xref: /illumos-gate/usr/src/uts/common/vm/vm_anon.c (revision 98677c366f39bc9e671513615d9b1a2c6f15621d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * VM - anonymous pages.
43  *
44  * This layer sits immediately above the vm_swap layer.  It manages
45  * physical pages that have no permanent identity in the file system
46  * name space, using the services of the vm_swap layer to allocate
47  * backing storage for these pages.  Since these pages have no external
48  * identity, they are discarded when the last reference is removed.
49  *
50  * An important function of this layer is to manage low-level sharing
51  * of pages that are logically distinct but that happen to be
52  * physically identical (e.g., the corresponding pages of the processes
53  * resulting from a fork before one process or the other changes their
54  * contents).  This pseudo-sharing is present only as an optimization
55  * and is not to be confused with true sharing in which multiple
56  * address spaces deliberately contain references to the same object;
57  * such sharing is managed at a higher level.
58  *
59  * The key data structure here is the anon struct, which contains a
60  * reference count for its associated physical page and a hint about
61  * the identity of that page.  Anon structs typically live in arrays,
62  * with an instance's position in its array determining where the
63  * corresponding backing storage is allocated; however, the swap_xlate()
64  * routine abstracts away this representation information so that the
65  * rest of the anon layer need not know it.  (See the swap layer for
66  * more details on anon struct layout.)
67  *
68  * In the future versions of the system, the association between an
69  * anon struct and its position on backing store will change so that
70  * we don't require backing store all anonymous pages in the system.
71  * This is important for consideration for large memory systems.
72  * We can also use this technique to delay binding physical locations
73  * to anonymous pages until pageout/swapout time where we can make
74  * smarter allocation decisions to improve anonymous klustering.
75  *
76  * Many of the routines defined here take a (struct anon **) argument,
77  * which allows the code at this level to manage anon pages directly,
78  * so that callers can regard anon structs as opaque objects and not be
79  * concerned with assigning or inspecting their contents.
80  *
81  * Clients of this layer refer to anon pages indirectly.  That is, they
82  * maintain arrays of pointers to anon structs rather than maintaining
83  * anon structs themselves.  The (struct anon **) arguments mentioned
84  * above are pointers to entries in these arrays.  It is these arrays
85  * that capture the mapping between offsets within a given segment and
86  * the corresponding anonymous backing storage address.
87  */
88 
89 #ifdef DEBUG
90 #define	ANON_DEBUG
91 #endif
92 
93 #include <sys/types.h>
94 #include <sys/t_lock.h>
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/mman.h>
98 #include <sys/cred.h>
99 #include <sys/thread.h>
100 #include <sys/vnode.h>
101 #include <sys/cpuvar.h>
102 #include <sys/swap.h>
103 #include <sys/cmn_err.h>
104 #include <sys/vtrace.h>
105 #include <sys/kmem.h>
106 #include <sys/sysmacros.h>
107 #include <sys/bitmap.h>
108 #include <sys/vmsystm.h>
109 #include <sys/debug.h>
110 #include <sys/fs/swapnode.h>
111 #include <sys/tnf_probe.h>
112 #include <sys/lgrp.h>
113 #include <sys/policy.h>
114 #include <sys/condvar_impl.h>
115 #include <sys/mutex_impl.h>
116 
117 #include <vm/as.h>
118 #include <vm/hat.h>
119 #include <vm/anon.h>
120 #include <vm/page.h>
121 #include <vm/vpage.h>
122 #include <vm/seg.h>
123 #include <vm/rm.h>
124 
125 #include <fs/fs_subr.h>
126 
127 struct vnode *anon_vp;
128 
129 int anon_debug;
130 
131 kmutex_t	anoninfo_lock;
132 struct		k_anoninfo k_anoninfo;
133 ani_free_t	ani_free_pool[ANI_MAX_POOL];
134 pad_mutex_t	anon_array_lock[ANON_LOCKSIZE];
135 kcondvar_t	anon_array_cv[ANON_LOCKSIZE];
136 
137 /*
138  * Global hash table for (vp, off) -> anon slot
139  */
140 extern	int swap_maxcontig;
141 size_t	anon_hash_size;
142 struct anon **anon_hash;
143 
144 static struct kmem_cache *anon_cache;
145 static struct kmem_cache *anonmap_cache;
146 
147 #ifdef VM_STATS
148 static struct anonvmstats_str {
149 	ulong_t getpages[30];
150 	ulong_t privatepages[10];
151 	ulong_t demotepages[9];
152 	ulong_t decrefpages[9];
153 	ulong_t	dupfillholes[4];
154 	ulong_t freepages[1];
155 } anonvmstats;
156 #endif /* VM_STATS */
157 
158 
159 /*ARGSUSED*/
160 static int
161 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags)
162 {
163 	struct anon_map *amp = buf;
164 
165 	rw_init(&amp->a_rwlock, NULL, RW_DEFAULT, NULL);
166 	return (0);
167 }
168 
169 /*ARGSUSED1*/
170 static void
171 anonmap_cache_destructor(void *buf, void *cdrarg)
172 {
173 	struct anon_map *amp = buf;
174 
175 	rw_destroy(&amp->a_rwlock);
176 }
177 
178 kmutex_t	anonhash_lock[AH_LOCK_SIZE];
179 kmutex_t	anonpages_hash_lock[AH_LOCK_SIZE];
180 
181 void
182 anon_init(void)
183 {
184 	int i;
185 
186 	anon_hash_size = 1L << highbit(physmem / ANON_HASHAVELEN);
187 
188 	for (i = 0; i < AH_LOCK_SIZE; i++) {
189 		mutex_init(&anonhash_lock[i], NULL, MUTEX_DEFAULT, NULL);
190 		mutex_init(&anonpages_hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
191 	}
192 
193 	for (i = 0; i < ANON_LOCKSIZE; i++) {
194 		mutex_init(&anon_array_lock[i].pad_mutex, NULL,
195 			MUTEX_DEFAULT, NULL);
196 		cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL);
197 	}
198 
199 	anon_hash = (struct anon **)
200 		kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP);
201 	anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon),
202 		AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
203 	anonmap_cache = kmem_cache_create("anonmap_cache",
204 		sizeof (struct anon_map), 0,
205 		anonmap_cache_constructor, anonmap_cache_destructor, NULL,
206 		NULL, NULL, 0);
207 	swap_maxcontig = (1024 * 1024) >> PAGESHIFT;	/* 1MB of pages */
208 
209 	anon_vp = vn_alloc(KM_SLEEP);
210 	vn_setops(anon_vp, swap_vnodeops);
211 	anon_vp->v_type = VREG;
212 	anon_vp->v_flag |= (VISSWAP|VISSWAPFS);
213 }
214 
215 /*
216  * Global anon slot hash table manipulation.
217  */
218 
219 static void
220 anon_addhash(struct anon *ap)
221 {
222 	int index;
223 
224 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
225 	index = ANON_HASH(ap->an_vp, ap->an_off);
226 	ap->an_hash = anon_hash[index];
227 	anon_hash[index] = ap;
228 }
229 
230 static void
231 anon_rmhash(struct anon *ap)
232 {
233 	struct anon **app;
234 
235 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
236 
237 	for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)];
238 	    *app; app = &((*app)->an_hash)) {
239 		if (*app == ap) {
240 			*app = ap->an_hash;
241 			break;
242 		}
243 	}
244 }
245 
246 /*
247  * The anon array interfaces. Functions allocating,
248  * freeing array of pointers, and returning/setting
249  * entries in the array of pointers for a given offset.
250  *
251  * Create the list of pointers
252  */
253 struct anon_hdr *
254 anon_create(pgcnt_t npages, int flags)
255 {
256 	struct anon_hdr *ahp;
257 	ulong_t nchunks;
258 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
259 
260 	if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) {
261 		return (NULL);
262 	}
263 
264 	mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL);
265 	/*
266 	 * Single level case.
267 	 */
268 	ahp->size = npages;
269 	if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) {
270 
271 		if (flags & ANON_ALLOC_FORCE)
272 			ahp->flags |= ANON_ALLOC_FORCE;
273 
274 		ahp->array_chunk = kmem_zalloc(
275 		    ahp->size * sizeof (struct anon *), kmemflags);
276 
277 		if (ahp->array_chunk == NULL) {
278 			kmem_free(ahp, sizeof (struct anon_hdr));
279 			return (NULL);
280 		}
281 	} else {
282 		/*
283 		 * 2 Level case.
