xref: /illumos-gate/usr/src/uts/common/vm/vm_page.c (revision 37b407883a45b878109bb872aba0145ef4101cec)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989  AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 /*
43  * VM - physical page management.
44  */
45 
46 #include <sys/types.h>
47 #include <sys/t_lock.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/errno.h>
51 #include <sys/time.h>
52 #include <sys/vnode.h>
53 #include <sys/vm.h>
54 #include <sys/vtrace.h>
55 #include <sys/swap.h>
56 #include <sys/cmn_err.h>
57 #include <sys/tuneable.h>
58 #include <sys/sysmacros.h>
59 #include <sys/cpuvar.h>
60 #include <sys/callb.h>
61 #include <sys/debug.h>
62 #include <sys/tnf_probe.h>
63 #include <sys/condvar_impl.h>
64 #include <sys/mem_config.h>
65 #include <sys/mem_cage.h>
66 #include <sys/kmem.h>
67 #include <sys/atomic.h>
68 #include <sys/strlog.h>
69 #include <sys/mman.h>
70 #include <sys/ontrap.h>
71 #include <sys/lgrp.h>
72 #include <sys/vfs.h>
73 
74 #include <vm/hat.h>
75 #include <vm/anon.h>
76 #include <vm/page.h>
77 #include <vm/seg.h>
78 #include <vm/pvn.h>
79 #include <vm/seg_kmem.h>
80 #include <vm/vm_dep.h>
81 
82 #include <fs/fs_subr.h>
83 
84 static int nopageage = 0;
85 
86 static pgcnt_t max_page_get;	/* max page_get request size in pages */
87 pgcnt_t total_pages = 0;	/* total number of pages (used by /proc) */
88 
89 /*
90  * vnode for all pages which are retired from the VM system;
91  * such as pages with Uncorrectable Errors.
92  */
93 struct vnode retired_ppages;
94 
95 static void	page_retired_init(void);
96 static void	retired_dispose(vnode_t *vp, page_t *pp, int flag,
97 			int dn, cred_t *cr);
98 static void	retired_inactive(vnode_t *vp, cred_t *cr);
99 static void	page_retired(page_t *pp);
100 static void	retired_page_removed(page_t *pp);
101 void		page_unretire_pages(void);
102 
103 /*
104  * The maximum number of pages that will be unretired in one iteration.
105  * This number is totally arbitrary.
106  */
107 #define	UNRETIRE_PAGES		256
108 
109 /*
110  * We limit the number of pages that may be retired to
111  * a percentage of the total physical memory. Note that
112  * the percentage values are  stored as 'basis points',
113  * ie, 100 basis points is 1%.
114  */
115 #define	MAX_PAGES_RETIRED_BPS_DEFAULT	10	/* .1% */
116 
117 uint64_t max_pages_retired_bps = MAX_PAGES_RETIRED_BPS_DEFAULT;
118 
119 static int	pages_retired_limit_exceeded(void);
120 
121 /*
122  * operations vector for vnode with retired pages. Only VOP_DISPOSE
123  * and VOP_INACTIVE are intercepted.
124  */
125 struct vnodeops retired_vnodeops = {
126 	"retired_vnodeops",
127 	fs_nosys,	/* open */
128 	fs_nosys,	/* close */
129 	fs_nosys,	/* read */
130 	fs_nosys,	/* write */
131 	fs_nosys,	/* ioctl */
132 	fs_nosys,	/* setfl */
133 	fs_nosys,	/* getattr */
134 	fs_nosys,	/* setattr */
135 	fs_nosys,	/* access */
136 	fs_nosys,	/* lookup */
137 	fs_nosys,	/* create */
138 	fs_nosys,	/* remove */
139 	fs_nosys,	/* link */
140 	fs_nosys,	/* rename */
141 	fs_nosys,	/* mkdir */
142 	fs_nosys,	/* rmdir */
143 	fs_nosys,	/* readdir */
144 	fs_nosys,	/* symlink */
145 	fs_nosys,	/* readlink */
146 	fs_nosys,	/* fsync */
147 	retired_inactive,
148 	fs_nosys,	/* fid */
149 	fs_rwlock,	/* rwlock */
150 	fs_rwunlock,	/* rwunlock */
151 	fs_nosys,	/* seek */
152 	fs_nosys,	/* cmp */
153 	fs_nosys,	/* frlock */
154 	fs_nosys,	/* space */
155 	fs_nosys,	/* realvp */
156 	fs_nosys,	/* getpage */
157 	fs_nosys,	/* putpage */
158 	fs_nosys_map,
159 	fs_nosys_addmap,
160 	fs_nosys,	/* delmap */
161 	fs_nosys_poll,
162 	fs_nosys,	/* dump */
163 	fs_nosys,	/* l_pathconf */
164 	fs_nosys,	/* pageio */
165 	fs_nosys,	/* dumpctl */
166 	retired_dispose,
167 	fs_nosys,	/* setsecattr */
168 	fs_nosys,	/* getsecatt */
169 	fs_nosys,	/* shrlock */
170 	fs_vnevent_nosupport	/* vnevent */
171 };
172 
173 /*
174  * freemem_lock protects all freemem variables:
175  * availrmem. Also this lock protects the globals which track the
176  * availrmem changes for accurate kernel footprint calculation.
177  * See below for an explanation of these
178  * globals.
179  */
180 kmutex_t freemem_lock;
181 pgcnt_t availrmem;
182 pgcnt_t availrmem_initial;
183 
184 /*
185  * These globals track availrmem changes to get a more accurate
186  * estimate of tke kernel size. Historically pp_kernel is used for
187  * kernel size and is based on availrmem. But availrmem is adjusted for
188  * locked pages in the system not just for kernel locked pages.
189  * These new counters will track the pages locked through segvn and
190  * by explicit user locking.
191  *
192  * segvn_pages_locked : This keeps track on a global basis how many pages
193  * are currently locked because of I/O.
194  *
195  * pages_locked : How many pages are locked becuase of user specified
196  * locking through mlock or plock.
197  *
198  * pages_useclaim,pages_claimed : These two variables track the
199  * cliam adjustments because of the protection changes on a segvn segment.
200  *
201  * All these globals are protected by the same lock which protects availrmem.
202  */
203 pgcnt_t segvn_pages_locked;
204 pgcnt_t pages_locked;
205 pgcnt_t pages_useclaim;
206 pgcnt_t pages_claimed;
207 
208 
209 /*
210  * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
211  */
212 static kmutex_t	new_freemem_lock;
213 static uint_t	freemem_wait;	/* someone waiting for freemem */
214 static kcondvar_t freemem_cv;
215 
216 /*
217  * The logical page free list is maintained as two lists, the 'free'
218  * and the 'cache' lists.
219  * The free list contains those pages that should be reused first.
220  *
221  * The implementation of the lists is machine dependent.
222  * page_get_freelist(), page_get_cachelist(),
223  * page_list_sub(), and page_list_add()
224  * form the interface to the machine dependent implementation.
225  *
226  * Pages with p_free set are on the cache list.
227  * Pages with p_free and p_age set are on the free list,
228  *
229  * A page may be locked while on either list.
230  */
231 
232 /*
233  * free list accounting stuff.
234  *
235  *
236  * Spread out the value for the number of pages on the
237  * page free and page cache lists.  If there is just one
238  * value, then it must be under just one lock.
239  * The lock contention and cache traffic are a real bother.
240  *
241  * When we acquire and then drop a single pcf lock
242  * we can start in the middle of the array of pcf structures.
243  * If we acquire more than one pcf lock at a time, we need to
244  * start at the front to avoid deadlocking.
245  *
246  * pcf_count holds the number of pages in each pool.
247  *
248  * pcf_block is set when page_create_get_something() has asked the
249  * PSM page freelist and page cachelist routines without specifying
250  * a color and nothing came back.  This is used to block anything
251  * else from moving pages from one list to the other while the
252  * lists are searched again.  If a page is freeed while pcf_block is
253  * set, then pcf_reserve is incremented.  pcgs_unblock() takes care
254  * of clearning pcf_block, doing the wakeups, etc.
255  */
256 
257 #if NCPU <= 4
258 #define	PAD	1
259 #define	PCF_FANOUT	4
260 static	uint_t	pcf_mask = PCF_FANOUT - 1;
261 #else
262 #define	PAD	9
263 #ifdef sun4v
264 #define	PCF_FANOUT	32
265 #else
266 #define	PCF_FANOUT	128
267 #endif
268 static	uint_t	pcf_mask = PCF_FANOUT - 1;
269 #endif
270 
271 struct pcf {
272 	uint_t		pcf_touch;	/* just to help the cache */
273 	uint_t		pcf_count;	/* page count */
274 	kmutex_t	pcf_lock;	/* protects the structure */
275 	uint_t		pcf_wait;	/* number of waiters */
276 	uint_t		pcf_block; 	/* pcgs flag to page_free() */
277 	uint_t		pcf_reserve; 	/* pages freed after pcf_block set */
278 	uint_t		pcf_fill[PAD];	/* to line up on the caches */
279 };
280 
281 static struct	pcf	pcf[PCF_FANOUT];
282 #define	PCF_INDEX()	((CPU->cpu_id) & (pcf_mask))
283 
284 kmutex_t	pcgs_lock;		/* serializes page_create_get_ */
285 kmutex_t	pcgs_cagelock;		/* serializes NOSLEEP cage allocs */
286 kmutex_t	pcgs_wait_lock;		/* used for delay in pcgs */
287 static kcondvar_t	pcgs_cv;	/* cv for delay in pcgs */
288 
289 #define	PAGE_LOCK_MAXIMUM \
290 	((1 << (sizeof (((page_t *)0)->p_lckcnt) * NBBY)) - 1)
291 
292 /*
293  * Control over the verbosity of page retirement.  When set to zero, no messages
294  * will be printed.  A value of one will trigger messages for retirement
295  * operations, and is intended for processors which don't yet support FMA
296  * (spitfire).  Two will cause verbose messages to be printed when retirements
297  * complete, and is intended only for debugging purposes.
298  */
299 int page_retire_messages = 0;
300 
301 #ifdef VM_STATS
302 
303 /*
304  * No locks, but so what, they are only statistics.
305  */
306 
307 static struct page_tcnt {
308 	int	pc_free_cache;		/* free's into cache list */
309 	int	pc_free_dontneed;	/* free's with dontneed */
310 	int	pc_free_pageout;	/* free's from pageout */
311 	int	pc_free_free;		/* free's into free list */
312 	int	pc_free_pages;		/* free's into large page free list */
313 	int	pc_destroy_pages;	/* large page destroy's */
314 	int	pc_get_cache;		/* get's from cache list */
315 	int	pc_get_free;		/* get's from free list */
316 	int	pc_reclaim;		/* reclaim's */
317 	int	pc_abortfree;		/* abort's of free pages */
318 	int	pc_find_hit;		/* find's that find page */
319 	int	pc_find_miss;		/* find's that don't find page */
320 	int	pc_destroy_free;	/* # of free pages destroyed */
321 #define	PC_HASH_CNT	(4*PAGE_HASHAVELEN)
322 	int	pc_find_hashlen[PC_HASH_CNT+1];
323 	int	pc_addclaim_pages;
324 	int	pc_subclaim_pages;
325 	int	pc_free_replacement_page[2];
326 	int	pc_try_demote_pages[6];
327 	int	pc_demote_pages[2];
328 } pagecnt;
329 
330 uint_t	hashin_count;
331 uint_t	hashin_not_held;
332 uint_t	hashin_already;
333 
334 uint_t	hashout_count;
335 uint_t	hashout_not_held;
336 
337 uint_t	page_create_count;
338 uint_t	page_create_not_enough;
339 uint_t	page_create_not_enough_again;
340 uint_t	page_create_zero;
341 uint_t	page_create_hashout;
342 uint_t	page_create_page_lock_failed;
343 uint_t	page_create_trylock_failed;
344 uint_t	page_create_found_one;
345 uint_t	page_create_hashin_failed;
346 uint_t	page_create_dropped_phm;
347 
348 uint_t	page_create_new;
349 uint_t	page_create_exists;
350 uint_t	page_create_putbacks;
351 uint_t	page_create_overshoot;
352 
353 uint_t	page_reclaim_zero;
354 uint_t	page_reclaim_zero_locked;
355 
356 uint_t	page_rename_exists;
357 uint_t	page_rename_count;
358 
359 uint_t	page_lookup_cnt[20];
360 uint_t	page_lookup_nowait_cnt[10];
361 uint_t	page_find_cnt;
362 uint_t	page_exists_cnt;
363 uint_t	page_exists_forreal_cnt;
364 uint_t	page_lookup_dev_cnt;
365 uint_t	get_cachelist_cnt;
366 uint_t	page_create_cnt[10];
367 uint_t	alloc_pages[8];
368 uint_t	page_exphcontg[19];
369 uint_t  page_create_large_cnt[10];
370 
371 /*
372  * Collects statistics.
373  */
374 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
375 	uint_t	mylen = 0; \
376 			\
377 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash, mylen++) { \
378 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
379 			break; \
380 	} \
381 	if ((pp) != NULL) \
382 		pagecnt.pc_find_hit++; \
383 	else \
384 		pagecnt.pc_find_miss++; \
385 	if (mylen > PC_HASH_CNT) \
386 		mylen = PC_HASH_CNT; \
387 	pagecnt.pc_find_hashlen[mylen]++; \
388 }
389 
390 #else	/* VM_STATS */
391 
392 /*
393  * Don't collect statistics
394  */
395 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
396 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
397 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
398 			break; \
399 	} \
400 }
401 
402 #endif	/* VM_STATS */
403 
404 
405 
406 #ifdef DEBUG
407 #define	MEMSEG_SEARCH_STATS
408 #endif
409 
410 #ifdef MEMSEG_SEARCH_STATS
411 struct memseg_stats {
412     uint_t nsearch;
413     uint_t nlastwon;
414     uint_t nhashwon;
415     uint_t nnotfound;
416 } memseg_stats;
417 
418 #define	MEMSEG_STAT_INCR(v) \
419 	atomic_add_32(&memseg_stats.v, 1)
420 #else
421 #define	MEMSEG_STAT_INCR(x)
422 #endif
423 
424 struct memseg *memsegs;		/* list of memory segments */
425 
426 
427 static void page_init_mem_config(void);
428 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
429 static void page_do_hashout(page_t *);
430 
431 static void page_demote_vp_pages(page_t *);
432 
433 /*
434  * vm subsystem related initialization
435  */
436 void
437 vm_init(void)
438 {
439 	boolean_t callb_vm_cpr(void *, int);
440 
441 	(void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
442 	page_init_mem_config();
443 
444 	/*
445 	 * initialise the vnode for retired pages
446 	 */
447 	page_retired_init();
448 }
449 
450 /*
451  * This function is called at startup and when memory is added or deleted.
452  */
453 void
454 init_pages_pp_maximum()
455 {
456 	static pgcnt_t p_min;
457 	static pgcnt_t pages_pp_maximum_startup;
458 	static pgcnt_t avrmem_delta;
459 	static int init_done;
460 	static int user_set;	/* true if set in /etc/system */
461 
462 	if (init_done == 0) {
463 
464 		/* If the user specified a value, save it */
465 		if (pages_pp_maximum != 0) {
466 			user_set = 1;
467 			pages_pp_maximum_startup = pages_pp_maximum;
468 		}
469 
470 		/*
471 		 * Setting of pages_pp_maximum is based first time
472 		 * on the value of availrmem just after the start-up
473 		 * allocations. To preserve this relationship at run
474 		 * time, use a delta from availrmem_initial.
475 		 */
476 		ASSERT(availrmem_initial >= availrmem);
477 		avrmem_delta = availrmem_initial - availrmem;
478 
479 		/* The allowable floor of pages_pp_maximum */
480 		p_min = tune.t_minarmem + 100;
481 
482 		/* Make sure we don't come through here again. */
483 		init_done = 1;
484 	}
485 	/*
486 	 * Determine pages_pp_maximum, the number of currently available
487 	 * pages (availrmem) that can't be `locked'. If not set by
488 	 * the user, we set it to 4% of the currently available memory
489 	 * plus 4MB.
490 	 * But we also insist that it be greater than tune.t_minarmem;
491 	 * otherwise a process could lock down a lot of memory, get swapped
492 	 * out, and never have enough to get swapped back in.
493 	 */
494 	if (user_set)
495 		pages_pp_maximum = pages_pp_maximum_startup;
496 	else
497 		pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
498 		    + btop(4 * 1024 * 1024);
499 
500 	if (pages_pp_maximum <= p_min) {
501 		pages_pp_maximum = p_min;
502 	}
503 }
504 
505 void
506 set_max_page_get(pgcnt_t target_total_pages)
507 {
508 	max_page_get = target_total_pages / 2;
509 }
510 
511 static pgcnt_t pending_delete;
512 
513 /*ARGSUSED*/
514 static void
515 page_mem_config_post_add(
516 	void *arg,
517 	pgcnt_t delta_pages)
518 {
519 	set_max_page_get(total_pages - pending_delete);
520 	init_pages_pp_maximum();
521 }
522 
523 /*ARGSUSED*/
524 static int
525 page_mem_config_pre_del(
526 	void *arg,
527 	pgcnt_t delta_pages)
528 {
529 	pgcnt_t nv;
530 
531 	nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
532 	set_max_page_get(total_pages - nv);
533 	return (0);
534 }
535 
536 /*ARGSUSED*/
537 static void
538 page_mem_config_post_del(
539 	void *arg,
540 	pgcnt_t delta_pages,
541 	int cancelled)
542 {
543 	pgcnt_t nv;
544 
545 	nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
546 	set_max_page_get(total_pages - nv);
547 	if (!cancelled)
548 		init_pages_pp_maximum();
549 }
550 
551 static kphysm_setup_vector_t page_mem_config_vec = {
552 	KPHYSM_SETUP_VECTOR_VERSION,
553 	page_mem_config_post_add,
554 	page_mem_config_pre_del,
555 	page_mem_config_post_del,
556 };
557 
558 static void
559 page_init_mem_config(void)
560 {
561 	int ret;
562 
563 	ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
564 	ASSERT(ret == 0);
565 }
566 
567 /*
568  * Evenly spread out the PCF counters for large free pages
569  */
570 static void
571 page_free_large_ctr(pgcnt_t npages)
572 {
573 	static struct pcf	*p = pcf;
574 	pgcnt_t			lump;
575 
576 	freemem += npages;
577 
578 	lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT;
579 
580 	while (npages > 0) {
581 
582 		ASSERT(!p->pcf_block);
583 
584 		if (lump < npages) {
585 			p->pcf_count += (uint_t)lump;
586 			npages -= lump;
587 		} else {
588 			p->pcf_count += (uint_t)npages;
589 			npages = 0;
590 		}
591 
592 		ASSERT(!p->pcf_wait);
593 
594 		if (++p > &pcf[PCF_FANOUT - 1])
595 			p = pcf;
596 	}
597 
598 	ASSERT(npages == 0);
599 }
600 
601 /*
602  * Add a physical chunk of memory to the system freee lists during startup.
603  * Platform specific startup() allocates the memory for the page structs.
604  *
605  * num	- number of page structures
606  * base - page number (pfn) to be associated with the first page.
607  *
608  * Since we are doing this during startup (ie. single threaded), we will
609  * use shortcut routines to avoid any locking overhead while putting all
610  * these pages on the freelists.
611  *
612  * NOTE: Any changes performed to page_free(), must also be performed to
613  *	 add_physmem() since this is how we initialize all page_t's at
614  *	 boot time.
615  */
616 void
617 add_physmem(
618 	page_t	*pp,
619 	pgcnt_t	num,
620 	pfn_t	pnum)
621 {
622 	page_t	*root = NULL;
623 	uint_t	szc = page_num_pagesizes() - 1;
624 	pgcnt_t	large = page_get_pagecnt(szc);
625 	pgcnt_t	cnt = 0;
626 
627 	TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
628 		"add_physmem:pp %p num %lu", pp, num);
629 
630 	/*
631 	 * Arbitrarily limit the max page_get request
632 	 * to 1/2 of the page structs we have.
633 	 */
634 	total_pages += num;
635 	set_max_page_get(total_pages);
636 
637 	/*
638 	 * The physical space for the pages array
639 	 * representing ram pages has already been
640 	 * allocated.  Here we initialize each lock
641 	 * in the page structure, and put each on
642 	 * the free list
643 	 */
644 	for (; num; pp = page_next_raw(pp), pnum++, num--) {
645 
646 		/*
647 		 * this needs to fill in the page number
648 		 * and do any other arch specific initialization
649 		 */
650 		add_physmem_cb(pp, pnum);
651 
652 		/*
653 		 * Initialize the page lock as unlocked, since nobody
654 		 * can see or access this page yet.
655 		 */
656 		pp->p_selock = 0;
657 
658 		/*
659 		 * Initialize IO lock
660 		 */
661 		page_iolock_init(pp);
662 
663 		/*
664 		 * initialize other fields in the page_t
665 		 */
666 		PP_SETFREE(pp);
667 		page_clr_all_props(pp);
668 		PP_SETAGED(pp);
669 		pp->p_offset = (u_offset_t)-1;
670 		pp->p_next = pp;
671 		pp->p_prev = pp;
672 
673 		/*
674 		 * Simple case: System doesn't support large pages.
675 		 */
676 		if (szc == 0) {
677 			pp->p_szc = 0;
678 			page_free_at_startup(pp);
679 			continue;
680 		}
681 
682 		/*
683 		 * Handle unaligned pages, we collect them up onto
684 		 * the root page until we have a full large page.
685 		 */
686 		if (!IS_P2ALIGNED(pnum, large)) {
687 
688 			/*
689 			 * If not in a large page,
690 			 * just free as small page.
691 			 */
692 			if (root == NULL) {
693 				pp->p_szc = 0;
694 				page_free_at_startup(pp);
695 				continue;
696 			}
697 
698 			/*
699 			 * Link a constituent page into the large page.
700 			 */
701 			pp->p_szc = szc;
702 			page_list_concat(&root, &pp);
703 
704 			/*
705 			 * When large page is fully formed, free it.
706 			 */
707 			if (++cnt == large) {
708 				page_free_large_ctr(cnt);
709 				page_list_add_pages(root, PG_LIST_ISINIT);
710 				root = NULL;
711 				cnt = 0;
712 			}
713 			continue;
714 		}
715 
716 		/*
717 		 * At this point we have a page number which
718 		 * is aligned. We assert that we aren't already
719 		 * in a different large page.
720 		 */
721 		ASSERT(IS_P2ALIGNED(pnum, large));
722 		ASSERT(root == NULL && cnt == 0);
723 
724 		/*
725 		 * If insufficient number of pages left to form
726 		 * a large page, just free the small page.
727 		 */
728 		if (num < large) {
729 			pp->p_szc = 0;
730 			page_free_at_startup(pp);
731 			continue;
732 		}
733 
734 		/*
735 		 * Otherwise start a new large page.
736 		 */
737 		pp->p_szc = szc;
738 		cnt++;
739 		root = pp;
740 	}
741 	ASSERT(root == NULL && cnt == 0);
742 }
743 
744 /*
745  * Find a page representing the specified [vp, offset].
746  * If we find the page but it is intransit coming in,
747  * it will have an "exclusive" lock and we wait for
748  * the i/o to complete.  A page found on the free list
749  * is always reclaimed and then locked.  On success, the page
750  * is locked, its data is valid and it isn't on the free
751  * list, while a NULL is returned if the page doesn't exist.
752  */
753 page_t *
754 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
755 {
756 	return (page_lookup_create(vp, off, se, NULL, NULL, 0));
757 }
758 
759 /*
760  * Find a page representing the specified [vp, offset].
761  * We either return the one we found or, if passed in,
762  * create one with identity of [vp, offset] of the
763  * pre-allocated page. If we find exsisting page but it is
764  * intransit coming in, it will have an "exclusive" lock
765  * and we wait for the i/o to complete.  A page found on
766  * the free list is always reclaimed and then locked.
767  * On success, the page is locked, its data is valid and
768  * it isn't on the free list, while a NULL is returned
769  * if the page doesn't exist and newpp is NULL;
770  */
771 page_t *
772 page_lookup_create(
773 	vnode_t *vp,
774 	u_offset_t off,
775 	se_t se,
776 	page_t *newpp,
777 	spgcnt_t *nrelocp,
778 	int flags)
779 {
780 	page_t		*pp;
781 	kmutex_t	*phm;
782 	ulong_t		index;
783 	uint_t		hash_locked;
784 	uint_t		es;
785 
786 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
787 	VM_STAT_ADD(page_lookup_cnt[0]);
788 	ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
789 
790 	/*
791 	 * Acquire the appropriate page hash lock since
792 	 * we have to search the hash list.  Pages that
793 	 * hash to this list can't change identity while
794 	 * this lock is held.
795 	 */
796 	hash_locked = 0;
797 	index = PAGE_HASH_FUNC(vp, off);
798 	phm = NULL;
799 top:
800 	PAGE_HASH_SEARCH(index, pp, vp, off);
801 	if (pp != NULL) {
802 		VM_STAT_ADD(page_lookup_cnt[1]);
803 		es = (newpp != NULL) ? 1 : 0;
804 		es |= flags;
805 		if (!hash_locked) {
806 			VM_STAT_ADD(page_lookup_cnt[2]);
807 			if (!page_try_reclaim_lock(pp, se, es)) {
808 				/*
809 				 * On a miss, acquire the phm.  Then
810 				 * next time, page_lock() will be called,
811 				 * causing a wait if the page is busy.
812 				 * just looping with page_trylock() would
813 				 * get pretty boring.
814 				 */
815 				VM_STAT_ADD(page_lookup_cnt[3]);
816 				phm = PAGE_HASH_MUTEX(index);
817 				mutex_enter(phm);
818 				hash_locked = 1;
819 				goto top;
820 			}
821 		} else {
822 			VM_STAT_ADD(page_lookup_cnt[4]);
823 			if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
824 				VM_STAT_ADD(page_lookup_cnt[5]);
825 				goto top;
826 			}
827 		}
828 
829 		/*
830 		 * Since `pp' is locked it can not change identity now.
831 		 * Reconfirm we locked the correct page.
832 		 *
833 		 * Both the p_vnode and p_offset *must* be cast volatile
834 		 * to force a reload of their values: The PAGE_HASH_SEARCH
835 		 * macro will have stuffed p_vnode and p_offset into
836 		 * registers before calling page_trylock(); another thread,
837 		 * actually holding the hash lock, could have changed the
838 		 * page's identity in memory, but our registers would not
839 		 * be changed, fooling the reconfirmation.  If the hash
840 		 * lock was held during the search, the casting would
841 		 * not be needed.
842 		 */
843 		VM_STAT_ADD(page_lookup_cnt[6]);
844 		if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
845 		    ((volatile u_offset_t)(pp->p_offset) != off)) {
846 			VM_STAT_ADD(page_lookup_cnt[7]);
847 			if (hash_locked) {
848 				panic("page_lookup_create: lost page %p",
849 				    (void *)pp);
850 				/*NOTREACHED*/
851 			}
852 			page_unlock(pp);
853 			phm = PAGE_HASH_MUTEX(index);
854 			mutex_enter(phm);
855 			hash_locked = 1;
856 			goto top;
857 		}
858 
859 		/*
860 		 * If page_trylock() was called, then pp may still be on
861 		 * the cachelist (can't be on the free list, it would not
862 		 * have been found in the search).  If it is on the
863 		 * cachelist it must be pulled now. To pull the page from
864 		 * the cachelist, it must be exclusively locked.
865 		 *
866 		 * The other big difference between page_trylock() and
867 		 * page_lock(), is that page_lock() will pull the
868 		 * page from whatever free list (the cache list in this
869 		 * case) the page is on.  If page_trylock() was used
870 		 * above, then we have to do the reclaim ourselves.
871 		 */
872 		if ((!hash_locked) && (PP_ISFREE(pp))) {
873 			ASSERT(PP_ISAGED(pp) == 0);
874 			VM_STAT_ADD(page_lookup_cnt[8]);
875 
876 			/*
877 			 * page_relcaim will insure that we
878 			 * have this page exclusively
879 			 */
880 
881 			if (!page_reclaim(pp, NULL)) {
882 				/*
883 				 * Page_reclaim dropped whatever lock
884 				 * we held.
