1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * Copyright 2018 Joyent, Inc. 25 * Copyright (c) 2016 by Delphix. All rights reserved. 26 */ 27 28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 29 /* All Rights Reserved */ 30 31 /* 32 * University Copyright- Copyright (c) 1982, 1986, 1988 33 * The Regents of the University of California 34 * All Rights Reserved 35 * 36 * University Acknowledgment- Portions of this document are derived from 37 * software developed by the University of California, Berkeley, and its 38 * contributors. 39 */ 40 41 /* 42 * VM - address spaces. 43 */ 44 45 #include <sys/types.h> 46 #include <sys/t_lock.h> 47 #include <sys/param.h> 48 #include <sys/errno.h> 49 #include <sys/systm.h> 50 #include <sys/mman.h> 51 #include <sys/sysmacros.h> 52 #include <sys/cpuvar.h> 53 #include <sys/sysinfo.h> 54 #include <sys/kmem.h> 55 #include <sys/vnode.h> 56 #include <sys/vmsystm.h> 57 #include <sys/cmn_err.h> 58 #include <sys/debug.h> 59 #include <sys/tnf_probe.h> 60 #include <sys/vtrace.h> 61 62 #include <vm/hat.h> 63 #include <vm/as.h> 64 #include <vm/seg.h> 65 #include <vm/seg_vn.h> 66 #include <vm/seg_dev.h> 67 #include <vm/seg_kmem.h> 68 #include <vm/seg_map.h> 69 #include <vm/seg_spt.h> 70 #include <vm/seg_hole.h> 71 #include <vm/page.h> 72 73 clock_t deadlk_wait = 1; /* number of ticks to wait before retrying */ 74 75 static struct kmem_cache *as_cache; 76 77 static void as_setwatchprot(struct as *, caddr_t, size_t, uint_t); 78 static void as_clearwatchprot(struct as *, caddr_t, size_t); 79 80 81 /* 82 * Verifying the segment lists is very time-consuming; it may not be 83 * desirable always to define VERIFY_SEGLIST when DEBUG is set. 84 */ 85 #ifdef DEBUG 86 #define VERIFY_SEGLIST 87 int do_as_verify = 0; 88 #endif 89 90 /* 91 * Allocate a new callback data structure entry and fill in the events of 92 * interest, the address range of interest, and the callback argument. 93 * Link the entry on the as->a_callbacks list. A callback entry for the 94 * entire address space may be specified with vaddr = 0 and size = -1. 95 * 96 * CALLERS RESPONSIBILITY: If not calling from within the process context for 97 * the specified as, the caller must guarantee persistence of the specified as 98 * for the duration of this function (eg. pages being locked within the as 99 * will guarantee persistence). 100 */ 101 int 102 as_add_callback(struct as *as, void (*cb_func)(), void *arg, uint_t events, 103 caddr_t vaddr, size_t size, int sleepflag) 104 { 105 struct as_callback *current_head, *cb; 106 caddr_t saddr; 107 size_t rsize; 108 109 /* callback function and an event are mandatory */ 110 if ((cb_func == NULL) || ((events & AS_ALL_EVENT) == 0)) 111 return (EINVAL); 112 113 /* Adding a callback after as_free has been called is not allowed */ 114 if (as == &kas) 115 return (ENOMEM); 116 117 /* 118 * vaddr = 0 and size = -1 is used to indicate that the callback range 119 * is the entire address space so no rounding is done in that case. 120 */ 121 if (size != -1) { 122 saddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 123 rsize = (((size_t)(vaddr + size) + PAGEOFFSET) & PAGEMASK) - 124 (size_t)saddr; 125 /* check for wraparound */ 126 if (saddr + rsize < saddr) 127 return (ENOMEM); 128 } else { 129 if (vaddr != 0) 130 return (EINVAL); 131 saddr = vaddr; 132 rsize = size; 133 } 134 135 /* Allocate and initialize a callback entry */ 136 cb = kmem_zalloc(sizeof (struct as_callback), sleepflag); 137 if (cb == NULL) 138 return (EAGAIN); 139 140 cb->ascb_func = cb_func; 141 cb->ascb_arg = arg; 142 cb->ascb_events = events; 143 cb->ascb_saddr = saddr; 144 cb->ascb_len = rsize; 145 146 /* Add the entry to the list */ 147 mutex_enter(&as->a_contents); 148 current_head = as->a_callbacks; 149 as->a_callbacks = cb; 150 cb->ascb_next = current_head; 151 152 /* 153 * The call to this function may lose in a race with 154 * a pertinent event - eg. a thread does long term memory locking 155 * but before the callback is added another thread executes as_unmap. 156 * A broadcast here resolves that. 157 */ 158 if ((cb->ascb_events & AS_UNMAPWAIT_EVENT) && AS_ISUNMAPWAIT(as)) { 159 AS_CLRUNMAPWAIT(as); 160 cv_broadcast(&as->a_cv); 161 } 162 163 mutex_exit(&as->a_contents); 164 return (0); 165 } 166 167 /* 168 * Search the callback list for an entry which pertains to arg. 169 * 170 * This is called from within the client upon completion of the callback. 171 * RETURN VALUES: 172 * AS_CALLBACK_DELETED (callback entry found and deleted) 173 * AS_CALLBACK_NOTFOUND (no callback entry found - this is ok) 174 * AS_CALLBACK_DELETE_DEFERRED (callback is in process, delete of this 175 * entry will be made in as_do_callbacks) 176 * 177 * If as_delete_callback encounters a matching entry with AS_CALLBACK_CALLED 178 * set, it indicates that as_do_callbacks is processing this entry. The 179 * AS_ALL_EVENT events are cleared in the entry, and a broadcast is made 180 * to unblock as_do_callbacks, in case it is blocked. 181 * 182 * CALLERS RESPONSIBILITY: If not calling from within the process context for 183 * the specified as, the caller must guarantee persistence of the specified as 184 * for the duration of this function (eg. pages being locked within the as 185 * will guarantee persistence). 186 */ 187 uint_t 188 as_delete_callback(struct as *as, void *arg) 189 { 190 struct as_callback **prevcb = &as->a_callbacks; 191 struct as_callback *cb; 192 uint_t rc = AS_CALLBACK_NOTFOUND; 193 194 mutex_enter(&as->a_contents); 195 for (cb = as->a_callbacks; cb; prevcb = &cb->ascb_next, cb = *prevcb) { 196 if (cb->ascb_arg != arg) 197 continue; 198 199 /* 200 * If the events indicate AS_CALLBACK_CALLED, just clear 201 * AS_ALL_EVENT in the events field and wakeup the thread 202 * that may be waiting in as_do_callbacks. as_do_callbacks 203 * will take care of removing this entry from the list. In 204 * that case, return AS_CALLBACK_DELETE_DEFERRED. Otherwise 205 * (AS_CALLBACK_CALLED not set), just remove it from the 206 * list, return the memory and return AS_CALLBACK_DELETED. 207 */ 208 if ((cb->ascb_events & AS_CALLBACK_CALLED) != 0) { 209 /* leave AS_CALLBACK_CALLED */ 210 cb->ascb_events &= ~AS_ALL_EVENT; 211 rc = AS_CALLBACK_DELETE_DEFERRED; 212 cv_broadcast(&as->a_cv); 213 } else { 214 *prevcb = cb->ascb_next; 215 kmem_free(cb, sizeof (struct as_callback)); 216 rc = AS_CALLBACK_DELETED; 217 } 218 break; 219 } 220 mutex_exit(&as->a_contents); 221 return (rc); 222 } 223 224 /* 225 * Searches the as callback list for a matching entry. 226 * Returns a pointer to the first matching callback, or NULL if 227 * nothing is found. 228 * This function never sleeps so it is ok to call it with more 229 * locks held but the (required) a_contents mutex. 230 * 231 * See also comment on as_do_callbacks below. 232 */ 233 static struct as_callback * 234 as_find_callback(struct as *as, uint_t events, caddr_t event_addr, 235 size_t event_len) 236 { 237 struct as_callback *cb; 238 239 ASSERT(MUTEX_HELD(&as->a_contents)); 240 for (cb = as->a_callbacks; cb != NULL; cb = cb->ascb_next) { 241 /* 242 * If the callback has not already been called, then 243 * check if events or address range pertains. An event_len 244 * of zero means do an unconditional callback. 245 */ 246 if (((cb->ascb_events & AS_CALLBACK_CALLED) != 0) || 247 ((event_len != 0) && (((cb->ascb_events & events) == 0) || 248 (event_addr + event_len < cb->ascb_saddr) || 249 (event_addr > (cb->ascb_saddr + cb->ascb_len))))) { 250 continue; 251 } 252 break; 253 } 254 return (cb); 255 } 256 257 /* 258 * Executes a given callback and removes it from the callback list for 259 * this address space. 260 * This function may sleep so the caller must drop all locks except 261 * a_contents before calling this func. 262 * 263 * See also comments on as_do_callbacks below. 264 */ 265 static void 266 as_execute_callback(struct as *as, struct as_callback *cb, 267 uint_t events) 268 { 269 struct as_callback **prevcb; 270 void *cb_arg; 271 272 ASSERT(MUTEX_HELD(&as->a_contents) && (cb->ascb_events & events)); 273 cb->ascb_events |= AS_CALLBACK_CALLED; 274 mutex_exit(&as->a_contents); 275 (*cb->ascb_func)(as, cb->ascb_arg, events); 276 mutex_enter(&as->a_contents); 277 /* 278 * the callback function is required to delete the callback 279 * when the callback function determines it is OK for 280 * this thread to continue. as_delete_callback will clear 281 * the AS_ALL_EVENT in the events field when it is deleted. 282 * If the callback function called as_delete_callback, 283 * events will already be cleared and there will be no blocking. 284 */ 285 while ((cb->ascb_events & events) != 0) { 286 cv_wait(&as->a_cv, &as->a_contents); 287 } 288 /* 289 * This entry needs to be taken off the list. Normally, the 290 * callback func itself does that, but unfortunately the list 291 * may have changed while the callback was running because the 292 * a_contents mutex was dropped and someone else other than the 293 * callback func itself could have called as_delete_callback, 294 * so we have to search to find this entry again. The entry 295 * must have AS_CALLBACK_CALLED, and have the same 'arg'. 296 */ 297 cb_arg = cb->ascb_arg; 298 prevcb = &as->a_callbacks; 299 for (cb = as->a_callbacks; cb != NULL; 300 prevcb = &cb->ascb_next, cb = *prevcb) { 301 if (((cb->ascb_events & AS_CALLBACK_CALLED) == 0) || 302 (cb_arg != cb->ascb_arg)) { 303 continue; 304 } 305 *prevcb = cb->ascb_next; 306 kmem_free(cb, sizeof (struct as_callback)); 307 break; 308 } 309 } 310 311 /* 312 * Check the callback list for a matching event and intersection of 313 * address range. If there is a match invoke the callback. Skip an entry if: 314 * - a callback is already in progress for this entry (AS_CALLBACK_CALLED) 315 * - not event of interest 316 * - not address range of interest 317 * 318 * An event_len of zero indicates a request for an unconditional callback 319 * (regardless of event), only the AS_CALLBACK_CALLED is checked. The 320 * a_contents lock must be dropped before a callback, so only one callback 321 * can be done before returning. Return -1 (true) if a callback was 322 * executed and removed from the list, else return 0 (false). 323 * 324 * The logically separate parts, i.e. finding a matching callback and 325 * executing a given callback have been separated into two functions 326 * so that they can be called with different sets of locks held beyond 327 * the always-required a_contents. as_find_callback does not sleep so 328 * it is ok to call it if more locks than a_contents (i.e. the a_lock 329 * rwlock) are held. as_execute_callback on the other hand may sleep 330 * so all locks beyond a_contents must be dropped by the caller if one 331 * does not want to end comatose. 332 */ 333 static int 334 as_do_callbacks(struct as *as, uint_t events, caddr_t event_addr, 335 size_t event_len) 336 { 337 struct as_callback *cb; 338 339 if ((cb = as_find_callback(as, events, event_addr, event_len))) { 340 as_execute_callback(as, cb, events); 341 return (-1); 342 } 343 return (0); 344 } 345 346 /* 347 * Search for the segment containing addr. If a segment containing addr 348 * exists, that segment is returned. If no such segment exists, and 349 * the list spans addresses greater than addr, then the first segment 350 * whose base is greater than addr is returned; otherwise, NULL is 351 * returned unless tail is true, in which case the last element of the 352 * list is returned. 353 * 354 * a_seglast is used to cache the last found segment for repeated 355 * searches to the same addr (which happens frequently). 356 */ 357 struct seg * 358 as_findseg(struct as *as, caddr_t addr, int tail) 359 { 360 struct seg *seg = as->a_seglast; 361 avl_index_t where; 362 363 ASSERT(AS_LOCK_HELD(as)); 364 365 if (seg != NULL && 366 seg->s_base <= addr && 367 addr < seg->s_base + seg->s_size) 368 return (seg); 369 370 seg = avl_find(&as->a_segtree, &addr, &where); 371 if (seg != NULL) 372 return (as->a_seglast = seg); 373 374 seg = avl_nearest(&as->a_segtree, where, AVL_AFTER); 375 if (seg == NULL && tail) 376 seg = avl_last(&as->a_segtree); 377 return (as->a_seglast = seg); 378 } 379 380 #ifdef VERIFY_SEGLIST 381 /* 382 * verify that the linked list is coherent 383 */ 384 static void 385 as_verify(struct as *as) 386 { 387 struct seg *seg, *seglast, *p, *n; 388 uint_t nsegs = 0; 389 390 if (do_as_verify == 0) 391 return; 392 393 seglast = as->a_seglast; 394 395 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 396 ASSERT(seg->s_as == as); 397 p = AS_SEGPREV(as, seg); 398 n = AS_SEGNEXT(as, seg); 399 ASSERT(p == NULL || p->s_as == as); 400 ASSERT(p == NULL || p->s_base < seg->s_base); 401 ASSERT(n == NULL || n->s_base > seg->s_base); 402 ASSERT(n != NULL || seg == avl_last(&as->a_segtree)); 403 if (seg == seglast) 404 seglast = NULL; 405 nsegs++; 406 } 407 ASSERT(seglast == NULL); 408 ASSERT(avl_numnodes(&as->a_segtree) == nsegs); 409 } 410 #endif /* VERIFY_SEGLIST */ 411 412 /* 413 * Add a new segment to the address space. The avl_find() 414 * may be expensive so we attempt to use last segment accessed 415 * in as_gap() as an insertion point. 