284 		 * anon hdr size needs to be rounded off  to be a multiple
285 		 * of ANON_CHUNK_SIZE. This is important as various anon
286 		 * related functions depend on this.
287 		 * NOTE -
288 		 * anon_grow()  makes anon hdr size a multiple of
289 		 * ANON_CHUNK_SIZE.
290 		 * amp size is <= anon hdr size.
291 		 * anon_index + seg_pgs <= anon hdr size.
292 		 */
293 		ahp->size = P2ROUNDUP(npages, ANON_CHUNK_SIZE);
294 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
295 
296 		ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *),
297 		    kmemflags);
298 
299 		if (ahp->array_chunk == NULL) {
300 			kmem_free(ahp, sizeof (struct anon_hdr));
301 			return (NULL);
302 		}
303 	}
304 	return (ahp);
305 }
306 
307 /*
308  * Free the array of pointers
309  */
310 void
311 anon_release(struct anon_hdr *ahp, pgcnt_t npages)
312 {
313 	ulong_t i;
314 	void **ppp;
315 	ulong_t nchunks;
316 
317 	ASSERT(npages <= ahp->size);
318 
319 	/*
320 	 * Single level case.
321 	 */
322 	if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
323 		kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *));
324 	} else {
325 		/*
326 		 * 2 level case.
327 		 */
328 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
329 		for (i = 0; i < nchunks; i++) {
330 			ppp = &ahp->array_chunk[i];
331 			if (*ppp != NULL)
332 				kmem_free(*ppp, PAGESIZE);
333 		}
334 		kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *));
335 	}
336 	mutex_destroy(&ahp->serial_lock);
337 	kmem_free(ahp, sizeof (struct anon_hdr));
338 }
339 
340 /*
341  * Return the pointer from the list for a
342  * specified anon index.
343  */
344 struct anon *
345 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx)
346 {
347 	struct anon **app;
348 
349 	ASSERT(an_idx < ahp->size);
350 
351 	/*
352 	 * Single level case.
353 	 */
354 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
355 		return ((struct anon *)
356 			((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK));
357 	} else {
358 
359 		/*
360 		 * 2 level case.
361 		 */
362 		app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
363 		if (app) {
364 			return ((struct anon *)
365 				((uintptr_t)app[an_idx & ANON_CHUNK_OFF] &
366 					ANON_PTRMASK));
367 		} else {
368 			return (NULL);
369 		}
370 	}
371 }
372 
373 /*
374  * Return the anon pointer for the first valid entry in the anon list,
375  * starting from the given index.
376  */
377 struct anon *
378 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index)
379 {
380 	struct anon *ap;
381 	struct anon **app;
382 	ulong_t chunkoff;
383 	ulong_t i;
384 	ulong_t j;
385 	pgcnt_t size;
386 
387 	i = *index;
388 	size = ahp->size;
389 
390 	ASSERT(i < size);
391 
392 	if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
393 		/*
394 		 * 1 level case
395 		 */
396 		while (i < size) {
397 			ap = (struct anon *)
398 				((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK);
399 			if (ap) {
400 				*index = i;
401 				return (ap);
402 			}
403 			i++;
404 		}
405 	} else {
406 		/*
407 		 * 2 level case
408 		 */
409 		chunkoff = i & ANON_CHUNK_OFF;
410 		while (i < size) {
411 			app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT];
412 			if (app)
413 				for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) {
414 					ap = (struct anon *)
415 						((uintptr_t)app[j] &
416 							ANON_PTRMASK);
417 					if (ap) {
418 						*index = i + (j - chunkoff);
419 						return (ap);
420 					}
421 				}
422 			chunkoff = 0;
423 			i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF;
424 		}
425 	}
426 	*index = size;
427 	return (NULL);
428 }
429 
430 /*
431  * Set list entry with a given pointer for a specified offset
432  */
433 int
434 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags)
435 {
436 	void		**ppp;
437 	struct anon	**app;
438 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
439 	uintptr_t	*ap_addr;
440 
441 	ASSERT(an_idx < ahp->size);
442 
443 	/*
444 	 * Single level case.
445 	 */
446 	if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
447 		ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx];
448 	} else {
449 
450 		/*
451 		 * 2 level case.
452 		 */
453 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
454 
455 		ASSERT(ppp != NULL);
456 		if (*ppp == NULL) {
457 			mutex_enter(&ahp->serial_lock);
458 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
459 			if (*ppp == NULL) {
460 				*ppp = kmem_zalloc(PAGESIZE, kmemflags);
461 				if (*ppp == NULL) {
462 					mutex_exit(&ahp->serial_lock);
463 					return (ENOMEM);
464 				}
465 			}
466 			mutex_exit(&ahp->serial_lock);
467 		}
468 		app = *ppp;
469 		ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF];
470 	}
471 	*ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap;
472 	return (0);
473 }
474 
475 /*
476  * Copy anon array into a given new anon array
477  */
478 int
479 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx,
480 	struct anon_hdr *dahp, ulong_t d_idx,
481 	pgcnt_t npages, int flags)
482 {
483 	void **sapp, **dapp;
484 	void *ap;
485 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
486 
487 	ASSERT((s_idx < sahp->size) && (d_idx < dahp->size));
488 	ASSERT((npages <= sahp->size) && (npages <= dahp->size));
489 
490 	/*
491 	 * Both arrays are 1 level.
492 	 */
493 	if (((sahp->size <= ANON_CHUNK_SIZE) &&
494 	    (dahp->size <= ANON_CHUNK_SIZE)) ||
495 	    ((sahp->flags & ANON_ALLOC_FORCE) &&
496 	    (dahp->flags & ANON_ALLOC_FORCE))) {
497 
498 		bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx],
499 		    npages * sizeof (struct anon *));
500 		return (0);
501 	}
502 
503 	/*
504 	 * Both arrays are 2 levels.
505 	 */
506 	if (sahp->size > ANON_CHUNK_SIZE &&
507 	    dahp->size > ANON_CHUNK_SIZE &&
508 	    ((sahp->flags & ANON_ALLOC_FORCE) == 0) &&
509 	    ((dahp->flags & ANON_ALLOC_FORCE) == 0)) {
510 
511 		ulong_t sapidx, dapidx;
512 		ulong_t *sap, *dap;
513 		ulong_t chknp;
514 
515 		while (npages != 0) {
516 
517 			sapidx = s_idx & ANON_CHUNK_OFF;
518 			dapidx = d_idx & ANON_CHUNK_OFF;
519 			chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx);
520 			if (chknp > npages)
521 				chknp = npages;
522 
523 			sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT];
524 			if ((sap = *sapp) != NULL) {
525 				dapp = &dahp->array_chunk[d_idx
526 							>> ANON_CHUNK_SHIFT];
527 				if ((dap = *dapp) == NULL) {
528 					*dapp = kmem_zalloc(PAGESIZE,
529 					    kmemflags);
530 					if ((dap = *dapp) == NULL)
531 						return (ENOMEM);
532 				}
533 				bcopy((sap + sapidx), (dap + dapidx),
534 				    chknp << ANON_PTRSHIFT);
535 			}
536 			s_idx += chknp;
537 			d_idx += chknp;
538 			npages -= chknp;
539 		}
540 		return (0);
541 	}
542 
543 	/*
544 	 * At least one of the arrays is 2 level.
545 	 */
546 	while (npages--) {
547 		if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) {
548 			ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx)));
549 			if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM)
550 					return (ENOMEM);
551 		}
552 		s_idx++;
553 		d_idx++;
554 	}
555 	return (0);
556 }
557 
558 
559 /*
560  * ANON_INITBUF is a convenience macro for anon_grow() below. It
561  * takes a buffer dst, which is at least as large as buffer src. It
562  * does a bcopy from src into dst, and then bzeros the extra bytes
563  * of dst. If tail is set, the data in src is tail aligned within
564  * dst instead of head aligned.
565  */
566 
567 #define	ANON_INITBUF(src, srclen, dst, dstsize, tail)			      \
568 	if (tail) {							      \
569 		bzero((dst), (dstsize) - (srclen));			      \
570 		bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \
571 	} else {							      \
572 		bcopy((src), (dst), (srclen));				      \
573 		bzero((char *)(dst) + (srclen), (dstsize) - (srclen));	      \
574 	}
575 
576 #define	ANON_1_LEVEL_INC	(ANON_CHUNK_SIZE / 8)
577 #define	ANON_2_LEVEL_INC	(ANON_1_LEVEL_INC * ANON_CHUNK_SIZE)
578 
579 /*
580  * anon_grow() is used to efficiently extend an existing anon array.
