xref: /illumos-gate/usr/src/uts/common/vm/vm_page.c (revision 42b53e0fbc5c05289c3d334bb864b784fafe5ce4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2015, Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
24  * Copyright (c) 2015, 2016 by Delphix. All rights reserved.
25  * Copyright 2018 Joyent, Inc.
26  * Copyright 2021 Oxide Computer Company
27  */
28 
29 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989  AT&T */
30 /* All Rights Reserved */
31 
32 /*
33  * University Copyright- Copyright (c) 1982, 1986, 1988
34  * The Regents of the University of California
35  * All Rights Reserved
36  *
37  * University Acknowledgment- Portions of this document are derived from
38  * software developed by the University of California, Berkeley, and its
39  * contributors.
40  */
41 
42 /*
43  * VM - physical page management.
44  */
45 
46 #include <sys/types.h>
47 #include <sys/t_lock.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/errno.h>
51 #include <sys/time.h>
52 #include <sys/vnode.h>
53 #include <sys/vm.h>
54 #include <sys/vtrace.h>
55 #include <sys/swap.h>
56 #include <sys/cmn_err.h>
57 #include <sys/tuneable.h>
58 #include <sys/sysmacros.h>
59 #include <sys/cpuvar.h>
60 #include <sys/callb.h>
61 #include <sys/debug.h>
62 #include <sys/condvar_impl.h>
63 #include <sys/mem_config.h>
64 #include <sys/mem_cage.h>
65 #include <sys/kmem.h>
66 #include <sys/atomic.h>
67 #include <sys/strlog.h>
68 #include <sys/mman.h>
69 #include <sys/ontrap.h>
70 #include <sys/lgrp.h>
71 #include <sys/vfs.h>
72 
73 #include <vm/hat.h>
74 #include <vm/anon.h>
75 #include <vm/page.h>
76 #include <vm/seg.h>
77 #include <vm/pvn.h>
78 #include <vm/seg_kmem.h>
79 #include <vm/vm_dep.h>
80 #include <sys/vm_usage.h>
81 #include <fs/fs_subr.h>
82 #include <sys/ddi.h>
83 #include <sys/modctl.h>
84 
85 static pgcnt_t max_page_get;	/* max page_get request size in pages */
86 pgcnt_t total_pages = 0;	/* total number of pages (used by /proc) */
87 
88 /*
89  * freemem_lock protects all freemem variables:
90  * availrmem. Also this lock protects the globals which track the
91  * availrmem changes for accurate kernel footprint calculation.
92  * See below for an explanation of these
93  * globals.
94  */
95 kmutex_t freemem_lock;
96 pgcnt_t availrmem;
97 pgcnt_t availrmem_initial;
98 
99 /*
100  * These globals track availrmem changes to get a more accurate
101  * estimate of tke kernel size. Historically pp_kernel is used for
102  * kernel size and is based on availrmem. But availrmem is adjusted for
103  * locked pages in the system not just for kernel locked pages.
104  * These new counters will track the pages locked through segvn and
105  * by explicit user locking.
106  *
107  * pages_locked : How many pages are locked because of user specified
108  * locking through mlock or plock.
109  *
110  * pages_useclaim,pages_claimed : These two variables track the
111  * claim adjustments because of the protection changes on a segvn segment.
112  *
113  * All these globals are protected by the same lock which protects availrmem.
114  */
115 pgcnt_t pages_locked = 0;
116 pgcnt_t pages_useclaim = 0;
117 pgcnt_t pages_claimed = 0;
118 
119 
120 /*
121  * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
122  */
123 static kmutex_t	new_freemem_lock;
124 static uint_t	freemem_wait;	/* someone waiting for freemem */
125 static kcondvar_t freemem_cv;
126 
127 /*
128  * The logical page free list is maintained as two lists, the 'free'
129  * and the 'cache' lists.
130  * The free list contains those pages that should be reused first.
131  *
132  * The implementation of the lists is machine dependent.
133  * page_get_freelist(), page_get_cachelist(),
134  * page_list_sub(), and page_list_add()
135  * form the interface to the machine dependent implementation.
136  *
137  * Pages with p_free set are on the cache list.
138  * Pages with p_free and p_age set are on the free list,
139  *
140  * A page may be locked while on either list.
141  */
142 
143 /*
144  * free list accounting stuff.
145  *
146  *
147  * Spread out the value for the number of pages on the
148  * page free and page cache lists.  If there is just one
149  * value, then it must be under just one lock.
150  * The lock contention and cache traffic are a real bother.
151  *
152  * When we acquire and then drop a single pcf lock
153  * we can start in the middle of the array of pcf structures.
154  * If we acquire more than one pcf lock at a time, we need to
155  * start at the front to avoid deadlocking.
156  *
157  * pcf_count holds the number of pages in each pool.
158  *
159  * pcf_block is set when page_create_get_something() has asked the
160  * PSM page freelist and page cachelist routines without specifying
161  * a color and nothing came back.  This is used to block anything
162  * else from moving pages from one list to the other while the
163  * lists are searched again.  If a page is freeed while pcf_block is
164  * set, then pcf_reserve is incremented.  pcgs_unblock() takes care
165  * of clearning pcf_block, doing the wakeups, etc.
166  */
167 
168 #define	MAX_PCF_FANOUT NCPU
169 static uint_t pcf_fanout = 1; /* Will get changed at boot time */
170 static uint_t pcf_fanout_mask = 0;
171 
172 struct pcf {
173 	kmutex_t	pcf_lock;	/* protects the structure */
174 	uint_t		pcf_count;	/* page count */
175 	uint_t		pcf_wait;	/* number of waiters */
176 	uint_t		pcf_block;	/* pcgs flag to page_free() */
177 	uint_t		pcf_reserve;	/* pages freed after pcf_block set */
178 	uint_t		pcf_fill[10];	/* to line up on the caches */
179 };
180 
181 /*
182  * PCF_INDEX hash needs to be dynamic (every so often the hash changes where
183  * it will hash the cpu to).  This is done to prevent a drain condition
184  * from happening.  This drain condition will occur when pcf_count decrement
185  * occurs on cpu A and the increment of pcf_count always occurs on cpu B.  An
186  * example of this shows up with device interrupts.  The dma buffer is allocated
187  * by the cpu requesting the IO thus the pcf_count is decremented based on that.
188  * When the memory is returned by the interrupt thread, the pcf_count will be
189  * incremented based on the cpu servicing the interrupt.
190  */
191 static struct pcf pcf[MAX_PCF_FANOUT];
192 #define	PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \
193 	(randtick() >> 24)) & (pcf_fanout_mask))
194 
195 static int pcf_decrement_bucket(pgcnt_t);
196 static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int);
197 
198 kmutex_t	pcgs_lock;		/* serializes page_create_get_ */
199 kmutex_t	pcgs_cagelock;		/* serializes NOSLEEP cage allocs */
200 kmutex_t	pcgs_wait_lock;		/* used for delay in pcgs */
201 static kcondvar_t	pcgs_cv;	/* cv for delay in pcgs */
202 
203 #ifdef VM_STATS
204 
205 /*
206  * No locks, but so what, they are only statistics.
207  */
208 
209 static struct page_tcnt {
210 	int	pc_free_cache;		/* free's into cache list */
211 	int	pc_free_dontneed;	/* free's with dontneed */
212 	int	pc_free_pageout;	/* free's from pageout */
213 	int	pc_free_free;		/* free's into free list */
214 	int	pc_free_pages;		/* free's into large page free list */
215 	int	pc_destroy_pages;	/* large page destroy's */
216 	int	pc_get_cache;		/* get's from cache list */
217 	int	pc_get_free;		/* get's from free list */
218 	int	pc_reclaim;		/* reclaim's */
219 	int	pc_abortfree;		/* abort's of free pages */
220 	int	pc_find_hit;		/* find's that find page */
221 	int	pc_find_miss;		/* find's that don't find page */
222 	int	pc_destroy_free;	/* # of free pages destroyed */
223 #define	PC_HASH_CNT	(4*PAGE_HASHAVELEN)
224 	int	pc_find_hashlen[PC_HASH_CNT+1];
225 	int	pc_addclaim_pages;
226 	int	pc_subclaim_pages;
227 	int	pc_free_replacement_page[2];
228 	int	pc_try_demote_pages[6];
229 	int	pc_demote_pages[2];
230 } pagecnt;
231 
232 uint_t	hashin_count;
233 uint_t	hashin_not_held;
234 uint_t	hashin_already;
235 
236 uint_t	hashout_count;
237 uint_t	hashout_not_held;
238 
239 uint_t	page_create_count;
240 uint_t	page_create_not_enough;
241 uint_t	page_create_not_enough_again;
242 uint_t	page_create_zero;
243 uint_t	page_create_hashout;
244 uint_t	page_create_page_lock_failed;
245 uint_t	page_create_trylock_failed;
246 uint_t	page_create_found_one;
247 uint_t	page_create_hashin_failed;
248 uint_t	page_create_dropped_phm;
249 
250 uint_t	page_create_new;
251 uint_t	page_create_exists;
252 uint_t	page_create_putbacks;
253 uint_t	page_create_overshoot;
254 
255 uint_t	page_reclaim_zero;
256 uint_t	page_reclaim_zero_locked;
257 
258 uint_t	page_rename_exists;
259 uint_t	page_rename_count;
260 
261 uint_t	page_lookup_cnt[20];
262 uint_t	page_lookup_nowait_cnt[10];
263 uint_t	page_find_cnt;
264 uint_t	page_exists_cnt;
265 uint_t	page_exists_forreal_cnt;
266 uint_t	page_lookup_dev_cnt;
267 uint_t	get_cachelist_cnt;
268 uint_t	page_create_cnt[10];
269 uint_t	alloc_pages[9];
270 uint_t	page_exphcontg[19];
271 uint_t  page_create_large_cnt[10];
272 
273 #endif
274 
275 static inline page_t *
276 page_hash_search(ulong_t index, vnode_t *vnode, u_offset_t off)
277 {
278 	uint_t mylen = 0;
279 	page_t *page;
280 
281 	for (page = page_hash[index]; page; page = page->p_hash, mylen++)
282 		if (page->p_vnode == vnode && page->p_offset == off)
283 			break;
284 
285 #ifdef	VM_STATS
286 	if (page != NULL)
287 		pagecnt.pc_find_hit++;
288 	else
289 		pagecnt.pc_find_miss++;
290 
291 	pagecnt.pc_find_hashlen[MIN(mylen, PC_HASH_CNT)]++;
292 #endif
293 
294 	return (page);
295 }
296 
297 
298 #ifdef DEBUG
299 #define	MEMSEG_SEARCH_STATS
300 #endif
301 
302 #ifdef MEMSEG_SEARCH_STATS
303 struct memseg_stats {
304     uint_t nsearch;
305     uint_t nlastwon;
306     uint_t nhashwon;
307     uint_t nnotfound;
308 } memseg_stats;
309 
310 #define	MEMSEG_STAT_INCR(v) \
311 	atomic_inc_32(&memseg_stats.v)
312 #else
313 #define	MEMSEG_STAT_INCR(x)
314 #endif
315 
316 struct memseg *memsegs;		/* list of memory segments */
317 
318 /*
319  * /etc/system tunable to control large page allocation hueristic.
320  *
321  * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
322  * for large page allocation requests.  If a large page is not readily
323  * avaliable on the local freelists we will go through additional effort
324  * to create a large page, potentially moving smaller pages around to coalesce
325  * larger pages in the local lgroup.
326  * Default value of LPAP_DEFAULT will go to remote freelists if large pages
327  * are not readily available in the local lgroup.
328  */
329 enum lpap {
330 	LPAP_DEFAULT,	/* default large page allocation policy */
331 	LPAP_LOCAL	/* local large page allocation policy */
332 };
333 
334 enum lpap lpg_alloc_prefer = LPAP_DEFAULT;
335 
336 static void page_init_mem_config(void);
337 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
338 static void page_do_hashout(page_t *);
339 static void page_capture_init();
340 int page_capture_take_action(page_t *, uint_t, void *);
341 
342 static void page_demote_vp_pages(page_t *);
343 
344 
345 void
346 pcf_init(void)
347 {
348 	if (boot_ncpus != -1) {
349 		pcf_fanout = boot_ncpus;
350 	} else {
351 		pcf_fanout = max_ncpus;
352 	}
353 #ifdef sun4v
354 	/*
355 	 * Force at least 4 buckets if possible for sun4v.
356 	 */
357 	pcf_fanout = MAX(pcf_fanout, 4);
358 #endif /* sun4v */
359 
360 	/*
361 	 * Round up to the nearest power of 2.
362 	 */
363 	pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT);
364 	if (!ISP2(pcf_fanout)) {
365 		pcf_fanout = 1 << highbit(pcf_fanout);
366 
367 		if (pcf_fanout > MAX_PCF_FANOUT) {
368 			pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1);
369 		}
370 	}
371 	pcf_fanout_mask = pcf_fanout - 1;
372 }
373 
374 /*
375  * vm subsystem related initialization
376  */
377 void
378 vm_init(void)
379 {
380 	boolean_t callb_vm_cpr(void *, int);
381 
382 	(void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
383 	page_init_mem_config();
384 	page_retire_init();
385 	vm_usage_init();
386 	page_capture_init();
387 }
388 
389 /*
390  * This function is called at startup and when memory is added or deleted.
391  */
392 void
393 init_pages_pp_maximum()
394 {
395 	static pgcnt_t p_min;
396 	static pgcnt_t pages_pp_maximum_startup;
397 	static pgcnt_t avrmem_delta;
398 	static int init_done;
399 	static int user_set;	/* true if set in /etc/system */
400 
401 	if (init_done == 0) {
402 
403 		/* If the user specified a value, save it */
404 		if (pages_pp_maximum != 0) {
405 			user_set = 1;
406 			pages_pp_maximum_startup = pages_pp_maximum;
407 		}
408 
409 		/*
410 		 * Setting of pages_pp_maximum is based first time
411 		 * on the value of availrmem just after the start-up
412 		 * allocations. To preserve this relationship at run
413 		 * time, use a delta from availrmem_initial.
414 		 */
415 		ASSERT(availrmem_initial >= availrmem);
416 		avrmem_delta = availrmem_initial - availrmem;
417 
418 		/* The allowable floor of pages_pp_maximum */
419 		p_min = tune.t_minarmem + 100;
420 
421 		/* Make sure we don't come through here again. */
422 		init_done = 1;
423 	}
424 	/*
425 	 * Determine pages_pp_maximum, the number of currently available
426 	 * pages (availrmem) that can't be `locked'. If not set by
427 	 * the user, we set it to 4% of the currently available memory
428 	 * plus 4MB.
429 	 * But we also insist that it be greater than tune.t_minarmem;
430 	 * otherwise a process could lock down a lot of memory, get swapped
431 	 * out, and never have enough to get swapped back in.
432 	 */
433 	if (user_set)
434 		pages_pp_maximum = pages_pp_maximum_startup;
435 	else
436 		pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
437 		    + btop(4 * 1024 * 1024);
438 
439 	if (pages_pp_maximum <= p_min) {
440 		pages_pp_maximum = p_min;
441 	}
442 }
443 
444 /*
445  * In the past, we limited the maximum pages that could be gotten to essentially
446  * 1/2 of the total pages on the system. However, this is too conservative for
447  * some cases. For example, if we want to host a large virtual machine which
448  * needs to use a significant portion of the system's memory. In practice,
449  * allowing more than 1/2 of the total pages is fine, but becomes problematic
450  * as we approach or exceed 75% of the pages on the system. Thus, we limit the
451  * maximum to 23/32 of the total pages, which is ~72%.
452  */
453 void
454 set_max_page_get(pgcnt_t target_total_pages)
455 {
456 	max_page_get = (target_total_pages >> 5) * 23;
457 	ASSERT3U(max_page_get, >, 0);
458 }
459 
460 pgcnt_t
461 get_max_page_get()
462 {
463 	return (max_page_get);
464 }
465 
466 static pgcnt_t pending_delete;
467 
468 /*ARGSUSED*/
469 static void
470 page_mem_config_post_add(
471 	void *arg,
472 	pgcnt_t delta_pages)
473 {
474 	set_max_page_get(total_pages - pending_delete);
475 	init_pages_pp_maximum();
476 }
477 
478 /*ARGSUSED*/
479 static int
480 page_mem_config_pre_del(
481 	void *arg,
482 	pgcnt_t delta_pages)
483 {
484 	pgcnt_t nv;
485 
486 	nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
487 	set_max_page_get(total_pages - nv);
488 	return (0);
489 }
490 
491 /*ARGSUSED*/
492 static void
493 page_mem_config_post_del(
494 	void *arg,
495 	pgcnt_t delta_pages,
496 	int cancelled)
497 {
498 	pgcnt_t nv;
499 
500 	nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
501 	set_max_page_get(total_pages - nv);
502 	if (!cancelled)
503 		init_pages_pp_maximum();
504 }
505 
506 static kphysm_setup_vector_t page_mem_config_vec = {
507 	KPHYSM_SETUP_VECTOR_VERSION,
508 	page_mem_config_post_add,
509 	page_mem_config_pre_del,
510 	page_mem_config_post_del,
511 };
512 
513 static void
514 page_init_mem_config(void)
515 {
516 	int ret;
517 
518 	ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
519 	ASSERT(ret == 0);
520 }
521 
522 /*
523  * Evenly spread out the PCF counters for large free pages
524  */
525 static void
526 page_free_large_ctr(pgcnt_t npages)
527 {
528 	static struct pcf	*p = pcf;
529 	pgcnt_t			lump;
530 
531 	freemem += npages;
532 
533 	lump = roundup(npages, pcf_fanout) / pcf_fanout;
534 
535 	while (npages > 0) {
536 
537 		ASSERT(!p->pcf_block);
538 
539 		if (lump < npages) {
540 			p->pcf_count += (uint_t)lump;
541 			npages -= lump;
542 		} else {
543 			p->pcf_count += (uint_t)npages;
544 			npages = 0;
545 		}
546 
547 		ASSERT(!p->pcf_wait);
548 
549 		if (++p > &pcf[pcf_fanout - 1])
550 			p = pcf;
551 	}
552 
553 	ASSERT(npages == 0);
554 }
555 
556 /*
557  * Add a physical chunk of memory to the system free lists during startup.
558  * Platform specific startup() allocates the memory for the page structs.
559  *
560  * num	- number of page structures
561  * base - page number (pfn) to be associated with the first page.
562  *
563  * Since we are doing this during startup (ie. single threaded), we will
564  * use shortcut routines to avoid any locking overhead while putting all
565  * these pages on the freelists.
566  *
567  * NOTE: Any changes performed to page_free(), must also be performed to
568  *	 add_physmem() since this is how we initialize all page_t's at
569  *	 boot time.
570  */
571 void
572 add_physmem(
573 	page_t	*pp,
574 	pgcnt_t	num,
575 	pfn_t	pnum)
576 {
577 	page_t	*root = NULL;
578 	uint_t	szc = page_num_pagesizes() - 1;
579 	pgcnt_t	large = page_get_pagecnt(szc);
580 	pgcnt_t	cnt = 0;
581 
582 	TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
583 	    "add_physmem:pp %p num %lu", pp, num);
584 
585 	/*
586 	 * Arbitrarily limit the max page_get request
587 	 * to 1/2 of the page structs we have.
588 	 */
589 	total_pages += num;
590 	set_max_page_get(total_pages);
591 
592 	PLCNT_MODIFY_MAX(pnum, (long)num);
593 
594 	/*
595 	 * The physical space for the pages array
596 	 * representing ram pages has already been
597 	 * allocated.  Here we initialize each lock
598 	 * in the page structure, and put each on
599 	 * the free list
600 	 */
601 	for (; num; pp++, pnum++, num--) {
602 
603 		/*
604 		 * this needs to fill in the page number
605 		 * and do any other arch specific initialization
606 		 */
607 		add_physmem_cb(pp, pnum);
608 
609 		pp->p_lckcnt = 0;
610 		pp->p_cowcnt = 0;
611 		pp->p_slckcnt = 0;
612 
613 		/*
614 		 * Initialize the page lock as unlocked, since nobody
615 		 * can see or access this page yet.
616 		 */
617 		pp->p_selock = 0;
618 
619 		/*
620 		 * Initialize IO lock
621 		 */
622 		page_iolock_init(pp);
623 
624 		/*
625 		 * initialize other fields in the page_t
626 		 */
627 		PP_SETFREE(pp);
628 		page_clr_all_props(pp);
629 		PP_SETAGED(pp);
630 		pp->p_offset = (u_offset_t)-1;
631 		pp->p_next = pp;
632 		pp->p_prev = pp;
633 
634 		/*
635 		 * Simple case: System doesn't support large pages.
636 		 */
637 		if (szc == 0) {
638 			pp->p_szc = 0;
639 			page_free_at_startup(pp);
640 			continue;
641 		}
642 
643 		/*
644 		 * Handle unaligned pages, we collect them up onto
645 		 * the root page until we have a full large page.
646 		 */
647 		if (!IS_P2ALIGNED(pnum, large)) {
648 
649 			/*
650 			 * If not in a large page,
651 			 * just free as small page.
652 			 */
653 			if (root == NULL) {
654 				pp->p_szc = 0;
655 				page_free_at_startup(pp);
656 				continue;
657 			}
658 
659 			/*
660 			 * Link a constituent page into the large page.
661 			 */
662 			pp->p_szc = szc;
663 			page_list_concat(&root, &pp);
664 
665 			/*
666 			 * When large page is fully formed, free it.
667 			 */
668 			if (++cnt == large) {
669 				page_free_large_ctr(cnt);
670 				page_list_add_pages(root, PG_LIST_ISINIT);
671 				root = NULL;
672 				cnt = 0;
673 			}
674 			continue;
675 		}
676 
677 		/*
678 		 * At this point we have a page number which
679 		 * is aligned. We assert that we aren't already
680 		 * in a different large page.
681 		 */
682 		ASSERT(IS_P2ALIGNED(pnum, large));
683 		ASSERT(root == NULL && cnt == 0);
684 
685 		/*
686 		 * If insufficient number of pages left to form
687 		 * a large page, just free the small page.
688 		 */
689 		if (num < large) {
690 			pp->p_szc = 0;
691 			page_free_at_startup(pp);
692 			continue;
693 		}
694 
695 		/*
696 		 * Otherwise start a new large page.
697 		 */
698 		pp->p_szc = szc;
699 		cnt++;
700 		root = pp;
701 	}
702 	ASSERT(root == NULL && cnt == 0);
703 }
704 
705 /*
706  * Find a page representing the specified [vp, offset].
707  * If we find the page but it is intransit coming in,
708  * it will have an "exclusive" lock and we wait for
709  * the i/o to complete.  A page found on the free list
710  * is always reclaimed and then locked.  On success, the page
711  * is locked, its data is valid and it isn't on the free
712  * list, while a NULL is returned if the page doesn't exist.
713  */
714 page_t *
715 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
716 {
717 	return (page_lookup_create(vp, off, se, NULL, NULL, 0));
718 }
719 
720 /*
721  * Find a page representing the specified [vp, offset].
722  * We either return the one we found or, if passed in,
723  * create one with identity of [vp, offset] of the
724  * pre-allocated page. If we find existing page but it is
725  * intransit coming in, it will have an "exclusive" lock
726  * and we wait for the i/o to complete.  A page found on
727  * the free list is always reclaimed and then locked.
728  * On success, the page is locked, its data is valid and
729  * it isn't on the free list, while a NULL is returned
730  * if the page doesn't exist and newpp is NULL;
731  */
732 page_t *
733 page_lookup_create(
734 	vnode_t *vp,
735 	u_offset_t off,
736 	se_t se,
737 	page_t *newpp,
738 	spgcnt_t *nrelocp,
739 	int flags)
740 {
741 	page_t		*pp;
742 	kmutex_t	*phm;
743 	ulong_t		index;
744 	uint_t		hash_locked;
745 	uint_t		es;
746 
747 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
748 	VM_STAT_ADD(page_lookup_cnt[0]);
749 	ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
750 
751 	/*
752 	 * Acquire the appropriate page hash lock since
753 	 * we have to search the hash list.  Pages that
754 	 * hash to this list can't change identity while
755 	 * this lock is held.
756 	 */
757 	hash_locked = 0;
758 	index = PAGE_HASH_FUNC(vp, off);
759 	phm = NULL;
760 top:
761 	pp = page_hash_search(index, vp, off);
762 	if (pp != NULL) {
763 		VM_STAT_ADD(page_lookup_cnt[1]);
764 		es = (newpp != NULL) ? 1 : 0;
765 		es |= flags;
766 		if (!hash_locked) {
767 			VM_STAT_ADD(page_lookup_cnt[2]);
768 			if (!page_try_reclaim_lock(pp, se, es)) {
769 				/*
770 				 * On a miss, acquire the phm.  Then
771 				 * next time, page_lock() will be called,
772 				 * causing a wait if the page is busy.
773 				 * just looping with page_trylock() would
774 				 * get pretty boring.
775 				 */
776 				VM_STAT_ADD(page_lookup_cnt[3]);
777 				phm = PAGE_HASH_MUTEX(index);
778 				mutex_enter(phm);
779 				hash_locked = 1;
780 				goto top;
781 			}
782 		} else {
783 			VM_STAT_ADD(page_lookup_cnt[4]);
784 			if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
785 				VM_STAT_ADD(page_lookup_cnt[5]);
786 				goto top;
787 			}
788 		}
789 
790 		/*
791 		 * Since `pp' is locked it can not change identity now.
792 		 * Reconfirm we locked the correct page.
793 		 *
794 		 * Both the p_vnode and p_offset *must* be cast volatile
795 		 * to force a reload of their values: The page_hash_search
796 		 * function will have stuffed p_vnode and p_offset into
797 		 * registers before calling page_trylock(); another thread,
798 		 * actually holding the hash lock, could have changed the
799 		 * page's identity in memory, but our registers would not
800 		 * be changed, fooling the reconfirmation.  If the hash
801 		 * lock was held during the search, the casting would
802 		 * not be needed.
803 		 */
804 		VM_STAT_ADD(page_lookup_cnt[6]);
805 		if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
806 		    ((volatile u_offset_t)(pp->p_offset) != off)) {
807 			VM_STAT_ADD(page_lookup_cnt[7]);
808 			if (hash_locked) {
809 				panic("page_lookup_create: lost page %p",
810 				    (void *)pp);
811 				/*NOTREACHED*/
812 			}
813 			page_unlock(pp);
814 			phm = PAGE_HASH_MUTEX(index);
815 			mutex_enter(phm);
816 			hash_locked = 1;
817 			goto top;
818 		}
819 
820 		/*
821 		 * If page_trylock() was called, then pp may still be on
822 		 * the cachelist (can't be on the free list, it would not
823 		 * have been found in the search).  If it is on the
824 		 * cachelist it must be pulled now. To pull the page from
825 		 * the cachelist, it must be exclusively locked.
826 		 *
827 		 * The other big difference between page_trylock() and
828 		 * page_lock(), is that page_lock() will pull the
829 		 * page from whatever free list (the cache list in this
830 		 * case) the page is on.  If page_trylock() was used
831 		 * above, then we have to do the reclaim ourselves.
832 		 */
833 		if ((!hash_locked) && (PP_ISFREE(pp))) {
834 			ASSERT(PP_ISAGED(pp) == 0);
835 			VM_STAT_ADD(page_lookup_cnt[8]);
836 
837 			/*
838 			 * page_relcaim will insure that we
839 			 * have this page exclusively
840 			 */
841 
842 			if (!page_reclaim(pp, NULL)) {
843 				/*
844 				 * Page_reclaim dropped whatever lock
845 				 * we held.
846 				 */
847 				VM_STAT_ADD(page_lookup_cnt[9]);
848 				phm = PAGE_HASH_MUTEX(index);
849 				mutex_enter(phm);
850 				hash_locked = 1;
851 				goto top;
852 			} else if (se == SE_SHARED && newpp == NULL) {
853 				VM_STAT_ADD(page_lookup_cnt[10]);
854 				page_downgrade(pp);
855 			}
856 		}
857 
858 		if (hash_locked) {
859 			mutex_exit(phm);
860 		}
861 
862 		if (newpp != NULL && pp->p_szc < newpp->p_szc &&
863 		    PAGE_EXCL(pp) && nrelocp != NULL) {
864 			ASSERT(nrelocp != NULL);
865 			(void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
866 			    NULL);
867 			if (*nrelocp > 0) {
868 				VM_STAT_COND_ADD(*nrelocp == 1,
869 				    page_lookup_cnt[11]);
870 				VM_STAT_COND_ADD(*nrelocp > 1,
871 				    page_lookup_cnt[12]);
872 				pp = newpp;
873 				se = SE_EXCL;
874 			} else {
875 				if (se == SE_SHARED) {
876 					page_downgrade(pp);
877 				}
878 				VM_STAT_ADD(page_lookup_cnt[13]);
879 			}
880 		} else if (newpp != NULL && nrelocp != NULL) {
881 			if (PAGE_EXCL(pp) && se == SE_SHARED) {
882 				page_downgrade(pp);
883 			}
884 			VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
885 			    page_lookup_cnt[14]);
886 			VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
887 			    page_lookup_cnt[15]);
888 			VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
889 			    page_lookup_cnt[16]);
890 		} else if (newpp != NULL && PAGE_EXCL(pp)) {
891 			se = SE_EXCL;
892 		}
893 	} else if (!hash_locked) {
894 		VM_STAT_ADD(page_lookup_cnt[17]);
895 		phm = PAGE_HASH_MUTEX(index);
896 		mutex_enter(phm);
897 		hash_locked = 1;
898 		goto top;
899 	} else if (newpp != NULL) {
900 		/*
901 		 * If we have a preallocated page then
902 		 * insert it now and basically behave like
903 		 * page_create.
904 		 */
905 		VM_STAT_ADD(page_lookup_cnt[18]);
906 		/*
907 		 * Since we hold the page hash mutex and
908 		 * just searched for this page, page_hashin
909 		 * had better not fail.  If it does, that
910 		 * means some thread did not follow the
911 		 * page hash mutex rules.  Panic now and
912 		 * get it over with.  As usual, go down
913 		 * holding all the locks.
914 		 */
915 		ASSERT(MUTEX_HELD(phm));
916 		if (!page_hashin(newpp, vp, off, phm)) {
917 			ASSERT(MUTEX_HELD(phm));
918 			panic("page_lookup_create: hashin failed %p %p %llx %p",
919 			    (void *)newpp, (void *)vp, off, (void *)phm);
920 			/*NOTREACHED*/
921 		}
922 		ASSERT(MUTEX_HELD(phm));
923 		mutex_exit(phm);
924 		phm = NULL;
925 		page_set_props(newpp, P_REF);
926 		page_io_lock(newpp);
927 		pp = newpp;
928 		se = SE_EXCL;
929 	} else {
930 		VM_STAT_ADD(page_lookup_cnt[19]);
931 		mutex_exit(phm);
932 	}
933 
934 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
935 
936 	ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
937 
938 	return (pp);
939 }
940 
941 /*
942  * Search the hash list for the page representing the
943  * specified [vp, offset] and return it locked.  Skip
944  * free pages and pages that cannot be locked as requested.
945  * Used while attempting to kluster pages.