416 */ 417 int 418 as_addseg(struct as *as, struct seg *newseg) 419 { 420 struct seg *seg; 421 caddr_t addr; 422 caddr_t eaddr; 423 avl_index_t where; 424 425 ASSERT(AS_WRITE_HELD(as)); 426 427 as->a_updatedir = 1; /* inform /proc */ 428 gethrestime(&as->a_updatetime); 429 430 if (as->a_lastgaphl != NULL) { 431 struct seg *hseg = NULL; 432 struct seg *lseg = NULL; 433 434 if (as->a_lastgaphl->s_base > newseg->s_base) { 435 hseg = as->a_lastgaphl; 436 lseg = AVL_PREV(&as->a_segtree, hseg); 437 } else { 438 lseg = as->a_lastgaphl; 439 hseg = AVL_NEXT(&as->a_segtree, lseg); 440 } 441 442 if (hseg && lseg && lseg->s_base < newseg->s_base && 443 hseg->s_base > newseg->s_base) { 444 avl_insert_here(&as->a_segtree, newseg, lseg, 445 AVL_AFTER); 446 as->a_lastgaphl = NULL; 447 as->a_seglast = newseg; 448 return (0); 449 } 450 as->a_lastgaphl = NULL; 451 } 452 453 addr = newseg->s_base; 454 eaddr = addr + newseg->s_size; 455 again: 456 457 seg = avl_find(&as->a_segtree, &addr, &where); 458 459 if (seg == NULL) 460 seg = avl_nearest(&as->a_segtree, where, AVL_AFTER); 461 462 if (seg == NULL) 463 seg = avl_last(&as->a_segtree); 464 465 if (seg != NULL) { 466 caddr_t base = seg->s_base; 467 468 /* 469 * If top of seg is below the requested address, then 470 * the insertion point is at the end of the linked list, 471 * and seg points to the tail of the list. Otherwise, 472 * the insertion point is immediately before seg. 473 */ 474 if (base + seg->s_size > addr) { 475 if (addr >= base || eaddr > base) { 476 #ifdef __sparc 477 extern struct seg_ops segnf_ops; 478 479 /* 480 * no-fault segs must disappear if overlaid. 481 * XXX need new segment type so 482 * we don't have to check s_ops 483 */ 484 if (seg->s_ops == &segnf_ops) { 485 seg_unmap(seg); 486 goto again; 487 } 488 #endif 489 return (-1); /* overlapping segment */ 490 } 491 } 492 } 493 as->a_seglast = newseg; 494 avl_insert(&as->a_segtree, newseg, where); 495 496 #ifdef VERIFY_SEGLIST 497 as_verify(as); 498 #endif 499 return (0); 500 } 501 502 struct seg * 503 as_removeseg(struct as *as, struct seg *seg) 504 { 505 avl_tree_t *t; 506 507 ASSERT(AS_WRITE_HELD(as)); 508 509 as->a_updatedir = 1; /* inform /proc */ 510 gethrestime(&as->a_updatetime); 511 512 if (seg == NULL) 513 return (NULL); 514 515 t = &as->a_segtree; 516 if (as->a_seglast == seg) 517 as->a_seglast = NULL; 518 as->a_lastgaphl = NULL; 519 520 /* 521 * if this segment is at an address higher than 522 * a_lastgap, set a_lastgap to the next segment (NULL if last segment) 523 */ 524 if (as->a_lastgap && 525 (seg == as->a_lastgap || seg->s_base > as->a_lastgap->s_base)) 526 as->a_lastgap = AVL_NEXT(t, seg); 527 528 /* 529 * remove the segment from the seg tree 530 */ 531 avl_remove(t, seg); 532 533 #ifdef VERIFY_SEGLIST 534 as_verify(as); 535 #endif 536 return (seg); 537 } 538 539 /* 540 * Find a segment containing addr. 541 */ 542 struct seg * 543 as_segat(struct as *as, caddr_t addr) 544 { 545 struct seg *seg = as->a_seglast; 546 547 ASSERT(AS_LOCK_HELD(as)); 548 549 if (seg != NULL && seg->s_base <= addr && 550 addr < seg->s_base + seg->s_size) 551 return (seg); 552 553 seg = avl_find(&as->a_segtree, &addr, NULL); 554 return (seg); 555 } 556 557 /* 558 * Serialize all searches for holes in an address space to 559 * prevent two or more threads from allocating the same virtual 560 * address range. The address space must not be "read/write" 561 * locked by the caller since we may block. 562 */ 563 void 564 as_rangelock(struct as *as) 565 { 566 mutex_enter(&as->a_contents); 567 while (AS_ISCLAIMGAP(as)) 568 cv_wait(&as->a_cv, &as->a_contents); 569 AS_SETCLAIMGAP(as); 570 mutex_exit(&as->a_contents); 571 } 572 573 /* 574 * Release hold on a_state & AS_CLAIMGAP and signal any other blocked threads. 575 */ 576 void 577 as_rangeunlock(struct as *as) 578 { 579 mutex_enter(&as->a_contents); 580 AS_CLRCLAIMGAP(as); 581 cv_signal(&as->a_cv); 582 mutex_exit(&as->a_contents); 583 } 584 585 /* 586 * compar segments (or just an address) by segment address range 587 */ 588 static int 589 as_segcompar(const void *x, const void *y) 590 { 591 struct seg *a = (struct seg *)x; 592 struct seg *b = (struct seg *)y; 593 594 if (a->s_base < b->s_base) 595 return (-1); 596 if (a->s_base >= b->s_base + b->s_size) 597 return (1); 598 return (0); 599 } 600 601 602 void 603 as_avlinit(struct as *as) 604 { 605 avl_create(&as->a_segtree, as_segcompar, sizeof (struct seg), 606 offsetof(struct seg, s_tree)); 607 avl_create(&as->a_wpage, wp_compare, sizeof (struct watched_page), 608 offsetof(struct watched_page, wp_link)); 609 } 610 611 /*ARGSUSED*/ 612 static int 613 as_constructor(void *buf, void *cdrarg, int kmflags) 614 { 615 struct as *as = buf; 616 617 mutex_init(&as->a_contents, NULL, MUTEX_DEFAULT, NULL); 618 cv_init(&as->a_cv, NULL, CV_DEFAULT, NULL); 619 rw_init(&as->a_lock, NULL, RW_DEFAULT, NULL); 620 as_avlinit(as); 621 return (0); 622 } 623 624 /*ARGSUSED1*/ 625 static void 626 as_destructor(void *buf, void *cdrarg) 627 { 628 struct as *as = buf; 629 630 avl_destroy(&as->a_segtree); 631 mutex_destroy(&as->a_contents); 632 cv_destroy(&as->a_cv); 633 rw_destroy(&as->a_lock); 634 } 635 636 void 637 as_init(void) 638 { 639 as_cache = kmem_cache_create("as_cache", sizeof (struct as), 0, 640 as_constructor, as_destructor, NULL, NULL, NULL, 0); 641 } 642 643 /* 644 * Allocate and initialize an address space data structure. 645 * We call hat_alloc to allow any machine dependent 646 * information in the hat structure to be initialized. 647 */ 648 struct as * 649 as_alloc(void) 650 { 651 struct as *as; 652 653 as = kmem_cache_alloc(as_cache, KM_SLEEP); 654 655 as->a_flags = 0; 656 as->a_vbits = 0; 657 as->a_hrm = NULL; 658 as->a_seglast = NULL; 659 as->a_size = 0; 660 as->a_resvsize = 0; 661 as->a_updatedir = 0; 662 gethrestime(&as->a_updatetime); 663 as->a_objectdir = NULL; 664 as->a_sizedir = 0; 665 as->a_userlimit = (caddr_t)USERLIMIT; 666 as->a_lastgap = NULL; 667 as->a_lastgaphl = NULL; 668 as->a_callbacks = NULL; 669 as->a_proc = NULL; 670 671 AS_LOCK_ENTER(as, RW_WRITER); 672 as->a_hat = hat_alloc(as); /* create hat for default system mmu */ 673 AS_LOCK_EXIT(as); 674 675 return (as); 676 } 677 678 /* 679 * Free an address space data structure. 680 * Need to free the hat first and then 681 * all the segments on this as and finally 682 * the space for the as struct itself. 683 */ 684 void 685 as_free(struct as *as) 686 { 687 struct hat *hat = as->a_hat; 688 struct seg *seg, *next; 689 boolean_t free_started = B_FALSE; 690 691 top: 692 /* 693 * Invoke ALL callbacks. as_do_callbacks will do one callback 694 * per call, and not return (-1) until the callback has completed. 695 * When as_do_callbacks returns zero, all callbacks have completed. 696 */ 697 mutex_enter(&as->a_contents); 698 while (as->a_callbacks && as_do_callbacks(as, AS_ALL_EVENT, 0, 0)) 699 ; 700 701 mutex_exit(&as->a_contents); 702 AS_LOCK_ENTER(as, RW_WRITER); 703 704 if (!free_started) { 705 free_started = B_TRUE; 706 hat_free_start(hat); 707 } 708 for (seg = AS_SEGFIRST(as); seg != NULL; seg = next) { 709 int err; 710 711 next = AS_SEGNEXT(as, seg); 712 retry: 713 err = SEGOP_UNMAP(seg, seg->s_base, seg->s_size); 714 if (err == EAGAIN) { 715 mutex_enter(&as->a_contents); 716 if (as->a_callbacks) { 717 AS_LOCK_EXIT(as); 718 } else if (!AS_ISNOUNMAPWAIT(as)) { 719 /* 720 * Memory is currently locked. Wait for a 721 * cv_signal that it has been unlocked, then 722 * try the operation again. 723 */ 724 if (AS_ISUNMAPWAIT(as) == 0) 725 cv_broadcast(&as->a_cv); 726 AS_SETUNMAPWAIT(as); 727 AS_LOCK_EXIT(as); 728 while (AS_ISUNMAPWAIT(as)) 729 cv_wait(&as->a_cv, &as->a_contents); 730 } else { 731 /* 732 * We may have raced with 733 * segvn_reclaim()/segspt_reclaim(). In this 734 * case clean nounmapwait flag and retry since 735 * softlockcnt in this segment may be already 736 * 0. We don't drop as writer lock so our 737 * number of retries without sleeping should 738 * be very small. See segvn_reclaim() for 739 * more comments. 740 */ 741 AS_CLRNOUNMAPWAIT(as); 742 mutex_exit(&as->a_contents); 743 goto retry; 744 } 745 mutex_exit(&as->a_contents); 746 goto top; 747 } else { 748 /* 749 * We do not expect any other error return at this 750 * time. This is similar to an ASSERT in seg_unmap() 751 */ 752 ASSERT(err == 0); 753 } 754 } 755 hat_free_end(hat); 756 AS_LOCK_EXIT(as); 757 758 /* /proc stuff */ 759 ASSERT(avl_numnodes(&as->a_wpage) == 0); 760 if (as->a_objectdir) { 761 kmem_free(as->a_objectdir, as->a_sizedir * sizeof (vnode_t *)); 762 as->a_objectdir = NULL; 763 as->a_sizedir = 0; 764 } 765 766 /* 767 * Free the struct as back to kmem. Assert it has no segments. 768 */ 769 ASSERT(avl_numnodes(&as->a_segtree) == 0); 770 kmem_cache_free(as_cache, as); 771 } 772 773 int 774 as_dup(struct as *as, struct proc *forkedproc) 775 { 776 struct as *newas; 777 struct seg *seg, *newseg; 778 size_t purgesize = 0; 779 int error; 780 781 AS_LOCK_ENTER(as, RW_WRITER); 782 as_clearwatch(as); 783 newas = as_alloc(); 784 newas->a_userlimit = as->a_userlimit; 785 newas->a_proc = forkedproc; 786 787 AS_LOCK_ENTER(newas, RW_WRITER); 788 789 (void) hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_SRD); 790 791 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 792 793 if (seg->s_flags & S_PURGE) { 794 purgesize += seg->s_size; 795 continue; 796 } 797 798 newseg = seg_alloc(newas, seg->s_base, seg->s_size); 799 if (newseg == NULL) { 800 AS_LOCK_EXIT(newas); 801 as_setwatch(as); 802 AS_LOCK_EXIT(as); 803 as_free(newas); 804 return (-1); 805 } 806 if ((error = SEGOP_DUP(seg, newseg)) != 0) { 807 /* 808 * We call seg_free() on the new seg 809 * because the segment is not set up 810 * completely; i.e. it has no ops. 811 */ 812 as_setwatch(as); 813 AS_LOCK_EXIT(as); 814 seg_free(newseg); 815 AS_LOCK_EXIT(newas); 816 as_free(newas); 817 return (error); 818 } 819 if ((newseg->s_flags & S_HOLE) == 0) { 820 newas->a_size += seg->s_size; 821 } 822 } 823 newas->a_resvsize = as->a_resvsize - purgesize; 824 825 error = hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_ALL); 826 827 AS_LOCK_EXIT(newas); 828 829 as_setwatch(as); 830 AS_LOCK_EXIT(as); 831 if (error != 0) { 832 as_free(newas); 833 return (error); 834 } 835 forkedproc->p_as = newas; 836 return (0); 837 } 838 839 /* 840 * Handle a ``fault'' at addr for size bytes. 841 */ 842 faultcode_t 843 as_fault(struct hat *hat, struct as *as, caddr_t addr, size_t size, 844 enum fault_type type, enum seg_rw rw) 845 { 846 struct seg *seg; 847 caddr_t raddr; /* rounded down addr */ 848 size_t rsize; /* rounded up size */ 849 size_t ssize; 850 faultcode_t res = 0; 851 caddr_t addrsav; 852 struct seg *segsav; 853 int as_lock_held; 854 klwp_t *lwp = ttolwp(curthread); 855 856 857 858 retry: 859 /* 860 * Indicate that the lwp is not to be stopped while waiting for a 861 * pagefault. This is to avoid deadlock while debugging a process 862 * via /proc over NFS (in particular). 863 */ 864 if (lwp != NULL) 865 lwp->lwp_nostop++; 866 867 /* 868 * same length must be used when we softlock and softunlock. We 869 * don't support softunlocking lengths less than the original length 870 * when there is largepage support. See seg_dev.c for more 871 * comments. 