581  * startidx_p points to the index into the anon array of the first page
582  * that is in use. oldseg_pgs is the number of pages in use, starting at
583  * *startidx_p. newpages is the number of additional pages desired.
584  *
585  * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed.
586  *
587  * The growth is done by creating a new top level of the anon array,
588  * and (if the array is 2-level) reusing the existing second level arrays.
589  *
590  * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN.
591  *
592  * Returns the new number of pages in the anon array.
593  */
594 pgcnt_t
595 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs,
596     pgcnt_t newseg_pgs, int flags)
597 {
598 	ulong_t startidx = startidx_p ? *startidx_p : 0;
599 	pgcnt_t oldamp_pgs = ahp->size, newamp_pgs;
600 	pgcnt_t oelems, nelems, totpages;
601 	void **level1;
602 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
603 	int growdown = (flags & ANON_GROWDOWN);
604 	size_t newarrsz, oldarrsz;
605 	void *level2;
606 
607 	ASSERT(!(startidx_p == NULL && growdown));
608 	ASSERT(startidx + oldseg_pgs <= ahp->size);
609 
610 	/*
611 	 * Determine the total number of pages needed in the new
612 	 * anon array. If growing down, totpages is all pages from
613 	 * startidx through the end of the array, plus <newseg_pgs>
614 	 * pages. If growing up, keep all pages from page 0 through
615 	 * the last page currently in use, plus <newseg_pgs> pages.
616 	 */
617 	if (growdown)
618 		totpages = oldamp_pgs - startidx + newseg_pgs;
619 	else
620 		totpages = startidx + oldseg_pgs + newseg_pgs;
621 
622 	/* If the array is already large enough, just return. */
623 
624 	if (oldamp_pgs >= totpages) {
625 		if (growdown)
626 			*startidx_p = oldamp_pgs - totpages;
627 		return (oldamp_pgs);
628 	}
629 
630 	/*
631 	 * oldamp_pgs/newamp_pgs are the total numbers of pages represented
632 	 * by the corresponding arrays.
633 	 * oelems/nelems are the number of pointers in the top level arrays
634 	 * which may be either level 1 or level 2.
635 	 * Will the new anon array be one level or two levels?
636 	 */
637 	if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
638 		newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC);
639 		oelems = oldamp_pgs;
640 		nelems = newamp_pgs;
641 	} else {
642 		newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC);
643 		oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
644 		nelems = newamp_pgs >> ANON_CHUNK_SHIFT;
645 	}
646 
647 	newarrsz = nelems * sizeof (void *);
648 	level1 = kmem_alloc(newarrsz, kmemflags);
649 	if (level1 == NULL)
650 		return (0);
651 
652 	/* Are we converting from a one level to a two level anon array? */
653 
654 	if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE &&
655 	    !(ahp->flags & ANON_ALLOC_FORCE)) {
656 
657 		/*
658 		 * Yes, we're converting to a two level. Reuse old level 1
659 		 * as new level 2 if it is exactly PAGESIZE. Otherwise
660 		 * alloc a new level 2 and copy the old level 1 data into it.
661 		 */
662 		if (oldamp_pgs == ANON_CHUNK_SIZE) {
663 			level2 = (void *)ahp->array_chunk;
664 		} else {
665 			level2 = kmem_alloc(PAGESIZE, kmemflags);
666 			if (level2 == NULL) {
667 				kmem_free(level1, newarrsz);
668 				return (0);
669 			}
670 			oldarrsz = oldamp_pgs * sizeof (void *);
671 
672 			ANON_INITBUF(ahp->array_chunk, oldarrsz,
673 			    level2, PAGESIZE, growdown);
674 			kmem_free(ahp->array_chunk, oldarrsz);
675 		}
676 		bzero(level1, newarrsz);
677 		if (growdown)
678 			level1[nelems - 1] = level2;
679 		else
680 			level1[0] = level2;
681 	} else {
682 		oldarrsz = oelems * sizeof (void *);
683 
684 		ANON_INITBUF(ahp->array_chunk, oldarrsz,
685 		    level1, newarrsz, growdown);
686 		kmem_free(ahp->array_chunk, oldarrsz);
687 	}
688 
689 	ahp->array_chunk = level1;
690 	ahp->size = newamp_pgs;
691 	if (growdown)
692 		*startidx_p = newamp_pgs - totpages;
693 
694 	return (newamp_pgs);
695 }
696 
697 
698 /*
699  * Called from clock handler to sync ani_free value.
700  */
701 
702 void
703 set_anoninfo(void)
704 {
705 	int	ix;
706 	pgcnt_t	total = 0;
707 
708 	for (ix = 0; ix < ANI_MAX_POOL; ix++) {
709 		total += ani_free_pool[ix].ani_count;
710 	}
711 	k_anoninfo.ani_free = total;
712 }
713 
714 /*
715  * Reserve anon space.
716  *
717  * It's no longer simply a matter of incrementing ani_resv to
718  * reserve swap space, we need to check memory-based as well
719  * as disk-backed (physical) swap.  The following algorithm
720  * is used:
721  * 	Check the space on physical swap
722  * 		i.e. amount needed < ani_max - ani_phys_resv
723  * 	If we are swapping on swapfs check
724  *		amount needed < (availrmem - swapfs_minfree)
725  * Since the algorithm to check for the quantity of swap space is
726  * almost the same as that for reserving it, we'll just use anon_resvmem
727  * with a flag to decrement availrmem.
728  *
729  * Return non-zero on success.
730  */
731 int
732 anon_resvmem(size_t size, uint_t takemem)
733 {
734 	pgcnt_t npages = btopr(size);
735 	pgcnt_t mswap_pages = 0;
736 	pgcnt_t pswap_pages = 0;
737 
738 	mutex_enter(&anoninfo_lock);
739 
740 	/*
741 	 * pswap_pages is the number of pages we can take from
742 	 * physical (i.e. disk-backed) swap.
743 	 */
744 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
745 	pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv;
746 
747 	ANON_PRINT(A_RESV,
748 	    ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n",
749 	    npages, takemem, pswap_pages, (void *)caller()));
750 
751 	if (npages <= pswap_pages) {
752 		/*
753 		 * we have enough space on a physical swap
754 		 */
755 		if (takemem)
756 			k_anoninfo.ani_phys_resv += npages;
757 		mutex_exit(&anoninfo_lock);
758 		return (1);
759 	} else if (pswap_pages != 0) {
760 		/*
761 		 * we have some space on a physical swap
762 		 */
763 		if (takemem) {
764 			/*
765 			 * use up remainder of phys swap
766 			 */
767 			k_anoninfo.ani_phys_resv += pswap_pages;
768 			ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max);
769 		}
770 	}
771 	/*
772 	 * since (npages > pswap_pages) we need mem swap
773 	 * mswap_pages is the number of pages needed from availrmem
774 	 */
775 	ASSERT(npages > pswap_pages);
776 	mswap_pages = npages - pswap_pages;
777 
778 	ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n",
779 	    mswap_pages));
780 
781 	/*
782 	 * priv processes can reserve memory as swap as long as availrmem
783 	 * remains greater than swapfs_minfree; in the case of non-priv
784 	 * processes, memory can be reserved as swap only if availrmem
785 	 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus,
786 	 * swapfs_reserve amount of memswap is not available to non-priv
787 	 * processes. This protects daemons such as automounter dying
788 	 * as a result of application processes eating away almost entire
789 	 * membased swap. This safeguard becomes useless if apps are run
790 	 * with root access.
791 	 *
792 	 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem.
793 	 *
794 	 */
795 	mutex_exit(&anoninfo_lock);
796 	(void) page_reclaim_mem(mswap_pages,
797 	    swapfs_minfree + swapfs_reserve, 0);
798 	mutex_enter(&anoninfo_lock);
799 
800 	mutex_enter(&freemem_lock);
801 	if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) ||
802 		(availrmem > (swapfs_minfree + mswap_pages) &&
803 		secpolicy_resource(CRED()) == 0)) {
804 
805 		if (takemem) {
806 			/*
807 			 * Take the memory from the rest of the system.
