1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #pragma ident "%Z%%M% %I% %E% SMI" 40 41 /* 42 * VM - address spaces. 43 */ 44 45 #include <sys/types.h> 46 #include <sys/t_lock.h> 47 #include <sys/param.h> 48 #include <sys/errno.h> 49 #include <sys/systm.h> 50 #include <sys/mman.h> 51 #include <sys/sysmacros.h> 52 #include <sys/cpuvar.h> 53 #include <sys/sysinfo.h> 54 #include <sys/kmem.h> 55 #include <sys/vnode.h> 56 #include <sys/vmsystm.h> 57 #include <sys/cmn_err.h> 58 #include <sys/debug.h> 59 #include <sys/tnf_probe.h> 60 #include <sys/vtrace.h> 61 62 #include <vm/hat.h> 63 #include <vm/xhat.h> 64 #include <vm/as.h> 65 #include <vm/seg.h> 66 #include <vm/seg_vn.h> 67 #include <vm/seg_dev.h> 68 #include <vm/seg_kmem.h> 69 #include <vm/seg_map.h> 70 #include <vm/seg_spt.h> 71 #include <vm/page.h> 72 73 clock_t deadlk_wait = 1; /* number of ticks to wait before retrying */ 74 75 static struct kmem_cache *as_cache; 76 77 static void as_setwatchprot(struct as *, caddr_t, size_t, uint_t); 78 static void as_clearwatchprot(struct as *, caddr_t, size_t); 79 int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *); 80 81 82 /* 83 * Verifying the segment lists is very time-consuming; it may not be 84 * desirable always to define VERIFY_SEGLIST when DEBUG is set. 85 */ 86 #ifdef DEBUG 87 #define VERIFY_SEGLIST 88 int do_as_verify = 0; 89 #endif 90 91 /* 92 * Allocate a new callback data structure entry and fill in the events of 93 * interest, the address range of interest, and the callback argument. 94 * Link the entry on the as->a_callbacks list. A callback entry for the 95 * entire address space may be specified with vaddr = 0 and size = -1. 96 * 97 * CALLERS RESPONSIBILITY: If not calling from within the process context for 98 * the specified as, the caller must guarantee persistence of the specified as 99 * for the duration of this function (eg. pages being locked within the as 100 * will guarantee persistence). 101 */ 102 int 103 as_add_callback(struct as *as, void (*cb_func)(), void *arg, uint_t events, 104 caddr_t vaddr, size_t size, int sleepflag) 105 { 106 struct as_callback *current_head, *cb; 107 caddr_t saddr; 108 size_t rsize; 109 110 /* callback function and an event are mandatory */ 111 if ((cb_func == NULL) || ((events & AS_ALL_EVENT) == 0)) 112 return (EINVAL); 113 114 /* Adding a callback after as_free has been called is not allowed */ 115 if (as == &kas) 116 return (ENOMEM); 117 118 /* 119 * vaddr = 0 and size = -1 is used to indicate that the callback range 120 * is the entire address space so no rounding is done in that case. 121 */ 122 if (size != -1) { 123 saddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 124 rsize = (((size_t)(vaddr + size) + PAGEOFFSET) & PAGEMASK) - 125 (size_t)saddr; 126 /* check for wraparound */ 127 if (saddr + rsize < saddr) 128 return (ENOMEM); 129 } else { 130 if (vaddr != 0) 131 return (EINVAL); 132 saddr = vaddr; 133 rsize = size; 134 } 135 136 /* Allocate and initialize a callback entry */ 137 cb = kmem_zalloc(sizeof (struct as_callback), sleepflag); 138 if (cb == NULL) 139 return (EAGAIN); 140 141 cb->ascb_func = cb_func; 142 cb->ascb_arg = arg; 143 cb->ascb_events = events; 144 cb->ascb_saddr = saddr; 145 cb->ascb_len = rsize; 146 147 /* Add the entry to the list */ 148 mutex_enter(&as->a_contents); 149 current_head = as->a_callbacks; 150 as->a_callbacks = cb; 151 cb->ascb_next = current_head; 152 153 /* 154 * The call to this function may lose in a race with 155 * a pertinent event - eg. a thread does long term memory locking 156 * but before the callback is added another thread executes as_unmap. 157 * A broadcast here resolves that. 158 */ 159 if ((cb->ascb_events & AS_UNMAPWAIT_EVENT) && AS_ISUNMAPWAIT(as)) { 160 AS_CLRUNMAPWAIT(as); 161 cv_broadcast(&as->a_cv); 162 } 163 164 mutex_exit(&as->a_contents); 165 return (0); 166 } 167 168 /* 169 * Search the callback list for an entry which pertains to arg. 170 * 171 * This is called from within the client upon completion of the callback. 172 * RETURN VALUES: 173 * AS_CALLBACK_DELETED (callback entry found and deleted) 174 * AS_CALLBACK_NOTFOUND (no callback entry found - this is ok) 175 * AS_CALLBACK_DELETE_DEFERRED (callback is in process, delete of this 176 * entry will be made in as_do_callbacks) 177 * 178 * If as_delete_callback encounters a matching entry with AS_CALLBACK_CALLED 179 * set, it indicates that as_do_callbacks is processing this entry. The 180 * AS_ALL_EVENT events are cleared in the entry, and a broadcast is made 181 * to unblock as_do_callbacks, in case it is blocked. 182 * 183 * CALLERS RESPONSIBILITY: If not calling from within the process context for 184 * the specified as, the caller must guarantee persistence of the specified as 185 * for the duration of this function (eg. pages being locked within the as 186 * will guarantee persistence). 187 */ 188 uint_t 189 as_delete_callback(struct as *as, void *arg) 190 { 191 struct as_callback **prevcb = &as->a_callbacks; 192 struct as_callback *cb; 193 uint_t rc = AS_CALLBACK_NOTFOUND; 194 195 mutex_enter(&as->a_contents); 196 for (cb = as->a_callbacks; cb; prevcb = &cb->ascb_next, cb = *prevcb) { 197 if (cb->ascb_arg != arg) 198 continue; 199 200 /* 201 * If the events indicate AS_CALLBACK_CALLED, just clear 202 * AS_ALL_EVENT in the events field and wakeup the thread 203 * that may be waiting in as_do_callbacks. as_do_callbacks 204 * will take care of removing this entry from the list. In 205 * that case, return AS_CALLBACK_DELETE_DEFERRED. Otherwise 206 * (AS_CALLBACK_CALLED not set), just remove it from the 207 * list, return the memory and return AS_CALLBACK_DELETED. 208 */ 209 if ((cb->ascb_events & AS_CALLBACK_CALLED) != 0) { 210 /* leave AS_CALLBACK_CALLED */ 211 cb->ascb_events &= ~AS_ALL_EVENT; 212 rc = AS_CALLBACK_DELETE_DEFERRED; 213 cv_broadcast(&as->a_cv); 214 } else { 215 *prevcb = cb->ascb_next; 216 kmem_free(cb, sizeof (struct as_callback)); 217 rc = AS_CALLBACK_DELETED; 218 } 219 break; 220 } 221 mutex_exit(&as->a_contents); 222 return (rc); 223 } 224 225 /* 226 * Searches the as callback list for a matching entry. 227 * Returns a pointer to the first matching callback, or NULL if 228 * nothing is found. 229 * This function never sleeps so it is ok to call it with more 230 * locks held but the (required) a_contents mutex. 231 * 232 * See also comment on as_do_callbacks below. 233 */ 234 static struct as_callback * 235 as_find_callback(struct as *as, uint_t events, caddr_t event_addr, 236 size_t event_len) 237 { 238 struct as_callback *cb; 239 240 ASSERT(MUTEX_HELD(&as->a_contents)); 241 for (cb = as->a_callbacks; cb != NULL; cb = cb->ascb_next) { 242 /* 243 * If the callback has not already been called, then 244 * check if events or address range pertains. An event_len 245 * of zero means do an unconditional callback. 246 */ 247 if (((cb->ascb_events & AS_CALLBACK_CALLED) != 0) || 248 ((event_len != 0) && (((cb->ascb_events & events) == 0) || 249 (event_addr + event_len < cb->ascb_saddr) || 250 (event_addr > (cb->ascb_saddr + cb->ascb_len))))) { 251 continue; 252 } 253 break; 254 } 255 return (cb); 256 } 257 258 /* 259 * Executes a given callback and removes it from the callback list for 260 * this address space. 261 * This function may sleep so the caller must drop all locks except 262 * a_contents before calling this func. 263 * 264 * See also comments on as_do_callbacks below. 265 */ 266 static void 267 as_execute_callback(struct as *as, struct as_callback *cb, 268 uint_t events) 269 { 270 struct as_callback **prevcb; 271 void *cb_arg; 272 273 ASSERT(MUTEX_HELD(&as->a_contents) && (cb->ascb_events & events)); 274 cb->ascb_events |= AS_CALLBACK_CALLED; 275 mutex_exit(&as->a_contents); 276 (*cb->ascb_func)(as, cb->ascb_arg, events); 277 mutex_enter(&as->a_contents); 278 /* 279 * the callback function is required to delete the callback 280 * when the callback function determines it is OK for 281 * this thread to continue. as_delete_callback will clear 282 * the AS_ALL_EVENT in the events field when it is deleted. 283 * If the callback function called as_delete_callback, 284 * events will already be cleared and there will be no blocking. 285 */ 286 while ((cb->ascb_events & events) != 0) { 287 cv_wait(&as->a_cv, &as->a_contents); 288 } 289 /* 290 * This entry needs to be taken off the list. Normally, the 291 * callback func itself does that, but unfortunately the list 292 * may have changed while the callback was running because the 293 * a_contents mutex was dropped and someone else other than the 294 * callback func itself could have called as_delete_callback, 295 * so we have to search to find this entry again. The entry 296 * must have AS_CALLBACK_CALLED, and have the same 'arg'. 297 */ 298 cb_arg = cb->ascb_arg; 299 prevcb = &as->a_callbacks; 300 for (cb = as->a_callbacks; cb != NULL; 301 prevcb = &cb->ascb_next, cb = *prevcb) { 302 if (((cb->ascb_events & AS_CALLBACK_CALLED) == 0) || 303 (cb_arg != cb->ascb_arg)) { 304 continue; 305 } 306 *prevcb = cb->ascb_next; 307 kmem_free(cb, sizeof (struct as_callback)); 308 break; 309 } 310 } 311 312 /* 313 * Check the callback list for a matching event and intersection of 314 * address range. If there is a match invoke the callback. Skip an entry if: 315 * - a callback is already in progress for this entry (AS_CALLBACK_CALLED) 316 * - not event of interest 317 * - not address range of interest 318 * 319 * An event_len of zero indicates a request for an unconditional callback 320 * (regardless of event), only the AS_CALLBACK_CALLED is checked. The 321 * a_contents lock must be dropped before a callback, so only one callback 322 * can be done before returning. Return -1 (true) if a callback was 323 * executed and removed from the list, else return 0 (false). 324 * 325 * The logically separate parts, i.e. finding a matching callback and 326 * executing a given callback have been separated into two functions 327 * so that they can be called with different sets of locks held beyond 328 * the always-required a_contents. as_find_callback does not sleep so 329 * it is ok to call it if more locks than a_contents (i.e. the a_lock 330 * rwlock) are held. as_execute_callback on the other hand may sleep 331 * so all locks beyond a_contents must be dropped by the caller if one 332 * does not want to end comatose. 