872 */ 873 switch (type) { 874 875 case F_SOFTLOCK: 876 CPU_STATS_ADD_K(vm, softlock, 1); 877 break; 878 879 case F_SOFTUNLOCK: 880 break; 881 882 case F_PROT: 883 CPU_STATS_ADD_K(vm, prot_fault, 1); 884 break; 885 886 case F_INVAL: 887 CPU_STATS_ENTER_K(); 888 CPU_STATS_ADDQ(CPU, vm, as_fault, 1); 889 if (as == &kas) 890 CPU_STATS_ADDQ(CPU, vm, kernel_asflt, 1); 891 CPU_STATS_EXIT_K(); 892 break; 893 } 894 895 /* Kernel probe */ 896 TNF_PROBE_3(address_fault, "vm pagefault", /* CSTYLED */, 897 tnf_opaque, address, addr, 898 tnf_fault_type, fault_type, type, 899 tnf_seg_access, access, rw); 900 901 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 902 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 903 (size_t)raddr; 904 905 /* 906 * XXX -- Don't grab the as lock for segkmap. We should grab it for 907 * correctness, but then we could be stuck holding this lock for 908 * a LONG time if the fault needs to be resolved on a slow 909 * filesystem, and then no-one will be able to exec new commands, 910 * as exec'ing requires the write lock on the as. 911 */ 912 if (as == &kas && segkmap && segkmap->s_base <= raddr && 913 raddr + size < segkmap->s_base + segkmap->s_size) { 914 seg = segkmap; 915 as_lock_held = 0; 916 } else { 917 AS_LOCK_ENTER(as, RW_READER); 918 919 seg = as_segat(as, raddr); 920 if (seg == NULL) { 921 AS_LOCK_EXIT(as); 922 if (lwp != NULL) 923 lwp->lwp_nostop--; 924 return (FC_NOMAP); 925 } 926 927 as_lock_held = 1; 928 } 929 930 addrsav = raddr; 931 segsav = seg; 932 933 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 934 if (raddr >= seg->s_base + seg->s_size) { 935 seg = AS_SEGNEXT(as, seg); 936 if (seg == NULL || raddr != seg->s_base) { 937 res = FC_NOMAP; 938 break; 939 } 940 } 941 if (raddr + rsize > seg->s_base + seg->s_size) 942 ssize = seg->s_base + seg->s_size - raddr; 943 else 944 ssize = rsize; 945 946 res = SEGOP_FAULT(hat, seg, raddr, ssize, type, rw); 947 if (res != 0) 948 break; 949 } 950 951 /* 952 * If we were SOFTLOCKing and encountered a failure, 953 * we must SOFTUNLOCK the range we already did. (Maybe we 954 * should just panic if we are SOFTLOCKing or even SOFTUNLOCKing 955 * right here...) 956 */ 957 if (res != 0 && type == F_SOFTLOCK) { 958 for (seg = segsav; addrsav < raddr; addrsav += ssize) { 959 if (addrsav >= seg->s_base + seg->s_size) 960 seg = AS_SEGNEXT(as, seg); 961 ASSERT(seg != NULL); 962 /* 963 * Now call the fault routine again to perform the 964 * unlock using S_OTHER instead of the rw variable 965 * since we never got a chance to touch the pages. 966 */ 967 if (raddr > seg->s_base + seg->s_size) 968 ssize = seg->s_base + seg->s_size - addrsav; 969 else 970 ssize = raddr - addrsav; 971 (void) SEGOP_FAULT(hat, seg, addrsav, ssize, 972 F_SOFTUNLOCK, S_OTHER); 973 } 974 } 975 if (as_lock_held) 976 AS_LOCK_EXIT(as); 977 if (lwp != NULL) 978 lwp->lwp_nostop--; 979 980 /* 981 * If the lower levels returned EDEADLK for a fault, 982 * It means that we should retry the fault. Let's wait 983 * a bit also to let the deadlock causing condition clear. 984 * This is part of a gross hack to work around a design flaw 985 * in the ufs/sds logging code and should go away when the 986 * logging code is re-designed to fix the problem. See bug 987 * 4125102 for details of the problem. 988 */ 989 if (FC_ERRNO(res) == EDEADLK) { 990 delay(deadlk_wait); 991 res = 0; 992 goto retry; 993 } 994 return (res); 995 } 996 997 998 999 /* 1000 * Asynchronous ``fault'' at addr for size bytes. 1001 */ 1002 faultcode_t 1003 as_faulta(struct as *as, caddr_t addr, size_t size) 1004 { 1005 struct seg *seg; 1006 caddr_t raddr; /* rounded down addr */ 1007 size_t rsize; /* rounded up size */ 1008 faultcode_t res = 0; 1009 klwp_t *lwp = ttolwp(curthread); 1010 1011 retry: 1012 /* 1013 * Indicate that the lwp is not to be stopped while waiting 1014 * for a pagefault. This is to avoid deadlock while debugging 1015 * a process via /proc over NFS (in particular). 1016 */ 1017 if (lwp != NULL) 1018 lwp->lwp_nostop++; 1019 1020 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1021 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1022 (size_t)raddr; 1023 1024 AS_LOCK_ENTER(as, RW_READER); 1025 seg = as_segat(as, raddr); 1026 if (seg == NULL) { 1027 AS_LOCK_EXIT(as); 1028 if (lwp != NULL) 1029 lwp->lwp_nostop--; 1030 return (FC_NOMAP); 1031 } 1032 1033 for (; rsize != 0; rsize -= PAGESIZE, raddr += PAGESIZE) { 1034 if (raddr >= seg->s_base + seg->s_size) { 1035 seg = AS_SEGNEXT(as, seg); 1036 if (seg == NULL || raddr != seg->s_base) { 1037 res = FC_NOMAP; 1038 break; 1039 } 1040 } 1041 res = SEGOP_FAULTA(seg, raddr); 1042 if (res != 0) 1043 break; 1044 } 1045 AS_LOCK_EXIT(as); 1046 if (lwp != NULL) 1047 lwp->lwp_nostop--; 1048 /* 1049 * If the lower levels returned EDEADLK for a fault, 1050 * It means that we should retry the fault. Let's wait 1051 * a bit also to let the deadlock causing condition clear. 1052 * This is part of a gross hack to work around a design flaw 1053 * in the ufs/sds logging code and should go away when the 1054 * logging code is re-designed to fix the problem. See bug 1055 * 4125102 for details of the problem. 1056 */ 1057 if (FC_ERRNO(res) == EDEADLK) { 1058 delay(deadlk_wait); 1059 res = 0; 1060 goto retry; 1061 } 1062 return (res); 1063 } 1064 1065 /* 1066 * Set the virtual mapping for the interval from [addr : addr + size) 1067 * in address space `as' to have the specified protection. 1068 * It is ok for the range to cross over several segments, 1069 * as long as they are contiguous. 1070 */ 1071 int 1072 as_setprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 1073 { 1074 struct seg *seg; 1075 struct as_callback *cb; 1076 size_t ssize; 1077 caddr_t raddr; /* rounded down addr */ 1078 size_t rsize; /* rounded up size */ 1079 int error = 0, writer = 0; 1080 caddr_t saveraddr; 1081 size_t saversize; 1082 1083 setprot_top: 1084 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1085 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1086 (size_t)raddr; 1087 1088 if (raddr + rsize < raddr) /* check for wraparound */ 1089 return (ENOMEM); 1090 1091 saveraddr = raddr; 1092 saversize = rsize; 1093 1094 /* 1095 * Normally we only lock the as as a reader. But 1096 * if due to setprot the segment driver needs to split 1097 * a segment it will return IE_RETRY. Therefore we re-acquire 1098 * the as lock as a writer so the segment driver can change 1099 * the seg list. Also the segment driver will return IE_RETRY 1100 * after it has changed the segment list so we therefore keep 1101 * locking as a writer. Since these opeartions should be rare 1102 * want to only lock as a writer when necessary. 1103 */ 1104 if (writer || avl_numnodes(&as->a_wpage) != 0) { 1105 AS_LOCK_ENTER(as, RW_WRITER); 1106 } else { 1107 AS_LOCK_ENTER(as, RW_READER); 1108 } 1109 1110 as_clearwatchprot(as, raddr, rsize); 1111 seg = as_segat(as, raddr); 1112 if (seg == NULL) { 1113 as_setwatch(as); 1114 AS_LOCK_EXIT(as); 1115 return (ENOMEM); 1116 } 1117 1118 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 1119 if (raddr >= seg->s_base + seg->s_size) { 1120 seg = AS_SEGNEXT(as, seg); 1121 if (seg == NULL || raddr != seg->s_base) { 1122 error = ENOMEM; 1123 break; 1124 } 1125 } 1126 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 1127 ssize = seg->s_base + seg->s_size - raddr; 1128 else 1129 ssize = rsize; 1130 retry: 1131 error = SEGOP_SETPROT(seg, raddr, ssize, prot); 1132 1133 if (error == IE_NOMEM) { 1134 error = EAGAIN; 1135 break; 1136 } 1137 1138 if (error == IE_RETRY) { 1139 AS_LOCK_EXIT(as); 1140 writer = 1; 1141 goto setprot_top; 1142 } 1143 1144 if (error == EAGAIN) { 1145 /* 1146 * Make sure we have a_lock as writer. 1147 */ 1148 if (writer == 0) { 1149 AS_LOCK_EXIT(as); 1150 writer = 1; 1151 goto setprot_top; 1152 } 1153 1154 /* 1155 * Memory is currently locked. It must be unlocked 1156 * before this operation can succeed through a retry. 1157 * The possible reasons for locked memory and 1158 * corresponding strategies for unlocking are: 1159 * (1) Normal I/O 1160 * wait for a signal that the I/O operation 1161 * has completed and the memory is unlocked. 1162 * (2) Asynchronous I/O 1163 * The aio subsystem does not unlock pages when 1164 * the I/O is completed. Those pages are unlocked 1165 * when the application calls aiowait/aioerror. 1166 * So, to prevent blocking forever, cv_broadcast() 1167 * is done to wake up aio_cleanup_thread. 1168 * Subsequently, segvn_reclaim will be called, and 1169 * that will do AS_CLRUNMAPWAIT() and wake us up. 1170 * (3) Long term page locking: 1171 * Drivers intending to have pages locked for a 1172 * period considerably longer than for normal I/O 1173 * (essentially forever) may have registered for a 1174 * callback so they may unlock these pages on 1175 * request. This is needed to allow this operation 1176 * to succeed. Each entry on the callback list is 1177 * examined. If the event or address range pertains 1178 * the callback is invoked (unless it already is in 1179 * progress). The a_contents lock must be dropped 1180 * before the callback, so only one callback can 1181 * be done at a time. Go to the top and do more 1182 * until zero is returned. If zero is returned, 1183 * either there were no callbacks for this event 1184 * or they were already in progress. 1185 */ 1186 mutex_enter(&as->a_contents); 1187 if (as->a_callbacks && 1188 (cb = as_find_callback(as, AS_SETPROT_EVENT, 1189 seg->s_base, seg->s_size))) { 1190 AS_LOCK_EXIT(as); 1191 as_execute_callback(as, cb, AS_SETPROT_EVENT); 1192 } else if (!AS_ISNOUNMAPWAIT(as)) { 1193 if (AS_ISUNMAPWAIT(as) == 0) 1194 cv_broadcast(&as->a_cv); 1195 AS_SETUNMAPWAIT(as); 1196 AS_LOCK_EXIT(as); 1197 while (AS_ISUNMAPWAIT(as)) 1198 cv_wait(&as->a_cv, &as->a_contents); 1199 } else { 1200 /* 1201 * We may have raced with 1202 * segvn_reclaim()/segspt_reclaim(). In this 1203 * case clean nounmapwait flag and retry since 1204 * softlockcnt in this segment may be already 1205 * 0. We don't drop as writer lock so our 1206 * number of retries without sleeping should 1207 * be very small. See segvn_reclaim() for 1208 * more comments. 1209 */ 1210 AS_CLRNOUNMAPWAIT(as); 1211 mutex_exit(&as->a_contents); 1212 goto retry; 1213 } 1214 mutex_exit(&as->a_contents); 1215 goto setprot_top; 1216 } else if (error != 0) 1217 break; 1218 } 1219 if (error != 0) { 1220 as_setwatch(as); 1221 } else { 1222 as_setwatchprot(as, saveraddr, saversize, prot); 1223 } 1224 AS_LOCK_EXIT(as); 1225 return (error); 1226 } 1227 1228 /* 1229 * Check to make sure that the interval [addr, addr + size) 1230 * in address space `as' has at least the specified protection. 1231 * It is ok for the range to cross over several segments, as long 1232 * as they are contiguous. 1233 */ 1234 int 1235 as_checkprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 1236 { 1237 struct seg *seg; 1238 size_t ssize; 1239 caddr_t raddr; /* rounded down addr */ 1240 size_t rsize; /* rounded up size */ 1241 int error = 0; 1242 1243 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1244 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1245 (size_t)raddr; 1246 1247 if (raddr + rsize < raddr) /* check for wraparound */ 1248 return (ENOMEM); 1249 1250 /* 1251 * This is ugly as sin... 1252 * Normally, we only acquire the address space readers lock. 1253 * However, if the address space has watchpoints present, 1254 * we must acquire the writer lock on the address space for 1255 * the benefit of as_clearwatchprot() and as_setwatchprot(). 1256 */ 1257 if (avl_numnodes(&as->a_wpage) != 0) 1258 AS_LOCK_ENTER(as, RW_WRITER); 1259 else 1260 AS_LOCK_ENTER(as, RW_READER); 1261 as_clearwatchprot(as, raddr, rsize); 1262 seg = as_segat(as, raddr); 1263 if (seg == NULL) { 1264 as_setwatch(as); 1265 AS_LOCK_EXIT(as); 1266 return (ENOMEM); 1267 } 1268 1269 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 1270 if (raddr >= seg->s_base + seg->s_size) { 1271 seg = AS_SEGNEXT(as, seg); 1272 if (seg == NULL || raddr != seg->s_base) { 1273 error = ENOMEM; 1274 break; 1275 } 1276 } 1277 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 1278 ssize = seg->s_base + seg->s_size - raddr; 1279 else 1280 ssize = rsize; 1281 1282 error = SEGOP_CHECKPROT(seg, raddr, ssize, prot); 1283 if (error != 0) 1284 break; 1285 } 1286 as_setwatch(as); 1287 AS_LOCK_EXIT(as); 1288 return (error); 1289 } 1290 1291 int 1292 as_unmap(struct as *as, caddr_t addr, size_t size) 1293 { 1294 struct seg *seg, *seg_next; 1295 struct as_callback *cb; 1296 caddr_t raddr, eaddr; 1297 size_t ssize, rsize = 0; 1298 int err; 1299 1300 top: 1301 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1302 eaddr = (caddr_t)(((uintptr_t)(addr + size) + PAGEOFFSET) & 1303 (uintptr_t)PAGEMASK); 1304 1305 AS_LOCK_ENTER(as, RW_WRITER); 1306 1307 as->a_updatedir = 1; /* inform /proc */ 1308 gethrestime(&as->a_updatetime); 1309 1310 /* 1311 * Use as_findseg to find the first segment in the range, then 1312 * step through the segments in order, following s_next. 1313 */ 1314 as_clearwatchprot(as, raddr, eaddr - raddr); 1315 1316 for (seg = as_findseg(as, raddr, 0); seg != NULL; seg = seg_next) { 1317 const boolean_t is_hole = ((seg->s_flags & S_HOLE) != 0); 1318 1319 if (eaddr <= seg->s_base) 1320 break; /* eaddr was in a gap; all done */ 1321 1322 /* this is implied by the test above */ 1323 ASSERT(raddr < eaddr); 1324 1325 if (raddr < seg->s_base) 1326 raddr = seg->s_base; /* raddr was in a gap */ 1327 1328 if (eaddr > (seg->s_base + seg->s_size)) 1329 ssize = seg->s_base + seg->s_size - raddr; 1330 else 1331 ssize = eaddr - raddr; 1332 1333 /* 1334 * Save next segment pointer since seg can be 1335 * destroyed during the segment unmap operation. 