808 			 */
809 			availrmem -= mswap_pages;
810 			mutex_exit(&freemem_lock);
811 			k_anoninfo.ani_mem_resv += mswap_pages;
812 			ANI_ADD(mswap_pages);
813 			ANON_PRINT((A_RESV | A_MRESV),
814 				("anon_resvmem: took %ld pages of availrmem\n",
815 				mswap_pages));
816 		} else {
817 			mutex_exit(&freemem_lock);
818 		}
819 
820 		ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
821 		mutex_exit(&anoninfo_lock);
822 		return (1);
823 
824 	} else {
825 		/*
826 		 * Fail if not enough memory
827 		 */
828 
829 		if (takemem) {
830 			k_anoninfo.ani_phys_resv -= pswap_pages;
831 		}
832 
833 		mutex_exit(&freemem_lock);
834 		mutex_exit(&anoninfo_lock);
835 		ANON_PRINT(A_RESV,
836 			("anon_resvmem: not enough space from swapfs\n"));
837 		return (0);
838 	}
839 }
840 
841 
842 /*
843  * Give back an anon reservation.
844  */
845 void
846 anon_unresv(size_t size)
847 {
848 	pgcnt_t npages = btopr(size);
849 	spgcnt_t mem_free_pages = 0;
850 	pgcnt_t phys_free_slots;
851 #ifdef	ANON_DEBUG
852 	pgcnt_t mem_resv;
853 #endif
854 
855 	mutex_enter(&anoninfo_lock);
856 
857 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
858 	/*
859 	 * If some of this reservation belonged to swapfs
860 	 * give it back to availrmem.
861 	 * ani_mem_resv is the amount of availrmem swapfs has reserved.
862 	 * but some of that memory could be locked by segspt so we can only
863 	 * return non locked ani_mem_resv back to availrmem
864 	 */
865 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
866 		ANON_PRINT((A_RESV | A_MRESV),
867 		    ("anon_unresv: growing availrmem by %ld pages\n",
868 		    MIN(k_anoninfo.ani_mem_resv, npages)));
869 
870 		mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv -
871 		    k_anoninfo.ani_locked_swap), npages);
872 		mutex_enter(&freemem_lock);
873 		availrmem += mem_free_pages;
874 		mutex_exit(&freemem_lock);
875 		k_anoninfo.ani_mem_resv -= mem_free_pages;
876 
877 		ANI_ADD(-mem_free_pages);
878 	}
879 	/*
880 	 * The remainder of the pages is returned to phys swap
881 	 */
882 	ASSERT(npages >= mem_free_pages);
883 	phys_free_slots = npages - mem_free_pages;
884 
885 	if (phys_free_slots) {
886 	    k_anoninfo.ani_phys_resv -= phys_free_slots;
887 	}
888 
889 #ifdef	ANON_DEBUG
890 	mem_resv = k_anoninfo.ani_mem_resv;
891 #endif
892 
893 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
894 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
895 
896 	mutex_exit(&anoninfo_lock);
897 
898 	ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n",
899 	    npages, mem_resv, (void *)caller()));
900 }
901 
902 /*
903  * Allocate an anon slot and return it with the lock held.
904  */
905 struct anon *
906 anon_alloc(struct vnode *vp, anoff_t off)
907 {
908 	struct anon	*ap;
909 	kmutex_t	*ahm;
910 
911 	ap = kmem_cache_alloc(anon_cache, KM_SLEEP);
912 	if (vp == NULL) {
913 		swap_alloc(ap);
914 	} else {
915 		ap->an_vp = vp;
916 		ap->an_off = off;
917 	}
918 	ap->an_refcnt = 1;
919 	ap->an_pvp = NULL;
920 	ap->an_poff = 0;
921 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
922 	mutex_enter(ahm);
923 	anon_addhash(ap);
924 	mutex_exit(ahm);
925 	ANI_ADD(-1);
926 	ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n",
927 	    (void *)ap, (ap ? (void *)ap->an_vp : NULL)));
928 	return (ap);
929 }
930 
931 /*
932  * Decrement the reference count of an anon page.
933  * If reference count goes to zero, free it and
934  * its associated page (if any).
935  */
936 void
937 anon_decref(struct anon *ap)
938 {
939 	page_t *pp;
940 	struct vnode *vp;
941 	anoff_t off;
942 	kmutex_t *ahm;
943 
944 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
945 	mutex_enter(ahm);
946 	ASSERT(ap->an_refcnt != 0);
947 	if (ap->an_refcnt == 0)
948 		panic("anon_decref: slot count 0");
949 	if (--ap->an_refcnt == 0) {
950 		swap_xlate(ap, &vp, &off);
951 		mutex_exit(ahm);
952 
953 		/*
954 		 * If there is a page for this anon slot we will need to
955 		 * call VN_DISPOSE to get rid of the vp association and
956 		 * put the page back on the free list as really free.
957 		 * Acquire the "exclusive" lock to ensure that any
958 		 * pending i/o always completes before the swap slot
959 		 * is freed.
960 		 */
961 		pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
962 
963 		/*
964 		 * If there was a page, we've synchronized on it (getting
965 		 * the exclusive lock is as good as gettting the iolock)
966 		 * so now we can free the physical backing store. Also, this
967 		 * is where we would free the name of the anonymous page
968 		 * (swap_free(ap)), a no-op in the current implementation.
969 		 */
970 		mutex_enter(ahm);
971 		ASSERT(ap->an_refcnt == 0);
972 		anon_rmhash(ap);
973 		if (ap->an_pvp)
974 			swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
975 		mutex_exit(ahm);
976 
977 		if (pp != NULL) {
978 			/*LINTED: constant in conditional context */
979 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
980 		}
981 		ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n",
982 		    (void *)ap, (void *)ap->an_vp));
983 		kmem_cache_free(anon_cache, ap);
984 
985 		ANI_ADD(1);
986 	} else {
987 		mutex_exit(ahm);
988 	}
989 }
990 
991 static int
992 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
993 {
994 	struct anon *ap;
995 
996 	while (nslots-- > 0) {
997 		if ((ap = anon_get_ptr(ahp, anon_index)) != NULL &&
998 		    ap->an_refcnt > 1)
999 			return (1);
1000 		anon_index++;
1001 	}
1002 
1003 	return (0);
1004 }
1005 
1006 static void
1007 anon_decref_pages(
1008 	struct anon_hdr *ahp,
1009 	ulong_t an_idx,
1010 	uint_t szc)
1011 {
1012 	struct anon *ap = anon_get_ptr(ahp, an_idx);
1013 	kmutex_t *ahmpages = NULL;
1014 	page_t *pp;
1015 	pgcnt_t pgcnt = page_get_pagecnt(szc);
1016 	pgcnt_t i;
1017 	struct vnode *vp;
1018 	anoff_t   off;
1019 	kmutex_t *ahm;
1020 #ifdef DEBUG
1021 	int refcnt = 1;
1022 #endif
1023 
1024 	ASSERT(szc != 0);
1025 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1026 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1027 	ASSERT(an_idx < ahp->size);
1028 
1029 	if (ahp->size - an_idx < pgcnt) {
1030 		/*
1031 		 * In case of shared mappings total anon map size may not be
1032 		 * the largest page size aligned.