885 				 */
886 				VM_STAT_ADD(page_lookup_cnt[9]);
887 				phm = PAGE_HASH_MUTEX(index);
888 				mutex_enter(phm);
889 				hash_locked = 1;
890 				goto top;
891 			} else if (se == SE_SHARED && newpp == NULL) {
892 				VM_STAT_ADD(page_lookup_cnt[10]);
893 				page_downgrade(pp);
894 			}
895 		}
896 
897 		if (hash_locked) {
898 			mutex_exit(phm);
899 		}
900 
901 		if (newpp != NULL && pp->p_szc < newpp->p_szc &&
902 		    PAGE_EXCL(pp) && nrelocp != NULL) {
903 			ASSERT(nrelocp != NULL);
904 			(void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
905 			    NULL);
906 			if (*nrelocp > 0) {
907 				VM_STAT_COND_ADD(*nrelocp == 1,
908 				    page_lookup_cnt[11]);
909 				VM_STAT_COND_ADD(*nrelocp > 1,
910 				    page_lookup_cnt[12]);
911 				pp = newpp;
912 				se = SE_EXCL;
913 			} else {
914 				if (se == SE_SHARED) {
915 					page_downgrade(pp);
916 				}
917 				VM_STAT_ADD(page_lookup_cnt[13]);
918 			}
919 		} else if (newpp != NULL && nrelocp != NULL) {
920 			if (PAGE_EXCL(pp) && se == SE_SHARED) {
921 				page_downgrade(pp);
922 			}
923 			VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
924 			    page_lookup_cnt[14]);
925 			VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
926 			    page_lookup_cnt[15]);
927 			VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
928 			    page_lookup_cnt[16]);
929 		} else if (newpp != NULL && PAGE_EXCL(pp)) {
930 			se = SE_EXCL;
931 		}
932 	} else if (!hash_locked) {
933 		VM_STAT_ADD(page_lookup_cnt[17]);
934 		phm = PAGE_HASH_MUTEX(index);
935 		mutex_enter(phm);
936 		hash_locked = 1;
937 		goto top;
938 	} else if (newpp != NULL) {
939 		/*
940 		 * If we have a preallocated page then
941 		 * insert it now and basically behave like
942 		 * page_create.
943 		 */
944 		VM_STAT_ADD(page_lookup_cnt[18]);
945 		/*
946 		 * Since we hold the page hash mutex and
947 		 * just searched for this page, page_hashin
948 		 * had better not fail.  If it does, that
949 		 * means some thread did not follow the
950 		 * page hash mutex rules.  Panic now and
951 		 * get it over with.  As usual, go down
952 		 * holding all the locks.
953 		 */
954 		ASSERT(MUTEX_HELD(phm));
955 		if (!page_hashin(newpp, vp, off, phm)) {
956 			ASSERT(MUTEX_HELD(phm));
957 			panic("page_lookup_create: hashin failed %p %p %llx %p",
958 			    (void *)newpp, (void *)vp, off, (void *)phm);
959 			/*NOTREACHED*/
960 		}
961 		ASSERT(MUTEX_HELD(phm));
962 		mutex_exit(phm);
963 		phm = NULL;
964 		page_set_props(newpp, P_REF);
965 		page_io_lock(newpp);
966 		pp = newpp;
967 		se = SE_EXCL;
968 	} else {
969 		VM_STAT_ADD(page_lookup_cnt[19]);
970 		mutex_exit(phm);
971 	}
972 
973 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
974 
975 	ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
976 
977 	return (pp);
978 }
979 
980 /*
981  * Search the hash list for the page representing the
982  * specified [vp, offset] and return it locked.  Skip
983  * free pages and pages that cannot be locked as requested.
984  * Used while attempting to kluster pages.
985  */
986 page_t *
987 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
988 {
989 	page_t		*pp;
990 	kmutex_t	*phm;
991 	ulong_t		index;
992 	uint_t		locked;
993 
994 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
995 	VM_STAT_ADD(page_lookup_nowait_cnt[0]);
996 
997 	index = PAGE_HASH_FUNC(vp, off);
998 	PAGE_HASH_SEARCH(index, pp, vp, off);
999 	locked = 0;
1000 	if (pp == NULL) {
1001 top:
1002 		VM_STAT_ADD(page_lookup_nowait_cnt[1]);
1003 		locked = 1;
1004 		phm = PAGE_HASH_MUTEX(index);
1005 		mutex_enter(phm);
1006 		PAGE_HASH_SEARCH(index, pp, vp, off);
1007 	}
1008 
1009 	if (pp == NULL || PP_ISFREE(pp)) {
1010 		VM_STAT_ADD(page_lookup_nowait_cnt[2]);
1011 		pp = NULL;
1012 	} else {
1013 		if (!page_trylock(pp, se)) {
1014 			VM_STAT_ADD(page_lookup_nowait_cnt[3]);
1015 			pp = NULL;
1016 		} else {
1017 			VM_STAT_ADD(page_lookup_nowait_cnt[4]);
1018 			/*
1019 			 * See the comment in page_lookup()
1020 			 */
1021 			if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
1022 			    ((u_offset_t)(pp->p_offset) != off)) {
1023 				VM_STAT_ADD(page_lookup_nowait_cnt[5]);
1024 				if (locked) {
1025 					panic("page_lookup_nowait %p",
1026 					    (void *)pp);
1027 					/*NOTREACHED*/
1028 				}
1029 				page_unlock(pp);
1030 				goto top;
1031 			}
1032 			if (PP_ISFREE(pp)) {
1033 				VM_STAT_ADD(page_lookup_nowait_cnt[6]);
1034 				page_unlock(pp);
1035 				pp = NULL;
1036 			}
1037 		}
1038 	}
1039 	if (locked) {
1040 		VM_STAT_ADD(page_lookup_nowait_cnt[7]);
1041 		mutex_exit(phm);
1042 	}
1043 
1044 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
1045 
1046 	return (pp);
1047 }
1048 
1049 /*
1050  * Search the hash list for a page with the specified [vp, off]
1051  * that is known to exist and is already locked.  This routine
1052  * is typically used by segment SOFTUNLOCK routines.
1053  */
1054 page_t *
1055 page_find(vnode_t *vp, u_offset_t off)
1056 {
1057 	page_t		*pp;
1058 	kmutex_t	*phm;
1059 	ulong_t		index;
1060 
1061 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1062 	VM_STAT_ADD(page_find_cnt);
1063 
1064 	index = PAGE_HASH_FUNC(vp, off);
1065 	phm = PAGE_HASH_MUTEX(index);
1066 
1067 	mutex_enter(phm);
1068 	PAGE_HASH_SEARCH(index, pp, vp, off);
1069 	mutex_exit(phm);
1070 
1071 	ASSERT(pp != NULL);
1072 	ASSERT(PAGE_LOCKED(pp) || panicstr);
1073 	return (pp);
1074 }
1075 
1076 /*
1077  * Determine whether a page with the specified [vp, off]
1078  * currently exists in the system.  Obviously this should
1079  * only be considered as a hint since nothing prevents the
1080  * page from disappearing or appearing immediately after
1081  * the return from this routine. Subsequently, we don't
1082  * even bother to lock the list.
1083  */
1084 page_t *
1085 page_exists(vnode_t *vp, u_offset_t off)
1086 {
1087 	page_t	*pp;
1088 	ulong_t		index;
1089 
1090 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1091 	VM_STAT_ADD(page_exists_cnt);
1092 
1093 	index = PAGE_HASH_FUNC(vp, off);
1094 	PAGE_HASH_SEARCH(index, pp, vp, off);
1095 
1096 	return (pp);
1097 }
1098 
1099 /*
1100  * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1101  * page_size(szc)) range.  if they exist and ppa is not NULL fill ppa array
1102  * with these pages locked SHARED. If necessary reclaim pages from
1103  * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1104  *
1105  * If we fail to lock pages still return 1 if pages exist and contiguous.
1106  * But in this case return value is just a hint. ppa array won't be filled.
1107  * Caller should initialize ppa[0] as NULL to distinguish return value.
1108  *
1109  * Returns 0 if pages don't exist or not physically contiguous.
1110  *
1111  * This routine doesn't work for anonymous(swapfs) pages.
1112  */
1113 int
1114 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1115 {
1116 	pgcnt_t pages;
1117 	pfn_t pfn;
1118 	page_t *rootpp;
1119 	pgcnt_t i;
1120 	pgcnt_t j;
1121 	u_offset_t save_off = off;
1122 	ulong_t index;
1123 	kmutex_t *phm;
1124 	page_t *pp;
1125 	uint_t pszc;
1126 	int loopcnt = 0;
1127 
1128 	ASSERT(szc != 0);
1129 	ASSERT(vp != NULL);
1130 	ASSERT(!IS_SWAPFSVP(vp));
1131 	ASSERT(vp != &kvp);
1132 
1133 again:
1134 	if (++loopcnt > 3) {
1135 		VM_STAT_ADD(page_exphcontg[0]);
1136 		return (0);
1137 	}
1138 
1139 	index = PAGE_HASH_FUNC(vp, off);
1140 	phm = PAGE_HASH_MUTEX(index);
1141 
1142 	mutex_enter(phm);
1143 	PAGE_HASH_SEARCH(index, pp, vp, off);
1144 	mutex_exit(phm);
1145 
1146 	VM_STAT_ADD(page_exphcontg[1]);
1147 
1148 	if (pp == NULL) {
1149 		VM_STAT_ADD(page_exphcontg[2]);
1150 		return (0);
1151 	}
1152 
1153 	pages = page_get_pagecnt(szc);
1154 	rootpp = pp;
1155 	pfn = rootpp->p_pagenum;
1156 
1157 	if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1158 		VM_STAT_ADD(page_exphcontg[3]);
1159 		if (!page_trylock(pp, SE_SHARED)) {
1160 			VM_STAT_ADD(page_exphcontg[4]);
1161 			return (1);
1162 		}
1163 		if (pp->p_szc != pszc || pp->p_vnode != vp ||
1164 		    pp->p_offset != off) {
1165 			VM_STAT_ADD(page_exphcontg[5]);
1166 			page_unlock(pp);
1167 			off = save_off;
1168 			goto again;
1169 		}
1170 		/*
1171 		 * szc was non zero and vnode and offset matched after we
1172 		 * locked the page it means it can't become free on us.
1173 		 */
1174 		ASSERT(!PP_ISFREE(pp));
1175 		if (!IS_P2ALIGNED(pfn, pages)) {
1176 			page_unlock(pp);
1177 			return (0);
1178 		}
1179 		ppa[0] = pp;
1180 		pp++;
1181 		off += PAGESIZE;
1182 		pfn++;
1183 		for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1184 			if (!page_trylock(pp, SE_SHARED)) {
1185 				VM_STAT_ADD(page_exphcontg[6]);
1186 				pp--;
1187 				while (i-- > 0) {
1188 					page_unlock(pp);
1189 					pp--;
1190 				}
1191 				ppa[0] = NULL;
1192 				return (1);
1193 			}
1194 			if (pp->p_szc != pszc) {
1195 				VM_STAT_ADD(page_exphcontg[7]);
1196 				page_unlock(pp);
1197 				pp--;
1198 				while (i-- > 0) {
1199 					page_unlock(pp);
1200 					pp--;
1201 				}
1202 				ppa[0] = NULL;
1203 				off = save_off;
1204 				goto again;
1205 			}
1206 			/*
1207 			 * szc the same as for previous already locked pages
1208 			 * with right identity. Since this page had correct
1209 			 * szc after we locked it can't get freed or destroyed
1210 			 * and therefore must have the expected identity.
1211 			 */
1212 			ASSERT(!PP_ISFREE(pp));
1213 			if (pp->p_vnode != vp ||
1214 			    pp->p_offset != off) {
1215 				panic("page_exists_physcontig: "
1216 				    "large page identity doesn't match");
1217 			}
1218 			ppa[i] = pp;
1219 			ASSERT(pp->p_pagenum == pfn);
1220 		}
1221 		VM_STAT_ADD(page_exphcontg[8]);
1222 		ppa[pages] = NULL;
1223 		return (1);
1224 	} else if (pszc >= szc) {
1225 		VM_STAT_ADD(page_exphcontg[9]);
1226 		if (!IS_P2ALIGNED(pfn, pages)) {
1227 			return (0);
1228 		}
1229 		return (1);
1230 	}
1231 
1232 	if (!IS_P2ALIGNED(pfn, pages)) {
1233 		VM_STAT_ADD(page_exphcontg[10]);
1234 		return (0);
1235 	}
1236 
1237 	if (page_numtomemseg_nolock(pfn) !=
1238 	    page_numtomemseg_nolock(pfn + pages - 1)) {
1239 		VM_STAT_ADD(page_exphcontg[11]);
1240 		return (0);
1241 	}
1242 
1243 	/*
1244 	 * We loop up 4 times across pages to promote page size.
1245 	 * We're extra cautious to promote page size atomically with respect
1246 	 * to everybody else.  But we can probably optimize into 1 loop if
1247 	 * this becomes an issue.
1248 	 */
1249 
1250 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1251 		ASSERT(pp->p_pagenum == pfn);
1252 		if (!page_trylock(pp, SE_EXCL)) {
1253 			VM_STAT_ADD(page_exphcontg[12]);
1254 			break;
1255 		}
1256 		if (pp->p_vnode != vp ||
1257 		    pp->p_offset != off) {
1258 			VM_STAT_ADD(page_exphcontg[13]);
1259 			page_unlock(pp);
1260 			break;
1261 		}
1262 		if (pp->p_szc >= szc) {
1263 			ASSERT(i == 0);
1264 			page_unlock(pp);
1265 			off = save_off;
1266 			goto again;
1267 		}
1268 	}
1269 
1270 	if (i != pages) {
1271 		VM_STAT_ADD(page_exphcontg[14]);
1272 		--pp;
1273 		while (i-- > 0) {
1274 			page_unlock(pp);
1275 			--pp;
1276 		}
1277 		return (0);
1278 	}
1279 
1280 	pp = rootpp;
1281 	for (i = 0; i < pages; i++, pp++) {
1282 		if (PP_ISFREE(pp)) {
1283 			VM_STAT_ADD(page_exphcontg[15]);
1284 			ASSERT(!PP_ISAGED(pp));
1285 			ASSERT(pp->p_szc == 0);
1286 			if (!page_reclaim(pp, NULL)) {
1287 				break;
1288 			}
1289 		} else {
1290 			ASSERT(pp->p_szc < szc);
1291 			VM_STAT_ADD(page_exphcontg[16]);
1292 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1293 		}
1294 	}
1295 	if (i < pages) {
1296 		VM_STAT_ADD(page_exphcontg[17]);
1297 		/*
1298 		 * page_reclaim failed because we were out of memory.
1299 		 * drop the rest of the locks and return because this page
1300 		 * must be already reallocated anyway.
1301 		 */
1302 		pp = rootpp;
1303 		for (j = 0; j < pages; j++, pp++) {
1304 			if (j != i) {
1305 				page_unlock(pp);
1306 			}
1307 		}
1308 		return (0);
1309 	}
1310 
1311 	off = save_off;
1312 	pp = rootpp;
1313 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1314 		ASSERT(PAGE_EXCL(pp));
1315 		ASSERT(!PP_ISFREE(pp));
1316 		ASSERT(!hat_page_is_mapped(pp));
1317 		ASSERT(pp->p_vnode == vp);
1318 		ASSERT(pp->p_offset == off);
1319 		pp->p_szc = szc;
1320 	}
1321 	pp = rootpp;
1322 	for (i = 0; i < pages; i++, pp++) {
1323 		if (ppa == NULL) {
1324 			page_unlock(pp);
1325 		} else {
1326 			ppa[i] = pp;
1327 			page_downgrade(ppa[i]);
1328 		}
1329 	}
1330 	if (ppa != NULL) {
1331 		ppa[pages] = NULL;
1332 	}
1333 	VM_STAT_ADD(page_exphcontg[18]);
1334 	ASSERT(vp->v_pages != NULL);
1335 	return (1);
1336 }
1337 
1338 /*
1339  * Determine whether a page with the specified [vp, off]
1340  * currently exists in the system and if so return its
1341  * size code. Obviously this should only be considered as
1342  * a hint since nothing prevents the page from disappearing
1343  * or appearing immediately after the return from this routine.
1344  */
1345 int
1346 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1347 {
1348 	page_t		*pp;
1349 	kmutex_t	*phm;
1350 	ulong_t		index;
1351 	int		rc = 0;
1352 
1353 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1354 	ASSERT(szc != NULL);
1355 	VM_STAT_ADD(page_exists_forreal_cnt);
1356 
1357 	index = PAGE_HASH_FUNC(vp, off);
1358 	phm = PAGE_HASH_MUTEX(index);
1359 
1360 	mutex_enter(phm);
1361 	PAGE_HASH_SEARCH(index, pp, vp, off);
1362 	if (pp != NULL) {
1363 		*szc = pp->p_szc;
1364 		rc = 1;
1365 	}
1366 	mutex_exit(phm);
1367 	return (rc);
1368 }
1369 
1370 /* wakeup threads waiting for pages in page_create_get_something() */
1371 void
1372 wakeup_pcgs(void)
1373 {
1374 	if (!CV_HAS_WAITERS(&pcgs_cv))
1375 		return;
1376 	cv_broadcast(&pcgs_cv);
1377 }
1378 
1379 /*
1380  * 'freemem' is used all over the kernel as an indication of how many
1381  * pages are free (either on the cache list or on the free page list)
1382  * in the system.  In very few places is a really accurate 'freemem'
1383  * needed.  To avoid contention of the lock protecting a the
1384  * single freemem, it was spread out into NCPU buckets.  Set_freemem
1385  * sets freemem to the total of all NCPU buckets.  It is called from
1386  * clock() on each TICK.
1387  */
1388 void
1389 set_freemem()
1390 {
1391 	struct pcf	*p;
1392 	ulong_t		t;
1393 	uint_t		i;
1394 
1395 	t = 0;
1396 	p = pcf;
1397 	for (i = 0;  i < PCF_FANOUT; i++) {
1398 		t += p->pcf_count;
1399 		p++;
1400 	}
1401 	freemem = t;
1402 
1403 	/*
1404 	 * Don't worry about grabbing mutex.  It's not that
1405 	 * critical if we miss a tick or two.  This is
1406 	 * where we wakeup possible delayers in
1407 	 * page_create_get_something().
1408 	 */
1409 	wakeup_pcgs();
1410 }
1411 
1412 ulong_t
1413 get_freemem()
1414 {
1415 	struct pcf	*p;
1416 	ulong_t		t;
1417 	uint_t		i;
1418 
1419 	t = 0;
1420 	p = pcf;
1421 	for (i = 0; i < PCF_FANOUT; i++) {
1422 		t += p->pcf_count;
1423 		p++;
1424 	}
1425 	/*
1426 	 * We just calculated it, might as well set it.
1427 	 */
1428 	freemem = t;
1429 	return (t);
1430 }
1431 
1432 /*
1433  * Acquire all of the page cache & free (pcf) locks.
1434  */
1435 void
1436 pcf_acquire_all()
1437 {
1438 	struct pcf	*p;
1439 	uint_t		i;
1440 
1441 	p = pcf;
1442 	for (i = 0; i < PCF_FANOUT; i++) {
1443 		p->pcf_touch = 1;
1444 		mutex_enter(&p->pcf_lock);
1445 		p++;
1446 	}
1447 }
1448 
1449 /*
1450  * Release all the pcf_locks.
1451  */
1452 void
1453 pcf_release_all()
1454 {
1455 	struct pcf	*p;
1456 	uint_t		i;
1457 
1458 	p = pcf;
1459 	for (i = 0; i < PCF_FANOUT; i++) {
1460 		mutex_exit(&p->pcf_lock);
1461 		p++;
1462 	}
1463 }
1464 
1465 /*
1466  * Inform the VM system that we need some pages freed up.
1467  * Calls must be symmetric, e.g.:
1468  *
1469  *	page_needfree(100);
1470  *	wait a bit;
1471  *	page_needfree(-100);
1472  */
1473 void
1474 page_needfree(spgcnt_t npages)
1475 {
1476 	mutex_enter(&new_freemem_lock);
1477 	needfree += npages;
1478 	mutex_exit(&new_freemem_lock);
1479 }
1480 
1481 /*
1482  * Throttle for page_create(): try to prevent freemem from dropping
1483  * below throttlefree.  We can't provide a 100% guarantee because
1484  * KM_NOSLEEP allocations, page_reclaim(), and various other things
1485  * nibble away at the freelist.  However, we can block all PG_WAIT
1486  * allocations until memory becomes available.  The motivation is
1487  * that several things can fall apart when there's no free memory:
1488  *
1489  * (1) If pageout() needs memory to push a page, the system deadlocks.
1490  *
1491  * (2) By (broken) specification, timeout(9F) can neither fail nor
1492  *     block, so it has no choice but to panic the system if it
1493  *     cannot allocate a callout structure.
1494  *
1495  * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1496  *     it panics if it cannot allocate a callback structure.
1497  *
1498  * (4) Untold numbers of third-party drivers have not yet been hardened
1499  *     against KM_NOSLEEP and/or allocb() failures; they simply assume
1500  *     success and panic the system with a data fault on failure.
1501  *     (The long-term solution to this particular problem is to ship
1502  *     hostile fault-injecting DEBUG kernels with the DDK.)
1503  *
1504  * It is theoretically impossible to guarantee success of non-blocking
1505  * allocations, but in practice, this throttle is very hard to break.
1506  */
1507 static int
1508 page_create_throttle(pgcnt_t npages, int flags)
1509 {
1510 	ulong_t	fm;
1511 	uint_t	i;
1512 	pgcnt_t tf;	/* effective value of throttlefree */
1513 
1514 	/*
1515 	 * Never deny pages when:
1516 	 * - it's a thread that cannot block [NOMEMWAIT()]
1517 	 * - the allocation cannot block and must not fail
1518 	 * - the allocation cannot block and is pageout dispensated
1519 	 */
1520 	if (NOMEMWAIT() ||
1521 	    ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1522 	    ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1523 		return (1);
1524 
1525 	/*
1526 	 * If the allocation can't block, we look favorably upon it
1527 	 * unless we're below pageout_reserve.  In that case we fail
1528 	 * the allocation because we want to make sure there are a few
1529 	 * pages available for pageout.
1530 	 */
1531 	if ((flags & PG_WAIT) == 0)
1532 		return (freemem >= npages + pageout_reserve);
1533 
1534 	/* Calculate the effective throttlefree value */
1535 	tf = throttlefree -
1536 	    ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1537 
1538 	cv_signal(&proc_pageout->p_cv);
1539 
1540 	while (freemem < npages + tf) {
1541 		pcf_acquire_all();
1542 		mutex_enter(&new_freemem_lock);
1543 		fm = 0;
1544 		for (i = 0; i < PCF_FANOUT; i++) {
1545 			fm += pcf[i].pcf_count;
1546 			pcf[i].pcf_wait++;
1547 			mutex_exit(&pcf[i].pcf_lock);
1548 		}
1549 		freemem = fm;
1550 		needfree += npages;
1551 		freemem_wait++;
1552 		cv_wait(&freemem_cv, &new_freemem_lock);
1553 		freemem_wait--;
1554 		needfree -= npages;
1555 		mutex_exit(&new_freemem_lock);
1556 	}
1557 	return (1);
1558 }
1559 
1560 /*
1561  * page_create_wait() is called to either coalecse pages from the
1562  * different pcf buckets or to wait because there simply are not
1563  * enough pages to satisfy the caller's request.
1564  *
1565  * Sadly, this is called from platform/vm/vm_machdep.c
1566  */
1567 int
1568 page_create_wait(size_t npages, uint_t flags)
1569 {
1570 	pgcnt_t		total;
1571 	uint_t		i;
1572 	struct pcf	*p;
1573 
1574 	/*
1575 	 * Wait until there are enough free pages to satisfy our
1576 	 * entire request.
1577 	 * We set needfree += npages before prodding pageout, to make sure
1578 	 * it does real work when npages > lotsfree > freemem.
1579 	 */
1580 	VM_STAT_ADD(page_create_not_enough);
1581 
1582 	ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1583 checkagain:
1584 	if ((flags & PG_NORELOC) &&
1585 	    kcage_freemem < kcage_throttlefree + npages)
1586 		(void) kcage_create_throttle(npages, flags);
1587 
1588 	if (freemem < npages + throttlefree)
1589 		if (!page_create_throttle(npages, flags))
1590 			return (0);
1591 
1592 	/*
1593 	 * Since page_create_va() looked at every
1594 	 * bucket, assume we are going to have to wait.
1595 	 * Get all of the pcf locks.
1596 	 */
1597 	total = 0;
1598 	p = pcf;
1599 	for (i = 0; i < PCF_FANOUT; i++) {
1600 		p->pcf_touch = 1;
1601 		mutex_enter(&p->pcf_lock);
1602 		total += p->pcf_count;
1603 		if (total >= npages) {
1604 			/*
1605 			 * Wow!  There are enough pages laying around
1606 			 * to satisfy the request.  Do the accounting,
1607 			 * drop the locks we acquired, and go back.
1608 			 *
1609 			 * freemem is not protected by any lock. So,
1610 			 * we cannot have any assertion containing
1611 			 * freemem.
1612 			 */
1613 			freemem -= npages;
1614 
1615 			while (p >= pcf) {
1616 				if (p->pcf_count <= npages) {
1617 					npages -= p->pcf_count;
1618 					p->pcf_count = 0;
1619 				} else {
1620 					p->pcf_count -= (uint_t)npages;
1621 					npages = 0;
1622 				}
1623 				mutex_exit(&p->pcf_lock);
1624 				p--;
1625 			}
1626 			ASSERT(npages == 0);
1627 			return (1);
1628 		}
1629 		p++;
1630 	}
1631 
1632 	/*
1633 	 * All of the pcf locks are held, there are not enough pages
1634 	 * to satisfy the request (npages < total).
1635 	 * Be sure to acquire the new_freemem_lock before dropping
1636 	 * the pcf locks.  This prevents dropping wakeups in page_free().
1637 	 * The order is always pcf_lock then new_freemem_lock.
1638 	 *
1639 	 * Since we hold all the pcf locks, it is a good time to set freemem.
1640 	 *
1641 	 * If the caller does not want to wait, return now.
1642 	 * Else turn the pageout daemon loose to find something
1643 	 * and wait till it does.
1644 	 *
1645 	 */
1646 	freemem = total;
1647 
1648 	if ((flags & PG_WAIT) == 0) {
1649 		pcf_release_all();
1650 
1651 		TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1652 		"page_create_nomem:npages %ld freemem %ld", npages, freemem);
1653 		return (0);
1654 	}
1655 
1656 	ASSERT(proc_pageout != NULL);
1657 	cv_signal(&proc_pageout->p_cv);
1658 
1659 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1660 	    "page_create_sleep_start: freemem %ld needfree %ld",
1661 	    freemem, needfree);
1662 
1663 	/*
1664 	 * We are going to wait.
1665 	 * We currently hold all of the pcf_locks,
1666 	 * get the new_freemem_lock (it protects freemem_wait),
1667 	 * before dropping the pcf_locks.
1668 	 */
1669 	mutex_enter(&new_freemem_lock);
1670 
1671 	p = pcf;
1672 	for (i = 0; i < PCF_FANOUT; i++) {
1673 		p->pcf_wait++;
1674 		mutex_exit(&p->pcf_lock);
1675 		p++;
1676 	}
1677 
1678 	needfree += npages;
1679 	freemem_wait++;
1680 
1681 	cv_wait(&freemem_cv, &new_freemem_lock);
1682 
1683 	freemem_wait--;
1684 	needfree -= npages;
1685 
1686 	mutex_exit(&new_freemem_lock);
1687 
1688 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1689 	    "page_create_sleep_end: freemem %ld needfree %ld",
1690 	    freemem, needfree);
1691 
1692 	VM_STAT_ADD(page_create_not_enough_again);
1693 	goto checkagain;
1694 }
1695 
1696 /*
1697  * A routine to do the opposite of page_create_wait().
1698  */
1699 void
1700 page_create_putback(spgcnt_t npages)
1701 {
1702 	struct pcf	*p;
1703 	pgcnt_t		lump;
1704 	uint_t		*which;
1705 
1706 	/*
1707 	 * When a contiguous lump is broken up, we have to
1708 	 * deal with lots of pages (min 64) so lets spread
1709 	 * the wealth around.
1710 	 */
1711 	lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT;
1712 	freemem += npages;
1713 
1714 	for (p = pcf; (npages > 0) && (p < &pcf[PCF_FANOUT]); p++) {
1715 		which = &p->pcf_count;
1716 
1717 		mutex_enter(&p->pcf_lock);
1718 
1719 		if (p->pcf_block) {
1720 			which = &p->pcf_reserve;
1721 		}
1722 
1723 		if (lump < npages) {
1724 			*which += (uint_t)lump;
1725 			npages -= lump;
1726 		} else {
1727 			*which += (uint_t)npages;
1728 			npages = 0;
1729 		}
1730 
1731 		if (p->pcf_wait) {
1732 			mutex_enter(&new_freemem_lock);
1733 			/*
1734 			 * Check to see if some other thread
1735 			 * is actually waiting.  Another bucket
1736 			 * may have woken it up by now.  If there
1737 			 * are no waiters, then set our pcf_wait
1738 			 * count to zero to avoid coming in here
1739 			 * next time.
