xref: /illumos-gate/usr/src/uts/common/vm/vm_anon.c (revision c174926f3ba44d30fdb24cfb4d93ae3fce579601)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 /*
43  * VM - anonymous pages.
44  *
45  * This layer sits immediately above the vm_swap layer.  It manages
46  * physical pages that have no permanent identity in the file system
47  * name space, using the services of the vm_swap layer to allocate
48  * backing storage for these pages.  Since these pages have no external
49  * identity, they are discarded when the last reference is removed.
50  *
51  * An important function of this layer is to manage low-level sharing
52  * of pages that are logically distinct but that happen to be
53  * physically identical (e.g., the corresponding pages of the processes
54  * resulting from a fork before one process or the other changes their
55  * contents).  This pseudo-sharing is present only as an optimization
56  * and is not to be confused with true sharing in which multiple
57  * address spaces deliberately contain references to the same object;
58  * such sharing is managed at a higher level.
59  *
60  * The key data structure here is the anon struct, which contains a
61  * reference count for its associated physical page and a hint about
62  * the identity of that page.  Anon structs typically live in arrays,
63  * with an instance's position in its array determining where the
64  * corresponding backing storage is allocated; however, the swap_xlate()
65  * routine abstracts away this representation information so that the
66  * rest of the anon layer need not know it.  (See the swap layer for
67  * more details on anon struct layout.)
68  *
69  * In the future versions of the system, the association between an
70  * anon struct and its position on backing store will change so that
71  * we don't require backing store all anonymous pages in the system.
72  * This is important for consideration for large memory systems.
73  * We can also use this technique to delay binding physical locations
74  * to anonymous pages until pageout/swapout time where we can make
75  * smarter allocation decisions to improve anonymous klustering.
76  *
77  * Many of the routines defined here take a (struct anon **) argument,
78  * which allows the code at this level to manage anon pages directly,
79  * so that callers can regard anon structs as opaque objects and not be
80  * concerned with assigning or inspecting their contents.
81  *
82  * Clients of this layer refer to anon pages indirectly.  That is, they
83  * maintain arrays of pointers to anon structs rather than maintaining
84  * anon structs themselves.  The (struct anon **) arguments mentioned
85  * above are pointers to entries in these arrays.  It is these arrays
86  * that capture the mapping between offsets within a given segment and
87  * the corresponding anonymous backing storage address.
88  */
89 
90 #ifdef DEBUG
91 #define	ANON_DEBUG
92 #endif
93 
94 #include <sys/types.h>
95 #include <sys/t_lock.h>
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/mman.h>
99 #include <sys/cred.h>
100 #include <sys/thread.h>
101 #include <sys/vnode.h>
102 #include <sys/cpuvar.h>
103 #include <sys/swap.h>
104 #include <sys/cmn_err.h>
105 #include <sys/vtrace.h>
106 #include <sys/kmem.h>
107 #include <sys/sysmacros.h>
108 #include <sys/bitmap.h>
109 #include <sys/vmsystm.h>
110 #include <sys/debug.h>
111 #include <sys/fs/swapnode.h>
112 #include <sys/tnf_probe.h>
113 #include <sys/lgrp.h>
114 #include <sys/policy.h>
115 #include <sys/condvar_impl.h>
116 #include <sys/mutex_impl.h>
117 
118 #include <vm/as.h>
119 #include <vm/hat.h>
120 #include <vm/anon.h>
121 #include <vm/page.h>
122 #include <vm/vpage.h>
123 #include <vm/seg.h>
124 #include <vm/rm.h>
125 
126 #include <fs/fs_subr.h>
127 
128 struct vnode *anon_vp;
129 
130 int anon_debug;
131 
132 kmutex_t	anoninfo_lock;
133 struct		k_anoninfo k_anoninfo;
134 ani_free_t	ani_free_pool[ANI_MAX_POOL];
135 pad_mutex_t	anon_array_lock[ANON_LOCKSIZE];
136 kcondvar_t	anon_array_cv[ANON_LOCKSIZE];
137 
138 /*
139  * Global hash table for (vp, off) -> anon slot
140  */
141 extern	int swap_maxcontig;
142 size_t	anon_hash_size;
143 struct anon **anon_hash;
144 
145 static struct kmem_cache *anon_cache;
146 static struct kmem_cache *anonmap_cache;
147 
148 #ifdef VM_STATS
149 static struct anonvmstats_str {
150 	ulong_t getpages[30];
151 	ulong_t privatepages[10];
152 	ulong_t demotepages[9];
153 	ulong_t decrefpages[9];
154 	ulong_t	dupfillholes[4];
155 	ulong_t freepages[1];
156 } anonvmstats;
157 #endif /* VM_STATS */
158 
159 
160 /*ARGSUSED*/
161 static int
162 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags)
163 {
164 	struct anon_map *amp = buf;
165 
166 	rw_init(&amp->a_rwlock, NULL, RW_DEFAULT, NULL);
167 	return (0);
168 }
169 
170 /*ARGSUSED1*/
171 static void
172 anonmap_cache_destructor(void *buf, void *cdrarg)
173 {
174 	struct anon_map *amp = buf;
175 
176 	rw_destroy(&amp->a_rwlock);
177 }
178 
179 kmutex_t	anonhash_lock[AH_LOCK_SIZE];
180 kmutex_t	anonpages_hash_lock[AH_LOCK_SIZE];
181 
182 void
183 anon_init(void)
184 {
185 	int i;
186 
187 	anon_hash_size = 1L << highbit(physmem / ANON_HASHAVELEN);
188 
189 	for (i = 0; i < AH_LOCK_SIZE; i++) {
190 		mutex_init(&anonhash_lock[i], NULL, MUTEX_DEFAULT, NULL);
191 		mutex_init(&anonpages_hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
192 	}
193 
194 	for (i = 0; i < ANON_LOCKSIZE; i++) {
195 		mutex_init(&anon_array_lock[i].pad_mutex, NULL,
196 			MUTEX_DEFAULT, NULL);
197 		cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL);
198 	}
199 
200 	anon_hash = (struct anon **)
201 		kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP);
202 	anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon),
203 		AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
204 	anonmap_cache = kmem_cache_create("anonmap_cache",
205 		sizeof (struct anon_map), 0,
206 		anonmap_cache_constructor, anonmap_cache_destructor, NULL,
207 		NULL, NULL, 0);
208 	swap_maxcontig = (1024 * 1024) >> PAGESHIFT;	/* 1MB of pages */
209 
210 	anon_vp = vn_alloc(KM_SLEEP);
211 	vn_setops(anon_vp, swap_vnodeops);
212 	anon_vp->v_type = VREG;
213 	anon_vp->v_flag |= (VISSWAP|VISSWAPFS);
214 }
215 
216 /*
217  * Global anon slot hash table manipulation.
218  */
219 
220 static void
221 anon_addhash(struct anon *ap)
222 {
223 	int index;
224 
225 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
226 	index = ANON_HASH(ap->an_vp, ap->an_off);
227 	ap->an_hash = anon_hash[index];
228 	anon_hash[index] = ap;
229 }
230 
231 static void
232 anon_rmhash(struct anon *ap)
233 {
234 	struct anon **app;
235 
236 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
237 
238 	for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)];
239 	    *app; app = &((*app)->an_hash)) {
240 		if (*app == ap) {
241 			*app = ap->an_hash;
242 			break;
243 		}
244 	}
245 }
246 
247 /*
248  * The anon array interfaces. Functions allocating,
249  * freeing array of pointers, and returning/setting
250  * entries in the array of pointers for a given offset.
251  *
252  * Create the list of pointers
253  */
254 struct anon_hdr *
255 anon_create(pgcnt_t npages, int flags)
256 {
257 	struct anon_hdr *ahp;
258 	ulong_t nchunks;
259 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
260 
261 	if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) {
262 		return (NULL);
263 	}
264 
265 	mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL);
266 	/*
267 	 * Single level case.
268 	 */
269 	ahp->size = npages;
270 	if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) {
271 
272 		if (flags & ANON_ALLOC_FORCE)
273 			ahp->flags |= ANON_ALLOC_FORCE;
274 
275 		ahp->array_chunk = kmem_zalloc(
276 		    ahp->size * sizeof (struct anon *), kmemflags);
277 
278 		if (ahp->array_chunk == NULL) {
279 			kmem_free(ahp, sizeof (struct anon_hdr));
280 			return (NULL);
281 		}
282 	} else {
283 		/*
284 		 * 2 Level case.
285 		 */
286 		nchunks = (ahp->size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
287 
288 		ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *),
289 		    kmemflags);
290 
291 		if (ahp->array_chunk == NULL) {
292 			kmem_free(ahp, sizeof (struct anon_hdr));
293 			return (NULL);
294 		}
295 	}
296 	return (ahp);
297 }
298 
299 /*
300  * Free the array of pointers
301  */
302 void
303 anon_release(struct anon_hdr *ahp, pgcnt_t npages)
304 {
305 	ulong_t i;
306 	void **ppp;
307 	ulong_t nchunks;
308 
309 	ASSERT(npages == ahp->size);
310 
311 	/*
312 	 * Single level case.
313 	 */
314 	if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
315 		kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *));
316 	} else {
317 		/*
318 		 * 2 level case.
319 		 */
320 		nchunks = (ahp->size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
321 		for (i = 0; i < nchunks; i++) {
322 			ppp = &ahp->array_chunk[i];
323 			if (*ppp != NULL)
324 				kmem_free(*ppp, PAGESIZE);
325 		}
326 		kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *));
327 	}
328 	mutex_destroy(&ahp->serial_lock);
329 	kmem_free(ahp, sizeof (struct anon_hdr));
330 }
331 
332 /*
333  * Return the pointer from the list for a
334  * specified anon index.
335  */
336 struct anon *
337 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx)
338 {
339 	struct anon **app;
340 
341 	ASSERT(an_idx < ahp->size);
342 
343 	/*
344 	 * Single level case.
345 	 */
346 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
347 		return ((struct anon *)
348 			((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK));
349 	} else {
350 
351 		/*
352 		 * 2 level case.
353 		 */
354 		app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
355 		if (app) {
356 			return ((struct anon *)
357 				((uintptr_t)app[an_idx & ANON_CHUNK_OFF] &
358 					ANON_PTRMASK));
359 		} else {
360 			return (NULL);
361 		}
362 	}
363 }
364 
365 /*
366  * Return the anon pointer for the first valid entry in the anon list,
367  * starting from the given index.
368  */
369 struct anon *
370 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index)
371 {
372 	struct anon *ap;
373 	struct anon **app;
374 	ulong_t chunkoff;
375 	ulong_t i;
376 	ulong_t j;
377 	pgcnt_t size;
378 
379 	i = *index;
380 	size = ahp->size;
381 
382 	ASSERT(i < size);
383 
384 	if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
385 		/*
386 		 * 1 level case
387 		 */
388 		while (i < size) {
389 			ap = (struct anon *)
390 				((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK);
391 			if (ap) {
392 				*index = i;
393 				return (ap);
394 			}
395 			i++;
396 		}
397 	} else {
398 		/*
399 		 * 2 level case
400 		 */
401 		chunkoff = i & ANON_CHUNK_OFF;
402 		while (i < size) {
403 			app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT];
404 			if (app)
405 				for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) {
406 					ap = (struct anon *)
407 						((uintptr_t)app[j] &
408 							ANON_PTRMASK);
409 					if (ap) {
410 						*index = i + (j - chunkoff);
411 						return (ap);
412 					}
413 				}
414 			chunkoff = 0;
415 			i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF;
416 		}
417 	}
418 	*index = size;
419 	return (NULL);
420 }
421 
422 /*
423  * Set list entry with a given pointer for a specified offset
424  */
425 int
426 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags)
427 {
428 	void		**ppp;
429 	struct anon	**app;
430 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
431 	uintptr_t	*ap_addr;
432 
433 	ASSERT(an_idx < ahp->size);
434 
435 	/*
436 	 * Single level case.
437 	 */
438 	if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
439 		ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx];
440 	} else {
441 
442 		/*
443 		 * 2 level case.
444 		 */
445 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
446 
447 		ASSERT(ppp != NULL);
448 		if (*ppp == NULL) {
449 			mutex_enter(&ahp->serial_lock);
450 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
451 			if (*ppp == NULL) {
452 				*ppp = kmem_zalloc(PAGESIZE, kmemflags);
453 				if (*ppp == NULL) {
454 					mutex_exit(&ahp->serial_lock);
455 					return (ENOMEM);
456 				}
457 			}
458 			mutex_exit(&ahp->serial_lock);
459 		}
460 		app = *ppp;
461 		ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF];
462 	}
463 	*ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap;
464 	return (0);
465 }
466 
467 /*
468  * Copy anon array into a given new anon array
469  */
470 int
471 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx,
472 	struct anon_hdr *dahp, ulong_t d_idx,
473 	pgcnt_t npages, int flags)
474 {
475 	void **sapp, **dapp;
476 	void *ap;
477 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
478 
479 	ASSERT((s_idx < sahp->size) && (d_idx < dahp->size));
480 	ASSERT((npages <= sahp->size) && (npages <= dahp->size));
481 
482 	/*
483 	 * Both arrays are 1 level.
484 	 */
485 	if (((sahp->size <= ANON_CHUNK_SIZE) &&
486 	    (dahp->size <= ANON_CHUNK_SIZE)) ||
487 	    ((sahp->flags & ANON_ALLOC_FORCE) &&
488 	    (dahp->flags & ANON_ALLOC_FORCE))) {
489 
490 		bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx],
491 		    npages * sizeof (struct anon *));
492 		return (0);
493 	}
494 
495 	/*
496 	 * Both arrays are 2 levels.