1033 		 */
1034 		pgcnt = ahp->size - an_idx;
1035 	}
1036 
1037 	VM_STAT_ADD(anonvmstats.decrefpages[0]);
1038 
1039 	if (ap != NULL) {
1040 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1041 		mutex_enter(ahmpages);
1042 		ASSERT((refcnt = ap->an_refcnt) != 0);
1043 		VM_STAT_ADD(anonvmstats.decrefpages[1]);
1044 		if (ap->an_refcnt == 1) {
1045 			VM_STAT_ADD(anonvmstats.decrefpages[2]);
1046 			ASSERT(!anon_share(ahp, an_idx, pgcnt));
1047 			mutex_exit(ahmpages);
1048 			ahmpages = NULL;
1049 		}
1050 	}
1051 
1052 	i = 0;
1053 	while (i < pgcnt) {
1054 		if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) {
1055 			ASSERT(refcnt == 1 && ahmpages == NULL);
1056 			i++;
1057 			continue;
1058 		}
1059 		ASSERT(ap->an_refcnt == refcnt);
1060 		ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1061 		ASSERT(ahmpages == NULL || ap->an_refcnt > 1);
1062 
1063 		if (ahmpages == NULL) {
1064 			swap_xlate(ap, &vp, &off);
1065 			pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1066 			if (pp == NULL || pp->p_szc == 0) {
1067 				VM_STAT_ADD(anonvmstats.decrefpages[3]);
1068 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1069 				    ap->an_off)];
1070 				(void) anon_set_ptr(ahp, an_idx + i, NULL,
1071 				    ANON_SLEEP);
1072 				mutex_enter(ahm);
1073 				ap->an_refcnt--;
1074 				ASSERT(ap->an_refcnt == 0);
1075 				anon_rmhash(ap);
1076 				if (ap->an_pvp)
1077 					swap_phys_free(ap->an_pvp, ap->an_poff,
1078 					    PAGESIZE);
1079 				mutex_exit(ahm);
1080 				if (pp != NULL) {
1081 					VM_STAT_ADD(anonvmstats.decrefpages[4]);
1082 					/*LINTED*/
1083 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
1084 				}
1085 				kmem_cache_free(anon_cache, ap);
1086 				ANI_ADD(1);
1087 				i++;
1088 			} else {
1089 				pgcnt_t j;
1090 				pgcnt_t curpgcnt =
1091 				    page_get_pagecnt(pp->p_szc);
1092 				size_t ppasize = curpgcnt * sizeof (page_t *);
1093 				page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
1094 				int dispose = 0;
1095 
1096 				VM_STAT_ADD(anonvmstats.decrefpages[5]);
1097 
1098 				ASSERT(pp->p_szc <= szc);
1099 				ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt));
1100 				ASSERT(IS_P2ALIGNED(i, curpgcnt));
1101 				ASSERT(i + curpgcnt <= pgcnt);
1102 				ASSERT(!(page_pptonum(pp) & (curpgcnt - 1)));
1103 				ppa[0] = pp;
1104 				for (j = i + 1; j < i + curpgcnt; j++) {
1105 					ap = anon_get_ptr(ahp, an_idx + j);
1106 					ASSERT(ap != NULL &&
1107 					    ap->an_refcnt == 1);
1108 					swap_xlate(ap, &vp, &off);
1109 					pp = page_lookup(vp, (u_offset_t)off,
1110 					    SE_EXCL);
1111 					if (pp == NULL)
1112 						panic("anon_decref_pages: "
1113 						    "no page");
1114 
1115 					(void) hat_pageunload(pp,
1116 					    HAT_FORCE_PGUNLOAD);
1117 					ASSERT(pp->p_szc == ppa[0]->p_szc);
1118 					ASSERT(page_pptonum(pp) - 1 ==
1119 					    page_pptonum(ppa[j - i - 1]));
1120 					ppa[j - i] = pp;
1121 					if (ap->an_pvp != NULL &&
1122 					    !vn_matchopval(ap->an_pvp,
1123 						VOPNAME_DISPOSE,
1124 						(fs_generic_func_p)fs_dispose))
1125 						dispose = 1;
1126 				}
1127 				if (!dispose) {
1128 					VM_STAT_ADD(anonvmstats.decrefpages[6]);
1129 					page_destroy_pages(ppa[0]);
1130 				} else {
1131 					VM_STAT_ADD(anonvmstats.decrefpages[7]);
1132 					for (j = 0; j < curpgcnt; j++) {
1133 						ASSERT(PAGE_EXCL(ppa[j]));
1134 						ppa[j]->p_szc = 0;
1135 					}
1136 					for (j = 0; j < curpgcnt; j++) {
1137 						ASSERT(!hat_page_is_mapped(
1138 						    ppa[j]));
1139 						/*LINTED*/
1140 						VN_DISPOSE(ppa[j], B_INVAL, 0,
1141 						    kcred);
1142 					}
1143 				}
1144 				kmem_free(ppa, ppasize);
1145 				for (j = i; j < i + curpgcnt; j++) {
1146 					ap = anon_get_ptr(ahp, an_idx + j);
1147 					ASSERT(ap != NULL &&
1148 					    ap->an_refcnt == 1);
1149 					ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1150 					    ap->an_off)];
1151 					(void) anon_set_ptr(ahp, an_idx + j,
1152 					    NULL, ANON_SLEEP);
1153 					mutex_enter(ahm);
1154 					ap->an_refcnt--;
1155 					ASSERT(ap->an_refcnt == 0);
1156 					anon_rmhash(ap);
1157 					if (ap->an_pvp)
1158 						swap_phys_free(ap->an_pvp,
1159 							ap->an_poff, PAGESIZE);
1160 					mutex_exit(ahm);
1161 					kmem_cache_free(anon_cache, ap);
1162 					ANI_ADD(1);
1163 				}
1164 				i += curpgcnt;
1165 			}
1166 		} else {
1167 			VM_STAT_ADD(anonvmstats.decrefpages[8]);
1168 			(void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP);
1169 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1170 			mutex_enter(ahm);
1171 			ap->an_refcnt--;
1172 			mutex_exit(ahm);
1173 			i++;
1174 		}
1175 	}
1176 
1177 	if (ahmpages != NULL) {
1178 		mutex_exit(ahmpages);
1179 	}
1180 }
1181 
1182 /*
1183  * Duplicate references to size bytes worth of anon pages.
1184  * Used when duplicating a segment that contains private anon pages.
1185  * This code assumes that procedure calling this one has already used
1186  * hat_chgprot() to disable write access to the range of addresses that
1187  * that *old actually refers to.
1188  */
1189 void
1190 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new,
1191 			ulong_t new_idx, size_t size)
1192 {
1193 	spgcnt_t npages;
1194 	kmutex_t *ahm;
1195 	struct anon *ap;
1196 	ulong_t off;
1197 	ulong_t index;
1198 
1199 	npages = btopr(size);
1200 	while (npages > 0) {
1201 		index = old_idx;
1202 		if ((ap = anon_get_next_ptr(old, &index)) == NULL)
1203 			break;
1204 
1205 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1206 		off = index - old_idx;
1207 		npages -= off;
1208 		if (npages <= 0)
1209 			break;
1210 
1211 		(void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP);
1212 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1213 
1214 		mutex_enter(ahm);
1215 		ap->an_refcnt++;
1216 		mutex_exit(ahm);
1217 
1218 		off++;
1219 		new_idx += off;
1220 		old_idx += off;
1221 		npages--;
1222 	}
1223 }
1224 
1225 /*
1226  * Just like anon_dup but also guarantees there are no holes (unallocated anon
1227  * slots) within any large page region. That means if a large page region is
1228  * empty in the old array it will skip it. If there are 1 or more valid slots
1229  * in the large page region of the old array it will make sure to fill in any
1230  * unallocated ones and also copy them to the new array. If noalloc is 1 large
1231  * page region should either have no valid anon slots or all slots should be
1232  * valid.
1233  */
1234 void
1235 anon_dup_fill_holes(
1236 	struct anon_hdr *old,
1237 	ulong_t old_idx,
1238 	struct anon_hdr *new,
1239 	ulong_t new_idx,
1240 	size_t size,
1241 	uint_t szc,
1242 	int noalloc)
1243 {
1244 	struct anon	*ap;
1245 	spgcnt_t	npages;
1246 	kmutex_t	*ahm, *ahmpages = NULL;
1247 	pgcnt_t		pgcnt, i;
1248 	ulong_t		index, off;
1249 #ifdef DEBUG
1250 	int		refcnt;
1251 #endif
1252 
1253 	ASSERT(szc != 0);
1254 	pgcnt = page_get_pagecnt(szc);
1255 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1256 	npages = btopr(size);
1257 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1258 	ASSERT(IS_P2ALIGNED(old_idx, pgcnt));
1259 
1260 	VM_STAT_ADD(anonvmstats.dupfillholes[0]);
1261 
1262 	while (npages > 0) {
1263 		index = old_idx;
1264 
1265 		/*
1266 		 * Find the next valid slot.
1267 		 */
1268 		if (anon_get_next_ptr(old, &index) == NULL)
1269 			break;
1270 
1271 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1272 		/*
1273 		 * Now backup index to the beginning of the
1274 		 * current large page region of the old array.
1275 		 */
1276 		index = P2ALIGN(index, pgcnt);
1277 		off = index - old_idx;
1278 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1279 		npages -= off;
1280 		if (npages <= 0)
1281 			break;
1282 
1283 		/*
1284 		 * Fill and copy a large page regions worth
1285 		 * of anon slots.
1286 		 */
1287 		for (i = 0; i < pgcnt; i++) {
1288 			if ((ap = anon_get_ptr(old, index + i)) == NULL) {
1289 				if (noalloc) {
1290 					panic("anon_dup_fill_holes: "
1291 					    "empty anon slot\n");
1292 				}
1293 				VM_STAT_ADD(anonvmstats.dupfillholes[1]);
1294 				ap = anon_alloc(NULL, 0);
1295 				(void) anon_set_ptr(old, index + i, ap,
1296 				    ANON_SLEEP);
1297 			} else if (i == 0) {
1298 				/*
1299 				 * make the increment of all refcnts of all
1300 				 * anon slots of a large page appear atomic by
1301 				 * getting an anonpages_hash_lock for the
1302 				 * first anon slot of a large page.