1740 			 */
1741 			if (freemem_wait) {
1742 				if (npages > 1) {
1743 					cv_broadcast(&freemem_cv);
1744 				} else {
1745 					cv_signal(&freemem_cv);
1746 				}
1747 				p->pcf_wait--;
1748 			} else {
1749 				p->pcf_wait = 0;
1750 			}
1751 			mutex_exit(&new_freemem_lock);
1752 		}
1753 		mutex_exit(&p->pcf_lock);
1754 	}
1755 	ASSERT(npages == 0);
1756 }
1757 
1758 /*
1759  * A helper routine for page_create_get_something.
1760  * The indenting got to deep down there.
1761  * Unblock the pcf counters.  Any pages freed after
1762  * pcf_block got set are moved to pcf_count and
1763  * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1764  */
1765 static void
1766 pcgs_unblock(void)
1767 {
1768 	int		i;
1769 	struct pcf	*p;
1770 
1771 	/* Update freemem while we're here. */
1772 	freemem = 0;
1773 	p = pcf;
1774 	for (i = 0; i < PCF_FANOUT; i++) {
1775 		mutex_enter(&p->pcf_lock);
1776 		ASSERT(p->pcf_count == 0);
1777 		p->pcf_count = p->pcf_reserve;
1778 		p->pcf_block = 0;
1779 		freemem += p->pcf_count;
1780 		if (p->pcf_wait) {
1781 			mutex_enter(&new_freemem_lock);
1782 			if (freemem_wait) {
1783 				if (p->pcf_reserve > 1) {
1784 					cv_broadcast(&freemem_cv);
1785 					p->pcf_wait = 0;
1786 				} else {
1787 					cv_signal(&freemem_cv);
1788 					p->pcf_wait--;
1789 				}
1790 			} else {
1791 				p->pcf_wait = 0;
1792 			}
1793 			mutex_exit(&new_freemem_lock);
1794 		}
1795 		p->pcf_reserve = 0;
1796 		mutex_exit(&p->pcf_lock);
1797 		p++;
1798 	}
1799 }
1800 
1801 /*
1802  * Called from page_create_va() when both the cache and free lists
1803  * have been checked once.
1804  *
1805  * Either returns a page or panics since the accounting was done
1806  * way before we got here.
1807  *
1808  * We don't come here often, so leave the accounting on permanently.
1809  */
1810 
1811 #define	MAX_PCGS	100
1812 
1813 #ifdef	DEBUG
1814 #define	PCGS_TRIES	100
1815 #else	/* DEBUG */
1816 #define	PCGS_TRIES	10
1817 #endif	/* DEBUG */
1818 
1819 #ifdef	VM_STATS
1820 uint_t	pcgs_counts[PCGS_TRIES];
1821 uint_t	pcgs_too_many;
1822 uint_t	pcgs_entered;
1823 uint_t	pcgs_entered_noreloc;
1824 uint_t	pcgs_locked;
1825 uint_t	pcgs_cagelocked;
1826 #endif	/* VM_STATS */
1827 
1828 static page_t *
1829 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1830     caddr_t vaddr, uint_t flags)
1831 {
1832 	uint_t		count;
1833 	page_t		*pp;
1834 	uint_t		locked, i;
1835 	struct	pcf	*p;
1836 	lgrp_t		*lgrp;
1837 	int		cagelocked = 0;
1838 
1839 	VM_STAT_ADD(pcgs_entered);
1840 
1841 	/*
1842 	 * Tap any reserve freelists: if we fail now, we'll die
1843 	 * since the page(s) we're looking for have already been
1844 	 * accounted for.
1845 	 */
1846 	flags |= PG_PANIC;
1847 
1848 	if ((flags & PG_NORELOC) != 0) {
1849 		VM_STAT_ADD(pcgs_entered_noreloc);
1850 		/*
1851 		 * Requests for free pages from critical threads
1852 		 * such as pageout still won't throttle here, but
1853 		 * we must try again, to give the cageout thread
1854 		 * another chance to catch up. Since we already
1855 		 * accounted for the pages, we had better get them
1856 		 * this time.
1857 		 *
1858 		 * N.B. All non-critical threads acquire the pcgs_cagelock
1859 		 * to serialize access to the freelists. This implements a
1860 		 * turnstile-type synchornization to avoid starvation of
1861 		 * critical requests for PG_NORELOC memory by non-critical
1862 		 * threads: all non-critical threads must acquire a 'ticket'
1863 		 * before passing through, which entails making sure
1864 		 * kcage_freemem won't fall below minfree prior to grabbing
1865 		 * pages from the freelists.
1866 		 */
1867 		if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1868 			mutex_enter(&pcgs_cagelock);
1869 			cagelocked = 1;
1870 			VM_STAT_ADD(pcgs_cagelocked);
1871 		}
1872 	}
1873 
1874 	/*
1875 	 * Time to get serious.
1876 	 * We failed to get a `correctly colored' page from both the
1877 	 * free and cache lists.
1878 	 * We escalate in stage.
1879 	 *
1880 	 * First try both lists without worring about color.
1881 	 *
1882 	 * Then, grab all page accounting locks (ie. pcf[]) and
1883 	 * steal any pages that they have and set the pcf_block flag to
1884 	 * stop deletions from the lists.  This will help because
1885 	 * a page can get added to the free list while we are looking
1886 	 * at the cache list, then another page could be added to the cache
1887 	 * list allowing the page on the free list to be removed as we
1888 	 * move from looking at the cache list to the free list. This
1889 	 * could happen over and over. We would never find the page
1890 	 * we have accounted for.
1891 	 *
1892 	 * Noreloc pages are a subset of the global (relocatable) page pool.
1893 	 * They are not tracked separately in the pcf bins, so it is
1894 	 * impossible to know when doing pcf accounting if the available
1895 	 * page(s) are noreloc pages or not. When looking for a noreloc page
1896 	 * it is quite easy to end up here even if the global (relocatable)
1897 	 * page pool has plenty of free pages but the noreloc pool is empty.
1898 	 *
1899 	 * When the noreloc pool is empty (or low), additional noreloc pages
1900 	 * are created by converting pages from the global page pool. This
1901 	 * process will stall during pcf accounting if the pcf bins are
1902 	 * already locked. Such is the case when a noreloc allocation is
1903 	 * looping here in page_create_get_something waiting for more noreloc
1904 	 * pages to appear.
1905 	 *
1906 	 * Short of adding a new field to the pcf bins to accurately track
1907 	 * the number of free noreloc pages, we instead do not grab the
1908 	 * pcgs_lock, do not set the pcf blocks and do not timeout when
1909 	 * allocating a noreloc page. This allows noreloc allocations to
1910 	 * loop without blocking global page pool allocations.
1911 	 *
1912 	 * NOTE: the behaviour of page_create_get_something has not changed
1913 	 * for the case of global page pool allocations.
1914 	 */
1915 
1916 	flags &= ~PG_MATCH_COLOR;
1917 	locked = 0;
1918 #ifndef __sparc
1919 	/*
1920 	 * page_create_get_something may be called because 4g memory may be
1921 	 * depleted. Set flags to allow for relocation of base page below
1922 	 * 4g if necessary.
1923 	 */
1924 	if (physmax4g)
1925 		flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI);
1926 #endif
1927 
1928 	lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1929 
1930 	for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1931 		pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1932 		    flags, lgrp);
1933 		if (pp == NULL) {
1934 			pp = page_get_cachelist(vp, off, seg, vaddr,
1935 				flags, lgrp);
1936 		}
1937 		if (pp == NULL) {
1938 			/*
1939 			 * Serialize.  Don't fight with other pcgs().
1940 			 */
1941 			if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1942 				mutex_enter(&pcgs_lock);
1943 				VM_STAT_ADD(pcgs_locked);
1944 				locked = 1;
1945 				p = pcf;
1946 				for (i = 0; i < PCF_FANOUT; i++) {
1947 					mutex_enter(&p->pcf_lock);
1948 					ASSERT(p->pcf_block == 0);
1949 					p->pcf_block = 1;
1950 					p->pcf_reserve = p->pcf_count;
1951 					p->pcf_count = 0;
1952 					mutex_exit(&p->pcf_lock);
1953 					p++;
1954 				}
1955 				freemem = 0;
1956 			}
1957 
1958 			if (count) {
1959 				/*
1960 				 * Since page_free() puts pages on
1961 				 * a list then accounts for it, we
1962 				 * just have to wait for page_free()
1963 				 * to unlock any page it was working
1964 				 * with. The page_lock()-page_reclaim()
1965 				 * path falls in the same boat.
1966 				 *
1967 				 * We don't need to check on the
1968 				 * PG_WAIT flag, we have already
1969 				 * accounted for the page we are
1970 				 * looking for in page_create_va().
1971 				 *
1972 				 * We just wait a moment to let any
1973 				 * locked pages on the lists free up,
1974 				 * then continue around and try again.
1975 				 *
1976 				 * Will be awakened by set_freemem().
1977 				 */
1978 				mutex_enter(&pcgs_wait_lock);
1979 				cv_wait(&pcgs_cv, &pcgs_wait_lock);
1980 				mutex_exit(&pcgs_wait_lock);
1981 			}
1982 		} else {
1983 #ifdef VM_STATS
1984 			if (count >= PCGS_TRIES) {
1985 				VM_STAT_ADD(pcgs_too_many);
1986 			} else {
1987 				VM_STAT_ADD(pcgs_counts[count]);
1988 			}
1989 #endif
1990 			if (locked) {
1991 				pcgs_unblock();
1992 				mutex_exit(&pcgs_lock);
1993 			}
1994 			if (cagelocked)
1995 				mutex_exit(&pcgs_cagelock);
1996 			return (pp);
1997 		}
1998 	}
1999 	/*
2000 	 * we go down holding the pcf locks.
2001 	 */
2002 	panic("no %spage found %d",
2003 	    ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
2004 	/*NOTREACHED*/
2005 }
2006 
2007 /*
2008  * Create enough pages for "bytes" worth of data starting at
2009  * "off" in "vp".
2010  *
2011  *	Where flag must be one of:
2012  *
2013  *		PG_EXCL:	Exclusive create (fail if any page already
2014  *				exists in the page cache) which does not
2015  *				wait for memory to become available.
2016  *
2017  *		PG_WAIT:	Non-exclusive create which can wait for
2018  *				memory to become available.
2019  *
2020  *		PG_PHYSCONTIG:	Allocate physically contiguous pages.
2021  *				(Not Supported)
2022  *
2023  * A doubly linked list of pages is returned to the caller.  Each page
2024  * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
2025  * lock.
2026  *
2027  * Unable to change the parameters to page_create() in a minor release,
2028  * we renamed page_create() to page_create_va(), changed all known calls
2029  * from page_create() to page_create_va(), and created this wrapper.
2030  *
2031  * Upon a major release, we should break compatibility by deleting this
2032  * wrapper, and replacing all the strings "page_create_va", with "page_create".
2033  *
2034  * NOTE: There is a copy of this interface as page_create_io() in
2035  *	 i86/vm/vm_machdep.c. Any bugs fixed here should be applied
2036  *	 there.
2037  */
2038 page_t *
2039 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
2040 {
2041 	caddr_t random_vaddr;
2042 	struct seg kseg;
2043 
2044 #ifdef DEBUG
2045 	cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
2046 	    (void *)caller());
2047 #endif
2048 
2049 	random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
2050 	    (uintptr_t)(off >> PAGESHIFT));
2051 	kseg.s_as = &kas;
2052 
2053 	return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
2054 }
2055 
2056 #ifdef DEBUG
2057 uint32_t pg_alloc_pgs_mtbf = 0;
2058 #endif
2059 
2060 /*
2061  * Used for large page support. It will attempt to allocate
2062  * a large page(s) off the freelist.
2063  *
2064  * Returns non zero on failure.
2065  */
2066 int
2067 page_alloc_pages(struct seg *seg, caddr_t addr, page_t **basepp,
2068     page_t *ppa[], uint_t szc, int anypgsz)
2069 {
2070 	pgcnt_t		npgs, curnpgs, totpgs;
2071 	size_t		pgsz;
2072 	page_t		*pplist = NULL, *pp;
2073 	int		err = 0;
2074 	lgrp_t		*lgrp;
2075 
2076 	ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
2077 
2078 	VM_STAT_ADD(alloc_pages[0]);
2079 
2080 #ifdef DEBUG
2081 	if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
2082 		return (ENOMEM);
2083 	}
2084 #endif
2085 
2086 	pgsz = page_get_pagesize(szc);
2087 	totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
2088 
2089 	ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
2090 	/*
2091 	 * One must be NULL but not both.
2092 	 * And one must be non NULL but not both.
2093 	 */
2094 	ASSERT(basepp != NULL || ppa != NULL);
2095 	ASSERT(basepp == NULL || ppa == NULL);
2096 
2097 	(void) page_create_wait(npgs, PG_WAIT);
2098 
2099 	while (npgs && szc) {
2100 		lgrp = lgrp_mem_choose(seg, addr, pgsz);
2101 		pp = page_get_freelist(NULL, 0, seg, addr, pgsz, 0, lgrp);
2102 		if (pp != NULL) {
2103 			VM_STAT_ADD(alloc_pages[1]);
2104 			page_list_concat(&pplist, &pp);
2105 			ASSERT(npgs >= curnpgs);
2106 			npgs -= curnpgs;
2107 		} else if (anypgsz) {
2108 			VM_STAT_ADD(alloc_pages[2]);
2109 			szc--;
2110 			pgsz = page_get_pagesize(szc);
2111 			curnpgs = pgsz >> PAGESHIFT;
2112 		} else {
2113 			VM_STAT_ADD(alloc_pages[3]);
2114 			ASSERT(npgs == totpgs);
2115 			page_create_putback(npgs);
2116 			return (ENOMEM);
2117 		}
2118 	}
2119 	if (szc == 0) {
2120 		VM_STAT_ADD(alloc_pages[4]);
2121 		ASSERT(npgs != 0);
2122 		page_create_putback(npgs);
2123 		err = ENOMEM;
2124 	} else if (basepp != NULL) {
2125 		ASSERT(npgs == 0);
2126 		ASSERT(ppa == NULL);
2127 		*basepp = pplist;
2128 	}
2129 
2130 	npgs = totpgs - npgs;
2131 	pp = pplist;
2132 
2133 	/*
2134 	 * Clear the free and age bits. Also if we were passed in a ppa then
2135 	 * fill it in with all the constituent pages from the large page. But
2136 	 * if we failed to allocate all the pages just free what we got.
2137 	 */
2138 	while (npgs != 0) {
2139 		ASSERT(PP_ISFREE(pp));
2140 		ASSERT(PP_ISAGED(pp));
2141 		if (ppa != NULL || err != 0) {
2142 			if (err == 0) {
2143 				VM_STAT_ADD(alloc_pages[5]);
2144 				PP_CLRFREE(pp);
2145 				PP_CLRAGED(pp);
2146 				page_sub(&pplist, pp);
2147 				*ppa++ = pp;
2148 				npgs--;
2149 			} else {
2150 				VM_STAT_ADD(alloc_pages[6]);
2151 				ASSERT(pp->p_szc != 0);
2152 				curnpgs = page_get_pagecnt(pp->p_szc);
2153 				page_list_break(&pp, &pplist, curnpgs);
2154 				page_list_add_pages(pp, 0);
2155 				page_create_putback(curnpgs);
2156 				ASSERT(npgs >= curnpgs);
2157 				npgs -= curnpgs;
2158 			}
2159 			pp = pplist;
2160 		} else {
2161 			VM_STAT_ADD(alloc_pages[7]);
2162 			PP_CLRFREE(pp);
2163 			PP_CLRAGED(pp);
2164 			pp = pp->p_next;
2165 			npgs--;
2166 		}
2167 	}
2168 	return (err);
2169 }
2170 
2171 /*
2172  * Get a single large page off of the freelists, and set it up for use.
2173  * Number of bytes requested must be a supported page size.
2174  *
2175  * Note that this call may fail even if there is sufficient
2176  * memory available or PG_WAIT is set, so the caller must
2177  * be willing to fallback on page_create_va(), block and retry,
2178  * or fail the requester.
2179  */
2180 page_t *
2181 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2182     struct seg *seg, caddr_t vaddr, void *arg)
2183 {
2184 	pgcnt_t		npages, pcftotal;
2185 	page_t		*pp;
2186 	page_t		*rootpp;
2187 	lgrp_t		*lgrp;
2188 	uint_t		enough;
2189 	uint_t		pcf_index;
2190 	uint_t		i;
2191 	struct pcf	*p;
2192 	struct pcf	*q;
2193 	lgrp_id_t	*lgrpid = (lgrp_id_t *)arg;
2194 
2195 	ASSERT(vp != NULL);
2196 
2197 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2198 		    PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
2199 	/* but no others */
2200 
2201 	ASSERT((flags & PG_EXCL) == PG_EXCL);
2202 
2203 	npages = btop(bytes);
2204 
2205 	if (!kcage_on || panicstr) {
2206 		/*
2207 		 * Cage is OFF, or we are single threaded in
2208 		 * panic, so make everything a RELOC request.
2209 		 */
2210 		flags &= ~PG_NORELOC;
2211 	}
2212 
2213 	/*
2214 	 * Make sure there's adequate physical memory available.
2215 	 * Note: PG_WAIT is ignored here.
2216 	 */
2217 	if (freemem <= throttlefree + npages) {
2218 		VM_STAT_ADD(page_create_large_cnt[1]);
2219 		return (NULL);
2220 	}
2221 
2222 	/*
2223 	 * If cage is on, dampen draw from cage when available
2224 	 * cage space is low.
2225 	 */
2226 	if ((flags & (PG_NORELOC | PG_WAIT)) ==  (PG_NORELOC | PG_WAIT) &&
2227 	    kcage_freemem < kcage_throttlefree + npages) {
2228 
2229 		/*
2230 		 * The cage is on, the caller wants PG_NORELOC
2231 		 * pages and available cage memory is very low.
2232 		 * Call kcage_create_throttle() to attempt to
2233 		 * control demand on the cage.
2234 		 */
2235 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2236 			VM_STAT_ADD(page_create_large_cnt[2]);
2237 			return (NULL);
2238 		}
2239 	}
2240 
2241 	enough = 0;
2242 	pcf_index = PCF_INDEX();
2243 	p = &pcf[pcf_index];
2244 	p->pcf_touch = 1;
2245 	q = &pcf[PCF_FANOUT];
2246 	for (pcftotal = 0, i = 0; i < PCF_FANOUT; i++) {
2247 		if (p->pcf_count > npages) {
2248 			/*
2249 			 * a good one to try.
2250 			 */
2251 			mutex_enter(&p->pcf_lock);
2252 			if (p->pcf_count > npages) {
2253 				p->pcf_count -= (uint_t)npages;
2254 				/*
2255 				 * freemem is not protected by any lock.
2256 				 * Thus, we cannot have any assertion
2257 				 * containing freemem here.
2258 				 */
2259 				freemem -= npages;
2260 				enough = 1;
2261 				mutex_exit(&p->pcf_lock);
2262 				break;
2263 			}
2264 			mutex_exit(&p->pcf_lock);
2265 		}
2266 		pcftotal += p->pcf_count;
2267 		p++;
2268 		if (p >= q) {
2269 			p = pcf;
2270 		}
2271 		p->pcf_touch = 1;
2272 	}
2273 
2274 	if (!enough) {
2275 		/* If there isn't enough memory available, give up. */
2276 		if (pcftotal < npages) {
2277 			VM_STAT_ADD(page_create_large_cnt[3]);
2278 			return (NULL);
2279 		}
2280 
2281 		/* try to collect pages from several pcf bins */
2282 		for (p = pcf, pcftotal = 0, i = 0; i < PCF_FANOUT; i++) {
2283 			p->pcf_touch = 1;
2284 			mutex_enter(&p->pcf_lock);
2285 			pcftotal += p->pcf_count;
2286 			if (pcftotal >= npages) {
2287 				/*
2288 				 * Wow!  There are enough pages laying around
2289 				 * to satisfy the request.  Do the accounting,
2290 				 * drop the locks we acquired, and go back.
2291 				 *
2292 				 * freemem is not protected by any lock. So,
2293 				 * we cannot have any assertion containing
2294 				 * freemem.
2295 				 */
2296 				pgcnt_t	tpages = npages;
2297 				freemem -= npages;
2298 				while (p >= pcf) {
2299 					if (p->pcf_count <= tpages) {
2300 						tpages -= p->pcf_count;
2301 						p->pcf_count = 0;
2302 					} else {
2303 						p->pcf_count -= (uint_t)tpages;
2304 						tpages = 0;
2305 					}
2306 					mutex_exit(&p->pcf_lock);
2307 					p--;
2308 				}
2309 				ASSERT(tpages == 0);
2310 				break;
2311 			}
2312 			p++;
2313 		}
2314 		if (i == PCF_FANOUT) {
2315 			/* failed to collect pages - release the locks */
2316 			while (--p >= pcf) {
2317 				mutex_exit(&p->pcf_lock);
2318 			}
2319 			VM_STAT_ADD(page_create_large_cnt[4]);
2320 			return (NULL);
2321 		}
2322 	}
2323 
2324 	/*
2325 	 * This is where this function behaves fundamentally differently
2326 	 * than page_create_va(); since we're intending to map the page
2327 	 * with a single TTE, we have to get it as a physically contiguous
2328 	 * hardware pagesize chunk.  If we can't, we fail.
2329 	 */
2330 	if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2331 		LGRP_EXISTS(lgrp_table[*lgrpid]))
2332 		lgrp = lgrp_table[*lgrpid];
2333 	else
2334 		lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2335 
2336 	if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2337 	    bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2338 		page_create_putback(npages);
2339 		VM_STAT_ADD(page_create_large_cnt[5]);
2340 		return (NULL);
2341 	}
2342 
2343 	/*
2344 	 * if we got the page with the wrong mtype give it back this is a
2345 	 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2346 	 * inside "if" and the workaround becomes just a nop
2347 	 */
2348 	if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2349 		page_list_add_pages(rootpp, 0);
2350 		page_create_putback(npages);
2351 		VM_STAT_ADD(page_create_large_cnt[6]);
2352 		return (NULL);
2353 	}
2354 
2355 	/*
2356 	 * If satisfying this request has left us with too little
2357 	 * memory, start the wheels turning to get some back.  The
2358 	 * first clause of the test prevents waking up the pageout
2359 	 * daemon in situations where it would decide that there's
2360 	 * nothing to do.
2361 	 */
2362 	if (nscan < desscan && freemem < minfree) {
2363 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2364 		    "pageout_cv_signal:freemem %ld", freemem);
2365 		cv_signal(&proc_pageout->p_cv);
2366 	}
2367 
2368 	pp = rootpp;
2369 	while (npages--) {
2370 		ASSERT(PAGE_EXCL(pp));
2371 		ASSERT(pp->p_vnode == NULL);
2372 		ASSERT(!hat_page_is_mapped(pp));
2373 		PP_CLRFREE(pp);
2374 		PP_CLRAGED(pp);
2375 		if (!page_hashin(pp, vp, off, NULL))
2376 			panic("page_create_large: hashin failed: page %p",
2377 			    (void *)pp);
2378 		page_io_lock(pp);
2379 		off += PAGESIZE;
2380 		pp = pp->p_next;
2381 	}
2382 
2383 	VM_STAT_ADD(page_create_large_cnt[0]);
2384 	return (rootpp);
2385 }
2386 
2387 page_t *
2388 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2389     struct seg *seg, caddr_t vaddr)
2390 {
2391 	page_t		*plist = NULL;
2392 	pgcnt_t		npages;
2393 	pgcnt_t		found_on_free = 0;
2394 	pgcnt_t		pages_req;
2395 	page_t		*npp = NULL;
2396 	uint_t		enough;
2397 	uint_t		i;
2398 	uint_t		pcf_index;
2399 	struct pcf	*p;
2400 	struct pcf	*q;
2401 	lgrp_t		*lgrp;
2402 
2403 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2404 		"page_create_start:vp %p off %llx bytes %lu flags %x",
2405 		vp, off, bytes, flags);
2406 
2407 	ASSERT(bytes != 0 && vp != NULL);
2408 
2409 	if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2410 		panic("page_create: invalid flags");
2411 		/*NOTREACHED*/
2412 	}
2413 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2414 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
2415 	    /* but no others */
2416 
2417 	pages_req = npages = btopr(bytes);
2418 	/*
2419 	 * Try to see whether request is too large to *ever* be
2420 	 * satisfied, in order to prevent deadlock.  We arbitrarily
2421 	 * decide to limit maximum size requests to max_page_get.
2422 	 */
2423 	if (npages >= max_page_get) {
2424 		if ((flags & PG_WAIT) == 0) {
2425 			TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2426 			    "page_create_toobig:vp %p off %llx npages "
2427 			    "%lu max_page_get %lu",
2428 			    vp, off, npages, max_page_get);
2429 			return (NULL);
2430 		} else {
2431 			cmn_err(CE_WARN,
2432 			    "Request for too much kernel memory "
2433 			    "(%lu bytes), will hang forever", bytes);
2434 			for (;;)
2435 				delay(1000000000);
2436 		}
2437 	}
2438 
2439 	if (!kcage_on || panicstr) {
2440 		/*
2441 		 * Cage is OFF, or we are single threaded in
2442 		 * panic, so make everything a RELOC request.
2443 		 */
2444 		flags &= ~PG_NORELOC;
2445 	}
2446 
2447 	if (freemem <= throttlefree + npages)
2448 		if (!page_create_throttle(npages, flags))
2449 			return (NULL);
2450 
2451 	/*
2452 	 * If cage is on, dampen draw from cage when available
2453 	 * cage space is low.
2454 	 */
2455 	if ((flags & PG_NORELOC) &&
2456 		kcage_freemem < kcage_throttlefree + npages) {
2457 
2458 		/*
2459 		 * The cage is on, the caller wants PG_NORELOC
2460 		 * pages and available cage memory is very low.
2461 		 * Call kcage_create_throttle() to attempt to
2462 		 * control demand on the cage.
2463 		 */
2464 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2465 			return (NULL);
2466 	}
2467 
2468 	VM_STAT_ADD(page_create_cnt[0]);
2469 
2470 	enough = 0;
2471 	pcf_index = PCF_INDEX();
2472 
2473 	p = &pcf[pcf_index];
2474 	p->pcf_touch = 1;
2475 	q = &pcf[PCF_FANOUT];
2476 	for (i = 0; i < PCF_FANOUT; i++) {
2477 		if (p->pcf_count > npages) {
2478 			/*
2479 			 * a good one to try.
2480 			 */
2481 			mutex_enter(&p->pcf_lock);
2482 			if (p->pcf_count > npages) {
2483 				p->pcf_count -= (uint_t)npages;
2484 				/*
2485 				 * freemem is not protected by any lock.
2486 				 * Thus, we cannot have any assertion
2487 				 * containing freemem here.
2488 				 */
2489 				freemem -= npages;
2490 				enough = 1;
2491 				mutex_exit(&p->pcf_lock);
2492 				break;
2493 			}
2494 			mutex_exit(&p->pcf_lock);
2495 		}
2496 		p++;
2497 		if (p >= q) {
2498 			p = pcf;
2499 		}
2500 		p->pcf_touch = 1;
2501 	}
2502 
2503 	if (!enough) {
2504 		/*
2505 		 * Have to look harder.  If npages is greater than
2506 		 * one, then we might have to coalecse the counters.
2507 		 *
2508 		 * Go wait.  We come back having accounted
2509 		 * for the memory.
2510 		 */
2511 		VM_STAT_ADD(page_create_cnt[1]);
2512 		if (!page_create_wait(npages, flags)) {
2513 			VM_STAT_ADD(page_create_cnt[2]);
2514 			return (NULL);
2515 		}
2516 	}
2517 
2518 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2519 		"page_create_success:vp %p off %llx", vp, off);
2520 
2521 	/*
2522 	 * If satisfying this request has left us with too little
2523 	 * memory, start the wheels turning to get some back.  The
2524 	 * first clause of the test prevents waking up the pageout
2525 	 * daemon in situations where it would decide that there's
2526 	 * nothing to do.