497 	 */
498 	if (sahp->size > ANON_CHUNK_SIZE &&
499 	    dahp->size > ANON_CHUNK_SIZE &&
500 	    ((sahp->flags & ANON_ALLOC_FORCE) == 0) &&
501 	    ((dahp->flags & ANON_ALLOC_FORCE) == 0)) {
502 
503 		ulong_t sapidx, dapidx;
504 		ulong_t *sap, *dap;
505 		ulong_t chknp;
506 
507 		while (npages != 0) {
508 
509 			sapidx = s_idx & ANON_CHUNK_OFF;
510 			dapidx = d_idx & ANON_CHUNK_OFF;
511 			chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx);
512 			if (chknp > npages)
513 				chknp = npages;
514 
515 			sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT];
516 			if ((sap = *sapp) != NULL) {
517 				dapp = &dahp->array_chunk[d_idx
518 							>> ANON_CHUNK_SHIFT];
519 				if ((dap = *dapp) == NULL) {
520 					*dapp = kmem_zalloc(PAGESIZE,
521 					    kmemflags);
522 					if ((dap = *dapp) == NULL)
523 						return (ENOMEM);
524 				}
525 				bcopy((sap + sapidx), (dap + dapidx),
526 				    chknp << ANON_PTRSHIFT);
527 			}
528 			s_idx += chknp;
529 			d_idx += chknp;
530 			npages -= chknp;
531 		}
532 		return (0);
533 	}
534 
535 	/*
536 	 * At least one of the arrays is 2 level.
537 	 */
538 	while (npages--) {
539 		if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) {
540 			ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx)));
541 			if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM)
542 					return (ENOMEM);
543 		}
544 		s_idx++;
545 		d_idx++;
546 	}
547 	return (0);
548 }
549 
550 
551 /*
552  * ANON_INITBUF is a convenience macro for anon_grow() below. It
553  * takes a buffer dst, which is at least as large as buffer src. It
554  * does a bcopy from src into dst, and then bzeros the extra bytes
555  * of dst. If tail is set, the data in src is tail aligned within
556  * dst instead of head aligned.
557  */
558 
559 #define	ANON_INITBUF(src, srclen, dst, dstsize, tail)			      \
560 	if (tail) {							      \
561 		bzero((dst), (dstsize) - (srclen));			      \
562 		bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \
563 	} else {							      \
564 		bcopy((src), (dst), (srclen));				      \
565 		bzero((char *)(dst) + (srclen), (dstsize) - (srclen));	      \
566 	}
567 
568 #define	ANON_1_LEVEL_INC	(ANON_CHUNK_SIZE / 8)
569 #define	ANON_2_LEVEL_INC	(ANON_1_LEVEL_INC * ANON_CHUNK_SIZE)
570 
571 /*
572  * anon_grow() is used to efficiently extend an existing anon array.
573  * startidx_p points to the index into the anon array of the first page
574  * that is in use. oldseg_pgs is the number of pages in use, starting at
575  * *startidx_p. newpages is the number of additional pages desired.
576  *
577  * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed.
578  *
579  * The growth is done by creating a new top level of the anon array,
580  * and (if the array is 2-level) reusing the existing second level arrays.
581  *
582  * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN.
583  *
584  * Returns the new number of pages in the anon array.
585  */
586 pgcnt_t
587 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs,
588     pgcnt_t newseg_pgs, int flags)
589 {
590 	ulong_t startidx = startidx_p ? *startidx_p : 0;
591 	pgcnt_t oldamp_pgs = ahp->size, newamp_pgs;
592 	pgcnt_t oelems, nelems, totpages;
593 	void **level1;
594 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
595 	int growdown = (flags & ANON_GROWDOWN);
596 	size_t newarrsz, oldarrsz;
597 	void *level2;
598 
599 	ASSERT(!(startidx_p == NULL && growdown));
600 	ASSERT(startidx + oldseg_pgs <= ahp->size);
601 
602 	/*
603 	 * Determine the total number of pages needed in the new
604 	 * anon array. If growing down, totpages is all pages from
605 	 * startidx through the end of the array, plus <newseg_pgs>
606 	 * pages. If growing up, keep all pages from page 0 through
607 	 * the last page currently in use, plus <newseg_pgs> pages.
608 	 */
609 	if (growdown)
610 		totpages = oldamp_pgs - startidx + newseg_pgs;
611 	else
612 		totpages = startidx + oldseg_pgs + newseg_pgs;
613 
614 	/* If the array is already large enough, just return. */
615 
616 	if (oldamp_pgs >= totpages) {
617 		if (growdown)
618 			*startidx_p = oldamp_pgs - totpages;
619 		return (oldamp_pgs);
620 	}
621 
622 	/*
623 	 * oldamp_pgs/newamp_pgs are the total numbers of pages represented
624 	 * by the corresponding arrays.
625 	 * oelems/nelems are the number of pointers in the top level arrays
626 	 * which may be either level 1 or level 2.
627 	 * Will the new anon array be one level or two levels?
628 	 */
629 	if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
630 		newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC);
631 		oelems = oldamp_pgs;
632 		nelems = newamp_pgs;
633 	} else {
634 		newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC);
635 		oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
636 		nelems = newamp_pgs >> ANON_CHUNK_SHIFT;
637 	}
638 
639 	newarrsz = nelems * sizeof (void *);
640 	level1 = kmem_alloc(newarrsz, kmemflags);
641 	if (level1 == NULL)
642 		return (0);
643 
644 	/* Are we converting from a one level to a two level anon array? */
645 
646 	if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE &&
647 	    !(ahp->flags & ANON_ALLOC_FORCE)) {
648 
649 		/*
650 		 * Yes, we're converting to a two level. Reuse old level 1
651 		 * as new level 2 if it is exactly PAGESIZE. Otherwise
652 		 * alloc a new level 2 and copy the old level 1 data into it.
653 		 */
654 		if (oldamp_pgs == ANON_CHUNK_SIZE) {
655 			level2 = (void *)ahp->array_chunk;
656 		} else {
657 			level2 = kmem_alloc(PAGESIZE, kmemflags);
658 			if (level2 == NULL) {
659 				kmem_free(level1, newarrsz);
660 				return (0);
661 			}
662 			oldarrsz = oldamp_pgs * sizeof (void *);
663 
664 			ANON_INITBUF(ahp->array_chunk, oldarrsz,
665 			    level2, PAGESIZE, growdown);
666 			kmem_free(ahp->array_chunk, oldarrsz);
667 		}
668 		bzero(level1, newarrsz);
669 		if (growdown)
670 			level1[nelems - 1] = level2;
671 		else
672 			level1[0] = level2;
673 	} else {
674 		oldarrsz = oelems * sizeof (void *);
675 
676 		ANON_INITBUF(ahp->array_chunk, oldarrsz,
677 		    level1, newarrsz, growdown);
678 		kmem_free(ahp->array_chunk, oldarrsz);
679 	}
680 
681 	ahp->array_chunk = level1;
682 	ahp->size = newamp_pgs;
683 	if (growdown) {
684 		*startidx_p = newamp_pgs - totpages;
685 		if (oldamp_pgs > ANON_CHUNK_SIZE)
686 			*startidx_p -= P2NPHASE(oldseg_pgs, ANON_CHUNK_SIZE);
687 	}
688 	return (newamp_pgs);
689 }
690 
691 
692 /*
693  * Called from clock handler to sync ani_free value.
694  */
695 
696 void
697 set_anoninfo(void)
698 {
699 	int	ix;
700 	pgcnt_t	total = 0;
701 
702 	for (ix = 0; ix < ANI_MAX_POOL; ix++) {
703 		total += ani_free_pool[ix].ani_count;
704 	}
705 	k_anoninfo.ani_free = total;
706 }
707 
708 /*
709  * Reserve anon space.
710  *
711  * It's no longer simply a matter of incrementing ani_resv to
712  * reserve swap space, we need to check memory-based as well
713  * as disk-backed (physical) swap.  The following algorithm
714  * is used:
715  * 	Check the space on physical swap
716  * 		i.e. amount needed < ani_max - ani_phys_resv
717  * 	If we are swapping on swapfs check
718  *		amount needed < (availrmem - swapfs_minfree)
719  * Since the algorithm to check for the quantity of swap space is
720  * almost the same as that for reserving it, we'll just use anon_resvmem
721  * with a flag to decrement availrmem.
722  *
723  * Return non-zero on success.
724  */
725 int
726 anon_resvmem(size_t size, uint_t takemem)
727 {
728 	pgcnt_t npages = btopr(size);
729 	pgcnt_t mswap_pages = 0;
730 	pgcnt_t pswap_pages = 0;
731 
732 	mutex_enter(&anoninfo_lock);
733 
734 	/*
735 	 * pswap_pages is the number of pages we can take from
736 	 * physical (i.e. disk-backed) swap.
737 	 */
738 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
739 	pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv;
740 
741 	ANON_PRINT(A_RESV,
742 	    ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n",
743 	    npages, takemem, pswap_pages, (void *)caller()));
744 
745 	if (npages <= pswap_pages) {
746 		/*
747 		 * we have enough space on a physical swap
748 		 */
749 		if (takemem)
750 			k_anoninfo.ani_phys_resv += npages;
751 		mutex_exit(&anoninfo_lock);
752 		return (1);
753 	} else if (pswap_pages != 0) {
754 		/*
755 		 * we have some space on a physical swap
756 		 */
757 		if (takemem) {
758 			/*
759 			 * use up remainder of phys swap
760 			 */
761 			k_anoninfo.ani_phys_resv += pswap_pages;
762 			ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max);
763 		}
764 	}
765 	/*
766 	 * since (npages > pswap_pages) we need mem swap
767 	 * mswap_pages is the number of pages needed from availrmem
768 	 */
769 	ASSERT(npages > pswap_pages);
770 	mswap_pages = npages - pswap_pages;
771 
772 	ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n",
773 	    mswap_pages));
774 
775 	/*
776 	 * priv processes can reserve memory as swap as long as availrmem
777 	 * remains greater than swapfs_minfree; in the case of non-priv
778 	 * processes, memory can be reserved as swap only if availrmem
779 	 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus,
780 	 * swapfs_reserve amount of memswap is not available to non-priv
781 	 * processes. This protects daemons such as automounter dying
782 	 * as a result of application processes eating away almost entire
783 	 * membased swap. This safeguard becomes useless if apps are run
784 	 * with root access.
785 	 *
786 	 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem.
787 	 *
788 	 */
789 	mutex_enter(&freemem_lock);
790 	if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) ||
791 		(availrmem > (swapfs_minfree + mswap_pages) &&
792 		secpolicy_resource(CRED()) == 0)) {
793 
794 		if (takemem) {
795 			/*
796 			 * Take the memory from the rest of the system.
797 			 */
798 			availrmem -= mswap_pages;
799 			mutex_exit(&freemem_lock);
800 			k_anoninfo.ani_mem_resv += mswap_pages;
801 			ANI_ADD(mswap_pages);
802 			ANON_PRINT((A_RESV | A_MRESV),
803 				("anon_resvmem: took %ld pages of availrmem\n",
804 				mswap_pages));
805 		} else {
806 			mutex_exit(&freemem_lock);
807 		}
808 
809 		ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
810 		mutex_exit(&anoninfo_lock);
811 		return (1);
812 
813 	} else {
814 		/*
815 		 * Fail if not enough memory
816 		 */
817 
818 		if (takemem) {
819 			k_anoninfo.ani_phys_resv -= pswap_pages;
820 		}
821 
822 		mutex_exit(&freemem_lock);
823 		mutex_exit(&anoninfo_lock);
824 		ANON_PRINT(A_RESV,
825 			("anon_resvmem: not enough space from swapfs\n"));
826 		return (0);
827 	}
828 }
829 
830 
831 /*
832  * Give back an anon reservation.
833  */
834 void
835 anon_unresv(size_t size)
836 {
837 	pgcnt_t npages = btopr(size);
838 	spgcnt_t mem_free_pages = 0;
839 	pgcnt_t phys_free_slots;
840 #ifdef	ANON_DEBUG
841 	pgcnt_t mem_resv;
842 #endif
843 
844 	mutex_enter(&anoninfo_lock);
845 
846 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
847 	/*
848 	 * If some of this reservation belonged to swapfs
849 	 * give it back to availrmem.
850 	 * ani_mem_resv is the amount of availrmem swapfs has reserved.
851 	 * but some of that memory could be locked by segspt so we can only
852 	 * return non locked ani_mem_resv back to availrmem
853 	 */
854 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
855 		ANON_PRINT((A_RESV | A_MRESV),
856 		    ("anon_unresv: growing availrmem by %ld pages\n",
857 		    MIN(k_anoninfo.ani_mem_resv, npages)));
858 
859 		mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv -
860 		    k_anoninfo.ani_locked_swap), npages);
861 		mutex_enter(&freemem_lock);
862 		availrmem += mem_free_pages;
863 		mutex_exit(&freemem_lock);
864 		k_anoninfo.ani_mem_resv -= mem_free_pages;
865 
866 		ANI_ADD(-mem_free_pages);
867 	}
868 	/*
869 	 * The remainder of the pages is returned to phys swap
870 	 */
871 	ASSERT(npages >= mem_free_pages);
872 	phys_free_slots = npages - mem_free_pages;
873 
874 	if (phys_free_slots) {
875 	    k_anoninfo.ani_phys_resv -= phys_free_slots;
876 	}
877 
878 #ifdef	ANON_DEBUG
879 	mem_resv = k_anoninfo.ani_mem_resv;
880 #endif
881 
882 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
883 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
884 
885 	mutex_exit(&anoninfo_lock);
886 
887 	ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n",
888 	    npages, mem_resv, (void *)caller()));
889 }
890 
891 /*
892  * Allocate an anon slot and return it with the lock held.