1336 */ 1337 seg_next = AS_SEGNEXT(as, seg); 1338 1339 /* 1340 * We didn't count /dev/null mappings, so ignore them here. 1341 * We'll handle MAP_NORESERVE cases in segvn_unmap(). (Again, 1342 * we have to do this check here while we have seg.) 1343 */ 1344 rsize = 0; 1345 if (!SEG_IS_DEVNULL_MAPPING(seg) && 1346 !SEG_IS_PARTIAL_RESV(seg)) 1347 rsize = ssize; 1348 1349 retry: 1350 err = SEGOP_UNMAP(seg, raddr, ssize); 1351 if (err == EAGAIN) { 1352 /* 1353 * Memory is currently locked. It must be unlocked 1354 * before this operation can succeed through a retry. 1355 * The possible reasons for locked memory and 1356 * corresponding strategies for unlocking are: 1357 * (1) Normal I/O 1358 * wait for a signal that the I/O operation 1359 * has completed and the memory is unlocked. 1360 * (2) Asynchronous I/O 1361 * The aio subsystem does not unlock pages when 1362 * the I/O is completed. Those pages are unlocked 1363 * when the application calls aiowait/aioerror. 1364 * So, to prevent blocking forever, cv_broadcast() 1365 * is done to wake up aio_cleanup_thread. 1366 * Subsequently, segvn_reclaim will be called, and 1367 * that will do AS_CLRUNMAPWAIT() and wake us up. 1368 * (3) Long term page locking: 1369 * Drivers intending to have pages locked for a 1370 * period considerably longer than for normal I/O 1371 * (essentially forever) may have registered for a 1372 * callback so they may unlock these pages on 1373 * request. This is needed to allow this operation 1374 * to succeed. Each entry on the callback list is 1375 * examined. If the event or address range pertains 1376 * the callback is invoked (unless it already is in 1377 * progress). The a_contents lock must be dropped 1378 * before the callback, so only one callback can 1379 * be done at a time. Go to the top and do more 1380 * until zero is returned. If zero is returned, 1381 * either there were no callbacks for this event 1382 * or they were already in progress. 1383 */ 1384 mutex_enter(&as->a_contents); 1385 if (as->a_callbacks && 1386 (cb = as_find_callback(as, AS_UNMAP_EVENT, 1387 seg->s_base, seg->s_size))) { 1388 AS_LOCK_EXIT(as); 1389 as_execute_callback(as, cb, AS_UNMAP_EVENT); 1390 } else if (!AS_ISNOUNMAPWAIT(as)) { 1391 if (AS_ISUNMAPWAIT(as) == 0) 1392 cv_broadcast(&as->a_cv); 1393 AS_SETUNMAPWAIT(as); 1394 AS_LOCK_EXIT(as); 1395 while (AS_ISUNMAPWAIT(as)) 1396 cv_wait(&as->a_cv, &as->a_contents); 1397 } else { 1398 /* 1399 * We may have raced with 1400 * segvn_reclaim()/segspt_reclaim(). In this 1401 * case clean nounmapwait flag and retry since 1402 * softlockcnt in this segment may be already 1403 * 0. We don't drop as writer lock so our 1404 * number of retries without sleeping should 1405 * be very small. See segvn_reclaim() for 1406 * more comments. 1407 */ 1408 AS_CLRNOUNMAPWAIT(as); 1409 mutex_exit(&as->a_contents); 1410 goto retry; 1411 } 1412 mutex_exit(&as->a_contents); 1413 goto top; 1414 } else if (err == IE_RETRY) { 1415 AS_LOCK_EXIT(as); 1416 goto top; 1417 } else if (err) { 1418 as_setwatch(as); 1419 AS_LOCK_EXIT(as); 1420 return (-1); 1421 } 1422 1423 if (!is_hole) { 1424 as->a_size -= ssize; 1425 if (rsize) 1426 as->a_resvsize -= rsize; 1427 } 1428 raddr += ssize; 1429 } 1430 AS_LOCK_EXIT(as); 1431 return (0); 1432 } 1433 1434 static int 1435 as_map_segvn_segs(struct as *as, caddr_t addr, size_t size, uint_t szcvec, 1436 segcreate_func_t crfp, struct segvn_crargs *vn_a, boolean_t *segcreated) 1437 { 1438 uint_t szc, nszc, save_szcvec; 1439 int error; 1440 caddr_t a, eaddr; 1441 size_t pgsz; 1442 const boolean_t do_off = (vn_a->vp != NULL || vn_a->amp != NULL); 1443 1444 ASSERT(AS_WRITE_HELD(as)); 1445 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 1446 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 1447 ASSERT(vn_a->vp == NULL || vn_a->amp == NULL); 1448 1449 if (!do_off) { 1450 vn_a->offset = 0; 1451 } 1452 1453 if (szcvec <= 1) { 1454 struct seg *seg, *segref; 1455 1456 seg = segref = seg_alloc(as, addr, size); 1457 if (seg == NULL) { 1458 return (ENOMEM); 1459 } 1460 vn_a->szc = 0; 1461 error = (*crfp)(&seg, vn_a); 1462 if (error != 0) { 1463 VERIFY3P(seg, ==, segref); 1464 seg_free(seg); 1465 } else { 1466 as->a_size += size; 1467 as->a_resvsize += size; 1468 } 1469 return (error); 1470 } 1471 1472 eaddr = addr + size; 1473 save_szcvec = szcvec; 1474 szcvec >>= 1; 1475 szc = 0; 1476 nszc = 0; 1477 while (szcvec) { 1478 if ((szcvec & 0x1) == 0) { 1479 nszc++; 1480 szcvec >>= 1; 1481 continue; 1482 } 1483 nszc++; 1484 pgsz = page_get_pagesize(nszc); 1485 a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 1486 if (a != addr) { 1487 struct seg *seg, *segref; 1488 size_t segsize; 1489 1490 ASSERT(a < eaddr); 1491 1492 segsize = a - addr; 1493 seg = segref = seg_alloc(as, addr, segsize); 1494 if (seg == NULL) { 1495 return (ENOMEM); 1496 } 1497 vn_a->szc = szc; 1498 error = (*crfp)(&seg, vn_a); 1499 if (error != 0) { 1500 VERIFY3P(seg, ==, segref); 1501 seg_free(seg); 1502 return (error); 1503 } 1504 as->a_size += segsize; 1505 as->a_resvsize += segsize; 1506 *segcreated = B_TRUE; 1507 if (do_off) { 1508 vn_a->offset += segsize; 1509 } 1510 addr = a; 1511 } 1512 szc = nszc; 1513 szcvec >>= 1; 1514 } 1515 1516 ASSERT(addr < eaddr); 1517 szcvec = save_szcvec | 1; /* add 8K pages */ 1518 while (szcvec) { 1519 a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 1520 ASSERT(a >= addr); 1521 if (a != addr) { 1522 struct seg *seg, *segref; 1523 size_t segsize; 1524 1525 segsize = a - addr; 1526 seg = segref = seg_alloc(as, addr, segsize); 1527 if (seg == NULL) { 1528 return (ENOMEM); 1529 } 1530 vn_a->szc = szc; 1531 error = (*crfp)(&seg, vn_a); 1532 if (error != 0) { 1533 VERIFY3P(seg, ==, segref); 1534 seg_free(seg); 1535 return (error); 1536 } 1537 as->a_size += segsize; 1538 as->a_resvsize += segsize; 1539 *segcreated = B_TRUE; 1540 if (do_off) { 1541 vn_a->offset += segsize; 1542 } 1543 addr = a; 1544 } 1545 szcvec &= ~(1 << szc); 1546 if (szcvec) { 1547 szc = highbit(szcvec) - 1; 1548 pgsz = page_get_pagesize(szc); 1549 } 1550 } 1551 ASSERT(addr == eaddr); 1552 1553 return (0); 1554 } 1555 1556 static int 1557 as_map_vnsegs(struct as *as, caddr_t addr, size_t size, 1558 segcreate_func_t crfp, struct segvn_crargs *vn_a, boolean_t *segcreated) 1559 { 1560 uint_t mapflags = vn_a->flags & (MAP_TEXT | MAP_INITDATA); 1561 int type = (vn_a->type == MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM; 1562 uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags, 1563 type, 0); 1564 int error; 1565 struct vattr va; 1566 u_offset_t eoff; 1567 size_t save_size = 0; 1568 extern size_t textrepl_size_thresh; 1569 1570 ASSERT(AS_WRITE_HELD(as)); 1571 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 1572 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 1573 ASSERT(vn_a->vp != NULL); 1574 ASSERT(vn_a->amp == NULL); 1575 1576 again: 1577 if (szcvec <= 1) { 1578 struct seg *seg, *segref; 1579 1580 seg = segref = seg_alloc(as, addr, size); 1581 if (seg == NULL) { 1582 return (ENOMEM); 1583 } 1584 vn_a->szc = 0; 1585 error = (*crfp)(&seg, vn_a); 1586 if (error != 0) { 1587 VERIFY3P(seg, ==, segref); 1588 seg_free(seg); 1589 } else { 1590 as->a_size += size; 1591 as->a_resvsize += size; 1592 } 1593 return (error); 1594 } 1595 1596 va.va_mask = AT_SIZE; 1597 if (VOP_GETATTR(vn_a->vp, &va, ATTR_HINT, vn_a->cred, NULL) != 0) { 1598 szcvec = 0; 1599 goto again; 1600 } 1601 eoff = vn_a->offset & PAGEMASK; 1602 if (eoff >= va.va_size) { 1603 szcvec = 0; 1604 goto again; 1605 } 1606 eoff += size; 1607 if (btopr(va.va_size) < btopr(eoff)) { 1608 save_size = size; 1609 size = va.va_size - (vn_a->offset & PAGEMASK); 1610 size = P2ROUNDUP_TYPED(size, PAGESIZE, size_t); 1611 szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags, 1612 type, 0); 1613 if (szcvec <= 1) { 1614 size = save_size; 1615 goto again; 1616 } 1617 } 1618 1619 if (size > textrepl_size_thresh) { 1620 vn_a->flags |= _MAP_TEXTREPL; 1621 } 1622 error = as_map_segvn_segs(as, addr, size, szcvec, crfp, vn_a, 1623 segcreated); 1624 if (error != 0) { 1625 return (error); 1626 } 1627 if (save_size) { 1628 addr += size; 1629 size = save_size - size; 1630 szcvec = 0; 1631 goto again; 1632 } 1633 return (0); 1634 } 1635 1636 /* 1637 * as_map_ansegs: shared or private anonymous memory. Note that the flags 1638 * passed to map_pgszvec cannot be MAP_INITDATA, for anon. 1639 */ 1640 static int 1641 as_map_ansegs(struct as *as, caddr_t addr, size_t size, 1642 segcreate_func_t crfp, struct segvn_crargs *vn_a, boolean_t *segcreated) 1643 { 1644 uint_t szcvec; 1645 uchar_t type; 1646 1647 ASSERT(vn_a->type == MAP_SHARED || vn_a->type == MAP_PRIVATE); 1648 if (vn_a->type == MAP_SHARED) { 1649 type = MAPPGSZC_SHM; 1650 } else if (vn_a->type == MAP_PRIVATE) { 1651 if (vn_a->szc == AS_MAP_HEAP) { 1652 type = MAPPGSZC_HEAP; 1653 } else if (vn_a->szc == AS_MAP_STACK) { 1654 type = MAPPGSZC_STACK; 1655 } else { 1656 type = MAPPGSZC_PRIVM; 1657 } 1658 } 1659 szcvec = map_pgszcvec(addr, size, vn_a->amp == NULL ? 1660 (uintptr_t)addr : (uintptr_t)P2ROUNDUP(vn_a->offset, PAGESIZE), 1661 (vn_a->flags & MAP_TEXT), type, 0); 1662 ASSERT(AS_WRITE_HELD(as)); 1663 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 1664 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 1665 ASSERT(vn_a->vp == NULL); 1666 1667 return (as_map_segvn_segs(as, addr, size, szcvec, 1668 crfp, vn_a, segcreated)); 1669 } 1670 1671 int 1672 as_map(struct as *as, caddr_t addr, size_t size, segcreate_func_t crfp, 1673 void *argsp) 1674 { 1675 AS_LOCK_ENTER(as, RW_WRITER); 1676 return (as_map_locked(as, addr, size, crfp, argsp)); 1677 } 1678 1679 int 1680 as_map_locked(struct as *as, caddr_t addr, size_t size, segcreate_func_t crfp, 1681 void *argsp) 1682 { 1683 caddr_t raddr; /* rounded down addr */ 1684 size_t rsize; /* rounded up size */ 1685 int error; 1686 boolean_t is_hole = B_FALSE; 1687 /* 1688 * The use of a_proc is preferred to handle the case where curproc is 1689 * a door_call server and is allocating memory in the client's (a_proc) 1690 * address space. 1691 * When creating a shared memory segment a_proc will be NULL so we 1692 * fallback to curproc in that case. 1693 */ 1694 struct proc *p = (as->a_proc == NULL) ? curproc : as->a_proc; 1695 struct segvn_crargs crargs; 1696 1697 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1698 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1699 (size_t)raddr; 1700 1701 /* 1702 * check for wrap around 1703 */ 1704 if ((raddr + rsize < raddr) || (as->a_size > (ULONG_MAX - size))) { 1705 AS_LOCK_EXIT(as); 1706 return (ENOMEM); 1707 } 1708 1709 as->a_updatedir = 1; /* inform /proc */ 1710 gethrestime(&as->a_updatetime); 1711 1712 if (as != &kas) { 1713 /* 1714 * Ensure that the virtual size of the process will not exceed 1715 * the configured limit. Since seg_hole segments will later 1716 * set the S_HOLE flag indicating their status as a hole in the 1717 * AS, they are excluded from this check. 1718 */ 1719 if (as->a_size + rsize > (size_t)p->p_vmem_ctl && 1720 !AS_MAP_CHECK_SEGHOLE(crfp)) { 1721 AS_LOCK_EXIT(as); 1722 1723 (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], 1724 p->p_rctls, p, RCA_UNSAFE_ALL); 1725 return (ENOMEM); 1726 } 1727 } 1728 1729 if (AS_MAP_CHECK_VNODE_LPOOB(crfp, argsp)) { 1730 boolean_t do_unmap = B_FALSE; 1731 1732 crargs = *(struct segvn_crargs *)argsp; 1733 error = as_map_vnsegs(as, raddr, rsize, crfp, &crargs, 1734 &do_unmap); 1735 if (error != 0) { 1736 AS_LOCK_EXIT(as); 1737 if (do_unmap) { 1738 (void) as_unmap(as, addr, size); 1739 } 1740 return (error); 1741 } 1742 } else if (AS_MAP_CHECK_ANON_LPOOB(crfp, argsp)) { 1743 boolean_t do_unmap = B_FALSE; 1744 1745 crargs = *(struct segvn_crargs *)argsp; 1746 error = as_map_ansegs(as, raddr, rsize, crfp, &crargs, 1747 &do_unmap); 1748 if (error != 0) { 1749 AS_LOCK_EXIT(as); 1750 if (do_unmap) { 1751 (void) as_unmap(as, addr, size); 1752 } 1753 return (error); 1754 } 1755 } else { 1756 struct seg *seg, *segref; 1757 1758 seg = segref = seg_alloc(as, addr, size); 1759 if (seg == NULL) { 1760 AS_LOCK_EXIT(as); 1761 return (ENOMEM); 1762 } 1763 1764 /* 1765 * It is possible that the segment creation routine will free 1766 * 'seg' as part of a more advanced operation, such as when 1767 * segvn concatenates adjacent segments together. When this 1768 * occurs, the seg*_create routine must communicate the 1769 * resulting segment out via the 'struct seg **' parameter. 1770 * 1771 * If segment creation fails, it must not free the passed-in 1772 * segment, nor alter the argument pointer. 