946  */
947 page_t *
948 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
949 {
950 	page_t		*pp;
951 	kmutex_t	*phm;
952 	ulong_t		index;
953 	uint_t		locked;
954 
955 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
956 	VM_STAT_ADD(page_lookup_nowait_cnt[0]);
957 
958 	index = PAGE_HASH_FUNC(vp, off);
959 	pp = page_hash_search(index, vp, off);
960 	locked = 0;
961 	if (pp == NULL) {
962 top:
963 		VM_STAT_ADD(page_lookup_nowait_cnt[1]);
964 		locked = 1;
965 		phm = PAGE_HASH_MUTEX(index);
966 		mutex_enter(phm);
967 		pp = page_hash_search(index, vp, off);
968 	}
969 
970 	if (pp == NULL || PP_ISFREE(pp)) {
971 		VM_STAT_ADD(page_lookup_nowait_cnt[2]);
972 		pp = NULL;
973 	} else {
974 		if (!page_trylock(pp, se)) {
975 			VM_STAT_ADD(page_lookup_nowait_cnt[3]);
976 			pp = NULL;
977 		} else {
978 			VM_STAT_ADD(page_lookup_nowait_cnt[4]);
979 			/*
980 			 * See the comment in page_lookup()
981 			 */
982 			if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
983 			    ((u_offset_t)(pp->p_offset) != off)) {
984 				VM_STAT_ADD(page_lookup_nowait_cnt[5]);
985 				if (locked) {
986 					panic("page_lookup_nowait %p",
987 					    (void *)pp);
988 					/*NOTREACHED*/
989 				}
990 				page_unlock(pp);
991 				goto top;
992 			}
993 			if (PP_ISFREE(pp)) {
994 				VM_STAT_ADD(page_lookup_nowait_cnt[6]);
995 				page_unlock(pp);
996 				pp = NULL;
997 			}
998 		}
999 	}
1000 	if (locked) {
1001 		VM_STAT_ADD(page_lookup_nowait_cnt[7]);
1002 		mutex_exit(phm);
1003 	}
1004 
1005 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
1006 
1007 	return (pp);
1008 }
1009 
1010 /*
1011  * Search the hash list for a page with the specified [vp, off]
1012  * that is known to exist and is already locked.  This routine
1013  * is typically used by segment SOFTUNLOCK routines.
1014  */
1015 page_t *
1016 page_find(vnode_t *vp, u_offset_t off)
1017 {
1018 	page_t		*pp;
1019 	kmutex_t	*phm;
1020 	ulong_t		index;
1021 
1022 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1023 	VM_STAT_ADD(page_find_cnt);
1024 
1025 	index = PAGE_HASH_FUNC(vp, off);
1026 	phm = PAGE_HASH_MUTEX(index);
1027 
1028 	mutex_enter(phm);
1029 	pp = page_hash_search(index, vp, off);
1030 	mutex_exit(phm);
1031 
1032 	ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
1033 	return (pp);
1034 }
1035 
1036 /*
1037  * Determine whether a page with the specified [vp, off]
1038  * currently exists in the system.  Obviously this should
1039  * only be considered as a hint since nothing prevents the
1040  * page from disappearing or appearing immediately after
1041  * the return from this routine. Subsequently, we don't
1042  * even bother to lock the list.
1043  */
1044 page_t *
1045 page_exists(vnode_t *vp, u_offset_t off)
1046 {
1047 	ulong_t		index;
1048 
1049 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1050 	VM_STAT_ADD(page_exists_cnt);
1051 
1052 	index = PAGE_HASH_FUNC(vp, off);
1053 
1054 	return (page_hash_search(index, vp, off));
1055 }
1056 
1057 /*
1058  * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1059  * page_size(szc)) range.  if they exist and ppa is not NULL fill ppa array
1060  * with these pages locked SHARED. If necessary reclaim pages from
1061  * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1062  *
1063  * If we fail to lock pages still return 1 if pages exist and contiguous.
1064  * But in this case return value is just a hint. ppa array won't be filled.
1065  * Caller should initialize ppa[0] as NULL to distinguish return value.
1066  *
1067  * Returns 0 if pages don't exist or not physically contiguous.
1068  *
1069  * This routine doesn't work for anonymous(swapfs) pages.
1070  */
1071 int
1072 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1073 {
1074 	pgcnt_t pages;
1075 	pfn_t pfn;
1076 	page_t *rootpp;
1077 	pgcnt_t i;
1078 	pgcnt_t j;
1079 	u_offset_t save_off = off;
1080 	ulong_t index;
1081 	kmutex_t *phm;
1082 	page_t *pp;
1083 	uint_t pszc;
1084 	int loopcnt = 0;
1085 
1086 	ASSERT(szc != 0);
1087 	ASSERT(vp != NULL);
1088 	ASSERT(!IS_SWAPFSVP(vp));
1089 	ASSERT(!VN_ISKAS(vp));
1090 
1091 again:
1092 	if (++loopcnt > 3) {
1093 		VM_STAT_ADD(page_exphcontg[0]);
1094 		return (0);
1095 	}
1096 
1097 	index = PAGE_HASH_FUNC(vp, off);
1098 	phm = PAGE_HASH_MUTEX(index);
1099 
1100 	mutex_enter(phm);
1101 	pp = page_hash_search(index, vp, off);
1102 	mutex_exit(phm);
1103 
1104 	VM_STAT_ADD(page_exphcontg[1]);
1105 
1106 	if (pp == NULL) {
1107 		VM_STAT_ADD(page_exphcontg[2]);
1108 		return (0);
1109 	}
1110 
1111 	pages = page_get_pagecnt(szc);
1112 	rootpp = pp;
1113 	pfn = rootpp->p_pagenum;
1114 
1115 	if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1116 		VM_STAT_ADD(page_exphcontg[3]);
1117 		if (!page_trylock(pp, SE_SHARED)) {
1118 			VM_STAT_ADD(page_exphcontg[4]);
1119 			return (1);
1120 		}
1121 		/*
1122 		 * Also check whether p_pagenum was modified by DR.
1123 		 */
1124 		if (pp->p_szc != pszc || pp->p_vnode != vp ||
1125 		    pp->p_offset != off || pp->p_pagenum != pfn) {
1126 			VM_STAT_ADD(page_exphcontg[5]);
1127 			page_unlock(pp);
1128 			off = save_off;
1129 			goto again;
1130 		}
1131 		/*
1132 		 * szc was non zero and vnode and offset matched after we
1133 		 * locked the page it means it can't become free on us.
1134 		 */
1135 		ASSERT(!PP_ISFREE(pp));
1136 		if (!IS_P2ALIGNED(pfn, pages)) {
1137 			page_unlock(pp);
1138 			return (0);
1139 		}
1140 		ppa[0] = pp;
1141 		pp++;
1142 		off += PAGESIZE;
1143 		pfn++;
1144 		for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1145 			if (!page_trylock(pp, SE_SHARED)) {
1146 				VM_STAT_ADD(page_exphcontg[6]);
1147 				pp--;
1148 				while (i-- > 0) {
1149 					page_unlock(pp);
1150 					pp--;
1151 				}
1152 				ppa[0] = NULL;
1153 				return (1);
1154 			}
1155 			if (pp->p_szc != pszc) {
1156 				VM_STAT_ADD(page_exphcontg[7]);
1157 				page_unlock(pp);
1158 				pp--;
1159 				while (i-- > 0) {
1160 					page_unlock(pp);
1161 					pp--;
1162 				}
1163 				ppa[0] = NULL;
1164 				off = save_off;
1165 				goto again;
1166 			}
1167 			/*
1168 			 * szc the same as for previous already locked pages
1169 			 * with right identity. Since this page had correct
1170 			 * szc after we locked it can't get freed or destroyed
1171 			 * and therefore must have the expected identity.
1172 			 */
1173 			ASSERT(!PP_ISFREE(pp));
1174 			if (pp->p_vnode != vp ||
1175 			    pp->p_offset != off) {
1176 				panic("page_exists_physcontig: "
1177 				    "large page identity doesn't match");
1178 			}
1179 			ppa[i] = pp;
1180 			ASSERT(pp->p_pagenum == pfn);
1181 		}
1182 		VM_STAT_ADD(page_exphcontg[8]);
1183 		ppa[pages] = NULL;
1184 		return (1);
1185 	} else if (pszc >= szc) {
1186 		VM_STAT_ADD(page_exphcontg[9]);
1187 		if (!IS_P2ALIGNED(pfn, pages)) {
1188 			return (0);
1189 		}
1190 		return (1);
1191 	}
1192 
1193 	if (!IS_P2ALIGNED(pfn, pages)) {
1194 		VM_STAT_ADD(page_exphcontg[10]);
1195 		return (0);
1196 	}
1197 
1198 	if (page_numtomemseg_nolock(pfn) !=
1199 	    page_numtomemseg_nolock(pfn + pages - 1)) {
1200 		VM_STAT_ADD(page_exphcontg[11]);
1201 		return (0);
1202 	}
1203 
1204 	/*
1205 	 * We loop up 4 times across pages to promote page size.
1206 	 * We're extra cautious to promote page size atomically with respect
1207 	 * to everybody else.  But we can probably optimize into 1 loop if
1208 	 * this becomes an issue.
1209 	 */
1210 
1211 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1212 		if (!page_trylock(pp, SE_EXCL)) {
1213 			VM_STAT_ADD(page_exphcontg[12]);
1214 			break;
1215 		}
1216 		/*
1217 		 * Check whether p_pagenum was modified by DR.
1218 		 */
1219 		if (pp->p_pagenum != pfn) {
1220 			page_unlock(pp);
1221 			break;
1222 		}
1223 		if (pp->p_vnode != vp ||
1224 		    pp->p_offset != off) {
1225 			VM_STAT_ADD(page_exphcontg[13]);
1226 			page_unlock(pp);
1227 			break;
1228 		}
1229 		if (pp->p_szc >= szc) {
1230 			ASSERT(i == 0);
1231 			page_unlock(pp);
1232 			off = save_off;
1233 			goto again;
1234 		}
1235 	}
1236 
1237 	if (i != pages) {
1238 		VM_STAT_ADD(page_exphcontg[14]);
1239 		--pp;
1240 		while (i-- > 0) {
1241 			page_unlock(pp);
1242 			--pp;
1243 		}
1244 		return (0);
1245 	}
1246 
1247 	pp = rootpp;
1248 	for (i = 0; i < pages; i++, pp++) {
1249 		if (PP_ISFREE(pp)) {
1250 			VM_STAT_ADD(page_exphcontg[15]);
1251 			ASSERT(!PP_ISAGED(pp));
1252 			ASSERT(pp->p_szc == 0);
1253 			if (!page_reclaim(pp, NULL)) {
1254 				break;
1255 			}
1256 		} else {
1257 			ASSERT(pp->p_szc < szc);
1258 			VM_STAT_ADD(page_exphcontg[16]);
1259 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1260 		}
1261 	}
1262 	if (i < pages) {
1263 		VM_STAT_ADD(page_exphcontg[17]);
1264 		/*
1265 		 * page_reclaim failed because we were out of memory.
1266 		 * drop the rest of the locks and return because this page
1267 		 * must be already reallocated anyway.
1268 		 */
1269 		pp = rootpp;
1270 		for (j = 0; j < pages; j++, pp++) {
1271 			if (j != i) {
1272 				page_unlock(pp);
1273 			}
1274 		}
1275 		return (0);
1276 	}
1277 
1278 	off = save_off;
1279 	pp = rootpp;
1280 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1281 		ASSERT(PAGE_EXCL(pp));
1282 		ASSERT(!PP_ISFREE(pp));
1283 		ASSERT(!hat_page_is_mapped(pp));
1284 		ASSERT(pp->p_vnode == vp);
1285 		ASSERT(pp->p_offset == off);
1286 		pp->p_szc = szc;
1287 	}
1288 	pp = rootpp;
1289 	for (i = 0; i < pages; i++, pp++) {
1290 		if (ppa == NULL) {
1291 			page_unlock(pp);
1292 		} else {
1293 			ppa[i] = pp;
1294 			page_downgrade(ppa[i]);
1295 		}
1296 	}
1297 	if (ppa != NULL) {
1298 		ppa[pages] = NULL;
1299 	}
1300 	VM_STAT_ADD(page_exphcontg[18]);
1301 	ASSERT(vp->v_pages != NULL);
1302 	return (1);
1303 }
1304 
1305 /*
1306  * Determine whether a page with the specified [vp, off]
1307  * currently exists in the system and if so return its
1308  * size code. Obviously this should only be considered as
1309  * a hint since nothing prevents the page from disappearing
1310  * or appearing immediately after the return from this routine.
1311  */
1312 int
1313 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1314 {
1315 	page_t		*pp;
1316 	kmutex_t	*phm;
1317 	ulong_t		index;
1318 	int		rc = 0;
1319 
1320 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1321 	ASSERT(szc != NULL);
1322 	VM_STAT_ADD(page_exists_forreal_cnt);
1323 
1324 	index = PAGE_HASH_FUNC(vp, off);
1325 	phm = PAGE_HASH_MUTEX(index);
1326 
1327 	mutex_enter(phm);
1328 	pp = page_hash_search(index, vp, off);
1329 	if (pp != NULL) {
1330 		*szc = pp->p_szc;
1331 		rc = 1;
1332 	}
1333 	mutex_exit(phm);
1334 	return (rc);
1335 }
1336 
1337 /* wakeup threads waiting for pages in page_create_get_something() */
1338 void
1339 wakeup_pcgs(void)
1340 {
1341 	if (!CV_HAS_WAITERS(&pcgs_cv))
1342 		return;
1343 	cv_broadcast(&pcgs_cv);
1344 }
1345 
1346 /*
1347  * 'freemem' is used all over the kernel as an indication of how many
1348  * pages are free (either on the cache list or on the free page list)
1349  * in the system.  In very few places is a really accurate 'freemem'
1350  * needed.  To avoid contention of the lock protecting a the
1351  * single freemem, it was spread out into NCPU buckets.  Set_freemem
1352  * sets freemem to the total of all NCPU buckets.  It is called from
1353  * clock() on each TICK.
1354  */
1355 void
1356 set_freemem(void)
1357 {
1358 	struct pcf	*p;
1359 	ulong_t		t;
1360 	uint_t		i;
1361 
1362 	t = 0;
1363 	p = pcf;
1364 	for (i = 0;  i < pcf_fanout; i++) {
1365 		t += p->pcf_count;
1366 		p++;
1367 	}
1368 	freemem = t;
1369 
1370 	/*
1371 	 * Don't worry about grabbing mutex.  It's not that
1372 	 * critical if we miss a tick or two.  This is
1373 	 * where we wakeup possible delayers in
1374 	 * page_create_get_something().
1375 	 */
1376 	wakeup_pcgs();
1377 }
1378 
1379 ulong_t
1380 get_freemem()
1381 {
1382 	struct pcf	*p;
1383 	ulong_t		t;
1384 	uint_t		i;
1385 
1386 	t = 0;
1387 	p = pcf;
1388 	for (i = 0; i < pcf_fanout; i++) {
1389 		t += p->pcf_count;
1390 		p++;
1391 	}
1392 	/*
1393 	 * We just calculated it, might as well set it.
1394 	 */
1395 	freemem = t;
1396 	return (t);
1397 }
1398 
1399 /*
1400  * Acquire all of the page cache & free (pcf) locks.
1401  */
1402 void
1403 pcf_acquire_all()
1404 {
1405 	struct pcf	*p;
1406 	uint_t		i;
1407 
1408 	p = pcf;
1409 	for (i = 0; i < pcf_fanout; i++) {
1410 		mutex_enter(&p->pcf_lock);
1411 		p++;
1412 	}
1413 }
1414 
1415 /*
1416  * Release all the pcf_locks.
1417  */
1418 void
1419 pcf_release_all()
1420 {
1421 	struct pcf	*p;
1422 	uint_t		i;
1423 
1424 	p = pcf;
1425 	for (i = 0; i < pcf_fanout; i++) {
1426 		mutex_exit(&p->pcf_lock);
1427 		p++;
1428 	}
1429 }
1430 
1431 /*
1432  * Inform the VM system that we need some pages freed up.
1433  * Calls must be symmetric, e.g.:
1434  *
1435  *	page_needfree(100);
1436  *	wait a bit;
1437  *	page_needfree(-100);
1438  */
1439 void
1440 page_needfree(spgcnt_t npages)
1441 {
1442 	mutex_enter(&new_freemem_lock);
1443 	needfree += npages;
1444 	mutex_exit(&new_freemem_lock);
1445 }
1446 
1447 /*
1448  * Throttle for page_create(): try to prevent freemem from dropping
1449  * below throttlefree.  We can't provide a 100% guarantee because
1450  * KM_NOSLEEP allocations, page_reclaim(), and various other things
1451  * nibble away at the freelist.  However, we can block all PG_WAIT
1452  * allocations until memory becomes available.  The motivation is
1453  * that several things can fall apart when there's no free memory:
1454  *
1455  * (1) If pageout() needs memory to push a page, the system deadlocks.
1456  *
1457  * (2) By (broken) specification, timeout(9F) can neither fail nor
1458  *     block, so it has no choice but to panic the system if it
1459  *     cannot allocate a callout structure.
1460  *
1461  * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1462  *     it panics if it cannot allocate a callback structure.
1463  *
1464  * (4) Untold numbers of third-party drivers have not yet been hardened
1465  *     against KM_NOSLEEP and/or allocb() failures; they simply assume
1466  *     success and panic the system with a data fault on failure.
1467  *     (The long-term solution to this particular problem is to ship
1468  *     hostile fault-injecting DEBUG kernels with the DDK.)
1469  *
1470  * It is theoretically impossible to guarantee success of non-blocking
1471  * allocations, but in practice, this throttle is very hard to break.
1472  */
1473 static int
1474 page_create_throttle(pgcnt_t npages, int flags)
1475 {
1476 	ulong_t	fm;
1477 	uint_t	i;
1478 	pgcnt_t tf;	/* effective value of throttlefree */
1479 
1480 	/*
1481 	 * Normal priority allocations.
1482 	 */
1483 	if ((flags & (PG_WAIT | PG_NORMALPRI)) == PG_NORMALPRI) {
1484 		ASSERT(!(flags & (PG_PANIC | PG_PUSHPAGE)));
1485 		return (freemem >= npages + throttlefree);
1486 	}
1487 
1488 	/*
1489 	 * Never deny pages when:
1490 	 * - it's a thread that cannot block [NOMEMWAIT()]
1491 	 * - the allocation cannot block and must not fail
1492 	 * - the allocation cannot block and is pageout dispensated
1493 	 */
1494 	if (NOMEMWAIT() ||
1495 	    ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1496 	    ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1497 		return (1);
1498 
1499 	/*
1500 	 * If the allocation can't block, we look favorably upon it
1501 	 * unless we're below pageout_reserve.  In that case we fail
1502 	 * the allocation because we want to make sure there are a few
1503 	 * pages available for pageout.
1504 	 */
1505 	if ((flags & PG_WAIT) == 0)
1506 		return (freemem >= npages + pageout_reserve);
1507 
1508 	/* Calculate the effective throttlefree value */
1509 	tf = throttlefree -
1510 	    ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1511 
1512 	cv_signal(&proc_pageout->p_cv);
1513 
1514 	for (;;) {
1515 		fm = 0;
1516 		pcf_acquire_all();
1517 		mutex_enter(&new_freemem_lock);
1518 		for (i = 0; i < pcf_fanout; i++) {
1519 			fm += pcf[i].pcf_count;
1520 			pcf[i].pcf_wait++;
1521 			mutex_exit(&pcf[i].pcf_lock);
1522 		}
1523 		freemem = fm;
1524 		if (freemem >= npages + tf) {
1525 			mutex_exit(&new_freemem_lock);
1526 			break;
1527 		}
1528 		needfree += npages;
1529 		freemem_wait++;
1530 		cv_wait(&freemem_cv, &new_freemem_lock);
1531 		freemem_wait--;
1532 		needfree -= npages;
1533 		mutex_exit(&new_freemem_lock);
1534 	}
1535 	return (1);
1536 }
1537 
1538 /*
1539  * page_create_wait() is called to either coalesce pages from the
1540  * different pcf buckets or to wait because there simply are not
1541  * enough pages to satisfy the caller's request.
1542  *
1543  * Sadly, this is called from platform/vm/vm_machdep.c
1544  */
1545 int
1546 page_create_wait(pgcnt_t npages, uint_t flags)
1547 {
1548 	pgcnt_t		total;
1549 	uint_t		i;
1550 	struct pcf	*p;
1551 
1552 	/*
1553 	 * Wait until there are enough free pages to satisfy our
1554 	 * entire request.
1555 	 * We set needfree += npages before prodding pageout, to make sure
1556 	 * it does real work when npages > lotsfree > freemem.
1557 	 */
1558 	VM_STAT_ADD(page_create_not_enough);
1559 
1560 	ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1561 checkagain:
1562 	if ((flags & PG_NORELOC) &&
1563 	    kcage_freemem < kcage_throttlefree + npages)
1564 		(void) kcage_create_throttle(npages, flags);
1565 
1566 	if (freemem < npages + throttlefree)
1567 		if (!page_create_throttle(npages, flags))
1568 			return (0);
1569 
1570 	if (pcf_decrement_bucket(npages) ||
1571 	    pcf_decrement_multiple(&total, npages, 0))
1572 		return (1);
1573 
1574 	/*
1575 	 * All of the pcf locks are held, there are not enough pages
1576 	 * to satisfy the request (npages < total).
1577 	 * Be sure to acquire the new_freemem_lock before dropping
1578 	 * the pcf locks.  This prevents dropping wakeups in page_free().
1579 	 * The order is always pcf_lock then new_freemem_lock.
1580 	 *
1581 	 * Since we hold all the pcf locks, it is a good time to set freemem.
1582 	 *
1583 	 * If the caller does not want to wait, return now.
1584 	 * Else turn the pageout daemon loose to find something
1585 	 * and wait till it does.
1586 	 *
1587 	 */
1588 	freemem = total;
1589 
1590 	if ((flags & PG_WAIT) == 0) {
1591 		pcf_release_all();
1592 
1593 		TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1594 		"page_create_nomem:npages %ld freemem %ld", npages, freemem);
1595 		return (0);
1596 	}
1597 
1598 	ASSERT(proc_pageout != NULL);
1599 	cv_signal(&proc_pageout->p_cv);
1600 
1601 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1602 	    "page_create_sleep_start: freemem %ld needfree %ld",
1603 	    freemem, needfree);
1604 
1605 	/*
1606 	 * We are going to wait.
1607 	 * We currently hold all of the pcf_locks,
1608 	 * get the new_freemem_lock (it protects freemem_wait),
1609 	 * before dropping the pcf_locks.
1610 	 */
1611 	mutex_enter(&new_freemem_lock);
1612 
1613 	p = pcf;
1614 	for (i = 0; i < pcf_fanout; i++) {
1615 		p->pcf_wait++;
1616 		mutex_exit(&p->pcf_lock);
1617 		p++;
1618 	}
1619 
1620 	needfree += npages;
1621 	freemem_wait++;
1622 
1623 	cv_wait(&freemem_cv, &new_freemem_lock);
1624 
1625 	freemem_wait--;
1626 	needfree -= npages;
1627 
1628 	mutex_exit(&new_freemem_lock);
1629 
1630 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1631 	    "page_create_sleep_end: freemem %ld needfree %ld",
1632 	    freemem, needfree);
1633 
1634 	VM_STAT_ADD(page_create_not_enough_again);
1635 	goto checkagain;
1636 }
1637 /*
1638  * A routine to do the opposite of page_create_wait().
1639  */
1640 void
1641 page_create_putback(spgcnt_t npages)
1642 {
1643 	struct pcf	*p;
1644 	pgcnt_t		lump;
1645 	uint_t		*which;
1646 
1647 	/*
1648 	 * When a contiguous lump is broken up, we have to
1649 	 * deal with lots of pages (min 64) so lets spread
1650 	 * the wealth around.
1651 	 */
1652 	lump = roundup(npages, pcf_fanout) / pcf_fanout;
1653 	freemem += npages;
1654 
1655 	for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) {
1656 		which = &p->pcf_count;
1657 
1658 		mutex_enter(&p->pcf_lock);
1659 
1660 		if (p->pcf_block) {
1661 			which = &p->pcf_reserve;
1662 		}
1663 
1664 		if (lump < npages) {
1665 			*which += (uint_t)lump;
1666 			npages -= lump;
1667 		} else {
1668 			*which += (uint_t)npages;
1669 			npages = 0;
1670 		}
1671 
1672 		if (p->pcf_wait) {
1673 			mutex_enter(&new_freemem_lock);
1674 			/*
1675 			 * Check to see if some other thread
1676 			 * is actually waiting.  Another bucket
1677 			 * may have woken it up by now.  If there
1678 			 * are no waiters, then set our pcf_wait
1679 			 * count to zero to avoid coming in here
1680 			 * next time.
1681 			 */
1682 			if (freemem_wait) {
1683 				if (npages > 1) {
1684 					cv_broadcast(&freemem_cv);
1685 				} else {
1686 					cv_signal(&freemem_cv);
1687 				}
1688 				p->pcf_wait--;
1689 			} else {
1690 				p->pcf_wait = 0;
1691 			}
1692 			mutex_exit(&new_freemem_lock);
1693 		}
1694 		mutex_exit(&p->pcf_lock);
1695 	}
1696 	ASSERT(npages == 0);
1697 }
1698 
1699 /*
1700  * A helper routine for page_create_get_something.
1701  * The indenting got to deep down there.
1702  * Unblock the pcf counters.  Any pages freed after
1703  * pcf_block got set are moved to pcf_count and
1704  * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1705  */
1706 static void
1707 pcgs_unblock(void)
1708 {
1709 	int		i;
1710 	struct pcf	*p;
1711 
1712 	/* Update freemem while we're here. */
1713 	freemem = 0;
1714 	p = pcf;
1715 	for (i = 0; i < pcf_fanout; i++) {
1716 		mutex_enter(&p->pcf_lock);
1717 		ASSERT(p->pcf_count == 0);
1718 		p->pcf_count = p->pcf_reserve;
1719 		p->pcf_block = 0;
1720 		freemem += p->pcf_count;
1721 		if (p->pcf_wait) {
1722 			mutex_enter(&new_freemem_lock);
1723 			if (freemem_wait) {
1724 				if (p->pcf_reserve > 1) {
1725 					cv_broadcast(&freemem_cv);
1726 					p->pcf_wait = 0;
1727 				} else {
1728 					cv_signal(&freemem_cv);
1729 					p->pcf_wait--;
1730 				}
1731 			} else {
1732 				p->pcf_wait = 0;
1733 			}
1734 			mutex_exit(&new_freemem_lock);
1735 		}
1736 		p->pcf_reserve = 0;
1737 		mutex_exit(&p->pcf_lock);
1738 		p++;
1739 	}
1740 }
1741 
1742 /*
1743  * Called from page_create_va() when both the cache and free lists
1744  * have been checked once.
1745  *
1746  * Either returns a page or panics since the accounting was done
1747  * way before we got here.
1748  *
1749  * We don't come here often, so leave the accounting on permanently.
1750  */
1751 
1752 #define	MAX_PCGS	100
1753 
1754 #ifdef	DEBUG
1755 #define	PCGS_TRIES	100
1756 #else	/* DEBUG */
1757 #define	PCGS_TRIES	10
1758 #endif	/* DEBUG */
1759 
1760 #ifdef	VM_STATS
1761 uint_t	pcgs_counts[PCGS_TRIES];
1762 uint_t	pcgs_too_many;
1763 uint_t	pcgs_entered;
1764 uint_t	pcgs_entered_noreloc;
1765 uint_t	pcgs_locked;
1766 uint_t	pcgs_cagelocked;
1767 #endif	/* VM_STATS */
1768 
1769 static page_t *
1770 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1771     caddr_t vaddr, uint_t flags)
1772 {
1773 	uint_t		count;
1774 	page_t		*pp;
1775 	uint_t		locked, i;
1776 	struct	pcf	*p;
1777 	lgrp_t		*lgrp;
1778 	int		cagelocked = 0;
1779 
1780 	VM_STAT_ADD(pcgs_entered);
1781 
1782 	/*
1783 	 * Tap any reserve freelists: if we fail now, we'll die
1784 	 * since the page(s) we're looking for have already been
1785 	 * accounted for.
1786 	 */
1787 	flags |= PG_PANIC;
1788 
1789 	if ((flags & PG_NORELOC) != 0) {
1790 		VM_STAT_ADD(pcgs_entered_noreloc);
1791 		/*
1792 		 * Requests for free pages from critical threads
1793 		 * such as pageout still won't throttle here, but
1794 		 * we must try again, to give the cageout thread
1795 		 * another chance to catch up. Since we already
1796 		 * accounted for the pages, we had better get them
1797 		 * this time.
1798 		 *
1799 		 * N.B. All non-critical threads acquire the pcgs_cagelock
1800 		 * to serialize access to the freelists. This implements a
1801 		 * turnstile-type synchornization to avoid starvation of
1802 		 * critical requests for PG_NORELOC memory by non-critical
1803 		 * threads: all non-critical threads must acquire a 'ticket'
1804 		 * before passing through, which entails making sure
1805 		 * kcage_freemem won't fall below minfree prior to grabbing
1806 		 * pages from the freelists.
1807 		 */
1808 		if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1809 			mutex_enter(&pcgs_cagelock);
1810 			cagelocked = 1;
1811 			VM_STAT_ADD(pcgs_cagelocked);
1812 		}
1813 	}
1814 
1815 	/*
1816 	 * Time to get serious.
1817 	 * We failed to get a `correctly colored' page from both the
1818 	 * free and cache lists.
1819 	 * We escalate in stage.
1820 	 *
1821 	 * First try both lists without worring about color.
1822 	 *
1823 	 * Then, grab all page accounting locks (ie. pcf[]) and
1824 	 * steal any pages that they have and set the pcf_block flag to
1825 	 * stop deletions from the lists.  This will help because
1826 	 * a page can get added to the free list while we are looking
1827 	 * at the cache list, then another page could be added to the cache
1828 	 * list allowing the page on the free list to be removed as we
1829 	 * move from looking at the cache list to the free list. This
1830 	 * could happen over and over. We would never find the page
1831 	 * we have accounted for.
1832 	 *
1833 	 * Noreloc pages are a subset of the global (relocatable) page pool.
1834 	 * They are not tracked separately in the pcf bins, so it is
1835 	 * impossible to know when doing pcf accounting if the available
1836 	 * page(s) are noreloc pages or not. When looking for a noreloc page
1837 	 * it is quite easy to end up here even if the global (relocatable)
1838 	 * page pool has plenty of free pages but the noreloc pool is empty.
1839 	 *
1840 	 * When the noreloc pool is empty (or low), additional noreloc pages
1841 	 * are created by converting pages from the global page pool. This
1842 	 * process will stall during pcf accounting if the pcf bins are
1843 	 * already locked. Such is the case when a noreloc allocation is
1844 	 * looping here in page_create_get_something waiting for more noreloc
1845 	 * pages to appear.
1846 	 *
1847 	 * Short of adding a new field to the pcf bins to accurately track
1848 	 * the number of free noreloc pages, we instead do not grab the
1849 	 * pcgs_lock, do not set the pcf blocks and do not timeout when
1850 	 * allocating a noreloc page. This allows noreloc allocations to
1851 	 * loop without blocking global page pool allocations.
1852 	 *
1853 	 * NOTE: the behaviour of page_create_get_something has not changed
1854 	 * for the case of global page pool allocations.
1855 	 */
1856 
1857 	flags &= ~PG_MATCH_COLOR;
1858 	locked = 0;
1859 #if defined(__x86)
1860 	flags = page_create_update_flags_x86(flags);
1861 #endif
1862 
1863 	lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1864 
1865 	for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1866 		pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1867 		    flags, lgrp);
1868 		if (pp == NULL) {
1869 			pp = page_get_cachelist(vp, off, seg, vaddr,
1870 			    flags, lgrp);
1871 		}
1872 		if (pp == NULL) {
1873 			/*
1874 			 * Serialize.  Don't fight with other pcgs().
1875 			 */
1876 			if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1877 				mutex_enter(&pcgs_lock);
1878 				VM_STAT_ADD(pcgs_locked);
1879 				locked = 1;
1880 				p = pcf;
1881 				for (i = 0; i < pcf_fanout; i++) {
1882 					mutex_enter(&p->pcf_lock);
1883 					ASSERT(p->pcf_block == 0);
1884 					p->pcf_block = 1;
1885 					p->pcf_reserve = p->pcf_count;
1886 					p->pcf_count = 0;
1887 					mutex_exit(&p->pcf_lock);
1888 					p++;
1889 				}
1890 				freemem = 0;
1891 			}
1892 
1893 			if (count) {
1894 				/*
1895 				 * Since page_free() puts pages on
1896 				 * a list then accounts for it, we
1897 				 * just have to wait for page_free()
1898 				 * to unlock any page it was working
1899 				 * with. The page_lock()-page_reclaim()
1900 				 * path falls in the same boat.