333 */ 334 static int 335 as_do_callbacks(struct as *as, uint_t events, caddr_t event_addr, 336 size_t event_len) 337 { 338 struct as_callback *cb; 339 340 if ((cb = as_find_callback(as, events, event_addr, event_len))) { 341 as_execute_callback(as, cb, events); 342 return (-1); 343 } 344 return (0); 345 } 346 347 /* 348 * Search for the segment containing addr. If a segment containing addr 349 * exists, that segment is returned. If no such segment exists, and 350 * the list spans addresses greater than addr, then the first segment 351 * whose base is greater than addr is returned; otherwise, NULL is 352 * returned unless tail is true, in which case the last element of the 353 * list is returned. 354 * 355 * a_seglast is used to cache the last found segment for repeated 356 * searches to the same addr (which happens frequently). 357 */ 358 struct seg * 359 as_findseg(struct as *as, caddr_t addr, int tail) 360 { 361 struct seg *seg = as->a_seglast; 362 avl_index_t where; 363 364 ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 365 366 if (seg != NULL && 367 seg->s_base <= addr && 368 addr < seg->s_base + seg->s_size) 369 return (seg); 370 371 seg = avl_find(&as->a_segtree, &addr, &where); 372 if (seg != NULL) 373 return (as->a_seglast = seg); 374 375 seg = avl_nearest(&as->a_segtree, where, AVL_AFTER); 376 if (seg == NULL && tail) 377 seg = avl_last(&as->a_segtree); 378 return (as->a_seglast = seg); 379 } 380 381 #ifdef VERIFY_SEGLIST 382 /* 383 * verify that the linked list is coherent 384 */ 385 static void 386 as_verify(struct as *as) 387 { 388 struct seg *seg, *seglast, *p, *n; 389 uint_t nsegs = 0; 390 391 if (do_as_verify == 0) 392 return; 393 394 seglast = as->a_seglast; 395 396 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 397 ASSERT(seg->s_as == as); 398 p = AS_SEGPREV(as, seg); 399 n = AS_SEGNEXT(as, seg); 400 ASSERT(p == NULL || p->s_as == as); 401 ASSERT(p == NULL || p->s_base < seg->s_base); 402 ASSERT(n == NULL || n->s_base > seg->s_base); 403 ASSERT(n != NULL || seg == avl_last(&as->a_segtree)); 404 if (seg == seglast) 405 seglast = NULL; 406 nsegs++; 407 } 408 ASSERT(seglast == NULL); 409 ASSERT(avl_numnodes(&as->a_segtree) == nsegs); 410 } 411 #endif /* VERIFY_SEGLIST */ 412 413 /* 414 * Add a new segment to the address space. The avl_find() 415 * may be expensive so we attempt to use last segment accessed 416 * in as_gap() as an insertion point. 417 */ 418 int 419 as_addseg(struct as *as, struct seg *newseg) 420 { 421 struct seg *seg; 422 caddr_t addr; 423 caddr_t eaddr; 424 avl_index_t where; 425 426 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 427 428 as->a_updatedir = 1; /* inform /proc */ 429 gethrestime(&as->a_updatetime); 430 431 if (as->a_lastgaphl != NULL) { 432 struct seg *hseg = NULL; 433 struct seg *lseg = NULL; 434 435 if (as->a_lastgaphl->s_base > newseg->s_base) { 436 hseg = as->a_lastgaphl; 437 lseg = AVL_PREV(&as->a_segtree, hseg); 438 } else { 439 lseg = as->a_lastgaphl; 440 hseg = AVL_NEXT(&as->a_segtree, lseg); 441 } 442 443 if (hseg && lseg && lseg->s_base < newseg->s_base && 444 hseg->s_base > newseg->s_base) { 445 avl_insert_here(&as->a_segtree, newseg, lseg, 446 AVL_AFTER); 447 as->a_lastgaphl = NULL; 448 as->a_seglast = newseg; 449 return (0); 450 } 451 as->a_lastgaphl = NULL; 452 } 453 454 addr = newseg->s_base; 455 eaddr = addr + newseg->s_size; 456 again: 457 458 seg = avl_find(&as->a_segtree, &addr, &where); 459 460 if (seg == NULL) 461 seg = avl_nearest(&as->a_segtree, where, AVL_AFTER); 462 463 if (seg == NULL) 464 seg = avl_last(&as->a_segtree); 465 466 if (seg != NULL) { 467 caddr_t base = seg->s_base; 468 469 /* 470 * If top of seg is below the requested address, then 471 * the insertion point is at the end of the linked list, 472 * and seg points to the tail of the list. Otherwise, 473 * the insertion point is immediately before seg. 474 */ 475 if (base + seg->s_size > addr) { 476 if (addr >= base || eaddr > base) { 477 #ifdef __sparc 478 extern struct seg_ops segnf_ops; 479 480 /* 481 * no-fault segs must disappear if overlaid. 482 * XXX need new segment type so 483 * we don't have to check s_ops 484 */ 485 if (seg->s_ops == &segnf_ops) { 486 seg_unmap(seg); 487 goto again; 488 } 489 #endif 490 return (-1); /* overlapping segment */ 491 } 492 } 493 } 494 as->a_seglast = newseg; 495 avl_insert(&as->a_segtree, newseg, where); 496 497 #ifdef VERIFY_SEGLIST 498 as_verify(as); 499 #endif 500 return (0); 501 } 502 503 struct seg * 504 as_removeseg(struct as *as, struct seg *seg) 505 { 506 avl_tree_t *t; 507 508 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 509 510 as->a_updatedir = 1; /* inform /proc */ 511 gethrestime(&as->a_updatetime); 512 513 if (seg == NULL) 514 return (NULL); 515 516 t = &as->a_segtree; 517 if (as->a_seglast == seg) 518 as->a_seglast = NULL; 519 as->a_lastgaphl = NULL; 520 521 /* 522 * if this segment is at an address higher than 523 * a_lastgap, set a_lastgap to the next segment (NULL if last segment) 524 */ 525 if (as->a_lastgap && 526 (seg == as->a_lastgap || seg->s_base > as->a_lastgap->s_base)) 527 as->a_lastgap = AVL_NEXT(t, seg); 528 529 /* 530 * remove the segment from the seg tree 531 */ 532 avl_remove(t, seg); 533 534 #ifdef VERIFY_SEGLIST 535 as_verify(as); 536 #endif 537 return (seg); 538 } 539 540 /* 541 * Find a segment containing addr. 542 */ 543 struct seg * 544 as_segat(struct as *as, caddr_t addr) 545 { 546 struct seg *seg = as->a_seglast; 547 548 ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 549 550 if (seg != NULL && seg->s_base <= addr && 551 addr < seg->s_base + seg->s_size) 552 return (seg); 553 554 seg = avl_find(&as->a_segtree, &addr, NULL); 555 return (seg); 556 } 557 558 /* 559 * Serialize all searches for holes in an address space to 560 * prevent two or more threads from allocating the same virtual 561 * address range. The address space must not be "read/write" 562 * locked by the caller since we may block. 563 */ 564 void 565 as_rangelock(struct as *as) 566 { 567 mutex_enter(&as->a_contents); 568 while (AS_ISCLAIMGAP(as)) 569 cv_wait(&as->a_cv, &as->a_contents); 570 AS_SETCLAIMGAP(as); 571 mutex_exit(&as->a_contents); 572 } 573 574 /* 575 * Release hold on a_state & AS_CLAIMGAP and signal any other blocked threads. 576 */ 577 void 578 as_rangeunlock(struct as *as) 579 { 580 mutex_enter(&as->a_contents); 581 AS_CLRCLAIMGAP(as); 582 cv_signal(&as->a_cv); 583 mutex_exit(&as->a_contents); 584 } 585 586 /* 587 * compar segments (or just an address) by segment address range 588 */ 589 static int 590 as_segcompar(const void *x, const void *y) 591 { 592 struct seg *a = (struct seg *)x; 593 struct seg *b = (struct seg *)y; 594 595 if (a->s_base < b->s_base) 596 return (-1); 597 if (a->s_base >= b->s_base + b->s_size) 598 return (1); 599 return (0); 600 } 601 602 603 void 604 as_avlinit(struct as *as) 605 { 606 avl_create(&as->a_segtree, as_segcompar, sizeof (struct seg), 607 offsetof(struct seg, s_tree)); 608 avl_create(&as->a_wpage, wp_compare, sizeof (struct watched_page), 609 offsetof(struct watched_page, wp_link)); 610 } 611 612 /*ARGSUSED*/ 613 static int 614 as_constructor(void *buf, void *cdrarg, int kmflags) 615 { 616 struct as *as = buf; 617 618 mutex_init(&as->a_contents, NULL, MUTEX_DEFAULT, NULL); 619 cv_init(&as->a_cv, NULL, CV_DEFAULT, NULL); 620 rw_init(&as->a_lock, NULL, RW_DEFAULT, NULL); 621 as_avlinit(as); 622 return (0); 623 } 624 625 /*ARGSUSED1*/ 626 static void 627 as_destructor(void *buf, void *cdrarg) 628 { 629 struct as *as = buf; 630 631 avl_destroy(&as->a_segtree); 632 mutex_destroy(&as->a_contents); 633 cv_destroy(&as->a_cv); 634 rw_destroy(&as->a_lock); 635 } 636 637 void 638 as_init(void) 639 { 640 as_cache = kmem_cache_create("as_cache", sizeof (struct as), 0, 641 as_constructor, as_destructor, NULL, NULL, NULL, 0); 642 } 643 644 /* 645 * Allocate and initialize an address space data structure. 646 * We call hat_alloc to allow any machine dependent 647 * information in the hat structure to be initialized. 648 */ 649 struct as * 650 as_alloc(void) 651 { 652 struct as *as; 653 654 as = kmem_cache_alloc(as_cache, KM_SLEEP); 655 656 as->a_flags = 0; 657 as->a_vbits = 0; 658 as->a_hrm = NULL; 659 as->a_seglast = NULL; 660 as->a_size = 0; 661 as->a_updatedir = 0; 662 gethrestime(&as->a_updatetime); 663 as->a_objectdir = NULL; 664 as->a_sizedir = 0; 665 as->a_userlimit = (caddr_t)USERLIMIT; 666 as->a_lastgap = NULL; 667 as->a_lastgaphl = NULL; 668 as->a_callbacks = NULL; 669 670 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 671 as->a_hat = hat_alloc(as); /* create hat for default system mmu */ 672 AS_LOCK_EXIT(as, &as->a_lock); 673 674 as->a_xhat = NULL; 675 676 return (as); 677 } 678 679 /* 680 * Free an address space data structure. 681 * Need to free the hat first and then 682 * all the segments on this as and finally 683 * the space for the as struct itself. 684 */ 685 void 686 as_free(struct as *as) 687 { 688 struct hat *hat = as->a_hat; 689 struct seg *seg, *next; 690 int called = 0; 691 692 top: 693 /* 694 * Invoke ALL callbacks. as_do_callbacks will do one callback 695 * per call, and not return (-1) until the callback has completed. 696 * When as_do_callbacks returns zero, all callbacks have completed. 697 */ 698 mutex_enter(&as->a_contents); 699 while (as->a_callbacks && as_do_callbacks(as, AS_ALL_EVENT, 0, 0)); 700 701 /* This will prevent new XHATs from attaching to as */ 702 if (!called) 703 AS_SETBUSY(as); 704 mutex_exit(&as->a_contents); 705 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 706 707 if (!called) { 708 called = 1; 709 hat_free_start(hat); 710 if (as->a_xhat != NULL) 711 xhat_free_start_all(as); 712 } 713 for (seg = AS_SEGFIRST(as); seg != NULL; seg = next) { 714 int err; 715 716 next = AS_SEGNEXT(as, seg); 717 err = SEGOP_UNMAP(seg, seg->s_base, seg->s_size); 718 if (err == EAGAIN) { 719 mutex_enter(&as->a_contents); 720 if (as->a_callbacks) { 721 AS_LOCK_EXIT(as, &as->a_lock); 722 } else { 723 /* 724 * Memory is currently locked. Wait for a 725 * cv_signal that it has been unlocked, then 726 * try the operation again. 