893  */
894 struct anon *
895 anon_alloc(struct vnode *vp, anoff_t off)
896 {
897 	struct anon	*ap;
898 	kmutex_t	*ahm;
899 
900 	ap = kmem_cache_alloc(anon_cache, KM_SLEEP);
901 	if (vp == NULL) {
902 		swap_alloc(ap);
903 	} else {
904 		ap->an_vp = vp;
905 		ap->an_off = off;
906 	}
907 	ap->an_refcnt = 1;
908 	ap->an_pvp = NULL;
909 	ap->an_poff = 0;
910 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
911 	mutex_enter(ahm);
912 	anon_addhash(ap);
913 	mutex_exit(ahm);
914 	ANI_ADD(-1);
915 	ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n",
916 	    (void *)ap, (ap ? (void *)ap->an_vp : NULL)));
917 	return (ap);
918 }
919 
920 /*
921  * Decrement the reference count of an anon page.
922  * If reference count goes to zero, free it and
923  * its associated page (if any).
924  */
925 void
926 anon_decref(struct anon *ap)
927 {
928 	page_t *pp;
929 	struct vnode *vp;
930 	anoff_t off;
931 	kmutex_t *ahm;
932 
933 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
934 	mutex_enter(ahm);
935 	ASSERT(ap->an_refcnt != 0);
936 	if (ap->an_refcnt == 0)
937 		panic("anon_decref: slot count 0");
938 	if (--ap->an_refcnt == 0) {
939 		swap_xlate(ap, &vp, &off);
940 		mutex_exit(ahm);
941 
942 		/*
943 		 * If there is a page for this anon slot we will need to
944 		 * call VN_DISPOSE to get rid of the vp association and
945 		 * put the page back on the free list as really free.
946 		 * Acquire the "exclusive" lock to ensure that any
947 		 * pending i/o always completes before the swap slot
948 		 * is freed.
949 		 */
950 		pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
951 
952 		/*
953 		 * If there was a page, we've synchronized on it (getting
954 		 * the exclusive lock is as good as gettting the iolock)
955 		 * so now we can free the physical backing store. Also, this
956 		 * is where we would free the name of the anonymous page
957 		 * (swap_free(ap)), a no-op in the current implementation.
958 		 */
959 		mutex_enter(ahm);
960 		ASSERT(ap->an_refcnt == 0);
961 		anon_rmhash(ap);
962 		if (ap->an_pvp)
963 			swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
964 		mutex_exit(ahm);
965 
966 		if (pp != NULL) {
967 			/*LINTED: constant in conditional context */
968 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
969 		}
970 		ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n",
971 		    (void *)ap, (void *)ap->an_vp));
972 		kmem_cache_free(anon_cache, ap);
973 
974 		ANI_ADD(1);
975 	} else {
976 		mutex_exit(ahm);
977 	}
978 }
979 
980 static int
981 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
982 {
983 	struct anon *ap;
984 
985 	while (nslots-- > 0) {
986 		if ((ap = anon_get_ptr(ahp, anon_index)) != NULL &&
987 		    ap->an_refcnt > 1)
988 			return (1);
989 		anon_index++;
990 	}
991 
992 	return (0);
993 }
994 
995 static void
996 anon_decref_pages(
997 	struct anon_hdr *ahp,
998 	ulong_t an_idx,
999 	uint_t szc)
1000 {
1001 	struct anon *ap = anon_get_ptr(ahp, an_idx);
1002 	kmutex_t *ahmpages = NULL;
1003 	page_t *pp;
1004 	pgcnt_t pgcnt = page_get_pagecnt(szc);
1005 	pgcnt_t i;
1006 	struct vnode *vp;
1007 	anoff_t   off;
1008 	kmutex_t *ahm;
1009 #ifdef DEBUG
1010 	int refcnt = 1;
1011 #endif
1012 
1013 	ASSERT(szc != 0);
1014 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1015 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1016 
1017 	VM_STAT_ADD(anonvmstats.decrefpages[0]);
1018 
1019 	if (ap != NULL) {
1020 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1021 		mutex_enter(ahmpages);
1022 		ASSERT((refcnt = ap->an_refcnt) != 0);
1023 		VM_STAT_ADD(anonvmstats.decrefpages[1]);
1024 		if (ap->an_refcnt == 1) {
1025 			VM_STAT_ADD(anonvmstats.decrefpages[2]);
1026 			ASSERT(!anon_share(ahp, an_idx, pgcnt));
1027 			mutex_exit(ahmpages);
1028 			ahmpages = NULL;
1029 		}
1030 	}
1031 
1032 	i = 0;
1033 	while (i < pgcnt) {
1034 		if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) {
1035 			ASSERT(refcnt == 1 && ahmpages == NULL);
1036 			i++;
1037 			continue;
1038 		}
1039 		ASSERT(ap->an_refcnt == refcnt);
1040 		ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1041 		ASSERT(ahmpages == NULL || ap->an_refcnt > 1);
1042 
1043 		if (ahmpages == NULL) {
1044 			swap_xlate(ap, &vp, &off);
1045 			pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1046 			if (pp == NULL || pp->p_szc == 0) {
1047 				VM_STAT_ADD(anonvmstats.decrefpages[3]);
1048 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1049 				    ap->an_off)];
1050 				(void) anon_set_ptr(ahp, an_idx + i, NULL,
1051 				    ANON_SLEEP);
1052 				mutex_enter(ahm);
1053 				ap->an_refcnt--;
1054 				ASSERT(ap->an_refcnt == 0);
1055 				anon_rmhash(ap);
1056 				if (ap->an_pvp)
1057 					swap_phys_free(ap->an_pvp, ap->an_poff,
1058 					    PAGESIZE);
1059 				mutex_exit(ahm);
1060 				if (pp != NULL) {
1061 					VM_STAT_ADD(anonvmstats.decrefpages[4]);
1062 					/*LINTED*/
1063 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
1064 				}
1065 				kmem_cache_free(anon_cache, ap);
1066 				ANI_ADD(1);
1067 				i++;
1068 			} else {
1069 				pgcnt_t j;
1070 				pgcnt_t curpgcnt =
1071 				    page_get_pagecnt(pp->p_szc);
1072 				size_t ppasize = curpgcnt * sizeof (page_t *);
1073 				page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
1074 				int dispose = 0;
1075 
1076 				VM_STAT_ADD(anonvmstats.decrefpages[5]);
1077 
1078 				ASSERT(pp->p_szc <= szc);
1079 				ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt));
1080 				ASSERT(IS_P2ALIGNED(i, curpgcnt));
1081 				ASSERT(i + curpgcnt <= pgcnt);
1082 				ASSERT(!(page_pptonum(pp) & (curpgcnt - 1)));
1083 				ppa[0] = pp;
1084 				for (j = i + 1; j < i + curpgcnt; j++) {
1085 					ap = anon_get_ptr(ahp, an_idx + j);
1086 					ASSERT(ap != NULL &&
1087 					    ap->an_refcnt == 1);
1088 					swap_xlate(ap, &vp, &off);
1089 					pp = page_lookup(vp, (u_offset_t)off,
1090 					    SE_EXCL);
1091 					if (pp == NULL)
1092 						panic("anon_decref_pages: "
1093 						    "no page");
1094 
1095 					(void) hat_pageunload(pp,
1096 					    HAT_FORCE_PGUNLOAD);
1097 					ASSERT(pp->p_szc == ppa[0]->p_szc);
1098 					ASSERT(page_pptonum(pp) - 1 ==
1099 					    page_pptonum(ppa[j - i - 1]));
1100 					ppa[j - i] = pp;
1101 					if (ap->an_pvp != NULL &&
1102 					    !vn_matchopval(ap->an_pvp,
1103 						VOPNAME_DISPOSE,
1104 						(fs_generic_func_p)fs_dispose))
1105 						dispose = 1;
1106 				}
1107 				if (!dispose) {
1108 					VM_STAT_ADD(anonvmstats.decrefpages[6]);
1109 					page_destroy_pages(ppa[0]);
1110 				} else {
1111 					VM_STAT_ADD(anonvmstats.decrefpages[7]);
1112 					for (j = 0; j < curpgcnt; j++) {
1113 						ASSERT(PAGE_EXCL(ppa[j]));
1114 						ppa[j]->p_szc = 0;
1115 					}
1116 					for (j = 0; j < curpgcnt; j++) {
1117 						ASSERT(!hat_page_is_mapped(
1118 						    ppa[j]));
1119 						/*LINTED*/
1120 						VN_DISPOSE(ppa[j], B_INVAL, 0,
1121 						    kcred);
1122 					}
1123 				}
1124 				kmem_free(ppa, ppasize);
1125 				for (j = i; j < i + curpgcnt; j++) {
1126 					ap = anon_get_ptr(ahp, an_idx + j);
1127 					ASSERT(ap != NULL &&
1128 					    ap->an_refcnt == 1);
1129 					ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1130 					    ap->an_off)];
1131 					(void) anon_set_ptr(ahp, an_idx + j,
1132 					    NULL, ANON_SLEEP);
1133 					mutex_enter(ahm);
1134 					ap->an_refcnt--;
1135 					ASSERT(ap->an_refcnt == 0);
1136 					anon_rmhash(ap);
1137 					if (ap->an_pvp)
1138 						swap_phys_free(ap->an_pvp,
1139 							ap->an_poff, PAGESIZE);
1140 					mutex_exit(ahm);
1141 					kmem_cache_free(anon_cache, ap);
1142 					ANI_ADD(1);
1143 				}
1144 				i += curpgcnt;
1145 			}
1146 		} else {
1147 			VM_STAT_ADD(anonvmstats.decrefpages[8]);
1148 			(void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP);
1149 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1150 			mutex_enter(ahm);
1151 			ap->an_refcnt--;
1152 			mutex_exit(ahm);
1153 			i++;
1154 		}
1155 	}
1156 
1157 	if (ahmpages != NULL) {
1158 		mutex_exit(ahmpages);
1159 	}
1160 }
1161 
1162 /*
1163  * Duplicate references to size bytes worth of anon pages.
1164  * Used when duplicating a segment that contains private anon pages.
1165  * This code assumes that procedure calling this one has already used
1166  * hat_chgprot() to disable write access to the range of addresses that
1167  * that *old actually refers to.
1168  */
1169 void
1170 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new,
1171 			ulong_t new_idx, size_t size)
1172 {
1173 	spgcnt_t npages;
1174 	kmutex_t *ahm;
1175 	struct anon *ap;
1176 	ulong_t off;
1177 	ulong_t index;
1178 
1179 	npages = btopr(size);
1180 	while (npages > 0) {
1181 		index = old_idx;
1182 		if ((ap = anon_get_next_ptr(old, &index)) == NULL)
1183 			break;
1184 
1185 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1186 		off = index - old_idx;
1187 		npages -= off;
1188 		if (npages <= 0)
1189 			break;
1190 
1191 		(void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP);
1192 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1193 
1194 		mutex_enter(ahm);
1195 		ap->an_refcnt++;
1196 		mutex_exit(ahm);
1197 
1198 		off++;
1199 		new_idx += off;
1200 		old_idx += off;
1201 		npages--;
1202 	}
1203 }
1204 
1205 /*
1206  * Just like anon_dup but also guarantees there are no holes (unallocated anon
1207  * slots) within any large page region. That means if a large page region is
1208  * empty in the old array it will skip it. If there are 1 or more valid slots
1209  * in the large page region of the old array it will make sure to fill in any
1210  * unallocated ones and also copy them to the new array. If noalloc is 1 large
1211  * page region should either have no valid anon slots or all slots should be
1212  * valid.
1213  */
1214 void
1215 anon_dup_fill_holes(
1216 	struct anon_hdr *old,
1217 	ulong_t old_idx,
1218 	struct anon_hdr *new,
1219 	ulong_t new_idx,
1220 	size_t size,
1221 	uint_t szc,
1222 	int noalloc)
1223 {
1224 	struct anon	*ap;
1225 	spgcnt_t	npages;
1226 	kmutex_t	*ahm, *ahmpages = NULL;
1227 	pgcnt_t		pgcnt, i;
1228 	ulong_t		index, off;
1229 #ifdef DEBUG
1230 	int		refcnt;
1231 #endif
1232 
1233 	ASSERT(szc != 0);
1234 	pgcnt = page_get_pagecnt(szc);
1235 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1236 	npages = btopr(size);
1237 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1238 	ASSERT(IS_P2ALIGNED(old_idx, pgcnt));
1239 
1240 	VM_STAT_ADD(anonvmstats.dupfillholes[0]);
1241 
1242 	while (npages > 0) {
1243 		index = old_idx;
1244 
1245 		/*
1246 		 * Find the next valid slot.
1247 		 */
1248 		if (anon_get_next_ptr(old, &index) == NULL)
1249 			break;
1250 
1251 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1252 		/*
1253 		 * Now backup index to the beginning of the
1254 		 * current large page region of the old array.
1255 		 */
1256 		index = P2ALIGN(index, pgcnt);
1257 		off = index - old_idx;
1258 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1259 		npages -= off;
1260 		if (npages <= 0)
1261 			break;
1262 
1263 		/*
1264 		 * Fill and copy a large page regions worth
1265 		 * of anon slots.