1901 				 *
1902 				 * We don't need to check on the
1903 				 * PG_WAIT flag, we have already
1904 				 * accounted for the page we are
1905 				 * looking for in page_create_va().
1906 				 *
1907 				 * We just wait a moment to let any
1908 				 * locked pages on the lists free up,
1909 				 * then continue around and try again.
1910 				 *
1911 				 * Will be awakened by set_freemem().
1912 				 */
1913 				mutex_enter(&pcgs_wait_lock);
1914 				cv_wait(&pcgs_cv, &pcgs_wait_lock);
1915 				mutex_exit(&pcgs_wait_lock);
1916 			}
1917 		} else {
1918 #ifdef VM_STATS
1919 			if (count >= PCGS_TRIES) {
1920 				VM_STAT_ADD(pcgs_too_many);
1921 			} else {
1922 				VM_STAT_ADD(pcgs_counts[count]);
1923 			}
1924 #endif
1925 			if (locked) {
1926 				pcgs_unblock();
1927 				mutex_exit(&pcgs_lock);
1928 			}
1929 			if (cagelocked)
1930 				mutex_exit(&pcgs_cagelock);
1931 			return (pp);
1932 		}
1933 	}
1934 	/*
1935 	 * we go down holding the pcf locks.
1936 	 */
1937 	panic("no %spage found %d",
1938 	    ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1939 	/*NOTREACHED*/
1940 }
1941 
1942 /*
1943  * Create enough pages for "bytes" worth of data starting at
1944  * "off" in "vp".
1945  *
1946  *	Where flag must be one of:
1947  *
1948  *		PG_EXCL:	Exclusive create (fail if any page already
1949  *				exists in the page cache) which does not
1950  *				wait for memory to become available.
1951  *
1952  *		PG_WAIT:	Non-exclusive create which can wait for
1953  *				memory to become available.
1954  *
1955  *		PG_PHYSCONTIG:	Allocate physically contiguous pages.
1956  *				(Not Supported)
1957  *
1958  * A doubly linked list of pages is returned to the caller.  Each page
1959  * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1960  * lock.
1961  *
1962  * Unable to change the parameters to page_create() in a minor release,
1963  * we renamed page_create() to page_create_va(), changed all known calls
1964  * from page_create() to page_create_va(), and created this wrapper.
1965  *
1966  * Upon a major release, we should break compatibility by deleting this
1967  * wrapper, and replacing all the strings "page_create_va", with "page_create".
1968  *
1969  * NOTE: There is a copy of this interface as page_create_io() in
1970  *	 i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1971  *	 there.
1972  */
1973 page_t *
1974 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1975 {
1976 	caddr_t random_vaddr;
1977 	struct seg kseg;
1978 
1979 #ifdef DEBUG
1980 	cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1981 	    (void *)caller());
1982 #endif
1983 
1984 	random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1985 	    (uintptr_t)(off >> PAGESHIFT));
1986 	kseg.s_as = &kas;
1987 
1988 	return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1989 }
1990 
1991 #ifdef DEBUG
1992 uint32_t pg_alloc_pgs_mtbf = 0;
1993 #endif
1994 
1995 /*
1996  * Used for large page support. It will attempt to allocate
1997  * a large page(s) off the freelist.
1998  *
1999  * Returns non zero on failure.
2000  */
2001 int
2002 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
2003     page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags)
2004 {
2005 	pgcnt_t		npgs, curnpgs, totpgs;
2006 	size_t		pgsz;
2007 	page_t		*pplist = NULL, *pp;
2008 	int		err = 0;
2009 	lgrp_t		*lgrp;
2010 
2011 	ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
2012 	ASSERT(pgflags == 0 || pgflags == PG_LOCAL);
2013 
2014 	/*
2015 	 * Check if system heavily prefers local large pages over remote
2016 	 * on systems with multiple lgroups.
2017 	 */
2018 	if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) {
2019 		pgflags = PG_LOCAL;
2020 	}
2021 
2022 	VM_STAT_ADD(alloc_pages[0]);
2023 
2024 #ifdef DEBUG
2025 	if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
2026 		return (ENOMEM);
2027 	}
2028 #endif
2029 
2030 	/*
2031 	 * One must be NULL but not both.
2032 	 * And one must be non NULL but not both.
2033 	 */
2034 	ASSERT(basepp != NULL || ppa != NULL);
2035 	ASSERT(basepp == NULL || ppa == NULL);
2036 
2037 #if defined(__x86)
2038 	while (page_chk_freelist(szc) == 0) {
2039 		VM_STAT_ADD(alloc_pages[8]);
2040 		if (anypgsz == 0 || --szc == 0)
2041 			return (ENOMEM);
2042 	}
2043 #endif
2044 
2045 	pgsz = page_get_pagesize(szc);
2046 	totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
2047 
2048 	ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
2049 
2050 	(void) page_create_wait(npgs, PG_WAIT);
2051 
2052 	while (npgs && szc) {
2053 		lgrp = lgrp_mem_choose(seg, addr, pgsz);
2054 		if (pgflags == PG_LOCAL) {
2055 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2056 			    pgflags, lgrp);
2057 			if (pp == NULL) {
2058 				pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2059 				    0, lgrp);
2060 			}
2061 		} else {
2062 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2063 			    0, lgrp);
2064 		}
2065 		if (pp != NULL) {
2066 			VM_STAT_ADD(alloc_pages[1]);
2067 			page_list_concat(&pplist, &pp);
2068 			ASSERT(npgs >= curnpgs);
2069 			npgs -= curnpgs;
2070 		} else if (anypgsz) {
2071 			VM_STAT_ADD(alloc_pages[2]);
2072 			szc--;
2073 			pgsz = page_get_pagesize(szc);
2074 			curnpgs = pgsz >> PAGESHIFT;
2075 		} else {
2076 			VM_STAT_ADD(alloc_pages[3]);
2077 			ASSERT(npgs == totpgs);
2078 			page_create_putback(npgs);
2079 			return (ENOMEM);
2080 		}
2081 	}
2082 	if (szc == 0) {
2083 		VM_STAT_ADD(alloc_pages[4]);
2084 		ASSERT(npgs != 0);
2085 		page_create_putback(npgs);
2086 		err = ENOMEM;
2087 	} else if (basepp != NULL) {
2088 		ASSERT(npgs == 0);
2089 		ASSERT(ppa == NULL);
2090 		*basepp = pplist;
2091 	}
2092 
2093 	npgs = totpgs - npgs;
2094 	pp = pplist;
2095 
2096 	/*
2097 	 * Clear the free and age bits. Also if we were passed in a ppa then
2098 	 * fill it in with all the constituent pages from the large page. But
2099 	 * if we failed to allocate all the pages just free what we got.
2100 	 */
2101 	while (npgs != 0) {
2102 		ASSERT(PP_ISFREE(pp));
2103 		ASSERT(PP_ISAGED(pp));
2104 		if (ppa != NULL || err != 0) {
2105 			if (err == 0) {
2106 				VM_STAT_ADD(alloc_pages[5]);
2107 				PP_CLRFREE(pp);
2108 				PP_CLRAGED(pp);
2109 				page_sub(&pplist, pp);
2110 				*ppa++ = pp;
2111 				npgs--;
2112 			} else {
2113 				VM_STAT_ADD(alloc_pages[6]);
2114 				ASSERT(pp->p_szc != 0);
2115 				curnpgs = page_get_pagecnt(pp->p_szc);
2116 				page_list_break(&pp, &pplist, curnpgs);
2117 				page_list_add_pages(pp, 0);
2118 				page_create_putback(curnpgs);
2119 				ASSERT(npgs >= curnpgs);
2120 				npgs -= curnpgs;
2121 			}
2122 			pp = pplist;
2123 		} else {
2124 			VM_STAT_ADD(alloc_pages[7]);
2125 			PP_CLRFREE(pp);
2126 			PP_CLRAGED(pp);
2127 			pp = pp->p_next;
2128 			npgs--;
2129 		}
2130 	}
2131 	return (err);
2132 }
2133 
2134 /*
2135  * Get a single large page off of the freelists, and set it up for use.
2136  * Number of bytes requested must be a supported page size.
2137  *
2138  * Note that this call may fail even if there is sufficient
2139  * memory available or PG_WAIT is set, so the caller must
2140  * be willing to fallback on page_create_va(), block and retry,
2141  * or fail the requester.
2142  */
2143 page_t *
2144 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2145     struct seg *seg, caddr_t vaddr, void *arg)
2146 {
2147 	pgcnt_t		npages;
2148 	page_t		*pp;
2149 	page_t		*rootpp;
2150 	lgrp_t		*lgrp;
2151 	lgrp_id_t	*lgrpid = (lgrp_id_t *)arg;
2152 
2153 	ASSERT(vp != NULL);
2154 
2155 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2156 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2157 	/* but no others */
2158 
2159 	ASSERT((flags & PG_EXCL) == PG_EXCL);
2160 
2161 	npages = btop(bytes);
2162 
2163 	if (!kcage_on || panicstr) {
2164 		/*
2165 		 * Cage is OFF, or we are single threaded in
2166 		 * panic, so make everything a RELOC request.
2167 		 */
2168 		flags &= ~PG_NORELOC;
2169 	}
2170 
2171 	/*
2172 	 * Make sure there's adequate physical memory available.
2173 	 * Note: PG_WAIT is ignored here.
2174 	 */
2175 	if (freemem <= throttlefree + npages) {
2176 		VM_STAT_ADD(page_create_large_cnt[1]);
2177 		return (NULL);
2178 	}
2179 
2180 	/*
2181 	 * If cage is on, dampen draw from cage when available
2182 	 * cage space is low.
2183 	 */
2184 	if ((flags & (PG_NORELOC | PG_WAIT)) ==  (PG_NORELOC | PG_WAIT) &&
2185 	    kcage_freemem < kcage_throttlefree + npages) {
2186 
2187 		/*
2188 		 * The cage is on, the caller wants PG_NORELOC
2189 		 * pages and available cage memory is very low.
2190 		 * Call kcage_create_throttle() to attempt to
2191 		 * control demand on the cage.
2192 		 */
2193 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2194 			VM_STAT_ADD(page_create_large_cnt[2]);
2195 			return (NULL);
2196 		}
2197 	}
2198 
2199 	if (!pcf_decrement_bucket(npages) &&
2200 	    !pcf_decrement_multiple(NULL, npages, 1)) {
2201 		VM_STAT_ADD(page_create_large_cnt[4]);
2202 		return (NULL);
2203 	}
2204 
2205 	/*
2206 	 * This is where this function behaves fundamentally differently
2207 	 * than page_create_va(); since we're intending to map the page
2208 	 * with a single TTE, we have to get it as a physically contiguous
2209 	 * hardware pagesize chunk.  If we can't, we fail.
2210 	 */
2211 	if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2212 	    LGRP_EXISTS(lgrp_table[*lgrpid]))
2213 		lgrp = lgrp_table[*lgrpid];
2214 	else
2215 		lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2216 
2217 	if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2218 	    bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2219 		page_create_putback(npages);
2220 		VM_STAT_ADD(page_create_large_cnt[5]);
2221 		return (NULL);
2222 	}
2223 
2224 	/*
2225 	 * if we got the page with the wrong mtype give it back this is a
2226 	 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2227 	 * inside "if" and the workaround becomes just a nop
2228 	 */
2229 	if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2230 		page_list_add_pages(rootpp, 0);
2231 		page_create_putback(npages);
2232 		VM_STAT_ADD(page_create_large_cnt[6]);
2233 		return (NULL);
2234 	}
2235 
2236 	/*
2237 	 * If satisfying this request has left us with too little
2238 	 * memory, start the wheels turning to get some back.  The
2239 	 * first clause of the test prevents waking up the pageout
2240 	 * daemon in situations where it would decide that there's
2241 	 * nothing to do.
2242 	 */
2243 	if (nscan < desscan && freemem < minfree) {
2244 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2245 		    "pageout_cv_signal:freemem %ld", freemem);
2246 		cv_signal(&proc_pageout->p_cv);
2247 	}
2248 
2249 	pp = rootpp;
2250 	while (npages--) {
2251 		ASSERT(PAGE_EXCL(pp));
2252 		ASSERT(pp->p_vnode == NULL);
2253 		ASSERT(!hat_page_is_mapped(pp));
2254 		PP_CLRFREE(pp);
2255 		PP_CLRAGED(pp);
2256 		if (!page_hashin(pp, vp, off, NULL))
2257 			panic("page_create_large: hashin failed: page %p",
2258 			    (void *)pp);
2259 		page_io_lock(pp);
2260 		off += PAGESIZE;
2261 		pp = pp->p_next;
2262 	}
2263 
2264 	VM_STAT_ADD(page_create_large_cnt[0]);
2265 	return (rootpp);
2266 }
2267 
2268 page_t *
2269 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2270     struct seg *seg, caddr_t vaddr)
2271 {
2272 	page_t		*plist = NULL;
2273 	pgcnt_t		npages;
2274 	pgcnt_t		found_on_free = 0;
2275 	pgcnt_t		pages_req;
2276 	page_t		*npp = NULL;
2277 	struct pcf	*p;
2278 	lgrp_t		*lgrp;
2279 
2280 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2281 	    "page_create_start:vp %p off %llx bytes %lu flags %x",
2282 	    vp, off, bytes, flags);
2283 
2284 	ASSERT(bytes != 0 && vp != NULL);
2285 
2286 	if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2287 		panic("page_create: invalid flags");
2288 		/*NOTREACHED*/
2289 	}
2290 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2291 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2292 	    /* but no others */
2293 
2294 	pages_req = npages = btopr(bytes);
2295 	/*
2296 	 * Try to see whether request is too large to *ever* be
2297 	 * satisfied, in order to prevent deadlock.  We arbitrarily
2298 	 * decide to limit maximum size requests to max_page_get.
2299 	 */
2300 	if (npages >= max_page_get) {
2301 		if ((flags & PG_WAIT) == 0) {
2302 			TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2303 			    "page_create_toobig:vp %p off %llx npages "
2304 			    "%lu max_page_get %lu",
2305 			    vp, off, npages, max_page_get);
2306 			return (NULL);
2307 		} else {
2308 			cmn_err(CE_WARN,
2309 			    "Request for too much kernel memory "
2310 			    "(%lu bytes), will hang forever", bytes);
2311 			for (;;)
2312 				delay(1000000000);
2313 		}
2314 	}
2315 
2316 	if (!kcage_on || panicstr) {
2317 		/*
2318 		 * Cage is OFF, or we are single threaded in
2319 		 * panic, so make everything a RELOC request.
2320 		 */
2321 		flags &= ~PG_NORELOC;
2322 	}
2323 
2324 	if (freemem <= throttlefree + npages)
2325 		if (!page_create_throttle(npages, flags))
2326 			return (NULL);
2327 
2328 	/*
2329 	 * If cage is on, dampen draw from cage when available
2330 	 * cage space is low.
2331 	 */
2332 	if ((flags & PG_NORELOC) &&
2333 	    kcage_freemem < kcage_throttlefree + npages) {
2334 
2335 		/*
2336 		 * The cage is on, the caller wants PG_NORELOC
2337 		 * pages and available cage memory is very low.
2338 		 * Call kcage_create_throttle() to attempt to
2339 		 * control demand on the cage.
2340 		 */
2341 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2342 			return (NULL);
2343 	}
2344 
2345 	VM_STAT_ADD(page_create_cnt[0]);
2346 
2347 	if (!pcf_decrement_bucket(npages)) {
2348 		/*
2349 		 * Have to look harder.  If npages is greater than
2350 		 * one, then we might have to coalesce the counters.
2351 		 *
2352 		 * Go wait.  We come back having accounted
2353 		 * for the memory.
2354 		 */
2355 		VM_STAT_ADD(page_create_cnt[1]);
2356 		if (!page_create_wait(npages, flags)) {
2357 			VM_STAT_ADD(page_create_cnt[2]);
2358 			return (NULL);
2359 		}
2360 	}
2361 
2362 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2363 	    "page_create_success:vp %p off %llx", vp, off);
2364 
2365 	/*
2366 	 * If satisfying this request has left us with too little
2367 	 * memory, start the wheels turning to get some back.  The
2368 	 * first clause of the test prevents waking up the pageout
2369 	 * daemon in situations where it would decide that there's
2370 	 * nothing to do.
2371 	 */
2372 	if (nscan < desscan && freemem < minfree) {
2373 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2374 		    "pageout_cv_signal:freemem %ld", freemem);
2375 		cv_signal(&proc_pageout->p_cv);
2376 	}
2377 
2378 	/*
2379 	 * Loop around collecting the requested number of pages.
2380 	 * Most of the time, we have to `create' a new page. With
2381 	 * this in mind, pull the page off the free list before
2382 	 * getting the hash lock.  This will minimize the hash
2383 	 * lock hold time, nesting, and the like.  If it turns
2384 	 * out we don't need the page, we put it back at the end.
2385 	 */
2386 	while (npages--) {
2387 		page_t		*pp;
2388 		kmutex_t	*phm = NULL;
2389 		ulong_t		index;
2390 
2391 		index = PAGE_HASH_FUNC(vp, off);
2392 top:
2393 		ASSERT(phm == NULL);
2394 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
2395 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2396 
2397 		if (npp == NULL) {
2398 			/*
2399 			 * Try to get a page from the freelist (ie,
2400 			 * a page with no [vp, off] tag).  If that
2401 			 * fails, use the cachelist.
2402 			 *
2403 			 * During the first attempt at both the free
2404 			 * and cache lists we try for the correct color.
2405 			 */
2406 			/*
2407 			 * XXXX-how do we deal with virtual indexed
2408 			 * caches and and colors?
2409 			 */
2410 			VM_STAT_ADD(page_create_cnt[4]);
2411 			/*
2412 			 * Get lgroup to allocate next page of shared memory
2413 			 * from and use it to specify where to allocate
2414 			 * the physical memory
2415 			 */
2416 			lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2417 			npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2418 			    flags | PG_MATCH_COLOR, lgrp);
2419 			if (npp == NULL) {
2420 				npp = page_get_cachelist(vp, off, seg,
2421 				    vaddr, flags | PG_MATCH_COLOR, lgrp);
2422 				if (npp == NULL) {
2423 					npp = page_create_get_something(vp,
2424 					    off, seg, vaddr,
2425 					    flags & ~PG_MATCH_COLOR);
2426 				}
2427 
2428 				if (PP_ISAGED(npp) == 0) {
2429 					/*
2430 					 * Since this page came from the
2431 					 * cachelist, we must destroy the
2432 					 * old vnode association.
2433 					 */
2434 					page_hashout(npp, NULL);
2435 				}
2436 			}
2437 		}
2438 
2439 		/*
2440 		 * We own this page!
2441 		 */
2442 		ASSERT(PAGE_EXCL(npp));
2443 		ASSERT(npp->p_vnode == NULL);
2444 		ASSERT(!hat_page_is_mapped(npp));
2445 		PP_CLRFREE(npp);
2446 		PP_CLRAGED(npp);
2447 
2448 		/*
2449 		 * Here we have a page in our hot little mits and are
2450 		 * just waiting to stuff it on the appropriate lists.
2451 		 * Get the mutex and check to see if it really does
2452 		 * not exist.
2453 		 */
2454 		phm = PAGE_HASH_MUTEX(index);
2455 		mutex_enter(phm);
2456 		pp = page_hash_search(index, vp, off);
2457 		if (pp == NULL) {
2458 			VM_STAT_ADD(page_create_new);
2459 			pp = npp;
2460 			npp = NULL;
2461 			if (!page_hashin(pp, vp, off, phm)) {
2462 				/*
2463 				 * Since we hold the page hash mutex and
2464 				 * just searched for this page, page_hashin
2465 				 * had better not fail.  If it does, that
2466 				 * means somethread did not follow the
2467 				 * page hash mutex rules.  Panic now and
2468 				 * get it over with.  As usual, go down
2469 				 * holding all the locks.
2470 				 */
2471 				ASSERT(MUTEX_HELD(phm));
2472 				panic("page_create: "
2473 				    "hashin failed %p %p %llx %p",
2474 				    (void *)pp, (void *)vp, off, (void *)phm);
2475 				/*NOTREACHED*/
2476 			}
2477 			ASSERT(MUTEX_HELD(phm));
2478 			mutex_exit(phm);
2479 			phm = NULL;
2480 
2481 			/*
2482 			 * Hat layer locking need not be done to set
2483 			 * the following bits since the page is not hashed
2484 			 * and was on the free list (i.e., had no mappings).
2485 			 *
2486 			 * Set the reference bit to protect
2487 			 * against immediate pageout
2488 			 *
2489 			 * XXXmh modify freelist code to set reference
2490 			 * bit so we don't have to do it here.
2491 			 */
2492 			page_set_props(pp, P_REF);
2493 			found_on_free++;
2494 		} else {
2495 			VM_STAT_ADD(page_create_exists);
2496 			if (flags & PG_EXCL) {
2497 				/*
2498 				 * Found an existing page, and the caller
2499 				 * wanted all new pages.  Undo all of the work
2500 				 * we have done.
2501 				 */
2502 				mutex_exit(phm);
2503 				phm = NULL;
2504 				while (plist != NULL) {
2505 					pp = plist;
2506 					page_sub(&plist, pp);
2507 					page_io_unlock(pp);
2508 					/* large pages should not end up here */
2509 					ASSERT(pp->p_szc == 0);
2510 					/*LINTED: constant in conditional ctx*/
2511 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
2512 				}
2513 				VM_STAT_ADD(page_create_found_one);
2514 				goto fail;
2515 			}
2516 			ASSERT(flags & PG_WAIT);
2517 			if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2518 				/*
2519 				 * Start all over again if we blocked trying
2520 				 * to lock the page.
2521 				 */
2522 				mutex_exit(phm);
2523 				VM_STAT_ADD(page_create_page_lock_failed);
2524 				phm = NULL;
2525 				goto top;
2526 			}
2527 			mutex_exit(phm);
2528 			phm = NULL;
2529 
2530 			if (PP_ISFREE(pp)) {
2531 				ASSERT(PP_ISAGED(pp) == 0);
2532 				VM_STAT_ADD(pagecnt.pc_get_cache);
2533 				page_list_sub(pp, PG_CACHE_LIST);
2534 				PP_CLRFREE(pp);
2535 				found_on_free++;
2536 			}
2537 		}
2538 
2539 		/*
2540 		 * Got a page!  It is locked.  Acquire the i/o
2541 		 * lock since we are going to use the p_next and
2542 		 * p_prev fields to link the requested pages together.
2543 		 */
2544 		page_io_lock(pp);
2545 		page_add(&plist, pp);
2546 		plist = plist->p_next;
2547 		off += PAGESIZE;
2548 		vaddr += PAGESIZE;
2549 	}
2550 
2551 	ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2552 fail:
2553 	if (npp != NULL) {
2554 		/*
2555 		 * Did not need this page after all.
2556 		 * Put it back on the free list.
2557 		 */
2558 		VM_STAT_ADD(page_create_putbacks);
2559 		PP_SETFREE(npp);
2560 		PP_SETAGED(npp);
2561 		npp->p_offset = (u_offset_t)-1;
2562 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2563 		page_unlock(npp);
2564 
2565 	}
2566 
2567 	ASSERT(pages_req >= found_on_free);
2568 
2569 	{
2570 		uint_t overshoot = (uint_t)(pages_req - found_on_free);
2571 
2572 		if (overshoot) {
2573 			VM_STAT_ADD(page_create_overshoot);
2574 			p = &pcf[PCF_INDEX()];
2575 			mutex_enter(&p->pcf_lock);
2576 			if (p->pcf_block) {
2577 				p->pcf_reserve += overshoot;
2578 			} else {
2579 				p->pcf_count += overshoot;
2580 				if (p->pcf_wait) {
2581 					mutex_enter(&new_freemem_lock);
2582 					if (freemem_wait) {
2583 						cv_signal(&freemem_cv);
2584 						p->pcf_wait--;
2585 					} else {
2586 						p->pcf_wait = 0;
2587 					}
2588 					mutex_exit(&new_freemem_lock);
2589 				}
2590 			}
2591 			mutex_exit(&p->pcf_lock);
2592 			/* freemem is approximate, so this test OK */
2593 			if (!p->pcf_block)
2594 				freemem += overshoot;
2595 		}
2596 	}
2597 
2598 	return (plist);
2599 }
2600 
2601 /*
2602  * One or more constituent pages of this large page has been marked
2603  * toxic. Simply demote the large page to PAGESIZE pages and let
2604  * page_free() handle it. This routine should only be called by
2605  * large page free routines (page_free_pages() and page_destroy_pages().
2606  * All pages are locked SE_EXCL and have already been marked free.
2607  */
2608 static void
2609 page_free_toxic_pages(page_t *rootpp)
2610 {
2611 	page_t	*tpp;
2612 	pgcnt_t	i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2613 	uint_t	szc = rootpp->p_szc;
2614 
2615 	for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2616 		ASSERT(tpp->p_szc == szc);
2617 		ASSERT((PAGE_EXCL(tpp) &&
2618 		    !page_iolock_assert(tpp)) || panicstr);
2619 		tpp->p_szc = 0;
2620 	}
2621 
2622 	while (rootpp != NULL) {
2623 		tpp = rootpp;
2624 		page_sub(&rootpp, tpp);
2625 		ASSERT(PP_ISFREE(tpp));
2626 		PP_CLRFREE(tpp);
2627 		page_free(tpp, 1);
2628 	}
2629 }
2630 
2631 /*
2632  * Put page on the "free" list.
2633  * The free list is really two lists maintained by
2634  * the PSM of whatever machine we happen to be on.
2635  */
2636 void
2637 page_free(page_t *pp, int dontneed)
2638 {
2639 	struct pcf	*p;
2640 	uint_t		pcf_index;
2641 
2642 	ASSERT((PAGE_EXCL(pp) &&
2643 	    !page_iolock_assert(pp)) || panicstr);
2644 
2645 	if (PP_ISFREE(pp)) {
2646 		panic("page_free: page %p is free", (void *)pp);
2647 	}
2648 
2649 	if (pp->p_szc != 0) {
2650 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2651 		    PP_ISKAS(pp)) {
2652 			panic("page_free: anon or kernel "
2653 			    "or no vnode large page %p", (void *)pp);
2654 		}
2655 		page_demote_vp_pages(pp);
2656 		ASSERT(pp->p_szc == 0);
2657 	}
2658 
2659 	/*
2660 	 * The page_struct_lock need not be acquired to examine these
2661 	 * fields since the page has an "exclusive" lock.
2662 	 */
2663 	if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
2664 	    pp->p_slckcnt != 0) {
2665 		panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2666 		    "slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt,
2667 		    pp->p_cowcnt, pp->p_slckcnt);
2668 		/*NOTREACHED*/
2669 	}
2670 
2671 	ASSERT(!hat_page_getshare(pp));
2672 
2673 	PP_SETFREE(pp);
2674 	ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2675 	    !hat_ismod(pp));
2676 	page_clr_all_props(pp);
2677 	ASSERT(!hat_page_getshare(pp));
2678 
2679 	/*
2680 	 * Now we add the page to the head of the free list.
2681 	 * But if this page is associated with a paged vnode
2682 	 * then we adjust the head forward so that the page is
2683 	 * effectively at the end of the list.
2684 	 */
2685 	if (pp->p_vnode == NULL) {
2686 		/*
2687 		 * Page has no identity, put it on the free list.
2688 		 */
2689 		PP_SETAGED(pp);
2690 		pp->p_offset = (u_offset_t)-1;
2691 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2692 		VM_STAT_ADD(pagecnt.pc_free_free);
2693 		TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2694 		    "page_free_free:pp %p", pp);
2695 	} else {
2696 		PP_CLRAGED(pp);
2697 
2698 		if (!dontneed) {
2699 			/* move it to the tail of the list */
2700 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2701 
2702 			VM_STAT_ADD(pagecnt.pc_free_cache);
2703 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2704 			    "page_free_cache_tail:pp %p", pp);
2705 		} else {
2706 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2707 
2708 			VM_STAT_ADD(pagecnt.pc_free_dontneed);
2709 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2710 			    "page_free_cache_head:pp %p", pp);
2711 		}
2712 	}
2713 	page_unlock(pp);
2714 
2715 	/*
2716 	 * Now do the `freemem' accounting.
2717 	 */
2718 	pcf_index = PCF_INDEX();
2719 	p = &pcf[pcf_index];
2720 
2721 	mutex_enter(&p->pcf_lock);
2722 	if (p->pcf_block) {
2723 		p->pcf_reserve += 1;
2724 	} else {
2725 		p->pcf_count += 1;
2726 		if (p->pcf_wait) {
2727 			mutex_enter(&new_freemem_lock);
2728 			/*
2729 			 * Check to see if some other thread
2730 			 * is actually waiting.  Another bucket
2731 			 * may have woken it up by now.  If there
2732 			 * are no waiters, then set our pcf_wait
2733 			 * count to zero to avoid coming in here
2734 			 * next time.  Also, since only one page
2735 			 * was put on the free list, just wake
2736 			 * up one waiter.
2737 			 */
2738 			if (freemem_wait) {
2739 				cv_signal(&freemem_cv);
2740 				p->pcf_wait--;
2741 			} else {
2742 				p->pcf_wait = 0;
2743 			}
2744 			mutex_exit(&new_freemem_lock);
2745 		}
2746 	}
2747 	mutex_exit(&p->pcf_lock);
2748 
2749 	/* freemem is approximate, so this test OK */
2750 	if (!p->pcf_block)
2751 		freemem += 1;
2752 }
2753 
2754 /*
2755  * Put page on the "free" list during intial startup.
2756  * This happens during initial single threaded execution.
2757  */
2758 void
2759 page_free_at_startup(page_t *pp)
2760 {
2761 	struct pcf	*p;
2762 	uint_t		pcf_index;
2763 
2764 	page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2765 	VM_STAT_ADD(pagecnt.pc_free_free);
2766 
2767 	/*
2768 	 * Now do the `freemem' accounting.
2769 	 */
2770 	pcf_index = PCF_INDEX();
2771 	p = &pcf[pcf_index];
2772 
2773 	ASSERT(p->pcf_block == 0);
2774 	ASSERT(p->pcf_wait == 0);
2775 	p->pcf_count += 1;
2776 
2777 	/* freemem is approximate, so this is OK */
2778 	freemem += 1;
2779 }
2780 
2781 void
2782 page_free_pages(page_t *pp)
2783 {
2784 	page_t	*tpp, *rootpp = NULL;
2785 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
2786 	pgcnt_t	i;
2787 	uint_t	szc = pp->p_szc;
2788 
2789 	VM_STAT_ADD(pagecnt.pc_free_pages);
2790 	TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2791 	    "page_free_free:pp %p", pp);
2792 
2793 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2794 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2795 		panic("page_free_pages: not root page %p", (void *)pp);
2796 		/*NOTREACHED*/
2797 	}
2798 
2799 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2800 		ASSERT((PAGE_EXCL(tpp) &&
2801 		    !page_iolock_assert(tpp)) || panicstr);
2802 		if (PP_ISFREE(tpp)) {
2803 			panic("page_free_pages: page %p is free", (void *)tpp);
2804 			/*NOTREACHED*/
2805 		}
2806 		if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2807 		    tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
2808 			panic("page_free_pages %p", (void *)tpp);
2809 			/*NOTREACHED*/
2810 		}
2811 
2812 		ASSERT(!hat_page_getshare(tpp));
2813 		ASSERT(tpp->p_vnode == NULL);
2814 		ASSERT(tpp->p_szc == szc);
2815 
2816 		PP_SETFREE(tpp);
2817 		page_clr_all_props(tpp);
2818 		PP_SETAGED(tpp);
2819 		tpp->p_offset = (u_offset_t)-1;
2820 		ASSERT(tpp->p_next == tpp);
2821 		ASSERT(tpp->p_prev == tpp);
2822 		page_list_concat(&rootpp, &tpp);
2823 	}
2824 	ASSERT(rootpp == pp);
2825 
2826 	page_list_add_pages(rootpp, 0);
2827 	page_create_putback(pgcnt);
2828 }
2829 
2830 int free_pages = 1;
2831 
2832 /*
2833  * This routine attempts to return pages to the cachelist via page_release().