2527 	 */
2528 	if (nscan < desscan && freemem < minfree) {
2529 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2530 			"pageout_cv_signal:freemem %ld", freemem);
2531 		cv_signal(&proc_pageout->p_cv);
2532 	}
2533 
2534 	/*
2535 	 * Loop around collecting the requested number of pages.
2536 	 * Most of the time, we have to `create' a new page. With
2537 	 * this in mind, pull the page off the free list before
2538 	 * getting the hash lock.  This will minimize the hash
2539 	 * lock hold time, nesting, and the like.  If it turns
2540 	 * out we don't need the page, we put it back at the end.
2541 	 */
2542 	while (npages--) {
2543 		page_t		*pp;
2544 		kmutex_t	*phm = NULL;
2545 		ulong_t		index;
2546 
2547 		index = PAGE_HASH_FUNC(vp, off);
2548 top:
2549 		ASSERT(phm == NULL);
2550 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
2551 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2552 
2553 		if (npp == NULL) {
2554 			/*
2555 			 * Try to get a page from the freelist (ie,
2556 			 * a page with no [vp, off] tag).  If that
2557 			 * fails, use the cachelist.
2558 			 *
2559 			 * During the first attempt at both the free
2560 			 * and cache lists we try for the correct color.
2561 			 */
2562 			/*
2563 			 * XXXX-how do we deal with virtual indexed
2564 			 * caches and and colors?
2565 			 */
2566 			VM_STAT_ADD(page_create_cnt[4]);
2567 			/*
2568 			 * Get lgroup to allocate next page of shared memory
2569 			 * from and use it to specify where to allocate
2570 			 * the physical memory
2571 			 */
2572 			lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2573 			npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2574 			    flags | PG_MATCH_COLOR, lgrp);
2575 			if (npp == NULL) {
2576 				npp = page_get_cachelist(vp, off, seg,
2577 				    vaddr, flags | PG_MATCH_COLOR, lgrp);
2578 				if (npp == NULL) {
2579 					npp = page_create_get_something(vp,
2580 					    off, seg, vaddr,
2581 					    flags & ~PG_MATCH_COLOR);
2582 				}
2583 
2584 				if (PP_ISAGED(npp) == 0) {
2585 					/*
2586 					 * Since this page came from the
2587 					 * cachelist, we must destroy the
2588 					 * old vnode association.
2589 					 */
2590 					page_hashout(npp, NULL);
2591 				}
2592 			}
2593 		}
2594 
2595 		/*
2596 		 * We own this page!
2597 		 */
2598 		ASSERT(PAGE_EXCL(npp));
2599 		ASSERT(npp->p_vnode == NULL);
2600 		ASSERT(!hat_page_is_mapped(npp));
2601 		PP_CLRFREE(npp);
2602 		PP_CLRAGED(npp);
2603 
2604 		/*
2605 		 * Here we have a page in our hot little mits and are
2606 		 * just waiting to stuff it on the appropriate lists.
2607 		 * Get the mutex and check to see if it really does
2608 		 * not exist.
2609 		 */
2610 		phm = PAGE_HASH_MUTEX(index);
2611 		mutex_enter(phm);
2612 		PAGE_HASH_SEARCH(index, pp, vp, off);
2613 		if (pp == NULL) {
2614 			VM_STAT_ADD(page_create_new);
2615 			pp = npp;
2616 			npp = NULL;
2617 			if (!page_hashin(pp, vp, off, phm)) {
2618 				/*
2619 				 * Since we hold the page hash mutex and
2620 				 * just searched for this page, page_hashin
2621 				 * had better not fail.  If it does, that
2622 				 * means somethread did not follow the
2623 				 * page hash mutex rules.  Panic now and
2624 				 * get it over with.  As usual, go down
2625 				 * holding all the locks.
2626 				 */
2627 				ASSERT(MUTEX_HELD(phm));
2628 				panic("page_create: "
2629 				    "hashin failed %p %p %llx %p",
2630 				    (void *)pp, (void *)vp, off, (void *)phm);
2631 				/*NOTREACHED*/
2632 			}
2633 			ASSERT(MUTEX_HELD(phm));
2634 			mutex_exit(phm);
2635 			phm = NULL;
2636 
2637 			/*
2638 			 * Hat layer locking need not be done to set
2639 			 * the following bits since the page is not hashed
2640 			 * and was on the free list (i.e., had no mappings).
2641 			 *
2642 			 * Set the reference bit to protect
2643 			 * against immediate pageout
2644 			 *
2645 			 * XXXmh modify freelist code to set reference
2646 			 * bit so we don't have to do it here.
2647 			 */
2648 			page_set_props(pp, P_REF);
2649 			found_on_free++;
2650 		} else {
2651 			VM_STAT_ADD(page_create_exists);
2652 			if (flags & PG_EXCL) {
2653 				/*
2654 				 * Found an existing page, and the caller
2655 				 * wanted all new pages.  Undo all of the work
2656 				 * we have done.
2657 				 */
2658 				mutex_exit(phm);
2659 				phm = NULL;
2660 				while (plist != NULL) {
2661 					pp = plist;
2662 					page_sub(&plist, pp);
2663 					page_io_unlock(pp);
2664 					/* large pages should not end up here */
2665 					ASSERT(pp->p_szc == 0);
2666 					/*LINTED: constant in conditional ctx*/
2667 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
2668 				}
2669 				VM_STAT_ADD(page_create_found_one);
2670 				goto fail;
2671 			}
2672 			ASSERT(flags & PG_WAIT);
2673 			if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2674 				/*
2675 				 * Start all over again if we blocked trying
2676 				 * to lock the page.
2677 				 */
2678 				mutex_exit(phm);
2679 				VM_STAT_ADD(page_create_page_lock_failed);
2680 				phm = NULL;
2681 				goto top;
2682 			}
2683 			mutex_exit(phm);
2684 			phm = NULL;
2685 
2686 			if (PP_ISFREE(pp)) {
2687 				ASSERT(PP_ISAGED(pp) == 0);
2688 				VM_STAT_ADD(pagecnt.pc_get_cache);
2689 				page_list_sub(pp, PG_CACHE_LIST);
2690 				PP_CLRFREE(pp);
2691 				found_on_free++;
2692 			}
2693 		}
2694 
2695 		/*
2696 		 * Got a page!  It is locked.  Acquire the i/o
2697 		 * lock since we are going to use the p_next and
2698 		 * p_prev fields to link the requested pages together.
2699 		 */
2700 		page_io_lock(pp);
2701 		page_add(&plist, pp);
2702 		plist = plist->p_next;
2703 		off += PAGESIZE;
2704 		vaddr += PAGESIZE;
2705 	}
2706 
2707 	ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2708 fail:
2709 	if (npp != NULL) {
2710 		/*
2711 		 * Did not need this page after all.
2712 		 * Put it back on the free list.
2713 		 */
2714 		VM_STAT_ADD(page_create_putbacks);
2715 		PP_SETFREE(npp);
2716 		PP_SETAGED(npp);
2717 		npp->p_offset = (u_offset_t)-1;
2718 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2719 		page_unlock(npp);
2720 
2721 	}
2722 
2723 	ASSERT(pages_req >= found_on_free);
2724 
2725 	{
2726 		uint_t overshoot = (uint_t)(pages_req - found_on_free);
2727 
2728 		if (overshoot) {
2729 			VM_STAT_ADD(page_create_overshoot);
2730 			p = &pcf[pcf_index];
2731 			p->pcf_touch = 1;
2732 			mutex_enter(&p->pcf_lock);
2733 			if (p->pcf_block) {
2734 				p->pcf_reserve += overshoot;
2735 			} else {
2736 				p->pcf_count += overshoot;
2737 				if (p->pcf_wait) {
2738 					mutex_enter(&new_freemem_lock);
2739 					if (freemem_wait) {
2740 						cv_signal(&freemem_cv);
2741 						p->pcf_wait--;
2742 					} else {
2743 						p->pcf_wait = 0;
2744 					}
2745 					mutex_exit(&new_freemem_lock);
2746 				}
2747 			}
2748 			mutex_exit(&p->pcf_lock);
2749 			/* freemem is approximate, so this test OK */
2750 			if (!p->pcf_block)
2751 				freemem += overshoot;
2752 		}
2753 	}
2754 
2755 	return (plist);
2756 }
2757 
2758 /*
2759  * One or more constituent pages of this large page has been marked
2760  * toxic. Simply demote the large page to PAGESIZE pages and let
2761  * page_free() handle it. This routine should only be called by
2762  * large page free routines (page_free_pages() and page_destroy_pages().
2763  * All pages are locked SE_EXCL and have already been marked free.
2764  */
2765 static void
2766 page_free_toxic_pages(page_t *rootpp)
2767 {
2768 	page_t	*tpp;
2769 	pgcnt_t	i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2770 	uint_t	szc = rootpp->p_szc;
2771 
2772 	for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2773 		ASSERT(tpp->p_szc == szc);
2774 		ASSERT((PAGE_EXCL(tpp) &&
2775 		    !page_iolock_assert(tpp)) || panicstr);
2776 		tpp->p_szc = 0;
2777 	}
2778 
2779 	while (rootpp != NULL) {
2780 		tpp = rootpp;
2781 		page_sub(&rootpp, tpp);
2782 		ASSERT(PP_ISFREE(tpp));
2783 		PP_CLRFREE(tpp);
2784 		page_free(tpp, 1);
2785 	}
2786 }
2787 
2788 /*
2789  * Put page on the "free" list.
2790  * The free list is really two lists maintained by
2791  * the PSM of whatever machine we happen to be on.
2792  */
2793 void
2794 page_free(page_t *pp, int dontneed)
2795 {
2796 	struct pcf	*p;
2797 	uint_t		pcf_index;
2798 
2799 	ASSERT((PAGE_EXCL(pp) &&
2800 	    !page_iolock_assert(pp)) || panicstr);
2801 
2802 	if (page_deteriorating(pp)) {
2803 		volatile int i = 0;
2804 		char *kaddr;
2805 		volatile int rb, wb;
2806 		uint64_t pa;
2807 		volatile int ue = 0;
2808 		on_trap_data_t otd;
2809 
2810 		if (pp->p_vnode != NULL) {
2811 			/*
2812 			 * Let page_destroy() do its bean counting and
2813 			 * hash out the page; it will then call back
2814 			 * into page_free() with pp->p_vnode == NULL.
2815 			 */
2816 			page_destroy(pp, 0);
2817 			return;
2818 		}
2819 
2820 		if (page_isfailing(pp)) {
2821 			/*
2822 			 * If we have already exceeded the limit for
2823 			 * pages retired, we will treat this page as
2824 			 * 'toxic' rather than failing. That will ensure
2825 			 * that the page is at least cleaned, and if
2826 			 * a UE is detected, the page will be retired
2827 			 * anyway.
2828 			 */
2829 			if (pages_retired_limit_exceeded()) {
2830 				/*
2831 				 * clear the flag and reset to toxic
2832 				 */
2833 				page_clrtoxic(pp);
2834 				page_settoxic(pp, PAGE_IS_TOXIC);
2835 			} else {
2836 				pa = ptob((uint64_t)page_pptonum(pp));
2837 				if (page_retire_messages) {
2838 					cmn_err(CE_NOTE, "Page 0x%08x.%08x "
2839 					    "removed from service",
2840 					    (uint32_t)(pa >> 32), (uint32_t)pa);
2841 				}
2842 				goto page_failed;
2843 			}
2844 		}
2845 
2846 		pagescrub(pp, 0, PAGESIZE);
2847 
2848 		/*
2849 		 * We want to determine whether the error that occurred on
2850 		 * this page is transient or persistent, so we get a mapping
2851 		 * to the page and try every possible bit pattern to compare
2852 		 * what we write with what we read back.  A smaller number
2853 		 * of bit patterns might suffice, but there's no point in
2854 		 * getting fancy.  If this is the hot path on your system,
2855 		 * you've got bigger problems.
2856 		 */
2857 		kaddr = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1);
2858 		for (wb = 0xff; wb >= 0; wb--) {
2859 			if (on_trap(&otd, OT_DATA_EC)) {
2860 				pa = ptob((uint64_t)page_pptonum(pp)) + i;
2861 				page_settoxic(pp, PAGE_IS_FAILING);
2862 
2863 				if (page_retire_messages) {
2864 					cmn_err(CE_WARN, "Uncorrectable Error "
2865 					    "occurred at PA 0x%08x.%08x while "
2866 					    "attempting to clear previously "
2867 					    "reported error; page removed from "
2868 					    "service", (uint32_t)(pa >> 32),
2869 					    (uint32_t)pa);
2870 				}
2871 
2872 				ue++;
2873 				break;
2874 			}
2875 
2876 			/*
2877 			 * Write out the bit pattern, flush it to memory, and
2878 			 * read it back while under on_trap() protection.
2879 			 */
2880 			for (i = 0; i < PAGESIZE; i++)
2881 				kaddr[i] = wb;
2882 
2883 			sync_data_memory(kaddr, PAGESIZE);
2884 
2885 			for (i = 0; i < PAGESIZE; i++) {
2886 				if ((rb = (uchar_t)kaddr[i]) != wb) {
2887 					page_settoxic(pp, PAGE_IS_FAILING);
2888 					goto out;
2889 				}
2890 			}
2891 		}
2892 out:
2893 		no_trap();
2894 		ppmapout(kaddr);
2895 
2896 		if (wb >= 0 && !ue) {
2897 			pa = ptob((uint64_t)page_pptonum(pp)) + i;
2898 			if (page_retire_messages) {
2899 				cmn_err(CE_WARN, "Data Mismatch occurred at PA "
2900 				    "0x%08x.%08x [ 0x%x != 0x%x ] while "
2901 				    "attempting to clear previously reported "
2902 				    "error; page removed from service",
2903 				    (uint32_t)(pa >> 32), (uint32_t)pa, rb, wb);
2904 			}
2905 		}
2906 page_failed:
2907 		/*
2908 		 * DR operations change the association between a page_t
2909 		 * and the physical page it represents. Check if the
2910 		 * page is still bad. If it is, then retire it.
2911 		 */
2912 		if (page_isfaulty(pp) && page_isfailing(pp)) {
2913 			/*
2914 			 * In the future, it might be useful to have a platform
2915 			 * callback here to tell the hardware to fence off this
2916 			 * page during the next reboot.
2917 			 *
2918 			 * We move the page to the retired_vnode here
2919 			 */
2920 			(void) page_hashin(pp, &retired_ppages,
2921 			    (u_offset_t)ptob((uint64_t)page_pptonum(pp)), NULL);
2922 			mutex_enter(&freemem_lock);
2923 			availrmem--;
2924 			mutex_exit(&freemem_lock);
2925 			page_retired(pp);
2926 			page_downgrade(pp);
2927 
2928 			/*
2929 			 * If DR raced with the above page retirement code,
2930 			 * we might have retired a good page. If so, unretire
2931 			 * the page.
2932 			 */
2933 			if (!page_isfaulty(pp))
2934 				page_unretire_pages();
2935 			return;
2936 		}
2937 
2938 		pa = ptob((uint64_t)page_pptonum(pp));
2939 
2940 		if (page_retire_messages) {
2941 			cmn_err(CE_NOTE, "Previously reported error on page "
2942 			    "0x%08x.%08x cleared", (uint32_t)(pa >> 32),
2943 			    (uint32_t)pa);
2944 		}
2945 
2946 		page_clrtoxic(pp);
2947 	}
2948 
2949 	if (PP_ISFREE(pp)) {
2950 		panic("page_free: page %p is free", (void *)pp);
2951 	}
2952 
2953 	if (pp->p_szc != 0) {
2954 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2955 		    pp->p_vnode == &kvp) {
2956 			panic("page_free: anon or kernel "
2957 			    "or no vnode large page %p", (void *)pp);
2958 		}
2959 		page_demote_vp_pages(pp);
2960 		ASSERT(pp->p_szc == 0);
2961 	}
2962 
2963 	/*
2964 	 * The page_struct_lock need not be acquired to examine these
2965 	 * fields since the page has an "exclusive" lock.
2966 	 */
2967 	if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
2968 		panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d",
2969 		    pp, page_pptonum(pp), pp->p_lckcnt, pp->p_cowcnt);
2970 		/*NOTREACHED*/
2971 	}
2972 
2973 	ASSERT(!hat_page_getshare(pp));
2974 
2975 	PP_SETFREE(pp);
2976 	ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2977 	    !hat_ismod(pp));
2978 	page_clr_all_props(pp);
2979 	ASSERT(!hat_page_getshare(pp));
2980 
2981 	/*
2982 	 * Now we add the page to the head of the free list.
2983 	 * But if this page is associated with a paged vnode
2984 	 * then we adjust the head forward so that the page is
2985 	 * effectively at the end of the list.
2986 	 */
2987 	if (pp->p_vnode == NULL) {
2988 		/*
2989 		 * Page has no identity, put it on the free list.
2990 		 */
2991 		PP_SETAGED(pp);
2992 		pp->p_offset = (u_offset_t)-1;
2993 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2994 		VM_STAT_ADD(pagecnt.pc_free_free);
2995 		TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2996 		    "page_free_free:pp %p", pp);
2997 	} else {
2998 		PP_CLRAGED(pp);
2999 
3000 		if (!dontneed || nopageage) {
3001 			/* move it to the tail of the list */
3002 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
3003 
3004 			VM_STAT_ADD(pagecnt.pc_free_cache);
3005 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
3006 			    "page_free_cache_tail:pp %p", pp);
3007 		} else {
3008 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
3009 
3010 			VM_STAT_ADD(pagecnt.pc_free_dontneed);
3011 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
3012 			    "page_free_cache_head:pp %p", pp);
3013 		}
3014 	}
3015 	page_unlock(pp);
3016 
3017 	/*
3018 	 * Now do the `freemem' accounting.
3019 	 */
3020 	pcf_index = PCF_INDEX();
3021 	p = &pcf[pcf_index];
3022 	p->pcf_touch = 1;
3023 
3024 	mutex_enter(&p->pcf_lock);
3025 	if (p->pcf_block) {
3026 		p->pcf_reserve += 1;
3027 	} else {
3028 		p->pcf_count += 1;
3029 		if (p->pcf_wait) {
3030 			mutex_enter(&new_freemem_lock);
3031 			/*
3032 			 * Check to see if some other thread
3033 			 * is actually waiting.  Another bucket
3034 			 * may have woken it up by now.  If there
3035 			 * are no waiters, then set our pcf_wait
3036 			 * count to zero to avoid coming in here
3037 			 * next time.  Also, since only one page
3038 			 * was put on the free list, just wake
3039 			 * up one waiter.
3040 			 */
3041 			if (freemem_wait) {
3042 				cv_signal(&freemem_cv);
3043 				p->pcf_wait--;
3044 			} else {
3045 				p->pcf_wait = 0;
3046 			}
3047 			mutex_exit(&new_freemem_lock);
3048 		}
3049 	}
3050 	mutex_exit(&p->pcf_lock);
3051 
3052 	/* freemem is approximate, so this test OK */
3053 	if (!p->pcf_block)
3054 		freemem += 1;
3055 }
3056 
3057 /*
3058  * Put page on the "free" list during intial startup.
3059  * This happens during initial single threaded execution.
3060  */
3061 void
3062 page_free_at_startup(page_t *pp)
3063 {
3064 	struct pcf	*p;
3065 	uint_t		pcf_index;
3066 
3067 	page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
3068 	VM_STAT_ADD(pagecnt.pc_free_free);
3069 
3070 	/*
3071 	 * Now do the `freemem' accounting.
3072 	 */
3073 	pcf_index = PCF_INDEX();
3074 	p = &pcf[pcf_index];
3075 	p->pcf_touch = 1;
3076 
3077 	ASSERT(p->pcf_block == 0);
3078 	ASSERT(p->pcf_wait == 0);
3079 	p->pcf_count += 1;
3080 
3081 	/* freemem is approximate, so this is OK */
3082 	freemem += 1;
3083 }
3084 
3085 void
3086 page_free_pages(page_t *pp)
3087 {
3088 	page_t	*tpp, *rootpp = NULL;
3089 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
3090 	pgcnt_t	i;
3091 	uint_t	szc = pp->p_szc;
3092 	int	toxic = 0;
3093 
3094 	VM_STAT_ADD(pagecnt.pc_free_pages);
3095 	TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
3096 	    "page_free_free:pp %p", pp);
3097 
3098 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3099 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3100 		panic("page_free_pages: not root page %p", (void *)pp);
3101 		/*NOTREACHED*/
3102 	}
3103 
3104 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp = page_next(tpp)) {
3105 		ASSERT((PAGE_EXCL(tpp) &&
3106 		    !page_iolock_assert(tpp)) || panicstr);
3107 		if (PP_ISFREE(tpp)) {
3108 			panic("page_free_pages: page %p is free", (void *)tpp);
3109 			/*NOTREACHED*/
3110 		}
3111 		if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
3112 		    tpp->p_cowcnt != 0) {
3113 			panic("page_free_pages %p", (void *)tpp);
3114 			/*NOTREACHED*/
3115 		}
3116 
3117 		ASSERT(!hat_page_getshare(tpp));
3118 		ASSERT(tpp->p_vnode == NULL);
3119 		ASSERT(tpp->p_szc == szc);
3120 
3121 		if (page_deteriorating(tpp))
3122 			toxic = 1;
3123 
3124 		PP_SETFREE(tpp);
3125 		page_clr_all_props(tpp);
3126 		PP_SETAGED(tpp);
3127 		tpp->p_offset = (u_offset_t)-1;
3128 		ASSERT(tpp->p_next == tpp);
3129 		ASSERT(tpp->p_prev == tpp);
3130 		page_list_concat(&rootpp, &tpp);
3131 	}
3132 	ASSERT(rootpp == pp);
3133 
3134 	if (toxic) {
3135 		page_free_toxic_pages(rootpp);
3136 		return;
3137 	}
3138 	page_list_add_pages(rootpp, 0);
3139 	page_create_putback(pgcnt);
3140 }
3141 
3142 int free_pages = 1;
3143 
3144 /*
3145  * This routine attempts to return pages to the cachelist via page_release().
3146  * It does not *have* to be successful in all cases, since the pageout scanner
3147  * will catch any pages it misses.  It does need to be fast and not introduce
3148  * too much overhead.
3149  *
3150  * If a page isn't found on the unlocked sweep of the page_hash bucket, we
3151  * don't lock and retry.  This is ok, since the page scanner will eventually
3152  * find any page we miss in free_vp_pages().
3153  */
3154 void
3155 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
3156 {
3157 	page_t *pp;
3158 	u_offset_t eoff;
3159 	extern int swap_in_range(vnode_t *, u_offset_t, size_t);
3160 
3161 	eoff = off + len;
3162 
3163 	if (free_pages == 0)
3164 		return;
3165 	if (swap_in_range(vp, off, len))
3166 		return;
3167 
3168 	for (; off < eoff; off += PAGESIZE) {
3169 
3170 		/*
3171 		 * find the page using a fast, but inexact search. It'll be OK
3172 		 * if a few pages slip through the cracks here.
3173 		 */
3174 		pp = page_exists(vp, off);
3175 
3176 		/*
3177 		 * If we didn't find the page (it may not exist), the page
3178 		 * is free, looks still in use (shared), or we can't lock it,
3179 		 * just give up.
3180 		 */
3181 		if (pp == NULL ||
3182 		    PP_ISFREE(pp) ||
3183 		    page_share_cnt(pp) > 0 ||
3184 		    !page_trylock(pp, SE_EXCL))
3185 			continue;
3186 
3187 		/*
3188 		 * Once we have locked pp, verify that it's still the
3189 		 * correct page and not already free
3190 		 */
3191 		ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
3192 		if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
3193 			page_unlock(pp);
3194 			continue;
3195 		}
3196 
3197 		/*
3198 		 * try to release the page...
3199 		 */
3200 		(void) page_release(pp, 1);
3201 	}
3202 }
3203 
3204 /*
3205  * Reclaim the given page from the free list.
3206  * Returns 1 on success or 0 on failure.
3207  *
3208  * The page is unlocked if it can't be reclaimed (when freemem == 0).
3209  * If `lock' is non-null, it will be dropped and re-acquired if
3210  * the routine must wait while freemem is 0.
3211  *
3212  * As it turns out, boot_getpages() does this.  It picks a page,
3213  * based on where OBP mapped in some address, gets its pfn, searches
3214  * the memsegs, locks the page, then pulls it off the free list!
3215  */
3216 int
3217 page_reclaim(page_t *pp, kmutex_t *lock)
3218 {
3219 	struct pcf	*p;
3220 	uint_t		pcf_index;
3221 	struct cpu	*cpup;
3222 	int		enough;
3223 	uint_t		i;
3224 
3225 	ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
3226 	ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
3227 	ASSERT(pp->p_szc == 0);
3228 
3229 	/*
3230 	 * If `freemem' is 0, we cannot reclaim this page from the
3231 	 * freelist, so release every lock we might hold: the page,
3232 	 * and the `lock' before blocking.
3233 	 *
3234 	 * The only way `freemem' can become 0 while there are pages
3235 	 * marked free (have their p->p_free bit set) is when the
3236 	 * system is low on memory and doing a page_create().  In
3237 	 * order to guarantee that once page_create() starts acquiring
3238 	 * pages it will be able to get all that it needs since `freemem'
3239 	 * was decreased by the requested amount.  So, we need to release
3240 	 * this page, and let page_create() have it.
3241 	 *
3242 	 * Since `freemem' being zero is not supposed to happen, just
3243 	 * use the usual hash stuff as a starting point.  If that bucket
3244 	 * is empty, then assume the worst, and start at the beginning
3245 	 * of the pcf array.  If we always start at the beginning
3246 	 * when acquiring more than one pcf lock, there won't be any
3247 	 * deadlock problems.
3248 	 */
3249 
3250 	/* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
3251 
3252 	if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
3253 		pcf_acquire_all();
3254 		goto page_reclaim_nomem;
3255 	}
3256 
3257 	enough = 0;
3258 	pcf_index = PCF_INDEX();
3259 	p = &pcf[pcf_index];
3260 	p->pcf_touch = 1;
3261 	mutex_enter(&p->pcf_lock);
3262 	if (p->pcf_count >= 1) {
3263 		enough = 1;
3264 		p->pcf_count--;
3265 	}
3266 	mutex_exit(&p->pcf_lock);
3267 
3268 	if (!enough) {
3269 		VM_STAT_ADD(page_reclaim_zero);
3270 		/*
3271 		 * Check again. Its possible that some other thread
3272 		 * could have been right behind us, and added one
3273 		 * to a list somewhere.  Acquire each of the pcf locks
3274 		 * until we find a page.
3275 		 */
3276 		p = pcf;
3277 		for (i = 0; i < PCF_FANOUT; i++) {
3278 			p->pcf_touch = 1;
3279 			mutex_enter(&p->pcf_lock);
3280 			if (p->pcf_count >= 1) {
3281 				p->pcf_count -= 1;
3282 				enough = 1;
3283 				break;
3284 			}
3285 			p++;
3286 		}
3287 
3288 		if (!enough) {
3289 page_reclaim_nomem:
3290 			/*
3291 			 * We really can't have page `pp'.
3292 			 * Time for the no-memory dance with
3293 			 * page_free().  This is just like
3294 			 * page_create_wait().  Plus the added
3295 			 * attraction of releasing whatever mutex
3296 			 * we held when we were called with in `lock'.
3297 			 * Page_unlock() will wakeup any thread
3298 			 * waiting around for this page.
3299 			 */
3300 			if (lock) {
3301 				VM_STAT_ADD(page_reclaim_zero_locked);
3302 				mutex_exit(lock);
3303 			}
3304 			page_unlock(pp);
3305 
3306 			/*
3307 			 * get this before we drop all the pcf locks.
3308 			 */
3309 			mutex_enter(&new_freemem_lock);
3310 
3311 			p = pcf;
3312 			for (i = 0; i < PCF_FANOUT; i++) {
3313 				p->pcf_wait++;
3314 				mutex_exit(&p->pcf_lock);
3315 				p++;
3316 			}
3317 
3318 			freemem_wait++;
3319 			cv_wait(&freemem_cv, &new_freemem_lock);
3320 			freemem_wait--;
3321 
3322 			mutex_exit(&new_freemem_lock);
3323 
3324 			if (lock) {
3325 				mutex_enter(lock);
3326 			}
3327 			return (0);
3328 		}
3329 
3330 		/*
3331 		 * There was a page to be found.
3332 		 * The pcf accounting has been done,
3333 		 * though none of the pcf_wait flags have been set,
3334 		 * drop the locks and continue on.