1773 */ 1774 error = (*crfp)(&seg, argsp); 1775 if (error != 0) { 1776 VERIFY3P(seg, ==, segref); 1777 seg_free(seg); 1778 AS_LOCK_EXIT(as); 1779 return (error); 1780 } 1781 1782 /* 1783 * Check if the resulting segment represents a hole in the 1784 * address space, rather than contributing to the AS size. 1785 */ 1786 is_hole = ((seg->s_flags & S_HOLE) != 0); 1787 1788 /* Add size now so as_unmap will work if as_ctl fails. */ 1789 if (!is_hole) { 1790 as->a_size += rsize; 1791 as->a_resvsize += rsize; 1792 } 1793 } 1794 1795 as_setwatch(as); 1796 1797 /* 1798 * Establish memory locks for the segment if the address space is 1799 * locked, provided it's not an explicit hole in the AS. 1800 */ 1801 mutex_enter(&as->a_contents); 1802 if (AS_ISPGLCK(as) && !is_hole) { 1803 mutex_exit(&as->a_contents); 1804 AS_LOCK_EXIT(as); 1805 error = as_ctl(as, addr, size, MC_LOCK, 0, 0, NULL, 0); 1806 if (error != 0) 1807 (void) as_unmap(as, addr, size); 1808 } else { 1809 mutex_exit(&as->a_contents); 1810 AS_LOCK_EXIT(as); 1811 } 1812 return (error); 1813 } 1814 1815 1816 /* 1817 * Delete all segments in the address space marked with S_PURGE. 1818 * This is currently used for Sparc V9 nofault ASI segments (seg_nf.c). 1819 * These segments are deleted as a first step before calls to as_gap(), so 1820 * that they don't affect mmap() or shmat(). 1821 */ 1822 void 1823 as_purge(struct as *as) 1824 { 1825 struct seg *seg; 1826 struct seg *next_seg; 1827 1828 /* 1829 * the setting of NEEDSPURGE is protect by as_rangelock(), so 1830 * no need to grab a_contents mutex for this check 1831 */ 1832 if ((as->a_flags & AS_NEEDSPURGE) == 0) 1833 return; 1834 1835 AS_LOCK_ENTER(as, RW_WRITER); 1836 next_seg = NULL; 1837 seg = AS_SEGFIRST(as); 1838 while (seg != NULL) { 1839 next_seg = AS_SEGNEXT(as, seg); 1840 if (seg->s_flags & S_PURGE) 1841 SEGOP_UNMAP(seg, seg->s_base, seg->s_size); 1842 seg = next_seg; 1843 } 1844 AS_LOCK_EXIT(as); 1845 1846 mutex_enter(&as->a_contents); 1847 as->a_flags &= ~AS_NEEDSPURGE; 1848 mutex_exit(&as->a_contents); 1849 } 1850 1851 /* 1852 * Find a hole within [*basep, *basep + *lenp), which contains a mappable 1853 * range of addresses at least "minlen" long, where the base of the range is 1854 * at "off" phase from an "align" boundary and there is space for a 1855 * "redzone"-sized redzone on eithe rside of the range. Thus, 1856 * if align was 4M and off was 16k, the user wants a hole which will start 1857 * 16k into a 4M page. 1858 * 1859 * If flags specifies AH_HI, the hole will have the highest possible address 1860 * in the range. We use the as->a_lastgap field to figure out where to 1861 * start looking for a gap. 1862 * 1863 * Otherwise, the gap will have the lowest possible address. 1864 * 1865 * If flags specifies AH_CONTAIN, the hole will contain the address addr. 1866 * 1867 * If an adequate hole is found, *basep and *lenp are set to reflect the part of 1868 * the hole that is within range, and 0 is returned. On failure, -1 is returned. 1869 * 1870 * NOTE: This routine is not correct when base+len overflows caddr_t. 1871 */ 1872 int 1873 as_gap_aligned(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp, 1874 uint_t flags, caddr_t addr, size_t align, size_t redzone, size_t off) 1875 { 1876 caddr_t lobound = *basep; 1877 caddr_t hibound = lobound + *lenp; 1878 struct seg *lseg, *hseg; 1879 caddr_t lo, hi; 1880 int forward; 1881 caddr_t save_base; 1882 size_t save_len; 1883 size_t save_minlen; 1884 size_t save_redzone; 1885 int fast_path = 1; 1886 1887 save_base = *basep; 1888 save_len = *lenp; 1889 save_minlen = minlen; 1890 save_redzone = redzone; 1891 1892 /* 1893 * For the first pass/fast_path, just add align and redzone into 1894 * minlen since if we get an allocation, we can guarantee that it 1895 * will fit the alignment and redzone requested. 1896 * This increases the chance that hibound will be adjusted to 1897 * a_lastgap->s_base which will likely allow us to find an 1898 * acceptable hole in the address space quicker. 1899 * If we can't find a hole with this fast_path, then we look for 1900 * smaller holes in which the alignment and offset may allow 1901 * the allocation to fit. 1902 */ 1903 minlen += align; 1904 minlen += 2 * redzone; 1905 redzone = 0; 1906 1907 AS_LOCK_ENTER(as, RW_READER); 1908 if (AS_SEGFIRST(as) == NULL) { 1909 if (valid_va_range_aligned(basep, lenp, minlen, flags & AH_DIR, 1910 align, redzone, off)) { 1911 AS_LOCK_EXIT(as); 1912 return (0); 1913 } else { 1914 AS_LOCK_EXIT(as); 1915 *basep = save_base; 1916 *lenp = save_len; 1917 return (-1); 1918 } 1919 } 1920 1921 retry: 1922 /* 1923 * Set up to iterate over all the inter-segment holes in the given 1924 * direction. lseg is NULL for the lowest-addressed hole and hseg is 1925 * NULL for the highest-addressed hole. If moving backwards, we reset 1926 * sseg to denote the highest-addressed segment. 1927 */ 1928 forward = (flags & AH_DIR) == AH_LO; 1929 if (forward) { 1930 hseg = as_findseg(as, lobound, 1); 1931 lseg = AS_SEGPREV(as, hseg); 1932 } else { 1933 1934 /* 1935 * If allocating at least as much as the last allocation, 1936 * use a_lastgap's base as a better estimate of hibound. 1937 */ 1938 if (as->a_lastgap && 1939 minlen >= as->a_lastgap->s_size && 1940 hibound >= as->a_lastgap->s_base) 1941 hibound = as->a_lastgap->s_base; 1942 1943 hseg = as_findseg(as, hibound, 1); 1944 if (hseg->s_base + hseg->s_size < hibound) { 1945 lseg = hseg; 1946 hseg = NULL; 1947 } else { 1948 lseg = AS_SEGPREV(as, hseg); 1949 } 1950 } 1951 1952 for (;;) { 1953 /* 1954 * Set lo and hi to the hole's boundaries. (We should really 1955 * use MAXADDR in place of hibound in the expression below, 1956 * but can't express it easily; using hibound in its place is 1957 * harmless.) 1958 */ 1959 lo = (lseg == NULL) ? 0 : lseg->s_base + lseg->s_size; 1960 hi = (hseg == NULL) ? hibound : hseg->s_base; 1961 /* 1962 * If the iteration has moved past the interval from lobound 1963 * to hibound it's pointless to continue. 1964 */ 1965 if ((forward && lo > hibound) || (!forward && hi < lobound)) 1966 break; 1967 else if (lo > hibound || hi < lobound) 1968 goto cont; 1969 /* 1970 * Candidate hole lies at least partially within the allowable 1971 * range. Restrict it to fall completely within that range, 1972 * i.e., to [max(lo, lobound), min(hi, hibound)]. 1973 */ 1974 if (lo < lobound) 1975 lo = lobound; 1976 if (hi > hibound) 1977 hi = hibound; 1978 /* 1979 * Verify that the candidate hole is big enough and meets 1980 * hardware constraints. If the hole is too small, no need 1981 * to do the further checks since they will fail. 1982 */ 1983 *basep = lo; 1984 *lenp = hi - lo; 1985 if (*lenp >= minlen && valid_va_range_aligned(basep, lenp, 1986 minlen, forward ? AH_LO : AH_HI, align, redzone, off) && 1987 ((flags & AH_CONTAIN) == 0 || 1988 (*basep <= addr && *basep + *lenp > addr))) { 1989 if (!forward) 1990 as->a_lastgap = hseg; 1991 if (hseg != NULL) 1992 as->a_lastgaphl = hseg; 1993 else 1994 as->a_lastgaphl = lseg; 1995 AS_LOCK_EXIT(as); 1996 return (0); 1997 } 1998 cont: 1999 /* 2000 * Move to the next hole. 2001 */ 2002 if (forward) { 2003 lseg = hseg; 2004 if (lseg == NULL) 2005 break; 2006 hseg = AS_SEGNEXT(as, hseg); 2007 } else { 2008 hseg = lseg; 2009 if (hseg == NULL) 2010 break; 2011 lseg = AS_SEGPREV(as, lseg); 2012 } 2013 } 2014 if (fast_path && (align != 0 || save_redzone != 0)) { 2015 fast_path = 0; 2016 minlen = save_minlen; 2017 redzone = save_redzone; 2018 goto retry; 2019 } 2020 *basep = save_base; 2021 *lenp = save_len; 2022 AS_LOCK_EXIT(as); 2023 return (-1); 2024 } 2025 2026 /* 2027 * Find a hole of at least size minlen within [*basep, *basep + *lenp). 2028 * 2029 * If flags specifies AH_HI, the hole will have the highest possible address 2030 * in the range. We use the as->a_lastgap field to figure out where to 2031 * start looking for a gap. 2032 * 2033 * Otherwise, the gap will have the lowest possible address. 2034 * 2035 * If flags specifies AH_CONTAIN, the hole will contain the address addr. 2036 * 2037 * If an adequate hole is found, base and len are set to reflect the part of 2038 * the hole that is within range, and 0 is returned, otherwise, 2039 * -1 is returned. 2040 * 2041 * NOTE: This routine is not correct when base+len overflows caddr_t. 2042 */ 2043 int 2044 as_gap(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp, uint_t flags, 2045 caddr_t addr) 2046 { 2047 2048 return (as_gap_aligned(as, minlen, basep, lenp, flags, addr, 0, 0, 0)); 2049 } 2050 2051 /* 2052 * Return the next range within [base, base + len) that is backed 2053 * with "real memory". Skip holes and non-seg_vn segments. 2054 * We're lazy and only return one segment at a time. 2055 */ 2056 int 2057 as_memory(struct as *as, caddr_t *basep, size_t *lenp) 2058 { 2059 extern struct seg_ops segspt_shmops; /* needs a header file */ 2060 struct seg *seg; 2061 caddr_t addr, eaddr; 2062 caddr_t segend; 2063 2064 AS_LOCK_ENTER(as, RW_READER); 2065 2066 addr = *basep; 2067 eaddr = addr + *lenp; 2068 2069 seg = as_findseg(as, addr, 0); 2070 if (seg != NULL) 2071 addr = MAX(seg->s_base, addr); 2072 2073 for (;;) { 2074 if (seg == NULL || addr >= eaddr || eaddr <= seg->s_base) { 2075 AS_LOCK_EXIT(as); 2076 return (EINVAL); 2077 } 2078 2079 if (seg->s_ops == &segvn_ops) { 2080 segend = seg->s_base + seg->s_size; 2081 break; 2082 } 2083 2084 /* 2085 * We do ISM by looking into the private data 2086 * to determine the real size of the segment. 2087 */ 2088 if (seg->s_ops == &segspt_shmops) { 2089 segend = seg->s_base + spt_realsize(seg); 2090 if (addr < segend) 2091 break; 2092 } 2093 2094 seg = AS_SEGNEXT(as, seg); 2095 2096 if (seg != NULL) 2097 addr = seg->s_base; 2098 } 2099 2100 *basep = addr; 2101 2102 if (segend > eaddr) 2103 *lenp = eaddr - addr; 2104 else 2105 *lenp = segend - addr; 2106 2107 AS_LOCK_EXIT(as); 2108 return (0); 2109 } 2110 2111 /* 2112 * Swap the pages associated with the address space as out to 2113 * secondary storage, returning the number of bytes actually 2114 * swapped. 2115 * 2116 * The value returned is intended to correlate well with the process's 2117 * memory requirements. Its usefulness for this purpose depends on 2118 * how well the segment-level routines do at returning accurate 2119 * information. 2120 */ 2121 size_t 2122 as_swapout(struct as *as) 2123 { 2124 struct seg *seg; 2125 size_t swpcnt = 0; 2126 2127 /* 2128 * Kernel-only processes have given up their address 2129 * spaces. Of course, we shouldn't be attempting to 2130 * swap out such processes in the first place... 2131 */ 2132 if (as == NULL) 2133 return (0); 2134 2135 AS_LOCK_ENTER(as, RW_READER); 2136 2137 /* 2138 * Free all mapping resources associated with the address 2139 * space. The segment-level swapout routines capitalize 2140 * on this unmapping by scavanging pages that have become 2141 * unmapped here. 2142 */ 2143 hat_swapout(as->a_hat); 2144 2145 /* 2146 * Call the swapout routines of all segments in the address 2147 * space to do the actual work, accumulating the amount of 2148 * space reclaimed. 2149 */ 2150 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 2151 struct seg_ops *ov = seg->s_ops; 2152 2153 /* 2154 * We have to check to see if the seg has 2155 * an ops vector because the seg may have 2156 * been in the middle of being set up when 2157 * the process was picked for swapout. 2158 */ 2159 if ((ov != NULL) && (ov->swapout != NULL)) 2160 swpcnt += SEGOP_SWAPOUT(seg); 2161 } 2162 AS_LOCK_EXIT(as); 2163 return (swpcnt); 2164 } 2165 2166 /* 2167 * Determine whether data from the mappings in interval [addr, addr + size) 2168 * are in the primary memory (core) cache. 2169 */ 2170 int 2171 as_incore(struct as *as, caddr_t addr, 2172 size_t size, char *vec, size_t *sizep) 2173 { 2174 struct seg *seg; 2175 size_t ssize; 2176 caddr_t raddr; /* rounded down addr */ 2177 size_t rsize; /* rounded up size */ 2178 size_t isize; /* iteration size */ 2179 int error = 0; /* result, assume success */ 2180 2181 *sizep = 0; 2182 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2183 rsize = ((((size_t)addr + size) + PAGEOFFSET) & PAGEMASK) - 2184 (size_t)raddr; 2185 2186 if (raddr + rsize < raddr) /* check for wraparound */ 2187 return (ENOMEM); 2188 2189 AS_LOCK_ENTER(as, RW_READER); 2190 seg = as_segat(as, raddr); 2191 if (seg == NULL) { 2192 AS_LOCK_EXIT(as); 2193 return (-1); 2194 } 2195 2196 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 2197 if (raddr >= seg->s_base + seg->s_size) { 2198 seg = AS_SEGNEXT(as, seg); 2199 if (seg == NULL || raddr != seg->s_base) { 2200 error = -1; 2201 break; 2202 } 2203 } 2204 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2205 ssize = seg->s_base + seg->s_size - raddr; 2206 else 2207 ssize = rsize; 2208 *sizep += isize = SEGOP_INCORE(seg, raddr, ssize, vec); 2209 if (isize != ssize) { 2210 error = -1; 2211 break; 2212 } 2213 vec += btopr(ssize); 2214 } 2215 AS_LOCK_EXIT(as); 2216 return (error); 2217 } 2218 2219 static void 2220 as_segunlock(struct seg *seg, caddr_t addr, int attr, 2221 ulong_t *bitmap, size_t position, size_t npages) 2222 { 2223 caddr_t range_start; 2224 size_t pos1 = position; 2225 size_t pos2; 2226 size_t size; 2227 size_t end_pos = npages + position; 2228 2229 while (bt_range(bitmap, &pos1, &pos2, end_pos)) { 2230 size = ptob((pos2 - pos1)); 2231 range_start = (caddr_t)((uintptr_t)addr + 2232 ptob(pos1 - position)); 2233 2234 (void) SEGOP_LOCKOP(seg, range_start, size, attr, MC_UNLOCK, 2235 (ulong_t *)NULL, (size_t)NULL); 2236 pos1 = pos2; 2237 } 2238 } 2239 2240 static void 2241 as_unlockerr(struct as *as, int attr, ulong_t *mlock_map, 2242 caddr_t raddr, size_t rsize) 2243 { 2244 struct seg *seg = as_segat(as, raddr); 2245 size_t ssize; 2246 2247 while (rsize != 0) { 2248 if (raddr >= seg->s_base + seg->s_size) 2249 seg = AS_SEGNEXT(as, seg); 2250 2251 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2252 ssize = seg->s_base + seg->s_size - raddr; 2253 else 2254 ssize = rsize; 2255 2256 as_segunlock(seg, raddr, attr, mlock_map, 0, btopr(ssize)); 2257 2258 rsize -= ssize; 2259 raddr += ssize; 2260 } 2261 } 2262 2263 /* 2264 * Cache control operations over the interval [addr, addr + size) in 2265 * address space "as". 