2834  * It does not *have* to be successful in all cases, since the pageout scanner
2835  * will catch any pages it misses.  It does need to be fast and not introduce
2836  * too much overhead.
2837  *
2838  * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2839  * don't lock and retry.  This is ok, since the page scanner will eventually
2840  * find any page we miss in free_vp_pages().
2841  */
2842 void
2843 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2844 {
2845 	page_t *pp;
2846 	u_offset_t eoff;
2847 	extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2848 
2849 	eoff = off + len;
2850 
2851 	if (free_pages == 0)
2852 		return;
2853 	if (swap_in_range(vp, off, len))
2854 		return;
2855 
2856 	for (; off < eoff; off += PAGESIZE) {
2857 
2858 		/*
2859 		 * find the page using a fast, but inexact search. It'll be OK
2860 		 * if a few pages slip through the cracks here.
2861 		 */
2862 		pp = page_exists(vp, off);
2863 
2864 		/*
2865 		 * If we didn't find the page (it may not exist), the page
2866 		 * is free, looks still in use (shared), or we can't lock it,
2867 		 * just give up.
2868 		 */
2869 		if (pp == NULL ||
2870 		    PP_ISFREE(pp) ||
2871 		    page_share_cnt(pp) > 0 ||
2872 		    !page_trylock(pp, SE_EXCL))
2873 			continue;
2874 
2875 		/*
2876 		 * Once we have locked pp, verify that it's still the
2877 		 * correct page and not already free
2878 		 */
2879 		ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2880 		if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2881 			page_unlock(pp);
2882 			continue;
2883 		}
2884 
2885 		/*
2886 		 * try to release the page...
2887 		 */
2888 		(void) page_release(pp, 1);
2889 	}
2890 }
2891 
2892 /*
2893  * Reclaim the given page from the free list.
2894  * If pp is part of a large pages, only the given constituent page is reclaimed
2895  * and the large page it belonged to will be demoted.  This can only happen
2896  * if the page is not on the cachelist.
2897  *
2898  * Returns 1 on success or 0 on failure.
2899  *
2900  * The page is unlocked if it can't be reclaimed (when freemem == 0).
2901  * If `lock' is non-null, it will be dropped and re-acquired if
2902  * the routine must wait while freemem is 0.
2903  *
2904  * As it turns out, boot_getpages() does this.  It picks a page,
2905  * based on where OBP mapped in some address, gets its pfn, searches
2906  * the memsegs, locks the page, then pulls it off the free list!
2907  */
2908 int
2909 page_reclaim(page_t *pp, kmutex_t *lock)
2910 {
2911 	struct pcf	*p;
2912 	struct cpu	*cpup;
2913 	int		enough;
2914 	uint_t		i;
2915 
2916 	ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
2917 	ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
2918 
2919 	/*
2920 	 * If `freemem' is 0, we cannot reclaim this page from the
2921 	 * freelist, so release every lock we might hold: the page,
2922 	 * and the `lock' before blocking.
2923 	 *
2924 	 * The only way `freemem' can become 0 while there are pages
2925 	 * marked free (have their p->p_free bit set) is when the
2926 	 * system is low on memory and doing a page_create().  In
2927 	 * order to guarantee that once page_create() starts acquiring
2928 	 * pages it will be able to get all that it needs since `freemem'
2929 	 * was decreased by the requested amount.  So, we need to release
2930 	 * this page, and let page_create() have it.
2931 	 *
2932 	 * Since `freemem' being zero is not supposed to happen, just
2933 	 * use the usual hash stuff as a starting point.  If that bucket
2934 	 * is empty, then assume the worst, and start at the beginning
2935 	 * of the pcf array.  If we always start at the beginning
2936 	 * when acquiring more than one pcf lock, there won't be any
2937 	 * deadlock problems.
2938 	 */
2939 
2940 	/* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
2941 
2942 	if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
2943 		pcf_acquire_all();
2944 		goto page_reclaim_nomem;
2945 	}
2946 
2947 	enough = pcf_decrement_bucket(1);
2948 
2949 	if (!enough) {
2950 		VM_STAT_ADD(page_reclaim_zero);
2951 		/*
2952 		 * Check again. Its possible that some other thread
2953 		 * could have been right behind us, and added one
2954 		 * to a list somewhere.  Acquire each of the pcf locks
2955 		 * until we find a page.
2956 		 */
2957 		p = pcf;
2958 		for (i = 0; i < pcf_fanout; i++) {
2959 			mutex_enter(&p->pcf_lock);
2960 			if (p->pcf_count >= 1) {
2961 				p->pcf_count -= 1;
2962 				/*
2963 				 * freemem is not protected by any lock. Thus,
2964 				 * we cannot have any assertion containing
2965 				 * freemem here.
2966 				 */
2967 				freemem -= 1;
2968 				enough = 1;
2969 				break;
2970 			}
2971 			p++;
2972 		}
2973 
2974 		if (!enough) {
2975 page_reclaim_nomem:
2976 			/*
2977 			 * We really can't have page `pp'.
2978 			 * Time for the no-memory dance with
2979 			 * page_free().  This is just like
2980 			 * page_create_wait().  Plus the added
2981 			 * attraction of releasing whatever mutex
2982 			 * we held when we were called with in `lock'.
2983 			 * Page_unlock() will wakeup any thread
2984 			 * waiting around for this page.
2985 			 */
2986 			if (lock) {
2987 				VM_STAT_ADD(page_reclaim_zero_locked);
2988 				mutex_exit(lock);
2989 			}
2990 			page_unlock(pp);
2991 
2992 			/*
2993 			 * get this before we drop all the pcf locks.
2994 			 */
2995 			mutex_enter(&new_freemem_lock);
2996 
2997 			p = pcf;
2998 			for (i = 0; i < pcf_fanout; i++) {
2999 				p->pcf_wait++;
3000 				mutex_exit(&p->pcf_lock);
3001 				p++;
3002 			}
3003 
3004 			freemem_wait++;
3005 			cv_wait(&freemem_cv, &new_freemem_lock);
3006 			freemem_wait--;
3007 
3008 			mutex_exit(&new_freemem_lock);
3009 
3010 			if (lock) {
3011 				mutex_enter(lock);
3012 			}
3013 			return (0);
3014 		}
3015 
3016 		/*
3017 		 * The pcf accounting has been done,
3018 		 * though none of the pcf_wait flags have been set,
3019 		 * drop the locks and continue on.
3020 		 */
3021 		while (p >= pcf) {
3022 			mutex_exit(&p->pcf_lock);
3023 			p--;
3024 		}
3025 	}
3026 
3027 
3028 	VM_STAT_ADD(pagecnt.pc_reclaim);
3029 
3030 	/*
3031 	 * page_list_sub will handle the case where pp is a large page.
3032 	 * It's possible that the page was promoted while on the freelist
3033 	 */
3034 	if (PP_ISAGED(pp)) {
3035 		page_list_sub(pp, PG_FREE_LIST);
3036 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3037 		    "page_reclaim_free:pp %p", pp);
3038 	} else {
3039 		page_list_sub(pp, PG_CACHE_LIST);
3040 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3041 		    "page_reclaim_cache:pp %p", pp);
3042 	}
3043 
3044 	/*
3045 	 * clear the p_free & p_age bits since this page is no longer
3046 	 * on the free list.  Notice that there was a brief time where
3047 	 * a page is marked as free, but is not on the list.
3048 	 *
3049 	 * Set the reference bit to protect against immediate pageout.
3050 	 */
3051 	PP_CLRFREE(pp);
3052 	PP_CLRAGED(pp);
3053 	page_set_props(pp, P_REF);
3054 
3055 	CPU_STATS_ENTER_K();
3056 	cpup = CPU;	/* get cpup now that CPU cannot change */
3057 	CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3058 	CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3059 	CPU_STATS_EXIT_K();
3060 	ASSERT(pp->p_szc == 0);
3061 
3062 	return (1);
3063 }
3064 
3065 /*
3066  * Destroy identity of the page and put it back on
3067  * the page free list.  Assumes that the caller has
3068  * acquired the "exclusive" lock on the page.
3069  */
3070 void
3071 page_destroy(page_t *pp, int dontfree)
3072 {
3073 	ASSERT((PAGE_EXCL(pp) &&
3074 	    !page_iolock_assert(pp)) || panicstr);
3075 	ASSERT(pp->p_slckcnt == 0 || panicstr);
3076 
3077 	if (pp->p_szc != 0) {
3078 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3079 		    PP_ISKAS(pp)) {
3080 			panic("page_destroy: anon or kernel or no vnode "
3081 			    "large page %p", (void *)pp);
3082 		}
3083 		page_demote_vp_pages(pp);
3084 		ASSERT(pp->p_szc == 0);
3085 	}
3086 
3087 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3088 
3089 	/*
3090 	 * Unload translations, if any, then hash out the
3091 	 * page to erase its identity.
3092 	 */
3093 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3094 	page_hashout(pp, NULL);
3095 
3096 	if (!dontfree) {
3097 		/*
3098 		 * Acquire the "freemem_lock" for availrmem.
3099 		 * The page_struct_lock need not be acquired for lckcnt
3100 		 * and cowcnt since the page has an "exclusive" lock.
3101 		 * We are doing a modified version of page_pp_unlock here.
3102 		 */
3103 		if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3104 			mutex_enter(&freemem_lock);
3105 			if (pp->p_lckcnt != 0) {
3106 				availrmem++;
3107 				pages_locked--;
3108 				pp->p_lckcnt = 0;
3109 			}
3110 			if (pp->p_cowcnt != 0) {
3111 				availrmem += pp->p_cowcnt;
3112 				pages_locked -= pp->p_cowcnt;
3113 				pp->p_cowcnt = 0;
3114 			}
3115 			mutex_exit(&freemem_lock);
3116 		}
3117 		/*
3118 		 * Put the page on the "free" list.
3119 		 */
3120 		page_free(pp, 0);
3121 	}
3122 }
3123 
3124 void
3125 page_destroy_pages(page_t *pp)
3126 {
3127 
3128 	page_t	*tpp, *rootpp = NULL;
3129 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
3130 	pgcnt_t	i, pglcks = 0;
3131 	uint_t	szc = pp->p_szc;
3132 
3133 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3134 
3135 	VM_STAT_ADD(pagecnt.pc_destroy_pages);
3136 
3137 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3138 
3139 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3140 		panic("page_destroy_pages: not root page %p", (void *)pp);
3141 		/*NOTREACHED*/
3142 	}
3143 
3144 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3145 		ASSERT((PAGE_EXCL(tpp) &&
3146 		    !page_iolock_assert(tpp)) || panicstr);
3147 		ASSERT(tpp->p_slckcnt == 0 || panicstr);
3148 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3149 		page_hashout(tpp, NULL);
3150 		ASSERT(tpp->p_offset == (u_offset_t)-1);
3151 		if (tpp->p_lckcnt != 0) {
3152 			pglcks++;
3153 			tpp->p_lckcnt = 0;
3154 		} else if (tpp->p_cowcnt != 0) {
3155 			pglcks += tpp->p_cowcnt;
3156 			tpp->p_cowcnt = 0;
3157 		}
3158 		ASSERT(!hat_page_getshare(tpp));
3159 		ASSERT(tpp->p_vnode == NULL);
3160 		ASSERT(tpp->p_szc == szc);
3161 
3162 		PP_SETFREE(tpp);
3163 		page_clr_all_props(tpp);
3164 		PP_SETAGED(tpp);
3165 		ASSERT(tpp->p_next == tpp);
3166 		ASSERT(tpp->p_prev == tpp);
3167 		page_list_concat(&rootpp, &tpp);
3168 	}
3169 
3170 	ASSERT(rootpp == pp);
3171 	if (pglcks != 0) {
3172 		mutex_enter(&freemem_lock);
3173 		availrmem += pglcks;
3174 		mutex_exit(&freemem_lock);
3175 	}
3176 
3177 	page_list_add_pages(rootpp, 0);
3178 	page_create_putback(pgcnt);
3179 }
3180 
3181 /*
3182  * Similar to page_destroy(), but destroys pages which are
3183  * locked and known to be on the page free list.  Since
3184  * the page is known to be free and locked, no one can access
3185  * it.
3186  *
3187  * Also, the number of free pages does not change.
3188  */
3189 void
3190 page_destroy_free(page_t *pp)
3191 {
3192 	ASSERT(PAGE_EXCL(pp));
3193 	ASSERT(PP_ISFREE(pp));
3194 	ASSERT(pp->p_vnode);
3195 	ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3196 	ASSERT(!hat_page_is_mapped(pp));
3197 	ASSERT(PP_ISAGED(pp) == 0);
3198 	ASSERT(pp->p_szc == 0);
3199 
3200 	VM_STAT_ADD(pagecnt.pc_destroy_free);
3201 	page_list_sub(pp, PG_CACHE_LIST);
3202 
3203 	page_hashout(pp, NULL);
3204 	ASSERT(pp->p_vnode == NULL);
3205 	ASSERT(pp->p_offset == (u_offset_t)-1);
3206 	ASSERT(pp->p_hash == NULL);
3207 
3208 	PP_SETAGED(pp);
3209 	page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3210 	page_unlock(pp);
3211 
3212 	mutex_enter(&new_freemem_lock);
3213 	if (freemem_wait) {
3214 		cv_signal(&freemem_cv);
3215 	}
3216 	mutex_exit(&new_freemem_lock);
3217 }
3218 
3219 /*
3220  * Rename the page "opp" to have an identity specified
3221  * by [vp, off].  If a page already exists with this name
3222  * it is locked and destroyed.  Note that the page's
3223  * translations are not unloaded during the rename.
3224  *
3225  * This routine is used by the anon layer to "steal" the
3226  * original page and is not unlike destroying a page and
3227  * creating a new page using the same page frame.
3228  *
3229  * XXX -- Could deadlock if caller 1 tries to rename A to B while
3230  * caller 2 tries to rename B to A.
3231  */
3232 void
3233 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3234 {
3235 	page_t		*pp;
3236 	int		olckcnt = 0;
3237 	int		ocowcnt = 0;
3238 	kmutex_t	*phm;
3239 	ulong_t		index;
3240 
3241 	ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3242 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3243 	ASSERT(PP_ISFREE(opp) == 0);
3244 
3245 	VM_STAT_ADD(page_rename_count);
3246 
3247 	TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3248 	    "page rename:pp %p vp %p off %llx", opp, vp, off);
3249 
3250 	/*
3251 	 * CacheFS may call page_rename for a large NFS page
3252 	 * when both CacheFS and NFS mount points are used
3253 	 * by applications. Demote this large page before
3254 	 * renaming it, to ensure that there are no "partial"
3255 	 * large pages left lying around.
3256 	 */
3257 	if (opp->p_szc != 0) {
3258 		vnode_t *ovp = opp->p_vnode;
3259 		ASSERT(ovp != NULL);
3260 		ASSERT(!IS_SWAPFSVP(ovp));
3261 		ASSERT(!VN_ISKAS(ovp));
3262 		page_demote_vp_pages(opp);
3263 		ASSERT(opp->p_szc == 0);
3264 	}
3265 
3266 	page_hashout(opp, NULL);
3267 	PP_CLRAGED(opp);
3268 
3269 	/*
3270 	 * Acquire the appropriate page hash lock, since
3271 	 * we're going to rename the page.
3272 	 */
3273 	index = PAGE_HASH_FUNC(vp, off);
3274 	phm = PAGE_HASH_MUTEX(index);
3275 	mutex_enter(phm);
3276 top:
3277 	/*
3278 	 * Look for an existing page with this name and destroy it if found.
3279 	 * By holding the page hash lock all the way to the page_hashin()
3280 	 * call, we are assured that no page can be created with this
3281 	 * identity.  In the case when the phm lock is dropped to undo any
3282 	 * hat layer mappings, the existing page is held with an "exclusive"
3283 	 * lock, again preventing another page from being created with
3284 	 * this identity.
3285 	 */
3286 	pp = page_hash_search(index, vp, off);
3287 	if (pp != NULL) {
3288 		VM_STAT_ADD(page_rename_exists);
3289 
3290 		/*
3291 		 * As it turns out, this is one of only two places where
3292 		 * page_lock() needs to hold the passed in lock in the
3293 		 * successful case.  In all of the others, the lock could
3294 		 * be dropped as soon as the attempt is made to lock
3295 		 * the page.  It is tempting to add yet another arguement,
3296 		 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3297 		 */
3298 		if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3299 			/*
3300 			 * Went to sleep because the page could not
3301 			 * be locked.  We were woken up when the page
3302 			 * was unlocked, or when the page was destroyed.
3303 			 * In either case, `phm' was dropped while we
3304 			 * slept.  Hence we should not just roar through
3305 			 * this loop.
3306 			 */
3307 			goto top;
3308 		}
3309 
3310 		/*
3311 		 * If an existing page is a large page, then demote
3312 		 * it to ensure that no "partial" large pages are
3313 		 * "created" after page_rename. An existing page
3314 		 * can be a CacheFS page, and can't belong to swapfs.
3315 		 */
3316 		if (hat_page_is_mapped(pp)) {
3317 			/*
3318 			 * Unload translations.  Since we hold the
3319 			 * exclusive lock on this page, the page
3320 			 * can not be changed while we drop phm.
3321 			 * This is also not a lock protocol violation,
3322 			 * but rather the proper way to do things.
3323 			 */
3324 			mutex_exit(phm);
3325 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3326 			if (pp->p_szc != 0) {
3327 				ASSERT(!IS_SWAPFSVP(vp));
3328 				ASSERT(!VN_ISKAS(vp));
3329 				page_demote_vp_pages(pp);
3330 				ASSERT(pp->p_szc == 0);
3331 			}
3332 			mutex_enter(phm);
3333 		} else if (pp->p_szc != 0) {
3334 			ASSERT(!IS_SWAPFSVP(vp));
3335 			ASSERT(!VN_ISKAS(vp));
3336 			mutex_exit(phm);
3337 			page_demote_vp_pages(pp);
3338 			ASSERT(pp->p_szc == 0);
3339 			mutex_enter(phm);
3340 		}
3341 		page_hashout(pp, phm);
3342 	}
3343 	/*
3344 	 * Hash in the page with the new identity.
3345 	 */
3346 	if (!page_hashin(opp, vp, off, phm)) {
3347 		/*
3348 		 * We were holding phm while we searched for [vp, off]
3349 		 * and only dropped phm if we found and locked a page.
3350 		 * If we can't create this page now, then some thing
3351 		 * is really broken.
3352 		 */
3353 		panic("page_rename: Can't hash in page: %p", (void *)pp);
3354 		/*NOTREACHED*/
3355 	}
3356 
3357 	ASSERT(MUTEX_HELD(phm));
3358 	mutex_exit(phm);
3359 
3360 	/*
3361 	 * Now that we have dropped phm, lets get around to finishing up
3362 	 * with pp.
3363 	 */
3364 	if (pp != NULL) {
3365 		ASSERT(!hat_page_is_mapped(pp));
3366 		/* for now large pages should not end up here */
3367 		ASSERT(pp->p_szc == 0);
3368 		/*
3369 		 * Save the locks for transfer to the new page and then
3370 		 * clear them so page_free doesn't think they're important.
3371 		 * The page_struct_lock need not be acquired for lckcnt and
3372 		 * cowcnt since the page has an "exclusive" lock.
3373 		 */
3374 		olckcnt = pp->p_lckcnt;
3375 		ocowcnt = pp->p_cowcnt;
3376 		pp->p_lckcnt = pp->p_cowcnt = 0;
3377 
3378 		/*
3379 		 * Put the page on the "free" list after we drop
3380 		 * the lock.  The less work under the lock the better.
3381 		 */
3382 		/*LINTED: constant in conditional context*/
3383 		VN_DISPOSE(pp, B_FREE, 0, kcred);
3384 	}
3385 
3386 	/*
3387 	 * Transfer the lock count from the old page (if any).
3388 	 * The page_struct_lock need not be acquired for lckcnt and
3389 	 * cowcnt since the page has an "exclusive" lock.
3390 	 */
3391 	opp->p_lckcnt += olckcnt;
3392 	opp->p_cowcnt += ocowcnt;
3393 }
3394 
3395 /*
3396  * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3397  *
3398  * Pages are normally inserted at the start of a vnode's v_pages list.
3399  * If the vnode is VMODSORT and the page is modified, it goes at the end.
3400  * This can happen when a modified page is relocated for DR.
3401  *
3402  * Returns 1 on success and 0 on failure.
3403  */
3404 static int
3405 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3406 {
3407 	page_t		**listp;
3408 	page_t		*tp;
3409 	ulong_t		index;
3410 
3411 	ASSERT(PAGE_EXCL(pp));
3412 	ASSERT(vp != NULL);
3413 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3414 
3415 	/*
3416 	 * Be sure to set these up before the page is inserted on the hash
3417 	 * list.  As soon as the page is placed on the list some other
3418 	 * thread might get confused and wonder how this page could
3419 	 * possibly hash to this list.
3420 	 */
3421 	pp->p_vnode = vp;
3422 	pp->p_offset = offset;
3423 
3424 	/*
3425 	 * record if this page is on a swap vnode
3426 	 */
3427 	if ((vp->v_flag & VISSWAP) != 0)
3428 		PP_SETSWAP(pp);
3429 
3430 	index = PAGE_HASH_FUNC(vp, offset);
3431 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3432 	listp = &page_hash[index];
3433 
3434 	/*
3435 	 * If this page is already hashed in, fail this attempt to add it.
3436 	 */
3437 	for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3438 		if (tp->p_vnode == vp && tp->p_offset == offset) {
3439 			pp->p_vnode = NULL;
3440 			pp->p_offset = (u_offset_t)(-1);
3441 			return (0);
3442 		}
3443 	}
3444 	pp->p_hash = *listp;
3445 	*listp = pp;
3446 
3447 	/*
3448 	 * Add the page to the vnode's list of pages
3449 	 */
3450 	if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3451 		listp = &vp->v_pages->p_vpprev->p_vpnext;
3452 	else
3453 		listp = &vp->v_pages;
3454 
3455 	page_vpadd(listp, pp);
3456 
3457 	return (1);
3458 }
3459 
3460 /*
3461  * Add page `pp' to both the hash and vp chains for [vp, offset].
3462  *
3463  * Returns 1 on success and 0 on failure.
3464  * If hold is passed in, it is not dropped.
3465  */
3466 int
3467 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3468 {
3469 	kmutex_t	*phm = NULL;
3470 	kmutex_t	*vphm;
3471 	int		rc;
3472 
3473 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3474 	ASSERT(pp->p_fsdata == 0 || panicstr);
3475 
3476 	TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3477 	    "page_hashin:pp %p vp %p offset %llx",
3478 	    pp, vp, offset);
3479 
3480 	VM_STAT_ADD(hashin_count);
3481 
3482 	if (hold != NULL)
3483 		phm = hold;
3484 	else {
3485 		VM_STAT_ADD(hashin_not_held);
3486 		phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3487 		mutex_enter(phm);
3488 	}
3489 
3490 	vphm = page_vnode_mutex(vp);
3491 	mutex_enter(vphm);
3492 	rc = page_do_hashin(pp, vp, offset);
3493 	mutex_exit(vphm);
3494 	if (hold == NULL)
3495 		mutex_exit(phm);
3496 	if (rc == 0)
3497 		VM_STAT_ADD(hashin_already);
3498 	return (rc);
3499 }
3500 
3501 /*
3502  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3503  * All mutexes must be held
3504  */
3505 static void
3506 page_do_hashout(page_t *pp)
3507 {
3508 	page_t	**hpp;
3509 	page_t	*hp;
3510 	vnode_t	*vp = pp->p_vnode;
3511 
3512 	ASSERT(vp != NULL);
3513 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3514 
3515 	/*
3516 	 * First, take pp off of its hash chain.
3517 	 */
3518 	hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3519 
3520 	for (;;) {
3521 		hp = *hpp;
3522 		if (hp == pp)
3523 			break;
3524 		if (hp == NULL) {
3525 			panic("page_do_hashout");
3526 			/*NOTREACHED*/
3527 		}
3528 		hpp = &hp->p_hash;
3529 	}
3530 	*hpp = pp->p_hash;
3531 
3532 	/*
3533 	 * Now remove it from its associated vnode.
3534 	 */
3535 	if (vp->v_pages)
3536 		page_vpsub(&vp->v_pages, pp);
3537 
3538 	pp->p_hash = NULL;
3539 	page_clr_all_props(pp);
3540 	PP_CLRSWAP(pp);
3541 	pp->p_vnode = NULL;
3542 	pp->p_offset = (u_offset_t)-1;
3543 	pp->p_fsdata = 0;
3544 }
3545 
3546 /*
3547  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3548  *
3549  * When `phm' is non-NULL it contains the address of the mutex protecting the
3550  * hash list pp is on.  It is not dropped.
3551  */
3552 void
3553 page_hashout(page_t *pp, kmutex_t *phm)
3554 {
3555 	vnode_t		*vp;
3556 	ulong_t		index;
3557 	kmutex_t	*nphm;
3558 	kmutex_t	*vphm;
3559 	kmutex_t	*sep;
3560 
3561 	ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3562 	ASSERT(pp->p_vnode != NULL);
3563 	ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3564 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3565 
3566 	vp = pp->p_vnode;
3567 
3568 	TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3569 	    "page_hashout:pp %p vp %p", pp, vp);
3570 
3571 	/*
3572 	 *
3573 	 */
3574 	VM_STAT_ADD(hashout_count);
3575 	index = PAGE_HASH_FUNC(vp, pp->p_offset);
3576 	if (phm == NULL) {
3577 		VM_STAT_ADD(hashout_not_held);
3578 		nphm = PAGE_HASH_MUTEX(index);
3579 		mutex_enter(nphm);
3580 	}
3581 	ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3582 
3583 
3584 	/*
3585 	 * grab page vnode mutex and remove it...
3586 	 */
3587 	vphm = page_vnode_mutex(vp);
3588 	mutex_enter(vphm);
3589 
3590 	page_do_hashout(pp);
3591 
3592 	mutex_exit(vphm);
3593 	if (phm == NULL)
3594 		mutex_exit(nphm);
3595 
3596 	/*
3597 	 * Wake up processes waiting for this page.  The page's
3598 	 * identity has been changed, and is probably not the
3599 	 * desired page any longer.
3600 	 */
3601 	sep = page_se_mutex(pp);
3602 	mutex_enter(sep);
3603 	pp->p_selock &= ~SE_EWANTED;
3604 	if (CV_HAS_WAITERS(&pp->p_cv))
3605 		cv_broadcast(&pp->p_cv);
3606 	mutex_exit(sep);
3607 }
3608 
3609 /*
3610  * Add the page to the front of a linked list of pages
3611  * using the p_next & p_prev pointers for the list.
3612  * The caller is responsible for protecting the list pointers.
3613  */
3614 void
3615 page_add(page_t **ppp, page_t *pp)
3616 {
3617 	ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3618 
3619 	page_add_common(ppp, pp);
3620 }
3621 
3622 
3623 
3624 /*
3625  *  Common code for page_add() and mach_page_add()
3626  */
3627 void
3628 page_add_common(page_t **ppp, page_t *pp)
3629 {
3630 	if (*ppp == NULL) {
3631 		pp->p_next = pp->p_prev = pp;
3632 	} else {
3633 		pp->p_next = *ppp;
3634 		pp->p_prev = (*ppp)->p_prev;
3635 		(*ppp)->p_prev = pp;
3636 		pp->p_prev->p_next = pp;
3637 	}
3638 	*ppp = pp;
3639 }
3640 
3641 
3642 /*
3643  * Remove this page from a linked list of pages
3644  * using the p_next & p_prev pointers for the list.
3645  *
3646  * The caller is responsible for protecting the list pointers.
3647  */
3648 void
3649 page_sub(page_t **ppp, page_t *pp)
3650 {
3651 	ASSERT(pp != NULL && (PP_ISFREE(pp)) ? 1 :
3652 	    (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3653 
3654 	if (*ppp == NULL || pp == NULL) {
3655 		panic("page_sub: bad arg(s): pp %p, *ppp %p",
3656 		    (void *)pp, (void *)(*ppp));
3657 		/*NOTREACHED*/
3658 	}
3659 
3660 	page_sub_common(ppp, pp);
3661 }
3662 
3663 
3664 /*
3665  *  Common code for page_sub() and mach_page_sub()
3666  */
3667 void
3668 page_sub_common(page_t **ppp, page_t *pp)
3669 {
3670 	if (*ppp == pp)
3671 		*ppp = pp->p_next;		/* go to next page */
3672 
3673 	if (*ppp == pp)
3674 		*ppp = NULL;			/* page list is gone */
3675 	else {
3676 		pp->p_prev->p_next = pp->p_next;
3677 		pp->p_next->p_prev = pp->p_prev;
3678 	}
3679 	pp->p_prev = pp->p_next = pp;		/* make pp a list of one */
3680 }
3681 
3682 
3683 /*
3684  * Break page list cppp into two lists with npages in the first list.
3685  * The tail is returned in nppp.
3686  */
3687 void
3688 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3689 {
3690 	page_t *s1pp = *oppp;
3691 	page_t *s2pp;
3692 	page_t *e1pp, *e2pp;
3693 	long n = 0;
3694 
3695 	if (s1pp == NULL) {
3696 		*nppp = NULL;
3697 		return;
3698 	}
3699 	if (npages == 0) {
3700 		*nppp = s1pp;
3701 		*oppp = NULL;
3702 		return;
3703 	}
3704 	for (n = 0, s2pp = *oppp; n < npages; n++) {
3705 		s2pp = s2pp->p_next;
3706 	}
3707 	/* Fix head and tail of new lists */
3708 	e1pp = s2pp->p_prev;
3709 	e2pp = s1pp->p_prev;
3710 	s1pp->p_prev = e1pp;
3711 	e1pp->p_next = s1pp;
3712 	s2pp->p_prev = e2pp;
3713 	e2pp->p_next = s2pp;
3714 
3715 	/* second list empty */
3716 	if (s2pp == s1pp) {
3717 		*oppp = s1pp;
3718 		*nppp = NULL;
3719 	} else {
3720 		*oppp = s1pp;
3721 		*nppp = s2pp;
3722 	}
3723 }
3724 
3725 /*
3726  * Concatenate page list nppp onto the end of list ppp.
3727  */
3728 void
3729 page_list_concat(page_t **ppp, page_t **nppp)
3730 {
3731 	page_t *s1pp, *s2pp, *e1pp, *e2pp;
3732 
3733 	if (*nppp == NULL) {
3734 		return;
3735 	}
3736 	if (*ppp == NULL) {
3737 		*ppp = *nppp;
3738 		return;
3739 	}
3740 	s1pp = *ppp;
3741 	e1pp =  s1pp->p_prev;
3742 	s2pp = *nppp;
3743 	e2pp = s2pp->p_prev;
3744 	s1pp->p_prev = e2pp;
3745 	e2pp->p_next = s1pp;
3746 	e1pp->p_next = s2pp;
3747 	s2pp->p_prev = e1pp;
3748 }
3749 
3750 /*
3751  * return the next page in the page list
3752  */
3753 page_t *
3754 page_list_next(page_t *pp)
3755 {
3756 	return (pp->p_next);
3757 }
3758 
3759 
3760 /*
3761  * Add the page to the front of the linked list of pages
3762  * using p_vpnext/p_vpprev pointers for the list.
3763  *
3764  * The caller is responsible for protecting the lists.