1266 		 */
1267 		for (i = 0; i < pgcnt; i++) {
1268 			if ((ap = anon_get_ptr(old, index + i)) == NULL) {
1269 				if (noalloc) {
1270 					panic("anon_dup_fill_holes: "
1271 					    "empty anon slot\n");
1272 				}
1273 				VM_STAT_ADD(anonvmstats.dupfillholes[1]);
1274 				ap = anon_alloc(NULL, 0);
1275 				(void) anon_set_ptr(old, index + i, ap,
1276 				    ANON_SLEEP);
1277 			} else if (i == 0) {
1278 				/*
1279 				 * make the increment of all refcnts of all
1280 				 * anon slots of a large page appear atomic by
1281 				 * getting an anonpages_hash_lock for the
1282 				 * first anon slot of a large page.
1283 				 */
1284 				int hash = AH_LOCK(ap->an_vp, ap->an_off);
1285 
1286 				VM_STAT_ADD(anonvmstats.dupfillholes[2]);
1287 
1288 				ahmpages = &anonpages_hash_lock[hash];
1289 				mutex_enter(ahmpages);
1290 				/*LINTED*/
1291 				ASSERT(refcnt = ap->an_refcnt);
1292 
1293 				VM_STAT_COND_ADD(ap->an_refcnt > 1,
1294 				    anonvmstats.dupfillholes[3]);
1295 			}
1296 			(void) anon_set_ptr(new, new_idx + off + i, ap,
1297 			    ANON_SLEEP);
1298 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1299 			mutex_enter(ahm);
1300 			ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1301 			ASSERT(i == 0 || ahmpages == NULL ||
1302 			    refcnt == ap->an_refcnt);
1303 			ap->an_refcnt++;
1304 			mutex_exit(ahm);
1305 		}
1306 		if (ahmpages != NULL) {
1307 			mutex_exit(ahmpages);
1308 			ahmpages = NULL;
1309 		}
1310 		off += pgcnt;
1311 		new_idx += off;
1312 		old_idx += off;
1313 		npages -= pgcnt;
1314 	}
1315 }
1316 
1317 /*
1318  * Used when a segment with a vnode changes szc. similarly to
1319  * anon_dup_fill_holes() makes sure each large page region either has no anon
1320  * slots or all of them. but new slots are created by COWing the file
1321  * pages. on entrance no anon slots should be shared.
1322  */
1323 int
1324 anon_fill_cow_holes(
1325 	struct seg *seg,
1326 	caddr_t addr,
1327 	struct anon_hdr *ahp,
1328 	ulong_t an_idx,
1329 	struct vnode *vp,
1330 	u_offset_t vp_off,
1331 	size_t size,
1332 	uint_t szc,
1333 	uint_t prot,
1334 	struct vpage vpage[],
1335 	struct cred *cred)
1336 {
1337 	struct anon	*ap;
1338 	spgcnt_t	npages;
1339 	pgcnt_t		pgcnt, i;
1340 	ulong_t		index, off;
1341 	int		err = 0;
1342 	int		pageflags = 0;
1343 
1344 	ASSERT(szc != 0);
1345 	pgcnt = page_get_pagecnt(szc);
1346 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1347 	npages = btopr(size);
1348 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1349 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1350 
1351 	while (npages > 0) {
1352 		index = an_idx;
1353 
1354 		/*
1355 		 * Find the next valid slot.
1356 		 */
1357 		if (anon_get_next_ptr(ahp, &index) == NULL) {
1358 			break;
1359 		}
1360 
1361 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1362 		/*
1363 		 * Now backup index to the beginning of the
1364 		 * current large page region of the anon array.
1365 		 */
1366 		index = P2ALIGN(index, pgcnt);
1367 		off = index - an_idx;
1368 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1369 		npages -= off;
1370 		if (npages <= 0)
1371 			break;
1372 		an_idx += off;
1373 		vp_off += ptob(off);
1374 		addr += ptob(off);
1375 		if (vpage != NULL) {
1376 			vpage += off;
1377 		}
1378 
1379 		for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) {
1380 			if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) {
1381 				page_t *pl[1 + 1];
1382 				page_t *pp;
1383 
1384 				err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL,
1385 				    pl, PAGESIZE, seg, addr, S_READ, cred);
1386 				if (err) {
1387 					break;
1388 				}
1389 				if (vpage != NULL) {
1390 					prot = VPP_PROT(vpage);
1391 					pageflags = VPP_ISPPLOCK(vpage) ?
1392 					    LOCK_PAGE : 0;
1393 				}
1394 				pp = anon_private(&ap, seg, addr, prot, pl[0],
1395 					pageflags, cred);
1396 				if (pp == NULL) {
1397 					err = ENOMEM;
1398 					break;
1399 				}
1400 				(void) anon_set_ptr(ahp, an_idx, ap,
1401 				    ANON_SLEEP);
1402 				page_unlock(pp);
1403 			}
1404 			ASSERT(ap->an_refcnt == 1);
1405 			addr += PAGESIZE;
1406 			if (vpage != NULL) {
1407 				vpage++;
1408 			}
1409 		}
1410 		npages -= pgcnt;
1411 	}
1412 
1413 	return (err);
1414 }
1415 
1416 /*
1417  * Free a group of "size" anon pages, size in bytes,
1418  * and clear out the pointers to the anon entries.
1419  */
1420 void
1421 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size)
1422 {
1423 	spgcnt_t npages;
1424 	struct anon *ap;
1425 	ulong_t old;
1426 
1427 	npages = btopr(size);
1428 
1429 	while (npages > 0) {
1430 		old = index;
1431 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1432 			break;
1433 
1434 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1435 		npages -= index - old;
1436 		if (npages <= 0)
1437 			break;
1438 
1439 		(void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP);
1440 		anon_decref(ap);
1441 		/*
1442 		 * Bump index and decrement page count
1443 		 */
1444 		index++;
1445 		npages--;
1446 	}
1447 }
1448 
1449 void
1450 anon_free_pages(
1451 	struct anon_hdr *ahp,
1452 	ulong_t an_idx,
1453 	size_t size,
1454 	uint_t szc)
1455 {
1456 	spgcnt_t	npages;
1457 	pgcnt_t		pgcnt;
1458 	ulong_t		index, off;
1459 
1460 	ASSERT(szc != 0);
1461 	pgcnt = page_get_pagecnt(szc);
1462 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1463 	npages = btopr(size);
1464 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1465 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1466 
1467 	VM_STAT_ADD(anonvmstats.freepages[0]);
1468 
1469 	while (npages > 0) {
1470 		index = an_idx;
1471 
1472 		/*
1473 		 * Find the next valid slot.
1474 		 */
1475 		if (anon_get_next_ptr(ahp, &index) == NULL)
1476 			break;
1477 
1478 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1479 		/*
1480 		 * Now backup index to the beginning of the
1481 		 * current large page region of the old array.
1482 		 */
1483 		index = P2ALIGN(index, pgcnt);
1484 		off = index - an_idx;
1485 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1486 		npages -= off;
1487 		if (npages <= 0)
1488 			break;
1489 
1490 		anon_decref_pages(ahp, index, szc);
1491 
1492 		off += pgcnt;
1493 		an_idx += off;
1494 		npages -= pgcnt;
1495 	}
1496 }
1497 
1498 /*
1499  * Make anonymous pages discardable
1500  */
1501 void
1502 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size, int flags)
1503 {
1504 	spgcnt_t npages = btopr(size);
1505 	struct anon *ap;
1506 	struct vnode *vp;
1507 	anoff_t off;
1508 	page_t *pp, *root_pp;
1509 	kmutex_t *ahm;
1510 	pgcnt_t pgcnt;
1511 	ulong_t old_idx, idx, i;
1512 	struct anon_hdr *ahp = amp->ahp;
1513 	anon_sync_obj_t cookie;
1514 
1515 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
1516 	pgcnt = 1;
1517 	for (; npages > 0; index = (pgcnt == 1) ? index + 1:
1518 		P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) {
1519 
1520 		/*
1521 		 * get anon pointer and index for the first valid entry
1522 		 * in the anon list, starting from "index"
1523 		 */
1524 		old_idx = index;
1525 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1526 			break;
1527 
1528 		/*
1529 		 * decrement npages by number of NULL anon slots we skipped
1530 		 */
1531 		npages -= index - old_idx;
1532 		if (npages <= 0)
1533 			break;
1534 
1535 		anon_array_enter(amp, index, &cookie);
1536 		ap = anon_get_ptr(ahp, index);
1537 		ASSERT(ap != NULL);
1538 
1539 		/*
1540 		 * Get anonymous page and try to lock it SE_EXCL;
1541 		 * For non blocking case if we couldn't grab the lock
1542 		 * we skip to next page.
1543 		 * For blocking case (ANON_PGLOOKUP_BLK) block
1544 		 * until we grab SE_EXCL lock.
1545 		 */
1546 		swap_xlate(ap, &vp, &off);
1547 		if (flags & ANON_PGLOOKUP_BLK)
1548 			pp = page_lookup_create(vp, (u_offset_t)off,
1549 			    SE_EXCL, NULL, NULL, SE_EXCL_WANTED);
1550 		else
1551 			pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL);
1552 		if (pp == NULL) {
1553 			segadvstat.MADV_FREE_miss.value.ul++;
1554 			pgcnt = 1;
1555 			anon_array_exit(&cookie);
1556 			continue;
1557 		}
1558 		pgcnt = page_get_pagecnt(pp->p_szc);
1559 
1560 		/*
1561 		 * we cannot free a page which is permanently locked.
1562 		 * The page_struct_lock need not be acquired to examine
1563 		 * these fields since the page has an "exclusive" lock.
1564 		 */
1565 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1566 			page_unlock(pp);
1567 			segadvstat.MADV_FREE_miss.value.ul++;
1568 			anon_array_exit(&cookie);
1569 			continue;
1570 		}
1571 
1572 		ahm = &anonhash_lock[AH_LOCK(vp, off)];
1573 		mutex_enter(ahm);
1574 		ASSERT(ap->an_refcnt != 0);
1575 		/*
1576 		 * skip this one if copy-on-write is not yet broken.
1577 		 */
1578 		if (ap->an_refcnt > 1) {
1579 			mutex_exit(ahm);
1580 			page_unlock(pp);
1581 			segadvstat.MADV_FREE_miss.value.ul++;
1582 			anon_array_exit(&cookie);
1583 			continue;
1584 		}
1585 
1586 		if (pp->p_szc == 0) {
1587 			pgcnt = 1;
1588 
1589 			/*
1590 			 * free swap slot;
1591 			 */
1592 			if (ap->an_pvp) {
1593 				swap_phys_free(ap->an_pvp, ap->an_poff,
1594 				    PAGESIZE);
1595 				ap->an_pvp = NULL;
1596 				ap->an_poff = 0;
1597 			}
1598 			mutex_exit(ahm);
1599 			segadvstat.MADV_FREE_hit.value.ul++;
1600 
1601 			/*
1602 			 * while we are at it, unload all the translations
1603 			 * and attempt to free the page.
1604 			 */
1605 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1606 			/*LINTED: constant in conditional context */
1607 			VN_DISPOSE(pp, B_FREE, 0, kcred);
1608 			anon_array_exit(&cookie);
1609 			continue;
1610 		}
1611 
1612 		pgcnt = page_get_pagecnt(pp->p_szc);
1613 		if (!IS_P2ALIGNED(index, pgcnt)) {
1614 			if (!page_try_demote_pages(pp)) {
1615 				mutex_exit(ahm);
1616 				page_unlock(pp);
1617 				segadvstat.MADV_FREE_miss.value.ul++;
1618 				anon_array_exit(&cookie);
1619 				continue;
1620 			} else {
1621 				pgcnt = 1;
1622 				if (ap->an_pvp) {
1623 					swap_phys_free(ap->an_pvp,
1624 					    ap->an_poff, PAGESIZE);
1625 					    ap->an_pvp = NULL;
1626 					    ap->an_poff = 0;
1627 				}
1628 				mutex_exit(ahm);
1629 				(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1630 				/*LINTED*/
1631 				VN_DISPOSE(pp, B_FREE, 0, kcred);
1632 				segadvstat.MADV_FREE_hit.value.ul++;
1633 				anon_array_exit(&cookie);
1634 				continue;
1635 			}
1636 		}
1637 		mutex_exit(ahm);
1638 		root_pp = pp;
1639 
1640 		/*
1641 		 * try to lock remaining pages
1642 		 */
1643 		for (idx = 1; idx < pgcnt; idx++) {
1644 			pp++;
1645 			if (!page_trylock(pp, SE_EXCL))
1646 				break;
1647 			if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1648 				page_unlock(pp);
1649 				break;
1650 			}
1651 		}
1652 
1653 		if (idx == pgcnt) {
1654 			for (i = 0; i < pgcnt; i++) {
1655 				ap = anon_get_ptr(ahp, index + i);
1656 				if (ap == NULL)
1657 					break;
1658 				swap_xlate(ap, &vp, &off);
1659 				ahm = &anonhash_lock[AH_LOCK(vp, off)];
1660 				mutex_enter(ahm);
1661 				ASSERT(ap->an_refcnt != 0);
1662 
1663 				/*
1664 				 * skip this one if copy-on-write
1665 				 * is not yet broken.
1666 				 */
1667 				if (ap->an_refcnt > 1) {
1668 					mutex_exit(ahm);
1669 					goto skiplp;
1670 				}
1671 				if (ap->an_pvp) {
1672 					swap_phys_free(ap->an_pvp,
1673 					    ap->an_poff, PAGESIZE);
1674 					    ap->an_pvp = NULL;
1675 					    ap->an_poff = 0;
1676 				}
1677 				mutex_exit(ahm);
1678 			}
1679 			page_destroy_pages(root_pp);
1680 			segadvstat.MADV_FREE_hit.value.ul += pgcnt;
1681 			anon_array_exit(&cookie);
1682 			continue;
1683 		}
1684 skiplp:
1685 		segadvstat.MADV_FREE_miss.value.ul += pgcnt;
1686 		for (i = 0, pp = root_pp; i < idx; pp++, i++)
1687 			page_unlock(pp);
1688 		anon_array_exit(&cookie);
1689 	}
1690 }
1691 
1692 /*
1693  * Return the kept page(s) and protections back to the segment driver.