3335 		 */
3336 		while (p >= pcf) {
3337 			mutex_exit(&p->pcf_lock);
3338 			p--;
3339 		}
3340 	}
3341 
3342 	/*
3343 	 * freemem is not protected by any lock. Thus, we cannot
3344 	 * have any assertion containing freemem here.
3345 	 */
3346 	freemem -= 1;
3347 
3348 	VM_STAT_ADD(pagecnt.pc_reclaim);
3349 	if (PP_ISAGED(pp)) {
3350 		page_list_sub(pp, PG_FREE_LIST);
3351 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3352 		    "page_reclaim_free:pp %p", pp);
3353 	} else {
3354 		page_list_sub(pp, PG_CACHE_LIST);
3355 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3356 		    "page_reclaim_cache:pp %p", pp);
3357 	}
3358 
3359 	/*
3360 	 * clear the p_free & p_age bits since this page is no longer
3361 	 * on the free list.  Notice that there was a brief time where
3362 	 * a page is marked as free, but is not on the list.
3363 	 *
3364 	 * Set the reference bit to protect against immediate pageout.
3365 	 */
3366 	PP_CLRFREE(pp);
3367 	PP_CLRAGED(pp);
3368 	page_set_props(pp, P_REF);
3369 
3370 	CPU_STATS_ENTER_K();
3371 	cpup = CPU;	/* get cpup now that CPU cannot change */
3372 	CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3373 	CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3374 	CPU_STATS_EXIT_K();
3375 
3376 	return (1);
3377 }
3378 
3379 
3380 
3381 /*
3382  * Destroy identity of the page and put it back on
3383  * the page free list.  Assumes that the caller has
3384  * acquired the "exclusive" lock on the page.
3385  */
3386 void
3387 page_destroy(page_t *pp, int dontfree)
3388 {
3389 	ASSERT((PAGE_EXCL(pp) &&
3390 	    !page_iolock_assert(pp)) || panicstr);
3391 
3392 	if (pp->p_szc != 0) {
3393 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3394 		    pp->p_vnode == &kvp) {
3395 			panic("page_destroy: anon or kernel or no vnode "
3396 			    "large page %p", (void *)pp);
3397 		}
3398 		page_demote_vp_pages(pp);
3399 		ASSERT(pp->p_szc == 0);
3400 	}
3401 
3402 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3403 
3404 	/*
3405 	 * Unload translations, if any, then hash out the
3406 	 * page to erase its identity.
3407 	 */
3408 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3409 	page_hashout(pp, NULL);
3410 
3411 	if (!dontfree) {
3412 		/*
3413 		 * Acquire the "freemem_lock" for availrmem.
3414 		 * The page_struct_lock need not be acquired for lckcnt
3415 		 * and cowcnt since the page has an "exclusive" lock.
3416 		 */
3417 		if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3418 			mutex_enter(&freemem_lock);
3419 			if (pp->p_lckcnt != 0) {
3420 				availrmem++;
3421 				pp->p_lckcnt = 0;
3422 			}
3423 			if (pp->p_cowcnt != 0) {
3424 				availrmem += pp->p_cowcnt;
3425 				pp->p_cowcnt = 0;
3426 			}
3427 			mutex_exit(&freemem_lock);
3428 		}
3429 		/*
3430 		 * Put the page on the "free" list.
3431 		 */
3432 		page_free(pp, 0);
3433 	}
3434 }
3435 
3436 void
3437 page_destroy_pages(page_t *pp)
3438 {
3439 
3440 	page_t	*tpp, *rootpp = NULL;
3441 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
3442 	pgcnt_t	i, pglcks = 0;
3443 	uint_t	szc = pp->p_szc;
3444 	int	toxic = 0;
3445 
3446 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3447 
3448 	VM_STAT_ADD(pagecnt.pc_destroy_pages);
3449 
3450 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3451 
3452 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3453 		panic("page_destroy_pages: not root page %p", (void *)pp);
3454 		/*NOTREACHED*/
3455 	}
3456 
3457 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp = page_next(tpp)) {
3458 		ASSERT((PAGE_EXCL(tpp) &&
3459 		    !page_iolock_assert(tpp)) || panicstr);
3460 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3461 		page_hashout(tpp, NULL);
3462 		ASSERT(tpp->p_offset == (u_offset_t)-1);
3463 		if (tpp->p_lckcnt != 0) {
3464 			pglcks++;
3465 			tpp->p_lckcnt = 0;
3466 		} else if (tpp->p_cowcnt != 0) {
3467 			pglcks += tpp->p_cowcnt;
3468 			tpp->p_cowcnt = 0;
3469 		}
3470 		ASSERT(!hat_page_getshare(tpp));
3471 		ASSERT(tpp->p_vnode == NULL);
3472 		ASSERT(tpp->p_szc == szc);
3473 
3474 		if (page_deteriorating(tpp))
3475 			toxic = 1;
3476 
3477 		PP_SETFREE(tpp);
3478 		page_clr_all_props(tpp);
3479 		PP_SETAGED(tpp);
3480 		ASSERT(tpp->p_next == tpp);
3481 		ASSERT(tpp->p_prev == tpp);
3482 		page_list_concat(&rootpp, &tpp);
3483 	}
3484 
3485 	ASSERT(rootpp == pp);
3486 	if (pglcks != 0) {
3487 		mutex_enter(&freemem_lock);
3488 		availrmem += pglcks;
3489 		mutex_exit(&freemem_lock);
3490 	}
3491 
3492 	if (toxic) {
3493 		page_free_toxic_pages(rootpp);
3494 		return;
3495 	}
3496 	page_list_add_pages(rootpp, 0);
3497 	page_create_putback(pgcnt);
3498 }
3499 
3500 /*
3501  * Similar to page_destroy(), but destroys pages which are
3502  * locked and known to be on the page free list.  Since
3503  * the page is known to be free and locked, no one can access
3504  * it.
3505  *
3506  * Also, the number of free pages does not change.
3507  */
3508 void
3509 page_destroy_free(page_t *pp)
3510 {
3511 	ASSERT(PAGE_EXCL(pp));
3512 	ASSERT(PP_ISFREE(pp));
3513 	ASSERT(pp->p_vnode);
3514 	ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3515 	ASSERT(!hat_page_is_mapped(pp));
3516 	ASSERT(PP_ISAGED(pp) == 0);
3517 	ASSERT(pp->p_szc == 0);
3518 
3519 	VM_STAT_ADD(pagecnt.pc_destroy_free);
3520 	page_list_sub(pp, PG_CACHE_LIST);
3521 
3522 	page_hashout(pp, NULL);
3523 	ASSERT(pp->p_vnode == NULL);
3524 	ASSERT(pp->p_offset == (u_offset_t)-1);
3525 	ASSERT(pp->p_hash == NULL);
3526 
3527 	PP_SETAGED(pp);
3528 	page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3529 	page_unlock(pp);
3530 
3531 	mutex_enter(&new_freemem_lock);
3532 	if (freemem_wait) {
3533 		cv_signal(&freemem_cv);
3534 	}
3535 	mutex_exit(&new_freemem_lock);
3536 }
3537 
3538 /*
3539  * Rename the page "opp" to have an identity specified
3540  * by [vp, off].  If a page already exists with this name
3541  * it is locked and destroyed.  Note that the page's
3542  * translations are not unloaded during the rename.
3543  *
3544  * This routine is used by the anon layer to "steal" the
3545  * original page and is not unlike destroying a page and
3546  * creating a new page using the same page frame.
3547  *
3548  * XXX -- Could deadlock if caller 1 tries to rename A to B while
3549  * caller 2 tries to rename B to A.
3550  */
3551 void
3552 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3553 {
3554 	page_t		*pp;
3555 	int		olckcnt = 0;
3556 	int		ocowcnt = 0;
3557 	kmutex_t	*phm;
3558 	ulong_t		index;
3559 
3560 	ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3561 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3562 	ASSERT(PP_ISFREE(opp) == 0);
3563 
3564 	VM_STAT_ADD(page_rename_count);
3565 
3566 	TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3567 		"page rename:pp %p vp %p off %llx", opp, vp, off);
3568 
3569 	/*
3570 	 * CacheFS may call page_rename for a large NFS page
3571 	 * when both CacheFS and NFS mount points are used
3572 	 * by applications. Demote this large page before
3573 	 * renaming it, to ensure that there are no "partial"
3574 	 * large pages left lying around.
3575 	 */
3576 	if (opp->p_szc != 0) {
3577 		vnode_t *ovp = opp->p_vnode;
3578 		ASSERT(ovp != NULL);
3579 		ASSERT(!IS_SWAPFSVP(ovp));
3580 		ASSERT(ovp != &kvp);
3581 		page_demote_vp_pages(opp);
3582 		ASSERT(opp->p_szc == 0);
3583 	}
3584 
3585 	page_hashout(opp, NULL);
3586 	PP_CLRAGED(opp);
3587 
3588 	/*
3589 	 * Acquire the appropriate page hash lock, since
3590 	 * we're going to rename the page.
3591 	 */
3592 	index = PAGE_HASH_FUNC(vp, off);
3593 	phm = PAGE_HASH_MUTEX(index);
3594 	mutex_enter(phm);
3595 top:
3596 	/*
3597 	 * Look for an existing page with this name and destroy it if found.
3598 	 * By holding the page hash lock all the way to the page_hashin()
3599 	 * call, we are assured that no page can be created with this
3600 	 * identity.  In the case when the phm lock is dropped to undo any
3601 	 * hat layer mappings, the existing page is held with an "exclusive"
3602 	 * lock, again preventing another page from being created with
3603 	 * this identity.
3604 	 */
3605 	PAGE_HASH_SEARCH(index, pp, vp, off);
3606 	if (pp != NULL) {
3607 		VM_STAT_ADD(page_rename_exists);
3608 
3609 		/*
3610 		 * As it turns out, this is one of only two places where
3611 		 * page_lock() needs to hold the passed in lock in the
3612 		 * successful case.  In all of the others, the lock could
3613 		 * be dropped as soon as the attempt is made to lock
3614 		 * the page.  It is tempting to add yet another arguement,
3615 		 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3616 		 */
3617 		if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3618 			/*
3619 			 * Went to sleep because the page could not
3620 			 * be locked.  We were woken up when the page
3621 			 * was unlocked, or when the page was destroyed.
3622 			 * In either case, `phm' was dropped while we
3623 			 * slept.  Hence we should not just roar through
3624 			 * this loop.
3625 			 */
3626 			goto top;
3627 		}
3628 
3629 		/*
3630 		 * If an existing page is a large page, then demote
3631 		 * it to ensure that no "partial" large pages are
3632 		 * "created" after page_rename. An existing page
3633 		 * can be a CacheFS page, and can't belong to swapfs.
3634 		 */
3635 		if (hat_page_is_mapped(pp)) {
3636 			/*
3637 			 * Unload translations.  Since we hold the
3638 			 * exclusive lock on this page, the page
3639 			 * can not be changed while we drop phm.
3640 			 * This is also not a lock protocol violation,
3641 			 * but rather the proper way to do things.
3642 			 */
3643 			mutex_exit(phm);
3644 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3645 			if (pp->p_szc != 0) {
3646 				ASSERT(!IS_SWAPFSVP(vp));
3647 				ASSERT(vp != &kvp);
3648 				page_demote_vp_pages(pp);
3649 				ASSERT(pp->p_szc == 0);
3650 			}
3651 			mutex_enter(phm);
3652 		} else if (pp->p_szc != 0) {
3653 			ASSERT(!IS_SWAPFSVP(vp));
3654 			ASSERT(vp != &kvp);
3655 			mutex_exit(phm);
3656 			page_demote_vp_pages(pp);
3657 			ASSERT(pp->p_szc == 0);
3658 			mutex_enter(phm);
3659 		}
3660 		page_hashout(pp, phm);
3661 	}
3662 	/*
3663 	 * Hash in the page with the new identity.
3664 	 */
3665 	if (!page_hashin(opp, vp, off, phm)) {
3666 		/*
3667 		 * We were holding phm while we searched for [vp, off]
3668 		 * and only dropped phm if we found and locked a page.
3669 		 * If we can't create this page now, then some thing
3670 		 * is really broken.
3671 		 */
3672 		panic("page_rename: Can't hash in page: %p", (void *)pp);
3673 		/*NOTREACHED*/
3674 	}
3675 
3676 	ASSERT(MUTEX_HELD(phm));
3677 	mutex_exit(phm);
3678 
3679 	/*
3680 	 * Now that we have dropped phm, lets get around to finishing up
3681 	 * with pp.
3682 	 */
3683 	if (pp != NULL) {
3684 		ASSERT(!hat_page_is_mapped(pp));
3685 		/* for now large pages should not end up here */
3686 		ASSERT(pp->p_szc == 0);
3687 		/*
3688 		 * Save the locks for transfer to the new page and then
3689 		 * clear them so page_free doesn't think they're important.
3690 		 * The page_struct_lock need not be acquired for lckcnt and
3691 		 * cowcnt since the page has an "exclusive" lock.
3692 		 */
3693 		olckcnt = pp->p_lckcnt;
3694 		ocowcnt = pp->p_cowcnt;
3695 		pp->p_lckcnt = pp->p_cowcnt = 0;
3696 
3697 		/*
3698 		 * Put the page on the "free" list after we drop
3699 		 * the lock.  The less work under the lock the better.
3700 		 */
3701 		/*LINTED: constant in conditional context*/
3702 		VN_DISPOSE(pp, B_FREE, 0, kcred);
3703 	}
3704 
3705 	/*
3706 	 * Transfer the lock count from the old page (if any).
3707 	 * The page_struct_lock need not be acquired for lckcnt and
3708 	 * cowcnt since the page has an "exclusive" lock.
3709 	 */
3710 	opp->p_lckcnt += olckcnt;
3711 	opp->p_cowcnt += ocowcnt;
3712 }
3713 
3714 /*
3715  * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3716  *
3717  * Pages are normally inserted at the start of a vnode's v_pages list.
3718  * If the vnode is VMODSORT and the page is modified, it goes at the end.
3719  * This can happen when a modified page is relocated for DR.
3720  *
3721  * Returns 1 on success and 0 on failure.
3722  */
3723 static int
3724 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3725 {
3726 	page_t		**listp;
3727 	page_t		*tp;
3728 	ulong_t		index;
3729 
3730 	ASSERT(PAGE_EXCL(pp));
3731 	ASSERT(vp != NULL);
3732 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3733 
3734 	/*
3735 	 * Be sure to set these up before the page is inserted on the hash
3736 	 * list.  As soon as the page is placed on the list some other
3737 	 * thread might get confused and wonder how this page could
3738 	 * possibly hash to this list.
3739 	 */
3740 	pp->p_vnode = vp;
3741 	pp->p_offset = offset;
3742 
3743 	/*
3744 	 * record if this page is on a swap vnode
3745 	 */
3746 	if ((vp->v_flag & VISSWAP) != 0)
3747 		PP_SETSWAP(pp);
3748 
3749 	index = PAGE_HASH_FUNC(vp, offset);
3750 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3751 	listp = &page_hash[index];
3752 
3753 	/*
3754 	 * If this page is already hashed in, fail this attempt to add it.
3755 	 */
3756 	for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3757 		if (tp->p_vnode == vp && tp->p_offset == offset) {
3758 			pp->p_vnode = NULL;
3759 			pp->p_offset = (u_offset_t)(-1);
3760 			return (0);
3761 		}
3762 	}
3763 	pp->p_hash = *listp;
3764 	*listp = pp;
3765 
3766 	/*
3767 	 * Add the page to the vnode's list of pages
3768 	 */
3769 	if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3770 		listp = &vp->v_pages->p_vpprev->p_vpnext;
3771 	else
3772 		listp = &vp->v_pages;
3773 
3774 	page_vpadd(listp, pp);
3775 
3776 	return (1);
3777 }
3778 
3779 /*
3780  * Add page `pp' to both the hash and vp chains for [vp, offset].
3781  *
3782  * Returns 1 on success and 0 on failure.
3783  * If hold is passed in, it is not dropped.
3784  */
3785 int
3786 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3787 {
3788 	kmutex_t	*phm = NULL;
3789 	kmutex_t	*vphm;
3790 	int		rc;
3791 
3792 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3793 
3794 	TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3795 		"page_hashin:pp %p vp %p offset %llx",
3796 		pp, vp, offset);
3797 
3798 	VM_STAT_ADD(hashin_count);
3799 
3800 	if (hold != NULL)
3801 		phm = hold;
3802 	else {
3803 		VM_STAT_ADD(hashin_not_held);
3804 		phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3805 		mutex_enter(phm);
3806 	}
3807 
3808 	vphm = page_vnode_mutex(vp);
3809 	mutex_enter(vphm);
3810 	rc = page_do_hashin(pp, vp, offset);
3811 	mutex_exit(vphm);
3812 	if (hold == NULL)
3813 		mutex_exit(phm);
3814 	if (rc == 0)
3815 		VM_STAT_ADD(hashin_already);
3816 	return (rc);
3817 }
3818 
3819 /*
3820  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3821  * All mutexes must be held
3822  */
3823 static void
3824 page_do_hashout(page_t *pp)
3825 {
3826 	page_t	**hpp;
3827 	page_t	*hp;
3828 	vnode_t	*vp = pp->p_vnode;
3829 
3830 	ASSERT(vp != NULL);
3831 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3832 
3833 	/*
3834 	 * First, take pp off of its hash chain.
3835 	 */
3836 	hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3837 
3838 	for (;;) {
3839 		hp = *hpp;
3840 		if (hp == pp)
3841 			break;
3842 		if (hp == NULL) {
3843 			panic("page_do_hashout");
3844 			/*NOTREACHED*/
3845 		}
3846 		hpp = &hp->p_hash;
3847 	}
3848 	*hpp = pp->p_hash;
3849 
3850 	/*
3851 	 * Now remove it from its associated vnode.
3852 	 */
3853 	if (vp->v_pages)
3854 		page_vpsub(&vp->v_pages, pp);
3855 
3856 	pp->p_hash = NULL;
3857 	page_clr_all_props(pp);
3858 	PP_CLRSWAP(pp);
3859 	pp->p_vnode = NULL;
3860 	pp->p_offset = (u_offset_t)-1;
3861 }
3862 
3863 /*
3864  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3865  *
3866  * When `phm' is non-NULL it contains the address of the mutex protecting the
3867  * hash list pp is on.  It is not dropped.
3868  */
3869 void
3870 page_hashout(page_t *pp, kmutex_t *phm)
3871 {
3872 	vnode_t		*vp;
3873 	ulong_t		index;
3874 	kmutex_t	*nphm;
3875 	kmutex_t	*vphm;
3876 	kmutex_t	*sep;
3877 
3878 	ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3879 	ASSERT(pp->p_vnode != NULL);
3880 	ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3881 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3882 
3883 	vp = pp->p_vnode;
3884 
3885 	TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3886 		"page_hashout:pp %p vp %p", pp, vp);
3887 
3888 	/* Kernel probe */
3889 	TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */,
3890 	    tnf_opaque, vnode, vp,
3891 	    tnf_offset, offset, pp->p_offset);
3892 
3893 	/*
3894 	 *
3895 	 */
3896 	VM_STAT_ADD(hashout_count);
3897 	index = PAGE_HASH_FUNC(vp, pp->p_offset);
3898 	if (phm == NULL) {
3899 		VM_STAT_ADD(hashout_not_held);
3900 		nphm = PAGE_HASH_MUTEX(index);
3901 		mutex_enter(nphm);
3902 	}
3903 	ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3904 
3905 
3906 	/*
3907 	 * grab page vnode mutex and remove it...
3908 	 */
3909 	vphm = page_vnode_mutex(vp);
3910 	mutex_enter(vphm);
3911 
3912 	page_do_hashout(pp);
3913 
3914 	mutex_exit(vphm);
3915 	if (phm == NULL)
3916 		mutex_exit(nphm);
3917 
3918 	/*
3919 	 * If the page was retired, update the pages_retired
3920 	 * total and clear the page flag
3921 	 */
3922 	if (page_isretired(pp)) {
3923 		retired_page_removed(pp);
3924 	}
3925 
3926 	/*
3927 	 * Wake up processes waiting for this page.  The page's
3928 	 * identity has been changed, and is probably not the
3929 	 * desired page any longer.
3930 	 */
3931 	sep = page_se_mutex(pp);
3932 	mutex_enter(sep);
3933 	if (CV_HAS_WAITERS(&pp->p_cv))
3934 		cv_broadcast(&pp->p_cv);
3935 	mutex_exit(sep);
3936 }
3937 
3938 /*
3939  * Add the page to the front of a linked list of pages
3940  * using the p_next & p_prev pointers for the list.
3941  * The caller is responsible for protecting the list pointers.
3942  */
3943 void
3944 page_add(page_t **ppp, page_t *pp)
3945 {
3946 	ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3947 
3948 	page_add_common(ppp, pp);
3949 }
3950 
3951 
3952 
3953 /*
3954  *  Common code for page_add() and mach_page_add()
3955  */
3956 void
3957 page_add_common(page_t **ppp, page_t *pp)
3958 {
3959 	if (*ppp == NULL) {
3960 		pp->p_next = pp->p_prev = pp;
3961 	} else {
3962 		pp->p_next = *ppp;
3963 		pp->p_prev = (*ppp)->p_prev;
3964 		(*ppp)->p_prev = pp;
3965 		pp->p_prev->p_next = pp;
3966 	}
3967 	*ppp = pp;
3968 }
3969 
3970 
3971 /*
3972  * Remove this page from a linked list of pages
3973  * using the p_next & p_prev pointers for the list.
3974  *
3975  * The caller is responsible for protecting the list pointers.
3976  */
3977 void
3978 page_sub(page_t **ppp, page_t *pp)
3979 {
3980 	ASSERT((PP_ISFREE(pp)) ? 1 :
3981 	    (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3982 
3983 	if (*ppp == NULL || pp == NULL) {
3984 		panic("page_sub: bad arg(s): pp %p, *ppp %p",
3985 		    (void *)pp, (void *)(*ppp));
3986 		/*NOTREACHED*/
3987 	}
3988 
3989 	page_sub_common(ppp, pp);
3990 }
3991 
3992 
3993 /*
3994  *  Common code for page_sub() and mach_page_sub()
3995  */
3996 void
3997 page_sub_common(page_t **ppp, page_t *pp)
3998 {
3999 	if (*ppp == pp)
4000 		*ppp = pp->p_next;		/* go to next page */
4001 
4002 	if (*ppp == pp)
4003 		*ppp = NULL;			/* page list is gone */
4004 	else {
4005 		pp->p_prev->p_next = pp->p_next;
4006 		pp->p_next->p_prev = pp->p_prev;
4007 	}
4008 	pp->p_prev = pp->p_next = pp;		/* make pp a list of one */
4009 }
4010 
4011 
4012 /*
4013  * Break page list cppp into two lists with npages in the first list.
4014  * The tail is returned in nppp.
4015  */
4016 void
4017 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
4018 {
4019 	page_t *s1pp = *oppp;
4020 	page_t *s2pp;
4021 	page_t *e1pp, *e2pp;
4022 	long n = 0;
4023 
4024 	if (s1pp == NULL) {
4025 		*nppp = NULL;
4026 		return;
4027 	}
4028 	if (npages == 0) {
4029 		*nppp = s1pp;
4030 		*oppp = NULL;
4031 		return;
4032 	}
4033 	for (n = 0, s2pp = *oppp; n < npages; n++) {
4034 		s2pp = s2pp->p_next;
4035 	}
4036 	/* Fix head and tail of new lists */
4037 	e1pp = s2pp->p_prev;
4038 	e2pp = s1pp->p_prev;
4039 	s1pp->p_prev = e1pp;
4040 	e1pp->p_next = s1pp;
4041 	s2pp->p_prev = e2pp;
4042 	e2pp->p_next = s2pp;
4043 
4044 	/* second list empty */
4045 	if (s2pp == s1pp) {
4046 		*oppp = s1pp;
4047 		*nppp = NULL;
4048 	} else {
4049 		*oppp = s1pp;
4050 		*nppp = s2pp;
4051 	}
4052 }
4053 
4054 /*
4055  * Concatenate page list nppp onto the end of list ppp.
4056  */
4057 void
4058 page_list_concat(page_t **ppp, page_t **nppp)
4059 {
4060 	page_t *s1pp, *s2pp, *e1pp, *e2pp;
4061 
4062 	if (*nppp == NULL) {
4063 		return;
4064 	}
4065 	if (*ppp == NULL) {
4066 		*ppp = *nppp;
4067 		return;
4068 	}
4069 	s1pp = *ppp;
4070 	e1pp =  s1pp->p_prev;
4071 	s2pp = *nppp;
4072 	e2pp = s2pp->p_prev;
4073 	s1pp->p_prev = e2pp;
4074 	e2pp->p_next = s1pp;
4075 	e1pp->p_next = s2pp;
4076 	s2pp->p_prev = e1pp;
4077 }
4078 
4079 /*
4080  * return the next page in the page list
4081  */
4082 page_t *
4083 page_list_next(page_t *pp)
4084 {
4085 	return (pp->p_next);
4086 }
4087 
4088 
4089 /*
4090  * Add the page to the front of the linked list of pages
4091  * using p_vpnext/p_vpprev pointers for the list.
4092  *
4093  * The caller is responsible for protecting the lists.
4094  */
4095 void
4096 page_vpadd(page_t **ppp, page_t *pp)
4097 {
4098 	if (*ppp == NULL) {
4099 		pp->p_vpnext = pp->p_vpprev = pp;
4100 	} else {
4101 		pp->p_vpnext = *ppp;
4102 		pp->p_vpprev = (*ppp)->p_vpprev;
4103 		(*ppp)->p_vpprev = pp;
4104 		pp->p_vpprev->p_vpnext = pp;
4105 	}
4106 	*ppp = pp;
4107 }
4108 
4109 /*
4110  * Remove this page from the linked list of pages
4111  * using p_vpnext/p_vpprev pointers for the list.
4112  *
4113  * The caller is responsible for protecting the lists.
4114  */
4115 void
4116 page_vpsub(page_t **ppp, page_t *pp)
4117 {
4118 	if (*ppp == NULL || pp == NULL) {
4119 		panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
4120 		    (void *)pp, (void *)(*ppp));
4121 		/*NOTREACHED*/
4122 	}
4123 
4124 	if (*ppp == pp)
4125 		*ppp = pp->p_vpnext;		/* go to next page */
4126 
4127 	if (*ppp == pp)
4128 		*ppp = NULL;			/* page list is gone */
4129 	else {
4130 		pp->p_vpprev->p_vpnext = pp->p_vpnext;
4131 		pp->p_vpnext->p_vpprev = pp->p_vpprev;
4132 	}
4133 	pp->p_vpprev = pp->p_vpnext = pp;	/* make pp a list of one */
4134 }
4135 
4136 /*
4137  * Lock a physical page into memory "long term".  Used to support "lock
4138  * in memory" functions.  Accepts the page to be locked, and a cow variable
4139  * to indicate whether a the lock will travel to the new page during
4140  * a potential copy-on-write.
4141  */
4142 int
4143 page_pp_lock(
4144 	page_t *pp,			/* page to be locked */
4145 	int cow,			/* cow lock */
4146 	int kernel)			/* must succeed -- ignore checking */
4147 {
4148 	int r = 0;			/* result -- assume failure */
4149 
4150 	ASSERT(PAGE_LOCKED(pp));
4151 
4152 	page_struct_lock(pp);
4153 	/*
4154 	 * Acquire the "freemem_lock" for availrmem.
4155 	 */
4156 	if (cow) {
4157 		mutex_enter(&freemem_lock);
4158 		if ((availrmem > pages_pp_maximum) &&
4159 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4160 			availrmem--;
4161 			pages_locked++;
4162 			mutex_exit(&freemem_lock);
4163 			r = 1;
4164 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4165 				cmn_err(CE_WARN,
4166 				    "COW lock limit reached on pfn 0x%lx",
4167 				    page_pptonum(pp));
4168 			}
4169 		} else
4170 			mutex_exit(&freemem_lock);
4171 	} else {
4172 		if (pp->p_lckcnt) {
4173 			if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4174 				r = 1;
4175 				if (++pp->p_lckcnt ==
4176 				    (ushort_t)PAGE_LOCK_MAXIMUM) {
4177 					cmn_err(CE_WARN, "Page lock limit "
4178 					    "reached on pfn 0x%lx",
4179 					    page_pptonum(pp));
4180 				}
4181 			}
4182 		} else {
4183 			if (kernel) {
4184 				/* availrmem accounting done by caller */
4185 				++pp->p_lckcnt;
4186 				r = 1;
4187 			} else {
4188 				mutex_enter(&freemem_lock);
4189 				if (availrmem > pages_pp_maximum) {
4190 					availrmem--;
4191 					pages_locked++;
4192 					++pp->p_lckcnt;
4193 					r = 1;
4194 				}
4195 				mutex_exit(&freemem_lock);
4196 			}
4197 		}
4198 	}
4199 	page_struct_unlock(pp);
4200 	return (r);
4201 }
4202 
4203 /*
4204  * Decommit a lock on a physical page frame.  Account for cow locks if
4205  * appropriate.