727 */ 728 if (AS_ISUNMAPWAIT(as) == 0) 729 cv_broadcast(&as->a_cv); 730 AS_SETUNMAPWAIT(as); 731 AS_LOCK_EXIT(as, &as->a_lock); 732 while (AS_ISUNMAPWAIT(as)) 733 cv_wait(&as->a_cv, &as->a_contents); 734 } 735 mutex_exit(&as->a_contents); 736 goto top; 737 } else { 738 /* 739 * We do not expect any other error return at this 740 * time. This is similar to an ASSERT in seg_unmap() 741 */ 742 ASSERT(err == 0); 743 } 744 } 745 hat_free_end(hat); 746 if (as->a_xhat != NULL) 747 xhat_free_end_all(as); 748 AS_LOCK_EXIT(as, &as->a_lock); 749 750 /* /proc stuff */ 751 ASSERT(avl_numnodes(&as->a_wpage) == 0); 752 if (as->a_objectdir) { 753 kmem_free(as->a_objectdir, as->a_sizedir * sizeof (vnode_t *)); 754 as->a_objectdir = NULL; 755 as->a_sizedir = 0; 756 } 757 758 /* 759 * Free the struct as back to kmem. Assert it has no segments. 760 */ 761 ASSERT(avl_numnodes(&as->a_segtree) == 0); 762 kmem_cache_free(as_cache, as); 763 } 764 765 int 766 as_dup(struct as *as, struct as **outas) 767 { 768 struct as *newas; 769 struct seg *seg, *newseg; 770 int error; 771 772 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 773 as_clearwatch(as); 774 newas = as_alloc(); 775 newas->a_userlimit = as->a_userlimit; 776 AS_LOCK_ENTER(newas, &newas->a_lock, RW_WRITER); 777 778 /* This will prevent new XHATs from attaching */ 779 mutex_enter(&as->a_contents); 780 AS_SETBUSY(as); 781 mutex_exit(&as->a_contents); 782 mutex_enter(&newas->a_contents); 783 AS_SETBUSY(newas); 784 mutex_exit(&newas->a_contents); 785 786 787 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 788 789 if (seg->s_flags & S_PURGE) 790 continue; 791 792 newseg = seg_alloc(newas, seg->s_base, seg->s_size); 793 if (newseg == NULL) { 794 AS_LOCK_EXIT(newas, &newas->a_lock); 795 as_setwatch(as); 796 mutex_enter(&as->a_contents); 797 AS_CLRBUSY(as); 798 mutex_exit(&as->a_contents); 799 AS_LOCK_EXIT(as, &as->a_lock); 800 as_free(newas); 801 return (-1); 802 } 803 if ((error = SEGOP_DUP(seg, newseg)) != 0) { 804 /* 805 * We call seg_free() on the new seg 806 * because the segment is not set up 807 * completely; i.e. it has no ops. 808 */ 809 as_setwatch(as); 810 mutex_enter(&as->a_contents); 811 AS_CLRBUSY(as); 812 mutex_exit(&as->a_contents); 813 AS_LOCK_EXIT(as, &as->a_lock); 814 seg_free(newseg); 815 AS_LOCK_EXIT(newas, &newas->a_lock); 816 as_free(newas); 817 return (error); 818 } 819 newas->a_size += seg->s_size; 820 } 821 822 error = hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_ALL); 823 if (as->a_xhat != NULL) 824 error |= xhat_dup_all(as, newas, NULL, 0, HAT_DUP_ALL); 825 826 mutex_enter(&newas->a_contents); 827 AS_CLRBUSY(newas); 828 mutex_exit(&newas->a_contents); 829 AS_LOCK_EXIT(newas, &newas->a_lock); 830 831 as_setwatch(as); 832 mutex_enter(&as->a_contents); 833 AS_CLRBUSY(as); 834 mutex_exit(&as->a_contents); 835 AS_LOCK_EXIT(as, &as->a_lock); 836 if (error != 0) { 837 as_free(newas); 838 return (error); 839 } 840 *outas = newas; 841 return (0); 842 } 843 844 /* 845 * Handle a ``fault'' at addr for size bytes. 846 */ 847 faultcode_t 848 as_fault(struct hat *hat, struct as *as, caddr_t addr, size_t size, 849 enum fault_type type, enum seg_rw rw) 850 { 851 struct seg *seg; 852 caddr_t raddr; /* rounded down addr */ 853 size_t rsize; /* rounded up size */ 854 size_t ssize; 855 faultcode_t res = 0; 856 caddr_t addrsav; 857 struct seg *segsav; 858 int as_lock_held; 859 klwp_t *lwp = ttolwp(curthread); 860 int is_xhat = 0; 861 int holding_wpage = 0; 862 extern struct seg_ops segdev_ops; 863 864 865 866 if (as->a_hat != hat) { 867 /* This must be an XHAT then */ 868 is_xhat = 1; 869 870 if ((type != F_INVAL) || (as == &kas)) 871 return (FC_NOSUPPORT); 872 } 873 874 retry: 875 if (!is_xhat) { 876 /* 877 * Indicate that the lwp is not to be stopped while waiting 878 * for a pagefault. This is to avoid deadlock while debugging 879 * a process via /proc over NFS (in particular). 880 */ 881 if (lwp != NULL) { 882 lwp->lwp_nostop++; 883 lwp->lwp_nostop_r++; 884 } 885 886 /* 887 * same length must be used when we softlock and softunlock. 888 * We don't support softunlocking lengths less than 889 * the original length when there is largepage support. 890 * See seg_dev.c for more comments. 891 */ 892 switch (type) { 893 894 case F_SOFTLOCK: 895 CPU_STATS_ADD_K(vm, softlock, 1); 896 break; 897 898 case F_SOFTUNLOCK: 899 break; 900 901 case F_PROT: 902 CPU_STATS_ADD_K(vm, prot_fault, 1); 903 break; 904 905 case F_INVAL: 906 CPU_STATS_ENTER_K(); 907 CPU_STATS_ADDQ(CPU, vm, as_fault, 1); 908 if (as == &kas) 909 CPU_STATS_ADDQ(CPU, vm, kernel_asflt, 1); 910 CPU_STATS_EXIT_K(); 911 break; 912 } 913 } 914 915 /* Kernel probe */ 916 TNF_PROBE_3(address_fault, "vm pagefault", /* CSTYLED */, 917 tnf_opaque, address, addr, 918 tnf_fault_type, fault_type, type, 919 tnf_seg_access, access, rw); 920 921 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 922 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 923 (size_t)raddr; 924 925 /* 926 * XXX -- Don't grab the as lock for segkmap. We should grab it for 927 * correctness, but then we could be stuck holding this lock for 928 * a LONG time if the fault needs to be resolved on a slow 929 * filesystem, and then no-one will be able to exec new commands, 930 * as exec'ing requires the write lock on the as. 931 */ 932 if (as == &kas && segkmap && segkmap->s_base <= raddr && 933 raddr + size < segkmap->s_base + segkmap->s_size) { 934 /* 935 * if (as==&kas), this can't be XHAT: we've already returned 936 * FC_NOSUPPORT. 937 */ 938 seg = segkmap; 939 as_lock_held = 0; 940 } else { 941 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 942 if (is_xhat && avl_numnodes(&as->a_wpage) != 0) { 943 /* 944 * Grab and hold the writers' lock on the as 945 * if the fault is to a watched page. 946 * This will keep CPUs from "peeking" at the 947 * address range while we're temporarily boosting 948 * the permissions for the XHAT device to 949 * resolve the fault in the segment layer. 950 * 951 * We could check whether faulted address 952 * is within a watched page and only then grab 953 * the writer lock, but this is simpler. 954 */ 955 AS_LOCK_EXIT(as, &as->a_lock); 956 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 957 } 958 959 seg = as_segat(as, raddr); 960 if (seg == NULL) { 961 AS_LOCK_EXIT(as, &as->a_lock); 962 if ((lwp != NULL) && (!is_xhat)) { 963 lwp->lwp_nostop--; 964 lwp->lwp_nostop_r--; 965 } 966 return (FC_NOMAP); 967 } 968 969 as_lock_held = 1; 970 } 971 972 addrsav = raddr; 973 segsav = seg; 974 975 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 976 if (raddr >= seg->s_base + seg->s_size) { 977 seg = AS_SEGNEXT(as, seg); 978 if (seg == NULL || raddr != seg->s_base) { 979 res = FC_NOMAP; 980 break; 981 } 982 } 983 if (raddr + rsize > seg->s_base + seg->s_size) 984 ssize = seg->s_base + seg->s_size - raddr; 985 else 986 ssize = rsize; 987 988 if (!is_xhat || (seg->s_ops != &segdev_ops)) { 989 990 if (is_xhat && avl_numnodes(&as->a_wpage) != 0 && 991 pr_is_watchpage_as(raddr, rw, as)) { 992 /* 993 * Handle watch pages. If we're faulting on a 994 * watched page from an X-hat, we have to 995 * restore the original permissions while we 996 * handle the fault. 997 */ 998 as_clearwatch(as); 999 holding_wpage = 1; 1000 } 1001 1002 res = SEGOP_FAULT(hat, seg, raddr, ssize, type, rw); 1003 1004 /* Restore watchpoints */ 1005 if (holding_wpage) { 1006 as_setwatch(as); 1007 holding_wpage = 0; 1008 } 1009 1010 if (res != 0) 1011 break; 1012 } else { 1013 /* XHAT does not support seg_dev */ 1014 res = FC_NOSUPPORT; 1015 break; 1016 } 1017 } 1018 1019 /* 1020 * If we were SOFTLOCKing and encountered a failure, 1021 * we must SOFTUNLOCK the range we already did. (Maybe we 1022 * should just panic if we are SOFTLOCKing or even SOFTUNLOCKing 1023 * right here...) 1024 */ 1025 if (res != 0 && type == F_SOFTLOCK) { 1026 for (seg = segsav; addrsav < raddr; addrsav += ssize) { 1027 if (addrsav >= seg->s_base + seg->s_size) 1028 seg = AS_SEGNEXT(as, seg); 1029 ASSERT(seg != NULL); 1030 /* 1031 * Now call the fault routine again to perform the 1032 * unlock using S_OTHER instead of the rw variable 1033 * since we never got a chance to touch the pages. 1034 */ 1035 if (raddr > seg->s_base + seg->s_size) 1036 ssize = seg->s_base + seg->s_size - addrsav; 1037 else 1038 ssize = raddr - addrsav; 1039 (void) SEGOP_FAULT(hat, seg, addrsav, ssize, 1040 F_SOFTUNLOCK, S_OTHER); 1041 } 1042 } 1043 if (as_lock_held) 1044 AS_LOCK_EXIT(as, &as->a_lock); 1045 if ((lwp != NULL) && (!is_xhat)) { 1046 lwp->lwp_nostop--; 1047 lwp->lwp_nostop_r--; 1048 } 1049 /* 1050 * If the lower levels returned EDEADLK for a fault, 1051 * It means that we should retry the fault. Let's wait 1052 * a bit also to let the deadlock causing condition clear. 1053 * This is part of a gross hack to work around a design flaw 1054 * in the ufs/sds logging code and should go away when the 1055 * logging code is re-designed to fix the problem. See bug 1056 * 4125102 for details of the problem. 1057 */ 1058 if (FC_ERRNO(res) == EDEADLK) { 1059 delay(deadlk_wait); 1060 res = 0; 1061 goto retry; 1062 } 1063 return (res); 1064 } 1065 1066 1067 1068 /* 1069 * Asynchronous ``fault'' at addr for size bytes. 1070 */ 1071 faultcode_t 1072 as_faulta(struct as *as, caddr_t addr, size_t size) 1073 { 1074 struct seg *seg; 1075 caddr_t raddr; /* rounded down addr */ 1076 size_t rsize; /* rounded up size */ 1077 faultcode_t res = 0; 1078 klwp_t *lwp = ttolwp(curthread); 1079 1080 retry: 1081 /* 1082 * Indicate that the lwp is not to be stopped while waiting 1083 * for a pagefault. This is to avoid deadlock while debugging 1084 * a process via /proc over NFS (in particular). 