1303 				 */
1304 				int hash = AH_LOCK(ap->an_vp, ap->an_off);
1305 
1306 				VM_STAT_ADD(anonvmstats.dupfillholes[2]);
1307 
1308 				ahmpages = &anonpages_hash_lock[hash];
1309 				mutex_enter(ahmpages);
1310 				/*LINTED*/
1311 				ASSERT(refcnt = ap->an_refcnt);
1312 
1313 				VM_STAT_COND_ADD(ap->an_refcnt > 1,
1314 				    anonvmstats.dupfillholes[3]);
1315 			}
1316 			(void) anon_set_ptr(new, new_idx + off + i, ap,
1317 			    ANON_SLEEP);
1318 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1319 			mutex_enter(ahm);
1320 			ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1321 			ASSERT(i == 0 || ahmpages == NULL ||
1322 			    refcnt == ap->an_refcnt);
1323 			ap->an_refcnt++;
1324 			mutex_exit(ahm);
1325 		}
1326 		if (ahmpages != NULL) {
1327 			mutex_exit(ahmpages);
1328 			ahmpages = NULL;
1329 		}
1330 		off += pgcnt;
1331 		new_idx += off;
1332 		old_idx += off;
1333 		npages -= pgcnt;
1334 	}
1335 }
1336 
1337 /*
1338  * Used when a segment with a vnode changes szc. similarly to
1339  * anon_dup_fill_holes() makes sure each large page region either has no anon
1340  * slots or all of them. but new slots are created by COWing the file
1341  * pages. on entrance no anon slots should be shared.
1342  */
1343 int
1344 anon_fill_cow_holes(
1345 	struct seg *seg,
1346 	caddr_t addr,
1347 	struct anon_hdr *ahp,
1348 	ulong_t an_idx,
1349 	struct vnode *vp,
1350 	u_offset_t vp_off,
1351 	size_t size,
1352 	uint_t szc,
1353 	uint_t prot,
1354 	struct vpage vpage[],
1355 	struct cred *cred)
1356 {
1357 	struct anon	*ap;
1358 	spgcnt_t	npages;
1359 	pgcnt_t		pgcnt, i;
1360 	ulong_t		index, off;
1361 	int		err = 0;
1362 	int		pageflags = 0;
1363 
1364 	ASSERT(szc != 0);
1365 	pgcnt = page_get_pagecnt(szc);
1366 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1367 	npages = btopr(size);
1368 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1369 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1370 
1371 	while (npages > 0) {
1372 		index = an_idx;
1373 
1374 		/*
1375 		 * Find the next valid slot.
1376 		 */
1377 		if (anon_get_next_ptr(ahp, &index) == NULL) {
1378 			break;
1379 		}
1380 
1381 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1382 		/*
1383 		 * Now backup index to the beginning of the
1384 		 * current large page region of the anon array.
1385 		 */
1386 		index = P2ALIGN(index, pgcnt);
1387 		off = index - an_idx;
1388 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1389 		npages -= off;
1390 		if (npages <= 0)
1391 			break;
1392 		an_idx += off;
1393 		vp_off += ptob(off);
1394 		addr += ptob(off);
1395 		if (vpage != NULL) {
1396 			vpage += off;
1397 		}
1398 
1399 		for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) {
1400 			if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) {
1401 				page_t *pl[1 + 1];
1402 				page_t *pp;
1403 
1404 				err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL,
1405 				    pl, PAGESIZE, seg, addr, S_READ, cred);
1406 				if (err) {
1407 					break;
1408 				}
1409 				if (vpage != NULL) {
1410 					prot = VPP_PROT(vpage);
1411 					pageflags = VPP_ISPPLOCK(vpage) ?
1412 					    LOCK_PAGE : 0;
1413 				}
1414 				pp = anon_private(&ap, seg, addr, prot, pl[0],
1415 					pageflags, cred);
1416 				if (pp == NULL) {
1417 					err = ENOMEM;
1418 					break;
1419 				}
1420 				(void) anon_set_ptr(ahp, an_idx, ap,
1421 				    ANON_SLEEP);
1422 				page_unlock(pp);
1423 			}
1424 			ASSERT(ap->an_refcnt == 1);
1425 			addr += PAGESIZE;
1426 			if (vpage != NULL) {
1427 				vpage++;
1428 			}
1429 		}
1430 		npages -= pgcnt;
1431 	}
1432 
1433 	return (err);
1434 }
1435 
1436 /*
1437  * Free a group of "size" anon pages, size in bytes,
1438  * and clear out the pointers to the anon entries.
1439  */
1440 void
1441 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size)
1442 {
1443 	spgcnt_t npages;
1444 	struct anon *ap;
1445 	ulong_t old;
1446 
1447 	npages = btopr(size);
1448 
1449 	while (npages > 0) {
1450 		old = index;
1451 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1452 			break;
1453 
1454 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1455 		npages -= index - old;
1456 		if (npages <= 0)
1457 			break;
1458 
1459 		(void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP);
1460 		anon_decref(ap);
1461 		/*
1462 		 * Bump index and decrement page count
1463 		 */
1464 		index++;
1465 		npages--;
1466 	}
1467 }
1468 
1469 void
1470 anon_free_pages(
1471 	struct anon_hdr *ahp,
1472 	ulong_t an_idx,
1473 	size_t size,
1474 	uint_t szc)
1475 {
1476 	spgcnt_t	npages;
1477 	pgcnt_t		pgcnt;
1478 	ulong_t		index, off;
1479 
1480 	ASSERT(szc != 0);
1481 	pgcnt = page_get_pagecnt(szc);
1482 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1483 	npages = btopr(size);
1484 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1485 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1486 	ASSERT(an_idx < ahp->size);
1487 
1488 	VM_STAT_ADD(anonvmstats.freepages[0]);
1489 
1490 	while (npages > 0) {
1491 		index = an_idx;
1492 
1493 		/*
1494 		 * Find the next valid slot.
1495 		 */
1496 		if (anon_get_next_ptr(ahp, &index) == NULL)
1497 			break;
1498 
1499 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1500 		/*
1501 		 * Now backup index to the beginning of the
1502 		 * current large page region of the old array.
1503 		 */
1504 		index = P2ALIGN(index, pgcnt);
1505 		off = index - an_idx;
1506 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1507 		npages -= off;
1508 		if (npages <= 0)
1509 			break;
1510 
1511 		anon_decref_pages(ahp, index, szc);
1512 
1513 		off += pgcnt;
1514 		an_idx += off;
1515 		npages -= pgcnt;
1516 	}
1517 }
1518 
1519 /*
1520  * Make anonymous pages discardable
1521  */
1522 void
1523 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size, int flags)
1524 {
1525 	spgcnt_t npages = btopr(size);
1526 	struct anon *ap;
1527 	struct vnode *vp;
1528 	anoff_t off;
1529 	page_t *pp, *root_pp;
1530 	kmutex_t *ahm;
1531 	pgcnt_t pgcnt;
1532 	ulong_t old_idx, idx, i;
1533 	struct anon_hdr *ahp = amp->ahp;
1534 	anon_sync_obj_t cookie;
1535 
1536 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
1537 	pgcnt = 1;
1538 	for (; npages > 0; index = (pgcnt == 1) ? index + 1:
1539 		P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) {
1540 
1541 		/*
1542 		 * get anon pointer and index for the first valid entry
1543 		 * in the anon list, starting from "index"
1544 		 */
1545 		old_idx = index;
1546 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1547 			break;
1548 
1549 		/*
1550 		 * decrement npages by number of NULL anon slots we skipped
1551 		 */
1552 		npages -= index - old_idx;
1553 		if (npages <= 0)
1554 			break;
1555 
1556 		anon_array_enter(amp, index, &cookie);
1557 		ap = anon_get_ptr(ahp, index);
1558 		ASSERT(ap != NULL);
1559 
1560 		/*
1561 		 * Get anonymous page and try to lock it SE_EXCL;
1562 		 * For non blocking case if we couldn't grab the lock
1563 		 * we skip to next page.
1564 		 * For blocking case (ANON_PGLOOKUP_BLK) block
1565 		 * until we grab SE_EXCL lock.