3765  */
3766 void
3767 page_vpadd(page_t **ppp, page_t *pp)
3768 {
3769 	if (*ppp == NULL) {
3770 		pp->p_vpnext = pp->p_vpprev = pp;
3771 	} else {
3772 		pp->p_vpnext = *ppp;
3773 		pp->p_vpprev = (*ppp)->p_vpprev;
3774 		(*ppp)->p_vpprev = pp;
3775 		pp->p_vpprev->p_vpnext = pp;
3776 	}
3777 	*ppp = pp;
3778 }
3779 
3780 /*
3781  * Remove this page from the linked list of pages
3782  * using p_vpnext/p_vpprev pointers for the list.
3783  *
3784  * The caller is responsible for protecting the lists.
3785  */
3786 void
3787 page_vpsub(page_t **ppp, page_t *pp)
3788 {
3789 	if (*ppp == NULL || pp == NULL) {
3790 		panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3791 		    (void *)pp, (void *)(*ppp));
3792 		/*NOTREACHED*/
3793 	}
3794 
3795 	if (*ppp == pp)
3796 		*ppp = pp->p_vpnext;		/* go to next page */
3797 
3798 	if (*ppp == pp)
3799 		*ppp = NULL;			/* page list is gone */
3800 	else {
3801 		pp->p_vpprev->p_vpnext = pp->p_vpnext;
3802 		pp->p_vpnext->p_vpprev = pp->p_vpprev;
3803 	}
3804 	pp->p_vpprev = pp->p_vpnext = pp;	/* make pp a list of one */
3805 }
3806 
3807 /*
3808  * Lock a physical page into memory "long term".  Used to support "lock
3809  * in memory" functions.  Accepts the page to be locked, and a cow variable
3810  * to indicate whether a the lock will travel to the new page during
3811  * a potential copy-on-write.
3812  */
3813 int
3814 page_pp_lock(
3815 	page_t *pp,			/* page to be locked */
3816 	int cow,			/* cow lock */
3817 	int kernel)			/* must succeed -- ignore checking */
3818 {
3819 	int r = 0;			/* result -- assume failure */
3820 
3821 	ASSERT(PAGE_LOCKED(pp));
3822 
3823 	page_struct_lock(pp);
3824 	/*
3825 	 * Acquire the "freemem_lock" for availrmem.
3826 	 */
3827 	if (cow) {
3828 		mutex_enter(&freemem_lock);
3829 		if ((availrmem > pages_pp_maximum) &&
3830 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3831 			availrmem--;
3832 			pages_locked++;
3833 			mutex_exit(&freemem_lock);
3834 			r = 1;
3835 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3836 				cmn_err(CE_WARN,
3837 				    "COW lock limit reached on pfn 0x%lx",
3838 				    page_pptonum(pp));
3839 			}
3840 		} else
3841 			mutex_exit(&freemem_lock);
3842 	} else {
3843 		if (pp->p_lckcnt) {
3844 			if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3845 				r = 1;
3846 				if (++pp->p_lckcnt ==
3847 				    (ushort_t)PAGE_LOCK_MAXIMUM) {
3848 					cmn_err(CE_WARN, "Page lock limit "
3849 					    "reached on pfn 0x%lx",
3850 					    page_pptonum(pp));
3851 				}
3852 			}
3853 		} else {
3854 			if (kernel) {
3855 				/* availrmem accounting done by caller */
3856 				++pp->p_lckcnt;
3857 				r = 1;
3858 			} else {
3859 				mutex_enter(&freemem_lock);
3860 				if (availrmem > pages_pp_maximum) {
3861 					availrmem--;
3862 					pages_locked++;
3863 					++pp->p_lckcnt;
3864 					r = 1;
3865 				}
3866 				mutex_exit(&freemem_lock);
3867 			}
3868 		}
3869 	}
3870 	page_struct_unlock(pp);
3871 	return (r);
3872 }
3873 
3874 /*
3875  * Decommit a lock on a physical page frame.  Account for cow locks if
3876  * appropriate.
3877  */
3878 void
3879 page_pp_unlock(
3880 	page_t *pp,			/* page to be unlocked */
3881 	int cow,			/* expect cow lock */
3882 	int kernel)			/* this was a kernel lock */
3883 {
3884 	ASSERT(PAGE_LOCKED(pp));
3885 
3886 	page_struct_lock(pp);
3887 	/*
3888 	 * Acquire the "freemem_lock" for availrmem.
3889 	 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3890 	 * could be called to unlock even if nothing is locked. This could
3891 	 * happen if locked file pages were truncated (removing the lock)
3892 	 * and the file was grown again and new pages faulted in; the new
3893 	 * pages are unlocked but the segment still thinks they're locked.
3894 	 */
3895 	if (cow) {
3896 		if (pp->p_cowcnt) {
3897 			mutex_enter(&freemem_lock);
3898 			pp->p_cowcnt--;
3899 			availrmem++;
3900 			pages_locked--;
3901 			mutex_exit(&freemem_lock);
3902 		}
3903 	} else {
3904 		if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
3905 			if (!kernel) {
3906 				mutex_enter(&freemem_lock);
3907 				availrmem++;
3908 				pages_locked--;
3909 				mutex_exit(&freemem_lock);
3910 			}
3911 		}
3912 	}
3913 	page_struct_unlock(pp);
3914 }
3915 
3916 /*
3917  * This routine reserves availrmem for npages.
3918  * It returns 1 on success or 0 on failure.
3919  *
3920  * flags: KM_NOSLEEP or KM_SLEEP
3921  * cb_wait: called to induce delay when KM_SLEEP reservation requires kmem
3922  *     reaping to potentially succeed.  If the callback returns 0, the
3923  *     reservation attempts will cease to repeat and page_xresv() may
3924  *     report a failure.  If cb_wait is NULL, the traditional delay(hz/2)
3925  *     behavior will be used while waiting for a reap.
3926  */
3927 int
3928 page_xresv(pgcnt_t npages, uint_t flags, int (*cb_wait)(void))
3929 {
3930 	mutex_enter(&freemem_lock);
3931 	if (availrmem >= tune.t_minarmem + npages) {
3932 		availrmem -= npages;
3933 		mutex_exit(&freemem_lock);
3934 		return (1);
3935 	} else if ((flags & KM_NOSLEEP) != 0) {
3936 		mutex_exit(&freemem_lock);
3937 		return (0);
3938 	}
3939 	mutex_exit(&freemem_lock);
3940 
3941 	/*
3942 	 * We signal memory pressure to the system by elevating 'needfree'.
3943 	 * Processes such as kmem reaping, pageout, and ZFS ARC shrinking can
3944 	 * then respond to said pressure by freeing pages.
3945 	 */
3946 	page_needfree(npages);
3947 	int nobail = 1;
3948 	do {
3949 		kmem_reap();
3950 		if (cb_wait == NULL) {
3951 			delay(hz >> 2);
3952 		} else {
3953 			nobail = cb_wait();
3954 		}
3955 
3956 		mutex_enter(&freemem_lock);
3957 		if (availrmem >= tune.t_minarmem + npages) {
3958 			availrmem -= npages;
3959 			mutex_exit(&freemem_lock);
3960 			page_needfree(-(spgcnt_t)npages);
3961 			return (1);
3962 		}
3963 		mutex_exit(&freemem_lock);
3964 	} while (nobail != 0);
3965 	page_needfree(-(spgcnt_t)npages);
3966 
3967 	return (0);
3968 }
3969 
3970 /*
3971  * This routine reserves availrmem for npages;
3972  *	flags: KM_NOSLEEP or KM_SLEEP
3973  *	returns 1 on success or 0 on failure
3974  */
3975 int
3976 page_resv(pgcnt_t npages, uint_t flags)
3977 {
3978 	return (page_xresv(npages, flags, NULL));
3979 }
3980 
3981 /*
3982  * This routine unreserves availrmem for npages;
3983  */
3984 void
3985 page_unresv(pgcnt_t npages)
3986 {
3987 	mutex_enter(&freemem_lock);
3988 	availrmem += npages;
3989 	mutex_exit(&freemem_lock);
3990 }
3991 
3992 /*
3993  * See Statement at the beginning of segvn_lockop() regarding
3994  * the way we handle cowcnts and lckcnts.
3995  *
3996  * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
3997  * that breaks COW has PROT_WRITE.
3998  *
3999  * Note that, we may also break COW in case we are softlocking
4000  * on read access during physio;
4001  * in this softlock case, the vpage may not have PROT_WRITE.
4002  * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
4003  * if the vpage doesn't have PROT_WRITE.
4004  *
4005  * This routine is never called if we are stealing a page
4006  * in anon_private.
4007  *
4008  * The caller subtracted from availrmem for read only mapping.
4009  * if lckcnt is 1 increment availrmem.
4010  */
4011 void
4012 page_pp_useclaim(
4013 	page_t *opp,		/* original page frame losing lock */
4014 	page_t *npp,		/* new page frame gaining lock */
4015 	uint_t write_perm)	/* set if vpage has PROT_WRITE */
4016 {
4017 	int payback = 0;
4018 	int nidx, oidx;
4019 
4020 	ASSERT(PAGE_LOCKED(opp));
4021 	ASSERT(PAGE_LOCKED(npp));
4022 
4023 	/*
4024 	 * Since we have two pages we probably have two locks.  We need to take
4025 	 * them in a defined order to avoid deadlocks.  It's also possible they
4026 	 * both hash to the same lock in which case this is a non-issue.
4027 	 */
4028 	nidx = PAGE_LLOCK_HASH(PP_PAGEROOT(npp));
4029 	oidx = PAGE_LLOCK_HASH(PP_PAGEROOT(opp));
4030 	if (nidx < oidx) {
4031 		page_struct_lock(npp);
4032 		page_struct_lock(opp);
4033 	} else if (oidx < nidx) {
4034 		page_struct_lock(opp);
4035 		page_struct_lock(npp);
4036 	} else {	/* The pages hash to the same lock */
4037 		page_struct_lock(npp);
4038 	}
4039 
4040 	ASSERT(npp->p_cowcnt == 0);
4041 	ASSERT(npp->p_lckcnt == 0);
4042 
4043 	/* Don't use claim if nothing is locked (see page_pp_unlock above) */
4044 	if ((write_perm && opp->p_cowcnt != 0) ||
4045 	    (!write_perm && opp->p_lckcnt != 0)) {
4046 
4047 		if (write_perm) {
4048 			npp->p_cowcnt++;
4049 			ASSERT(opp->p_cowcnt != 0);
4050 			opp->p_cowcnt--;
4051 		} else {
4052 
4053 			ASSERT(opp->p_lckcnt != 0);
4054 
4055 			/*
4056 			 * We didn't need availrmem decremented if p_lckcnt on
4057 			 * original page is 1. Here, we are unlocking
4058 			 * read-only copy belonging to original page and
4059 			 * are locking a copy belonging to new page.
4060 			 */
4061 			if (opp->p_lckcnt == 1)
4062 				payback = 1;
4063 
4064 			npp->p_lckcnt++;
4065 			opp->p_lckcnt--;
4066 		}
4067 	}
4068 	if (payback) {
4069 		mutex_enter(&freemem_lock);
4070 		availrmem++;
4071 		pages_useclaim--;
4072 		mutex_exit(&freemem_lock);
4073 	}
4074 
4075 	if (nidx < oidx) {
4076 		page_struct_unlock(opp);
4077 		page_struct_unlock(npp);
4078 	} else if (oidx < nidx) {
4079 		page_struct_unlock(npp);
4080 		page_struct_unlock(opp);
4081 	} else {	/* The pages hash to the same lock */
4082 		page_struct_unlock(npp);
4083 	}
4084 }
4085 
4086 /*
4087  * Simple claim adjust functions -- used to support changes in
4088  * claims due to changes in access permissions.  Used by segvn_setprot().
4089  */
4090 int
4091 page_addclaim(page_t *pp)
4092 {
4093 	int r = 0;			/* result */
4094 
4095 	ASSERT(PAGE_LOCKED(pp));
4096 
4097 	page_struct_lock(pp);
4098 	ASSERT(pp->p_lckcnt != 0);
4099 
4100 	if (pp->p_lckcnt == 1) {
4101 		if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4102 			--pp->p_lckcnt;
4103 			r = 1;
4104 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4105 				cmn_err(CE_WARN,
4106 				    "COW lock limit reached on pfn 0x%lx",
4107 				    page_pptonum(pp));
4108 			}
4109 		}
4110 	} else {
4111 		mutex_enter(&freemem_lock);
4112 		if ((availrmem > pages_pp_maximum) &&
4113 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4114 			--availrmem;
4115 			++pages_claimed;
4116 			mutex_exit(&freemem_lock);
4117 			--pp->p_lckcnt;
4118 			r = 1;
4119 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4120 				cmn_err(CE_WARN,
4121 				    "COW lock limit reached on pfn 0x%lx",
4122 				    page_pptonum(pp));
4123 			}
4124 		} else
4125 			mutex_exit(&freemem_lock);
4126 	}
4127 	page_struct_unlock(pp);
4128 	return (r);
4129 }
4130 
4131 int
4132 page_subclaim(page_t *pp)
4133 {
4134 	int r = 0;
4135 
4136 	ASSERT(PAGE_LOCKED(pp));
4137 
4138 	page_struct_lock(pp);
4139 	ASSERT(pp->p_cowcnt != 0);
4140 
4141 	if (pp->p_lckcnt) {
4142 		if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4143 			r = 1;
4144 			/*
4145 			 * for availrmem
4146 			 */
4147 			mutex_enter(&freemem_lock);
4148 			availrmem++;
4149 			pages_claimed--;
4150 			mutex_exit(&freemem_lock);
4151 
4152 			pp->p_cowcnt--;
4153 
4154 			if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4155 				cmn_err(CE_WARN,
4156 				    "Page lock limit reached on pfn 0x%lx",
4157 				    page_pptonum(pp));
4158 			}
4159 		}
4160 	} else {
4161 		r = 1;
4162 		pp->p_cowcnt--;
4163 		pp->p_lckcnt++;
4164 	}
4165 	page_struct_unlock(pp);
4166 	return (r);
4167 }
4168 
4169 /*
4170  * Variant of page_addclaim(), where ppa[] contains the pages of a single large
4171  * page.
4172  */
4173 int
4174 page_addclaim_pages(page_t  **ppa)
4175 {
4176 	pgcnt_t	lckpgs = 0, pg_idx;
4177 
4178 	VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4179 
4180 	/*
4181 	 * Only need to take the page struct lock on the large page root.
4182 	 */
4183 	page_struct_lock(ppa[0]);
4184 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4185 
4186 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4187 		ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4188 		if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4189 			page_struct_unlock(ppa[0]);
4190 			return (0);
4191 		}
4192 		if (ppa[pg_idx]->p_lckcnt > 1)
4193 			lckpgs++;
4194 	}
4195 
4196 	if (lckpgs != 0) {
4197 		mutex_enter(&freemem_lock);
4198 		if (availrmem >= pages_pp_maximum + lckpgs) {
4199 			availrmem -= lckpgs;
4200 			pages_claimed += lckpgs;
4201 		} else {
4202 			mutex_exit(&freemem_lock);
4203 			page_struct_unlock(ppa[0]);
4204 			return (0);
4205 		}
4206 		mutex_exit(&freemem_lock);
4207 	}
4208 
4209 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4210 		ppa[pg_idx]->p_lckcnt--;
4211 		ppa[pg_idx]->p_cowcnt++;
4212 	}
4213 	page_struct_unlock(ppa[0]);
4214 	return (1);
4215 }
4216 
4217 /*
4218  * Variant of page_subclaim(), where ppa[] contains the pages of a single large
4219  * page.
4220  */
4221 int
4222 page_subclaim_pages(page_t  **ppa)
4223 {
4224 	pgcnt_t	ulckpgs = 0, pg_idx;
4225 
4226 	VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4227 
4228 	/*
4229 	 * Only need to take the page struct lock on the large page root.
4230 	 */
4231 	page_struct_lock(ppa[0]);
4232 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4233 
4234 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4235 		ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4236 		if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4237 			page_struct_unlock(ppa[0]);
4238 			return (0);
4239 		}
4240 		if (ppa[pg_idx]->p_lckcnt != 0)
4241 			ulckpgs++;
4242 	}
4243 
4244 	if (ulckpgs != 0) {
4245 		mutex_enter(&freemem_lock);
4246 		availrmem += ulckpgs;
4247 		pages_claimed -= ulckpgs;
4248 		mutex_exit(&freemem_lock);
4249 	}
4250 
4251 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4252 		ppa[pg_idx]->p_cowcnt--;
4253 		ppa[pg_idx]->p_lckcnt++;
4254 
4255 	}
4256 	page_struct_unlock(ppa[0]);
4257 	return (1);
4258 }
4259 
4260 page_t *
4261 page_numtopp(pfn_t pfnum, se_t se)
4262 {
4263 	page_t *pp;
4264 
4265 retry:
4266 	pp = page_numtopp_nolock(pfnum);
4267 	if (pp == NULL) {
4268 		return ((page_t *)NULL);
4269 	}
4270 
4271 	/*
4272 	 * Acquire the appropriate lock on the page.
4273 	 */
4274 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4275 		if (page_pptonum(pp) != pfnum)
4276 			goto retry;
4277 		continue;
4278 	}
4279 
4280 	if (page_pptonum(pp) != pfnum) {
4281 		page_unlock(pp);
4282 		goto retry;
4283 	}
4284 
4285 	return (pp);
4286 }
4287 
4288 page_t *
4289 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4290 {
4291 	page_t *pp;
4292 
4293 retry:
4294 	pp = page_numtopp_nolock(pfnum);
4295 	if (pp == NULL) {
4296 		return ((page_t *)NULL);
4297 	}
4298 
4299 	/*
4300 	 * Acquire the appropriate lock on the page.
4301 	 */
4302 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4303 		if (page_pptonum(pp) != pfnum)
4304 			goto retry;
4305 		continue;
4306 	}
4307 
4308 	if (page_pptonum(pp) != pfnum) {
4309 		page_unlock(pp);
4310 		goto retry;
4311 	}
4312 
4313 	return (pp);
4314 }
4315 
4316 /*
4317  * This routine is like page_numtopp, but will only return page structs
4318  * for pages which are ok for loading into hardware using the page struct.
4319  */
4320 page_t *
4321 page_numtopp_nowait(pfn_t pfnum, se_t se)
4322 {
4323 	page_t *pp;
4324 
4325 retry:
4326 	pp = page_numtopp_nolock(pfnum);
4327 	if (pp == NULL) {
4328 		return ((page_t *)NULL);
4329 	}
4330 
4331 	/*
4332 	 * Try to acquire the appropriate lock on the page.
4333 	 */
4334 	if (PP_ISFREE(pp))
4335 		pp = NULL;
4336 	else {
4337 		if (!page_trylock(pp, se))
4338 			pp = NULL;
4339 		else {
4340 			if (page_pptonum(pp) != pfnum) {
4341 				page_unlock(pp);
4342 				goto retry;
4343 			}
4344 			if (PP_ISFREE(pp)) {
4345 				page_unlock(pp);
4346 				pp = NULL;
4347 			}
4348 		}
4349 	}
4350 	return (pp);
4351 }
4352 
4353 /*
4354  * Returns a count of dirty pages that are in the process
4355  * of being written out.  If 'cleanit' is set, try to push the page.
4356  */
4357 pgcnt_t
4358 page_busy(int cleanit)
4359 {
4360 	page_t *page0 = page_first();
4361 	page_t *pp = page0;
4362 	pgcnt_t nppbusy = 0;
4363 	u_offset_t off;
4364 
4365 	do {
4366 		vnode_t *vp = pp->p_vnode;
4367 		/*
4368 		 * A page is a candidate for syncing if it is:
4369 		 *
4370 		 * (a)	On neither the freelist nor the cachelist
4371 		 * (b)	Hashed onto a vnode
4372 		 * (c)	Not a kernel page
4373 		 * (d)	Dirty
4374 		 * (e)	Not part of a swapfile
4375 		 * (f)	a page which belongs to a real vnode; eg has a non-null
4376 		 *	v_vfsp pointer.
4377 		 * (g)	Backed by a filesystem which doesn't have a
4378 		 *	stubbed-out sync operation
4379 		 */
4380 		if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
4381 		    hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4382 		    vfs_can_sync(vp->v_vfsp)) {
4383 			nppbusy++;
4384 
4385 			if (!cleanit)
4386 				continue;
4387 			if (!page_trylock(pp, SE_EXCL))
4388 				continue;
4389 
4390 			if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4391 			    pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4392 			    !(hat_pagesync(pp,
4393 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4394 				page_unlock(pp);
4395 				continue;
4396 			}
4397 			off = pp->p_offset;
4398 			VN_HOLD(vp);
4399 			page_unlock(pp);
4400 			(void) VOP_PUTPAGE(vp, off, PAGESIZE,
4401 			    B_ASYNC | B_FREE, kcred, NULL);
4402 			VN_RELE(vp);
4403 		}
4404 	} while ((pp = page_next(pp)) != page0);
4405 
4406 	return (nppbusy);
4407 }
4408 
4409 void page_invalidate_pages(void);
4410 
4411 /*
4412  * callback handler to vm sub-system
4413  *
4414  * callers make sure no recursive entries to this func.
4415  */
4416 /*ARGSUSED*/
4417 boolean_t
4418 callb_vm_cpr(void *arg, int code)
4419 {
4420 	if (code == CB_CODE_CPR_CHKPT)
4421 		page_invalidate_pages();
4422 	return (B_TRUE);
4423 }
4424 
4425 /*
4426  * Invalidate all pages of the system.
4427  * It shouldn't be called until all user page activities are all stopped.
4428  */
4429 void
4430 page_invalidate_pages()
4431 {
4432 	page_t *pp;
4433 	page_t *page0;
4434 	pgcnt_t nbusypages;
4435 	int retry = 0;
4436 	const int MAXRETRIES = 4;
4437 top:
4438 	/*
4439 	 * Flush dirty pages and destroy the clean ones.
4440 	 */
4441 	nbusypages = 0;
4442 
4443 	pp = page0 = page_first();
4444 	do {
4445 		struct vnode	*vp;
4446 		u_offset_t	offset;
4447 		int		mod;
4448 
4449 		/*
4450 		 * skip the page if it has no vnode or the page associated
4451 		 * with the kernel vnode or prom allocated kernel mem.
4452 		 */
4453 		if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
4454 			continue;
4455 
4456 		/*
4457 		 * skip the page which is already free invalidated.
4458 		 */
4459 		if (PP_ISFREE(pp) && PP_ISAGED(pp))
4460 			continue;
4461 
4462 		/*
4463 		 * skip pages that are already locked or can't be "exclusively"
4464 		 * locked or are already free.  After we lock the page, check
4465 		 * the free and age bits again to be sure it's not destroyed
4466 		 * yet.
4467 		 * To achieve max. parallelization, we use page_trylock instead
4468 		 * of page_lock so that we don't get block on individual pages
4469 		 * while we have thousands of other pages to process.
4470 		 */
4471 		if (!page_trylock(pp, SE_EXCL)) {
4472 			nbusypages++;
4473 			continue;
4474 		} else if (PP_ISFREE(pp)) {
4475 			if (!PP_ISAGED(pp)) {
4476 				page_destroy_free(pp);
4477 			} else {
4478 				page_unlock(pp);
4479 			}
4480 			continue;
4481 		}
4482 		/*
4483 		 * Is this page involved in some I/O? shared?
4484 		 *
4485 		 * The page_struct_lock need not be acquired to
4486 		 * examine these fields since the page has an
4487 		 * "exclusive" lock.
4488 		 */
4489 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4490 			page_unlock(pp);
4491 			continue;
4492 		}
4493 
4494 		if (vp->v_type == VCHR) {
4495 			panic("vp->v_type == VCHR");
4496 			/*NOTREACHED*/
4497 		}
4498 
4499 		if (!page_try_demote_pages(pp)) {
4500 			page_unlock(pp);
4501 			continue;
4502 		}
4503 
4504 		/*
4505 		 * Check the modified bit. Leave the bits alone in hardware
4506 		 * (they will be modified if we do the putpage).
4507 		 */
4508 		mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4509 		    & P_MOD);
4510 		if (mod) {
4511 			offset = pp->p_offset;
4512 			/*
4513 			 * Hold the vnode before releasing the page lock
4514 			 * to prevent it from being freed and re-used by
4515 			 * some other thread.
4516 			 */
4517 			VN_HOLD(vp);
4518 			page_unlock(pp);
4519 			/*
4520 			 * No error return is checked here. Callers such as
4521 			 * cpr deals with the dirty pages at the dump time
4522 			 * if this putpage fails.
4523 			 */
4524 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4525 			    kcred, NULL);
4526 			VN_RELE(vp);
4527 		} else {
4528 			/*LINTED: constant in conditional context*/
4529 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
4530 		}
4531 	} while ((pp = page_next(pp)) != page0);
4532 	if (nbusypages && retry++ < MAXRETRIES) {
4533 		delay(1);
4534 		goto top;
4535 	}
4536 }
4537 
4538 /*
4539  * Replace the page "old" with the page "new" on the page hash and vnode lists
4540  *
4541  * the replacement must be done in place, ie the equivalent sequence:
4542  *
4543  *	vp = old->p_vnode;
4544  *	off = old->p_offset;
4545  *	page_do_hashout(old)
4546  *	page_do_hashin(new, vp, off)
4547  *
4548  * doesn't work, since
4549  *  1) if old is the only page on the vnode, the v_pages list has a window
4550  *     where it looks empty. This will break file system assumptions.
4551  * and
4552  *  2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4553  */
4554 static void
4555 page_do_relocate_hash(page_t *new, page_t *old)
4556 {
4557 	page_t	**hash_list;
4558 	vnode_t	*vp = old->p_vnode;
4559 	kmutex_t *sep;
4560 
4561 	ASSERT(PAGE_EXCL(old));
4562 	ASSERT(PAGE_EXCL(new));
4563 	ASSERT(vp != NULL);
4564 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4565 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4566 
4567 	/*
4568 	 * First find old page on the page hash list
4569 	 */
4570 	hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4571 
4572 	for (;;) {
4573 		if (*hash_list == old)
4574 			break;
4575 		if (*hash_list == NULL) {
4576 			panic("page_do_hashout");
4577 			/*NOTREACHED*/
4578 		}
4579 		hash_list = &(*hash_list)->p_hash;
4580 	}
4581 
4582 	/*
4583 	 * update new and replace old with new on the page hash list
4584 	 */
4585 	new->p_vnode = old->p_vnode;
4586 	new->p_offset = old->p_offset;
4587 	new->p_hash = old->p_hash;
4588 	*hash_list = new;
4589 
4590 	if ((new->p_vnode->v_flag & VISSWAP) != 0)
4591 		PP_SETSWAP(new);
4592 
4593 	/*
4594 	 * replace old with new on the vnode's page list
4595 	 */
4596 	if (old->p_vpnext == old) {
4597 		new->p_vpnext = new;
4598 		new->p_vpprev = new;
4599 	} else {
4600 		new->p_vpnext = old->p_vpnext;
4601 		new->p_vpprev = old->p_vpprev;
4602 		new->p_vpnext->p_vpprev = new;
4603 		new->p_vpprev->p_vpnext = new;
4604 	}
4605 	if (vp->v_pages == old)
4606 		vp->v_pages = new;
4607 
4608 	/*
4609 	 * clear out the old page
4610 	 */
4611 	old->p_hash = NULL;
4612 	old->p_vpnext = NULL;
4613 	old->p_vpprev = NULL;
4614 	old->p_vnode = NULL;
4615 	PP_CLRSWAP(old);
4616 	old->p_offset = (u_offset_t)-1;
4617 	page_clr_all_props(old);
4618 
4619 	/*
4620 	 * Wake up processes waiting for this page.  The page's
4621 	 * identity has been changed, and is probably not the
4622 	 * desired page any longer.
4623 	 */
4624 	sep = page_se_mutex(old);
4625 	mutex_enter(sep);
4626 	old->p_selock &= ~SE_EWANTED;
4627 	if (CV_HAS_WAITERS(&old->p_cv))
4628 		cv_broadcast(&old->p_cv);
4629 	mutex_exit(sep);
4630 }
4631 
4632 /*
4633  * This function moves the identity of page "pp_old" to page "pp_new".
4634  * Both pages must be locked on entry.  "pp_new" is free, has no identity,
4635  * and need not be hashed out from anywhere.
4636  */
4637 void
4638 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4639 {
4640 	vnode_t *vp = pp_old->p_vnode;
4641 	u_offset_t off = pp_old->p_offset;
4642 	kmutex_t *phm, *vphm;
4643 
4644 	/*
4645 	 * Rehash two pages
4646 	 */
4647 	ASSERT(PAGE_EXCL(pp_old));
4648 	ASSERT(PAGE_EXCL(pp_new));
4649 	ASSERT(vp != NULL);
4650 	ASSERT(pp_new->p_vnode == NULL);
4651 
4652 	/*
4653 	 * hashout then hashin while holding the mutexes
4654 	 */
4655 	phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4656 	mutex_enter(phm);
4657 	vphm = page_vnode_mutex(vp);
4658 	mutex_enter(vphm);
4659 
4660 	page_do_relocate_hash(pp_new, pp_old);
4661 
4662 	/* The following comment preserved from page_flip(). */
4663 	pp_new->p_fsdata = pp_old->p_fsdata;
4664 	pp_old->p_fsdata = 0;
4665 	mutex_exit(vphm);
4666 	mutex_exit(phm);
4667 
4668 	/*
4669 	 * The page_struct_lock need not be acquired for lckcnt and
4670 	 * cowcnt since the page has an "exclusive" lock.
4671 	 */
4672 	ASSERT(pp_new->p_lckcnt == 0);
4673 	ASSERT(pp_new->p_cowcnt == 0);
4674 	pp_new->p_lckcnt = pp_old->p_lckcnt;
4675 	pp_new->p_cowcnt = pp_old->p_cowcnt;
4676 	pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4677 
4678 }
4679 
4680 /*
4681  * Helper routine used to lock all remaining members of a
4682  * large page. The caller is responsible for passing in a locked
4683  * pp. If pp is a large page, then it succeeds in locking all the
4684  * remaining constituent pages or it returns with only the
4685  * original page locked.
4686  *
4687  * Returns 1 on success, 0 on failure.
4688  *
4689  * If success is returned this routine guarantees p_szc for all constituent
4690  * pages of a large page pp belongs to can't change. To achieve this we
4691  * recheck szc of pp after locking all constituent pages and retry if szc
4692  * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4693  * lock on one of constituent pages it can't be running after all constituent
4694  * pages are locked.  hat_page_demote() with a lock on a constituent page
4695  * outside of this large page (i.e. pp belonged to a larger large page) is
4696  * already done with all constituent pages of pp since the root's p_szc is
4697  * changed last. Therefore no need to synchronize with hat_page_demote() that
4698  * locked a constituent page outside of pp's current large page.