1085 */ 1086 if (lwp != NULL) { 1087 lwp->lwp_nostop++; 1088 lwp->lwp_nostop_r++; 1089 } 1090 1091 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1092 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1093 (size_t)raddr; 1094 1095 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1096 seg = as_segat(as, raddr); 1097 if (seg == NULL) { 1098 AS_LOCK_EXIT(as, &as->a_lock); 1099 if (lwp != NULL) { 1100 lwp->lwp_nostop--; 1101 lwp->lwp_nostop_r--; 1102 } 1103 return (FC_NOMAP); 1104 } 1105 1106 for (; rsize != 0; rsize -= PAGESIZE, raddr += PAGESIZE) { 1107 if (raddr >= seg->s_base + seg->s_size) { 1108 seg = AS_SEGNEXT(as, seg); 1109 if (seg == NULL || raddr != seg->s_base) { 1110 res = FC_NOMAP; 1111 break; 1112 } 1113 } 1114 res = SEGOP_FAULTA(seg, raddr); 1115 if (res != 0) 1116 break; 1117 } 1118 AS_LOCK_EXIT(as, &as->a_lock); 1119 if (lwp != NULL) { 1120 lwp->lwp_nostop--; 1121 lwp->lwp_nostop_r--; 1122 } 1123 /* 1124 * If the lower levels returned EDEADLK for a fault, 1125 * It means that we should retry the fault. Let's wait 1126 * a bit also to let the deadlock causing condition clear. 1127 * This is part of a gross hack to work around a design flaw 1128 * in the ufs/sds logging code and should go away when the 1129 * logging code is re-designed to fix the problem. See bug 1130 * 4125102 for details of the problem. 1131 */ 1132 if (FC_ERRNO(res) == EDEADLK) { 1133 delay(deadlk_wait); 1134 res = 0; 1135 goto retry; 1136 } 1137 return (res); 1138 } 1139 1140 /* 1141 * Set the virtual mapping for the interval from [addr : addr + size) 1142 * in address space `as' to have the specified protection. 1143 * It is ok for the range to cross over several segments, 1144 * as long as they are contiguous. 1145 */ 1146 int 1147 as_setprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 1148 { 1149 struct seg *seg; 1150 struct as_callback *cb; 1151 size_t ssize; 1152 caddr_t raddr; /* rounded down addr */ 1153 size_t rsize; /* rounded up size */ 1154 int error = 0, writer = 0; 1155 caddr_t saveraddr; 1156 size_t saversize; 1157 1158 setprot_top: 1159 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1160 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1161 (size_t)raddr; 1162 1163 if (raddr + rsize < raddr) /* check for wraparound */ 1164 return (ENOMEM); 1165 1166 saveraddr = raddr; 1167 saversize = rsize; 1168 1169 /* 1170 * Normally we only lock the as as a reader. But 1171 * if due to setprot the segment driver needs to split 1172 * a segment it will return IE_RETRY. Therefore we re-aquire 1173 * the as lock as a writer so the segment driver can change 1174 * the seg list. Also the segment driver will return IE_RETRY 1175 * after it has changed the segment list so we therefore keep 1176 * locking as a writer. Since these opeartions should be rare 1177 * want to only lock as a writer when necessary. 1178 */ 1179 if (writer || avl_numnodes(&as->a_wpage) != 0) { 1180 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1181 } else { 1182 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1183 } 1184 1185 as_clearwatchprot(as, raddr, rsize); 1186 seg = as_segat(as, raddr); 1187 if (seg == NULL) { 1188 as_setwatch(as); 1189 AS_LOCK_EXIT(as, &as->a_lock); 1190 return (ENOMEM); 1191 } 1192 1193 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 1194 if (raddr >= seg->s_base + seg->s_size) { 1195 seg = AS_SEGNEXT(as, seg); 1196 if (seg == NULL || raddr != seg->s_base) { 1197 error = ENOMEM; 1198 break; 1199 } 1200 } 1201 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 1202 ssize = seg->s_base + seg->s_size - raddr; 1203 else 1204 ssize = rsize; 1205 error = SEGOP_SETPROT(seg, raddr, ssize, prot); 1206 1207 if (error == IE_NOMEM) { 1208 error = EAGAIN; 1209 break; 1210 } 1211 1212 if (error == IE_RETRY) { 1213 AS_LOCK_EXIT(as, &as->a_lock); 1214 writer = 1; 1215 goto setprot_top; 1216 } 1217 1218 if (error == EAGAIN) { 1219 /* 1220 * Make sure we have a_lock as writer. 1221 */ 1222 if (writer == 0) { 1223 AS_LOCK_EXIT(as, &as->a_lock); 1224 writer = 1; 1225 goto setprot_top; 1226 } 1227 1228 /* 1229 * Memory is currently locked. It must be unlocked 1230 * before this operation can succeed through a retry. 1231 * The possible reasons for locked memory and 1232 * corresponding strategies for unlocking are: 1233 * (1) Normal I/O 1234 * wait for a signal that the I/O operation 1235 * has completed and the memory is unlocked. 1236 * (2) Asynchronous I/O 1237 * The aio subsystem does not unlock pages when 1238 * the I/O is completed. Those pages are unlocked 1239 * when the application calls aiowait/aioerror. 1240 * So, to prevent blocking forever, cv_broadcast() 1241 * is done to wake up aio_cleanup_thread. 1242 * Subsequently, segvn_reclaim will be called, and 1243 * that will do AS_CLRUNMAPWAIT() and wake us up. 1244 * (3) Long term page locking: 1245 * Drivers intending to have pages locked for a 1246 * period considerably longer than for normal I/O 1247 * (essentially forever) may have registered for a 1248 * callback so they may unlock these pages on 1249 * request. This is needed to allow this operation 1250 * to succeed. Each entry on the callback list is 1251 * examined. If the event or address range pertains 1252 * the callback is invoked (unless it already is in 1253 * progress). The a_contents lock must be dropped 1254 * before the callback, so only one callback can 1255 * be done at a time. Go to the top and do more 1256 * until zero is returned. If zero is returned, 1257 * either there were no callbacks for this event 1258 * or they were already in progress. 1259 */ 1260 mutex_enter(&as->a_contents); 1261 if (as->a_callbacks && 1262 (cb = as_find_callback(as, AS_SETPROT_EVENT, 1263 seg->s_base, seg->s_size))) { 1264 AS_LOCK_EXIT(as, &as->a_lock); 1265 as_execute_callback(as, cb, AS_SETPROT_EVENT); 1266 } else { 1267 if (AS_ISUNMAPWAIT(as) == 0) 1268 cv_broadcast(&as->a_cv); 1269 AS_SETUNMAPWAIT(as); 1270 AS_LOCK_EXIT(as, &as->a_lock); 1271 while (AS_ISUNMAPWAIT(as)) 1272 cv_wait(&as->a_cv, &as->a_contents); 1273 } 1274 mutex_exit(&as->a_contents); 1275 goto setprot_top; 1276 } else if (error != 0) 1277 break; 1278 } 1279 if (error != 0) { 1280 as_setwatch(as); 1281 } else { 1282 as_setwatchprot(as, saveraddr, saversize, prot); 1283 } 1284 AS_LOCK_EXIT(as, &as->a_lock); 1285 return (error); 1286 } 1287 1288 /* 1289 * Check to make sure that the interval [addr, addr + size) 1290 * in address space `as' has at least the specified protection. 1291 * It is ok for the range to cross over several segments, as long 1292 * as they are contiguous. 1293 */ 1294 int 1295 as_checkprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 1296 { 1297 struct seg *seg; 1298 size_t ssize; 1299 caddr_t raddr; /* rounded down addr */ 1300 size_t rsize; /* rounded up size */ 1301 int error = 0; 1302 1303 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1304 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1305 (size_t)raddr; 1306 1307 if (raddr + rsize < raddr) /* check for wraparound */ 1308 return (ENOMEM); 1309 1310 /* 1311 * This is ugly as sin... 1312 * Normally, we only acquire the address space readers lock. 1313 * However, if the address space has watchpoints present, 1314 * we must acquire the writer lock on the address space for 1315 * the benefit of as_clearwatchprot() and as_setwatchprot(). 1316 */ 1317 if (avl_numnodes(&as->a_wpage) != 0) 1318 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1319 else 1320 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1321 as_clearwatchprot(as, raddr, rsize); 1322 seg = as_segat(as, raddr); 1323 if (seg == NULL) { 1324 as_setwatch(as); 1325 AS_LOCK_EXIT(as, &as->a_lock); 1326 return (ENOMEM); 1327 } 1328 1329 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 1330 if (raddr >= seg->s_base + seg->s_size) { 1331 seg = AS_SEGNEXT(as, seg); 1332 if (seg == NULL || raddr != seg->s_base) { 1333 error = ENOMEM; 1334 break; 1335 } 1336 } 1337 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 1338 ssize = seg->s_base + seg->s_size - raddr; 1339 else 1340 ssize = rsize; 1341 1342 error = SEGOP_CHECKPROT(seg, raddr, ssize, prot); 1343 if (error != 0) 1344 break; 1345 } 1346 as_setwatch(as); 1347 AS_LOCK_EXIT(as, &as->a_lock); 1348 return (error); 1349 } 1350 1351 int 1352 as_unmap(struct as *as, caddr_t addr, size_t size) 1353 { 1354 struct seg *seg, *seg_next; 1355 struct as_callback *cb; 1356 caddr_t raddr, eaddr; 1357 size_t ssize; 1358 int err; 1359 1360 top: 1361 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1362 eaddr = (caddr_t)(((uintptr_t)(addr + size) + PAGEOFFSET) & 1363 (uintptr_t)PAGEMASK); 1364 1365 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1366 1367 as->a_updatedir = 1; /* inform /proc */ 1368 gethrestime(&as->a_updatetime); 1369 1370 /* 1371 * Use as_findseg to find the first segment in the range, then 1372 * step through the segments in order, following s_next. 1373 */ 1374 as_clearwatchprot(as, raddr, eaddr - raddr); 1375 1376 for (seg = as_findseg(as, raddr, 0); seg != NULL; seg = seg_next) { 1377 if (eaddr <= seg->s_base) 1378 break; /* eaddr was in a gap; all done */ 1379 1380 /* this is implied by the test above */ 1381 ASSERT(raddr < eaddr); 1382 1383 if (raddr < seg->s_base) 1384 raddr = seg->s_base; /* raddr was in a gap */ 1385 1386 if (eaddr > (seg->s_base + seg->s_size)) 1387 ssize = seg->s_base + seg->s_size - raddr; 1388 else 1389 ssize = eaddr - raddr; 1390 1391 /* 1392 * Save next segment pointer since seg can be 1393 * destroyed during the segment unmap operation. 1394 */ 1395 seg_next = AS_SEGNEXT(as, seg); 1396 1397 err = SEGOP_UNMAP(seg, raddr, ssize); 1398 if (err == EAGAIN) { 1399 /* 1400 * Memory is currently locked. It must be unlocked 1401 * before this operation can succeed through a retry. 1402 * The possible reasons for locked memory and 1403 * corresponding strategies for unlocking are: 1404 * (1) Normal I/O 1405 * wait for a signal that the I/O operation 1406 * has completed and the memory is unlocked. 1407 * (2) Asynchronous I/O 1408 * The aio subsystem does not unlock pages when 1409 * the I/O is completed. Those pages are unlocked 1410 * when the application calls aiowait/aioerror. 1411 * So, to prevent blocking forever, cv_broadcast() 1412 * is done to wake up aio_cleanup_thread. 