4206  */
4207 void
4208 page_pp_unlock(
4209 	page_t *pp,			/* page to be unlocked */
4210 	int cow,			/* expect cow lock */
4211 	int kernel)			/* this was a kernel lock */
4212 {
4213 	ASSERT(PAGE_LOCKED(pp));
4214 
4215 	page_struct_lock(pp);
4216 	/*
4217 	 * Acquire the "freemem_lock" for availrmem.
4218 	 * If cowcnt or lcknt is already 0 do nothing; i.e., we
4219 	 * could be called to unlock even if nothing is locked. This could
4220 	 * happen if locked file pages were truncated (removing the lock)
4221 	 * and the file was grown again and new pages faulted in; the new
4222 	 * pages are unlocked but the segment still thinks they're locked.
4223 	 */
4224 	if (cow) {
4225 		if (pp->p_cowcnt) {
4226 			mutex_enter(&freemem_lock);
4227 			pp->p_cowcnt--;
4228 			availrmem++;
4229 			pages_locked--;
4230 			mutex_exit(&freemem_lock);
4231 		}
4232 	} else {
4233 		if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
4234 			if (!kernel) {
4235 				mutex_enter(&freemem_lock);
4236 				availrmem++;
4237 				pages_locked--;
4238 				mutex_exit(&freemem_lock);
4239 			}
4240 		}
4241 	}
4242 	page_struct_unlock(pp);
4243 }
4244 
4245 /*
4246  * This routine reserves availrmem for npages;
4247  * 	flags: KM_NOSLEEP or KM_SLEEP
4248  * 	returns 1 on success or 0 on failure
4249  */
4250 int
4251 page_resv(pgcnt_t npages, uint_t flags)
4252 {
4253 	mutex_enter(&freemem_lock);
4254 	while (availrmem < tune.t_minarmem + npages) {
4255 		if (flags & KM_NOSLEEP) {
4256 			mutex_exit(&freemem_lock);
4257 			return (0);
4258 		}
4259 		mutex_exit(&freemem_lock);
4260 		page_needfree(npages);
4261 		kmem_reap();
4262 		delay(hz >> 2);
4263 		page_needfree(-(spgcnt_t)npages);
4264 		mutex_enter(&freemem_lock);
4265 	}
4266 	availrmem -= npages;
4267 	mutex_exit(&freemem_lock);
4268 	return (1);
4269 }
4270 
4271 /*
4272  * This routine unreserves availrmem for npages;
4273  */
4274 void
4275 page_unresv(pgcnt_t npages)
4276 {
4277 	mutex_enter(&freemem_lock);
4278 	availrmem += npages;
4279 	mutex_exit(&freemem_lock);
4280 }
4281 
4282 /*
4283  * See Statement at the beginning of segvn_lockop() regarding
4284  * the way we handle cowcnts and lckcnts.
4285  *
4286  * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
4287  * that breaks COW has PROT_WRITE.
4288  *
4289  * Note that, we may also break COW in case we are softlocking
4290  * on read access during physio;
4291  * in this softlock case, the vpage may not have PROT_WRITE.
4292  * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
4293  * if the vpage doesn't have PROT_WRITE.
4294  *
4295  * This routine is never called if we are stealing a page
4296  * in anon_private.
4297  *
4298  * The caller subtracted from availrmem for read only mapping.
4299  * if lckcnt is 1 increment availrmem.
4300  */
4301 void
4302 page_pp_useclaim(
4303 	page_t *opp,		/* original page frame losing lock */
4304 	page_t *npp,		/* new page frame gaining lock */
4305 	uint_t	write_perm) 	/* set if vpage has PROT_WRITE */
4306 {
4307 	int payback = 0;
4308 
4309 	ASSERT(PAGE_LOCKED(opp));
4310 	ASSERT(PAGE_LOCKED(npp));
4311 
4312 	page_struct_lock(opp);
4313 
4314 	ASSERT(npp->p_cowcnt == 0);
4315 	ASSERT(npp->p_lckcnt == 0);
4316 
4317 	/* Don't use claim if nothing is locked (see page_pp_unlock above) */
4318 	if ((write_perm && opp->p_cowcnt != 0) ||
4319 	    (!write_perm && opp->p_lckcnt != 0)) {
4320 
4321 		if (write_perm) {
4322 			npp->p_cowcnt++;
4323 			ASSERT(opp->p_cowcnt != 0);
4324 			opp->p_cowcnt--;
4325 		} else {
4326 
4327 			ASSERT(opp->p_lckcnt != 0);
4328 
4329 			/*
4330 			 * We didn't need availrmem decremented if p_lckcnt on
4331 			 * original page is 1. Here, we are unlocking
4332 			 * read-only copy belonging to original page and
4333 			 * are locking a copy belonging to new page.
4334 			 */
4335 			if (opp->p_lckcnt == 1)
4336 				payback = 1;
4337 
4338 			npp->p_lckcnt++;
4339 			opp->p_lckcnt--;
4340 		}
4341 	}
4342 	if (payback) {
4343 		mutex_enter(&freemem_lock);
4344 		availrmem++;
4345 		pages_useclaim--;
4346 		mutex_exit(&freemem_lock);
4347 	}
4348 	page_struct_unlock(opp);
4349 }
4350 
4351 /*
4352  * Simple claim adjust functions -- used to support changes in
4353  * claims due to changes in access permissions.  Used by segvn_setprot().
4354  */
4355 int
4356 page_addclaim(page_t *pp)
4357 {
4358 	int r = 0;			/* result */
4359 
4360 	ASSERT(PAGE_LOCKED(pp));
4361 
4362 	page_struct_lock(pp);
4363 	ASSERT(pp->p_lckcnt != 0);
4364 
4365 	if (pp->p_lckcnt == 1) {
4366 		if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4367 			--pp->p_lckcnt;
4368 			r = 1;
4369 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4370 				cmn_err(CE_WARN,
4371 				    "COW lock limit reached on pfn 0x%lx",
4372 				    page_pptonum(pp));
4373 			}
4374 		}
4375 	} else {
4376 		mutex_enter(&freemem_lock);
4377 		if ((availrmem > pages_pp_maximum) &&
4378 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4379 			--availrmem;
4380 			++pages_claimed;
4381 			mutex_exit(&freemem_lock);
4382 			--pp->p_lckcnt;
4383 			r = 1;
4384 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4385 				cmn_err(CE_WARN,
4386 				    "COW lock limit reached on pfn 0x%lx",
4387 				    page_pptonum(pp));
4388 			}
4389 		} else
4390 			mutex_exit(&freemem_lock);
4391 	}
4392 	page_struct_unlock(pp);
4393 	return (r);
4394 }
4395 
4396 int
4397 page_subclaim(page_t *pp)
4398 {
4399 	int r = 0;
4400 
4401 	ASSERT(PAGE_LOCKED(pp));
4402 
4403 	page_struct_lock(pp);
4404 	ASSERT(pp->p_cowcnt != 0);
4405 
4406 	if (pp->p_lckcnt) {
4407 		if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4408 			r = 1;
4409 			/*
4410 			 * for availrmem
4411 			 */
4412 			mutex_enter(&freemem_lock);
4413 			availrmem++;
4414 			pages_claimed--;
4415 			mutex_exit(&freemem_lock);
4416 
4417 			pp->p_cowcnt--;
4418 
4419 			if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4420 				cmn_err(CE_WARN,
4421 				    "Page lock limit reached on pfn 0x%lx",
4422 				    page_pptonum(pp));
4423 			}
4424 		}
4425 	} else {
4426 		r = 1;
4427 		pp->p_cowcnt--;
4428 		pp->p_lckcnt++;
4429 	}
4430 	page_struct_unlock(pp);
4431 	return (r);
4432 }
4433 
4434 int
4435 page_addclaim_pages(page_t  **ppa)
4436 {
4437 
4438 	pgcnt_t	lckpgs = 0, pg_idx;
4439 
4440 	VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4441 
4442 	mutex_enter(&page_llock);
4443 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4444 
4445 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4446 		ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4447 		if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4448 			mutex_exit(&page_llock);
4449 			return (0);
4450 		}
4451 		if (ppa[pg_idx]->p_lckcnt > 1)
4452 			lckpgs++;
4453 	}
4454 
4455 	if (lckpgs != 0) {
4456 		mutex_enter(&freemem_lock);
4457 		if (availrmem >= pages_pp_maximum + lckpgs) {
4458 			availrmem -= lckpgs;
4459 			pages_claimed += lckpgs;
4460 		} else {
4461 			mutex_exit(&freemem_lock);
4462 			mutex_exit(&page_llock);
4463 			return (0);
4464 		}
4465 		mutex_exit(&freemem_lock);
4466 	}
4467 
4468 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4469 		ppa[pg_idx]->p_lckcnt--;
4470 		ppa[pg_idx]->p_cowcnt++;
4471 	}
4472 	mutex_exit(&page_llock);
4473 	return (1);
4474 }
4475 
4476 int
4477 page_subclaim_pages(page_t  **ppa)
4478 {
4479 	pgcnt_t	ulckpgs = 0, pg_idx;
4480 
4481 	VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4482 
4483 	mutex_enter(&page_llock);
4484 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4485 
4486 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4487 		ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4488 		if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4489 			mutex_exit(&page_llock);
4490 			return (0);
4491 		}
4492 		if (ppa[pg_idx]->p_lckcnt != 0)
4493 			ulckpgs++;
4494 	}
4495 
4496 	if (ulckpgs != 0) {
4497 		mutex_enter(&freemem_lock);
4498 		availrmem += ulckpgs;
4499 		pages_claimed -= ulckpgs;
4500 		mutex_exit(&freemem_lock);
4501 	}
4502 
4503 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4504 		ppa[pg_idx]->p_cowcnt--;
4505 		ppa[pg_idx]->p_lckcnt++;
4506 
4507 	}
4508 	mutex_exit(&page_llock);
4509 	return (1);
4510 }
4511 
4512 page_t *
4513 page_numtopp(pfn_t pfnum, se_t se)
4514 {
4515 	page_t *pp;
4516 
4517 retry:
4518 	pp = page_numtopp_nolock(pfnum);
4519 	if (pp == NULL) {
4520 		return ((page_t *)NULL);
4521 	}
4522 
4523 	/*
4524 	 * Acquire the appropriate lock on the page.
4525 	 */
4526 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4527 		if (page_pptonum(pp) != pfnum)
4528 			goto retry;
4529 		continue;
4530 	}
4531 
4532 	if (page_pptonum(pp) != pfnum) {
4533 		page_unlock(pp);
4534 		goto retry;
4535 	}
4536 
4537 	return (pp);
4538 }
4539 
4540 page_t *
4541 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4542 {
4543 	page_t *pp;
4544 
4545 retry:
4546 	pp = page_numtopp_nolock(pfnum);
4547 	if (pp == NULL) {
4548 		return ((page_t *)NULL);
4549 	}
4550 
4551 	/*
4552 	 * Acquire the appropriate lock on the page.
4553 	 */
4554 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4555 		if (page_pptonum(pp) != pfnum)
4556 			goto retry;
4557 		continue;
4558 	}
4559 
4560 	if (page_pptonum(pp) != pfnum) {
4561 		page_unlock(pp);
4562 		goto retry;
4563 	}
4564 
4565 	return (pp);
4566 }
4567 
4568 /*
4569  * This routine is like page_numtopp, but will only return page structs
4570  * for pages which are ok for loading into hardware using the page struct.
4571  */
4572 page_t *
4573 page_numtopp_nowait(pfn_t pfnum, se_t se)
4574 {
4575 	page_t *pp;
4576 
4577 retry:
4578 	pp = page_numtopp_nolock(pfnum);
4579 	if (pp == NULL) {
4580 		return ((page_t *)NULL);
4581 	}
4582 
4583 	/*
4584 	 * Try to acquire the appropriate lock on the page.
4585 	 */
4586 	if (PP_ISFREE(pp))
4587 		pp = NULL;
4588 	else {
4589 		if (!page_trylock(pp, se))
4590 			pp = NULL;
4591 		else {
4592 			if (page_pptonum(pp) != pfnum) {
4593 				page_unlock(pp);
4594 				goto retry;
4595 			}
4596 			if (PP_ISFREE(pp)) {
4597 				page_unlock(pp);
4598 				pp = NULL;
4599 			}
4600 		}
4601 	}
4602 	return (pp);
4603 }
4604 
4605 /*
4606  * Returns a count of dirty pages that are in the process
4607  * of being written out.  If 'cleanit' is set, try to push the page.
4608  */
4609 pgcnt_t
4610 page_busy(int cleanit)
4611 {
4612 	page_t *page0 = page_first();
4613 	page_t *pp = page0;
4614 	pgcnt_t nppbusy = 0;
4615 	u_offset_t off;
4616 
4617 	do {
4618 		vnode_t *vp = pp->p_vnode;
4619 
4620 		/*
4621 		 * A page is a candidate for syncing if it is:
4622 		 *
4623 		 * (a)	On neither the freelist nor the cachelist
4624 		 * (b)	Hashed onto a vnode
4625 		 * (c)	Not a kernel page
4626 		 * (d)	Dirty
4627 		 * (e)	Not part of a swapfile
4628 		 * (f)	a page which belongs to a real vnode; eg has a non-null
4629 		 *	v_vfsp pointer.
4630 		 * (g)	Backed by a filesystem which doesn't have a
4631 		 *	stubbed-out sync operation
4632 		 */
4633 		if (!PP_ISFREE(pp) && vp != NULL && vp != &kvp &&
4634 		    hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4635 		    vfs_can_sync(vp->v_vfsp)) {
4636 			nppbusy++;
4637 			vfs_syncprogress();
4638 
4639 			if (!cleanit)
4640 				continue;
4641 			if (!page_trylock(pp, SE_EXCL))
4642 				continue;
4643 
4644 			if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4645 			    pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4646 			    !(hat_pagesync(pp,
4647 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4648 				page_unlock(pp);
4649 				continue;
4650 			}
4651 			off = pp->p_offset;
4652 			VN_HOLD(vp);
4653 			page_unlock(pp);
4654 			(void) VOP_PUTPAGE(vp, off, PAGESIZE,
4655 			    B_ASYNC | B_FREE, kcred);
4656 			VN_RELE(vp);
4657 		}
4658 	} while ((pp = page_next(pp)) != page0);
4659 
4660 	return (nppbusy);
4661 }
4662 
4663 void page_invalidate_pages(void);
4664 
4665 /*
4666  * callback handler to vm sub-system
4667  *
4668  * callers make sure no recursive entries to this func.
4669  */
4670 /*ARGSUSED*/
4671 boolean_t
4672 callb_vm_cpr(void *arg, int code)
4673 {
4674 	if (code == CB_CODE_CPR_CHKPT)
4675 		page_invalidate_pages();
4676 	return (B_TRUE);
4677 }
4678 
4679 /*
4680  * Invalidate all pages of the system.
4681  * It shouldn't be called until all user page activities are all stopped.
4682  */
4683 void
4684 page_invalidate_pages()
4685 {
4686 	page_t *pp;
4687 	page_t *page0;
4688 	pgcnt_t nbusypages;
4689 	int retry = 0;
4690 	const int MAXRETRIES = 4;
4691 #if defined(__sparc)
4692 	extern struct vnode prom_ppages;
4693 #endif /* __sparc */
4694 
4695 top:
4696 	/*
4697 	 * Flush dirty pages and destory the clean ones.
4698 	 */
4699 	nbusypages = 0;
4700 
4701 	pp = page0 = page_first();
4702 	do {
4703 		struct vnode	*vp;
4704 		u_offset_t	offset;
4705 		int		mod;
4706 
4707 		/*
4708 		 * skip the page if it has no vnode or the page associated
4709 		 * with the kernel vnode or prom allocated kernel mem.
4710 		 */
4711 #if defined(__sparc)
4712 		if ((vp = pp->p_vnode) == NULL || vp == &kvp ||
4713 		    vp == &prom_ppages)
4714 #else /* x86 doesn't have prom or prom_ppage */
4715 		if ((vp = pp->p_vnode) == NULL || vp == &kvp)
4716 #endif /* __sparc */
4717 			continue;
4718 
4719 		/*
4720 		 * skip the page which is already free invalidated.
4721 		 */
4722 		if (PP_ISFREE(pp) && PP_ISAGED(pp))
4723 			continue;
4724 
4725 		/*
4726 		 * skip pages that are already locked or can't be "exclusively"
4727 		 * locked or are already free.  After we lock the page, check
4728 		 * the free and age bits again to be sure it's not destroied
4729 		 * yet.
4730 		 * To achieve max. parallelization, we use page_trylock instead
4731 		 * of page_lock so that we don't get block on individual pages
4732 		 * while we have thousands of other pages to process.
4733 		 */
4734 		if (!page_trylock(pp, SE_EXCL)) {
4735 			nbusypages++;
4736 			continue;
4737 		} else if (PP_ISFREE(pp)) {
4738 			if (!PP_ISAGED(pp)) {
4739 				page_destroy_free(pp);
4740 			} else {
4741 				page_unlock(pp);
4742 			}
4743 			continue;
4744 		}
4745 		/*
4746 		 * Is this page involved in some I/O? shared?
4747 		 *
4748 		 * The page_struct_lock need not be acquired to
4749 		 * examine these fields since the page has an
4750 		 * "exclusive" lock.
4751 		 */
4752 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4753 			page_unlock(pp);
4754 			continue;
4755 		}
4756 
4757 		if (vp->v_type == VCHR) {
4758 			panic("vp->v_type == VCHR");
4759 			/*NOTREACHED*/
4760 		}
4761 
4762 		if (!page_try_demote_pages(pp)) {
4763 			page_unlock(pp);
4764 			continue;
4765 		}
4766 
4767 		/*
4768 		 * Check the modified bit. Leave the bits alone in hardware
4769 		 * (they will be modified if we do the putpage).
4770 		 */
4771 		mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4772 			& P_MOD);
4773 		if (mod) {
4774 			offset = pp->p_offset;
4775 			/*
4776 			 * Hold the vnode before releasing the page lock
4777 			 * to prevent it from being freed and re-used by
4778 			 * some other thread.
4779 			 */
4780 			VN_HOLD(vp);
4781 			page_unlock(pp);
4782 			/*
4783 			 * No error return is checked here. Callers such as
4784 			 * cpr deals with the dirty pages at the dump time
4785 			 * if this putpage fails.
4786 			 */
4787 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4788 			    kcred);
4789 			VN_RELE(vp);
4790 		} else {
4791 			page_destroy(pp, 0);
4792 		}
4793 	} while ((pp = page_next(pp)) != page0);
4794 	if (nbusypages && retry++ < MAXRETRIES) {
4795 		delay(1);
4796 		goto top;
4797 	}
4798 }
4799 
4800 /*
4801  * Replace the page "old" with the page "new" on the page hash and vnode lists
4802  *
4803  * the replacemnt must be done in place, ie the equivalent sequence:
4804  *
4805  *	vp = old->p_vnode;
4806  *	off = old->p_offset;
4807  *	page_do_hashout(old)
4808  *	page_do_hashin(new, vp, off)
4809  *
4810  * doesn't work, since
4811  *  1) if old is the only page on the vnode, the v_pages list has a window
4812  *     where it looks empty. This will break file system assumptions.
4813  * and
4814  *  2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4815  */
4816 static void
4817 page_do_relocate_hash(page_t *new, page_t *old)
4818 {
4819 	page_t	**hash_list;
4820 	vnode_t	*vp = old->p_vnode;
4821 	kmutex_t *sep;
4822 
4823 	ASSERT(PAGE_EXCL(old));
4824 	ASSERT(PAGE_EXCL(new));
4825 	ASSERT(vp != NULL);
4826 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4827 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4828 
4829 	/*
4830 	 * First find old page on the page hash list
4831 	 */
4832 	hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4833 
4834 	for (;;) {
4835 		if (*hash_list == old)
4836 			break;
4837 		if (*hash_list == NULL) {
4838 			panic("page_do_hashout");
4839 			/*NOTREACHED*/
4840 		}
4841 		hash_list = &(*hash_list)->p_hash;
4842 	}
4843 
4844 	/*
4845 	 * update new and replace old with new on the page hash list
4846 	 */
4847 	new->p_vnode = old->p_vnode;
4848 	new->p_offset = old->p_offset;
4849 	new->p_hash = old->p_hash;
4850 	*hash_list = new;
4851 
4852 	if ((new->p_vnode->v_flag & VISSWAP) != 0)
4853 		PP_SETSWAP(new);
4854 
4855 	/*
4856 	 * replace old with new on the vnode's page list
4857 	 */
4858 	if (old->p_vpnext == old) {
4859 		new->p_vpnext = new;
4860 		new->p_vpprev = new;
4861 	} else {
4862 		new->p_vpnext = old->p_vpnext;
4863 		new->p_vpprev = old->p_vpprev;
4864 		new->p_vpnext->p_vpprev = new;
4865 		new->p_vpprev->p_vpnext = new;
4866 	}
4867 	if (vp->v_pages == old)
4868 		vp->v_pages = new;
4869 
4870 	/*
4871 	 * clear out the old page
4872 	 */
4873 	old->p_hash = NULL;
4874 	old->p_vpnext = NULL;
4875 	old->p_vpprev = NULL;
4876 	old->p_vnode = NULL;
4877 	PP_CLRSWAP(old);
4878 	old->p_offset = (u_offset_t)-1;
4879 	page_clr_all_props(old);
4880 
4881 	/*
4882 	 * Wake up processes waiting for this page.  The page's
4883 	 * identity has been changed, and is probably not the
4884 	 * desired page any longer.
4885 	 */
4886 	sep = page_se_mutex(old);
4887 	mutex_enter(sep);
4888 	if (CV_HAS_WAITERS(&old->p_cv))
4889 		cv_broadcast(&old->p_cv);
4890 	mutex_exit(sep);
4891 }
4892 
4893 /*
4894  * This function moves the identity of page "pp_old" to page "pp_new".
4895  * Both pages must be locked on entry.  "pp_new" is free, has no identity,
4896  * and need not be hashed out from anywhere.
4897  */
4898 void
4899 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4900 {
4901 	vnode_t *vp = pp_old->p_vnode;
4902 	u_offset_t off = pp_old->p_offset;
4903 	kmutex_t *phm, *vphm;
4904 
4905 	/*
4906 	 * Rehash two pages
4907 	 */
4908 	ASSERT(PAGE_EXCL(pp_old));
4909 	ASSERT(PAGE_EXCL(pp_new));
4910 	ASSERT(vp != NULL);
4911 	ASSERT(pp_new->p_vnode == NULL);
4912 
4913 	/*
4914 	 * hashout then hashin while holding the mutexes
4915 	 */
4916 	phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4917 	mutex_enter(phm);
4918 	vphm = page_vnode_mutex(vp);
4919 	mutex_enter(vphm);
4920 
4921 	page_do_relocate_hash(pp_new, pp_old);
4922 
4923 	mutex_exit(vphm);
4924 	mutex_exit(phm);
4925 
4926 	/*
4927 	 * The page_struct_lock need not be acquired for lckcnt and
4928 	 * cowcnt since the page has an "exclusive" lock.
4929 	 */
4930 	ASSERT(pp_new->p_lckcnt == 0);
4931 	ASSERT(pp_new->p_cowcnt == 0);
4932 	pp_new->p_lckcnt = pp_old->p_lckcnt;
4933 	pp_new->p_cowcnt = pp_old->p_cowcnt;
4934 	pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4935 
4936 	/* The following comment preserved from page_flip(). */
4937 	/* XXX - Do we need to protect fsdata? */
4938 	pp_new->p_fsdata = pp_old->p_fsdata;
4939 }
4940 
4941 /*
4942  * Helper routine used to lock all remaining members of a
4943  * large page. The caller is responsible for passing in a locked
4944  * pp. If pp is a large page, then it succeeds in locking all the
4945  * remaining constituent pages or it returns with only the
4946  * original page locked.
4947  *
4948  * Returns 1 on success, 0 on failure.
4949  *
4950  * If success is returned this routine gurantees p_szc for all constituent
4951  * pages of a large page pp belongs to can't change. To achieve this we
4952  * recheck szc of pp after locking all constituent pages and retry if szc
4953  * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4954  * lock on one of constituent pages it can't be running after all constituent
4955  * pages are locked.  hat_page_demote() with a lock on a constituent page
4956  * outside of this large page (i.e. pp belonged to a larger large page) is
4957  * already done with all constituent pages of pp since the root's p_szc is
4958  * changed last. Thefore no need to synchronize with hat_page_demote() that
4959  * locked a constituent page outside of pp's current large page.
4960  */
4961 #ifdef DEBUG
4962 uint32_t gpg_trylock_mtbf = 0;
4963 #endif
4964 
4965 int
4966 group_page_trylock(page_t *pp, se_t se)
4967 {
4968 	page_t  *tpp;
4969 	pgcnt_t	npgs, i, j;
4970 	uint_t pszc = pp->p_szc;
4971 
4972 #ifdef DEBUG
4973 	if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4974 		return (0);
4975 	}
4976 #endif
4977 
4978 	if (pp != PP_GROUPLEADER(pp, pszc)) {
4979 		return (0);
4980 	}
4981 
4982 retry:
4983 	ASSERT(PAGE_LOCKED_SE(pp, se));
4984 	ASSERT(!PP_ISFREE(pp));
4985 	if (pszc == 0) {
4986 		return (1);
4987 	}
4988 	npgs = page_get_pagecnt(pszc);
4989 	tpp = pp + 1;
4990 	for (i = 1; i < npgs; i++, tpp++) {
4991 		if (!page_trylock(tpp, se)) {
4992 			tpp = pp + 1;
4993 			for (j = 1; j < i; j++, tpp++) {
4994 				page_unlock(tpp);
4995 			}
4996 			return (0);
4997 		}
4998 	}
4999 	if (pp->p_szc != pszc) {
5000 		ASSERT(pp->p_szc < pszc);
5001 		ASSERT(pp->p_vnode != NULL && pp->p_vnode != &kvp &&
5002 		    !IS_SWAPFSVP(pp->p_vnode));
5003 		tpp = pp + 1;
5004 		for (i = 1; i < npgs; i++, tpp++) {
5005 			page_unlock(tpp);
5006 		}
5007 		pszc = pp->p_szc;
5008 		goto retry;
5009 	}
5010 	return (1);
5011 }
5012 
5013 void
5014 group_page_unlock(page_t *pp)
5015 {
5016 	page_t *tpp;
5017 	pgcnt_t	npgs, i;
5018 
5019 	ASSERT(PAGE_LOCKED(pp));
5020 	ASSERT(!PP_ISFREE(pp));
5021 	ASSERT(pp == PP_PAGEROOT(pp));
5022 	npgs = page_get_pagecnt(pp->p_szc);
5023 	for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
5024 		page_unlock(tpp);
5025 	}
5026 }
5027 
5028 /*
5029  * returns
5030  * 0 		: on success and *nrelocp is number of relocated PAGESIZE pages
5031  * ERANGE	: this is not a base page
5032  * EBUSY	: failure to get locks on the page/pages
5033  * ENOMEM	: failure to obtain replacement pages
5034  * EAGAIN	: OBP has not yet completed its boot-time handoff to the kernel
5035  *
5036  * Return with all constituent members of target and replacement
5037  * SE_EXCL locked. It is the callers responsibility to drop the
5038  * locks.
5039  */
5040 int
5041 do_page_relocate(
5042 	page_t **target,
5043 	page_t **replacement,
5044 	int grouplock,
5045 	spgcnt_t *nrelocp,
5046 	lgrp_t *lgrp)
5047 {
5048 #ifdef DEBUG
5049 	page_t *first_repl;
5050 #endif /* DEBUG */
5051 	page_t *repl;
5052 	page_t *targ;
5053 	page_t *pl = NULL;
5054 	uint_t ppattr;
5055 	pfn_t   pfn, repl_pfn;
5056 	uint_t	szc;
5057 	spgcnt_t npgs, i;
5058 	int repl_contig = 0;
5059 	uint_t flags = 0;
5060 	spgcnt_t dofree = 0;
5061 
5062 	*nrelocp = 0;
5063 
5064 #if defined(__sparc)
5065 	/*
5066 	 * We need to wait till OBP has completed
5067 	 * its boot-time handoff of its resources to the kernel
5068 	 * before we allow page relocation
5069 	 */
5070 	if (page_relocate_ready == 0) {
5071 		return (EAGAIN);
5072 	}
5073 #endif
5074 
5075 	/*
5076 	 * If this is not a base page,
5077 	 * just return with 0x0 pages relocated.