4699  */
4700 #ifdef DEBUG
4701 uint32_t gpg_trylock_mtbf = 0;
4702 #endif
4703 
4704 int
4705 group_page_trylock(page_t *pp, se_t se)
4706 {
4707 	page_t  *tpp;
4708 	pgcnt_t	npgs, i, j;
4709 	uint_t pszc = pp->p_szc;
4710 
4711 #ifdef DEBUG
4712 	if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4713 		return (0);
4714 	}
4715 #endif
4716 
4717 	if (pp != PP_GROUPLEADER(pp, pszc)) {
4718 		return (0);
4719 	}
4720 
4721 retry:
4722 	ASSERT(PAGE_LOCKED_SE(pp, se));
4723 	ASSERT(!PP_ISFREE(pp));
4724 	if (pszc == 0) {
4725 		return (1);
4726 	}
4727 	npgs = page_get_pagecnt(pszc);
4728 	tpp = pp + 1;
4729 	for (i = 1; i < npgs; i++, tpp++) {
4730 		if (!page_trylock(tpp, se)) {
4731 			tpp = pp + 1;
4732 			for (j = 1; j < i; j++, tpp++) {
4733 				page_unlock(tpp);
4734 			}
4735 			return (0);
4736 		}
4737 	}
4738 	if (pp->p_szc != pszc) {
4739 		ASSERT(pp->p_szc < pszc);
4740 		ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
4741 		    !IS_SWAPFSVP(pp->p_vnode));
4742 		tpp = pp + 1;
4743 		for (i = 1; i < npgs; i++, tpp++) {
4744 			page_unlock(tpp);
4745 		}
4746 		pszc = pp->p_szc;
4747 		goto retry;
4748 	}
4749 	return (1);
4750 }
4751 
4752 void
4753 group_page_unlock(page_t *pp)
4754 {
4755 	page_t *tpp;
4756 	pgcnt_t	npgs, i;
4757 
4758 	ASSERT(PAGE_LOCKED(pp));
4759 	ASSERT(!PP_ISFREE(pp));
4760 	ASSERT(pp == PP_PAGEROOT(pp));
4761 	npgs = page_get_pagecnt(pp->p_szc);
4762 	for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4763 		page_unlock(tpp);
4764 	}
4765 }
4766 
4767 /*
4768  * returns
4769  * 0		: on success and *nrelocp is number of relocated PAGESIZE pages
4770  * ERANGE	: this is not a base page
4771  * EBUSY	: failure to get locks on the page/pages
4772  * ENOMEM	: failure to obtain replacement pages
4773  * EAGAIN	: OBP has not yet completed its boot-time handoff to the kernel
4774  * EIO		: An error occurred while trying to copy the page data
4775  *
4776  * Return with all constituent members of target and replacement
4777  * SE_EXCL locked. It is the callers responsibility to drop the
4778  * locks.
4779  */
4780 int
4781 do_page_relocate(
4782 	page_t **target,
4783 	page_t **replacement,
4784 	int grouplock,
4785 	spgcnt_t *nrelocp,
4786 	lgrp_t *lgrp)
4787 {
4788 	page_t *first_repl;
4789 	page_t *repl;
4790 	page_t *targ;
4791 	page_t *pl = NULL;
4792 	uint_t ppattr;
4793 	pfn_t   pfn, repl_pfn;
4794 	uint_t	szc;
4795 	spgcnt_t npgs, i;
4796 	int repl_contig = 0;
4797 	uint_t flags = 0;
4798 	spgcnt_t dofree = 0;
4799 
4800 	*nrelocp = 0;
4801 
4802 #if defined(__sparc)
4803 	/*
4804 	 * We need to wait till OBP has completed
4805 	 * its boot-time handoff of its resources to the kernel
4806 	 * before we allow page relocation
4807 	 */
4808 	if (page_relocate_ready == 0) {
4809 		return (EAGAIN);
4810 	}
4811 #endif
4812 
4813 	/*
4814 	 * If this is not a base page,
4815 	 * just return with 0x0 pages relocated.
4816 	 */
4817 	targ = *target;
4818 	ASSERT(PAGE_EXCL(targ));
4819 	ASSERT(!PP_ISFREE(targ));
4820 	szc = targ->p_szc;
4821 	ASSERT(szc < mmu_page_sizes);
4822 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4823 	pfn = targ->p_pagenum;
4824 	if (pfn != PFN_BASE(pfn, szc)) {
4825 		VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4826 		return (ERANGE);
4827 	}
4828 
4829 	if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4830 		repl_pfn = repl->p_pagenum;
4831 		if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4832 			VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4833 			return (ERANGE);
4834 		}
4835 		repl_contig = 1;
4836 	}
4837 
4838 	/*
4839 	 * We must lock all members of this large page or we cannot
4840 	 * relocate any part of it.
4841 	 */
4842 	if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4843 		VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4844 		return (EBUSY);
4845 	}
4846 
4847 	/*
4848 	 * reread szc it could have been decreased before
4849 	 * group_page_trylock() was done.
4850 	 */
4851 	szc = targ->p_szc;
4852 	ASSERT(szc < mmu_page_sizes);
4853 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4854 	ASSERT(pfn == PFN_BASE(pfn, szc));
4855 
4856 	npgs = page_get_pagecnt(targ->p_szc);
4857 
4858 	if (repl == NULL) {
4859 		dofree = npgs;		/* Size of target page in MMU pages */
4860 		if (!page_create_wait(dofree, 0)) {
4861 			if (grouplock != 0) {
4862 				group_page_unlock(targ);
4863 			}
4864 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4865 			return (ENOMEM);
4866 		}
4867 
4868 		/*
4869 		 * seg kmem pages require that the target and replacement
4870 		 * page be the same pagesize.
4871 		 */
4872 		flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
4873 		repl = page_get_replacement_page(targ, lgrp, flags);
4874 		if (repl == NULL) {
4875 			if (grouplock != 0) {
4876 				group_page_unlock(targ);
4877 			}
4878 			page_create_putback(dofree);
4879 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4880 			return (ENOMEM);
4881 		}
4882 	}
4883 #ifdef DEBUG
4884 	else {
4885 		ASSERT(PAGE_LOCKED(repl));
4886 	}
4887 #endif /* DEBUG */
4888 
4889 #if defined(__sparc)
4890 	/*
4891 	 * Let hat_page_relocate() complete the relocation if it's kernel page
4892 	 */
4893 	if (VN_ISKAS(targ->p_vnode)) {
4894 		*replacement = repl;
4895 		if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4896 			if (grouplock != 0) {
4897 				group_page_unlock(targ);
4898 			}
4899 			if (dofree) {
4900 				*replacement = NULL;
4901 				page_free_replacement_page(repl);
4902 				page_create_putback(dofree);
4903 			}
4904 			VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4905 			return (EAGAIN);
4906 		}
4907 		VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4908 		return (0);
4909 	}
4910 #else
4911 #if defined(lint)
4912 	dofree = dofree;
4913 #endif
4914 #endif
4915 
4916 	first_repl = repl;
4917 
4918 	for (i = 0; i < npgs; i++) {
4919 		ASSERT(PAGE_EXCL(targ));
4920 		ASSERT(targ->p_slckcnt == 0);
4921 		ASSERT(repl->p_slckcnt == 0);
4922 
4923 		(void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4924 
4925 		ASSERT(hat_page_getshare(targ) == 0);
4926 		ASSERT(!PP_ISFREE(targ));
4927 		ASSERT(targ->p_pagenum == (pfn + i));
4928 		ASSERT(repl_contig == 0 ||
4929 		    repl->p_pagenum == (repl_pfn + i));
4930 
4931 		/*
4932 		 * Copy the page contents and attributes then
4933 		 * relocate the page in the page hash.
4934 		 */
4935 		if (ppcopy(targ, repl) == 0) {
4936 			targ = *target;
4937 			repl = first_repl;
4938 			VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
4939 			if (grouplock != 0) {
4940 				group_page_unlock(targ);
4941 			}
4942 			if (dofree) {
4943 				*replacement = NULL;
4944 				page_free_replacement_page(repl);
4945 				page_create_putback(dofree);
4946 			}
4947 			return (EIO);
4948 		}
4949 
4950 		targ++;
4951 		if (repl_contig != 0) {
4952 			repl++;
4953 		} else {
4954 			repl = repl->p_next;
4955 		}
4956 	}
4957 
4958 	repl = first_repl;
4959 	targ = *target;
4960 
4961 	for (i = 0; i < npgs; i++) {
4962 		ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
4963 		page_clr_all_props(repl);
4964 		page_set_props(repl, ppattr);
4965 		page_relocate_hash(repl, targ);
4966 
4967 		ASSERT(hat_page_getshare(targ) == 0);
4968 		ASSERT(hat_page_getshare(repl) == 0);
4969 		/*
4970 		 * Now clear the props on targ, after the
4971 		 * page_relocate_hash(), they no longer
4972 		 * have any meaning.
4973 		 */
4974 		page_clr_all_props(targ);
4975 		ASSERT(targ->p_next == targ);
4976 		ASSERT(targ->p_prev == targ);
4977 		page_list_concat(&pl, &targ);
4978 
4979 		targ++;
4980 		if (repl_contig != 0) {
4981 			repl++;
4982 		} else {
4983 			repl = repl->p_next;
4984 		}
4985 	}
4986 	/* assert that we have come full circle with repl */
4987 	ASSERT(repl_contig == 1 || first_repl == repl);
4988 
4989 	*target = pl;
4990 	if (*replacement == NULL) {
4991 		ASSERT(first_repl == repl);
4992 		*replacement = repl;
4993 	}
4994 	VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4995 	*nrelocp = npgs;
4996 	return (0);
4997 }
4998 /*
4999  * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
5000  */
5001 int
5002 page_relocate(
5003 	page_t **target,
5004 	page_t **replacement,
5005 	int grouplock,
5006 	int freetarget,
5007 	spgcnt_t *nrelocp,
5008 	lgrp_t *lgrp)
5009 {
5010 	spgcnt_t ret;
5011 
5012 	/* do_page_relocate returns 0 on success or errno value */
5013 	ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
5014 
5015 	if (ret != 0 || freetarget == 0) {
5016 		return (ret);
5017 	}
5018 	if (*nrelocp == 1) {
5019 		ASSERT(*target != NULL);
5020 		page_free(*target, 1);
5021 	} else {
5022 		page_t *tpp = *target;
5023 		uint_t szc = tpp->p_szc;
5024 		pgcnt_t npgs = page_get_pagecnt(szc);
5025 		ASSERT(npgs > 1);
5026 		ASSERT(szc != 0);
5027 		do {
5028 			ASSERT(PAGE_EXCL(tpp));
5029 			ASSERT(!hat_page_is_mapped(tpp));
5030 			ASSERT(tpp->p_szc == szc);
5031 			PP_SETFREE(tpp);
5032 			PP_SETAGED(tpp);
5033 			npgs--;
5034 		} while ((tpp = tpp->p_next) != *target);
5035 		ASSERT(npgs == 0);
5036 		page_list_add_pages(*target, 0);
5037 		npgs = page_get_pagecnt(szc);
5038 		page_create_putback(npgs);
5039 	}
5040 	return (ret);
5041 }
5042 
5043 /*
5044  * it is up to the caller to deal with pcf accounting.
5045  */
5046 void
5047 page_free_replacement_page(page_t *pplist)
5048 {
5049 	page_t *pp;
5050 
5051 	while (pplist != NULL) {
5052 		/*
5053 		 * pp_targ is a linked list.
5054 		 */
5055 		pp = pplist;
5056 		if (pp->p_szc == 0) {
5057 			page_sub(&pplist, pp);
5058 			page_clr_all_props(pp);
5059 			PP_SETFREE(pp);
5060 			PP_SETAGED(pp);
5061 			page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5062 			page_unlock(pp);
5063 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5064 		} else {
5065 			spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5066 			page_t *tpp;
5067 			page_list_break(&pp, &pplist, curnpgs);
5068 			tpp = pp;
5069 			do {
5070 				ASSERT(PAGE_EXCL(tpp));
5071 				ASSERT(!hat_page_is_mapped(tpp));
5072 				page_clr_all_props(tpp);
5073 				PP_SETFREE(tpp);
5074 				PP_SETAGED(tpp);
5075 			} while ((tpp = tpp->p_next) != pp);
5076 			page_list_add_pages(pp, 0);
5077 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5078 		}
5079 	}
5080 }
5081 
5082 /*
5083  * Relocate target to non-relocatable replacement page.
5084  */
5085 int
5086 page_relocate_cage(page_t **target, page_t **replacement)
5087 {
5088 	page_t *tpp, *rpp;
5089 	spgcnt_t pgcnt, npgs;
5090 	int result;
5091 
5092 	tpp = *target;
5093 
5094 	ASSERT(PAGE_EXCL(tpp));
5095 	ASSERT(tpp->p_szc == 0);
5096 
5097 	pgcnt = btop(page_get_pagesize(tpp->p_szc));
5098 
5099 	do {
5100 		(void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5101 		rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5102 		if (rpp == NULL) {
5103 			page_create_putback(pgcnt);
5104 			kcage_cageout_wakeup();
5105 		}
5106 	} while (rpp == NULL);
5107 
5108 	ASSERT(PP_ISNORELOC(rpp));
5109 
5110 	result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5111 
5112 	if (result == 0) {
5113 		*replacement = rpp;
5114 		if (pgcnt != npgs)
5115 			panic("page_relocate_cage: partial relocation");
5116 	}
5117 
5118 	return (result);
5119 }
5120 
5121 /*
5122  * Release the page lock on a page, place on cachelist
5123  * tail if no longer mapped. Caller can let us know if
5124  * the page is known to be clean.
5125  */
5126 int
5127 page_release(page_t *pp, int checkmod)
5128 {
5129 	int status;
5130 
5131 	ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5132 	    (pp->p_vnode != NULL));
5133 
5134 	if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5135 	    ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5136 	    pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5137 	    !hat_page_is_mapped(pp)) {
5138 
5139 		/*
5140 		 * If page is modified, unlock it
5141 		 *
5142 		 * (p_nrm & P_MOD) bit has the latest stuff because:
5143 		 * (1) We found that this page doesn't have any mappings
5144 		 *	_after_ holding SE_EXCL and
5145 		 * (2) We didn't drop SE_EXCL lock after the check in (1)
5146 		 */
5147 		if (checkmod && hat_ismod(pp)) {
5148 			page_unlock(pp);
5149 			status = PGREL_MOD;
5150 		} else {
5151 			/*LINTED: constant in conditional context*/
5152 			VN_DISPOSE(pp, B_FREE, 0, kcred);
5153 			status = PGREL_CLEAN;
5154 		}
5155 	} else {
5156 		page_unlock(pp);
5157 		status = PGREL_NOTREL;
5158 	}
5159 	return (status);
5160 }
5161 
5162 /*
5163  * Given a constituent page, try to demote the large page on the freelist.
5164  *
5165  * Returns nonzero if the page could be demoted successfully. Returns with
5166  * the constituent page still locked.
5167  */
5168 int
5169 page_try_demote_free_pages(page_t *pp)
5170 {
5171 	page_t *rootpp = pp;
5172 	pfn_t	pfn = page_pptonum(pp);
5173 	spgcnt_t npgs;
5174 	uint_t	szc = pp->p_szc;
5175 
5176 	ASSERT(PP_ISFREE(pp));
5177 	ASSERT(PAGE_EXCL(pp));
5178 
5179 	/*
5180 	 * Adjust rootpp and lock it, if `pp' is not the base
5181 	 * constituent page.
5182 	 */
5183 	npgs = page_get_pagecnt(pp->p_szc);
5184 	if (npgs == 1) {
5185 		return (0);
5186 	}
5187 
5188 	if (!IS_P2ALIGNED(pfn, npgs)) {
5189 		pfn = P2ALIGN(pfn, npgs);
5190 		rootpp = page_numtopp_nolock(pfn);
5191 	}
5192 
5193 	if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5194 		return (0);
5195 	}
5196 
5197 	if (rootpp->p_szc != szc) {
5198 		if (pp != rootpp)
5199 			page_unlock(rootpp);
5200 		return (0);
5201 	}
5202 
5203 	page_demote_free_pages(rootpp);
5204 
5205 	if (pp != rootpp)
5206 		page_unlock(rootpp);
5207 
5208 	ASSERT(PP_ISFREE(pp));
5209 	ASSERT(PAGE_EXCL(pp));
5210 	return (1);
5211 }
5212 
5213 /*
5214  * Given a constituent page, try to demote the large page.
5215  *
5216  * Returns nonzero if the page could be demoted successfully. Returns with
5217  * the constituent page still locked.
5218  */
5219 int
5220 page_try_demote_pages(page_t *pp)
5221 {
5222 	page_t *tpp, *rootpp = pp;
5223 	pfn_t	pfn = page_pptonum(pp);
5224 	spgcnt_t i, npgs;
5225 	uint_t	szc = pp->p_szc;
5226 	vnode_t *vp = pp->p_vnode;
5227 
5228 	ASSERT(PAGE_EXCL(pp));
5229 
5230 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5231 
5232 	if (pp->p_szc == 0) {
5233 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5234 		return (1);
5235 	}
5236 
5237 	if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
5238 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5239 		page_demote_vp_pages(pp);
5240 		ASSERT(pp->p_szc == 0);
5241 		return (1);
5242 	}
5243 
5244 	/*
5245 	 * Adjust rootpp if passed in is not the base
5246 	 * constituent page.
5247 	 */
5248 	npgs = page_get_pagecnt(pp->p_szc);
5249 	ASSERT(npgs > 1);
5250 	if (!IS_P2ALIGNED(pfn, npgs)) {
5251 		pfn = P2ALIGN(pfn, npgs);
5252 		rootpp = page_numtopp_nolock(pfn);
5253 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5254 		ASSERT(rootpp->p_vnode != NULL);
5255 		ASSERT(rootpp->p_szc == szc);
5256 	}
5257 
5258 	/*
5259 	 * We can't demote kernel pages since we can't hat_unload()
5260 	 * the mappings.
5261 	 */
5262 	if (VN_ISKAS(rootpp->p_vnode))
5263 		return (0);
5264 
5265 	/*
5266 	 * Attempt to lock all constituent pages except the page passed
5267 	 * in since it's already locked.
5268 	 */
5269 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5270 		ASSERT(!PP_ISFREE(tpp));
5271 		ASSERT(tpp->p_vnode != NULL);
5272 
5273 		if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5274 			break;
5275 		ASSERT(tpp->p_szc == rootpp->p_szc);
5276 		ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5277 	}
5278 
5279 	/*
5280 	 * If we failed to lock them all then unlock what we have
5281 	 * locked so far and bail.
5282 	 */
5283 	if (i < npgs) {
5284 		tpp = rootpp;
5285 		while (i-- > 0) {
5286 			if (tpp != pp)
5287 				page_unlock(tpp);
5288 			tpp++;
5289 		}
5290 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5291 		return (0);
5292 	}
5293 
5294 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5295 		ASSERT(PAGE_EXCL(tpp));
5296 		ASSERT(tpp->p_slckcnt == 0);
5297 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5298 		tpp->p_szc = 0;
5299 	}
5300 
5301 	/*
5302 	 * Unlock all pages except the page passed in.
5303 	 */
5304 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5305 		ASSERT(!hat_page_is_mapped(tpp));
5306 		if (tpp != pp)
5307 			page_unlock(tpp);
5308 	}
5309 
5310 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5311 	return (1);
5312 }
5313 
5314 /*
5315  * Called by page_free() and page_destroy() to demote the page size code
5316  * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5317  * p_szc on free list, neither can we just clear p_szc of a single page_t
5318  * within a large page since it will break other code that relies on p_szc
5319  * being the same for all page_t's of a large page). Anonymous pages should
5320  * never end up here because anon_map_getpages() cannot deal with p_szc
5321  * changes after a single constituent page is locked.  While anonymous or
5322  * kernel large pages are demoted or freed the entire large page at a time
5323  * with all constituent pages locked EXCL for the file system pages we
5324  * have to be able to demote a large page (i.e. decrease all constituent pages
5325  * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5326  * we can easily deal with anonymous page demotion the entire large page at a
5327  * time is that those operation originate at address space level and concern
5328  * the entire large page region with actual demotion only done when pages are
5329  * not shared with any other processes (therefore we can always get EXCL lock
5330  * on all anonymous constituent pages after clearing segment page
5331  * cache). However file system pages can be truncated or invalidated at a
5332  * PAGESIZE level from the file system side and end up in page_free() or
5333  * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5334  * and therefore pageout should be able to demote a large page by EXCL locking
5335  * any constituent page that is not under SOFTLOCK). In those cases we cannot
5336  * rely on being able to lock EXCL all constituent pages.
5337  *
5338  * To prevent szc changes on file system pages one has to lock all constituent
5339  * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5340  * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5341  * prevent szc changes is hat layer that uses its own page level mlist
5342  * locks. hat assumes that szc doesn't change after mlist lock for a page is
5343  * taken. Therefore we need to change szc under hat level locks if we only
5344  * have an EXCL lock on a single constituent page and hat still references any
5345  * of constituent pages.  (Note we can't "ignore" hat layer by simply
5346  * hat_pageunload() all constituent pages without having EXCL locks on all of
5347  * constituent pages). We use hat_page_demote() call to safely demote szc of
5348  * all constituent pages under hat locks when we only have an EXCL lock on one
5349  * of constituent pages.
5350  *
5351  * This routine calls page_szc_lock() before calling hat_page_demote() to
5352  * allow segvn in one special case not to lock all constituent pages SHARED
5353  * before calling hat_memload_array() that relies on p_szc not changing even
5354  * before hat level mlist lock is taken.  In that case segvn uses
5355  * page_szc_lock() to prevent hat_page_demote() changing p_szc values.
5356  *
5357  * Anonymous or kernel page demotion still has to lock all pages exclusively
5358  * and do hat_pageunload() on all constituent pages before demoting the page
5359  * therefore there's no need for anonymous or kernel page demotion to use
5360  * hat_page_demote() mechanism.
5361  *
5362  * hat_page_demote() removes all large mappings that map pp and then decreases
5363  * p_szc starting from the last constituent page of the large page. By working
5364  * from the tail of a large page in pfn decreasing order allows one looking at
5365  * the root page to know that hat_page_demote() is done for root's szc area.
5366  * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5367  * pages within szc 1 area to prevent szc changes because hat_page_demote()
5368  * that started on this page when it had szc > 1 is done for this szc 1 area.
5369  *
5370  * We are guaranteed that all constituent pages of pp's large page belong to
5371  * the same vnode with the consecutive offsets increasing in the direction of
5372  * the pfn i.e. the identity of constituent pages can't change until their
5373  * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5374  * large mappings to pp even though we don't lock any constituent page except
5375  * pp (i.e. we won't unload e.g. kernel locked page).
5376  */
5377 static void
5378 page_demote_vp_pages(page_t *pp)
5379 {
5380 	kmutex_t *mtx;
5381 
5382 	ASSERT(PAGE_EXCL(pp));
5383 	ASSERT(!PP_ISFREE(pp));
5384 	ASSERT(pp->p_vnode != NULL);
5385 	ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5386 	ASSERT(!PP_ISKAS(pp));
5387 
5388 	VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5389 
5390 	mtx = page_szc_lock(pp);
5391 	if (mtx != NULL) {
5392 		hat_page_demote(pp);
5393 		mutex_exit(mtx);
5394 	}
5395 	ASSERT(pp->p_szc == 0);
5396 }
5397 
5398 /*
5399  * Mark any existing pages for migration in the given range
5400  */
5401 void
5402 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5403     struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5404     u_offset_t vnoff, int rflag)
5405 {
5406 	struct anon	*ap;
5407 	vnode_t		*curvp;
5408 	lgrp_t		*from;
5409 	pgcnt_t		nlocked;
5410 	u_offset_t	off;
5411 	pfn_t		pfn;
5412 	size_t		pgsz;
5413 	size_t		segpgsz;
5414 	pgcnt_t		pages;
5415 	uint_t		pszc;
5416 	page_t		*pp0, *pp;
5417 	caddr_t		va;
5418 	ulong_t		an_idx;
5419 	anon_sync_obj_t	cookie;
5420 
5421 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5422 
5423 	/*
5424 	 * Don't do anything if don't need to do lgroup optimizations
5425 	 * on this system
5426 	 */
5427 	if (!lgrp_optimizations())
5428 		return;
5429 
5430 	/*
5431 	 * Align address and length to (potentially large) page boundary
5432 	 */
5433 	segpgsz = page_get_pagesize(seg->s_szc);
5434 	addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5435 	if (rflag)
5436 		len = P2ROUNDUP(len, segpgsz);
5437 
5438 	/*
5439 	 * Do one (large) page at a time
5440 	 */
5441 	va = addr;
5442 	while (va < addr + len) {
5443 		/*
5444 		 * Lookup (root) page for vnode and offset corresponding to
5445 		 * this virtual address
5446 		 * Try anonmap first since there may be copy-on-write
5447 		 * pages, but initialize vnode pointer and offset using
5448 		 * vnode arguments just in case there isn't an amp.
5449 		 */
5450 		curvp = vp;
5451 		off = vnoff + va - seg->s_base;
5452 		if (amp) {
5453 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5454 			an_idx = anon_index + seg_page(seg, va);
5455 			anon_array_enter(amp, an_idx, &cookie);
5456 			ap = anon_get_ptr(amp->ahp, an_idx);
5457 			if (ap)
5458 				swap_xlate(ap, &curvp, &off);
5459 			anon_array_exit(&cookie);
5460 			ANON_LOCK_EXIT(&amp->a_rwlock);
5461 		}
5462 
5463 		pp = NULL;
5464 		if (curvp)
5465 			pp = page_lookup(curvp, off, SE_SHARED);
5466 
5467 		/*
5468 		 * If there isn't a page at this virtual address,
5469 		 * skip to next page
5470 		 */
5471 		if (pp == NULL) {
5472 			va += PAGESIZE;
5473 			continue;
5474 		}
5475 
5476 		/*
5477 		 * Figure out which lgroup this page is in for kstats
5478 		 */
5479 		pfn = page_pptonum(pp);
5480 		from = lgrp_pfn_to_lgrp(pfn);
5481 
5482 		/*
5483 		 * Get page size, and round up and skip to next page boundary
5484 		 * if unaligned address
5485 		 */
5486 		pszc = pp->p_szc;
5487 		pgsz = page_get_pagesize(pszc);
5488 		pages = btop(pgsz);
5489 		if (!IS_P2ALIGNED(va, pgsz) ||
5490 		    !IS_P2ALIGNED(pfn, pages) ||
5491 		    pgsz > segpgsz) {
5492 			pgsz = MIN(pgsz, segpgsz);
5493 			page_unlock(pp);
5494 			pages = btop(P2END((uintptr_t)va, pgsz) -
5495 			    (uintptr_t)va);
5496 			va = (caddr_t)P2END((uintptr_t)va, pgsz);
5497 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, pages);
5498 			continue;
5499 		}
5500 
5501 		/*
5502 		 * Upgrade to exclusive lock on page
5503 		 */
5504 		if (!page_tryupgrade(pp)) {
5505 			page_unlock(pp);
5506 			va += pgsz;
5507 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5508 			    btop(pgsz));
5509 			continue;
5510 		}
5511 
5512 		pp0 = pp++;
5513 		nlocked = 1;
5514 
5515 		/*
5516 		 * Lock constituent pages if this is large page
5517 		 */
5518 		if (pages > 1) {
5519 			/*
5520 			 * Lock all constituents except root page, since it
5521 			 * should be locked already.
5522 			 */
5523 			for (; nlocked < pages; nlocked++) {
5524 				if (!page_trylock(pp, SE_EXCL)) {
5525 					break;
5526 				}
5527 				if (PP_ISFREE(pp) ||
5528 				    pp->p_szc != pszc) {
5529 					/*
5530 					 * hat_page_demote() raced in with us.
5531 					 */
5532 					ASSERT(!IS_SWAPFSVP(curvp));
5533 					page_unlock(pp);
5534 					break;
5535 				}
5536 				pp++;
5537 			}
5538 		}
5539 
5540 		/*
5541 		 * If all constituent pages couldn't be locked,
5542 		 * unlock pages locked so far and skip to next page.
5543 		 */
5544 		if (nlocked < pages) {
5545 			while (pp0 < pp) {
5546 				page_unlock(pp0++);
5547 			}
5548 			va += pgsz;
5549 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5550 			    btop(pgsz));
5551 			continue;
5552 		}
5553 
5554 		/*
5555 		 * hat_page_demote() can no longer happen
5556 		 * since last cons page had the right p_szc after
5557 		 * all cons pages were locked. all cons pages
5558 		 * should now have the same p_szc.
5559 		 */
5560 
5561 		/*
5562 		 * All constituent pages locked successfully, so mark
5563 		 * large page for migration and unload the mappings of
5564 		 * constituent pages, so a fault will occur on any part of the
5565 		 * large page
5566 		 */
5567 		PP_SETMIGRATE(pp0);
5568 		while (pp0 < pp) {
5569 			(void) hat_pageunload(pp0, HAT_FORCE_PGUNLOAD);
5570 			ASSERT(hat_page_getshare(pp0) == 0);
5571 			page_unlock(pp0++);
5572 		}
5573 		lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5574 
5575 		va += pgsz;
5576 	}
5577 }
5578 
5579 /*
5580  * Migrate any pages that have been marked for migration in the given range
5581  */
5582 void
5583 page_migrate(
5584 	struct seg	*seg,
5585 	caddr_t		addr,
5586 	page_t		**ppa,
5587 	pgcnt_t		npages)
5588 {
5589 	lgrp_t		*from;
5590 	lgrp_t		*to;
5591 	page_t		*newpp;
5592 	page_t		*pp;
5593 	pfn_t		pfn;
5594 	size_t		pgsz;
5595 	spgcnt_t	page_cnt;
5596 	spgcnt_t	i;
5597 	uint_t		pszc;
5598 
5599 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5600 
5601 	while (npages > 0) {
5602 		pp = *ppa;
5603 		pszc = pp->p_szc;
5604 		pgsz = page_get_pagesize(pszc);
5605 		page_cnt = btop(pgsz);
5606 
5607 		/*
5608 		 * Check to see whether this page is marked for migration
5609 		 *
5610 		 * Assume that root page of large page is marked for
5611 		 * migration and none of the other constituent pages
5612 		 * are marked.  This really simplifies clearing the
5613 		 * migrate bit by not having to clear it from each
5614 		 * constituent page.
5615 		 *
5616 		 * note we don't want to relocate an entire large page if
5617 		 * someone is only using one subpage.
5618 		 */
5619 		if (npages < page_cnt)
5620 			break;
5621 
5622 		/*
5623 		 * Is it marked for migration?
5624 		 */
5625 		if (!PP_ISMIGRATE(pp))
5626 			goto next;
5627 
5628 		/*
5629 		 * Determine lgroups that page is being migrated between
5630 		 */
5631 		pfn = page_pptonum(pp);
5632 		if (!IS_P2ALIGNED(pfn, page_cnt)) {
5633 			break;
5634 		}
5635 		from = lgrp_pfn_to_lgrp(pfn);
5636 		to = lgrp_mem_choose(seg, addr, pgsz);
5637 
5638 		/*
5639 		 * Need to get exclusive lock's to migrate
5640 		 */
5641 		for (i = 0; i < page_cnt; i++) {
5642 			ASSERT(PAGE_LOCKED(ppa[i]));
5643 			if (page_pptonum(ppa[i]) != pfn + i ||
5644 			    ppa[i]->p_szc != pszc) {
5645 				break;
5646 			}
5647 			if (!page_tryupgrade(ppa[i])) {
5648 				lgrp_stat_add(from->lgrp_id,
5649 				    LGRP_PM_FAIL_LOCK_PGS,
5650 				    page_cnt);
5651 				break;
5652 			}
5653 
5654 			/*
5655 			 * Check to see whether we are trying to migrate
5656 			 * page to lgroup where it is allocated already.
5657 			 * If so, clear the migrate bit and skip to next
5658 			 * page.
5659 			 */
5660 			if (i == 0 && to == from) {
5661 				PP_CLRMIGRATE(ppa[0]);
5662 				page_downgrade(ppa[0]);
5663 				goto next;
5664 			}
5665 		}
5666 
5667 		/*
5668 		 * If all constituent pages couldn't be locked,
5669 		 * unlock pages locked so far and skip to next page.