2266 */ 2267 /*ARGSUSED*/ 2268 int 2269 as_ctl(struct as *as, caddr_t addr, size_t size, int func, int attr, 2270 uintptr_t arg, ulong_t *lock_map, size_t pos) 2271 { 2272 struct seg *seg; /* working segment */ 2273 caddr_t raddr; /* rounded down addr */ 2274 caddr_t initraddr; /* saved initial rounded down addr */ 2275 size_t rsize; /* rounded up size */ 2276 size_t initrsize; /* saved initial rounded up size */ 2277 size_t ssize; /* size of seg */ 2278 int error = 0; /* result */ 2279 size_t mlock_size; /* size of bitmap */ 2280 ulong_t *mlock_map; /* pointer to bitmap used */ 2281 /* to represent the locked */ 2282 /* pages. */ 2283 retry: 2284 if (error == IE_RETRY) 2285 AS_LOCK_ENTER(as, RW_WRITER); 2286 else 2287 AS_LOCK_ENTER(as, RW_READER); 2288 2289 /* 2290 * If these are address space lock/unlock operations, loop over 2291 * all segments in the address space, as appropriate. 2292 */ 2293 if (func == MC_LOCKAS) { 2294 size_t npages, idx; 2295 size_t rlen = 0; /* rounded as length */ 2296 2297 idx = pos; 2298 2299 if (arg & MCL_FUTURE) { 2300 mutex_enter(&as->a_contents); 2301 AS_SETPGLCK(as); 2302 mutex_exit(&as->a_contents); 2303 } 2304 if ((arg & MCL_CURRENT) == 0) { 2305 AS_LOCK_EXIT(as); 2306 return (0); 2307 } 2308 2309 seg = AS_SEGFIRST(as); 2310 if (seg == NULL) { 2311 AS_LOCK_EXIT(as); 2312 return (0); 2313 } 2314 2315 do { 2316 raddr = (caddr_t)((uintptr_t)seg->s_base & 2317 (uintptr_t)PAGEMASK); 2318 rlen += (((uintptr_t)(seg->s_base + seg->s_size) + 2319 PAGEOFFSET) & PAGEMASK) - (uintptr_t)raddr; 2320 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 2321 2322 mlock_size = BT_BITOUL(btopr(rlen)); 2323 if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size * 2324 sizeof (ulong_t), KM_NOSLEEP)) == NULL) { 2325 AS_LOCK_EXIT(as); 2326 return (EAGAIN); 2327 } 2328 2329 for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) { 2330 if ((seg->s_flags & S_HOLE) != 0) { 2331 continue; 2332 } 2333 error = SEGOP_LOCKOP(seg, seg->s_base, 2334 seg->s_size, attr, MC_LOCK, mlock_map, pos); 2335 if (error != 0) 2336 break; 2337 pos += seg_pages(seg); 2338 } 2339 2340 if (error) { 2341 for (seg = AS_SEGFIRST(as); seg != NULL; 2342 seg = AS_SEGNEXT(as, seg)) { 2343 2344 raddr = (caddr_t)((uintptr_t)seg->s_base & 2345 (uintptr_t)PAGEMASK); 2346 npages = seg_pages(seg); 2347 as_segunlock(seg, raddr, attr, mlock_map, 2348 idx, npages); 2349 idx += npages; 2350 } 2351 } 2352 2353 kmem_free(mlock_map, mlock_size * sizeof (ulong_t)); 2354 AS_LOCK_EXIT(as); 2355 goto lockerr; 2356 } else if (func == MC_UNLOCKAS) { 2357 mutex_enter(&as->a_contents); 2358 AS_CLRPGLCK(as); 2359 mutex_exit(&as->a_contents); 2360 2361 for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) { 2362 if ((seg->s_flags & S_HOLE) != 0) { 2363 continue; 2364 } 2365 error = SEGOP_LOCKOP(seg, seg->s_base, 2366 seg->s_size, attr, MC_UNLOCK, NULL, 0); 2367 if (error != 0) 2368 break; 2369 } 2370 2371 AS_LOCK_EXIT(as); 2372 goto lockerr; 2373 } 2374 2375 /* 2376 * Normalize addresses and sizes. 2377 */ 2378 initraddr = raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2379 initrsize = rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2380 (size_t)raddr; 2381 2382 if (raddr + rsize < raddr) { /* check for wraparound */ 2383 AS_LOCK_EXIT(as); 2384 return (ENOMEM); 2385 } 2386 2387 /* 2388 * Get initial segment. 2389 */ 2390 if ((seg = as_segat(as, raddr)) == NULL) { 2391 AS_LOCK_EXIT(as); 2392 return (ENOMEM); 2393 } 2394 2395 if (func == MC_LOCK) { 2396 mlock_size = BT_BITOUL(btopr(rsize)); 2397 if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size * 2398 sizeof (ulong_t), KM_NOSLEEP)) == NULL) { 2399 AS_LOCK_EXIT(as); 2400 return (EAGAIN); 2401 } 2402 } 2403 2404 /* 2405 * Loop over all segments. If a hole in the address range is 2406 * discovered, then fail. For each segment, perform the appropriate 2407 * control operation. 2408 */ 2409 while (rsize != 0) { 2410 2411 /* 2412 * Make sure there's no hole, calculate the portion 2413 * of the next segment to be operated over. 2414 */ 2415 if (raddr >= seg->s_base + seg->s_size) { 2416 seg = AS_SEGNEXT(as, seg); 2417 if (seg == NULL || raddr != seg->s_base) { 2418 if (func == MC_LOCK) { 2419 as_unlockerr(as, attr, mlock_map, 2420 initraddr, initrsize - rsize); 2421 kmem_free(mlock_map, 2422 mlock_size * sizeof (ulong_t)); 2423 } 2424 AS_LOCK_EXIT(as); 2425 return (ENOMEM); 2426 } 2427 } 2428 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2429 ssize = seg->s_base + seg->s_size - raddr; 2430 else 2431 ssize = rsize; 2432 2433 /* 2434 * Dispatch on specific function. 2435 */ 2436 switch (func) { 2437 2438 /* 2439 * Synchronize cached data from mappings with backing 2440 * objects. 2441 */ 2442 case MC_SYNC: 2443 if (error = SEGOP_SYNC(seg, raddr, ssize, 2444 attr, (uint_t)arg)) { 2445 AS_LOCK_EXIT(as); 2446 return (error); 2447 } 2448 break; 2449 2450 /* 2451 * Lock pages in memory. 2452 */ 2453 case MC_LOCK: 2454 if (error = SEGOP_LOCKOP(seg, raddr, ssize, 2455 attr, func, mlock_map, pos)) { 2456 as_unlockerr(as, attr, mlock_map, initraddr, 2457 initrsize - rsize + ssize); 2458 kmem_free(mlock_map, mlock_size * 2459 sizeof (ulong_t)); 2460 AS_LOCK_EXIT(as); 2461 goto lockerr; 2462 } 2463 break; 2464 2465 /* 2466 * Unlock mapped pages. 2467 */ 2468 case MC_UNLOCK: 2469 (void) SEGOP_LOCKOP(seg, raddr, ssize, attr, func, 2470 (ulong_t *)NULL, (size_t)NULL); 2471 break; 2472 2473 /* 2474 * Store VM advise for mapped pages in segment layer. 2475 */ 2476 case MC_ADVISE: 2477 error = SEGOP_ADVISE(seg, raddr, ssize, (uint_t)arg); 2478 2479 /* 2480 * Check for regular errors and special retry error 2481 */ 2482 if (error) { 2483 if (error == IE_RETRY) { 2484 /* 2485 * Need to acquire writers lock, so 2486 * have to drop readers lock and start 2487 * all over again 2488 */ 2489 AS_LOCK_EXIT(as); 2490 goto retry; 2491 } else if (error == IE_REATTACH) { 2492 /* 2493 * Find segment for current address 2494 * because current segment just got 2495 * split or concatenated 2496 */ 2497 seg = as_segat(as, raddr); 2498 if (seg == NULL) { 2499 AS_LOCK_EXIT(as); 2500 return (ENOMEM); 2501 } 2502 } else { 2503 /* 2504 * Regular error 2505 */ 2506 AS_LOCK_EXIT(as); 2507 return (error); 2508 } 2509 } 2510 break; 2511 2512 case MC_INHERIT_ZERO: 2513 if (seg->s_ops->inherit == NULL) { 2514 error = ENOTSUP; 2515 } else { 2516 error = SEGOP_INHERIT(seg, raddr, ssize, 2517 SEGP_INH_ZERO); 2518 } 2519 if (error != 0) { 2520 AS_LOCK_EXIT(as); 2521 return (error); 2522 } 2523 break; 2524 2525 /* 2526 * Can't happen. 2527 */ 2528 default: 2529 panic("as_ctl: bad operation %d", func); 2530 /*NOTREACHED*/ 2531 } 2532 2533 rsize -= ssize; 2534 raddr += ssize; 2535 } 2536 2537 if (func == MC_LOCK) 2538 kmem_free(mlock_map, mlock_size * sizeof (ulong_t)); 2539 AS_LOCK_EXIT(as); 2540 return (0); 2541 lockerr: 2542 2543 /* 2544 * If the lower levels returned EDEADLK for a segment lockop, 2545 * it means that we should retry the operation. Let's wait 2546 * a bit also to let the deadlock causing condition clear. 2547 * This is part of a gross hack to work around a design flaw 2548 * in the ufs/sds logging code and should go away when the 2549 * logging code is re-designed to fix the problem. See bug 2550 * 4125102 for details of the problem. 2551 */ 2552 if (error == EDEADLK) { 2553 delay(deadlk_wait); 2554 error = 0; 2555 goto retry; 2556 } 2557 return (error); 2558 } 2559 2560 int 2561 fc_decode(faultcode_t fault_err) 2562 { 2563 int error = 0; 2564 2565 switch (FC_CODE(fault_err)) { 2566 case FC_OBJERR: 2567 error = FC_ERRNO(fault_err); 2568 break; 2569 case FC_PROT: 2570 error = EACCES; 2571 break; 2572 default: 2573 error = EFAULT; 2574 break; 2575 } 2576 return (error); 2577 } 2578 2579 /* 2580 * Pagelock pages from a range that spans more than 1 segment. Obtain shadow 2581 * lists from each segment and copy them to one contiguous shadow list (plist) 2582 * as expected by the caller. Save pointers to per segment shadow lists at 2583 * the tail of plist so that they can be used during as_pageunlock(). 2584 */ 2585 static int 2586 as_pagelock_segs(struct as *as, struct seg *seg, struct page ***ppp, 2587 caddr_t addr, size_t size, enum seg_rw rw) 2588 { 2589 caddr_t sv_addr = addr; 2590 size_t sv_size = size; 2591 struct seg *sv_seg = seg; 2592 ulong_t segcnt = 1; 2593 ulong_t cnt; 2594 size_t ssize; 2595 pgcnt_t npages = btop(size); 2596 page_t **plist; 2597 page_t **pl; 2598 int error; 2599 caddr_t eaddr; 2600 faultcode_t fault_err = 0; 2601 pgcnt_t pl_off; 2602 extern struct seg_ops segspt_shmops; 2603 2604 ASSERT(AS_LOCK_HELD(as)); 2605 ASSERT(seg != NULL); 2606 ASSERT(addr >= seg->s_base && addr < seg->s_base + seg->s_size); 2607 ASSERT(addr + size > seg->s_base + seg->s_size); 2608 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 2609 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 2610 2611 /* 2612 * Count the number of segments covered by the range we are about to 2613 * lock. The segment count is used to size the shadow list we return 2614 * back to the caller. 2615 */ 2616 for (; size != 0; size -= ssize, addr += ssize) { 2617 if (addr >= seg->s_base + seg->s_size) { 2618 2619 seg = AS_SEGNEXT(as, seg); 2620 if (seg == NULL || addr != seg->s_base) { 2621 AS_LOCK_EXIT(as); 2622 return (EFAULT); 2623 } 2624 /* 2625 * Do a quick check if subsequent segments 2626 * will most likely support pagelock. 2627 */ 2628 if (seg->s_ops == &segvn_ops) { 2629 vnode_t *vp; 2630 2631 if (SEGOP_GETVP(seg, addr, &vp) != 0 || 2632 vp != NULL) { 2633 AS_LOCK_EXIT(as); 2634 goto slow; 2635 } 2636 } else if (seg->s_ops != &segspt_shmops) { 2637 AS_LOCK_EXIT(as); 2638 goto slow; 2639 } 2640 segcnt++; 2641 } 2642 if (addr + size > seg->s_base + seg->s_size) { 2643 ssize = seg->s_base + seg->s_size - addr; 2644 } else { 2645 ssize = size; 2646 } 2647 } 2648 ASSERT(segcnt > 1); 2649 2650 plist = kmem_zalloc((npages + segcnt) * sizeof (page_t *), KM_SLEEP); 2651 2652 addr = sv_addr; 2653 size = sv_size; 2654 seg = sv_seg; 2655 2656 for (cnt = 0, pl_off = 0; size != 0; size -= ssize, addr += ssize) { 2657 if (addr >= seg->s_base + seg->s_size) { 2658 seg = AS_SEGNEXT(as, seg); 2659 ASSERT(seg != NULL && addr == seg->s_base); 2660 cnt++; 2661 ASSERT(cnt < segcnt); 2662 } 2663 if (addr + size > seg->s_base + seg->s_size) { 2664 ssize = seg->s_base + seg->s_size - addr; 2665 } else { 2666 ssize = size; 2667 } 2668 pl = &plist[npages + cnt]; 2669 error = SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl, 2670 L_PAGELOCK, rw); 2671 if (error) { 2672 break; 2673 } 2674 ASSERT(plist[npages + cnt] != NULL); 2675 ASSERT(pl_off + btop(ssize) <= npages); 2676 bcopy(plist[npages + cnt], &plist[pl_off], 2677 btop(ssize) * sizeof (page_t *)); 2678 pl_off += btop(ssize); 2679 } 2680 2681 if (size == 0) { 2682 AS_LOCK_EXIT(as); 2683 ASSERT(cnt == segcnt - 1); 2684 *ppp = plist; 2685 return (0); 2686 } 2687 2688 /* 2689 * one of pagelock calls failed. The error type is in error variable. 2690 * Unlock what we've locked so far and retry with F_SOFTLOCK if error 2691 * type is either EFAULT or ENOTSUP. Otherwise just return the error 2692 * back to the caller. 