1694  */
1695 int
1696 anon_getpage(
1697 	struct anon **app,
1698 	uint_t *protp,
1699 	page_t *pl[],
1700 	size_t plsz,
1701 	struct seg *seg,
1702 	caddr_t addr,
1703 	enum seg_rw rw,
1704 	struct cred *cred)
1705 {
1706 	page_t *pp;
1707 	struct anon *ap = *app;
1708 	struct vnode *vp;
1709 	anoff_t off;
1710 	int err;
1711 	kmutex_t *ahm;
1712 
1713 	swap_xlate(ap, &vp, &off);
1714 
1715 	/*
1716 	 * Lookup the page. If page is being paged in,
1717 	 * wait for it to finish as we must return a list of
1718 	 * pages since this routine acts like the VOP_GETPAGE
1719 	 * routine does.
1720 	 */
1721 	if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) {
1722 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1723 		mutex_enter(ahm);
1724 		if (ap->an_refcnt == 1)
1725 			*protp = PROT_ALL;
1726 		else
1727 			*protp = PROT_ALL & ~PROT_WRITE;
1728 		mutex_exit(ahm);
1729 		pl[0] = pp;
1730 		pl[1] = NULL;
1731 		return (0);
1732 	}
1733 
1734 	/*
1735 	 * Simply treat it as a vnode fault on the anon vp.
1736 	 */
1737 
1738 	TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE,
1739 		"anon_getpage:seg %x addr %x vp %x",
1740 		seg, addr, vp);
1741 
1742 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz,
1743 	    seg, addr, rw, cred);
1744 
1745 	if (err == 0 && pl != NULL) {
1746 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1747 		mutex_enter(ahm);
1748 		if (ap->an_refcnt != 1)
1749 			*protp &= ~PROT_WRITE;	/* make read-only */
1750 		mutex_exit(ahm);
1751 	}
1752 	return (err);
1753 }
1754 
1755 /*
1756  * Creates or returns kept pages to the segment driver.  returns -1 if a large
1757  * page cannot be allocated. returns -2 if some other process has allocated a
1758  * larger page.
1759  *
1760  * For cowfault it will alocate any size pages to fill the requested area to
1761  * avoid partially overwritting anon slots (i.e. sharing only some of the anon
1762  * slots within a large page with other processes). This policy greatly
1763  * simplifies large page freeing (which is only freed when all anon slot
1764  * refcnts are 0).
1765  */
1766 int
1767 anon_map_getpages(
1768 	struct anon_map *amp,
1769 	ulong_t	start_idx,
1770 	uint_t	szc,
1771 	struct seg *seg,
1772 	caddr_t	addr,
1773 	uint_t prot,
1774 	uint_t *protp,
1775 	page_t	*ppa[],
1776 	uint_t	*ppa_szc,
1777 	struct vpage vpage[],
1778 	enum seg_rw rw,
1779 	int brkcow,
1780 	int anypgsz,
1781 	struct cred *cred)
1782 {
1783 	pgcnt_t		pgcnt;
1784 	struct anon	*ap;
1785 	struct vnode	*vp;
1786 	anoff_t		off;
1787 	page_t		*pp, *pl[2], *conpp = NULL;
1788 	caddr_t		vaddr;
1789 	ulong_t		pg_idx, an_idx, i;
1790 	spgcnt_t	nreloc = 0;
1791 	int		prealloc = 1;
1792 	int		err, slotcreate;
1793 	uint_t		vpprot;
1794 
1795 #if !defined(__i386) && !defined(__amd64)
1796 	ASSERT(seg->s_szc != 0);
1797 #endif
1798 	ASSERT(szc <= seg->s_szc);
1799 	ASSERT(ppa_szc != NULL);
1800 	ASSERT(rw != S_CREATE);
1801 
1802 	*protp = PROT_ALL;
1803 
1804 	VM_STAT_ADD(anonvmstats.getpages[0]);
1805 
1806 	if (szc == 0) {
1807 		VM_STAT_ADD(anonvmstats.getpages[1]);
1808 		if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) {
1809 			err = anon_getpage(&ap, protp, pl, PAGESIZE, seg,
1810 			    addr, rw, cred);
1811 			if (err)
1812 				return (err);
1813 			ppa[0] = pl[0];
1814 			if (brkcow == 0 || (*protp & PROT_WRITE)) {
1815 				VM_STAT_ADD(anonvmstats.getpages[2]);
1816 				if (ppa[0]->p_szc != 0) {
1817 					VM_STAT_ADD(anonvmstats.getpages[3]);
1818 					*ppa_szc = ppa[0]->p_szc;
1819 					page_unlock(ppa[0]);
1820 					return (-2);
1821 				}
1822 				return (0);
1823 			}
1824 			panic("anon_map_getpages: cowfault for szc 0");
1825 		} else {
1826 			VM_STAT_ADD(anonvmstats.getpages[4]);
1827 			ppa[0] = anon_zero(seg, addr, &ap, cred);
1828 			if (ppa[0] == NULL)
1829 				return (ENOMEM);
1830 			(void) anon_set_ptr(amp->ahp, start_idx, ap,
1831 			    ANON_SLEEP);
1832 			return (0);
1833 		}
1834 	}
1835 
1836 	pgcnt = page_get_pagecnt(szc);
1837 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1838 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
1839 
1840 	/*
1841 	 * First we check for the case that the requtested large
1842 	 * page or larger page already exists in the system.
1843 	 * Actually we only check if the first constituent page
1844 	 * exists and only preallocate if it's not found.
1845 	 */
1846 	ap = anon_get_ptr(amp->ahp, start_idx);
1847 	if (ap) {
1848 		uint_t pszc;
1849 		swap_xlate(ap, &vp, &off);
1850 		if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) {
1851 			if (pszc > szc) {
1852 				*ppa_szc = pszc;
1853 				return (-2);
1854 			}
1855 			if (pszc == szc) {
1856 				prealloc = 0;
1857 			}
1858 		}
1859 	}
1860 
1861 	VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]);
1862 	VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]);
1863 
1864 top:
1865 	/*
1866 	 * If a smaller page or no page at all was found,
1867 	 * grab a large page off the freelist.
1868 	 */
1869 	if (prealloc) {
1870 		ASSERT(conpp == NULL);
1871 		if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa,
1872 		    szc, 0) != 0) {
1873 			VM_STAT_ADD(anonvmstats.getpages[7]);
1874 			if (brkcow == 0 ||
1875 			    !anon_share(amp->ahp, start_idx, pgcnt)) {
1876 				/*
1877 				 * If the refcnt's of all anon slots are <= 1
1878 				 * they can't increase since we are holding
1879 				 * the address space's lock. So segvn can
1880 				 * safely decrease szc without risking to
1881 				 * generate a cow fault for the region smaller
1882 				 * than the segment's largest page size.
1883 				 */
1884 				VM_STAT_ADD(anonvmstats.getpages[8]);
1885 				return (-1);
1886 			}
1887 		docow:
1888 			/*
1889 			 * This is a cow fault. Copy away the entire 1 large
1890 			 * page region of this segment.
1891 			 */
1892 			if (szc != seg->s_szc)
1893 				panic("anon_map_getpages: cowfault for szc %d",
1894 				    szc);
1895 			vaddr = addr;
1896 			for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
1897 			    pg_idx++, an_idx++, vaddr += PAGESIZE) {
1898 				if ((ap = anon_get_ptr(amp->ahp, an_idx)) !=
1899 				    NULL) {
1900 					err = anon_getpage(&ap, &vpprot, pl,
1901 					    PAGESIZE, seg, vaddr, rw, cred);
1902 					if (err) {
1903 						for (i = 0; i < pg_idx; i++) {
1904 							if ((pp = ppa[i]) !=
1905 							    NULL)
1906 								page_unlock(pp);
1907 						}
1908 						return (err);
1909 					}
1910 					ppa[pg_idx] = pl[0];
1911 				} else {
1912 					/*
1913 					 * Since this is a cowfault we know
1914 					 * that this address space has a
1915 					 * parent or children which means
1916 					 * anon_dup_fill_holes() has initialized
1917 					 * all anon slots within a large page
1918 					 * region that had at least one anon
1919 					 * slot at the time of fork().
1920 					 */
1921 					panic("anon_map_getpages: "
1922 					    "cowfault but anon slot is empty");
1923 				}
1924 			}
1925 			VM_STAT_ADD(anonvmstats.getpages[9]);
1926 			*protp = PROT_ALL;
1927 			return (anon_map_privatepages(amp, start_idx, szc, seg,
1928 			    addr, prot, ppa, vpage, anypgsz, cred));
1929 		}
1930 	}
1931 
1932 	VM_STAT_ADD(anonvmstats.getpages[10]);
1933 
1934 	an_idx = start_idx;
1935 	pg_idx = 0;
1936 	vaddr = addr;
1937 	while (pg_idx < pgcnt) {
1938 		slotcreate = 0;
1939 		if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) {
1940 			VM_STAT_ADD(anonvmstats.getpages[11]);
1941 			/*
1942 			 * For us to have decided not to preallocate
1943 			 * would have meant that a large page
1944 			 * was found. Which also means that all of the
1945 			 * anon slots for that page would have been
1946 			 * already created for us.
1947 			 */
1948 			if (prealloc == 0)
1949 				panic("anon_map_getpages: prealloc = 0");
1950 
1951 			slotcreate = 1;
1952 			ap = anon_alloc(NULL, 0);
1953 		}
1954 		swap_xlate(ap, &vp, &off);
1955 
1956 		/*
1957 		 * Now setup our preallocated page to pass down
1958 		 * to swap_getpage().
1959 		 */
1960 		if (prealloc) {
1961 			ASSERT(ppa[pg_idx]->p_szc == szc);
1962 			conpp = ppa[pg_idx];
1963 		}
1964 		ASSERT(prealloc || conpp == NULL);
1965 
1966 		/*
1967 		 * If we just created this anon slot then call
1968 		 * with S_CREATE to prevent doing IO on the page.
1969 		 * Similar to the anon_zero case.
1970 		 */
1971 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE,
1972 		    NULL, pl, PAGESIZE, conpp, &nreloc, seg, vaddr,
1973 		    slotcreate == 1 ? S_CREATE : rw, cred);
1974 
1975 		if (err) {
1976 			VM_STAT_ADD(anonvmstats.getpages[12]);
1977 			ASSERT(slotcreate == 0);
1978 			goto io_err;
1979 		}
1980 
1981 		pp = pl[0];
1982 
1983 		if (pp->p_szc != szc) {
1984 			VM_STAT_ADD(anonvmstats.getpages[13]);
1985 			ASSERT(slotcreate == 0);
1986 			ASSERT(prealloc == 0);
1987 			ASSERT(pg_idx == 0);
1988 			if (pp->p_szc > szc) {
1989 				page_unlock(pp);
1990 				VM_STAT_ADD(anonvmstats.getpages[14]);
1991 				return (-2);
1992 			}
1993 			page_unlock(pp);
1994 			prealloc = 1;
1995 			goto top;
1996 		}
1997 
1998 		/*
1999 		 * If we decided to preallocate but VOP_GETPAGE
2000 		 * found a page in the system that satisfies our
2001 		 * request then free up our preallocated large page
2002 		 * and continue looping accross the existing large
2003 		 * page via VOP_GETPAGE.
2004 		 */
2005 		if (prealloc && pp != ppa[pg_idx]) {
2006 			VM_STAT_ADD(anonvmstats.getpages[15]);
2007 			ASSERT(slotcreate == 0);
2008 			ASSERT(pg_idx == 0);
2009 			conpp = NULL;
2010 			prealloc = 0;
2011 			page_free_pages(ppa[0]);
2012 		}
2013 
2014 		if (prealloc && nreloc > 1) {
2015 			/*
2016 			 * we have relocated out of a smaller large page.
2017 			 * skip npgs - 1 iterations and continue which will
2018 			 * increment by one the loop indices.
2019 			 */
2020 			spgcnt_t npgs = nreloc;
2021 
2022 			VM_STAT_ADD(anonvmstats.getpages[16]);
2023 
2024 			ASSERT(pp == ppa[pg_idx]);
2025 			ASSERT(slotcreate == 0);
2026 			ASSERT(pg_idx + npgs <= pgcnt);
2027 			if ((*protp & PROT_WRITE) &&
2028 			    anon_share(amp->ahp, an_idx, npgs)) {
2029 			    *protp &= ~PROT_WRITE;
2030 			}
2031 			pg_idx += npgs;
2032 			an_idx += npgs;
2033 			vaddr += PAGESIZE * npgs;
2034 			continue;
2035 		}
2036 
2037 		VM_STAT_ADD(anonvmstats.getpages[17]);
2038 
2039 		/*
2040 		 * Anon_zero case.