1413 * Subsequently, segvn_reclaim will be called, and 1414 * that will do AS_CLRUNMAPWAIT() and wake us up. 1415 * (3) Long term page locking: 1416 * Drivers intending to have pages locked for a 1417 * period considerably longer than for normal I/O 1418 * (essentially forever) may have registered for a 1419 * callback so they may unlock these pages on 1420 * request. This is needed to allow this operation 1421 * to succeed. Each entry on the callback list is 1422 * examined. If the event or address range pertains 1423 * the callback is invoked (unless it already is in 1424 * progress). The a_contents lock must be dropped 1425 * before the callback, so only one callback can 1426 * be done at a time. Go to the top and do more 1427 * until zero is returned. If zero is returned, 1428 * either there were no callbacks for this event 1429 * or they were already in progress. 1430 */ 1431 as_setwatch(as); 1432 mutex_enter(&as->a_contents); 1433 if (as->a_callbacks && 1434 (cb = as_find_callback(as, AS_UNMAP_EVENT, 1435 seg->s_base, seg->s_size))) { 1436 AS_LOCK_EXIT(as, &as->a_lock); 1437 as_execute_callback(as, cb, AS_UNMAP_EVENT); 1438 } else { 1439 if (AS_ISUNMAPWAIT(as) == 0) 1440 cv_broadcast(&as->a_cv); 1441 AS_SETUNMAPWAIT(as); 1442 AS_LOCK_EXIT(as, &as->a_lock); 1443 while (AS_ISUNMAPWAIT(as)) 1444 cv_wait(&as->a_cv, &as->a_contents); 1445 } 1446 mutex_exit(&as->a_contents); 1447 goto top; 1448 } else if (err == IE_RETRY) { 1449 as_setwatch(as); 1450 AS_LOCK_EXIT(as, &as->a_lock); 1451 goto top; 1452 } else if (err) { 1453 as_setwatch(as); 1454 AS_LOCK_EXIT(as, &as->a_lock); 1455 return (-1); 1456 } 1457 1458 as->a_size -= ssize; 1459 raddr += ssize; 1460 } 1461 AS_LOCK_EXIT(as, &as->a_lock); 1462 return (0); 1463 } 1464 1465 static int 1466 as_map_vnsegs(struct as *as, caddr_t addr, size_t size, 1467 int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated) 1468 { 1469 int text = vn_a->flags & MAP_TEXT; 1470 uint_t szcvec = map_execseg_pgszcvec(text, addr, size); 1471 uint_t szc; 1472 uint_t nszc; 1473 int error; 1474 caddr_t a; 1475 caddr_t eaddr; 1476 size_t segsize; 1477 struct seg *seg; 1478 uint_t save_szcvec; 1479 size_t pgsz; 1480 struct vattr va; 1481 u_offset_t eoff; 1482 size_t save_size = 0; 1483 1484 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 1485 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 1486 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 1487 ASSERT(vn_a->vp != NULL); 1488 ASSERT(vn_a->amp == NULL); 1489 1490 again: 1491 if (szcvec <= 1) { 1492 seg = seg_alloc(as, addr, size); 1493 if (seg == NULL) { 1494 return (ENOMEM); 1495 } 1496 vn_a->szc = 0; 1497 error = (*crfp)(seg, vn_a); 1498 if (error != 0) { 1499 seg_free(seg); 1500 } 1501 return (error); 1502 } 1503 1504 va.va_mask = AT_SIZE; 1505 if (VOP_GETATTR(vn_a->vp, &va, ATTR_HINT, vn_a->cred) != 0) { 1506 szcvec = 0; 1507 goto again; 1508 } 1509 eoff = vn_a->offset & PAGEMASK; 1510 if (eoff >= va.va_size) { 1511 szcvec = 0; 1512 goto again; 1513 } 1514 eoff += size; 1515 if (btopr(va.va_size) < btopr(eoff)) { 1516 save_size = size; 1517 size = va.va_size - (vn_a->offset & PAGEMASK); 1518 size = P2ROUNDUP_TYPED(size, PAGESIZE, size_t); 1519 szcvec = map_execseg_pgszcvec(text, addr, size); 1520 if (szcvec <= 1) { 1521 size = save_size; 1522 goto again; 1523 } 1524 } 1525 1526 eaddr = addr + size; 1527 save_szcvec = szcvec; 1528 szcvec >>= 1; 1529 szc = 0; 1530 nszc = 0; 1531 while (szcvec) { 1532 if ((szcvec & 0x1) == 0) { 1533 nszc++; 1534 szcvec >>= 1; 1535 continue; 1536 } 1537 nszc++; 1538 pgsz = page_get_pagesize(nszc); 1539 a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 1540 if (a != addr) { 1541 ASSERT(a < eaddr); 1542 segsize = a - addr; 1543 seg = seg_alloc(as, addr, segsize); 1544 if (seg == NULL) { 1545 return (ENOMEM); 1546 } 1547 vn_a->szc = szc; 1548 error = (*crfp)(seg, vn_a); 1549 if (error != 0) { 1550 seg_free(seg); 1551 return (error); 1552 } 1553 *segcreated = 1; 1554 vn_a->offset += segsize; 1555 addr = a; 1556 } 1557 szc = nszc; 1558 szcvec >>= 1; 1559 } 1560 1561 ASSERT(addr < eaddr); 1562 szcvec = save_szcvec | 1; /* add 8K pages */ 1563 while (szcvec) { 1564 a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 1565 ASSERT(a >= addr); 1566 if (a != addr) { 1567 segsize = a - addr; 1568 seg = seg_alloc(as, addr, segsize); 1569 if (seg == NULL) { 1570 return (ENOMEM); 1571 } 1572 vn_a->szc = szc; 1573 error = (*crfp)(seg, vn_a); 1574 if (error != 0) { 1575 seg_free(seg); 1576 return (error); 1577 } 1578 *segcreated = 1; 1579 vn_a->offset += segsize; 1580 addr = a; 1581 } 1582 szcvec &= ~(1 << szc); 1583 if (szcvec) { 1584 szc = highbit(szcvec) - 1; 1585 pgsz = page_get_pagesize(szc); 1586 } 1587 } 1588 ASSERT(addr == eaddr); 1589 1590 if (save_size) { 1591 size = save_size - size; 1592 goto again; 1593 } 1594 1595 return (0); 1596 } 1597 1598 int 1599 as_map(struct as *as, caddr_t addr, size_t size, int (*crfp)(), void *argsp) 1600 { 1601 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1602 return (as_map_locked(as, addr, size, crfp, argsp)); 1603 } 1604 1605 int 1606 as_map_locked(struct as *as, caddr_t addr, size_t size, int (*crfp)(), 1607 void *argsp) 1608 { 1609 struct seg *seg = NULL; 1610 caddr_t raddr; /* rounded down addr */ 1611 size_t rsize; /* rounded up size */ 1612 int error; 1613 struct proc *p = curproc; 1614 1615 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1616 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1617 (size_t)raddr; 1618 1619 /* 1620 * check for wrap around 1621 */ 1622 if ((raddr + rsize < raddr) || (as->a_size > (ULONG_MAX - size))) { 1623 AS_LOCK_EXIT(as, &as->a_lock); 1624 return (ENOMEM); 1625 } 1626 1627 as->a_updatedir = 1; /* inform /proc */ 1628 gethrestime(&as->a_updatetime); 1629 1630 if (as != &kas && as->a_size + rsize > (size_t)p->p_vmem_ctl) { 1631 AS_LOCK_EXIT(as, &as->a_lock); 1632 1633 (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, 1634 RCA_UNSAFE_ALL); 1635 1636 return (ENOMEM); 1637 } 1638 1639 if (AS_MAP_VNSEGS_USELPGS(crfp, argsp)) { 1640 int unmap = 0; 1641 error = as_map_vnsegs(as, raddr, rsize, crfp, 1642 (struct segvn_crargs *)argsp, &unmap); 1643 if (error != 0) { 1644 AS_LOCK_EXIT(as, &as->a_lock); 1645 if (unmap) { 1646 (void) as_unmap(as, addr, size); 1647 } 1648 return (error); 1649 } 1650 } else { 1651 seg = seg_alloc(as, addr, size); 1652 if (seg == NULL) { 1653 AS_LOCK_EXIT(as, &as->a_lock); 1654 return (ENOMEM); 1655 } 1656 1657 error = (*crfp)(seg, argsp); 1658 if (error != 0) { 1659 seg_free(seg); 1660 AS_LOCK_EXIT(as, &as->a_lock); 1661 return (error); 1662 } 1663 } 1664 1665 /* 1666 * Add size now so as_unmap will work if as_ctl fails. 1667 */ 1668 as->a_size += rsize; 1669 1670 as_setwatch(as); 1671 1672 /* 1673 * If the address space is locked, 1674 * establish memory locks for the new segment. 1675 */ 1676 mutex_enter(&as->a_contents); 1677 if (AS_ISPGLCK(as)) { 1678 mutex_exit(&as->a_contents); 1679 AS_LOCK_EXIT(as, &as->a_lock); 1680 error = as_ctl(as, addr, size, MC_LOCK, 0, 0, NULL, 0); 1681 if (error != 0) 1682 (void) as_unmap(as, addr, size); 1683 } else { 1684 mutex_exit(&as->a_contents); 1685 AS_LOCK_EXIT(as, &as->a_lock); 1686 } 1687 return (error); 1688 } 1689 1690 1691 /* 1692 * Delete all segments in the address space marked with S_PURGE. 1693 * This is currently used for Sparc V9 nofault ASI segments (seg_nf.c). 1694 * These segments are deleted as a first step before calls to as_gap(), so 1695 * that they don't affect mmap() or shmat(). 1696 */ 1697 void 1698 as_purge(struct as *as) 1699 { 1700 struct seg *seg; 1701 struct seg *next_seg; 1702 1703 /* 1704 * the setting of NEEDSPURGE is protect by as_rangelock(), so 1705 * no need to grab a_contents mutex for this check 1706 */ 1707 if ((as->a_flags & AS_NEEDSPURGE) == 0) 1708 return; 1709 1710 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1711 next_seg = NULL; 1712 seg = AS_SEGFIRST(as); 1713 while (seg != NULL) { 1714 next_seg = AS_SEGNEXT(as, seg); 1715 if (seg->s_flags & S_PURGE) 1716 SEGOP_UNMAP(seg, seg->s_base, seg->s_size); 1717 seg = next_seg; 1718 } 1719 AS_LOCK_EXIT(as, &as->a_lock); 1720 1721 mutex_enter(&as->a_contents); 1722 as->a_flags &= ~AS_NEEDSPURGE; 1723 mutex_exit(&as->a_contents); 1724 } 1725 1726 /* 1727 * Find a hole of at least size minlen within [base, base + len). 1728 * 1729 * If flags specifies AH_HI, the hole will have the highest possible address 1730 * in the range. We use the as->a_lastgap field to figure out where to 1731 * start looking for a gap. 1732 * 1733 * Otherwise, the gap will have the lowest possible address. 1734 * 1735 * If flags specifies AH_CONTAIN, the hole will contain the address addr. 1736 * 1737 * If an adequate hole is found, base and len are set to reflect the part of 1738 * the hole that is within range, and 0 is returned, otherwise, 1739 * -1 is returned. 1740 * 1741 * NOTE: This routine is not correct when base+len overflows caddr_t. 1742 */ 1743 int 1744 as_gap(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp, uint_t flags, 1745 caddr_t addr) 1746 { 1747 caddr_t lobound = *basep; 1748 caddr_t hibound = lobound + *lenp; 1749 struct seg *lseg, *hseg; 1750 caddr_t lo, hi; 1751 int forward; 1752 caddr_t save_base; 1753 size_t save_len; 1754 1755 save_base = *basep; 1756 save_len = *lenp; 1757 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1758 if (AS_SEGFIRST(as) == NULL) { 1759 if (valid_va_range(basep, lenp, minlen, flags & AH_DIR)) { 1760 AS_LOCK_EXIT(as, &as->a_lock); 1761 return (0); 1762 } else { 1763 AS_LOCK_EXIT(as, &as->a_lock); 1764 *basep = save_base; 1765 *lenp = save_len; 1766 return (-1); 1767 } 1768 } 1769 1770 /* 1771 * Set up to iterate over all the inter-segment holes in the given 1772 * direction. lseg is NULL for the lowest-addressed hole and hseg is 1773 * NULL for the highest-addressed hole. If moving backwards, we reset 1774 * sseg to denote the highest-addressed segment. 1775 */ 1776 forward = (flags & AH_DIR) == AH_LO; 1777 if (forward) { 1778 hseg = as_findseg(as, lobound, 1); 1779 lseg = AS_SEGPREV(as, hseg); 1780 } else { 1781 1782 /* 1783 * If allocating at least as much as the last allocation, 1784 * use a_lastgap's base as a better estimate of hibound. 