5078 	 */
5079 	targ = *target;
5080 	ASSERT(PAGE_EXCL(targ));
5081 	ASSERT(!PP_ISFREE(targ));
5082 	szc = targ->p_szc;
5083 	ASSERT(szc < mmu_page_sizes);
5084 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
5085 	pfn = targ->p_pagenum;
5086 	if (pfn != PFN_BASE(pfn, szc)) {
5087 		VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
5088 		return (ERANGE);
5089 	}
5090 
5091 	if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
5092 		repl_pfn = repl->p_pagenum;
5093 		if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
5094 			VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
5095 			return (ERANGE);
5096 		}
5097 		repl_contig = 1;
5098 	}
5099 
5100 	/*
5101 	 * We must lock all members of this large page or we cannot
5102 	 * relocate any part of it.
5103 	 */
5104 	if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
5105 		VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
5106 		return (EBUSY);
5107 	}
5108 
5109 	/*
5110 	 * reread szc it could have been decreased before
5111 	 * group_page_trylock() was done.
5112 	 */
5113 	szc = targ->p_szc;
5114 	ASSERT(szc < mmu_page_sizes);
5115 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
5116 	ASSERT(pfn == PFN_BASE(pfn, szc));
5117 
5118 	npgs = page_get_pagecnt(targ->p_szc);
5119 
5120 	if (repl == NULL) {
5121 		dofree = npgs;		/* Size of target page in MMU pages */
5122 		if (!page_create_wait(dofree, 0)) {
5123 			if (grouplock != 0) {
5124 				group_page_unlock(targ);
5125 			}
5126 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
5127 			return (ENOMEM);
5128 		}
5129 
5130 		/*
5131 		 * seg kmem pages require that the target and replacement
5132 		 * page be the same pagesize.
5133 		 */
5134 		flags = (targ->p_vnode == &kvp) ? PGR_SAMESZC : 0;
5135 		repl = page_get_replacement_page(targ, lgrp, flags);
5136 		if (repl == NULL) {
5137 			if (grouplock != 0) {
5138 				group_page_unlock(targ);
5139 			}
5140 			page_create_putback(dofree);
5141 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
5142 			return (ENOMEM);
5143 		}
5144 	}
5145 #ifdef DEBUG
5146 	else {
5147 		ASSERT(PAGE_LOCKED(repl));
5148 	}
5149 #endif /* DEBUG */
5150 
5151 #if defined(__sparc)
5152 	/*
5153 	 * Let hat_page_relocate() complete the relocation if it's kernel page
5154 	 */
5155 	if (targ->p_vnode == &kvp) {
5156 		*replacement = repl;
5157 		if (hat_page_relocate(target, replacement, nrelocp) != 0) {
5158 			if (grouplock != 0) {
5159 				group_page_unlock(targ);
5160 			}
5161 			if (dofree) {
5162 				*replacement = NULL;
5163 				page_free_replacement_page(repl);
5164 				page_create_putback(dofree);
5165 			}
5166 			VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
5167 			return (EAGAIN);
5168 		}
5169 		VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
5170 		return (0);
5171 	}
5172 #else
5173 #if defined(lint)
5174 	dofree = dofree;
5175 #endif
5176 #endif
5177 
5178 #ifdef DEBUG
5179 	first_repl = repl;
5180 #endif /* DEBUG */
5181 
5182 	for (i = 0; i < npgs; i++) {
5183 		ASSERT(PAGE_EXCL(targ));
5184 
5185 		(void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
5186 
5187 		ASSERT(hat_page_getshare(targ) == 0);
5188 		ASSERT(!PP_ISFREE(targ));
5189 		ASSERT(targ->p_pagenum == (pfn + i));
5190 		ASSERT(repl_contig == 0 ||
5191 		    repl->p_pagenum == (repl_pfn + i));
5192 
5193 		/*
5194 		 * Copy the page contents and attributes then
5195 		 * relocate the page in the page hash.
5196 		 */
5197 		ppcopy(targ, repl);
5198 		ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
5199 		page_clr_all_props(repl);
5200 		page_set_props(repl, ppattr);
5201 		page_relocate_hash(repl, targ);
5202 
5203 		ASSERT(hat_page_getshare(targ) == 0);
5204 		ASSERT(hat_page_getshare(repl) == 0);
5205 		/*
5206 		 * Now clear the props on targ, after the
5207 		 * page_relocate_hash(), they no longer
5208 		 * have any meaning.
5209 		 */
5210 		page_clr_all_props(targ);
5211 		ASSERT(targ->p_next == targ);
5212 		ASSERT(targ->p_prev == targ);
5213 		page_list_concat(&pl, &targ);
5214 
5215 		targ++;
5216 		if (repl_contig != 0) {
5217 			repl++;
5218 		} else {
5219 			repl = repl->p_next;
5220 		}
5221 	}
5222 	/* assert that we have come full circle with repl */
5223 	ASSERT(repl_contig == 1 || first_repl == repl);
5224 
5225 	*target = pl;
5226 	if (*replacement == NULL) {
5227 		ASSERT(first_repl == repl);
5228 		*replacement = repl;
5229 	}
5230 	VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
5231 	*nrelocp = npgs;
5232 	return (0);
5233 }
5234 /*
5235  * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
5236  */
5237 int
5238 page_relocate(
5239 	page_t **target,
5240 	page_t **replacement,
5241 	int grouplock,
5242 	int freetarget,
5243 	spgcnt_t *nrelocp,
5244 	lgrp_t *lgrp)
5245 {
5246 	spgcnt_t ret;
5247 
5248 	/* do_page_relocate returns 0 on success or errno value */
5249 	ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
5250 
5251 	if (ret != 0 || freetarget == 0) {
5252 		return (ret);
5253 	}
5254 	if (*nrelocp == 1) {
5255 		ASSERT(*target != NULL);
5256 		page_free(*target, 1);
5257 	} else {
5258 		page_t *tpp = *target;
5259 		uint_t szc = tpp->p_szc;
5260 		pgcnt_t npgs = page_get_pagecnt(szc);
5261 		ASSERT(npgs > 1);
5262 		ASSERT(szc != 0);
5263 		do {
5264 			ASSERT(PAGE_EXCL(tpp));
5265 			ASSERT(!hat_page_is_mapped(tpp));
5266 			ASSERT(tpp->p_szc == szc);
5267 			PP_SETFREE(tpp);
5268 			PP_SETAGED(tpp);
5269 			npgs--;
5270 		} while ((tpp = tpp->p_next) != *target);
5271 		ASSERT(npgs == 0);
5272 		page_list_add_pages(*target, 0);
5273 		npgs = page_get_pagecnt(szc);
5274 		page_create_putback(npgs);
5275 	}
5276 	return (ret);
5277 }
5278 
5279 /*
5280  * it is up to the caller to deal with pcf accounting.
5281  */
5282 void
5283 page_free_replacement_page(page_t *pplist)
5284 {
5285 	page_t *pp;
5286 
5287 	while (pplist != NULL) {
5288 		/*
5289 		 * pp_targ is a linked list.
5290 		 */
5291 		pp = pplist;
5292 		if (pp->p_szc == 0) {
5293 			page_sub(&pplist, pp);
5294 			page_clr_all_props(pp);
5295 			PP_SETFREE(pp);
5296 			PP_SETAGED(pp);
5297 			page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5298 			page_unlock(pp);
5299 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5300 		} else {
5301 			spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5302 			page_t *tpp;
5303 			page_list_break(&pp, &pplist, curnpgs);
5304 			tpp = pp;
5305 			do {
5306 				ASSERT(PAGE_EXCL(tpp));
5307 				ASSERT(!hat_page_is_mapped(tpp));
5308 				page_clr_all_props(pp);
5309 				PP_SETFREE(tpp);
5310 				PP_SETAGED(tpp);
5311 			} while ((tpp = tpp->p_next) != pp);
5312 			page_list_add_pages(pp, 0);
5313 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5314 		}
5315 	}
5316 }
5317 
5318 /*
5319  * Relocate target to non-relocatable replacement page.
5320  */
5321 int
5322 page_relocate_cage(page_t **target, page_t **replacement)
5323 {
5324 	page_t *tpp, *rpp;
5325 	spgcnt_t pgcnt, npgs;
5326 	int result;
5327 
5328 	tpp = *target;
5329 
5330 	ASSERT(PAGE_EXCL(tpp));
5331 	ASSERT(tpp->p_szc == 0);
5332 
5333 	pgcnt = btop(page_get_pagesize(tpp->p_szc));
5334 
5335 	do {
5336 		(void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5337 		rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5338 		if (rpp == NULL) {
5339 			page_create_putback(pgcnt);
5340 			kcage_cageout_wakeup();
5341 		}
5342 	} while (rpp == NULL);
5343 
5344 	ASSERT(PP_ISNORELOC(rpp));
5345 
5346 	result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5347 
5348 	if (result == 0) {
5349 		*replacement = rpp;
5350 		if (pgcnt != npgs)
5351 			panic("page_relocate_cage: partial relocation");
5352 	}
5353 
5354 	return (result);
5355 }
5356 
5357 /*
5358  * Release the page lock on a page, place on cachelist
5359  * tail if no longer mapped. Caller can let us know if
5360  * the page is known to be clean.
5361  */
5362 int
5363 page_release(page_t *pp, int checkmod)
5364 {
5365 	int status;
5366 
5367 	ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5368 		(pp->p_vnode != NULL));
5369 
5370 	if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5371 	    ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5372 	    pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5373 	    !hat_page_is_mapped(pp)) {
5374 
5375 		/*
5376 		 * If page is modified, unlock it
5377 		 *
5378 		 * (p_nrm & P_MOD) bit has the latest stuff because:
5379 		 * (1) We found that this page doesn't have any mappings
5380 		 *	_after_ holding SE_EXCL and
5381 		 * (2) We didn't drop SE_EXCL lock after the check in (1)
5382 		 */
5383 		if (checkmod && hat_ismod(pp)) {
5384 			page_unlock(pp);
5385 			status = PGREL_MOD;
5386 		} else {
5387 			/*LINTED: constant in conditional context*/
5388 			VN_DISPOSE(pp, B_FREE, 0, kcred);
5389 			status = PGREL_CLEAN;
5390 		}
5391 	} else {
5392 		page_unlock(pp);
5393 		status = PGREL_NOTREL;
5394 	}
5395 	return (status);
5396 }
5397 
5398 int
5399 page_try_demote_pages(page_t *pp)
5400 {
5401 	page_t *tpp, *rootpp = pp;
5402 	pfn_t	pfn = page_pptonum(pp);
5403 	spgcnt_t i, npgs;
5404 	uint_t	szc = pp->p_szc;
5405 	vnode_t *vp = pp->p_vnode;
5406 
5407 	ASSERT(PAGE_EXCL(rootpp));
5408 
5409 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5410 
5411 	if (rootpp->p_szc == 0) {
5412 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5413 		return (1);
5414 	}
5415 
5416 	if (vp != NULL && !IS_SWAPFSVP(vp) && vp != &kvp) {
5417 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5418 		page_demote_vp_pages(rootpp);
5419 		ASSERT(pp->p_szc == 0);
5420 		return (1);
5421 	}
5422 
5423 	/*
5424 	 * Adjust rootpp if  passed in is not the base
5425 	 * constituent page.
5426 	 */
5427 	npgs = page_get_pagecnt(rootpp->p_szc);
5428 	ASSERT(npgs > 1);
5429 	if (!IS_P2ALIGNED(pfn, npgs)) {
5430 		pfn = P2ALIGN(pfn, npgs);
5431 		rootpp = page_numtopp_nolock(pfn);
5432 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5433 		ASSERT(rootpp->p_vnode != NULL);
5434 		ASSERT(rootpp->p_szc == szc);
5435 	}
5436 
5437 	/*
5438 	 * We can't demote kernel pages since we can't hat_unload()
5439 	 * the mappings.
5440 	 */
5441 	if (rootpp->p_vnode == &kvp)
5442 		return (0);
5443 
5444 	/*
5445 	 * Attempt to lock all constituent pages except the page passed
5446 	 * in since it's already locked.
5447 	 */
5448 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp = page_next(tpp)) {
5449 		ASSERT(!PP_ISFREE(tpp));
5450 		ASSERT(tpp->p_vnode != NULL);
5451 
5452 		if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5453 			break;
5454 		ASSERT(tpp->p_szc == rootpp->p_szc);
5455 		ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5456 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5457 	}
5458 
5459 	/*
5460 	 * If we failed to lock them all then unlock what we have locked
5461 	 * so far and bail.
5462 	 */
5463 	if (i < npgs) {
5464 		tpp = rootpp;
5465 		while (i-- > 0) {
5466 			if (tpp != pp)
5467 				page_unlock(tpp);
5468 			tpp = page_next(tpp);
5469 		}
5470 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5471 		return (0);
5472 	}
5473 
5474 	/*
5475 	 * XXX probably p_szc clearing and page unlocking can be done within
5476 	 * one loop but since this is rare code we can play very safe.
5477 	 */
5478 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp = page_next(tpp)) {
5479 		ASSERT(PAGE_EXCL(tpp));
5480 		tpp->p_szc = 0;
5481 	}
5482 
5483 	/*
5484 	 * Unlock all pages except the page passed in.
5485 	 */
5486 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp = page_next(tpp)) {
5487 		ASSERT(!hat_page_is_mapped(tpp));
5488 		if (tpp != pp)
5489 			page_unlock(tpp);
5490 	}
5491 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5492 	return (1);
5493 }
5494 
5495 /*
5496  * Called by page_free() and page_destroy() to demote the page size code
5497  * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5498  * p_szc on free list, neither can we just clear p_szc of a single page_t
5499  * within a large page since it will break other code that relies on p_szc
5500  * being the same for all page_t's of a large page). Anonymous pages should
5501  * never end up here because anon_map_getpages() cannot deal with p_szc
5502  * changes after a single constituent page is locked.  While anonymous or
5503  * kernel large pages are demoted or freed the entire large page at a time
5504  * with all constituent pages locked EXCL for the file system pages we
5505  * have to be able to demote a large page (i.e. decrease all constituent pages
5506  * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5507  * we can easily deal with anonymous page demotion the entire large page at a
5508  * time is that those operation originate at address space level and concern
5509  * the entire large page region with actual demotion only done when pages are
5510  * not shared with any other processes (therefore we can always get EXCL lock
5511  * on all anonymous constituent pages after clearing segment page
5512  * cache). However file system pages can be truncated or invalidated at a
5513  * PAGESIZE level from the file system side and end up in page_free() or
5514  * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5515  * and therfore pageout should be able to demote a large page by EXCL locking
5516  * any constituent page that is not under SOFTLOCK). In those cases we cannot
5517  * rely on being able to lock EXCL all constituent pages.
5518  *
5519  * To prevent szc changes on file system pages one has to lock all constituent
5520  * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5521  * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5522  * prevent szc changes is hat layer that uses its own page level mlist
5523  * locks. hat assumes that szc doesn't change after mlist lock for a page is
5524  * taken. Therefore we need to change szc under hat level locks if we only
5525  * have an EXCL lock on a single constituent page and hat still references any
5526  * of constituent pages.  (Note we can't "ignore" hat layer by simply
5527  * hat_pageunload() all constituent pages without having EXCL locks on all of
5528  * constituent pages). We use hat_page_demote() call to safely demote szc of
5529  * all constituent pages under hat locks when we only have an EXCL lock on one
5530  * of constituent pages.
5531  *
5532  * This routine calls page_szc_lock() before calling hat_page_demote() to
5533  * allow segvn in one special case not to lock all constituent pages SHARED
5534  * before calling hat_memload_array() that relies on p_szc not changeing even
5535  * before hat level mlist lock is taken.  In that case segvn uses
5536  * page_szc_lock() to prevent hat_page_demote() changeing p_szc values.
5537  *
5538  * Anonymous or kernel page demotion still has to lock all pages exclusively
5539  * and do hat_pageunload() on all constituent pages before demoting the page
5540  * therefore there's no need for anonymous or kernel page demotion to use
5541  * hat_page_demote() mechanism.
5542  *
5543  * hat_page_demote() removes all large mappings that map pp and then decreases
5544  * p_szc starting from the last constituent page of the large page. By working
5545  * from the tail of a large page in pfn decreasing order allows one looking at
5546  * the root page to know that hat_page_demote() is done for root's szc area.
5547  * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5548  * pages within szc 1 area to prevent szc changes because hat_page_demote()
5549  * that started on this page when it had szc > 1 is done for this szc 1 area.
5550  *
5551  * We are guranteed that all constituent pages of pp's large page belong to
5552  * the same vnode with the consecutive offsets increasing in the direction of
5553  * the pfn i.e. the identity of constituent pages can't change until their
5554  * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5555  * large mappings to pp even though we don't lock any constituent page except
5556  * pp (i.e. we won't unload e.g. kernel locked page).
5557  */
5558 static void
5559 page_demote_vp_pages(page_t *pp)
5560 {
5561 	kmutex_t *mtx;
5562 
5563 	ASSERT(PAGE_EXCL(pp));
5564 	ASSERT(!PP_ISFREE(pp));
5565 	ASSERT(pp->p_vnode != NULL);
5566 	ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5567 	ASSERT(pp->p_vnode != &kvp);
5568 
5569 	VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5570 
5571 	mtx = page_szc_lock(pp);
5572 	if (mtx != NULL) {
5573 		hat_page_demote(pp);
5574 		mutex_exit(mtx);
5575 	}
5576 	ASSERT(pp->p_szc == 0);
5577 }
5578 
5579 /*
5580  * Page retire operation.
5581  *
5582  * page_retire()
5583  * Attempt to retire (throw away) page pp.  We cannot do this if
5584  * the page is dirty; if the page is clean, we can try.  We return 0 on
5585  * success, -1 on failure.  This routine should be invoked by the platform's
5586  * memory error detection code.
5587  *
5588  * pages_retired_limit_exceeded()
5589  * We set a limit on the number of pages which may be retired. This
5590  * is set to a percentage of total physical memory. This limit is
5591  * enforced here.
5592  */
5593 
5594 static pgcnt_t	retired_pgcnt = 0;
5595 
5596 /*
5597  * routines to update the count of retired pages
5598  */
5599 static void
5600 page_retired(page_t *pp)
5601 {
5602 	ASSERT(pp);
5603 
5604 	page_settoxic(pp, PAGE_IS_RETIRED);
5605 	atomic_add_long(&retired_pgcnt, 1);
5606 }
5607 
5608 static void
5609 retired_page_removed(page_t *pp)
5610 {
5611 	ASSERT(pp);
5612 	ASSERT(page_isretired(pp));
5613 	ASSERT(retired_pgcnt > 0);
5614 
5615 	page_clrtoxic(pp);
5616 	atomic_add_long(&retired_pgcnt, -1);
5617 }
5618 
5619 
5620 static int
5621 pages_retired_limit_exceeded()
5622 {
5623 	pgcnt_t	retired_max;
5624 
5625 	/*
5626 	 * If the percentage is zero or is not set correctly,
5627 	 * return TRUE so that pages are not retired.
5628 	 */
5629 	if (max_pages_retired_bps <= 0 ||
5630 	    max_pages_retired_bps >= 10000)
5631 		return (1);
5632 
5633 	/*
5634 	 * Calculate the maximum number of pages allowed to
5635 	 * be retired as a percentage of total physical memory
5636 	 * (Remember that we are using basis points, hence the 10000.)
5637 	 */
5638 	retired_max = (physmem * max_pages_retired_bps) / 10000;
5639 
5640 	/*
5641 	 * return 'TRUE' if we have already retired more
5642 	 * than the legal limit
5643 	 */
5644 	return (retired_pgcnt >= retired_max);
5645 }
5646 
5647 #define	PAGE_RETIRE_SELOCK	0
5648 #define	PAGE_RETIRE_NORECLAIM	1
5649 #define	PAGE_RETIRE_LOCKED	2
5650 #define	PAGE_RETIRE_COW		3
5651 #define	PAGE_RETIRE_DIRTY	4
5652 #define	PAGE_RETIRE_LPAGE	5
5653 #define	PAGE_RETIRE_SUCCESS	6
5654 #define	PAGE_RETIRE_LIMIT	7
5655 #define	PAGE_RETIRE_NCODES	8
5656 
5657 typedef struct page_retire_op {
5658 	int	pr_count;
5659 	short	pr_unlock;
5660 	short	pr_retval;
5661 	char	*pr_message;
5662 } page_retire_op_t;
5663 
5664 page_retire_op_t page_retire_ops[PAGE_RETIRE_NCODES] = {
5665 	{	0,	0,	-1,	"cannot lock page"		},
5666 	{	0,	0,	-1,	"cannot reclaim cached page"	},
5667 	{	0,	1,	-1,	"page is locked"		},
5668 	{	0,	1,	-1,	"copy-on-write page"		},
5669 	{	0,	1,	-1,	"page is dirty"			},
5670 	{	0,	1,	-1,	"cannot demote large page"	},
5671 	{	0,	0,	0,	"page successfully retired"	},
5672 	{	0,	0,	-1,	"excess pages retired already"	},
5673 };
5674 
5675 static int
5676 page_retire_done(page_t *pp, int code)
5677 {
5678 	page_retire_op_t *prop = &page_retire_ops[code];
5679 
5680 	prop->pr_count++;
5681 
5682 	if (prop->pr_unlock)
5683 		page_unlock(pp);
5684 
5685 	if (page_retire_messages > 1) {
5686 		printf("page_retire(%p) pfn 0x%lx %s: %s\n",
5687 		    (void *)pp, page_pptonum(pp),
5688 		    prop->pr_retval == -1 ? "failed" : "succeeded",
5689 		    prop->pr_message);
5690 	}
5691 
5692 	return (prop->pr_retval);
5693 }
5694 
5695 int
5696 page_retire(page_t *pp, uchar_t flag)
5697 {
5698 	uint64_t pa = ptob((uint64_t)page_pptonum(pp));
5699 
5700 	ASSERT(flag == PAGE_IS_FAILING || flag == PAGE_IS_TOXIC);
5701 
5702 	/*
5703 	 * DR operations change the association between a page_t
5704 	 * and the physical page it represents. Check if the
5705 	 * page is still bad.
5706 	 */
5707 	if (!page_isfaulty(pp)) {
5708 		page_clrtoxic(pp);
5709 		return (page_retire_done(pp, PAGE_RETIRE_SUCCESS));
5710 	}
5711 
5712 	/*
5713 	 * We set the flag here so that even if we fail due
5714 	 * to exceeding the limit for retired pages, the
5715 	 * page will still be checked and either cleared
5716 	 * or retired in page_free().
5717 	 */
5718 	page_settoxic(pp, flag);
5719 
5720 	if (flag == PAGE_IS_TOXIC) {
5721 		if (page_retire_messages) {
5722 			cmn_err(CE_NOTE, "Scheduling clearing of error on"
5723 			    " page 0x%08x.%08x",
5724 			    (uint32_t)(pa >> 32), (uint32_t)pa);
5725 		}
5726 
5727 	} else { /* PAGE_IS_FAILING */
5728 		if (pages_retired_limit_exceeded()) {
5729 			/*
5730 			 * Return as we have already exceeded the
5731 			 * maximum number of pages allowed to be
5732 			 * retired
5733 			 */
5734 			return (page_retire_done(pp, PAGE_RETIRE_LIMIT));
5735 		}
5736 
5737 		if (page_retire_messages) {
5738 			cmn_err(CE_NOTE, "Scheduling removal of "
5739 			    "page 0x%08x.%08x",
5740 			    (uint32_t)(pa >> 32), (uint32_t)pa);
5741 		}
5742 	}
5743 
5744 	if (PAGE_LOCKED(pp) || !page_trylock(pp, SE_EXCL))
5745 		return (page_retire_done(pp, PAGE_RETIRE_SELOCK));
5746 
5747 	/*
5748 	 * If this is a large page we first try and demote it
5749 	 * to PAGESIZE pages and then dispose of the toxic page.
5750 	 * On failure we will let the page free/destroy
5751 	 * code handle it later since this is a mapped page.
5752 	 * Note that free large pages can always be demoted.
5753 	 *
5754 	 */
5755 	if (pp->p_szc != 0) {
5756 		if (PP_ISFREE(pp))
5757 			(void) page_demote_free_pages(pp);
5758 		else
5759 			(void) page_try_demote_pages(pp);
5760 
5761 		if (pp->p_szc != 0)
5762 			return (page_retire_done(pp, PAGE_RETIRE_LPAGE));
5763 	}
5764 
5765 	if (PP_ISFREE(pp)) {
5766 		if (!page_reclaim(pp, NULL))
5767 			return (page_retire_done(pp, PAGE_RETIRE_NORECLAIM));
5768 		/*LINTED: constant in conditional context*/
5769 		VN_DISPOSE(pp, pp->p_vnode ? B_INVAL : B_FREE, 0, kcred)
5770 		return (page_retire_done(pp, PAGE_RETIRE_SUCCESS));
5771 	}
5772 
5773 	if (pp->p_lckcnt != 0)
5774 		return (page_retire_done(pp, PAGE_RETIRE_LOCKED));
5775 
5776 	if (pp->p_cowcnt != 0)
5777 		return (page_retire_done(pp, PAGE_RETIRE_COW));
5778 
5779 	/*
5780 	 * Unload all translations to this page.  No new translations
5781 	 * can be created while we hold the exclusive lock on the page.
5782 	 */
5783 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
5784 
5785 	if (hat_ismod(pp))
5786 		return (page_retire_done(pp, PAGE_RETIRE_DIRTY));
5787 
5788 	/*LINTED: constant in conditional context*/
5789 	VN_DISPOSE(pp, B_INVAL, 0, kcred);
5790 
5791 	return (page_retire_done(pp, PAGE_RETIRE_SUCCESS));
5792 }
5793 
5794 /*
5795  * Mark any existing pages for migration in the given range
5796  */
5797 void
5798 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5799     struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5800     u_offset_t vnoff, int rflag)
5801 {
5802 	struct anon	*ap;
5803 	vnode_t		*curvp;
5804 	lgrp_t		*from;
5805 	pgcnt_t		i;
5806 	pgcnt_t		nlocked;
5807 	u_offset_t	off;
5808 	pfn_t		pfn;
5809 	size_t		pgsz;
5810 	size_t		segpgsz;
5811 	pgcnt_t		pages;
5812 	uint_t		pszc;
5813 	page_t		**ppa;
5814 	pgcnt_t		ppa_nentries;
5815 	page_t		*pp;
5816 	caddr_t		va;
5817 	ulong_t		an_idx;
5818 	anon_sync_obj_t	cookie;
5819 
5820 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5821 
5822 	/*
5823 	 * Don't do anything if don't need to do lgroup optimizations
5824 	 * on this system
5825 	 */
5826 	if (!lgrp_optimizations())
5827 		return;
5828 
5829 	/*
5830 	 * Align address and length to (potentially large) page boundary
5831 	 */
5832 	segpgsz = page_get_pagesize(seg->s_szc);
5833 	addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5834 	if (rflag)
5835 		len = P2ROUNDUP(len, segpgsz);
5836 
5837 	/*
5838 	 * Allocate page array to accomodate largest page size
5839 	 */
5840 	pgsz = page_get_pagesize(page_num_pagesizes() - 1);
5841 	ppa_nentries = btop(pgsz);
5842 	ppa = kmem_zalloc(ppa_nentries * sizeof (page_t *), KM_SLEEP);
5843 
5844 	/*
5845 	 * Do one (large) page at a time
5846 	 */
5847 	va = addr;
5848 	while (va < addr + len) {
5849 		/*
5850 		 * Lookup (root) page for vnode and offset corresponding to
5851 		 * this virtual address
5852 		 * Try anonmap first since there may be copy-on-write
5853 		 * pages, but initialize vnode pointer and offset using
5854 		 * vnode arguments just in case there isn't an amp.