2041 		 */
2042 		if (slotcreate) {
2043 			ASSERT(prealloc);
2044 			pagezero(pp, 0, PAGESIZE);
2045 			CPU_STATS_ADD_K(vm, zfod, 1);
2046 			hat_setrefmod(pp);
2047 		}
2048 
2049 		ASSERT(prealloc == 0 || ppa[pg_idx] == pp);
2050 		ASSERT(prealloc != 0 || PAGE_SHARED(pp));
2051 		ASSERT(prealloc == 0 || PAGE_EXCL(pp));
2052 
2053 		if (pg_idx > 0 &&
2054 		    ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) ||
2055 		    (pp->p_szc != ppa[pg_idx - 1]->p_szc)))
2056 			panic("anon_map_getpages: unexpected page");
2057 
2058 		if (prealloc == 0) {
2059 			ppa[pg_idx] = pp;
2060 		}
2061 
2062 		if (ap->an_refcnt > 1) {
2063 			VM_STAT_ADD(anonvmstats.getpages[18]);
2064 			*protp &= ~PROT_WRITE;
2065 		}
2066 
2067 		/*
2068 		 * If this is a new anon slot then initialize
2069 		 * the anon array entry.
2070 		 */
2071 		if (slotcreate) {
2072 			(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2073 		}
2074 		pg_idx++;
2075 		an_idx++;
2076 		vaddr += PAGESIZE;
2077 	}
2078 
2079 	/*
2080 	 * Since preallocated pages come off the freelist
2081 	 * they are locked SE_EXCL. Simply downgrade and return.
2082 	 */
2083 	if (prealloc) {
2084 		VM_STAT_ADD(anonvmstats.getpages[19]);
2085 		conpp = NULL;
2086 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2087 			page_downgrade(ppa[pg_idx]);
2088 		}
2089 	}
2090 	ASSERT(conpp == NULL);
2091 
2092 	if (brkcow == 0 || (*protp & PROT_WRITE)) {
2093 		VM_STAT_ADD(anonvmstats.getpages[20]);
2094 		return (0);
2095 	}
2096 
2097 	if (szc < seg->s_szc)
2098 		panic("anon_map_getpages: cowfault for szc %d", szc);
2099 
2100 	VM_STAT_ADD(anonvmstats.getpages[21]);
2101 
2102 	*protp = PROT_ALL;
2103 	return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot,
2104 	    ppa, vpage, anypgsz, cred));
2105 io_err:
2106 	/*
2107 	 * We got an IO error somewhere in our large page.
2108 	 * If we were using a preallocated page then just demote
2109 	 * all the constituent pages that we've succeeded with sofar
2110 	 * to PAGESIZE pages and leave them in the system
2111 	 * unlocked.
2112 	 */
2113 
2114 	ASSERT(err != -2 || pg_idx == 0);
2115 
2116 	VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]);
2117 	VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]);
2118 	VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]);
2119 
2120 	if (prealloc) {
2121 		conpp = NULL;
2122 		if (pg_idx > 0) {
2123 			VM_STAT_ADD(anonvmstats.getpages[25]);
2124 			for (i = 0; i < pgcnt; i++) {
2125 				pp = ppa[i];
2126 				ASSERT(PAGE_EXCL(pp));
2127 				ASSERT(pp->p_szc == szc);
2128 				pp->p_szc = 0;
2129 			}
2130 			for (i = 0; i < pg_idx; i++) {
2131 				ASSERT(!hat_page_is_mapped(ppa[i]));
2132 				page_unlock(ppa[i]);
2133 			}
2134 			/*
2135 			 * Now free up the remaining unused constituent
2136 			 * pages.
2137 			 */
2138 			while (pg_idx < pgcnt) {
2139 				ASSERT(!hat_page_is_mapped(ppa[pg_idx]));
2140 				page_free(ppa[pg_idx], 0);
2141 				pg_idx++;
2142 			}
2143 		} else {
2144 			VM_STAT_ADD(anonvmstats.getpages[26]);
2145 			page_free_pages(ppa[0]);
2146 		}
2147 	} else {
2148 		VM_STAT_ADD(anonvmstats.getpages[27]);
2149 		ASSERT(err > 0);
2150 		for (i = 0; i < pg_idx; i++)
2151 			page_unlock(ppa[i]);
2152 	}
2153 	ASSERT(conpp == NULL);
2154 	if (err != -1)
2155 		return (err);
2156 	/*
2157 	 * we are here because we failed to relocate.
2158 	 */
2159 	ASSERT(prealloc);
2160 	if (brkcow == 0 || !anon_share(amp->ahp, start_idx, pgcnt)) {
2161 		VM_STAT_ADD(anonvmstats.getpages[28]);
2162 		return (-1);
2163 	}
2164 	VM_STAT_ADD(anonvmstats.getpages[29]);
2165 	goto docow;
2166 }
2167 
2168 
2169 /*
2170  * Turn a reference to an object or shared anon page
2171  * into a private page with a copy of the data from the
2172  * original page which is always locked by the caller.
2173  * This routine unloads the translation and unlocks the
2174  * original page, if it isn't being stolen, before returning
2175  * to the caller.
2176  *
2177  * NOTE:  The original anon slot is not freed by this routine
2178  *	  It must be freed by the caller while holding the
2179  *	  "anon_map" lock to prevent races which can occur if
2180  *	  a process has multiple lwps in its address space.
2181  */
2182 page_t *
2183 anon_private(
2184 	struct anon **app,
2185 	struct seg *seg,
2186 	caddr_t addr,
2187 	uint_t	prot,
2188 	page_t *opp,
2189 	int oppflags,
2190 	struct cred *cred)
2191 {
2192 	struct anon *old = *app;
2193 	struct anon *new;
2194 	page_t *pp = NULL;
2195 	struct vnode *vp;
2196 	anoff_t off;
2197 	page_t *anon_pl[1 + 1];
2198 	int err;
2199 
2200 	if (oppflags & STEAL_PAGE)
2201 		ASSERT(PAGE_EXCL(opp));
2202 	else
2203 		ASSERT(PAGE_LOCKED(opp));
2204 
2205 	CPU_STATS_ADD_K(vm, cow_fault, 1);
2206 
2207 	/* Kernel probe */
2208 	TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */,
2209 		tnf_opaque,	address,	addr);
2210 
2211 	*app = new = anon_alloc(NULL, 0);
2212 	swap_xlate(new, &vp, &off);
2213 
2214 	if (oppflags & STEAL_PAGE) {
2215 		page_rename(opp, vp, (u_offset_t)off);
2216 		pp = opp;
2217 		TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE,
2218 			"anon_private:seg %p addr %x pp %p vp %p off %lx",
2219 			seg, addr, pp, vp, off);
2220 		hat_setmod(pp);
2221 
2222 		/* bug 4026339 */
2223 		page_downgrade(pp);
2224 		return (pp);
2225 	}
2226 
2227 	/*
2228 	 * Call the VOP_GETPAGE routine to create the page, thereby
2229 	 * enabling the vnode driver to allocate any filesystem
2230 	 * space (e.g., disk block allocation for UFS).  This also
2231 	 * prevents more than one page from being added to the
2232 	 * vnode at the same time.
2233 	 */
2234 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL,
2235 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred);
2236 	if (err)
2237 		goto out;
2238 
2239 	pp = anon_pl[0];
2240 
2241 	/*
2242 	 * If the original page was locked, we need to move the lock
2243 	 * to the new page by transfering 'cowcnt/lckcnt' of the original
2244 	 * page to 'cowcnt/lckcnt' of the new page.
2245 	 *
2246 	 * See Statement at the beginning of segvn_lockop() and
2247 	 * comments in page_pp_useclaim() regarding the way
2248 	 * cowcnts/lckcnts are handled.
2249 	 *
2250 	 * Also availrmem must be decremented up front for read only mapping
2251 	 * before calling page_pp_useclaim. page_pp_useclaim will bump it back
2252 	 * if availrmem did not need to be decremented after all.
2253 	 */
2254 	if (oppflags & LOCK_PAGE) {
2255 		if ((prot & PROT_WRITE) == 0) {
2256 			mutex_enter(&freemem_lock);
2257 			if (availrmem > pages_pp_maximum) {
2258 				availrmem--;
2259 				pages_useclaim++;
2260 			} else {
2261 				mutex_exit(&freemem_lock);
2262 				goto out;
2263 			}
2264 			mutex_exit(&freemem_lock);
2265 		}
2266 		page_pp_useclaim(opp, pp, prot & PROT_WRITE);
2267 	}
2268 
2269 	/*
2270 	 * Now copy the contents from the original page,
2271 	 * which is locked and loaded in the MMU by
2272 	 * the caller to prevent yet another page fault.
2273 	 */
2274 	ppcopy(opp, pp);		/* XXX - should set mod bit in here */
2275 
2276 	hat_setrefmod(pp);		/* mark as modified */
2277 
2278 	/*
2279 	 * Unload the old translation.
2280 	 */
2281 	hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD);
2282 
2283 	/*
2284 	 * Free unmapped, unmodified original page.
2285 	 * or release the lock on the original page,
2286 	 * otherwise the process will sleep forever in
2287 	 * anon_decref() waiting for the "exclusive" lock
2288 	 * on the page.
2289 	 */
2290 	(void) page_release(opp, 1);
2291 
2292 	/*
2293 	 * we are done with page creation so downgrade the new
2294 	 * page's selock to shared, this helps when multiple
2295 	 * as_fault(...SOFTLOCK...) are done to the same
2296 	 * page(aio)
2297 	 */
2298 	page_downgrade(pp);
2299 
2300 	/*
2301 	 * NOTE:  The original anon slot must be freed by the
2302 	 * caller while holding the "anon_map" lock, if we
2303 	 * copied away from an anonymous page.
2304 	 */
2305 	return (pp);
2306 
2307 out:
2308 	*app = old;
2309 	if (pp)
2310 		page_unlock(pp);
2311 	anon_decref(new);
2312 	page_unlock(opp);
2313 	return ((page_t *)NULL);
2314 }
2315 
2316 int
2317 anon_map_privatepages(
2318 	struct anon_map *amp,
2319 	ulong_t	start_idx,
2320 	uint_t	szc,
2321 	struct seg *seg,
2322 	caddr_t addr,
2323 	uint_t	prot,
2324 	page_t	*ppa[],
2325 	struct vpage vpage[],
2326 	int anypgsz,
2327 	struct cred *cred)
2328 {
2329 	pgcnt_t		pgcnt;
2330 	struct vnode	*vp;
2331 	anoff_t		off;
2332 	page_t		*pl[2], *conpp = NULL;
2333 	int		err;
2334 	int		prealloc = 1;
2335 	struct anon	*ap, *oldap;
2336 	caddr_t		vaddr;
2337 	page_t		*pplist, *pp;
2338 	ulong_t		pg_idx, an_idx;
2339 	spgcnt_t	nreloc = 0;
2340 	int		pagelock = 0;
2341 	kmutex_t	*ahmpages = NULL;
2342 #ifdef DEBUG
2343 	int		refcnt;
2344 #endif
2345 
2346 	ASSERT(szc != 0);
2347 	ASSERT(szc == seg->s_szc);
2348 
2349 	VM_STAT_ADD(anonvmstats.privatepages[0]);
2350 
2351 	pgcnt = page_get_pagecnt(szc);
2352 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2353 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2354 
2355 	ASSERT(amp != NULL);
2356 	ap = anon_get_ptr(amp->ahp, start_idx);
2357 	ASSERT(ap == NULL || ap->an_refcnt >= 1);
2358 
2359 	VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]);
2360 
2361 	/*
2362 	 * Now try and allocate the large page. If we fail then just
2363 	 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let
2364 	 * the caller make this decision but to avoid added complexity
2365 	 * it's simplier to handle that case here.
2366 	 */
2367 	if (anypgsz == -1) {
2368 		VM_STAT_ADD(anonvmstats.privatepages[2]);
2369 		prealloc = 0;
2370 	} else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc,
2371 	    anypgsz) != 0) {
2372 		VM_STAT_ADD(anonvmstats.privatepages[3]);
2373 		prealloc = 0;
2374 	}
2375 
2376 	/*
2377 	 * make the decrement of all refcnts of all
2378 	 * anon slots of a large page appear atomic by
2379 	 * getting an anonpages_hash_lock for the
2380 	 * first anon slot of a large page.
2381 	 */
2382 	if (ap != NULL) {
2383 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp,
2384 		    ap->an_off)];
2385 		mutex_enter(ahmpages);
2386 		if (ap->an_refcnt == 1) {
2387 			VM_STAT_ADD(anonvmstats.privatepages[4]);
2388 			ASSERT(!anon_share(amp->ahp, start_idx, pgcnt));
2389 			mutex_exit(ahmpages);
2390 
2391 			if (prealloc) {
2392 				page_free_replacement_page(pplist);
2393 				page_create_putback(pgcnt);
2394 			}
2395 			ASSERT(ppa[0]->p_szc <= szc);
2396 			if (ppa[0]->p_szc == szc) {
2397 				VM_STAT_ADD(anonvmstats.privatepages[5]);
2398 				return (0);
2399 			}
2400 			for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2401 				ASSERT(ppa[pg_idx] != NULL);
2402 				page_unlock(ppa[pg_idx]);
2403 			}
2404 			return (-1);
2405 		}
2406 	}
2407 
2408 	/*
2409 	 * If we are passed in the vpage array and this is
2410 	 * not PROT_WRITE then we need to decrement availrmem
2411 	 * up front before we try anything. If we need to and
2412 	 * can't decrement availrmem then its better to fail now
2413 	 * than in the middle of processing the new large page.
2414 	 * page_pp_usclaim() on behalf of each constituent page
2415 	 * below will adjust availrmem back for the cases not needed.