2693 */ 2694 2695 eaddr = addr; 2696 seg = sv_seg; 2697 2698 for (cnt = 0, addr = sv_addr; addr < eaddr; addr += ssize) { 2699 if (addr >= seg->s_base + seg->s_size) { 2700 seg = AS_SEGNEXT(as, seg); 2701 ASSERT(seg != NULL && addr == seg->s_base); 2702 cnt++; 2703 ASSERT(cnt < segcnt); 2704 } 2705 if (eaddr > seg->s_base + seg->s_size) { 2706 ssize = seg->s_base + seg->s_size - addr; 2707 } else { 2708 ssize = eaddr - addr; 2709 } 2710 pl = &plist[npages + cnt]; 2711 ASSERT(*pl != NULL); 2712 (void) SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl, 2713 L_PAGEUNLOCK, rw); 2714 } 2715 2716 AS_LOCK_EXIT(as); 2717 2718 kmem_free(plist, (npages + segcnt) * sizeof (page_t *)); 2719 2720 if (error != ENOTSUP && error != EFAULT) { 2721 return (error); 2722 } 2723 2724 slow: 2725 /* 2726 * If we are here because pagelock failed due to the need to cow fault 2727 * in the pages we want to lock F_SOFTLOCK will do this job and in 2728 * next as_pagelock() call for this address range pagelock will 2729 * hopefully succeed. 2730 */ 2731 fault_err = as_fault(as->a_hat, as, sv_addr, sv_size, F_SOFTLOCK, rw); 2732 if (fault_err != 0) { 2733 return (fc_decode(fault_err)); 2734 } 2735 *ppp = NULL; 2736 2737 return (0); 2738 } 2739 2740 /* 2741 * lock pages in a given address space. Return shadow list. If 2742 * the list is NULL, the MMU mapping is also locked. 2743 */ 2744 int 2745 as_pagelock(struct as *as, struct page ***ppp, caddr_t addr, 2746 size_t size, enum seg_rw rw) 2747 { 2748 size_t rsize; 2749 caddr_t raddr; 2750 faultcode_t fault_err; 2751 struct seg *seg; 2752 int err; 2753 2754 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_START, 2755 "as_pagelock_start: addr %p size %ld", addr, size); 2756 2757 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2758 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2759 (size_t)raddr; 2760 2761 /* 2762 * if the request crosses two segments let 2763 * as_fault handle it. 2764 */ 2765 AS_LOCK_ENTER(as, RW_READER); 2766 2767 seg = as_segat(as, raddr); 2768 if (seg == NULL) { 2769 AS_LOCK_EXIT(as); 2770 return (EFAULT); 2771 } 2772 ASSERT(raddr >= seg->s_base && raddr < seg->s_base + seg->s_size); 2773 if (raddr + rsize > seg->s_base + seg->s_size) { 2774 return (as_pagelock_segs(as, seg, ppp, raddr, rsize, rw)); 2775 } 2776 if (raddr + rsize <= raddr) { 2777 AS_LOCK_EXIT(as); 2778 return (EFAULT); 2779 } 2780 2781 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_START, 2782 "seg_lock_1_start: raddr %p rsize %ld", raddr, rsize); 2783 2784 /* 2785 * try to lock pages and pass back shadow list 2786 */ 2787 err = SEGOP_PAGELOCK(seg, raddr, rsize, ppp, L_PAGELOCK, rw); 2788 2789 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_END, "seg_lock_1_end"); 2790 2791 AS_LOCK_EXIT(as); 2792 2793 if (err == 0 || (err != ENOTSUP && err != EFAULT)) { 2794 return (err); 2795 } 2796 2797 /* 2798 * Use F_SOFTLOCK to lock the pages because pagelock failed either due 2799 * to no pagelock support for this segment or pages need to be cow 2800 * faulted in. If fault is needed F_SOFTLOCK will do this job for 2801 * this as_pagelock() call and in the next as_pagelock() call for the 2802 * same address range pagelock call will hopefull succeed. 2803 */ 2804 fault_err = as_fault(as->a_hat, as, addr, size, F_SOFTLOCK, rw); 2805 if (fault_err != 0) { 2806 return (fc_decode(fault_err)); 2807 } 2808 *ppp = NULL; 2809 2810 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_END, "as_pagelock_end"); 2811 return (0); 2812 } 2813 2814 /* 2815 * unlock pages locked by as_pagelock_segs(). Retrieve per segment shadow 2816 * lists from the end of plist and call pageunlock interface for each segment. 2817 * Drop as lock and free plist. 2818 */ 2819 static void 2820 as_pageunlock_segs(struct as *as, struct seg *seg, caddr_t addr, size_t size, 2821 struct page **plist, enum seg_rw rw) 2822 { 2823 ulong_t cnt; 2824 caddr_t eaddr = addr + size; 2825 pgcnt_t npages = btop(size); 2826 size_t ssize; 2827 page_t **pl; 2828 2829 ASSERT(AS_LOCK_HELD(as)); 2830 ASSERT(seg != NULL); 2831 ASSERT(addr >= seg->s_base && addr < seg->s_base + seg->s_size); 2832 ASSERT(addr + size > seg->s_base + seg->s_size); 2833 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 2834 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 2835 ASSERT(plist != NULL); 2836 2837 for (cnt = 0; addr < eaddr; addr += ssize) { 2838 if (addr >= seg->s_base + seg->s_size) { 2839 seg = AS_SEGNEXT(as, seg); 2840 ASSERT(seg != NULL && addr == seg->s_base); 2841 cnt++; 2842 } 2843 if (eaddr > seg->s_base + seg->s_size) { 2844 ssize = seg->s_base + seg->s_size - addr; 2845 } else { 2846 ssize = eaddr - addr; 2847 } 2848 pl = &plist[npages + cnt]; 2849 ASSERT(*pl != NULL); 2850 (void) SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl, 2851 L_PAGEUNLOCK, rw); 2852 } 2853 ASSERT(cnt > 0); 2854 AS_LOCK_EXIT(as); 2855 2856 cnt++; 2857 kmem_free(plist, (npages + cnt) * sizeof (page_t *)); 2858 } 2859 2860 /* 2861 * unlock pages in a given address range 2862 */ 2863 void 2864 as_pageunlock(struct as *as, struct page **pp, caddr_t addr, size_t size, 2865 enum seg_rw rw) 2866 { 2867 struct seg *seg; 2868 size_t rsize; 2869 caddr_t raddr; 2870 2871 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_START, 2872 "as_pageunlock_start: addr %p size %ld", addr, size); 2873 2874 /* 2875 * if the shadow list is NULL, as_pagelock was 2876 * falling back to as_fault 2877 */ 2878 if (pp == NULL) { 2879 (void) as_fault(as->a_hat, as, addr, size, F_SOFTUNLOCK, rw); 2880 return; 2881 } 2882 2883 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2884 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2885 (size_t)raddr; 2886 2887 AS_LOCK_ENTER(as, RW_READER); 2888 seg = as_segat(as, raddr); 2889 ASSERT(seg != NULL); 2890 2891 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_UNLOCK_START, 2892 "seg_unlock_start: raddr %p rsize %ld", raddr, rsize); 2893 2894 ASSERT(raddr >= seg->s_base && raddr < seg->s_base + seg->s_size); 2895 if (raddr + rsize <= seg->s_base + seg->s_size) { 2896 SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGEUNLOCK, rw); 2897 } else { 2898 as_pageunlock_segs(as, seg, raddr, rsize, pp, rw); 2899 return; 2900 } 2901 AS_LOCK_EXIT(as); 2902 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_END, "as_pageunlock_end"); 2903 } 2904 2905 int 2906 as_setpagesize(struct as *as, caddr_t addr, size_t size, uint_t szc, 2907 boolean_t wait) 2908 { 2909 struct seg *seg; 2910 size_t ssize; 2911 caddr_t raddr; /* rounded down addr */ 2912 size_t rsize; /* rounded up size */ 2913 int error = 0; 2914 size_t pgsz = page_get_pagesize(szc); 2915 2916 setpgsz_top: 2917 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(size, pgsz)) { 2918 return (EINVAL); 2919 } 2920 2921 raddr = addr; 2922 rsize = size; 2923 2924 if (raddr + rsize < raddr) /* check for wraparound */ 2925 return (ENOMEM); 2926 2927 AS_LOCK_ENTER(as, RW_WRITER); 2928 as_clearwatchprot(as, raddr, rsize); 2929 seg = as_segat(as, raddr); 2930 if (seg == NULL) { 2931 as_setwatch(as); 2932 AS_LOCK_EXIT(as); 2933 return (ENOMEM); 2934 } 2935 2936 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 2937 if (raddr >= seg->s_base + seg->s_size) { 2938 seg = AS_SEGNEXT(as, seg); 2939 if (seg == NULL || raddr != seg->s_base) { 2940 error = ENOMEM; 2941 break; 2942 } 2943 } 2944 if ((raddr + rsize) > (seg->s_base + seg->s_size)) { 2945 ssize = seg->s_base + seg->s_size - raddr; 2946 } else { 2947 ssize = rsize; 2948 } 2949 2950 retry: 2951 error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc); 2952 2953 if (error == IE_NOMEM) { 2954 error = EAGAIN; 2955 break; 2956 } 2957 2958 if (error == IE_RETRY) { 2959 AS_LOCK_EXIT(as); 2960 goto setpgsz_top; 2961 } 2962 2963 if (error == ENOTSUP) { 2964 error = EINVAL; 2965 break; 2966 } 2967 2968 if (wait && (error == EAGAIN)) { 2969 /* 2970 * Memory is currently locked. It must be unlocked 2971 * before this operation can succeed through a retry. 2972 * The possible reasons for locked memory and 2973 * corresponding strategies for unlocking are: 2974 * (1) Normal I/O 2975 * wait for a signal that the I/O operation 2976 * has completed and the memory is unlocked. 2977 * (2) Asynchronous I/O 2978 * The aio subsystem does not unlock pages when 2979 * the I/O is completed. Those pages are unlocked 2980 * when the application calls aiowait/aioerror. 2981 * So, to prevent blocking forever, cv_broadcast() 2982 * is done to wake up aio_cleanup_thread. 2983 * Subsequently, segvn_reclaim will be called, and 2984 * that will do AS_CLRUNMAPWAIT() and wake us up. 2985 * (3) Long term page locking: 2986 * This is not relevant for as_setpagesize() 2987 * because we cannot change the page size for 2988 * driver memory. The attempt to do so will 2989 * fail with a different error than EAGAIN so 2990 * there's no need to trigger as callbacks like 2991 * as_unmap, as_setprot or as_free would do. 2992 */ 2993 mutex_enter(&as->a_contents); 2994 if (!AS_ISNOUNMAPWAIT(as)) { 2995 if (AS_ISUNMAPWAIT(as) == 0) { 2996 cv_broadcast(&as->a_cv); 2997 } 2998 AS_SETUNMAPWAIT(as); 2999 AS_LOCK_EXIT(as); 3000 while (AS_ISUNMAPWAIT(as)) { 3001 cv_wait(&as->a_cv, &as->a_contents); 3002 } 3003 } else { 3004 /* 3005 * We may have raced with 3006 * segvn_reclaim()/segspt_reclaim(). In this 3007 * case clean nounmapwait flag and retry since 3008 * softlockcnt in this segment may be already 3009 * 0. We don't drop as writer lock so our 3010 * number of retries without sleeping should 3011 * be very small. See segvn_reclaim() for 3012 * more comments. 3013 */ 3014 AS_CLRNOUNMAPWAIT(as); 3015 mutex_exit(&as->a_contents); 3016 goto retry; 3017 } 3018 mutex_exit(&as->a_contents); 3019 goto setpgsz_top; 3020 } else if (error != 0) { 3021 break; 3022 } 3023 } 3024 as_setwatch(as); 3025 AS_LOCK_EXIT(as); 3026 return (error); 3027 } 3028 3029 /* 3030 * as_iset3_default_lpsize() just calls SEGOP_SETPAGESIZE() on all segments 3031 * in its chunk where s_szc is less than the szc we want to set. 3032 */ 3033 static int 3034 as_iset3_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc, 3035 int *retry) 3036 { 3037 struct seg *seg; 3038 size_t ssize; 3039 int error; 3040 3041 ASSERT(AS_WRITE_HELD(as)); 3042 3043 seg = as_segat(as, raddr); 3044 if (seg == NULL) { 3045 panic("as_iset3_default_lpsize: no seg"); 3046 } 3047 3048 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 3049 if (raddr >= seg->s_base + seg->s_size) { 3050 seg = AS_SEGNEXT(as, seg); 3051 if (seg == NULL || raddr != seg->s_base) { 3052 panic("as_iset3_default_lpsize: as changed"); 3053 } 3054 } 3055 if ((raddr + rsize) > (seg->s_base + seg->s_size)) { 3056 ssize = seg->s_base + seg->s_size - raddr; 3057 } else { 3058 ssize = rsize; 3059 } 3060 3061 if (szc > seg->s_szc) { 3062 error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc); 3063 /* Only retry on EINVAL segments that have no vnode. */ 3064 if (error == EINVAL) { 3065 vnode_t *vp = NULL; 3066 if ((SEGOP_GETTYPE(seg, raddr) & MAP_SHARED) && 3067 (SEGOP_GETVP(seg, raddr, &vp) != 0 || 3068 vp == NULL)) { 3069 *retry = 1; 3070 } else { 3071 *retry = 0; 3072 } 3073 } 3074 if (error) { 3075 return (error); 3076 } 3077 } 3078 } 3079 return (0); 3080 } 3081 3082 /* 3083 * as_iset2_default_lpsize() calls as_iset3_default_lpsize() to set the 3084 * pagesize on each segment in its range, but if any fails with EINVAL, 3085 * then it reduces the pagesizes to the next size in the bitmap and 3086 * retries as_iset3_default_lpsize(). The reason why the code retries 3087 * smaller allowed sizes on EINVAL is because (a) the anon offset may not 3088 * match the bigger sizes, and (b) it's hard to get this offset (to begin 3089 * with) to pass to map_pgszcvec(). 3090 */ 3091 static int 3092 as_iset2_default_lpsize(struct as *as, caddr_t addr, size_t size, uint_t szc, 3093 uint_t szcvec) 3094 { 3095 int error; 3096 int retry; 3097 3098 ASSERT(AS_WRITE_HELD(as)); 3099 3100 for (;;) { 3101 error = as_iset3_default_lpsize(as, addr, size, szc, &retry); 3102 if (error == EINVAL && retry) { 3103 szcvec &= ~(1 << szc); 3104 if (szcvec <= 1) { 3105 return (EINVAL); 3106 } 3107 szc = highbit(szcvec) - 1; 3108 } else { 3109 return (error); 3110 } 3111 } 3112 } 3113 3114 /* 3115 * as_iset1_default_lpsize() breaks its chunk into areas where existing 3116 * segments have a smaller szc than we want to set. For each such area, 3117 * it calls as_iset2_default_lpsize() 3118 */ 3119 static int 3120 as_iset1_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc, 3121 uint_t szcvec) 3122 { 3123 struct seg *seg; 3124 size_t ssize; 3125 caddr_t setaddr = raddr; 3126 size_t setsize = 0; 3127 int set; 3128 int error; 3129 3130 ASSERT(AS_WRITE_HELD(as)); 3131 3132 seg = as_segat(as, raddr); 3133 if (seg == NULL) { 3134 panic("as_iset1_default_lpsize: no seg"); 3135 } 3136 if (seg->s_szc < szc) { 3137 set = 1; 3138 } else { 3139 set = 0; 3140 } 3141 3142 for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) { 3143 if (raddr >= seg->s_base + seg->s_size) { 3144 seg = AS_SEGNEXT(as, seg); 3145 if (seg == NULL || raddr != seg->s_base) { 3146 panic("as_iset1_default_lpsize: as changed"); 3147 } 3148 if (seg->s_szc >= szc && set) { 3149 ASSERT(setsize != 0); 3150 error = as_iset2_default_lpsize(as, 3151 setaddr, setsize, szc, szcvec); 3152 if (error) { 3153 return (error); 3154 } 3155 set = 0; 3156 } else if (seg->s_szc < szc && !set) { 3157 setaddr = raddr; 3158 setsize = 0; 3159 set = 1; 3160 } 3161 } 3162 if ((raddr + rsize) > (seg->s_base + seg->s_size)) { 3163 ssize = seg->s_base + seg->s_size - raddr; 3164 } else { 3165 ssize = rsize; 3166 } 3167 } 3168 error = 0; 3169 if (set) { 3170 ASSERT(setsize != 0); 3171 error = as_iset2_default_lpsize(as, setaddr, setsize, 3172 szc, szcvec); 3173 } 3174 return (error); 3175 } 3176 3177 /* 3178 * as_iset_default_lpsize() breaks its chunk according to the size code bitmap 3179 * returned by map_pgszcvec() (similar to as_map_segvn_segs()), and passes each 3180 * chunk to as_iset1_default_lpsize(). 