1566 		 */
1567 		swap_xlate(ap, &vp, &off);
1568 		if (flags & ANON_PGLOOKUP_BLK)
1569 			pp = page_lookup_create(vp, (u_offset_t)off,
1570 			    SE_EXCL, NULL, NULL, SE_EXCL_WANTED);
1571 		else
1572 			pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL);
1573 		if (pp == NULL) {
1574 			segadvstat.MADV_FREE_miss.value.ul++;
1575 			pgcnt = 1;
1576 			anon_array_exit(&cookie);
1577 			continue;
1578 		}
1579 		pgcnt = page_get_pagecnt(pp->p_szc);
1580 
1581 		/*
1582 		 * we cannot free a page which is permanently locked.
1583 		 * The page_struct_lock need not be acquired to examine
1584 		 * these fields since the page has an "exclusive" lock.
1585 		 */
1586 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1587 			page_unlock(pp);
1588 			segadvstat.MADV_FREE_miss.value.ul++;
1589 			anon_array_exit(&cookie);
1590 			continue;
1591 		}
1592 
1593 		ahm = &anonhash_lock[AH_LOCK(vp, off)];
1594 		mutex_enter(ahm);
1595 		ASSERT(ap->an_refcnt != 0);
1596 		/*
1597 		 * skip this one if copy-on-write is not yet broken.
1598 		 */
1599 		if (ap->an_refcnt > 1) {
1600 			mutex_exit(ahm);
1601 			page_unlock(pp);
1602 			segadvstat.MADV_FREE_miss.value.ul++;
1603 			anon_array_exit(&cookie);
1604 			continue;
1605 		}
1606 
1607 		if (pp->p_szc == 0) {
1608 			pgcnt = 1;
1609 
1610 			/*
1611 			 * free swap slot;
1612 			 */
1613 			if (ap->an_pvp) {
1614 				swap_phys_free(ap->an_pvp, ap->an_poff,
1615 				    PAGESIZE);
1616 				ap->an_pvp = NULL;
1617 				ap->an_poff = 0;
1618 			}
1619 			mutex_exit(ahm);
1620 			segadvstat.MADV_FREE_hit.value.ul++;
1621 
1622 			/*
1623 			 * while we are at it, unload all the translations
1624 			 * and attempt to free the page.
1625 			 */
1626 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1627 			/*LINTED: constant in conditional context */
1628 			VN_DISPOSE(pp, B_FREE, 0, kcred);
1629 			anon_array_exit(&cookie);
1630 			continue;
1631 		}
1632 
1633 		pgcnt = page_get_pagecnt(pp->p_szc);
1634 		if (!IS_P2ALIGNED(index, pgcnt) || npages < pgcnt) {
1635 			if (!page_try_demote_pages(pp)) {
1636 				mutex_exit(ahm);
1637 				page_unlock(pp);
1638 				segadvstat.MADV_FREE_miss.value.ul++;
1639 				anon_array_exit(&cookie);
1640 				continue;
1641 			} else {
1642 				pgcnt = 1;
1643 				if (ap->an_pvp) {
1644 					swap_phys_free(ap->an_pvp,
1645 					    ap->an_poff, PAGESIZE);
1646 					    ap->an_pvp = NULL;
1647 					    ap->an_poff = 0;
1648 				}
1649 				mutex_exit(ahm);
1650 				(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1651 				/*LINTED*/
1652 				VN_DISPOSE(pp, B_FREE, 0, kcred);
1653 				segadvstat.MADV_FREE_hit.value.ul++;
1654 				anon_array_exit(&cookie);
1655 				continue;
1656 			}
1657 		}
1658 		mutex_exit(ahm);
1659 		root_pp = pp;
1660 
1661 		/*
1662 		 * try to lock remaining pages
1663 		 */
1664 		for (idx = 1; idx < pgcnt; idx++) {
1665 			pp++;
1666 			if (!page_trylock(pp, SE_EXCL))
1667 				break;
1668 			if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1669 				page_unlock(pp);
1670 				break;
1671 			}
1672 		}
1673 
1674 		if (idx == pgcnt) {
1675 			for (i = 0; i < pgcnt; i++) {
1676 				ap = anon_get_ptr(ahp, index + i);
1677 				if (ap == NULL)
1678 					break;
1679 				swap_xlate(ap, &vp, &off);
1680 				ahm = &anonhash_lock[AH_LOCK(vp, off)];
1681 				mutex_enter(ahm);
1682 				ASSERT(ap->an_refcnt != 0);
1683 
1684 				/*
1685 				 * skip this one if copy-on-write
1686 				 * is not yet broken.
1687 				 */
1688 				if (ap->an_refcnt > 1) {
1689 					mutex_exit(ahm);
1690 					goto skiplp;
1691 				}
1692 				if (ap->an_pvp) {
1693 					swap_phys_free(ap->an_pvp,
1694 					    ap->an_poff, PAGESIZE);
1695 					    ap->an_pvp = NULL;
1696 					    ap->an_poff = 0;
1697 				}
1698 				mutex_exit(ahm);
1699 			}
1700 			page_destroy_pages(root_pp);
1701 			segadvstat.MADV_FREE_hit.value.ul += pgcnt;
1702 			anon_array_exit(&cookie);
1703 			continue;
1704 		}
1705 skiplp:
1706 		segadvstat.MADV_FREE_miss.value.ul += pgcnt;
1707 		for (i = 0, pp = root_pp; i < idx; pp++, i++)
1708 			page_unlock(pp);
1709 		anon_array_exit(&cookie);
1710 	}
1711 }
1712 
1713 /*
1714  * Return the kept page(s) and protections back to the segment driver.
1715  */
1716 int
1717 anon_getpage(
1718 	struct anon **app,
1719 	uint_t *protp,
1720 	page_t *pl[],
1721 	size_t plsz,
1722 	struct seg *seg,
1723 	caddr_t addr,
1724 	enum seg_rw rw,
1725 	struct cred *cred)
1726 {
1727 	page_t *pp;
1728 	struct anon *ap = *app;
1729 	struct vnode *vp;
1730 	anoff_t off;
1731 	int err;
1732 	kmutex_t *ahm;
1733 
1734 	swap_xlate(ap, &vp, &off);
1735 
1736 	/*
1737 	 * Lookup the page. If page is being paged in,
1738 	 * wait for it to finish as we must return a list of
1739 	 * pages since this routine acts like the VOP_GETPAGE
1740 	 * routine does.
1741 	 */
1742 	if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) {
1743 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1744 		mutex_enter(ahm);
1745 		if (ap->an_refcnt == 1)
1746 			*protp = PROT_ALL;
1747 		else
1748 			*protp = PROT_ALL & ~PROT_WRITE;
1749 		mutex_exit(ahm);
1750 		pl[0] = pp;
1751 		pl[1] = NULL;
1752 		return (0);
1753 	}
1754 
1755 	/*
1756 	 * Simply treat it as a vnode fault on the anon vp.
1757 	 */
1758 
1759 	TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE,
1760 		"anon_getpage:seg %x addr %x vp %x",
1761 		seg, addr, vp);
1762 
1763 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz,
1764 	    seg, addr, rw, cred);
1765 
1766 	if (err == 0 && pl != NULL) {
1767 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1768 		mutex_enter(ahm);
1769 		if (ap->an_refcnt != 1)
1770 			*protp &= ~PROT_WRITE;	/* make read-only */
1771 		mutex_exit(ahm);
1772 	}
1773 	return (err);
1774 }
1775 
1776 /*
1777  * Creates or returns kept pages to the segment driver.  returns -1 if a large
1778  * page cannot be allocated. returns -2 if some other process has allocated a
1779  * larger page.
1780  *
1781  * For cowfault it will alocate any size pages to fill the requested area to
1782  * avoid partially overwritting anon slots (i.e. sharing only some of the anon
1783  * slots within a large page with other processes). This policy greatly
1784  * simplifies large page freeing (which is only freed when all anon slot
1785  * refcnts are 0).