2416 	 */
2417 	if (vpage != NULL && (prot & PROT_WRITE) == 0) {
2418 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2419 			if (VPP_ISPPLOCK(&vpage[pg_idx])) {
2420 				pagelock = 1;
2421 				break;
2422 			}
2423 		}
2424 		if (pagelock) {
2425 			VM_STAT_ADD(anonvmstats.privatepages[6]);
2426 			mutex_enter(&freemem_lock);
2427 			if (availrmem >= pages_pp_maximum + pgcnt) {
2428 				availrmem -= pgcnt;
2429 				pages_useclaim += pgcnt;
2430 			} else {
2431 				VM_STAT_ADD(anonvmstats.privatepages[7]);
2432 				mutex_exit(&freemem_lock);
2433 				if (ahmpages != NULL) {
2434 					mutex_exit(ahmpages);
2435 				}
2436 				if (prealloc) {
2437 					page_free_replacement_page(pplist);
2438 					page_create_putback(pgcnt);
2439 				}
2440 				for (pg_idx = 0; pg_idx < pgcnt; pg_idx++)
2441 					if (ppa[pg_idx] != NULL)
2442 						page_unlock(ppa[pg_idx]);
2443 				return (ENOMEM);
2444 			}
2445 			mutex_exit(&freemem_lock);
2446 		}
2447 	}
2448 
2449 	CPU_STATS_ADD_K(vm, cow_fault, pgcnt);
2450 
2451 	VM_STAT_ADD(anonvmstats.privatepages[8]);
2452 
2453 	an_idx = start_idx;
2454 	pg_idx = 0;
2455 	vaddr = addr;
2456 	for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) {
2457 		ASSERT(ppa[pg_idx] != NULL);
2458 		oldap = anon_get_ptr(amp->ahp, an_idx);
2459 		ASSERT(ahmpages != NULL || oldap == NULL);
2460 		ASSERT(ahmpages == NULL || oldap != NULL);
2461 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2462 		ASSERT(ahmpages == NULL || pg_idx != 0 ||
2463 		    (refcnt = oldap->an_refcnt));
2464 		ASSERT(ahmpages == NULL || pg_idx == 0 ||
2465 		    refcnt == oldap->an_refcnt);
2466 
2467 		ap = anon_alloc(NULL, 0);
2468 
2469 		swap_xlate(ap, &vp, &off);
2470 
2471 		/*
2472 		 * Now setup our preallocated page to pass down to
2473 		 * swap_getpage().
2474 		 */
2475 		if (prealloc) {
2476 			pp = pplist;
2477 			page_sub(&pplist, pp);
2478 			conpp = pp;
2479 		}
2480 
2481 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl,
2482 			PAGESIZE, conpp, &nreloc, seg, vaddr, S_CREATE, cred);
2483 
2484 		/*
2485 		 * Impossible to fail this is S_CREATE.
2486 		 */
2487 		if (err)
2488 			panic("anon_map_privatepages: VOP_GETPAGE failed");
2489 
2490 		ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0);
2491 		ASSERT(prealloc == 0 || nreloc == 1);
2492 
2493 		pp = pl[0];
2494 
2495 		/*
2496 		 * If the original page was locked, we need to move
2497 		 * the lock to the new page by transfering
2498 		 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt'
2499 		 * of the new page. pg_idx can be used to index
2500 		 * into the vpage array since the caller will guarentee
2501 		 * that vpage struct passed in corresponds to addr
2502 		 * and forward.
2503 		 */
2504 		if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) {
2505 			page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE);
2506 		} else if (pagelock) {
2507 			mutex_enter(&freemem_lock);
2508 			availrmem++;
2509 			pages_useclaim--;
2510 			mutex_exit(&freemem_lock);
2511 		}
2512 
2513 		/*
2514 		 * Now copy the contents from the original page.
2515 		 */
2516 		ppcopy(ppa[pg_idx], pp);
2517 
2518 		hat_setrefmod(pp);		/* mark as modified */
2519 
2520 		/*
2521 		 * Release the lock on the original page,
2522 		 * derement the old slot, and down grade the lock
2523 		 * on the new copy.
2524 		 */
2525 		page_unlock(ppa[pg_idx]);
2526 
2527 		if (!prealloc)
2528 			page_downgrade(pp);
2529 
2530 		ppa[pg_idx] = pp;
2531 
2532 		/*
2533 		 * Now reflect the copy in the new anon array.
2534 		 */
2535 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2536 		if (oldap != NULL)
2537 			anon_decref(oldap);
2538 		(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2539 	}
2540 	if (ahmpages != NULL) {
2541 		mutex_exit(ahmpages);
2542 	}
2543 	ASSERT(prealloc == 0 || pplist == NULL);
2544 	if (prealloc) {
2545 		VM_STAT_ADD(anonvmstats.privatepages[9]);
2546 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2547 			page_downgrade(ppa[pg_idx]);
2548 		}
2549 	}
2550 
2551 	/*
2552 	 * Unload the old large page translation.
2553 	 */
2554 	hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD);
2555 	return (0);
2556 }
2557 
2558 /*
2559  * Allocate a private zero-filled anon page.
2560  */
2561 page_t *
2562 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred)
2563 {
2564 	struct anon *ap;
2565 	page_t *pp;
2566 	struct vnode *vp;
2567 	anoff_t off;
2568 	page_t *anon_pl[1 + 1];
2569 	int err;
2570 
2571 	/* Kernel probe */
2572 	TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */,
2573 		tnf_opaque,	address,	addr);
2574 
2575 	*app = ap = anon_alloc(NULL, 0);
2576 	swap_xlate(ap, &vp, &off);
2577 
2578 	/*
2579 	 * Call the VOP_GETPAGE routine to create the page, thereby
2580 	 * enabling the vnode driver to allocate any filesystem
2581 	 * dependent structures (e.g., disk block allocation for UFS).
2582 	 * This also prevents more than on page from being added to
2583 	 * the vnode at the same time since it is locked.
2584 	 */
2585 	err = VOP_GETPAGE(vp, off, PAGESIZE, NULL,
2586 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred);
2587 	if (err) {
2588 		*app = NULL;
2589 		anon_decref(ap);
2590 		return (NULL);
2591 	}
2592 	pp = anon_pl[0];
2593 
2594 	pagezero(pp, 0, PAGESIZE);	/* XXX - should set mod bit */
2595 	page_downgrade(pp);
2596 	CPU_STATS_ADD_K(vm, zfod, 1);
2597 	hat_setrefmod(pp);	/* mark as modified so pageout writes back */
2598 	return (pp);
2599 }
2600 
2601 
2602 /*
2603  * Allocate array of private zero-filled anon pages for empty slots
2604  * and kept pages for non empty slots within given range.
2605  *
2606  * NOTE: This rontine will try and use large pages
2607  *	if available and supported by underlying platform.
2608  */
2609 int
2610 anon_map_createpages(
2611 	struct anon_map *amp,
2612 	ulong_t start_index,
2613 	size_t len,
2614 	page_t *ppa[],
2615 	struct seg *seg,
2616 	caddr_t addr,
2617 	enum seg_rw rw,
2618 	struct cred *cred)
2619 {
2620 
2621 	struct anon	*ap;
2622 	struct vnode	*ap_vp;
2623 	page_t		*pp, *pplist, *anon_pl[1 + 1], *conpp = NULL;
2624 	int		err = 0;
2625 	ulong_t		p_index, index;
2626 	pgcnt_t		npgs, pg_cnt;
2627 	spgcnt_t	nreloc = 0;
2628 	uint_t		l_szc, szc, prot;
2629 	anoff_t		ap_off;
2630 	size_t		pgsz;
2631 	lgrp_t		*lgrp;
2632 
2633 	/*
2634 	 * XXX For now only handle S_CREATE.
2635 	 */
2636 	ASSERT(rw == S_CREATE);
2637 
2638 	index	= start_index;
2639 	p_index	= 0;
2640 	npgs = btopr(len);
2641 
2642 	/*
2643 	 * If this platform supports multiple page sizes
2644 	 * then try and allocate directly from the free
2645 	 * list for pages larger than PAGESIZE.
2646 	 *
2647 	 * NOTE:When we have page_create_ru we can stop
2648 	 *	directly allocating from the freelist.
2649 	 */
2650 	l_szc  = seg->s_szc;
2651 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2652 	while (npgs) {
2653 
2654 		/*
2655 		 * if anon slot already exists
2656 		 *   (means page has been created)
2657 		 * so 1) look up the page
2658 		 *    2) if the page is still in memory, get it.
2659 		 *    3) if not, create a page and
2660 		 *	  page in from physical swap device.
2661 		 * These are done in anon_getpage().
2662 		 */
2663 		ap = anon_get_ptr(amp->ahp, index);
2664 		if (ap) {
2665 			err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE,
2666 			    seg, addr, S_READ, cred);
2667 			if (err) {
2668 				ANON_LOCK_EXIT(&amp->a_rwlock);
2669 				panic("anon_map_createpages: anon_getpage");
2670 			}
2671 			pp = anon_pl[0];
2672 			ppa[p_index++] = pp;
2673 
2674 			addr += PAGESIZE;
2675 			index++;
2676 			npgs--;
2677 			continue;
2678 		}
2679 		/*
2680 		 * Now try and allocate the largest page possible
2681 		 * for the current address and range.
2682 		 * Keep dropping down in page size until:
2683 		 *
2684 		 *	1) Properly aligned
2685 		 *	2) Does not overlap existing anon pages
2686 		 *	3) Fits in remaining range.
2687 		 *	4) able to allocate one.
2688 		 *
2689 		 * NOTE: XXX When page_create_ru is completed this code
2690 		 *	 will change.
2691 		 */
2692 		szc    = l_szc;
2693 		pplist = NULL;
2694 		pg_cnt = 0;
2695 		while (szc) {
2696 			pgsz	= page_get_pagesize(szc);
2697 			pg_cnt	= pgsz >> PAGESHIFT;
2698 			if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs &&
2699 				anon_pages(amp->ahp, index, pg_cnt) == 0) {
2700 				/*
2701 				 * XXX
2702 				 * Since we are faking page_create()
2703 				 * we also need to do the freemem and
2704 				 * pcf accounting.
2705 				 */
2706 				(void) page_create_wait(pg_cnt, PG_WAIT);
2707 
2708 				/*
2709 				 * Get lgroup to allocate next page of shared
2710 				 * memory from and use it to specify where to
2711 				 * allocate the physical memory
2712 				 */
2713 				lgrp = lgrp_mem_choose(seg, addr, pgsz);
2714 
2715 				pplist = page_get_freelist(
2716 				    anon_vp, (u_offset_t)0, seg,
2717 				    addr, pgsz, 0, lgrp);
2718 
2719 				if (pplist == NULL) {
2720 					page_create_putback(pg_cnt);
2721 				}
2722 
2723 				/*
2724 				 * If a request for a page of size
2725 				 * larger than PAGESIZE failed
2726 				 * then don't try that size anymore.
2727 				 */
2728 				if (pplist == NULL) {
2729 					l_szc = szc - 1;
2730 				} else {
2731 					break;
2732 				}
2733 			}
2734 			szc--;
2735 		}
2736 
2737 		/*
2738 		 * If just using PAGESIZE pages then don't
2739 		 * directly allocate from the free list.
2740 		 */
2741 		if (pplist == NULL) {
2742 			ASSERT(szc == 0);
2743 			pp = anon_zero(seg, addr, &ap, cred);
2744 			if (pp == NULL) {
2745 				ANON_LOCK_EXIT(&amp->a_rwlock);
2746 				panic("anon_map_createpages: anon_zero");
2747 			}
2748 			ppa[p_index++] = pp;
2749 
2750 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2751 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2752 
2753 			addr += PAGESIZE;
2754 			index++;
2755 			npgs--;
2756 			continue;
2757 		}
2758 
2759 		/*
2760 		 * pplist is a list of pg_cnt PAGESIZE pages.
2761 		 * These pages are locked SE_EXCL since they
2762 		 * came directly off the free list.
