312 	if (aio_cleanup_dr_delete_memory == NULL) {
7313 		cmn_err(CE_WARN,
7314 	    "aio_cleanup_dr_delete_memory not found in kaio");
7315 		return (0);
7316 	}
7317 	mutex_enter(&pidlock);
7318 	for (procp = practive; (procp != NULL); procp = procp->p_next) {
7319 		mutex_enter(&procp->p_lock);
7320 		if (procp->p_aio != NULL) {
7321 			/* cleanup proc's outstanding kaio */
7322 			cleaned += (*aio_cleanup_dr_delete_memory)(procp);
7323 		}
7324 		mutex_exit(&procp->p_lock);
7325 	}
7326 	mutex_exit(&pidlock);
7327 	return (cleaned);
7328 }
7329 
7330 /*
7331  * helper function for page_capture_thread
7332  */
7333 static void
7334 page_capture_handle_outstanding(void)
7335 {
7336 	int ntry;
7337 
7338 	/* Reap pages before attempting capture pages */
7339 	kmem_reap();
7340 
7341 	if ((page_retire_pend_count() > page_retire_pend_kas_count()) &&
7342 	    hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
7343 		/*
7344 		 * Note: Purging only for platforms that support
7345 		 * ISM hat_pageunload() - mainly SPARC. On x86/x64
7346 		 * platforms ISM pages SE_SHARED locked until destroyed.
7347 		 */
7348 
7349 		/* disable and purge seg_pcache */
7350 		(void) seg_p_disable();
7351 		for (ntry = 0; ntry < pc_thread_retry; ntry++) {
7352 			if (!page_retire_pend_count())
7353 				break;
7354 			if (do_aio_cleanup()) {
7355 				/*
7356 				 * allow the apps cleanup threads
7357 				 * to run
7358 				 */
7359 				delay(pc_thread_shortwait);
7360 			}
7361 			page_capture_async();
7362 		}
7363 		/* reenable seg_pcache */
7364 		seg_p_enable();
7365 
7366 		/* completed what can be done.  break out */
7367 		return;
7368 	}
7369 
7370 	/*
7371 	 * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap
7372 	 * and then attempt to capture.
7373 	 */
7374 	seg_preap();
7375 	page_capture_async();
7376 }
7377 
7378 /*
7379  * The page_capture_thread loops forever, looking to see if there are
7380  * pages still waiting to be captured.
7381  */
7382 static void
7383 page_capture_thread(void)
7384 {
7385 	callb_cpr_t c;
7386 	int i;
7387 	int high_pri_pages;
7388 	int low_pri_pages;
7389 	clock_t timeout;
7390 
7391 	CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
7392 
7393 	mutex_enter(&pc_thread_mutex);
7394 	for (;;) {
7395 		high_pri_pages = 0;
7396 		low_pri_pages = 0;
7397 		for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7398 			high_pri_pages +=
7399 			    page_capture_hash[i].num_pages[PC_PRI_HI];
7400 			low_pri_pages +=
7401 			    page_capture_hash[i].num_pages[PC_PRI_LO];
7402 		}
7403 
7404 		timeout = pc_thread_longwait;
7405 		if (high_pri_pages != 0) {
7406 			timeout = pc_thread_shortwait;
7407 			page_capture_handle_outstanding();
7408 		} else if (low_pri_pages != 0) {
7409 			page_capture_async();
7410 		}
7411 		CALLB_CPR_SAFE_BEGIN(&c);
7412 		(void) cv_reltimedwait(&pc_cv, &pc_thread_mutex,
7413 		    timeout, TR_CLOCK_TICK);
7414 		CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7415 	}
7416 	/*NOTREACHED*/
7417 }
7418 /*
7419  * Attempt to locate a bucket that has enough pages to satisfy the request.
7420  * The initial check is done without the lock to avoid unneeded contention.
7421  * The function returns 1 if enough pages were found, else 0 if it could not
7422  * find enough pages in a bucket.
7423  */
7424 static int
7425 pcf_decrement_bucket(pgcnt_t npages)
7426 {
7427 	struct pcf	*p;
7428 	struct pcf	*q;
7429 	int i;
7430 
7431 	p = &pcf[PCF_INDEX()];
7432 	q = &pcf[pcf_fanout];
7433 	for (i = 0; i < pcf_fanout; i++) {
7434 		if (p->pcf_count > npages) {
7435 			/*
7436 			 * a good one to try.
7437 			 */
7438 			mutex_enter(&p->pcf_lock);
7439 			if (p->pcf_count > npages) {
7440 				p->pcf_count -= (uint_t)npages;
7441 				/*
7442 				 * freemem is not protected by any lock.
7443 				 * Thus, we cannot have any assertion
7444 				 * containing freemem here.
7445 				 */
7446 				freemem -= npages;
7447 				mutex_exit(&p->pcf_lock);
7448 				return (1);
7449 			}
7450 			mutex_exit(&p->pcf_lock);
7451 		}
7452 		p++;
7453 		if (p >= q) {
7454 			p = pcf;
7455 		}
7456 	}
7457 	return (0);
7458 }
7459 
7460 /*
7461  * Arguments:
7462  *	pcftotal_ret:	If the value is not NULL and we have walked all the
7463  *			buckets but did not find enough pages then it will
7464  *			be set to the total number of pages in all the pcf
7465  *			buckets.
7466  *	npages:		Is the number of pages we have been requested to
7467  *			find.
7468  *	unlock:		If set to 0 we will leave the buckets locked if the
7469  *			requested number of pages are not found.
7470  *
7471  * Go and try to satisfy the page request  from any number of buckets.
7472  * This can be a very expensive operation as we have to lock the buckets
7473  * we are checking (and keep them locked), starting at bucket 0.
7474  *
7475  * The function returns 1 if enough pages were found, else 0 if it could not
7476  * find enough pages in the buckets.
7477  *
7478  */
7479 static int
7480 pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock)
7481 {
7482 	struct pcf	*p;
7483 	pgcnt_t pcftotal;
7484 	int i;
7485 
7486 	p = pcf;
7487 	/* try to collect pages from several pcf bins */
7488 	for (pcftotal = 0, i = 0; i < pcf_fanout; i++) {
7489 		mutex_enter(&p->pcf_lock);
7490 		pcftotal += p->pcf_count;
7491 		if (pcftotal >= npages) {
7492 			/*
7493 			 * Wow!  There are enough pages laying around
7494 			 * to satisfy the request.  Do the accounting,
7495 			 * drop the locks we acquired, and go back.
7496 			 *
7497 			 * freemem is not protected by any lock. So,
7498 			 * we cannot have any assertion containing
7499 			 * freemem.
7500 			 */
7501 			freemem -= npages;
7502 			while (p >= pcf) {
7503 				if (p->pcf_count <= npages) {
7504 					npages -= p->pcf_count;
7505 					p->pcf_count = 0;
7506 				} else {
7507 					p->pcf_count -= (uint_t)npages;
7508 					npages = 0;
7509 				}
7510 				mutex_exit(&p->pcf_lock);
7511 				p--;
7512 			}
7513 			ASSERT(npages == 0);
7514 			return (1);
7515 		}
7516 		p++;
7517 	}
7518 	if (unlock) {
7519 		/* failed to collect pages - release the locks */
7520 		while (--p >= pcf) {
7521 			mutex_exit(&p->pcf_lock);
7522 		}
7523 	}
7524 	if (pcftotal_ret != NULL)
7525 		*pcftotal_ret = pcftotal;
7526 	return (0);
7527 }
7528