5855 		 */
5856 		curvp = vp;
5857 		off = vnoff + va - seg->s_base;
5858 		if (amp) {
5859 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5860 			an_idx = anon_index + seg_page(seg, va);
5861 			anon_array_enter(amp, an_idx, &cookie);
5862 			ap = anon_get_ptr(amp->ahp, an_idx);
5863 			if (ap)
5864 				swap_xlate(ap, &curvp, &off);
5865 			anon_array_exit(&cookie);
5866 			ANON_LOCK_EXIT(&amp->a_rwlock);
5867 		}
5868 
5869 		pp = NULL;
5870 		if (curvp)
5871 			pp = page_lookup(curvp, off, SE_SHARED);
5872 
5873 		/*
5874 		 * If there isn't a page at this virtual address,
5875 		 * skip to next page
5876 		 */
5877 		if (pp == NULL) {
5878 			va += PAGESIZE;
5879 			continue;
5880 		}
5881 
5882 		/*
5883 		 * Figure out which lgroup this page is in for kstats
5884 		 */
5885 		pfn = page_pptonum(pp);
5886 		from = lgrp_pfn_to_lgrp(pfn);
5887 
5888 		/*
5889 		 * Get page size, and round up and skip to next page boundary
5890 		 * if unaligned address
5891 		 */
5892 		pszc = pp->p_szc;
5893 		pgsz = page_get_pagesize(pszc);
5894 		pages = btop(pgsz);
5895 		if (!IS_P2ALIGNED(va, pgsz) ||
5896 		    !IS_P2ALIGNED(pfn, pages) ||
5897 		    pgsz > segpgsz) {
5898 			pgsz = MIN(pgsz, segpgsz);
5899 			page_unlock(pp);
5900 			i = btop(P2END((uintptr_t)va, pgsz) -
5901 			    (uintptr_t)va);
5902 			va = (caddr_t)P2END((uintptr_t)va, pgsz);
5903 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, i);
5904 			continue;
5905 		}
5906 
5907 		/*
5908 		 * Upgrade to exclusive lock on page
5909 		 */
5910 		if (!page_tryupgrade(pp)) {
5911 			page_unlock(pp);
5912 			va += pgsz;
5913 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5914 			    btop(pgsz));
5915 			continue;
5916 		}
5917 
5918 		/*
5919 		 * Remember pages locked exclusively and how many
5920 		 */
5921 		ppa[0] = pp;
5922 		nlocked = 1;
5923 
5924 		/*
5925 		 * Lock constituent pages if this is large page
5926 		 */
5927 		if (pages > 1) {
5928 			/*
5929 			 * Lock all constituents except root page, since it
5930 			 * should be locked already.
5931 			 */
5932 			for (i = 1; i < pages; i++) {
5933 				pp = page_next(pp);
5934 				if (!page_trylock(pp, SE_EXCL)) {
5935 					break;
5936 				}
5937 				if (PP_ISFREE(pp) ||
5938 				    pp->p_szc != pszc) {
5939 					/*
5940 					 * hat_page_demote() raced in with us.
5941 					 */
5942 					ASSERT(!IS_SWAPFSVP(curvp));
5943 					page_unlock(pp);
5944 					break;
5945 				}
5946 				ppa[nlocked] = pp;
5947 				nlocked++;
5948 			}
5949 		}
5950 
5951 		/*
5952 		 * If all constituent pages couldn't be locked,
5953 		 * unlock pages locked so far and skip to next page.
5954 		 */
5955 		if (nlocked != pages) {
5956 			for (i = 0; i < nlocked; i++)
5957 				page_unlock(ppa[i]);
5958 			va += pgsz;
5959 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5960 			    btop(pgsz));
5961 			continue;
5962 		}
5963 
5964 		/*
5965 		 * hat_page_demote() can no longer happen
5966 		 * since last cons page had the right p_szc after
5967 		 * all cons pages were locked. all cons pages
5968 		 * should now have the same p_szc.
5969 		 */
5970 
5971 		/*
5972 		 * All constituent pages locked successfully, so mark
5973 		 * large page for migration and unload the mappings of
5974 		 * constituent pages, so a fault will occur on any part of the
5975 		 * large page
5976 		 */
5977 		PP_SETMIGRATE(ppa[0]);
5978 		for (i = 0; i < nlocked; i++) {
5979 			pp = ppa[i];
5980 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
5981 			ASSERT(hat_page_getshare(pp) == 0);
5982 			page_unlock(pp);
5983 		}
5984 		lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5985 
5986 		va += pgsz;
5987 	}
5988 	kmem_free(ppa, ppa_nentries * sizeof (page_t *));
5989 }
5990 
5991 /*
5992  * Migrate any pages that have been marked for migration in the given range
5993  */
5994 void
5995 page_migrate(
5996 	struct seg	*seg,
5997 	caddr_t		addr,
5998 	page_t		**ppa,
5999 	pgcnt_t		npages)
6000 {
6001 	lgrp_t		*from;
6002 	lgrp_t		*to;
6003 	page_t		*newpp;
6004 	page_t		*pp;
6005 	pfn_t		pfn;
6006 	size_t		pgsz;
6007 	spgcnt_t	page_cnt;
6008 	spgcnt_t	i;
6009 	uint_t		pszc;
6010 
6011 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6012 
6013 	while (npages > 0) {
6014 		pp = *ppa;
6015 		pszc = pp->p_szc;
6016 		pgsz = page_get_pagesize(pszc);
6017 		page_cnt = btop(pgsz);
6018 
6019 		/*
6020 		 * Check to see whether this page is marked for migration
6021 		 *
6022 		 * Assume that root page of large page is marked for
6023 		 * migration and none of the other constituent pages
6024 		 * are marked.  This really simplifies clearing the
6025 		 * migrate bit by not having to clear it from each
6026 		 * constituent page.
6027 		 *
6028 		 * note we don't want to relocate an entire large page if
6029 		 * someone is only using one subpage.
6030 		 */
6031 		if (npages < page_cnt)
6032 			break;
6033 
6034 		/*
6035 		 * Is it marked for migration?
6036 		 */
6037 		if (!PP_ISMIGRATE(pp))
6038 			goto next;
6039 
6040 		/*
6041 		 * Determine lgroups that page is being migrated between
6042 		 */
6043 		pfn = page_pptonum(pp);
6044 		if (!IS_P2ALIGNED(pfn, page_cnt)) {
6045 			break;
6046 		}
6047 		from = lgrp_pfn_to_lgrp(pfn);
6048 		to = lgrp_mem_choose(seg, addr, pgsz);
6049 
6050 		/*
6051 		 * Check to see whether we are trying to migrate page to lgroup
6052 		 * where it is allocated already
6053 		 */
6054 		if (to == from) {
6055 			PP_CLRMIGRATE(pp);
6056 			goto next;
6057 		}
6058 
6059 		/*
6060 		 * Need to get exclusive lock's to migrate
6061 		 */
6062 		for (i = 0; i < page_cnt; i++) {
6063 			ASSERT(PAGE_LOCKED(ppa[i]));
6064 			if (page_pptonum(ppa[i]) != pfn + i ||
6065 			    ppa[i]->p_szc != pszc) {
6066 				break;
6067 			}
6068 			if (!page_tryupgrade(ppa[i])) {
6069 				lgrp_stat_add(from->lgrp_id,
6070 				    LGRP_PM_FAIL_LOCK_PGS,
6071 				    page_cnt);
6072 				break;
6073 			}
6074 		}
6075 		if (i != page_cnt) {
6076 			while (--i != -1) {
6077 				page_downgrade(ppa[i]);
6078 			}
6079 			goto next;
6080 		}
6081 
6082 		(void) page_create_wait(page_cnt, PG_WAIT);
6083 		newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
6084 		if (newpp == NULL) {
6085 			page_create_putback(page_cnt);
6086 			for (i = 0; i < page_cnt; i++) {
6087 				page_downgrade(ppa[i]);
6088 			}
6089 			lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
6090 			    page_cnt);
6091 			goto next;
6092 		}
6093 		ASSERT(newpp->p_szc == pszc);
6094 		/*
6095 		 * Clear migrate bit and relocate page
6096 		 */
6097 		PP_CLRMIGRATE(pp);
6098 		if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
6099 			panic("page_migrate: page_relocate failed");
6100 		}
6101 		ASSERT(page_cnt * PAGESIZE == pgsz);
6102 
6103 		/*
6104 		 * Keep stats for number of pages migrated from and to
6105 		 * each lgroup
6106 		 */
6107 		lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
6108 		lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
6109 		/*
6110 		 * update the page_t array we were passed in and
6111 		 * unlink constituent pages of a large page.
6112 		 */
6113 		for (i = 0; i < page_cnt; ++i, ++pp) {
6114 			ASSERT(PAGE_EXCL(newpp));
6115 			ASSERT(newpp->p_szc == pszc);
6116 			ppa[i] = newpp;
6117 			pp = newpp;
6118 			page_sub(&newpp, pp);
6119 			page_downgrade(pp);
6120 		}
6121 		ASSERT(newpp == NULL);
6122 next:
6123 		addr += pgsz;
6124 		ppa += page_cnt;
6125 		npages -= page_cnt;
6126 	}
6127 }
6128 
6129 /*
6130  * initialize the vnode for retired pages
6131  */
6132 static void
6133 page_retired_init(void)
6134 {
6135 	vn_setops(&retired_ppages, &retired_vnodeops);
6136 }
6137 
6138 /* ARGSUSED */
6139 static void
6140 retired_dispose(vnode_t *vp, page_t *pp, int flag, int dn, cred_t *cr)
6141 {
6142 	panic("retired_dispose invoked");
6143 }
6144 
6145 /* ARGSUSED */
6146 static void
6147 retired_inactive(vnode_t *vp, cred_t *cr)
6148 {}
6149 
6150 void
6151 page_unretire_pages(void)
6152 {
6153 	page_t		*pp;
6154 	kmutex_t	*vphm;
6155 	vnode_t		*vp;
6156 	page_t		*rpages[UNRETIRE_PAGES];
6157 	pgcnt_t		i, npages, rmem;
6158 	uint64_t	pa;
6159 
6160 	rmem = 0;
6161 
6162 	for (;;) {
6163 		/*
6164 		 * We do this in 2 steps:
6165 		 *
6166 		 * 1. We walk the retired pages list and collect a list of
6167 		 *    pages that have the toxic field cleared.
6168 		 *
6169 		 * 2. We iterate through the page list and unretire each one.
6170 		 *
6171 		 * We have to do it in two steps on account of the mutexes that
6172 		 * we need to acquire.
6173 		 */
6174 
6175 		vp = &retired_ppages;
6176 		vphm = page_vnode_mutex(vp);
6177 		mutex_enter(vphm);
6178 
6179 		if ((pp = vp->v_pages) == NULL) {
6180 			mutex_exit(vphm);
6181 			break;
6182 		}
6183 
6184 		i = 0;
6185 		do {
6186 			ASSERT(pp != NULL);
6187 			ASSERT(pp->p_vnode == vp);
6188 
6189 			/*
6190 			 * DR operations change the association between a page_t
6191 			 * and the physical page it represents. Check if the
6192 			 * page is still bad. If not, unretire it.
6193 			 */
6194 			if (!page_isfaulty(pp))
6195 				rpages[i++] = pp;
6196 
6197 			pp = pp->p_vpnext;
6198 		} while ((pp != vp->v_pages) && (i < UNRETIRE_PAGES));
6199 
6200 		mutex_exit(vphm);
6201 
6202 		npages = i;
6203 		for (i = 0; i < npages; i++) {
6204 			pp = rpages[i];
6205 			pa = ptob((uint64_t)page_pptonum(pp));
6206 
6207 			/*
6208 			 * Need to upgrade the shared lock to an exclusive
6209 			 * lock in order to hash out the page.
6210 			 *
6211 			 * The page could have been retired but the page lock
6212 			 * may not have been downgraded yet. If so, skip this
6213 			 * page. page_free() will call this function after the
6214 			 * lock is downgraded.
6215 			 */
6216 
6217 			if (!PAGE_SHARED(pp) || !page_tryupgrade(pp))
6218 				continue;
6219 
6220 			/*
6221 			 * Both page_free() and DR call this function. They
6222 			 * can potentially call this function at the same
6223 			 * time and race with each other.
6224 			 */
6225 			if (!page_isretired(pp) || page_isfaulty(pp)) {
6226 				page_downgrade(pp);
6227 				continue;
6228 			}
6229 
6230 			cmn_err(CE_NOTE,
6231 				"unretiring retired page 0x%08x.%08x",
6232 				(uint32_t)(pa >> 32), (uint32_t)pa);
6233 
6234 			/*
6235 			 * When a page is removed from the retired pages vnode,
6236 			 * its toxic field is also cleared. So, we do not have
6237 			 * to do that seperately here.
6238 			 */
6239 			page_hashout(pp, (kmutex_t *)NULL);
6240 
6241 			/*
6242 			 * This is a good page. So, free it.
6243 			 */
6244 			pp->p_vnode = NULL;
6245 			page_free(pp, 1);
6246 			rmem++;
6247 		}
6248 
6249 		/*
6250 		 * If the rpages array was filled up, then there could be more
6251 		 * retired pages that are not faulty. We need to iterate
6252 		 * again and unretire them. Otherwise, we are done.
6253 		 */
6254 		if (npages < UNRETIRE_PAGES)
6255 			break;
6256 	}
6257 
6258 	mutex_enter(&freemem_lock);
6259 	availrmem += rmem;
6260 	mutex_exit(&freemem_lock);
6261 }
6262 
6263 ulong_t mem_waiters 	= 0;
6264 ulong_t	max_count 	= 20;
6265 #define	MAX_DELAY	0x1ff
6266 
6267 /*
6268  * Check if enough memory is available to proceed.
6269  * Depending on system configuration and how much memory is
6270  * reserved for swap we need to check against two variables.
6271  * e.g. on systems with little physical swap availrmem can be
6272  * more reliable indicator of how much memory is available.
6273  * On systems with large phys swap freemem can be better indicator.
6274  * If freemem drops below threshold level don't return an error
6275  * immediately but wake up pageout to free memory and block.
6276  * This is done number of times. If pageout is not able to free
6277  * memory within certain time return an error.
6278  * The same applies for availrmem but kmem_reap is used to
6279  * free memory.
6280  */
6281 int
6282 page_mem_avail(pgcnt_t npages)
6283 {
6284 	ulong_t count;
6285 
6286 #if defined(__i386)
6287 	if (freemem > desfree + npages &&
6288 	    availrmem > swapfs_reserve + npages &&
6289 	    btop(vmem_size(heap_arena, VMEM_FREE)) > tune.t_minarmem +
6290 	    npages)
6291 		return (1);
6292 #else
6293 	if (freemem > desfree + npages &&
6294 	    availrmem > swapfs_reserve + npages)
6295 		return (1);
6296 #endif
6297 
6298 	count = max_count;
6299 	atomic_add_long(&mem_waiters, 1);
6300 
6301 	while (freemem < desfree + npages && --count) {
6302 		cv_signal(&proc_pageout->p_cv);
6303 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
6304 			atomic_add_long(&mem_waiters, -1);
6305 			return (0);
6306 		}
6307 	}
6308 	if (count == 0) {
6309 		atomic_add_long(&mem_waiters, -1);
6310 		return (0);
6311 	}
6312 
6313 	count = max_count;
6314 	while (availrmem < swapfs_reserve + npages && --count) {
6315 		kmem_reap();
6316 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
6317 			atomic_add_long(&mem_waiters, -1);
6318 			return (0);
6319 		}
6320 	}
6321 	atomic_add_long(&mem_waiters, -1);
6322 	if (count == 0)
6323 		return (0);
6324 
6325 #if defined(__i386)
6326 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
6327 	    tune.t_minarmem + npages)
6328 		return (0);
6329 #endif
6330 	return (1);
6331 }
6332 
6333 
6334 /*
6335  * Search the memory segments to locate the desired page.  Within a
6336  * segment, pages increase linearly with one page structure per
6337  * physical page frame (size PAGESIZE).  The search begins
6338  * with the segment that was accessed last, to take advantage of locality.
6339  * If the hint misses, we start from the beginning of the sorted memseg list
6340  */
6341 
6342 
6343 /*
6344  * Some data structures for pfn to pp lookup.
6345  */
6346 ulong_t mhash_per_slot;
6347 struct memseg *memseg_hash[N_MEM_SLOTS];
6348 
6349 page_t *
6350 page_numtopp_nolock(pfn_t pfnum)
6351 {
6352 	static struct memseg *last_memseg_by_pfnum = NULL;
6353 	struct memseg *seg;
6354 	page_t *pp;
6355 
6356 	/*
6357 	 *	XXX - Since page_numtopp_nolock is called in many places where
6358 	 *	the search fails more than it succeeds. It maybe worthwhile
6359 	 *	to put a check for pf_is_memory or a pfnum <= max_pfn (set at
6360 	 *	boot time).
6361 	 *
6362 	 *	if (!pf_is_memory(pfnum) || (pfnum > max_pfn))
6363 	 *		return (NULL);
6364 	 */
6365 
6366 	MEMSEG_STAT_INCR(nsearch);
6367 
6368 	/* Try last winner first */
6369 	if (((seg = last_memseg_by_pfnum) != NULL) &&
6370 		(pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
6371 		MEMSEG_STAT_INCR(nlastwon);
6372 		pp = seg->pages + (pfnum - seg->pages_base);
6373 		if (pp->p_pagenum == pfnum)
6374 			return ((page_t *)pp);
6375 	}
6376 
6377 	/* Else Try hash */
6378 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
6379 		(pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
6380 		MEMSEG_STAT_INCR(nhashwon);
6381 		last_memseg_by_pfnum = seg;
6382 		pp = seg->pages + (pfnum - seg->pages_base);
6383 		if (pp->p_pagenum == pfnum)
6384 			return ((page_t *)pp);
6385 	}
6386 
6387 	/* Else Brute force */
6388 	for (seg = memsegs; seg != NULL; seg = seg->next) {
6389 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
6390 			last_memseg_by_pfnum = seg;
6391 			pp = seg->pages + (pfnum - seg->pages_base);
6392 			return ((page_t *)pp);
6393 		}
6394 	}
6395 	last_memseg_by_pfnum = NULL;
6396 	MEMSEG_STAT_INCR(nnotfound);
6397 	return ((page_t *)NULL);
6398 
6399 }
6400 
6401 struct memseg *
6402 page_numtomemseg_nolock(pfn_t pfnum)
6403 {
6404 	struct memseg *seg;
6405 	page_t *pp;
6406 
6407 	/* Try hash */
6408 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
6409 		(pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
6410 		pp = seg->pages + (pfnum - seg->pages_base);
6411 		if (pp->p_pagenum == pfnum)
6412 			return (seg);
6413 	}
6414 
6415 	/* Else Brute force */
6416 	for (seg = memsegs; seg != NULL; seg = seg->next) {
6417 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
6418 			return (seg);
6419 		}
6420 	}
6421 	return ((struct memseg *)NULL);
6422 }
6423 
6424 /*
6425  * Given a page and a count return the page struct that is
6426  * n structs away from the current one in the global page
6427  * list.
6428  *
6429  * This function wraps to the first page upon
6430  * reaching the end of the memseg list.
6431  */
6432 page_t *
6433 page_nextn(page_t *pp, ulong_t n)
6434 {
6435 	static struct memseg *last_page_next_memseg = NULL;
6436 	struct memseg *seg;
6437 	page_t *ppn;
6438 
6439 	if (((seg = last_page_next_memseg) == NULL) ||
6440 	    (seg->pages_base == seg->pages_end) ||
6441 	    !(pp >= seg->pages && pp < seg->epages)) {
6442 
6443 		for (seg = memsegs; seg; seg = seg->next) {
6444 			if (pp >= seg->pages && pp < seg->epages)
6445 				break;
6446 		}
6447 
6448 		if (seg == NULL) {
6449 			/* Memory delete got in, return something valid. */
6450 			/* TODO: fix me. */
6451 			seg = memsegs;
6452 			pp = seg->pages;
6453 		}
6454 	}
6455 
6456 	/* check for wraparound - possible if n is large */
6457 	while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
6458 		n -= seg->epages - pp;
6459 		seg = seg->next;
6460 		if (seg == NULL)
6461 			seg = memsegs;
6462 		pp = seg->pages;
6463 	}
6464 	last_page_next_memseg = seg;
6465 	return (ppn);
6466 }
6467 
6468 /*
6469  * Initialize for a loop using page_next_scan_large().
6470  */
6471 page_t *
6472 page_next_scan_init(void **cookie)
6473 {
6474 	ASSERT(cookie != NULL);
6475 	*cookie = (void *)memsegs;
6476 	return ((page_t *)memsegs->pages);
6477 }
6478 
6479 /*
6480  * Return the next page in a scan of page_t's, assuming we want
6481  * to skip over sub-pages within larger page sizes.
6482  *
6483  * The cookie is used to keep track of the current memseg.
6484  */
6485 page_t *
6486 page_next_scan_large(
6487 	page_t		*pp,
6488 	ulong_t		*n,
6489 	void		**cookie)
6490 {
6491 	struct memseg	*seg = (struct memseg *)*cookie;
6492 	page_t		*new_pp;
6493 	ulong_t		cnt;
6494 	pfn_t		pfn;
6495 
6496 
6497 	/*
6498 	 * get the count of page_t's to skip based on the page size
6499 	 */
6500 	ASSERT(pp != NULL);
6501 	if (pp->p_szc == 0) {
6502 		cnt = 1;
6503 	} else {
6504 		pfn = page_pptonum(pp);
6505 		cnt = page_get_pagecnt(pp->p_szc);
6506 		cnt -= pfn & (cnt - 1);
6507 	}
6508 	*n += cnt;
6509 	new_pp = pp + cnt;
6510 
6511 	/*
6512 	 * Catch if we went past the end of the current memory segment. If so,
6513 	 * just move to the next segment with pages.
6514 	 */
6515 	if (new_pp >= seg->epages) {
6516 		do {
6517 			seg = seg->next;
6518 			if (seg == NULL)
6519 				seg = memsegs;
6520 		} while (seg->pages == seg->epages);
6521 		new_pp = seg->pages;
6522 		*cookie = (void *)seg;
6523 	}
6524 
6525 	return (new_pp);
6526 }
6527 
6528 
6529 /*
6530  * Returns next page in list. Note: this function wraps
6531  * to the first page in the list upon reaching the end
6532  * of the list. Callers should be aware of this fact.
6533  */
6534 
6535 /* We should change this be a #define */
6536 
6537 page_t *
6538 page_next(page_t *pp)
6539 {
6540 	return (page_nextn(pp, 1));
6541 }
6542 
6543 /*
6544  * Special for routines processing an array of page_t.
6545  */
6546 page_t *
6547 page_nextn_raw(page_t *pp, ulong_t n)
6548 {
6549 	return (pp+n);
6550 }
6551 
6552 page_t *
6553 page_first()
6554 {
6555 	return ((page_t *)memsegs->pages);
6556 }
6557 
6558 
6559 /*
6560  * This routine is called at boot with the initial memory configuration
6561  * and when memory is added or removed.
6562  */
6563 void
6564 build_pfn_hash()
6565 {
6566 	pfn_t cur;
6567 	pgcnt_t index;
6568 	struct memseg *pseg;
6569 	int	i;
6570 
6571 	/*
6572 	 * Clear memseg_hash array.
6573 	 * Since memory add/delete is designed to operate concurrently
6574 	 * with normal operation, the hash rebuild must be able to run
6575 	 * concurrently with page_numtopp_nolock(). To support this
6576 	 * functionality, assignments to memseg_hash array members must
6577 	 * be done atomically.
6578 	 *
6579 	 * NOTE: bzero() does not currently guarantee this for kernel
6580 	 * threads, and cannot be used here.
6581 	 */
6582 	for (i = 0; i < N_MEM_SLOTS; i++)
6583 		memseg_hash[i] = NULL;
6584 
6585 	hat_kpm_mseghash_clear(N_MEM_SLOTS);
6586 
6587 	/*
6588 	 * Physmax is the last valid pfn.
6589 	 */
6590 	mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6591 	for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6592 		index = MEMSEG_PFN_HASH(pseg->pages_base);
6593 		cur = pseg->pages_base;
6594 		do {
6595 			if (index >= N_MEM_SLOTS)
6596 				index = MEMSEG_PFN_HASH(cur);
6597 
6598 			if (memseg_hash[index] == NULL ||
6599 			    memseg_hash[index]->pages_base > pseg->pages_base) {
6600 				memseg_hash[index] = pseg;
6601 				hat_kpm_mseghash_update(index, pseg);
6602 			}
6603 			cur += mhash_per_slot;
6604 			index++;
6605 		} while (cur < pseg->pages_end);
6606 	}
6607 }
6608 
6609 /*
6610  * Return the pagenum for the pp
6611  */
6612 pfn_t
6613 page_pptonum(page_t *pp)
6614 {
6615 	return (pp->p_pagenum);
6616 }
6617 
6618 /*
6619  * interface to the referenced and modified etc bits
6620  * in the PSM part of the page struct
6621  * when no locking is desired.
6622  */
6623 void
6624 page_set_props(page_t *pp, uint_t flags)
6625 {
6626 	ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6627 	pp->p_nrm |= (uchar_t)flags;
6628 }
6629 
6630 void
6631 page_clr_all_props(page_t *pp)
6632 {
6633 	pp->p_nrm = 0;
6634 }
6635 
6636 /*
6637  * The following functions is called from free_vp_pages()
6638  * for an inexact estimate of a newly free'd page...
6639  */
6640 ulong_t
6641 page_share_cnt(page_t *pp)
6642 {
6643 	return (hat_page_getshare(pp));
6644 }
6645 
6646 /*
6647  * The following functions are used in handling memory
6648  * errors.
6649  */
6650 
6651 int
6652 page_istoxic(page_t *pp)
6653 {
6654 	return ((pp->p_toxic & PAGE_IS_TOXIC) == PAGE_IS_TOXIC);
6655 }
6656 
6657 int
6658 page_isfailing(page_t *pp)
6659 {
6660 	return ((pp->p_toxic & PAGE_IS_FAILING) == PAGE_IS_FAILING);
6661 }
6662 
6663 int
6664 page_isretired(page_t *pp)
6665 {
6666 	return ((pp->p_toxic & PAGE_IS_RETIRED) == PAGE_IS_RETIRED);
6667 }
6668 
6669 int
6670 page_deteriorating(page_t *pp)
6671 {
6672 	return ((pp->p_toxic & (PAGE_IS_TOXIC | PAGE_IS_FAILING)) != 0);
6673 }
6674 
6675 void
6676 page_settoxic(page_t *pp, uchar_t flag)
6677 {
6678 	uchar_t new_flag = 0;
6679 	while ((new_flag & flag) != flag) {
6680 		uchar_t old_flag = pp->p_toxic;
6681 		new_flag = old_flag | flag;
6682 		(void) cas8(&pp->p_toxic, old_flag, new_flag);
6683 		new_flag = ((volatile page_t *)pp)->p_toxic;
6684 	}
6685 }
6686 
6687 void
6688 page_clrtoxic(page_t *pp)
6689 {
6690 	/*
6691 	 * We don't need to worry about atomicity on the
6692 	 * p_toxic flag here as this is only called from
6693 	 * page_free() while holding an exclusive lock on
6694 	 * the page
6695 	 */
6696 	pp->p_toxic = PAGE_IS_OK;
6697 }
6698 
6699 void
6700 page_clrtoxic_flag(page_t *pp, uchar_t flag)
6701 {
6702 	uchar_t new_flag = ((volatile page_t *)pp)->p_toxic;
6703 	while ((new_flag & flag) == flag) {
6704 		uchar_t old_flag = new_flag;
6705 		new_flag = old_flag & ~flag;
6706 		(void) cas8(&pp->p_toxic, old_flag, new_flag);
6707 		new_flag = ((volatile page_t *)pp)->p_toxic;
6708 	}
6709 }
6710 
6711 int
6712 page_isfaulty(page_t *pp)
6713 {
6714 	return ((pp->p_toxic & PAGE_IS_FAULTY) == PAGE_IS_FAULTY);
6715 }
6716 
6717 /*
6718  * The following four functions are called from /proc code
6719  * for the /proc/<pid>/xmap interface.
6720  */
6721 int
6722 page_isshared(page_t *pp)
6723 {
6724 	return (hat_page_getshare(pp) > 1);
6725 }
6726 
6727 int
6728 page_isfree(page_t *pp)
6729 {
6730 	return (PP_ISFREE(pp));
6731 }
6732 
6733 int
6734 page_isref(page_t *pp)
6735 {
6736 	return (hat_page_getattr(pp, P_REF));
6737 }
6738 
6739 int
6740 page_ismod(page_t *pp)
6741 {
6742 	return (hat_page_getattr(pp, P_MOD));
6743 }
6744