1785 */ 1786 if (as->a_lastgap && 1787 minlen >= as->a_lastgap->s_size && 1788 hibound >= as->a_lastgap->s_base) 1789 hibound = as->a_lastgap->s_base; 1790 1791 hseg = as_findseg(as, hibound, 1); 1792 if (hseg->s_base + hseg->s_size < hibound) { 1793 lseg = hseg; 1794 hseg = NULL; 1795 } else { 1796 lseg = AS_SEGPREV(as, hseg); 1797 } 1798 } 1799 1800 for (;;) { 1801 /* 1802 * Set lo and hi to the hole's boundaries. (We should really 1803 * use MAXADDR in place of hibound in the expression below, 1804 * but can't express it easily; using hibound in its place is 1805 * harmless.) 1806 */ 1807 lo = (lseg == NULL) ? 0 : lseg->s_base + lseg->s_size; 1808 hi = (hseg == NULL) ? hibound : hseg->s_base; 1809 /* 1810 * If the iteration has moved past the interval from lobound 1811 * to hibound it's pointless to continue. 1812 */ 1813 if ((forward && lo > hibound) || (!forward && hi < lobound)) 1814 break; 1815 else if (lo > hibound || hi < lobound) 1816 goto cont; 1817 /* 1818 * Candidate hole lies at least partially within the allowable 1819 * range. Restrict it to fall completely within that range, 1820 * i.e., to [max(lo, lobound), min(hi, hibound)]. 1821 */ 1822 if (lo < lobound) 1823 lo = lobound; 1824 if (hi > hibound) 1825 hi = hibound; 1826 /* 1827 * Verify that the candidate hole is big enough and meets 1828 * hardware constraints. 1829 */ 1830 *basep = lo; 1831 *lenp = hi - lo; 1832 if (valid_va_range(basep, lenp, minlen, 1833 forward ? AH_LO : AH_HI) && 1834 ((flags & AH_CONTAIN) == 0 || 1835 (*basep <= addr && *basep + *lenp > addr))) { 1836 if (!forward) 1837 as->a_lastgap = hseg; 1838 if (hseg != NULL) 1839 as->a_lastgaphl = hseg; 1840 else 1841 as->a_lastgaphl = lseg; 1842 AS_LOCK_EXIT(as, &as->a_lock); 1843 return (0); 1844 } 1845 cont: 1846 /* 1847 * Move to the next hole. 1848 */ 1849 if (forward) { 1850 lseg = hseg; 1851 if (lseg == NULL) 1852 break; 1853 hseg = AS_SEGNEXT(as, hseg); 1854 } else { 1855 hseg = lseg; 1856 if (hseg == NULL) 1857 break; 1858 lseg = AS_SEGPREV(as, lseg); 1859 } 1860 } 1861 *basep = save_base; 1862 *lenp = save_len; 1863 AS_LOCK_EXIT(as, &as->a_lock); 1864 return (-1); 1865 } 1866 1867 /* 1868 * Return the next range within [base, base + len) that is backed 1869 * with "real memory". Skip holes and non-seg_vn segments. 1870 * We're lazy and only return one segment at a time. 1871 */ 1872 int 1873 as_memory(struct as *as, caddr_t *basep, size_t *lenp) 1874 { 1875 extern struct seg_ops segspt_shmops; /* needs a header file */ 1876 struct seg *seg; 1877 caddr_t addr, eaddr; 1878 caddr_t segend; 1879 1880 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1881 1882 addr = *basep; 1883 eaddr = addr + *lenp; 1884 1885 seg = as_findseg(as, addr, 0); 1886 if (seg != NULL) 1887 addr = MAX(seg->s_base, addr); 1888 1889 for (;;) { 1890 if (seg == NULL || addr >= eaddr || eaddr <= seg->s_base) { 1891 AS_LOCK_EXIT(as, &as->a_lock); 1892 return (EINVAL); 1893 } 1894 1895 if (seg->s_ops == &segvn_ops) { 1896 segend = seg->s_base + seg->s_size; 1897 break; 1898 } 1899 1900 /* 1901 * We do ISM by looking into the private data 1902 * to determine the real size of the segment. 1903 */ 1904 if (seg->s_ops == &segspt_shmops) { 1905 segend = seg->s_base + spt_realsize(seg); 1906 if (addr < segend) 1907 break; 1908 } 1909 1910 seg = AS_SEGNEXT(as, seg); 1911 1912 if (seg != NULL) 1913 addr = seg->s_base; 1914 } 1915 1916 *basep = addr; 1917 1918 if (segend > eaddr) 1919 *lenp = eaddr - addr; 1920 else 1921 *lenp = segend - addr; 1922 1923 AS_LOCK_EXIT(as, &as->a_lock); 1924 return (0); 1925 } 1926 1927 /* 1928 * Swap the pages associated with the address space as out to 1929 * secondary storage, returning the number of bytes actually 1930 * swapped. 1931 * 1932 * The value returned is intended to correlate well with the process's 1933 * memory requirements. Its usefulness for this purpose depends on 1934 * how well the segment-level routines do at returning accurate 1935 * information. 1936 */ 1937 size_t 1938 as_swapout(struct as *as) 1939 { 1940 struct seg *seg; 1941 size_t swpcnt = 0; 1942 1943 /* 1944 * Kernel-only processes have given up their address 1945 * spaces. Of course, we shouldn't be attempting to 1946 * swap out such processes in the first place... 1947 */ 1948 if (as == NULL) 1949 return (0); 1950 1951 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1952 1953 /* Prevent XHATs from attaching */ 1954 mutex_enter(&as->a_contents); 1955 AS_SETBUSY(as); 1956 mutex_exit(&as->a_contents); 1957 1958 1959 /* 1960 * Free all mapping resources associated with the address 1961 * space. The segment-level swapout routines capitalize 1962 * on this unmapping by scavanging pages that have become 1963 * unmapped here. 1964 */ 1965 hat_swapout(as->a_hat); 1966 if (as->a_xhat != NULL) 1967 xhat_swapout_all(as); 1968 1969 mutex_enter(&as->a_contents); 1970 AS_CLRBUSY(as); 1971 mutex_exit(&as->a_contents); 1972 1973 /* 1974 * Call the swapout routines of all segments in the address 1975 * space to do the actual work, accumulating the amount of 1976 * space reclaimed. 1977 */ 1978 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1979 struct seg_ops *ov = seg->s_ops; 1980 1981 /* 1982 * We have to check to see if the seg has 1983 * an ops vector because the seg may have 1984 * been in the middle of being set up when 1985 * the process was picked for swapout. 1986 */ 1987 if ((ov != NULL) && (ov->swapout != NULL)) 1988 swpcnt += SEGOP_SWAPOUT(seg); 1989 } 1990 AS_LOCK_EXIT(as, &as->a_lock); 1991 return (swpcnt); 1992 } 1993 1994 /* 1995 * Determine whether data from the mappings in interval [addr, addr + size) 1996 * are in the primary memory (core) cache. 1997 */ 1998 int 1999 as_incore(struct as *as, caddr_t addr, 2000 size_t size, char *vec, size_t *sizep) 2001 { 2002 struct seg *seg; 2003 size_t ssize; 2004 caddr_t raddr; /* rounded down addr */ 2005 size_t rsize; /* rounded up size */ 2006 size_t isize; /* iteration size */ 2007 int error = 0; /* result, assume success */ 2008 2009 *sizep = 0; 2010 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2011 rsize = ((((size_t)addr + size) + PAGEOFFSET) & PAGEMASK) - 2012 (size_t)raddr; 2013 2014 if (raddr + rsize < raddr) /* check for wraparound */ 2015 return (ENOMEM); 2016 2017 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2018 seg = as_segat(as, raddr); 2019 if (seg == NULL) { 2020 AS_LOCK_EXIT(as, &as->a_lock); 2021 return (-1); 2022 } 2023 2024 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 2025 if (raddr >= seg->s_base + seg->s_size) { 2026 seg = AS_SEGNEXT(as, seg); 2027 if (seg == NULL || raddr != seg->s_base) { 2028 error = -1; 2029 break; 2030 } 2031 } 2032 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2033 ssize = seg->s_base + seg->s_size - raddr; 2034 else 2035 ssize = rsize; 2036 *sizep += isize = SEGOP_INCORE(seg, raddr, ssize, vec); 2037 if (isize != ssize) { 2038 error = -1; 2039 break; 2040 } 2041 vec += btopr(ssize); 2042 } 2043 AS_LOCK_EXIT(as, &as->a_lock); 2044 return (error); 2045 } 2046 2047 static void 2048 as_segunlock(struct seg *seg, caddr_t addr, int attr, 2049 ulong_t *bitmap, size_t position, size_t npages) 2050 { 2051 caddr_t range_start; 2052 size_t pos1 = position; 2053 size_t pos2; 2054 size_t size; 2055 size_t end_pos = npages + position; 2056 2057 while (bt_range(bitmap, &pos1, &pos2, end_pos)) { 2058 size = ptob((pos2 - pos1)); 2059 range_start = (caddr_t)((uintptr_t)addr + 2060 ptob(pos1 - position)); 2061 2062 (void) SEGOP_LOCKOP(seg, range_start, size, attr, MC_UNLOCK, 2063 (ulong_t *)NULL, (size_t)NULL); 2064 pos1 = pos2; 2065 } 2066 } 2067 2068 static void 2069 as_unlockerr(struct as *as, int attr, ulong_t *mlock_map, 2070 caddr_t raddr, size_t rsize) 2071 { 2072 struct seg *seg = as_segat(as, raddr); 2073 size_t ssize; 2074 2075 while (rsize != 0) { 2076 if (raddr >= seg->s_base + seg->s_size) 2077 seg = AS_SEGNEXT(as, seg); 2078 2079 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2080 ssize = seg->s_base + seg->s_size - raddr; 2081 else 2082 ssize = rsize; 2083 2084 as_segunlock(seg, raddr, attr, mlock_map, 0, btopr(ssize)); 2085 2086 rsize -= ssize; 2087 raddr += ssize; 2088 } 2089 } 2090 2091 /* 2092 * Cache control operations over the interval [addr, addr + size) in 2093 * address space "as". 2094 */ 2095 /*ARGSUSED*/ 2096 int 2097 as_ctl(struct as *as, caddr_t addr, size_t size, int func, int attr, 2098 uintptr_t arg, ulong_t *lock_map, size_t pos) 2099 { 2100 struct seg *seg; /* working segment */ 2101 caddr_t raddr; /* rounded down addr */ 2102 caddr_t initraddr; /* saved initial rounded down addr */ 2103 size_t rsize; /* rounded up size */ 2104 size_t initrsize; /* saved initial rounded up size */ 2105 size_t ssize; /* size of seg */ 2106 int error = 0; /* result */ 2107 size_t mlock_size; /* size of bitmap */ 2108 ulong_t *mlock_map; /* pointer to bitmap used */ 2109 /* to represent the locked */ 2110 /* pages. */ 2111 retry: 2112 if (error == IE_RETRY) 2113 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 2114 else 2115 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2116 2117 /* 2118 * If these are address space lock/unlock operations, loop over 2119 * all segments in the address space, as appropriate. 