5670 		 */
5671 		if (i != page_cnt) {
5672 			while (--i != -1) {
5673 				page_downgrade(ppa[i]);
5674 			}
5675 			goto next;
5676 		}
5677 
5678 		(void) page_create_wait(page_cnt, PG_WAIT);
5679 		newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5680 		if (newpp == NULL) {
5681 			page_create_putback(page_cnt);
5682 			for (i = 0; i < page_cnt; i++) {
5683 				page_downgrade(ppa[i]);
5684 			}
5685 			lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5686 			    page_cnt);
5687 			goto next;
5688 		}
5689 		ASSERT(newpp->p_szc == pszc);
5690 		/*
5691 		 * Clear migrate bit and relocate page
5692 		 */
5693 		PP_CLRMIGRATE(pp);
5694 		if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5695 			panic("page_migrate: page_relocate failed");
5696 		}
5697 		ASSERT(page_cnt * PAGESIZE == pgsz);
5698 
5699 		/*
5700 		 * Keep stats for number of pages migrated from and to
5701 		 * each lgroup
5702 		 */
5703 		lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5704 		lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5705 		/*
5706 		 * update the page_t array we were passed in and
5707 		 * unlink constituent pages of a large page.
5708 		 */
5709 		for (i = 0; i < page_cnt; ++i, ++pp) {
5710 			ASSERT(PAGE_EXCL(newpp));
5711 			ASSERT(newpp->p_szc == pszc);
5712 			ppa[i] = newpp;
5713 			pp = newpp;
5714 			page_sub(&newpp, pp);
5715 			page_downgrade(pp);
5716 		}
5717 		ASSERT(newpp == NULL);
5718 next:
5719 		addr += pgsz;
5720 		ppa += page_cnt;
5721 		npages -= page_cnt;
5722 	}
5723 }
5724 
5725 uint_t page_reclaim_maxcnt = 60; /* max total iterations */
5726 uint_t page_reclaim_nofree_maxcnt = 3; /* max iterations without progress */
5727 /*
5728  * Reclaim/reserve availrmem for npages.
5729  * If there is not enough memory start reaping seg, kmem caches.
5730  * Start pageout scanner (via page_needfree()).
5731  * Exit after ~ MAX_CNT s regardless of how much memory has been released.
5732  * Note: There is no guarantee that any availrmem will be freed as
5733  * this memory typically is locked (kernel heap) or reserved for swap.
5734  * Also due to memory fragmentation kmem allocator may not be able
5735  * to free any memory (single user allocated buffer will prevent
5736  * freeing slab or a page).
5737  */
5738 int
5739 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust)
5740 {
5741 	int	i = 0;
5742 	int	i_nofree = 0;
5743 	int	ret = 0;
5744 	pgcnt_t	deficit;
5745 	pgcnt_t old_availrmem = 0;
5746 
5747 	mutex_enter(&freemem_lock);
5748 	while (availrmem < tune.t_minarmem + npages + epages &&
5749 	    i++ < page_reclaim_maxcnt) {
5750 		/* ensure we made some progress in the last few iterations */
5751 		if (old_availrmem < availrmem) {
5752 			old_availrmem = availrmem;
5753 			i_nofree = 0;
5754 		} else if (i_nofree++ >= page_reclaim_nofree_maxcnt) {
5755 			break;
5756 		}
5757 
5758 		deficit = tune.t_minarmem + npages + epages - availrmem;
5759 		mutex_exit(&freemem_lock);
5760 		page_needfree(deficit);
5761 		kmem_reap();
5762 		delay(hz);
5763 		page_needfree(-(spgcnt_t)deficit);
5764 		mutex_enter(&freemem_lock);
5765 	}
5766 
5767 	if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
5768 		availrmem -= npages;
5769 		ret = 1;
5770 	}
5771 
5772 	mutex_exit(&freemem_lock);
5773 
5774 	return (ret);
5775 }
5776 
5777 /*
5778  * Search the memory segments to locate the desired page.  Within a
5779  * segment, pages increase linearly with one page structure per
5780  * physical page frame (size PAGESIZE).  The search begins
5781  * with the segment that was accessed last, to take advantage of locality.
5782  * If the hint misses, we start from the beginning of the sorted memseg list
5783  */
5784 
5785 
5786 /*
5787  * Some data structures for pfn to pp lookup.
5788  */
5789 ulong_t mhash_per_slot;
5790 struct memseg *memseg_hash[N_MEM_SLOTS];
5791 
5792 page_t *
5793 page_numtopp_nolock(pfn_t pfnum)
5794 {
5795 	struct memseg *seg;
5796 	page_t *pp;
5797 	vm_cpu_data_t *vc;
5798 
5799 	/*
5800 	 * We need to disable kernel preemption while referencing the
5801 	 * cpu_vm_data field in order to prevent us from being switched to
5802 	 * another cpu and trying to reference it after it has been freed.
5803 	 * This will keep us on cpu and prevent it from being removed while
5804 	 * we are still on it.
5805 	 *
5806 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5807 	 * which is being resued by DR who will flush those references
5808 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5809 	 */
5810 	kpreempt_disable();
5811 	vc = CPU->cpu_vm_data;
5812 	ASSERT(vc != NULL);
5813 
5814 	MEMSEG_STAT_INCR(nsearch);
5815 
5816 	/* Try last winner first */
5817 	if (((seg = vc->vc_pnum_memseg) != NULL) &&
5818 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5819 		MEMSEG_STAT_INCR(nlastwon);
5820 		pp = seg->pages + (pfnum - seg->pages_base);
5821 		if (pp->p_pagenum == pfnum) {
5822 			kpreempt_enable();
5823 			return ((page_t *)pp);
5824 		}
5825 	}
5826 
5827 	/* Else Try hash */
5828 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5829 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5830 		MEMSEG_STAT_INCR(nhashwon);
5831 		vc->vc_pnum_memseg = seg;
5832 		pp = seg->pages + (pfnum - seg->pages_base);
5833 		if (pp->p_pagenum == pfnum) {
5834 			kpreempt_enable();
5835 			return ((page_t *)pp);
5836 		}
5837 	}
5838 
5839 	/* Else Brute force */
5840 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5841 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5842 			vc->vc_pnum_memseg = seg;
5843 			pp = seg->pages + (pfnum - seg->pages_base);
5844 			if (pp->p_pagenum == pfnum) {
5845 				kpreempt_enable();
5846 				return ((page_t *)pp);
5847 			}
5848 		}
5849 	}
5850 	vc->vc_pnum_memseg = NULL;
5851 	kpreempt_enable();
5852 	MEMSEG_STAT_INCR(nnotfound);
5853 	return ((page_t *)NULL);
5854 
5855 }
5856 
5857 struct memseg *
5858 page_numtomemseg_nolock(pfn_t pfnum)
5859 {
5860 	struct memseg *seg;
5861 	page_t *pp;
5862 
5863 	/*
5864 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5865 	 * which is being resued by DR who will flush those references
5866 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5867 	 */
5868 	kpreempt_disable();
5869 	/* Try hash */
5870 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5871 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5872 		pp = seg->pages + (pfnum - seg->pages_base);
5873 		if (pp->p_pagenum == pfnum) {
5874 			kpreempt_enable();
5875 			return (seg);
5876 		}
5877 	}
5878 
5879 	/* Else Brute force */
5880 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5881 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5882 			pp = seg->pages + (pfnum - seg->pages_base);
5883 			if (pp->p_pagenum == pfnum) {
5884 				kpreempt_enable();
5885 				return (seg);
5886 			}
5887 		}
5888 	}
5889 	kpreempt_enable();
5890 	return ((struct memseg *)NULL);
5891 }
5892 
5893 /*
5894  * Given a page and a count return the page struct that is
5895  * n structs away from the current one in the global page
5896  * list.
5897  *
5898  * This function wraps to the first page upon
5899  * reaching the end of the memseg list.
5900  */
5901 page_t *
5902 page_nextn(page_t *pp, ulong_t n)
5903 {
5904 	struct memseg *seg;
5905 	page_t *ppn;
5906 	vm_cpu_data_t *vc;
5907 
5908 	/*
5909 	 * We need to disable kernel preemption while referencing the
5910 	 * cpu_vm_data field in order to prevent us from being switched to
5911 	 * another cpu and trying to reference it after it has been freed.
5912 	 * This will keep us on cpu and prevent it from being removed while
5913 	 * we are still on it.
5914 	 *
5915 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5916 	 * which is being resued by DR who will flush those references
5917 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5918 	 */
5919 	kpreempt_disable();
5920 	vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5921 
5922 	ASSERT(vc != NULL);
5923 
5924 	if (((seg = vc->vc_pnext_memseg) == NULL) ||
5925 	    (seg->pages_base == seg->pages_end) ||
5926 	    !(pp >= seg->pages && pp < seg->epages)) {
5927 
5928 		for (seg = memsegs; seg; seg = seg->next) {
5929 			if (pp >= seg->pages && pp < seg->epages)
5930 				break;
5931 		}
5932 
5933 		if (seg == NULL) {
5934 			/* Memory delete got in, return something valid. */
5935 			/* TODO: fix me. */
5936 			seg = memsegs;
5937 			pp = seg->pages;
5938 		}
5939 	}
5940 
5941 	/* check for wraparound - possible if n is large */
5942 	while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
5943 		n -= seg->epages - pp;
5944 		seg = seg->next;
5945 		if (seg == NULL)
5946 			seg = memsegs;
5947 		pp = seg->pages;
5948 	}
5949 	vc->vc_pnext_memseg = seg;
5950 	kpreempt_enable();
5951 	return (ppn);
5952 }
5953 
5954 /*
5955  * Initialize for a loop using page_next_scan_large().
5956  */
5957 page_t *
5958 page_next_scan_init(void **cookie)
5959 {
5960 	ASSERT(cookie != NULL);
5961 	*cookie = (void *)memsegs;
5962 	return ((page_t *)memsegs->pages);
5963 }
5964 
5965 /*
5966  * Return the next page in a scan of page_t's, assuming we want
5967  * to skip over sub-pages within larger page sizes.
5968  *
5969  * The cookie is used to keep track of the current memseg.
5970  */
5971 page_t *
5972 page_next_scan_large(
5973 	page_t		*pp,
5974 	ulong_t		*n,
5975 	void		**cookie)
5976 {
5977 	struct memseg	*seg = (struct memseg *)*cookie;
5978 	page_t		*new_pp;
5979 	ulong_t		cnt;
5980 	pfn_t		pfn;
5981 
5982 
5983 	/*
5984 	 * get the count of page_t's to skip based on the page size
5985 	 */
5986 	ASSERT(pp != NULL);
5987 	if (pp->p_szc == 0) {
5988 		cnt = 1;
5989 	} else {
5990 		pfn = page_pptonum(pp);
5991 		cnt = page_get_pagecnt(pp->p_szc);
5992 		cnt -= pfn & (cnt - 1);
5993 	}
5994 	*n += cnt;
5995 	new_pp = pp + cnt;
5996 
5997 	/*
5998 	 * Catch if we went past the end of the current memory segment. If so,
5999 	 * just move to the next segment with pages.
6000 	 */
6001 	if (new_pp >= seg->epages || seg->pages_base == seg->pages_end) {
6002 		do {
6003 			seg = seg->next;
6004 			if (seg == NULL)
6005 				seg = memsegs;
6006 		} while (seg->pages_base == seg->pages_end);
6007 		new_pp = seg->pages;
6008 		*cookie = (void *)seg;
6009 	}
6010 
6011 	return (new_pp);
6012 }
6013 
6014 
6015 /*
6016  * Returns next page in list. Note: this function wraps
6017  * to the first page in the list upon reaching the end
6018  * of the list. Callers should be aware of this fact.
6019  */
6020 
6021 /* We should change this be a #define */
6022 
6023 page_t *
6024 page_next(page_t *pp)
6025 {
6026 	return (page_nextn(pp, 1));
6027 }
6028 
6029 page_t *
6030 page_first()
6031 {
6032 	return ((page_t *)memsegs->pages);
6033 }
6034 
6035 
6036 /*
6037  * This routine is called at boot with the initial memory configuration
6038  * and when memory is added or removed.
6039  */
6040 void
6041 build_pfn_hash()
6042 {
6043 	pfn_t cur;
6044 	pgcnt_t index;
6045 	struct memseg *pseg;
6046 	int	i;
6047 
6048 	/*
6049 	 * Clear memseg_hash array.
6050 	 * Since memory add/delete is designed to operate concurrently
6051 	 * with normal operation, the hash rebuild must be able to run
6052 	 * concurrently with page_numtopp_nolock(). To support this
6053 	 * functionality, assignments to memseg_hash array members must
6054 	 * be done atomically.
6055 	 *
6056 	 * NOTE: bzero() does not currently guarantee this for kernel
6057 	 * threads, and cannot be used here.
6058 	 */
6059 	for (i = 0; i < N_MEM_SLOTS; i++)
6060 		memseg_hash[i] = NULL;
6061 
6062 	hat_kpm_mseghash_clear(N_MEM_SLOTS);
6063 
6064 	/*
6065 	 * Physmax is the last valid pfn.
6066 	 */
6067 	mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6068 	for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6069 		index = MEMSEG_PFN_HASH(pseg->pages_base);
6070 		cur = pseg->pages_base;
6071 		do {
6072 			if (index >= N_MEM_SLOTS)
6073 				index = MEMSEG_PFN_HASH(cur);
6074 
6075 			if (memseg_hash[index] == NULL ||
6076 			    memseg_hash[index]->pages_base > pseg->pages_base) {
6077 				memseg_hash[index] = pseg;
6078 				hat_kpm_mseghash_update(index, pseg);
6079 			}
6080 			cur += mhash_per_slot;
6081 			index++;
6082 		} while (cur < pseg->pages_end);
6083 	}
6084 }
6085 
6086 /*
6087  * Return the pagenum for the pp
6088  */
6089 pfn_t
6090 page_pptonum(page_t *pp)
6091 {
6092 	return (pp->p_pagenum);
6093 }
6094 
6095 /*
6096  * interface to the referenced and modified etc bits
6097  * in the PSM part of the page struct
6098  * when no locking is desired.
6099  */
6100 void
6101 page_set_props(page_t *pp, uint_t flags)
6102 {
6103 	ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6104 	pp->p_nrm |= (uchar_t)flags;
6105 }
6106 
6107 void
6108 page_clr_all_props(page_t *pp)
6109 {
6110 	pp->p_nrm = 0;
6111 }
6112 
6113 /*
6114  * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6115  */
6116 int
6117 page_clear_lck_cow(page_t *pp, int adjust)
6118 {
6119 	int	f_amount;
6120 
6121 	ASSERT(PAGE_EXCL(pp));
6122 
6123 	/*
6124 	 * The page_struct_lock need not be acquired here since
6125 	 * we require the caller hold the page exclusively locked.
6126 	 */
6127 	f_amount = 0;
6128 	if (pp->p_lckcnt) {
6129 		f_amount = 1;
6130 		pp->p_lckcnt = 0;
6131 	}
6132 	if (pp->p_cowcnt) {
6133 		f_amount += pp->p_cowcnt;
6134 		pp->p_cowcnt = 0;
6135 	}
6136 
6137 	if (adjust && f_amount) {
6138 		mutex_enter(&freemem_lock);
6139 		availrmem += f_amount;
6140 		mutex_exit(&freemem_lock);
6141 	}
6142 
6143 	return (f_amount);
6144 }
6145 
6146 /*
6147  * The following functions is called from free_vp_pages()
6148  * for an inexact estimate of a newly free'd page...
6149  */
6150 ulong_t
6151 page_share_cnt(page_t *pp)
6152 {
6153 	return (hat_page_getshare(pp));
6154 }
6155 
6156 int
6157 page_isshared(page_t *pp)
6158 {
6159 	return (hat_page_checkshare(pp, 1));
6160 }
6161 
6162 int
6163 page_isfree(page_t *pp)
6164 {
6165 	return (PP_ISFREE(pp));
6166 }
6167 
6168 int
6169 page_isref(page_t *pp)
6170 {
6171 	return (hat_page_getattr(pp, P_REF));
6172 }
6173 
6174 int
6175 page_ismod(page_t *pp)
6176 {
6177 	return (hat_page_getattr(pp, P_MOD));
6178 }
6179 
6180 /*
6181  * The following code all currently relates to the page capture logic:
6182  *
6183  * This logic is used for cases where there is a desire to claim a certain
6184  * physical page in the system for the caller.  As it may not be possible
6185  * to capture the page immediately, the p_toxic bits are used in the page
6186  * structure to indicate that someone wants to capture this page.  When the
6187  * page gets unlocked, the toxic flag will be noted and an attempt to capture
6188  * the page will be made.  If it is successful, the original callers callback
6189  * will be called with the page to do with it what they please.
6190  *
6191  * There is also an async thread which wakes up to attempt to capture
6192  * pages occasionally which have the capture bit set.  All of the pages which
6193  * need to be captured asynchronously have been inserted into the
6194  * page_capture_hash and thus this thread walks that hash list.  Items in the
6195  * hash have an expiration time so this thread handles that as well by removing
6196  * the item from the hash if it has expired.
6197  *
6198  * Some important things to note are:
6199  * - if the PR_CAPTURE bit is set on a page, then the page is in the
6200  *   page_capture_hash.  The page_capture_hash_head.pchh_mutex is needed
6201  *   to set and clear this bit, and while the lock is held is the only time
6202  *   you can add or remove an entry from the hash.
6203  * - the PR_CAPTURE bit can only be set and cleared while holding the
6204  *   page_capture_hash_head.pchh_mutex
6205  * - the t_flag field of the thread struct is used with the T_CAPTURING
6206  *   flag to prevent recursion while dealing with large pages.
6207  * - pages which need to be retired never expire on the page_capture_hash.
6208  */
6209 
6210 static void page_capture_thread(void);
6211 static kthread_t *pc_thread_id;
6212 kcondvar_t pc_cv;
6213 static kmutex_t pc_thread_mutex;
6214 static clock_t pc_thread_shortwait;
6215 static clock_t pc_thread_longwait;
6216 static int pc_thread_retry;
6217 
6218 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
6219 
6220 /* Note that this is a circular linked list */
6221 typedef struct page_capture_hash_bucket {
6222 	page_t *pp;
6223 	uchar_t szc;
6224 	uchar_t pri;
6225 	uint_t flags;
6226 	clock_t expires;	/* lbolt at which this request expires. */
6227 	void *datap;		/* Cached data passed in for callback */
6228 	struct page_capture_hash_bucket *next;
6229 	struct page_capture_hash_bucket *prev;
6230 } page_capture_hash_bucket_t;
6231 
6232 #define	PC_PRI_HI	0	/* capture now */
6233 #define	PC_PRI_LO	1	/* capture later */
6234 #define	PC_NUM_PRI	2
6235 
6236 #define	PAGE_CAPTURE_PRIO(pp) (PP_ISRAF(pp) ? PC_PRI_LO : PC_PRI_HI)
6237 
6238 
6239 /*
6240  * Each hash bucket will have it's own mutex and two lists which are:
6241  * active (0):	represents requests which have not been processed by
6242  *		the page_capture async thread yet.
6243  * walked (1):	represents requests which have been processed by the
6244  *		page_capture async thread within it's given walk of this bucket.
6245  *
6246  * These are all needed so that we can synchronize all async page_capture
6247  * events.  When the async thread moves to a new bucket, it will append the
6248  * walked list to the active list and walk each item one at a time, moving it
6249  * from the active list to the walked list.  Thus if there is an async request
6250  * outstanding for a given page, it will always be in one of the two lists.
6251  * New requests will always be added to the active list.
6252  * If we were not able to capture a page before the request expired, we'd free
6253  * up the request structure which would indicate to page_capture that there is
6254  * no longer a need for the given page, and clear the PR_CAPTURE flag if
6255  * possible.
6256  */
6257 typedef struct page_capture_hash_head {
6258 	kmutex_t pchh_mutex;
6259 	uint_t num_pages[PC_NUM_PRI];
6260 	page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
6261 } page_capture_hash_head_t;
6262 
6263 #ifdef DEBUG
6264 #define	NUM_PAGE_CAPTURE_BUCKETS 4
6265 #else
6266 #define	NUM_PAGE_CAPTURE_BUCKETS 64
6267 #endif
6268 
6269 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
6270 
6271 /* for now use a very simple hash based upon the size of a page struct */
6272 #define	PAGE_CAPTURE_HASH(pp)	\
6273 	((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
6274 
6275 extern pgcnt_t swapfs_minfree;
6276 
6277 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
6278 
6279 /*
6280  * a callback function is required for page capture requests.
6281  */
6282 void
6283 page_capture_register_callback(uint_t index, clock_t duration,
6284     int (*cb_func)(page_t *, void *, uint_t))
6285 {
6286 	ASSERT(pc_cb[index].cb_active == 0);
6287 	ASSERT(cb_func != NULL);
6288 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6289 	pc_cb[index].duration = duration;
6290 	pc_cb[index].cb_func = cb_func;
6291 	pc_cb[index].cb_active = 1;
6292 	rw_exit(&pc_cb[index].cb_rwlock);
6293 }
6294 
6295 void
6296 page_capture_unregister_callback(uint_t index)
6297 {
6298 	int i, j;
6299 	struct page_capture_hash_bucket *bp1;
6300 	struct page_capture_hash_bucket *bp2;
6301 	struct page_capture_hash_bucket *head = NULL;
6302 	uint_t flags = (1 << index);
6303 
6304 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6305 	ASSERT(pc_cb[index].cb_active == 1);
6306 	pc_cb[index].duration = 0;	/* Paranoia */
6307 	pc_cb[index].cb_func = NULL;	/* Paranoia */
6308 	pc_cb[index].cb_active = 0;
6309 	rw_exit(&pc_cb[index].cb_rwlock);
6310 
6311 	/*
6312 	 * Just move all the entries to a private list which we can walk
6313 	 * through without the need to hold any locks.
6314 	 * No more requests can get added to the hash lists for this consumer
6315 	 * as the cb_active field for the callback has been cleared.
6316 	 */
6317 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6318 		mutex_enter(&page_capture_hash[i].pchh_mutex);
6319 		for (j = 0; j < 2; j++) {
6320 			bp1 = page_capture_hash[i].lists[j].next;
6321 			/* walk through all but first (sentinel) element */
6322 			while (bp1 != &page_capture_hash[i].lists[j]) {
6323 				bp2 = bp1;
6324 				if (bp2->flags & flags) {
6325 					bp1 = bp2->next;
6326 					bp1->prev = bp2->prev;
6327 					bp2->prev->next = bp1;
6328 					bp2->next = head;
6329 					head = bp2;
6330 					/*
6331 					 * Clear the PR_CAPTURE bit as we
6332 					 * hold appropriate locks here.
6333 					 */
6334 					page_clrtoxic(head->pp, PR_CAPTURE);
6335 					page_capture_hash[i].
6336 					    num_pages[bp2->pri]--;
6337 					continue;
6338 				}
6339 				bp1 = bp1->next;
6340 			}
6341 		}
6342 		mutex_exit(&page_capture_hash[i].pchh_mutex);
6343 	}
6344 
6345 	while (head != NULL) {
6346 		bp1 = head;
6347 		head = head->next;
6348 		kmem_free(bp1, sizeof (*bp1));
6349 	}
6350 }
6351 
6352 
6353 /*
6354  * Find pp in the active list and move it to the walked list if it
6355  * exists.
6356  * Note that most often pp should be at the front of the active list
6357  * as it is currently used and thus there is no other sort of optimization
6358  * being done here as this is a linked list data structure.
6359  * Returns 1 on successful move or 0 if page could not be found.
6360  */
6361 static int
6362 page_capture_move_to_walked(page_t *pp)
6363 {
6364 	page_capture_hash_bucket_t *bp;
6365 	int index;
6366 
6367 	index = PAGE_CAPTURE_HASH(pp);
6368 
6369 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6370 	bp = page_capture_hash[index].lists[0].next;
6371 	while (bp != &page_capture_hash[index].lists[0]) {
6372 		if (bp->pp == pp) {
6373 			/* Remove from old list */
6374 			bp->next->prev = bp->prev;
6375 			bp->prev->next = bp->next;
6376 
6377 			/* Add to new list */
6378 			bp->next = page_capture_hash[index].lists[1].next;
6379 			bp->prev = &page_capture_hash[index].lists[1];
6380 			page_capture_hash[index].lists[1].next = bp;
6381 			bp->next->prev = bp;
6382 
6383 			/*
6384 			 * There is a small probability of page on a free
6385 			 * list being retired while being allocated
6386 			 * and before P_RAF is set on it. The page may
6387 			 * end up marked as high priority request instead
6388 			 * of low priority request.
6389 			 * If P_RAF page is not marked as low priority request
6390 			 * change it to low priority request.
6391 			 */
6392 			page_capture_hash[index].num_pages[bp->pri]--;
6393 			bp->pri = PAGE_CAPTURE_PRIO(pp);
6394 			page_capture_hash[index].num_pages[bp->pri]++;
6395 			mutex_exit(&page_capture_hash[index].pchh_mutex);
6396 			return (1);
6397 		}
6398 		bp = bp->next;
6399 	}
6400 	mutex_exit(&page_capture_hash[index].pchh_mutex);
6401 	return (0);
6402 }
6403 
6404 /*
6405  * Add a new entry to the page capture hash.  The only case where a new
6406  * entry is not added is when the page capture consumer is no longer registered.
6407  * In this case, we'll silently not add the page to the hash.  We know that
6408  * page retire will always be registered for the case where we are currently
6409  * unretiring a page and thus there are no conflicts.
6410  */
6411 static void
6412 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
6413 {
6414 	page_capture_hash_bucket_t *bp1;
6415 	page_capture_hash_bucket_t *bp2;
6416 	int index;
6417 	int cb_index;
6418 	int i;
6419 	uchar_t pri;
6420 #ifdef DEBUG
6421 	page_capture_hash_bucket_t *tp1;
6422 	int l;
6423 #endif
6424 
6425 	ASSERT(!(flags & CAPTURE_ASYNC));
6426 
6427 	bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
6428 
6429 	bp1->pp = pp;
6430 	bp1->szc = szc;
6431 	bp1->flags = flags;
6432 	bp1->datap = datap;
6433 
6434 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6435 		if ((flags >> cb_index) & 1) {
6436 			break;
6437 		}
6438 	}
6439 
6440 	ASSERT(cb_index != PC_NUM_CALLBACKS);
6441 
6442 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6443 	if (pc_cb[cb_index].cb_active) {
6444 		if (pc_cb[cb_index].duration == -1) {
6445 			bp1->expires = (clock_t)-1;
6446 		} else {
6447 			bp1->expires = ddi_get_lbolt() +
6448 			    pc_cb[cb_index].duration;
6449 		}
6450 	} else {
6451 		/* There's no callback registered so don't add to the hash */
6452 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6453 		kmem_free(bp1, sizeof (*bp1));
6454 		return;
6455 	}
6456 
6457 	index = PAGE_CAPTURE_HASH(pp);
6458 
6459 	/*
6460 	 * Only allow capture flag to be modified under this mutex.
6461 	 * Prevents multiple entries for same page getting added.
6462 	 */
6463 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6464 
6465 	/*
6466 	 * if not already on the hash, set capture bit and add to the hash
6467 	 */
6468 	if (!(pp->p_toxic & PR_CAPTURE)) {
6469 #ifdef DEBUG
6470 		/* Check for duplicate entries */
6471 		for (l = 0; l < 2; l++) {
6472 			tp1 = page_capture_hash[index].lists[l].next;
6473 			while (tp1 != &page_capture_hash[index].lists[l]) {
6474 				if (tp1->pp == pp) {
6475 					panic("page pp 0x%p already on hash "
6476 					    "at 0x%p\n",
6477 					    (void *)pp, (void *)tp1);
6478 				}
6479 				tp1 = tp1->next;
6480 			}
6481 		}
6482 
6483 #endif
6484 		page_settoxic(pp, PR_CAPTURE);
6485 		pri = PAGE_CAPTURE_PRIO(pp);
6486 		bp1->pri = pri;
6487 		bp1->next = page_capture_hash[index].lists[0].next;
6488 		bp1->prev = &page_capture_hash[index].lists[0];
6489 		bp1->next->prev = bp1;
6490 		page_capture_hash[index].lists[0].next = bp1;
6491 		page_capture_hash[index].num_pages[pri]++;
6492 		if (flags & CAPTURE_RETIRE) {
6493 			page_retire_incr_pend_count(datap);
6494 		}
6495 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6496 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6497 		cv_signal(&pc_cv);
6498 		return;
6499 	}
6500 
6501 	/*
6502 	 * A page retire request will replace any other request.
6503 	 * A second physmem request which is for a different process than
6504 	 * the currently registered one will be dropped as there is
6505 	 * no way to hold the private data for both calls.
6506 	 * In the future, once there are more callers, this will have to
6507 	 * be worked out better as there needs to be private storage for
6508 	 * at least each type of caller (maybe have datap be an array of
6509 	 * *void's so that we can index based upon callers index).
6510 	 */
6511 
6512 	/* walk hash list to update expire time */
6513 	for (i = 0; i < 2; i++) {
6514 		bp2 = page_capture_hash[index].lists[i].next;
6515 		while (bp2 != &page_capture_hash[index].lists[i]) {
6516 			if (bp2->pp == pp) {
6517 				if (flags & CAPTURE_RETIRE) {
6518 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6519 						page_retire_incr_pend_count(
6520 						    datap);
6521 						bp2->flags = flags;
6522 						bp2->expires = bp1->expires;
6523 						bp2->datap = datap;
6524 					}
6525 				} else {
6526 					ASSERT(flags & CAPTURE_PHYSMEM);
6527 					if (!(bp2->flags & CAPTURE_RETIRE) &&
6528 					    (datap == bp2->datap)) {
6529 						bp2->expires = bp1->expires;
6530 					}
6531 				}
6532 				mutex_exit(&page_capture_hash[index].
6533 				    pchh_mutex);
6534 				rw_exit(&pc_cb[cb_index].cb_rwlock);
6535 				kmem_free(bp1, sizeof (*bp1));
6536 				return;
6537 			}
6538 			bp2 = bp2->next;
6539 		}
6540 	}
6541 
6542 	/*
6543 	 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6544 	 * and thus it either has to be set or not set and can't change
6545 	 * while holding the mutex above.
6546 	 */
6547 	panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n",
6548 	    (void *)pp);
6549 }
6550 
6551 /*
6552  * We have a page in our hands, lets try and make it ours by turning
6553  * it into a clean page like it had just come off the freelists.
6554  *
6555  * Returns 0 on success, with the page still EXCL locked.
6556  * On failure, the page will be unlocked, and returns EAGAIN
6557  */
6558 static int
6559 page_capture_clean_page(page_t *pp)
6560 {
6561 	page_t *newpp;
6562 	int skip_unlock = 0;
6563 	spgcnt_t count;
6564 	page_t *tpp;
6565 	int ret = 0;
6566 	int extra;
6567 
6568 	ASSERT(PAGE_EXCL(pp));
6569 	ASSERT(!PP_RETIRED(pp));
6570 	ASSERT(curthread->t_flag & T_CAPTURING);
6571 
6572 	if (PP_ISFREE(pp)) {
6573 		if (!page_reclaim(pp, NULL)) {
6574 			skip_unlock = 1;
6575 			ret = EAGAIN;
6576 			goto cleanup;
6577 		}
6578 		ASSERT(pp->p_szc == 0);
6579 		if (pp->p_vnode != NULL) {
6580 			/*
6581 			 * Since this page came from the
6582 			 * cachelist, we must destroy the
6583 			 * old vnode association.
6584 			 */
6585 			page_hashout(pp, NULL);
6586 		}
6587 		goto cleanup;
6588 	}
6589 
6590 	/*
6591 	 * If we know page_relocate will fail, skip it
6592 	 * It could still fail due to a UE on another page but we
6593 	 * can't do anything about that.
6594 	 */
6595 	if (pp->p_toxic & PR_UE) {
6596 		goto skip_relocate;
6597 	}
6598 
6599 	/*
6600 	 * It's possible that pages can not have a vnode as fsflush comes
6601 	 * through and cleans up these pages.  It's ugly but that's how it is.
6602 	 */
6603 	if (pp->p_vnode == NULL) {
6604 		goto skip_relocate;
6605 	}
6606 
6607 	/*
6608 	 * Page was not free, so lets try to relocate it.
6609 	 * page_relocate only works with root pages, so if this is not a root
6610 	 * page, we need to demote it to try and relocate it.
6611 	 * Unfortunately this is the best we can do right now.