3181 */ 3182 static int 3183 as_iset_default_lpsize(struct as *as, caddr_t addr, size_t size, int flags, 3184 int type) 3185 { 3186 int rtype = (type & MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM; 3187 uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, 3188 flags, rtype, 1); 3189 uint_t szc; 3190 uint_t nszc; 3191 int error; 3192 caddr_t a; 3193 caddr_t eaddr; 3194 size_t segsize; 3195 size_t pgsz; 3196 uint_t save_szcvec; 3197 3198 ASSERT(AS_WRITE_HELD(as)); 3199 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 3200 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 3201 3202 szcvec &= ~1; 3203 if (szcvec <= 1) { /* skip if base page size */ 3204 return (0); 3205 } 3206 3207 /* Get the pagesize of the first larger page size. */ 3208 szc = lowbit(szcvec) - 1; 3209 pgsz = page_get_pagesize(szc); 3210 eaddr = addr + size; 3211 addr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 3212 eaddr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 3213 3214 save_szcvec = szcvec; 3215 szcvec >>= (szc + 1); 3216 nszc = szc; 3217 while (szcvec) { 3218 if ((szcvec & 0x1) == 0) { 3219 nszc++; 3220 szcvec >>= 1; 3221 continue; 3222 } 3223 nszc++; 3224 pgsz = page_get_pagesize(nszc); 3225 a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 3226 if (a != addr) { 3227 ASSERT(szc > 0); 3228 ASSERT(a < eaddr); 3229 segsize = a - addr; 3230 error = as_iset1_default_lpsize(as, addr, segsize, szc, 3231 save_szcvec); 3232 if (error) { 3233 return (error); 3234 } 3235 addr = a; 3236 } 3237 szc = nszc; 3238 szcvec >>= 1; 3239 } 3240 3241 ASSERT(addr < eaddr); 3242 szcvec = save_szcvec; 3243 while (szcvec) { 3244 a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 3245 ASSERT(a >= addr); 3246 if (a != addr) { 3247 ASSERT(szc > 0); 3248 segsize = a - addr; 3249 error = as_iset1_default_lpsize(as, addr, segsize, szc, 3250 save_szcvec); 3251 if (error) { 3252 return (error); 3253 } 3254 addr = a; 3255 } 3256 szcvec &= ~(1 << szc); 3257 if (szcvec) { 3258 szc = highbit(szcvec) - 1; 3259 pgsz = page_get_pagesize(szc); 3260 } 3261 } 3262 ASSERT(addr == eaddr); 3263 3264 return (0); 3265 } 3266 3267 /* 3268 * Set the default large page size for the range. Called via memcntl with 3269 * page size set to 0. as_set_default_lpsize breaks the range down into 3270 * chunks with the same type/flags, ignores-non segvn segments, and passes 3271 * each chunk to as_iset_default_lpsize(). 3272 */ 3273 int 3274 as_set_default_lpsize(struct as *as, caddr_t addr, size_t size) 3275 { 3276 struct seg *seg; 3277 caddr_t raddr; 3278 size_t rsize; 3279 size_t ssize; 3280 int rtype, rflags; 3281 int stype, sflags; 3282 int error; 3283 caddr_t setaddr; 3284 size_t setsize; 3285 int segvn; 3286 3287 if (size == 0) 3288 return (0); 3289 3290 AS_LOCK_ENTER(as, RW_WRITER); 3291 again: 3292 error = 0; 3293 3294 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 3295 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 3296 (size_t)raddr; 3297 3298 if (raddr + rsize < raddr) { /* check for wraparound */ 3299 AS_LOCK_EXIT(as); 3300 return (ENOMEM); 3301 } 3302 as_clearwatchprot(as, raddr, rsize); 3303 seg = as_segat(as, raddr); 3304 if (seg == NULL) { 3305 as_setwatch(as); 3306 AS_LOCK_EXIT(as); 3307 return (ENOMEM); 3308 } 3309 if (seg->s_ops == &segvn_ops) { 3310 rtype = SEGOP_GETTYPE(seg, addr); 3311 rflags = rtype & (MAP_TEXT | MAP_INITDATA); 3312 rtype = rtype & (MAP_SHARED | MAP_PRIVATE); 3313 segvn = 1; 3314 } else { 3315 segvn = 0; 3316 } 3317 setaddr = raddr; 3318 setsize = 0; 3319 3320 for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) { 3321 if (raddr >= (seg->s_base + seg->s_size)) { 3322 seg = AS_SEGNEXT(as, seg); 3323 if (seg == NULL || raddr != seg->s_base) { 3324 error = ENOMEM; 3325 break; 3326 } 3327 if (seg->s_ops == &segvn_ops) { 3328 stype = SEGOP_GETTYPE(seg, raddr); 3329 sflags = stype & (MAP_TEXT | MAP_INITDATA); 3330 stype &= (MAP_SHARED | MAP_PRIVATE); 3331 if (segvn && (rflags != sflags || 3332 rtype != stype)) { 3333 /* 3334 * The next segment is also segvn but 3335 * has different flags and/or type. 3336 */ 3337 ASSERT(setsize != 0); 3338 error = as_iset_default_lpsize(as, 3339 setaddr, setsize, rflags, rtype); 3340 if (error) { 3341 break; 3342 } 3343 rflags = sflags; 3344 rtype = stype; 3345 setaddr = raddr; 3346 setsize = 0; 3347 } else if (!segvn) { 3348 rflags = sflags; 3349 rtype = stype; 3350 setaddr = raddr; 3351 setsize = 0; 3352 segvn = 1; 3353 } 3354 } else if (segvn) { 3355 /* The next segment is not segvn. */ 3356 ASSERT(setsize != 0); 3357 error = as_iset_default_lpsize(as, 3358 setaddr, setsize, rflags, rtype); 3359 if (error) { 3360 break; 3361 } 3362 segvn = 0; 3363 } 3364 } 3365 if ((raddr + rsize) > (seg->s_base + seg->s_size)) { 3366 ssize = seg->s_base + seg->s_size - raddr; 3367 } else { 3368 ssize = rsize; 3369 } 3370 } 3371 if (error == 0 && segvn) { 3372 /* The last chunk when rsize == 0. */ 3373 ASSERT(setsize != 0); 3374 error = as_iset_default_lpsize(as, setaddr, setsize, 3375 rflags, rtype); 3376 } 3377 3378 if (error == IE_RETRY) { 3379 goto again; 3380 } else if (error == IE_NOMEM) { 3381 error = EAGAIN; 3382 } else if (error == ENOTSUP) { 3383 error = EINVAL; 3384 } else if (error == EAGAIN) { 3385 mutex_enter(&as->a_contents); 3386 if (!AS_ISNOUNMAPWAIT(as)) { 3387 if (AS_ISUNMAPWAIT(as) == 0) { 3388 cv_broadcast(&as->a_cv); 3389 } 3390 AS_SETUNMAPWAIT(as); 3391 AS_LOCK_EXIT(as); 3392 while (AS_ISUNMAPWAIT(as)) { 3393 cv_wait(&as->a_cv, &as->a_contents); 3394 } 3395 mutex_exit(&as->a_contents); 3396 AS_LOCK_ENTER(as, RW_WRITER); 3397 } else { 3398 /* 3399 * We may have raced with 3400 * segvn_reclaim()/segspt_reclaim(). In this case 3401 * clean nounmapwait flag and retry since softlockcnt 3402 * in this segment may be already 0. We don't drop as 3403 * writer lock so our number of retries without 3404 * sleeping should be very small. See segvn_reclaim() 3405 * for more comments. 3406 */ 3407 AS_CLRNOUNMAPWAIT(as); 3408 mutex_exit(&as->a_contents); 3409 } 3410 goto again; 3411 } 3412 3413 as_setwatch(as); 3414 AS_LOCK_EXIT(as); 3415 return (error); 3416 } 3417 3418 /* 3419 * Setup all of the uninitialized watched pages that we can. 3420 */ 3421 void 3422 as_setwatch(struct as *as) 3423 { 3424 struct watched_page *pwp; 3425 struct seg *seg; 3426 caddr_t vaddr; 3427 uint_t prot; 3428 int err, retrycnt; 3429 3430 if (avl_numnodes(&as->a_wpage) == 0) 3431 return; 3432 3433 ASSERT(AS_WRITE_HELD(as)); 3434 3435 for (pwp = avl_first(&as->a_wpage); pwp != NULL; 3436 pwp = AVL_NEXT(&as->a_wpage, pwp)) { 3437 retrycnt = 0; 3438 retry: 3439 vaddr = pwp->wp_vaddr; 3440 if (pwp->wp_oprot != 0 || /* already set up */ 3441 (seg = as_segat(as, vaddr)) == NULL || 3442 SEGOP_GETPROT(seg, vaddr, 0, &prot) != 0) 3443 continue; 3444 3445 pwp->wp_oprot = prot; 3446 if (pwp->wp_read) 3447 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3448 if (pwp->wp_write) 3449 prot &= ~PROT_WRITE; 3450 if (pwp->wp_exec) 3451 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3452 if (!(pwp->wp_flags & WP_NOWATCH) && prot != pwp->wp_oprot) { 3453 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot); 3454 if (err == IE_RETRY) { 3455 pwp->wp_oprot = 0; 3456 ASSERT(retrycnt == 0); 3457 retrycnt++; 3458 goto retry; 3459 } 3460 } 3461 pwp->wp_prot = prot; 3462 } 3463 } 3464 3465 /* 3466 * Clear all of the watched pages in the address space. 3467 */ 3468 void 3469 as_clearwatch(struct as *as) 3470 { 3471 struct watched_page *pwp; 3472 struct seg *seg; 3473 caddr_t vaddr; 3474 uint_t prot; 3475 int err, retrycnt; 3476 3477 if (avl_numnodes(&as->a_wpage) == 0) 3478 return; 3479 3480 ASSERT(AS_WRITE_HELD(as)); 3481 3482 for (pwp = avl_first(&as->a_wpage); pwp != NULL; 3483 pwp = AVL_NEXT(&as->a_wpage, pwp)) { 3484 retrycnt = 0; 3485 retry: 3486 vaddr = pwp->wp_vaddr; 3487 if (pwp->wp_oprot == 0 || /* not set up */ 3488 (seg = as_segat(as, vaddr)) == NULL) 3489 continue; 3490 3491 if ((prot = pwp->wp_oprot) != pwp->wp_prot) { 3492 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot); 3493 if (err == IE_RETRY) { 3494 ASSERT(retrycnt == 0); 3495 retrycnt++; 3496 goto retry; 3497 } 3498 } 3499 pwp->wp_oprot = 0; 3500 pwp->wp_prot = 0; 3501 } 3502 } 3503 3504 /* 3505 * Force a new setup for all the watched pages in the range. 3506 */ 3507 static void 3508 as_setwatchprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 3509 { 3510 struct watched_page *pwp; 3511 struct watched_page tpw; 3512 caddr_t eaddr = addr + size; 3513 caddr_t vaddr; 3514 struct seg *seg; 3515 int err, retrycnt; 3516 uint_t wprot; 3517 avl_index_t where; 3518 3519 if (avl_numnodes(&as->a_wpage) == 0) 3520 return; 3521 3522 ASSERT(AS_WRITE_HELD(as)); 3523 3524 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 3525 if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL) 3526 pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER); 3527 3528 while (pwp != NULL && pwp->wp_vaddr < eaddr) { 3529 retrycnt = 0; 3530 vaddr = pwp->wp_vaddr; 3531 3532 wprot = prot; 3533 if (pwp->wp_read) 3534 wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3535 if (pwp->wp_write) 3536 wprot &= ~PROT_WRITE; 3537 if (pwp->wp_exec) 3538 wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3539 if (!(pwp->wp_flags & WP_NOWATCH) && wprot != pwp->wp_oprot) { 3540 retry: 3541 seg = as_segat(as, vaddr); 3542 if (seg == NULL) { 3543 panic("as_setwatchprot: no seg"); 3544 /*NOTREACHED*/ 3545 } 3546 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, wprot); 3547 if (err == IE_RETRY) { 3548 ASSERT(retrycnt == 0); 3549 retrycnt++; 3550 goto retry; 3551 } 3552 } 3553 pwp->wp_oprot = prot; 3554 pwp->wp_prot = wprot; 3555 3556 pwp = AVL_NEXT(&as->a_wpage, pwp); 3557 } 3558 } 3559 3560 /* 3561 * Clear all of the watched pages in the range. 3562 */ 3563 static void 3564 as_clearwatchprot(struct as *as, caddr_t addr, size_t size) 3565 { 3566 caddr_t eaddr = addr + size; 3567 struct watched_page *pwp; 3568 struct watched_page tpw; 3569 uint_t prot; 3570 struct seg *seg; 3571 int err, retrycnt; 3572 avl_index_t where; 3573 3574 if (avl_numnodes(&as->a_wpage) == 0) 3575 return; 3576 3577 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 3578 if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL) 3579 pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER); 3580 3581 ASSERT(AS_WRITE_HELD(as)); 3582 3583 while (pwp != NULL && pwp->wp_vaddr < eaddr) { 3584 3585 if ((prot = pwp->wp_oprot) != 0) { 3586 retrycnt = 0; 3587 3588 if (prot != pwp->wp_prot) { 3589 retry: 3590 seg = as_segat(as, pwp->wp_vaddr); 3591 if (seg == NULL) 3592 continue; 3593 err = SEGOP_SETPROT(seg, pwp->wp_vaddr, 3594 PAGESIZE, prot); 3595 if (err == IE_RETRY) { 3596 ASSERT(retrycnt == 0); 3597 retrycnt++; 3598 goto retry; 3599 3600 } 3601 } 3602 pwp->wp_oprot = 0; 3603 pwp->wp_prot = 0; 3604 } 3605 3606 pwp = AVL_NEXT(&as->a_wpage, pwp); 3607 } 3608 } 3609 3610 void 3611 as_signal_proc(struct as *as, k_siginfo_t *siginfo) 3612 { 3613 struct proc *p; 3614 3615 mutex_enter(&pidlock); 3616 for (p = practive; p; p = p->p_next) { 3617 if (p->p_as == as) { 3618 mutex_enter(&p->p_lock); 3619 if (p->p_as == as) 3620 sigaddq(p, NULL, siginfo, KM_NOSLEEP); 3621 mutex_exit(&p->p_lock); 3622 } 3623 } 3624 mutex_exit(&pidlock); 3625 } 3626 3627 /* 3628 * return memory object ID 3629 */ 3630 int 3631 as_getmemid(struct as *as, caddr_t addr, memid_t *memidp) 3632 { 3633 struct seg *seg; 3634 int sts; 3635 3636 AS_LOCK_ENTER(as, RW_READER); 3637 seg = as_segat(as, addr); 3638 if (seg == NULL) { 3639 AS_LOCK_EXIT(as); 3640 return (EFAULT); 3641 } 3642 /* 3643 * catch old drivers which may not support getmemid 3644 */ 3645 if (seg->s_ops->getmemid == NULL) { 3646 AS_LOCK_EXIT(as); 3647 return (ENODEV); 3648 } 3649 3650 sts = SEGOP_GETMEMID(seg, addr, memidp); 3651 3652 AS_LOCK_EXIT(as); 3653 return (sts); 3654 } 3655