2120 */ 2121 if (func == MC_LOCKAS) { 2122 size_t npages, idx; 2123 size_t rlen = 0; /* rounded as length */ 2124 2125 idx = pos; 2126 2127 if (arg & MCL_FUTURE) { 2128 mutex_enter(&as->a_contents); 2129 AS_SETPGLCK(as); 2130 mutex_exit(&as->a_contents); 2131 } 2132 if ((arg & MCL_CURRENT) == 0) { 2133 AS_LOCK_EXIT(as, &as->a_lock); 2134 return (0); 2135 } 2136 2137 seg = AS_SEGFIRST(as); 2138 if (seg == NULL) { 2139 AS_LOCK_EXIT(as, &as->a_lock); 2140 return (0); 2141 } 2142 2143 do { 2144 raddr = (caddr_t)((uintptr_t)seg->s_base & 2145 (uintptr_t)PAGEMASK); 2146 rlen += (((uintptr_t)(seg->s_base + seg->s_size) + 2147 PAGEOFFSET) & PAGEMASK) - (uintptr_t)raddr; 2148 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 2149 2150 mlock_size = BT_BITOUL(btopr(rlen)); 2151 if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size * 2152 sizeof (ulong_t), KM_NOSLEEP)) == NULL) { 2153 AS_LOCK_EXIT(as, &as->a_lock); 2154 return (EAGAIN); 2155 } 2156 2157 for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) { 2158 error = SEGOP_LOCKOP(seg, seg->s_base, 2159 seg->s_size, attr, MC_LOCK, mlock_map, pos); 2160 if (error != 0) 2161 break; 2162 pos += seg_pages(seg); 2163 } 2164 2165 if (error) { 2166 for (seg = AS_SEGFIRST(as); seg != NULL; 2167 seg = AS_SEGNEXT(as, seg)) { 2168 2169 raddr = (caddr_t)((uintptr_t)seg->s_base & 2170 (uintptr_t)PAGEMASK); 2171 npages = seg_pages(seg); 2172 as_segunlock(seg, raddr, attr, mlock_map, 2173 idx, npages); 2174 idx += npages; 2175 } 2176 } 2177 2178 kmem_free(mlock_map, mlock_size * sizeof (ulong_t)); 2179 AS_LOCK_EXIT(as, &as->a_lock); 2180 goto lockerr; 2181 } else if (func == MC_UNLOCKAS) { 2182 mutex_enter(&as->a_contents); 2183 AS_CLRPGLCK(as); 2184 mutex_exit(&as->a_contents); 2185 2186 for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) { 2187 error = SEGOP_LOCKOP(seg, seg->s_base, 2188 seg->s_size, attr, MC_UNLOCK, NULL, 0); 2189 if (error != 0) 2190 break; 2191 } 2192 2193 AS_LOCK_EXIT(as, &as->a_lock); 2194 goto lockerr; 2195 } 2196 2197 /* 2198 * Normalize addresses and sizes. 2199 */ 2200 initraddr = raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2201 initrsize = rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2202 (size_t)raddr; 2203 2204 if (raddr + rsize < raddr) { /* check for wraparound */ 2205 AS_LOCK_EXIT(as, &as->a_lock); 2206 return (ENOMEM); 2207 } 2208 2209 /* 2210 * Get initial segment. 2211 */ 2212 if ((seg = as_segat(as, raddr)) == NULL) { 2213 AS_LOCK_EXIT(as, &as->a_lock); 2214 return (ENOMEM); 2215 } 2216 2217 if (func == MC_LOCK) { 2218 mlock_size = BT_BITOUL(btopr(rsize)); 2219 if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size * 2220 sizeof (ulong_t), KM_NOSLEEP)) == NULL) { 2221 AS_LOCK_EXIT(as, &as->a_lock); 2222 return (EAGAIN); 2223 } 2224 } 2225 2226 /* 2227 * Loop over all segments. If a hole in the address range is 2228 * discovered, then fail. For each segment, perform the appropriate 2229 * control operation. 2230 */ 2231 while (rsize != 0) { 2232 2233 /* 2234 * Make sure there's no hole, calculate the portion 2235 * of the next segment to be operated over. 2236 */ 2237 if (raddr >= seg->s_base + seg->s_size) { 2238 seg = AS_SEGNEXT(as, seg); 2239 if (seg == NULL || raddr != seg->s_base) { 2240 if (func == MC_LOCK) { 2241 as_unlockerr(as, attr, mlock_map, 2242 initraddr, initrsize - rsize); 2243 kmem_free(mlock_map, 2244 mlock_size * sizeof (ulong_t)); 2245 } 2246 AS_LOCK_EXIT(as, &as->a_lock); 2247 return (ENOMEM); 2248 } 2249 } 2250 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2251 ssize = seg->s_base + seg->s_size - raddr; 2252 else 2253 ssize = rsize; 2254 2255 /* 2256 * Dispatch on specific function. 2257 */ 2258 switch (func) { 2259 2260 /* 2261 * Synchronize cached data from mappings with backing 2262 * objects. 2263 */ 2264 case MC_SYNC: 2265 if (error = SEGOP_SYNC(seg, raddr, ssize, 2266 attr, (uint_t)arg)) { 2267 AS_LOCK_EXIT(as, &as->a_lock); 2268 return (error); 2269 } 2270 break; 2271 2272 /* 2273 * Lock pages in memory. 2274 */ 2275 case MC_LOCK: 2276 if (error = SEGOP_LOCKOP(seg, raddr, ssize, 2277 attr, func, mlock_map, pos)) { 2278 as_unlockerr(as, attr, mlock_map, initraddr, 2279 initrsize - rsize + ssize); 2280 kmem_free(mlock_map, mlock_size * 2281 sizeof (ulong_t)); 2282 AS_LOCK_EXIT(as, &as->a_lock); 2283 goto lockerr; 2284 } 2285 break; 2286 2287 /* 2288 * Unlock mapped pages. 2289 */ 2290 case MC_UNLOCK: 2291 (void) SEGOP_LOCKOP(seg, raddr, ssize, attr, func, 2292 (ulong_t *)NULL, (size_t)NULL); 2293 break; 2294 2295 /* 2296 * Store VM advise for mapped pages in segment layer. 2297 */ 2298 case MC_ADVISE: 2299 error = SEGOP_ADVISE(seg, raddr, ssize, (uint_t)arg); 2300 2301 /* 2302 * Check for regular errors and special retry error 2303 */ 2304 if (error) { 2305 if (error == IE_RETRY) { 2306 /* 2307 * Need to acquire writers lock, so 2308 * have to drop readers lock and start 2309 * all over again 2310 */ 2311 AS_LOCK_EXIT(as, &as->a_lock); 2312 goto retry; 2313 } else if (error == IE_REATTACH) { 2314 /* 2315 * Find segment for current address 2316 * because current segment just got 2317 * split or concatenated 2318 */ 2319 seg = as_segat(as, raddr); 2320 if (seg == NULL) { 2321 AS_LOCK_EXIT(as, &as->a_lock); 2322 return (ENOMEM); 2323 } 2324 } else { 2325 /* 2326 * Regular error 2327 */ 2328 AS_LOCK_EXIT(as, &as->a_lock); 2329 return (error); 2330 } 2331 } 2332 break; 2333 2334 /* 2335 * Can't happen. 2336 */ 2337 default: 2338 panic("as_ctl: bad operation %d", func); 2339 /*NOTREACHED*/ 2340 } 2341 2342 rsize -= ssize; 2343 raddr += ssize; 2344 } 2345 2346 if (func == MC_LOCK) 2347 kmem_free(mlock_map, mlock_size * sizeof (ulong_t)); 2348 AS_LOCK_EXIT(as, &as->a_lock); 2349 return (0); 2350 lockerr: 2351 2352 /* 2353 * If the lower levels returned EDEADLK for a segment lockop, 2354 * it means that we should retry the operation. Let's wait 2355 * a bit also to let the deadlock causing condition clear. 2356 * This is part of a gross hack to work around a design flaw 2357 * in the ufs/sds logging code and should go away when the 2358 * logging code is re-designed to fix the problem. See bug 2359 * 4125102 for details of the problem. 2360 */ 2361 if (error == EDEADLK) { 2362 delay(deadlk_wait); 2363 error = 0; 2364 goto retry; 2365 } 2366 return (error); 2367 } 2368 2369 /* 2370 * Special code for exec to move the stack segment from its interim 2371 * place in the old address to the right place in the new address space. 2372 */ 2373 /*ARGSUSED*/ 2374 int 2375 as_exec(struct as *oas, caddr_t ostka, size_t stksz, 2376 struct as *nas, caddr_t nstka, uint_t hatflag) 2377 { 2378 struct seg *stkseg; 2379 2380 AS_LOCK_ENTER(oas, &oas->a_lock, RW_WRITER); 2381 stkseg = as_segat(oas, ostka); 2382 stkseg = as_removeseg(oas, stkseg); 2383 ASSERT(stkseg != NULL); 2384 ASSERT(stkseg->s_base == ostka && stkseg->s_size == stksz); 2385 stkseg->s_as = nas; 2386 stkseg->s_base = nstka; 2387 2388 /* 2389 * It's ok to lock the address space we are about to exec to. 2390 */ 2391 AS_LOCK_ENTER(nas, &nas->a_lock, RW_WRITER); 2392 ASSERT(avl_numnodes(&nas->a_wpage) == 0); 2393 nas->a_size += stkseg->s_size; 2394 oas->a_size -= stkseg->s_size; 2395 (void) as_addseg(nas, stkseg); 2396 AS_LOCK_EXIT(nas, &nas->a_lock); 2397 AS_LOCK_EXIT(oas, &oas->a_lock); 2398 return (0); 2399 } 2400 2401 static int 2402 f_decode(faultcode_t fault_err) 2403 { 2404 int error = 0; 2405 2406 switch (FC_CODE(fault_err)) { 2407 case FC_OBJERR: 2408 error = FC_ERRNO(fault_err); 2409 break; 2410 case FC_PROT: 2411 error = EACCES; 2412 break; 2413 default: 2414 error = EFAULT; 2415 break; 2416 } 2417 return (error); 2418 } 2419 2420 /* 2421 * lock pages in a given address space. Return shadow list. If 2422 * the list is NULL, the MMU mapping is also locked. 2423 */ 2424 int 2425 as_pagelock(struct as *as, struct page ***ppp, caddr_t addr, 2426 size_t size, enum seg_rw rw) 2427 { 2428 size_t rsize; 2429 caddr_t base; 2430 caddr_t raddr; 2431 faultcode_t fault_err; 2432 struct seg *seg; 2433 int res; 2434 int prefaulted = 0; 2435 2436 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_START, 2437 "as_pagelock_start: addr %p size %ld", addr, size); 2438 2439 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2440 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2441 (size_t)raddr; 2442 top: 2443 /* 2444 * if the request crosses two segments let 2445 * as_fault handle it. 2446 */ 2447 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2448 seg = as_findseg(as, addr, 0); 2449 if ((seg == NULL) || ((base = seg->s_base) > addr) || 2450 (addr + size) > base + seg->s_size) { 2451 AS_LOCK_EXIT(as, &as->a_lock); 2452 goto slow; 2453 } 2454 2455 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_START, 2456 "seg_lock_1_start: raddr %p rsize %ld", raddr, rsize); 2457 2458 /* 2459 * try to lock pages and pass back shadow list 2460 */ 2461 res = SEGOP_PAGELOCK(seg, raddr, rsize, ppp, L_PAGELOCK, rw); 2462 2463 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_END, "seg_lock_1_end"); 2464 AS_LOCK_EXIT(as, &as->a_lock); 2465 if (res == 0) { 2466 return (0); 2467 } else if (res == ENOTSUP || prefaulted) { 2468 /* 2469 * (1) segment driver doesn't support PAGELOCK fastpath, or 2470 * (2) we've already tried fast path unsuccessfully after 2471 * faulting in the addr range below; system might be 2472 * thrashing or there may not be enough availrmem. 2473 */ 2474 goto slow; 2475 } 2476 2477 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_FAULT_START, 2478 "as_fault_start: addr %p size %ld", addr, size); 2479 2480 /* 2481 * we might get here because of some COW fault or non 2482 * existing page. Let as_fault deal with it. Just load 2483 * the page, don't lock the MMU mapping. 2484 */ 2485 fault_err = as_fault(as->a_hat, as, addr, size, F_INVAL, rw); 2486 if (fault_err != 0) { 2487 return (f_decode(fault_err)); 2488 } 2489 2490 prefaulted = 1; 2491 2492 /* 2493 * try fast path again; since we've dropped a_lock, 2494 * we need to try the dance from the start to see if 2495 * the addr range is still valid. 2496 */ 2497 goto top; 2498 slow: 2499 /* 2500 * load the page and lock the MMU mapping. 