6612 	 */
6613 	newpp = NULL;
6614 	if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
6615 		if (page_try_demote_pages(pp) == 0) {
6616 			ret = EAGAIN;
6617 			goto cleanup;
6618 		}
6619 	}
6620 	ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
6621 	if (ret == 0) {
6622 		page_t *npp;
6623 		/* unlock the new page(s) */
6624 		while (count-- > 0) {
6625 			ASSERT(newpp != NULL);
6626 			npp = newpp;
6627 			page_sub(&newpp, npp);
6628 			page_unlock(npp);
6629 		}
6630 		ASSERT(newpp == NULL);
6631 		/*
6632 		 * Check to see if the page we have is too large.
6633 		 * If so, demote it freeing up the extra pages.
6634 		 */
6635 		if (pp->p_szc > 0) {
6636 			/* For now demote extra pages to szc == 0 */
6637 			extra = page_get_pagecnt(pp->p_szc) - 1;
6638 			while (extra > 0) {
6639 				tpp = pp->p_next;
6640 				page_sub(&pp, tpp);
6641 				tpp->p_szc = 0;
6642 				page_free(tpp, 1);
6643 				extra--;
6644 			}
6645 			/* Make sure to set our page to szc 0 as well */
6646 			ASSERT(pp->p_next == pp && pp->p_prev == pp);
6647 			pp->p_szc = 0;
6648 		}
6649 		goto cleanup;
6650 	} else if (ret == EIO) {
6651 		ret = EAGAIN;
6652 		goto cleanup;
6653 	} else {
6654 		/*
6655 		 * Need to reset return type as we failed to relocate the page
6656 		 * but that does not mean that some of the next steps will not
6657 		 * work.
6658 		 */
6659 		ret = 0;
6660 	}
6661 
6662 skip_relocate:
6663 
6664 	if (pp->p_szc > 0) {
6665 		if (page_try_demote_pages(pp) == 0) {
6666 			ret = EAGAIN;
6667 			goto cleanup;
6668 		}
6669 	}
6670 
6671 	ASSERT(pp->p_szc == 0);
6672 
6673 	if (hat_ismod(pp)) {
6674 		ret = EAGAIN;
6675 		goto cleanup;
6676 	}
6677 	if (PP_ISKAS(pp)) {
6678 		ret = EAGAIN;
6679 		goto cleanup;
6680 	}
6681 	if (pp->p_lckcnt || pp->p_cowcnt) {
6682 		ret = EAGAIN;
6683 		goto cleanup;
6684 	}
6685 
6686 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
6687 	ASSERT(!hat_page_is_mapped(pp));
6688 
6689 	if (hat_ismod(pp)) {
6690 		/*
6691 		 * This is a semi-odd case as the page is now modified but not
6692 		 * mapped as we just unloaded the mappings above.
6693 		 */
6694 		ret = EAGAIN;
6695 		goto cleanup;
6696 	}
6697 	if (pp->p_vnode != NULL) {
6698 		page_hashout(pp, NULL);
6699 	}
6700 
6701 	/*
6702 	 * At this point, the page should be in a clean state and
6703 	 * we can do whatever we want with it.
6704 	 */
6705 
6706 cleanup:
6707 	if (ret != 0) {
6708 		if (!skip_unlock) {
6709 			page_unlock(pp);
6710 		}
6711 	} else {
6712 		ASSERT(pp->p_szc == 0);
6713 		ASSERT(PAGE_EXCL(pp));
6714 
6715 		pp->p_next = pp;
6716 		pp->p_prev = pp;
6717 	}
6718 	return (ret);
6719 }
6720 
6721 /*
6722  * Various callers of page_trycapture() can have different restrictions upon
6723  * what memory they have access to.
6724  * Returns 0 on success, with the following error codes on failure:
6725  *      EPERM - The requested page is long term locked, and thus repeated
6726  *              requests to capture this page will likely fail.
6727  *      ENOMEM - There was not enough free memory in the system to safely
6728  *              map the requested page.
6729  *      ENOENT - The requested page was inside the kernel cage, and the
6730  *              PHYSMEM_CAGE flag was not set.
6731  */
6732 int
6733 page_capture_pre_checks(page_t *pp, uint_t flags)
6734 {
6735 	ASSERT(pp != NULL);
6736 
6737 #if defined(__sparc)
6738 	if (pp->p_vnode == &promvp) {
6739 		return (EPERM);
6740 	}
6741 
6742 	if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) &&
6743 	    (flags & CAPTURE_PHYSMEM)) {
6744 		return (ENOENT);
6745 	}
6746 
6747 	if (PP_ISNORELOCKERNEL(pp)) {
6748 		return (EPERM);
6749 	}
6750 #else
6751 	if (PP_ISKAS(pp)) {
6752 		return (EPERM);
6753 	}
6754 #endif /* __sparc */
6755 
6756 	/* only physmem currently has the restrictions checked below */
6757 	if (!(flags & CAPTURE_PHYSMEM)) {
6758 		return (0);
6759 	}
6760 
6761 	if (availrmem < swapfs_minfree) {
6762 		/*
6763 		 * We won't try to capture this page as we are
6764 		 * running low on memory.
6765 		 */
6766 		return (ENOMEM);
6767 	}
6768 	return (0);
6769 }
6770 
6771 /*
6772  * Once we have a page in our mits, go ahead and complete the capture
6773  * operation.
6774  * Returns 1 on failure where page is no longer needed
6775  * Returns 0 on success
6776  * Returns -1 if there was a transient failure.
6777  * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6778  */
6779 int
6780 page_capture_take_action(page_t *pp, uint_t flags, void *datap)
6781 {
6782 	int cb_index;
6783 	int ret = 0;
6784 	page_capture_hash_bucket_t *bp1;
6785 	page_capture_hash_bucket_t *bp2;
6786 	int index;
6787 	int found = 0;
6788 	int i;
6789 
6790 	ASSERT(PAGE_EXCL(pp));
6791 	ASSERT(curthread->t_flag & T_CAPTURING);
6792 
6793 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6794 		if ((flags >> cb_index) & 1) {
6795 			break;
6796 		}
6797 	}
6798 	ASSERT(cb_index < PC_NUM_CALLBACKS);
6799 
6800 	/*
6801 	 * Remove the entry from the page_capture hash, but don't free it yet
6802 	 * as we may need to put it back.
6803 	 * Since we own the page at this point in time, we should find it
6804 	 * in the hash if this is an ASYNC call.  If we don't it's likely
6805 	 * that the page_capture_async() thread decided that this request
6806 	 * had expired, in which case we just continue on.
6807 	 */
6808 	if (flags & CAPTURE_ASYNC) {
6809 
6810 		index = PAGE_CAPTURE_HASH(pp);
6811 
6812 		mutex_enter(&page_capture_hash[index].pchh_mutex);
6813 		for (i = 0; i < 2 && !found; i++) {
6814 			bp1 = page_capture_hash[index].lists[i].next;
6815 			while (bp1 != &page_capture_hash[index].lists[i]) {
6816 				if (bp1->pp == pp) {
6817 					bp1->next->prev = bp1->prev;
6818 					bp1->prev->next = bp1->next;
6819 					page_capture_hash[index].
6820 					    num_pages[bp1->pri]--;
6821 					page_clrtoxic(pp, PR_CAPTURE);
6822 					found = 1;
6823 					break;
6824 				}
6825 				bp1 = bp1->next;
6826 			}
6827 		}
6828 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6829 	}
6830 
6831 	/* Synchronize with the unregister func. */
6832 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6833 	if (!pc_cb[cb_index].cb_active) {
6834 		page_free(pp, 1);
6835 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6836 		if (found) {
6837 			kmem_free(bp1, sizeof (*bp1));
6838 		}
6839 		return (1);
6840 	}
6841 
6842 	/*
6843 	 * We need to remove the entry from the page capture hash and turn off
6844 	 * the PR_CAPTURE bit before calling the callback.  We'll need to cache
6845 	 * the entry here, and then based upon the return value, cleanup
6846 	 * appropriately or re-add it to the hash, making sure that someone else
6847 	 * hasn't already done so.
6848 	 * It should be rare for the callback to fail and thus it's ok for
6849 	 * the failure path to be a bit complicated as the success path is
6850 	 * cleaner and the locking rules are easier to follow.
6851 	 */
6852 
6853 	ret = pc_cb[cb_index].cb_func(pp, datap, flags);
6854 
6855 	rw_exit(&pc_cb[cb_index].cb_rwlock);
6856 
6857 	/*
6858 	 * If this was an ASYNC request, we need to cleanup the hash if the
6859 	 * callback was successful or if the request was no longer valid.
6860 	 * For non-ASYNC requests, we return failure to map and the caller
6861 	 * will take care of adding the request to the hash.
6862 	 * Note also that the callback itself is responsible for the page
6863 	 * at this point in time in terms of locking ...  The most common
6864 	 * case for the failure path should just be a page_free.
6865 	 */
6866 	if (ret >= 0) {
6867 		if (found) {
6868 			if (bp1->flags & CAPTURE_RETIRE) {
6869 				page_retire_decr_pend_count(datap);
6870 			}
6871 			kmem_free(bp1, sizeof (*bp1));
6872 		}
6873 		return (ret);
6874 	}
6875 	if (!found) {
6876 		return (ret);
6877 	}
6878 
6879 	ASSERT(flags & CAPTURE_ASYNC);
6880 
6881 	/*
6882 	 * Check for expiration time first as we can just free it up if it's
6883 	 * expired.
6884 	 */
6885 	if (ddi_get_lbolt() > bp1->expires && bp1->expires != -1) {
6886 		kmem_free(bp1, sizeof (*bp1));
6887 		return (ret);
6888 	}
6889 
6890 	/*
6891 	 * The callback failed and there used to be an entry in the hash for
6892 	 * this page, so we need to add it back to the hash.
6893 	 */
6894 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6895 	if (!(pp->p_toxic & PR_CAPTURE)) {
6896 		/* just add bp1 back to head of walked list */
6897 		page_settoxic(pp, PR_CAPTURE);
6898 		bp1->next = page_capture_hash[index].lists[1].next;
6899 		bp1->prev = &page_capture_hash[index].lists[1];
6900 		bp1->next->prev = bp1;
6901 		bp1->pri = PAGE_CAPTURE_PRIO(pp);
6902 		page_capture_hash[index].lists[1].next = bp1;
6903 		page_capture_hash[index].num_pages[bp1->pri]++;
6904 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6905 		return (ret);
6906 	}
6907 
6908 	/*
6909 	 * Otherwise there was a new capture request added to list
6910 	 * Need to make sure that our original data is represented if
6911 	 * appropriate.
6912 	 */
6913 	for (i = 0; i < 2; i++) {
6914 		bp2 = page_capture_hash[index].lists[i].next;
6915 		while (bp2 != &page_capture_hash[index].lists[i]) {
6916 			if (bp2->pp == pp) {
6917 				if (bp1->flags & CAPTURE_RETIRE) {
6918 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6919 						bp2->szc = bp1->szc;
6920 						bp2->flags = bp1->flags;
6921 						bp2->expires = bp1->expires;
6922 						bp2->datap = bp1->datap;
6923 					}
6924 				} else {
6925 					ASSERT(bp1->flags & CAPTURE_PHYSMEM);
6926 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6927 						bp2->szc = bp1->szc;
6928 						bp2->flags = bp1->flags;
6929 						bp2->expires = bp1->expires;
6930 						bp2->datap = bp1->datap;
6931 					}
6932 				}
6933 				page_capture_hash[index].num_pages[bp2->pri]--;
6934 				bp2->pri = PAGE_CAPTURE_PRIO(pp);
6935 				page_capture_hash[index].num_pages[bp2->pri]++;
6936 				mutex_exit(&page_capture_hash[index].
6937 				    pchh_mutex);
6938 				kmem_free(bp1, sizeof (*bp1));
6939 				return (ret);
6940 			}
6941 			bp2 = bp2->next;
6942 		}
6943 	}
6944 	panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp);
6945 	/*NOTREACHED*/
6946 }
6947 
6948 /*
6949  * Try to capture the given page for the caller specified in the flags
6950  * parameter.  The page will either be captured and handed over to the
6951  * appropriate callback, or will be queued up in the page capture hash
6952  * to be captured asynchronously.
6953  * If the current request is due to an async capture, the page must be
6954  * exclusively locked before calling this function.
6955  * Currently szc must be 0 but in the future this should be expandable to
6956  * other page sizes.
6957  * Returns 0 on success, with the following error codes on failure:
6958  *      EPERM - The requested page is long term locked, and thus repeated
6959  *              requests to capture this page will likely fail.
6960  *      ENOMEM - There was not enough free memory in the system to safely
6961  *              map the requested page.
6962  *      ENOENT - The requested page was inside the kernel cage, and the
6963  *              CAPTURE_GET_CAGE flag was not set.
6964  *	EAGAIN - The requested page could not be capturead at this point in
6965  *		time but future requests will likely work.
6966  *	EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
6967  *		was not set.
6968  */
6969 int
6970 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
6971 {
6972 	int ret;
6973 	int cb_index;
6974 
6975 	if (flags & CAPTURE_ASYNC) {
6976 		ASSERT(PAGE_EXCL(pp));
6977 		goto async;
6978 	}
6979 
6980 	/* Make sure there's enough availrmem ... */
6981 	ret = page_capture_pre_checks(pp, flags);
6982 	if (ret != 0) {
6983 		return (ret);
6984 	}
6985 
6986 	if (!page_trylock(pp, SE_EXCL)) {
6987 		for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6988 			if ((flags >> cb_index) & 1) {
6989 				break;
6990 			}
6991 		}
6992 		ASSERT(cb_index < PC_NUM_CALLBACKS);
6993 		ret = EAGAIN;
6994 		/* Special case for retired pages */
6995 		if (PP_RETIRED(pp)) {
6996 			if (flags & CAPTURE_GET_RETIRED) {
6997 				if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
6998 					/*
6999 					 * Need to set capture bit and add to
7000 					 * hash so that the page will be
7001 					 * retired when freed.
7002 					 */
7003 					page_capture_add_hash(pp, szc,
7004 					    CAPTURE_RETIRE, NULL);
7005 					ret = 0;
7006 					goto own_page;
7007 				}
7008 			} else {
7009 				return (EBUSY);
7010 			}
7011 		}
7012 		page_capture_add_hash(pp, szc, flags, datap);
7013 		return (ret);
7014 	}
7015 
7016 async:
7017 	ASSERT(PAGE_EXCL(pp));
7018 
7019 	/* Need to check for physmem async requests that availrmem is sane */
7020 	if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
7021 	    (CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
7022 	    (availrmem < swapfs_minfree)) {
7023 		page_unlock(pp);
7024 		return (ENOMEM);
7025 	}
7026 
7027 	ret = page_capture_clean_page(pp);
7028 
7029 	if (ret != 0) {
7030 		/* We failed to get the page, so lets add it to the hash */
7031 		if (!(flags & CAPTURE_ASYNC)) {
7032 			page_capture_add_hash(pp, szc, flags, datap);
7033 		}
7034 		return (ret);
7035 	}
7036 
7037 own_page:
7038 	ASSERT(PAGE_EXCL(pp));
7039 	ASSERT(pp->p_szc == 0);
7040 
7041 	/* Call the callback */
7042 	ret = page_capture_take_action(pp, flags, datap);
7043 
7044 	if (ret == 0) {
7045 		return (0);
7046 	}
7047 
7048 	/*
7049 	 * Note that in the failure cases from page_capture_take_action, the
7050 	 * EXCL lock will have already been dropped.
7051 	 */
7052 	if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
7053 		page_capture_add_hash(pp, szc, flags, datap);
7054 	}
7055 	return (EAGAIN);
7056 }
7057 
7058 int
7059 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7060 {
7061 	int ret;
7062 
7063 	curthread->t_flag |= T_CAPTURING;
7064 	ret = page_itrycapture(pp, szc, flags, datap);
7065 	curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
7066 	return (ret);
7067 }
7068 
7069 /*
7070  * When unlocking a page which has the PR_CAPTURE bit set, this routine
7071  * gets called to try and capture the page.
7072  */
7073 void
7074 page_unlock_capture(page_t *pp)
7075 {
7076 	page_capture_hash_bucket_t *bp;
7077 	int index;
7078 	int i;
7079 	uint_t szc;
7080 	uint_t flags = 0;
7081 	void *datap;
7082 	kmutex_t *mp;
7083 	extern vnode_t retired_pages;
7084 
7085 	/*
7086 	 * We need to protect against a possible deadlock here where we own
7087 	 * the vnode page hash mutex and want to acquire it again as there
7088 	 * are locations in the code, where we unlock a page while holding
7089 	 * the mutex which can lead to the page being captured and eventually
7090 	 * end up here.  As we may be hashing out the old page and hashing into
7091 	 * the retire vnode, we need to make sure we don't own them.
7092 	 * Other callbacks who do hash operations also need to make sure that
7093 	 * before they hashin to a vnode that they do not currently own the
7094 	 * vphm mutex otherwise there will be a panic.
7095 	 */
7096 	if (mutex_owned(page_vnode_mutex(&retired_pages))) {
7097 		page_unlock_nocapture(pp);
7098 		return;
7099 	}
7100 	if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
7101 		page_unlock_nocapture(pp);
7102 		return;
7103 	}
7104 
7105 	index = PAGE_CAPTURE_HASH(pp);
7106 
7107 	mp = &page_capture_hash[index].pchh_mutex;
7108 	mutex_enter(mp);
7109 	for (i = 0; i < 2; i++) {
7110 		bp = page_capture_hash[index].lists[i].next;
7111 		while (bp != &page_capture_hash[index].lists[i]) {
7112 			if (bp->pp == pp) {
7113 				szc = bp->szc;
7114 				flags = bp->flags | CAPTURE_ASYNC;
7115 				datap = bp->datap;
7116 				mutex_exit(mp);
7117 				(void) page_trycapture(pp, szc, flags, datap);
7118 				return;
7119 			}
7120 			bp = bp->next;
7121 		}
7122 	}
7123 
7124 	/* Failed to find page in hash so clear flags and unlock it. */
7125 	page_clrtoxic(pp, PR_CAPTURE);
7126 	page_unlock(pp);
7127 
7128 	mutex_exit(mp);
7129 }
7130 
7131 void
7132 page_capture_init()
7133 {
7134 	int i;
7135 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7136 		page_capture_hash[i].lists[0].next =
7137 		    &page_capture_hash[i].lists[0];
7138 		page_capture_hash[i].lists[0].prev =
7139 		    &page_capture_hash[i].lists[0];
7140 		page_capture_hash[i].lists[1].next =
7141 		    &page_capture_hash[i].lists[1];
7142 		page_capture_hash[i].lists[1].prev =
7143 		    &page_capture_hash[i].lists[1];
7144 	}
7145 
7146 	pc_thread_shortwait = 23 * hz;
7147 	pc_thread_longwait = 1201 * hz;
7148 	pc_thread_retry = 3;
7149 	mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
7150 	cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
7151 	pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
7152 	    TS_RUN, minclsyspri);
7153 }
7154 
7155 /*
7156  * It is necessary to scrub any failing pages prior to reboot in order to
7157  * prevent a latent error trap from occurring on the next boot.
7158  */
7159 void
7160 page_retire_mdboot()
7161 {
7162 	page_t *pp;
7163 	int i, j;
7164 	page_capture_hash_bucket_t *bp;
7165 	uchar_t pri;
7166 
7167 	/* walk lists looking for pages to scrub */
7168 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7169 		for (pri = 0; pri < PC_NUM_PRI; pri++) {
7170 			if (page_capture_hash[i].num_pages[pri] != 0) {
7171 				break;
7172 			}
7173 		}
7174 		if (pri == PC_NUM_PRI)
7175 			continue;
7176 
7177 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7178 
7179 		for (j = 0; j < 2; j++) {
7180 			bp = page_capture_hash[i].lists[j].next;
7181 			while (bp != &page_capture_hash[i].lists[j]) {
7182 				pp = bp->pp;
7183 				if (PP_TOXIC(pp)) {
7184 					if (page_trylock(pp, SE_EXCL)) {
7185 						PP_CLRFREE(pp);
7186 						pagescrub(pp, 0, PAGESIZE);
7187 						page_unlock(pp);
7188 					}
7189 				}
7190 				bp = bp->next;
7191 			}
7192 		}
7193 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7194 	}
7195 }
7196 
7197 /*
7198  * Walk the page_capture_hash trying to capture pages and also cleanup old
7199  * entries which have expired.
7200  */
7201 void
7202 page_capture_async()
7203 {
7204 	page_t *pp;
7205 	int i;
7206 	int ret;
7207 	page_capture_hash_bucket_t *bp1, *bp2;
7208 	uint_t szc;
7209 	uint_t flags;
7210 	void *datap;
7211 	uchar_t pri;
7212 
7213 	/* If there are outstanding pages to be captured, get to work */
7214 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7215 		for (pri = 0; pri < PC_NUM_PRI; pri++) {
7216 			if (page_capture_hash[i].num_pages[pri] != 0)
7217 				break;
7218 		}
7219 		if (pri == PC_NUM_PRI)
7220 			continue;
7221 
7222 		/* Append list 1 to list 0 and then walk through list 0 */
7223 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7224 		bp1 = &page_capture_hash[i].lists[1];
7225 		bp2 = bp1->next;
7226 		if (bp1 != bp2) {
7227 			bp1->prev->next = page_capture_hash[i].lists[0].next;
7228 			bp2->prev = &page_capture_hash[i].lists[0];
7229 			page_capture_hash[i].lists[0].next->prev = bp1->prev;
7230 			page_capture_hash[i].lists[0].next = bp2;
7231 			bp1->next = bp1;
7232 			bp1->prev = bp1;
7233 		}
7234 
7235 		/* list[1] will be empty now */
7236 
7237 		bp1 = page_capture_hash[i].lists[0].next;
7238 		while (bp1 != &page_capture_hash[i].lists[0]) {
7239 			/* Check expiration time */
7240 			if ((ddi_get_lbolt() > bp1->expires &&
7241 			    bp1->expires != -1) ||
7242 			    page_deleted(bp1->pp)) {
7243 				page_capture_hash[i].lists[0].next = bp1->next;
7244 				bp1->next->prev =
7245 				    &page_capture_hash[i].lists[0];
7246 				page_capture_hash[i].num_pages[bp1->pri]--;
7247 
7248 				/*
7249 				 * We can safely remove the PR_CAPTURE bit
7250 				 * without holding the EXCL lock on the page
7251 				 * as the PR_CAPTURE bit requres that the
7252 				 * page_capture_hash[].pchh_mutex be held
7253 				 * to modify it.
7254 				 */
7255 				page_clrtoxic(bp1->pp, PR_CAPTURE);
7256 				mutex_exit(&page_capture_hash[i].pchh_mutex);
7257 				kmem_free(bp1, sizeof (*bp1));
7258 				mutex_enter(&page_capture_hash[i].pchh_mutex);
7259 				bp1 = page_capture_hash[i].lists[0].next;
7260 				continue;
7261 			}
7262 			pp = bp1->pp;
7263 			szc = bp1->szc;
7264 			flags = bp1->flags;
7265 			datap = bp1->datap;
7266 			mutex_exit(&page_capture_hash[i].pchh_mutex);
7267 			if (page_trylock(pp, SE_EXCL)) {
7268 				ret = page_trycapture(pp, szc,
7269 				    flags | CAPTURE_ASYNC, datap);
7270 			} else {
7271 				ret = 1;	/* move to walked hash */
7272 			}
7273 
7274 			if (ret != 0) {
7275 				/* Move to walked hash */
7276 				(void) page_capture_move_to_walked(pp);
7277 			}
7278 			mutex_enter(&page_capture_hash[i].pchh_mutex);
7279 			bp1 = page_capture_hash[i].lists[0].next;
7280 		}
7281 
7282 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7283 	}
7284 }
7285 
7286 /*
7287  * This function is called by the page_capture_thread, and is needed in
7288  * in order to initiate aio cleanup, so that pages used in aio
7289  * will be unlocked and subsequently retired by page_capture_thread.
7290  */
7291 static int
7292 do_aio_cleanup(void)
7293 {
7294 	proc_t *procp;
7295 	int (*aio_cleanup_dr_delete_memory)(proc_t *);
7296 	int cleaned = 0;
7297 
7298 	if (modload("sys", "kaio") == -1) {
7299 		cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
7300 		return (0);
7301 	}
7302 	/*
7303 	 * We use the aio_cleanup_dr_delete_memory function to
7304 	 * initiate the actual clean up; this function will wake
7305 	 * up the per-process aio_cleanup_thread.
7306 	 */
7307 	aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
7308 	    modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
7309 	if (aio_cleanup_dr_delete_memory == NULL) {
7310 		cmn_err(CE_WARN,
7311 	    "aio_cleanup_dr_delete_memory not found in kaio");
7312 		return (0);
7313 	}
7314 	mutex_enter(&pidlock);
7315 	for (procp = practive; (procp != NULL); procp = procp->p_next) {
7316 		mutex_enter(&procp->p_lock);
7317 		if (procp->p_aio != NULL) {
7318 			/* cleanup proc's outstanding kaio */
7319 			cleaned += (*aio_cleanup_dr_delete_memory)(procp);
7320 		}
7321 		mutex_exit(&procp->p_lock);
7322 	}
7323 	mutex_exit(&pidlock);
7324 	return (cleaned);
7325 }
7326 
7327 /*
7328  * helper function for page_capture_thread
7329  */
7330 static void
7331 page_capture_handle_outstanding(void)
7332 {
7333 	int ntry;
7334 
7335 	/* Reap pages before attempting capture pages */
7336 	kmem_reap();
7337 
7338 	if ((page_retire_pend_count() > page_retire_pend_kas_count()) &&
7339 	    hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
7340 		/*
7341 		 * Note: Purging only for platforms that support
7342 		 * ISM hat_pageunload() - mainly SPARC. On x86/x64
7343 		 * platforms ISM pages SE_SHARED locked until destroyed.
7344 		 */
7345 
7346 		/* disable and purge seg_pcache */
7347 		(void) seg_p_disable();
7348 		for (ntry = 0; ntry < pc_thread_retry; ntry++) {
7349 			if (!page_retire_pend_count())
7350 				break;
7351 			if (do_aio_cleanup()) {
7352 				/*
7353 				 * allow the apps cleanup threads
7354 				 * to run
7355 				 */
7356 				delay(pc_thread_shortwait);
7357 			}
7358 			page_capture_async();
7359 		}
7360 		/* reenable seg_pcache */
7361 		seg_p_enable();
7362 
7363 		/* completed what can be done.  break out */
7364 		return;
7365 	}
7366 
7367 	/*
7368 	 * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap
7369 	 * and then attempt to capture.
7370 	 */
7371 	seg_preap();
7372 	page_capture_async();
7373 }
7374 
7375 /*
7376  * The page_capture_thread loops forever, looking to see if there are
7377  * pages still waiting to be captured.
7378  */
7379 static void
7380 page_capture_thread(void)
7381 {
7382 	callb_cpr_t c;
7383 	int i;
7384 	int high_pri_pages;
7385 	int low_pri_pages;
7386 	clock_t timeout;
7387 
7388 	CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
7389 
7390 	mutex_enter(&pc_thread_mutex);
7391 	for (;;) {
7392 		high_pri_pages = 0;
7393 		low_pri_pages = 0;
7394 		for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7395 			high_pri_pages +=
7396 			    page_capture_hash[i].num_pages[PC_PRI_HI];
7397 			low_pri_pages +=
7398 			    page_capture_hash[i].num_pages[PC_PRI_LO];
7399 		}
7400 
7401 		timeout = pc_thread_longwait;
7402 		if (high_pri_pages != 0) {
7403 			timeout = pc_thread_shortwait;
7404 			page_capture_handle_outstanding();
7405 		} else if (low_pri_pages != 0) {
7406 			page_capture_async();
7407 		}
7408 		CALLB_CPR_SAFE_BEGIN(&c);
7409 		(void) cv_reltimedwait(&pc_cv, &pc_thread_mutex,
7410 		    timeout, TR_CLOCK_TICK);
7411 		CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7412 	}
7413 	/*NOTREACHED*/
7414 }
7415 /*
7416  * Attempt to locate a bucket that has enough pages to satisfy the request.
7417  * The initial check is done without the lock to avoid unneeded contention.
7418  * The function returns 1 if enough pages were found, else 0 if it could not
7419  * find enough pages in a bucket.
7420  */
7421 static int
7422 pcf_decrement_bucket(pgcnt_t npages)
7423 {
7424 	struct pcf	*p;
7425 	struct pcf	*q;
7426 	int i;
7427 
7428 	p = &pcf[PCF_INDEX()];
7429 	q = &pcf[pcf_fanout];
7430 	for (i = 0; i < pcf_fanout; i++) {
7431 		if (p->pcf_count > npages) {
7432 			/*
7433 			 * a good one to try.
7434 			 */
7435 			mutex_enter(&p->pcf_lock);
7436 			if (p->pcf_count > npages) {
7437 				p->pcf_count -= (uint_t)npages;
7438 				/*
7439 				 * freemem is not protected by any lock.
7440 				 * Thus, we cannot have any assertion
7441 				 * containing freemem here.
7442 				 */
7443 				freemem -= npages;
7444 				mutex_exit(&p->pcf_lock);
7445 				return (1);
7446 			}
7447 			mutex_exit(&p->pcf_lock);
7448 		}
7449 		p++;
7450 		if (p >= q) {
7451 			p = pcf;
7452 		}
7453 	}
7454 	return (0);
7455 }
7456 
7457 /*
7458  * Arguments:
7459  *	pcftotal_ret:	If the value is not NULL and we have walked all the
7460  *			buckets but did not find enough pages then it will
7461  *			be set to the total number of pages in all the pcf
7462  *			buckets.
7463  *	npages:		Is the number of pages we have been requested to
7464  *			find.
7465  *	unlock:		If set to 0 we will leave the buckets locked if the
7466  *			requested number of pages are not found.
7467  *
7468  * Go and try to satisfy the page request  from any number of buckets.
7469  * This can be a very expensive operation as we have to lock the buckets
7470  * we are checking (and keep them locked), starting at bucket 0.
7471  *
7472  * The function returns 1 if enough pages were found, else 0 if it could not
7473  * find enough pages in the buckets.
7474  *
7475  */
7476 static int
7477 pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock)
7478 {
7479 	struct pcf	*p;
7480 	pgcnt_t pcftotal;
7481 	int i;
7482 
7483 	p = pcf;
7484 	/* try to collect pages from several pcf bins */
7485 	for (pcftotal = 0, i = 0; i < pcf_fanout; i++) {
7486 		mutex_enter(&p->pcf_lock);
7487 		pcftotal += p->pcf_count;
7488 		if (pcftotal >= npages) {
7489 			/*
7490 			 * Wow!  There are enough pages laying around
7491 			 * to satisfy the request.  Do the accounting,
7492 			 * drop the locks we acquired, and go back.
7493 			 *
7494 			 * freemem is not protected by any lock. So,
7495 			 * we cannot have any assertion containing
7496 			 * freemem.
7497 			 */
7498 			freemem -= npages;
7499 			while (p >= pcf) {
7500 				if (p->pcf_count <= npages) {
7501 					npages -= p->pcf_count;
7502 					p->pcf_count = 0;
7503 				} else {
7504 					p->pcf_count -= (uint_t)npages;
7505 					npages = 0;
7506 				}
7507 				mutex_exit(&p->pcf_lock);
7508 				p--;
7509 			}
7510 			ASSERT(npages == 0);
7511 			return (1);
7512 		}
7513 		p++;
7514 	}
7515 	if (unlock) {
7516 		/* failed to collect pages - release the locks */
7517 		while (--p >= pcf) {
7518 			mutex_exit(&p->pcf_lock);
7519 		}
7520 	}
7521 	if (pcftotal_ret != NULL)
7522 		*pcftotal_ret = pcftotal;
7523 	return (0);
7524 }
7525