2763 		 */
2764 		ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt));
2765 		ASSERT(IS_P2ALIGNED(index, pg_cnt));
2766 		ASSERT(conpp == NULL);
2767 		while (pg_cnt--) {
2768 
2769 			ap = anon_alloc(NULL, 0);
2770 			swap_xlate(ap, &ap_vp, &ap_off);
2771 
2772 			ASSERT(pplist != NULL);
2773 			pp = pplist;
2774 			page_sub(&pplist, pp);
2775 			PP_CLRFREE(pp);
2776 			PP_CLRAGED(pp);
2777 			conpp = pp;
2778 
2779 			err = swap_getconpage(ap_vp, ap_off, PAGESIZE,
2780 			    (uint_t *)NULL, anon_pl, PAGESIZE, conpp, &nreloc,
2781 			    seg, addr, S_CREATE, cred);
2782 
2783 			if (err) {
2784 				ANON_LOCK_EXIT(&amp->a_rwlock);
2785 				panic("anon_map_createpages: S_CREATE");
2786 			}
2787 
2788 			ASSERT(anon_pl[0] == pp);
2789 			ASSERT(nreloc == 1);
2790 			pagezero(pp, 0, PAGESIZE);
2791 			CPU_STATS_ADD_K(vm, zfod, 1);
2792 			hat_setrefmod(pp);
2793 
2794 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2795 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2796 
2797 			ppa[p_index++] = pp;
2798 
2799 			addr += PAGESIZE;
2800 			index++;
2801 			npgs--;
2802 		}
2803 		conpp = NULL;
2804 		pg_cnt	= pgsz >> PAGESHIFT;
2805 		p_index = p_index - pg_cnt;
2806 		while (pg_cnt--) {
2807 			page_downgrade(ppa[p_index++]);
2808 		}
2809 	}
2810 	ANON_LOCK_EXIT(&amp->a_rwlock);
2811 	return (0);
2812 }
2813 
2814 int
2815 anon_map_demotepages(
2816 	struct anon_map *amp,
2817 	ulong_t	start_idx,
2818 	struct seg *seg,
2819 	caddr_t addr,
2820 	uint_t prot,
2821 	struct vpage vpage[],
2822 	struct cred *cred)
2823 {
2824 	struct anon	*ap;
2825 	uint_t		szc = seg->s_szc;
2826 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
2827 	size_t		ppasize = pgcnt * sizeof (page_t *);
2828 	page_t		**ppa = kmem_alloc(ppasize, KM_SLEEP);
2829 	page_t		*pp;
2830 	page_t		*pl[2];
2831 	pgcnt_t		i, pg_idx;
2832 	ulong_t		an_idx;
2833 	caddr_t		vaddr;
2834 	kmutex_t	*ahmpages = NULL;
2835 	int 		err;
2836 	int		retry = 0;
2837 	uint_t		vpprot;
2838 
2839 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
2840 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2841 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2842 	ASSERT(ppa != NULL);
2843 
2844 	VM_STAT_ADD(anonvmstats.demotepages[0]);
2845 
2846 	ap = anon_get_ptr(amp->ahp, start_idx);
2847 	if (ap != NULL) {
2848 		VM_STAT_ADD(anonvmstats.demotepages[1]);
2849 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
2850 		mutex_enter(ahmpages);
2851 	}
2852 top:
2853 	if (ap == NULL || ap->an_refcnt <= 1) {
2854 		int root = 0;
2855 		pgcnt_t npgs, curnpgs = 0;
2856 
2857 		VM_STAT_ADD(anonvmstats.demotepages[2]);
2858 
2859 		ASSERT(retry == 0 || ap != NULL);
2860 
2861 		if (ahmpages != NULL)
2862 			mutex_exit(ahmpages);
2863 		an_idx = start_idx;
2864 		for (i = 0; i < pgcnt; i++, an_idx++) {
2865 			ap = anon_get_ptr(amp->ahp, an_idx);
2866 			if (ap != NULL) {
2867 				ASSERT(ap->an_refcnt == 1);
2868 				pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off,
2869 				    SE_EXCL);
2870 				if (pp != NULL) {
2871 					(void) hat_pageunload(pp,
2872 					    HAT_FORCE_PGUNLOAD);
2873 				}
2874 			} else {
2875 				ppa[i] = NULL;
2876 			}
2877 		}
2878 		for (i = 0; i < pgcnt; i++) {
2879 			if ((pp = ppa[i]) != NULL && pp->p_szc != 0) {
2880 				ASSERT(pp->p_szc <= szc);
2881 				if (!root) {
2882 					VM_STAT_ADD(anonvmstats.demotepages[3]);
2883 					if (curnpgs != 0)
2884 						panic("anon_map_demotepages: "
2885 						    "bad large page");
2886 
2887 					root = 1;
2888 					curnpgs = npgs =
2889 					    page_get_pagecnt(pp->p_szc);
2890 
2891 					ASSERT(npgs <= pgcnt);
2892 					ASSERT(IS_P2ALIGNED(npgs, npgs));
2893 					ASSERT(!(page_pptonum(pp) &
2894 					    (npgs - 1)));
2895 				} else {
2896 					ASSERT(i > 0);
2897 					ASSERT(page_pptonum(pp) - 1 ==
2898 					    page_pptonum(ppa[i - 1]));
2899 					if ((page_pptonum(pp) & (npgs - 1)) ==
2900 					    npgs - 1)
2901 						root = 0;
2902 				}
2903 				ASSERT(PAGE_EXCL(pp));
2904 				pp->p_szc = 0;
2905 				curnpgs--;
2906 			}
2907 		}
2908 		if (root != 0 || curnpgs != 0)
2909 			panic("anon_map_demotepages: bad large page");
2910 
2911 		for (i = 0; i < pgcnt; i++) {
2912 			if ((pp = ppa[i]) != NULL) {
2913 				ASSERT(!hat_page_is_mapped(pp));
2914 				ASSERT(pp->p_szc == 0);
2915 				page_unlock(pp);
2916 			}
2917 		}
2918 		kmem_free(ppa, ppasize);
2919 		return (0);
2920 	}
2921 	ASSERT(ahmpages != NULL);
2922 	mutex_exit(ahmpages);
2923 	ahmpages = NULL;
2924 
2925 	VM_STAT_ADD(anonvmstats.demotepages[4]);
2926 
2927 	ASSERT(retry == 0); /* we can be here only once */
2928 
2929 	vaddr = addr;
2930 	for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
2931 	    pg_idx++, an_idx++, vaddr += PAGESIZE) {
2932 		ap = anon_get_ptr(amp->ahp, an_idx);
2933 		if (ap == NULL)
2934 			panic("anon_map_demotepages: no anon slot");
2935 		err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr,
2936 		    S_READ, cred);
2937 		if (err) {
2938 			for (i = 0; i < pg_idx; i++) {
2939 				if ((pp = ppa[i]) != NULL)
2940 					page_unlock(pp);
2941 			}
2942 			kmem_free(ppa, ppasize);
2943 			return (err);
2944 		}
2945 		ppa[pg_idx] = pl[0];
2946 	}
2947 
2948 	err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa,
2949 	    vpage, -1, cred);
2950 	if (err > 0) {
2951 		VM_STAT_ADD(anonvmstats.demotepages[5]);
2952 		kmem_free(ppa, ppasize);
2953 		return (err);
2954 	}
2955 	ASSERT(err == 0 || err == -1);
2956 	if (err == -1) {
2957 		VM_STAT_ADD(anonvmstats.demotepages[6]);
2958 		retry = 1;
2959 		goto top;
2960 	}
2961 	for (i = 0; i < pgcnt; i++) {
2962 		ASSERT(ppa[i] != NULL);
2963 		if (ppa[i]->p_szc != 0)
2964 			retry = 1;
2965 		page_unlock(ppa[i]);
2966 	}
2967 	if (retry) {
2968 		VM_STAT_ADD(anonvmstats.demotepages[7]);
2969 		goto top;
2970 	}
2971 
2972 	VM_STAT_ADD(anonvmstats.demotepages[8]);
2973 
2974 	kmem_free(ppa, ppasize);
2975 
2976 	return (0);
2977 }
2978 
2979 /*
2980  * Allocate and initialize an anon_map structure for seg
2981  * associating the given swap reservation with the new anon_map.
2982  */
2983 struct anon_map *
2984 anonmap_alloc(size_t size, size_t swresv)
2985 {
2986 	struct anon_map *amp;
2987 
2988 	amp = kmem_cache_alloc(anonmap_cache, KM_SLEEP);
2989 
2990 	amp->refcnt = 1;
2991 	amp->size = size;
2992 
2993 	amp->ahp = anon_create(btopr(size), ANON_SLEEP);
2994 	amp->swresv = swresv;
2995 	amp->locality = 0;
2996 	amp->a_szc = 0;
2997 	return (amp);
2998 }
2999 
3000 void
3001 anonmap_free(struct anon_map *amp)
3002 {
3003 	ASSERT(amp->ahp);
3004 	ASSERT(amp->refcnt == 0);
3005 
3006 	lgrp_shm_policy_fini(amp, NULL);
3007 	anon_release(amp->ahp, btopr(amp->size));
3008 	kmem_cache_free(anonmap_cache, amp);
3009 }
3010 
3011 /*
3012  * Returns true if the app array has some empty slots.
3013  * The offp and lenp paramters are in/out paramters.  On entry
3014  * these values represent the starting offset and length of the
3015  * mapping.  When true is returned, these values may be modified
3016  * to be the largest range which includes empty slots.
3017  */
3018 int
3019 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp,
3020 				size_t *lenp)
3021 {
3022 	ulong_t i, el;
3023 	ssize_t low, high;
3024 	struct anon *ap;
3025 
3026 	low = -1;
3027 	for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) {
3028 		ap = anon_get_ptr(ahp, anon_idx);
3029 		if (ap == NULL) {
3030 			if (low == -1)
3031 				low = i;
3032 			high = i;
3033 		}
3034 	}
3035 	if (low != -1) {
3036 		/*
3037 		 * Found at least one non-anon page.
3038 		 * Set up the off and len return values.
3039 		 */
3040 		if (low != 0)
3041 			*offp += low;
3042 		*lenp = high - low + PAGESIZE;
3043 		return (1);
3044 	}
3045 	return (0);
3046 }
3047 
3048 /*
3049  * Return a count of the number of existing anon pages in the anon array
3050  * app in the range (off, off+len). The array and slots must be guaranteed
3051  * stable by the caller.
3052  */
3053 pgcnt_t
3054 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
3055 {
3056 	pgcnt_t cnt = 0;
3057 
3058 	while (nslots-- > 0) {
3059 		if ((anon_get_ptr(ahp, anon_index)) != NULL)
3060 			cnt++;
3061 		anon_index++;
3062 	}
3063 	return (cnt);
3064 }
3065 
3066 /*
3067  * Move reserved phys swap into memory swap (unreserve phys swap
3068  * and reserve mem swap by the same amount).
3069  * Used by segspt when it needs to lock resrved swap npages in memory
3070  */
3071 int
3072 anon_swap_adjust(pgcnt_t npages)
3073 {
3074 	pgcnt_t unlocked_mem_swap;
3075 
3076 	mutex_enter(&anoninfo_lock);
3077 
3078 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3079 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3080 
3081 	unlocked_mem_swap = k_anoninfo.ani_mem_resv
3082 					- k_anoninfo.ani_locked_swap;
3083 	if (npages > unlocked_mem_swap) {
3084 		spgcnt_t adjusted_swap = npages - unlocked_mem_swap;
3085 
3086 		/*
3087 		 * if there is not enough unlocked mem swap we take missing
3088 		 * amount from phys swap and give it to mem swap
3089 		 */
3090 		mutex_enter(&freemem_lock);
3091 		if (availrmem < adjusted_swap + segspt_minfree) {
3092 			mutex_exit(&freemem_lock);
3093 			mutex_exit(&anoninfo_lock);
3094 			return (ENOMEM);
3095 		}
3096 		availrmem -= adjusted_swap;
3097 		mutex_exit(&freemem_lock);
3098 
3099 		k_anoninfo.ani_mem_resv += adjusted_swap;
3100 		ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap);
3101 		k_anoninfo.ani_phys_resv -= adjusted_swap;
3102 
3103 		ANI_ADD(adjusted_swap);
3104 	}
3105 	k_anoninfo.ani_locked_swap += npages;
3106 
3107 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3108 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3109 
3110 	mutex_exit(&anoninfo_lock);
3111 
3112 	return (0);
3113 }
3114 
3115 /*
3116  * 'unlocked' reserved mem swap so when it is unreserved it
3117  * can be moved back phys (disk) swap
3118  */
3119 void
3120 anon_swap_restore(pgcnt_t npages)
3121 {
3122 	mutex_enter(&anoninfo_lock);
3123 
3124 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3125 
3126 	ASSERT(k_anoninfo.ani_locked_swap >= npages);
3127 	k_anoninfo.ani_locked_swap -= npages;
3128 
3129 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3130 
3131 	mutex_exit(&anoninfo_lock);
3132 }
3133 
3134 /*
3135  * Return the pointer from the list for a
3136  * specified anon index.
3137  */
3138 ulong_t *
3139 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx)
3140 {
3141 	struct anon	**app;
3142 	void 		**ppp;
3143 
3144 	ASSERT(an_idx < ahp->size);
3145 
3146 	/*
3147 	 * Single level case.
3148 	 */
3149 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
3150 		return ((ulong_t *)&ahp->array_chunk[an_idx]);
3151 	} else {
3152 
3153 		/*
3154 		 * 2 level case.
3155 		 */
3156 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3157 		if (*ppp == NULL) {
3158 			mutex_enter(&ahp->serial_lock);
3159 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3160 			if (*ppp == NULL)
3161 				*ppp = kmem_zalloc(PAGESIZE, KM_SLEEP);
3162 			mutex_exit(&ahp->serial_lock);
3163 		}
3164 		app = *ppp;
3165 		return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]);
3166 	}
3167 }
3168 
3169 void
3170 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj)
3171 {
3172 	ulong_t		*ap_slot;
3173 	kmutex_t	*mtx;
3174 	kcondvar_t	*cv;
3175 	int		hash;
3176 
3177 	/*
3178 	 * Use szc to determine anon slot(s) to appear atomic.
3179 	 * If szc = 0, then lock the anon slot and mark it busy.
3180 	 * If szc > 0, then lock the range of slots by getting the
3181 	 * anon_array_lock for the first anon slot, and mark only the
3182 	 * first anon slot busy to represent whole range being busy.
3183 	 */
3184 
3185 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3186 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3187 	hash = ANON_ARRAY_HASH(amp, an_idx);
3188 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3189 	sobj->sync_cv = cv = &anon_array_cv[hash];
3190 	mutex_enter(mtx);
3191 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3192 	while (ANON_ISBUSY(ap_slot))
3193 		cv_wait(cv, mtx);
3194 	ANON_SETBUSY(ap_slot);
3195 	sobj->sync_data = ap_slot;
3196 	mutex_exit(mtx);
3197 }
3198 
3199 void
3200 anon_array_exit(anon_sync_obj_t *sobj)
3201 {
3202 	mutex_enter(sobj->sync_mutex);
3203 	ASSERT(ANON_ISBUSY(sobj->sync_data));
3204 	ANON_CLRBUSY(sobj->sync_data);
3205 	if (CV_HAS_WAITERS(sobj->sync_cv))
3206 		cv_broadcast(sobj->sync_cv);
3207 	mutex_exit(sobj->sync_mutex);
3208 }
3209