2501 */ 2502 fault_err = as_fault(as->a_hat, as, addr, size, F_SOFTLOCK, rw); 2503 if (fault_err != 0) { 2504 return (f_decode(fault_err)); 2505 } 2506 *ppp = NULL; 2507 2508 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_END, "as_pagelock_end"); 2509 return (0); 2510 } 2511 2512 /* 2513 * unlock pages in a given address range 2514 */ 2515 void 2516 as_pageunlock(struct as *as, struct page **pp, caddr_t addr, size_t size, 2517 enum seg_rw rw) 2518 { 2519 struct seg *seg; 2520 size_t rsize; 2521 caddr_t raddr; 2522 2523 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_START, 2524 "as_pageunlock_start: addr %p size %ld", addr, size); 2525 2526 /* 2527 * if the shadow list is NULL, as_pagelock was 2528 * falling back to as_fault 2529 */ 2530 if (pp == NULL) { 2531 (void) as_fault(as->a_hat, as, addr, size, F_SOFTUNLOCK, rw); 2532 return; 2533 } 2534 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2535 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2536 (size_t)raddr; 2537 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2538 seg = as_findseg(as, addr, 0); 2539 ASSERT(seg); 2540 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_UNLOCK_START, 2541 "seg_unlock_start: raddr %p rsize %ld", raddr, rsize); 2542 SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGEUNLOCK, rw); 2543 AS_LOCK_EXIT(as, &as->a_lock); 2544 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_END, "as_pageunlock_end"); 2545 } 2546 2547 /* 2548 * reclaim cached pages in a given address range 2549 */ 2550 void 2551 as_pagereclaim(struct as *as, struct page **pp, caddr_t addr, 2552 size_t size, enum seg_rw rw) 2553 { 2554 struct seg *seg; 2555 size_t rsize; 2556 caddr_t raddr; 2557 2558 ASSERT(AS_READ_HELD(as, &as->a_lock)); 2559 ASSERT(pp != NULL); 2560 2561 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2562 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2563 (size_t)raddr; 2564 seg = as_findseg(as, addr, 0); 2565 ASSERT(seg); 2566 SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGERECLAIM, rw); 2567 } 2568 2569 #define MAXPAGEFLIP 4 2570 #define MAXPAGEFLIPSIZ MAXPAGEFLIP*PAGESIZE 2571 2572 int 2573 as_setpagesize(struct as *as, caddr_t addr, size_t size, uint_t szc, 2574 boolean_t wait) 2575 { 2576 struct seg *seg; 2577 size_t ssize; 2578 caddr_t raddr; /* rounded down addr */ 2579 size_t rsize; /* rounded up size */ 2580 int error = 0; 2581 size_t pgsz = page_get_pagesize(szc); 2582 2583 setpgsz_top: 2584 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(size, pgsz)) { 2585 return (EINVAL); 2586 } 2587 2588 raddr = addr; 2589 rsize = size; 2590 2591 if (raddr + rsize < raddr) /* check for wraparound */ 2592 return (ENOMEM); 2593 2594 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 2595 as_clearwatchprot(as, raddr, rsize); 2596 seg = as_segat(as, raddr); 2597 if (seg == NULL) { 2598 as_setwatch(as); 2599 AS_LOCK_EXIT(as, &as->a_lock); 2600 return (ENOMEM); 2601 } 2602 2603 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 2604 if (raddr >= seg->s_base + seg->s_size) { 2605 seg = AS_SEGNEXT(as, seg); 2606 if (seg == NULL || raddr != seg->s_base) { 2607 error = ENOMEM; 2608 break; 2609 } 2610 } 2611 if ((raddr + rsize) > (seg->s_base + seg->s_size)) { 2612 ssize = seg->s_base + seg->s_size - raddr; 2613 } else { 2614 ssize = rsize; 2615 } 2616 2617 error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc); 2618 2619 if (error == IE_NOMEM) { 2620 error = EAGAIN; 2621 break; 2622 } 2623 2624 if (error == IE_RETRY) { 2625 AS_LOCK_EXIT(as, &as->a_lock); 2626 goto setpgsz_top; 2627 } 2628 2629 if (error == ENOTSUP) { 2630 error = EINVAL; 2631 break; 2632 } 2633 2634 if (wait && (error == EAGAIN)) { 2635 /* 2636 * Memory is currently locked. It must be unlocked 2637 * before this operation can succeed through a retry. 2638 * The possible reasons for locked memory and 2639 * corresponding strategies for unlocking are: 2640 * (1) Normal I/O 2641 * wait for a signal that the I/O operation 2642 * has completed and the memory is unlocked. 2643 * (2) Asynchronous I/O 2644 * The aio subsystem does not unlock pages when 2645 * the I/O is completed. Those pages are unlocked 2646 * when the application calls aiowait/aioerror. 2647 * So, to prevent blocking forever, cv_broadcast() 2648 * is done to wake up aio_cleanup_thread. 2649 * Subsequently, segvn_reclaim will be called, and 2650 * that will do AS_CLRUNMAPWAIT() and wake us up. 2651 * (3) Long term page locking: 2652 * This is not relevant for as_setpagesize() 2653 * because we cannot change the page size for 2654 * driver memory. The attempt to do so will 2655 * fail with a different error than EAGAIN so 2656 * there's no need to trigger as callbacks like 2657 * as_unmap, as_setprot or as_free would do. 2658 */ 2659 mutex_enter(&as->a_contents); 2660 if (AS_ISUNMAPWAIT(as) == 0) { 2661 cv_broadcast(&as->a_cv); 2662 } 2663 AS_SETUNMAPWAIT(as); 2664 AS_LOCK_EXIT(as, &as->a_lock); 2665 while (AS_ISUNMAPWAIT(as)) { 2666 cv_wait(&as->a_cv, &as->a_contents); 2667 } 2668 mutex_exit(&as->a_contents); 2669 goto setpgsz_top; 2670 } else if (error != 0) { 2671 break; 2672 } 2673 } 2674 as_setwatch(as); 2675 AS_LOCK_EXIT(as, &as->a_lock); 2676 return (error); 2677 } 2678 2679 /* 2680 * Setup all of the uninitialized watched pages that we can. 2681 */ 2682 void 2683 as_setwatch(struct as *as) 2684 { 2685 struct watched_page *pwp; 2686 struct seg *seg; 2687 caddr_t vaddr; 2688 uint_t prot; 2689 int err, retrycnt; 2690 2691 if (avl_numnodes(&as->a_wpage) == 0) 2692 return; 2693 2694 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 2695 2696 for (pwp = avl_first(&as->a_wpage); pwp != NULL; 2697 pwp = AVL_NEXT(&as->a_wpage, pwp)) { 2698 retrycnt = 0; 2699 retry: 2700 vaddr = pwp->wp_vaddr; 2701 if (pwp->wp_oprot != 0 || /* already set up */ 2702 (seg = as_segat(as, vaddr)) == NULL || 2703 SEGOP_GETPROT(seg, vaddr, 0, &prot) != 0) 2704 continue; 2705 2706 pwp->wp_oprot = prot; 2707 if (pwp->wp_read) 2708 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 2709 if (pwp->wp_write) 2710 prot &= ~PROT_WRITE; 2711 if (pwp->wp_exec) 2712 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 2713 if (!(pwp->wp_flags & WP_NOWATCH) && prot != pwp->wp_oprot) { 2714 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot); 2715 if (err == IE_RETRY) { 2716 pwp->wp_oprot = 0; 2717 ASSERT(retrycnt == 0); 2718 retrycnt++; 2719 goto retry; 2720 } 2721 } 2722 pwp->wp_prot = prot; 2723 } 2724 } 2725 2726 /* 2727 * Clear all of the watched pages in the address space. 2728 */ 2729 void 2730 as_clearwatch(struct as *as) 2731 { 2732 struct watched_page *pwp; 2733 struct seg *seg; 2734 caddr_t vaddr; 2735 uint_t prot; 2736 int err, retrycnt; 2737 2738 if (avl_numnodes(&as->a_wpage) == 0) 2739 return; 2740 2741 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 2742 2743 for (pwp = avl_first(&as->a_wpage); pwp != NULL; 2744 pwp = AVL_NEXT(&as->a_wpage, pwp)) { 2745 retrycnt = 0; 2746 retry: 2747 vaddr = pwp->wp_vaddr; 2748 if (pwp->wp_oprot == 0 || /* not set up */ 2749 (seg = as_segat(as, vaddr)) == NULL) 2750 continue; 2751 2752 if ((prot = pwp->wp_oprot) != pwp->wp_prot) { 2753 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot); 2754 if (err == IE_RETRY) { 2755 ASSERT(retrycnt == 0); 2756 retrycnt++; 2757 goto retry; 2758 } 2759 } 2760 pwp->wp_oprot = 0; 2761 pwp->wp_prot = 0; 2762 } 2763 } 2764 2765 /* 2766 * Force a new setup for all the watched pages in the range. 2767 */ 2768 static void 2769 as_setwatchprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 2770 { 2771 struct watched_page *pwp; 2772 struct watched_page tpw; 2773 caddr_t eaddr = addr + size; 2774 caddr_t vaddr; 2775 struct seg *seg; 2776 int err, retrycnt; 2777 uint_t wprot; 2778 avl_index_t where; 2779 2780 if (avl_numnodes(&as->a_wpage) == 0) 2781 return; 2782 2783 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 2784 2785 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2786 if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL) 2787 pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER); 2788 2789 while (pwp != NULL && pwp->wp_vaddr < eaddr) { 2790 retrycnt = 0; 2791 vaddr = pwp->wp_vaddr; 2792 2793 wprot = prot; 2794 if (pwp->wp_read) 2795 wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 2796 if (pwp->wp_write) 2797 wprot &= ~PROT_WRITE; 2798 if (pwp->wp_exec) 2799 wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 2800 if (!(pwp->wp_flags & WP_NOWATCH) && wprot != pwp->wp_oprot) { 2801 retry: 2802 seg = as_segat(as, vaddr); 2803 if (seg == NULL) { 2804 panic("as_setwatchprot: no seg"); 2805 /*NOTREACHED*/ 2806 } 2807 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, wprot); 2808 if (err == IE_RETRY) { 2809 ASSERT(retrycnt == 0); 2810 retrycnt++; 2811 goto retry; 2812 } 2813 } 2814 pwp->wp_oprot = prot; 2815 pwp->wp_prot = wprot; 2816 2817 pwp = AVL_NEXT(&as->a_wpage, pwp); 2818 } 2819 } 2820 2821 /* 2822 * Clear all of the watched pages in the range. 2823 */ 2824 static void 2825 as_clearwatchprot(struct as *as, caddr_t addr, size_t size) 2826 { 2827 caddr_t eaddr = addr + size; 2828 struct watched_page *pwp; 2829 struct watched_page tpw; 2830 uint_t prot; 2831 struct seg *seg; 2832 int err, retrycnt; 2833 avl_index_t where; 2834 2835 if (avl_numnodes(&as->a_wpage) == 0) 2836 return; 2837 2838 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2839 if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL) 2840 pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER); 2841 2842 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 2843 2844 while (pwp != NULL && pwp->wp_vaddr < eaddr) { 2845 ASSERT(addr >= pwp->wp_vaddr); 2846 2847 if ((prot = pwp->wp_oprot) != 0) { 2848 retrycnt = 0; 2849 2850 if (prot != pwp->wp_prot) { 2851 retry: 2852 seg = as_segat(as, pwp->wp_vaddr); 2853 if (seg == NULL) 2854 continue; 2855 err = SEGOP_SETPROT(seg, pwp->wp_vaddr, 2856 PAGESIZE, prot); 2857 if (err == IE_RETRY) { 2858 ASSERT(retrycnt == 0); 2859 retrycnt++; 2860 goto retry; 2861 2862 } 2863 } 2864 pwp->wp_oprot = 0; 2865 pwp->wp_prot = 0; 2866 } 2867 2868 pwp = AVL_NEXT(&as->a_wpage, pwp); 2869 } 2870 } 2871 2872 void 2873 as_signal_proc(struct as *as, k_siginfo_t *siginfo) 2874 { 2875 struct proc *p; 2876 2877 mutex_enter(&pidlock); 2878 for (p = practive; p; p = p->p_next) { 2879 if (p->p_as == as) { 2880 mutex_enter(&p->p_lock); 2881 if (p->p_as == as) 2882 sigaddq(p, NULL, siginfo, KM_NOSLEEP); 2883 mutex_exit(&p->p_lock); 2884 } 2885 } 2886 mutex_exit(&pidlock); 2887 } 2888 2889 /* 2890 * return memory object ID 2891 */ 2892 int 2893 as_getmemid(struct as *as, caddr_t addr, memid_t *memidp) 2894 { 2895 struct seg *seg; 2896 int sts; 2897 2898 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2899 seg = as_segat(as, addr); 2900 if (seg == NULL) { 2901 AS_LOCK_EXIT(as, &as->a_lock); 2902 return (EFAULT); 2903 } 2904 /* 2905 * catch old drivers which may not support getmemid 2906 */ 2907 if (seg->s_ops->getmemid == NULL) { 2908 AS_LOCK_EXIT(as, &as->a_lock); 2909 return (ENODEV); 2910 } 2911 2912 sts = SEGOP_GETMEMID(seg, addr, memidp); 2913 2914 AS_LOCK_EXIT(as, &as->a_lock); 2915 return (sts); 2916 } 2917