1786  */
1787 int
1788 anon_map_getpages(
1789 	struct anon_map *amp,
1790 	ulong_t	start_idx,
1791 	uint_t	szc,
1792 	struct seg *seg,
1793 	caddr_t	addr,
1794 	uint_t prot,
1795 	uint_t *protp,
1796 	page_t	*ppa[],
1797 	uint_t	*ppa_szc,
1798 	struct vpage vpage[],
1799 	enum seg_rw rw,
1800 	int brkcow,
1801 	int anypgsz,
1802 	struct cred *cred)
1803 {
1804 	pgcnt_t		pgcnt;
1805 	struct anon	*ap;
1806 	struct vnode	*vp;
1807 	anoff_t		off;
1808 	page_t		*pp, *pl[2], *conpp = NULL;
1809 	caddr_t		vaddr;
1810 	ulong_t		pg_idx, an_idx, i;
1811 	spgcnt_t	nreloc = 0;
1812 	int		prealloc = 1;
1813 	int		err, slotcreate;
1814 	uint_t		vpprot;
1815 	int		upsize = (szc < seg->s_szc);
1816 
1817 #if !defined(__i386) && !defined(__amd64)
1818 	ASSERT(seg->s_szc != 0);
1819 #endif
1820 	ASSERT(szc <= seg->s_szc);
1821 	ASSERT(ppa_szc != NULL);
1822 	ASSERT(rw != S_CREATE);
1823 
1824 	*protp = PROT_ALL;
1825 
1826 	VM_STAT_ADD(anonvmstats.getpages[0]);
1827 
1828 	if (szc == 0) {
1829 		VM_STAT_ADD(anonvmstats.getpages[1]);
1830 		if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) {
1831 			err = anon_getpage(&ap, protp, pl, PAGESIZE, seg,
1832 			    addr, rw, cred);
1833 			if (err)
1834 				return (err);
1835 			ppa[0] = pl[0];
1836 			if (brkcow == 0 || (*protp & PROT_WRITE)) {
1837 				VM_STAT_ADD(anonvmstats.getpages[2]);
1838 				if (ppa[0]->p_szc != 0 && upsize) {
1839 					VM_STAT_ADD(anonvmstats.getpages[3]);
1840 					*ppa_szc = MIN(ppa[0]->p_szc,
1841 					    seg->s_szc);
1842 					page_unlock(ppa[0]);
1843 					return (-2);
1844 				}
1845 				return (0);
1846 			}
1847 			panic("anon_map_getpages: cowfault for szc 0");
1848 		} else {
1849 			VM_STAT_ADD(anonvmstats.getpages[4]);
1850 			ppa[0] = anon_zero(seg, addr, &ap, cred);
1851 			if (ppa[0] == NULL)
1852 				return (ENOMEM);
1853 			(void) anon_set_ptr(amp->ahp, start_idx, ap,
1854 			    ANON_SLEEP);
1855 			return (0);
1856 		}
1857 	}
1858 
1859 	pgcnt = page_get_pagecnt(szc);
1860 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1861 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
1862 
1863 	/*
1864 	 * First we check for the case that the requtested large
1865 	 * page or larger page already exists in the system.
1866 	 * Actually we only check if the first constituent page
1867 	 * exists and only preallocate if it's not found.
1868 	 */
1869 	ap = anon_get_ptr(amp->ahp, start_idx);
1870 	if (ap) {
1871 		uint_t pszc;
1872 		swap_xlate(ap, &vp, &off);
1873 		if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) {
1874 			if (pszc > szc && upsize) {
1875 				*ppa_szc = MIN(pszc, seg->s_szc);
1876 				return (-2);
1877 			}
1878 			if (pszc >= szc) {
1879 				prealloc = 0;
1880 			}
1881 		}
1882 	}
1883 
1884 	VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]);
1885 	VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]);
1886 
1887 top:
1888 	/*
1889 	 * If a smaller page or no page at all was found,
1890 	 * grab a large page off the freelist.
1891 	 */
1892 	if (prealloc) {
1893 		ASSERT(conpp == NULL);
1894 		if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa,
1895 		    szc, 0) != 0) {
1896 			VM_STAT_ADD(anonvmstats.getpages[7]);
1897 			if (brkcow == 0 ||
1898 			    !anon_share(amp->ahp, start_idx, pgcnt)) {
1899 				/*
1900 				 * If the refcnt's of all anon slots are <= 1
1901 				 * they can't increase since we are holding
1902 				 * the address space's lock. So segvn can
1903 				 * safely decrease szc without risking to
1904 				 * generate a cow fault for the region smaller
1905 				 * than the segment's largest page size.
1906 				 */
1907 				VM_STAT_ADD(anonvmstats.getpages[8]);
1908 				return (-1);
1909 			}
1910 		docow:
1911 			/*
1912 			 * This is a cow fault. Copy away the entire 1 large
1913 			 * page region of this segment.
1914 			 */
1915 			if (szc != seg->s_szc)
1916 				panic("anon_map_getpages: cowfault for szc %d",
1917 				    szc);
1918 			vaddr = addr;
1919 			for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
1920 			    pg_idx++, an_idx++, vaddr += PAGESIZE) {
1921 				if ((ap = anon_get_ptr(amp->ahp, an_idx)) !=
1922 				    NULL) {
1923 					err = anon_getpage(&ap, &vpprot, pl,
1924 					    PAGESIZE, seg, vaddr, rw, cred);
1925 					if (err) {
1926 						for (i = 0; i < pg_idx; i++) {
1927 							if ((pp = ppa[i]) !=
1928 							    NULL)
1929 								page_unlock(pp);
1930 						}
1931 						return (err);
1932 					}
1933 					ppa[pg_idx] = pl[0];
1934 				} else {
1935 					/*
1936 					 * Since this is a cowfault we know
1937 					 * that this address space has a
1938 					 * parent or children which means
1939 					 * anon_dup_fill_holes() has initialized
1940 					 * all anon slots within a large page
1941 					 * region that had at least one anon
1942 					 * slot at the time of fork().
1943 					 */
1944 					panic("anon_map_getpages: "
1945 					    "cowfault but anon slot is empty");
1946 				}
1947 			}
1948 			VM_STAT_ADD(anonvmstats.getpages[9]);
1949 			*protp = PROT_ALL;
1950 			return (anon_map_privatepages(amp, start_idx, szc, seg,
1951 			    addr, prot, ppa, vpage, anypgsz, cred));
1952 		}
1953 	}
1954 
1955 	VM_STAT_ADD(anonvmstats.getpages[10]);
1956 
1957 	an_idx = start_idx;
1958 	pg_idx = 0;
1959 	vaddr = addr;
1960 	while (pg_idx < pgcnt) {
1961 		slotcreate = 0;
1962 		if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) {
1963 			VM_STAT_ADD(anonvmstats.getpages[11]);
1964 			/*
1965 			 * For us to have decided not to preallocate
1966 			 * would have meant that a large page
1967 			 * was found. Which also means that all of the
1968 			 * anon slots for that page would have been
1969 			 * already created for us.
1970 			 */
1971 			if (prealloc == 0)
1972 				panic("anon_map_getpages: prealloc = 0");
1973 
1974 			slotcreate = 1;
1975 			ap = anon_alloc(NULL, 0);
1976 		}
1977 		swap_xlate(ap, &vp, &off);
1978 
1979 		/*
1980 		 * Now setup our preallocated page to pass down
1981 		 * to swap_getpage().
1982 		 */
1983 		if (prealloc) {
1984 			ASSERT(ppa[pg_idx]->p_szc == szc);
1985 			conpp = ppa[pg_idx];
1986 		}
1987 		ASSERT(prealloc || conpp == NULL);
1988 
1989 		/*
1990 		 * If we just created this anon slot then call
1991 		 * with S_CREATE to prevent doing IO on the page.
1992 		 * Similar to the anon_zero case.
1993 		 */
1994 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE,
1995 		    NULL, pl, PAGESIZE, conpp, ppa_szc, &nreloc, seg, vaddr,
1996 		    slotcreate == 1 ? S_CREATE : rw, cred);
1997 
1998 		if (err) {
1999 			ASSERT(err != -2 || upsize);
2000 			VM_STAT_ADD(anonvmstats.getpages[12]);
2001 			ASSERT(slotcreate == 0);
2002 			goto io_err;
2003 		}
2004 
2005 		pp = pl[0];
2006 
2007 		if (pp->p_szc < szc || (pp->p_szc > szc && upsize)) {
2008 			VM_STAT_ADD(anonvmstats.getpages[13]);
2009 			ASSERT(slotcreate == 0);
2010 			ASSERT(prealloc == 0);
2011 			ASSERT(pg_idx == 0);
2012 			if (pp->p_szc > szc) {
2013 				ASSERT(upsize);
2014 				*ppa_szc = MIN(pp->p_szc, seg->s_szc);
2015 				page_unlock(pp);
2016 				VM_STAT_ADD(anonvmstats.getpages[14]);
2017 				return (-2);
2018 			}
2019 			page_unlock(pp);
2020 			prealloc = 1;
2021 			goto top;
2022 		}
2023 
2024 		/*
2025 		 * If we decided to preallocate but VOP_GETPAGE
2026 		 * found a page in the system that satisfies our
2027 		 * request then free up our preallocated large page
2028 		 * and continue looping accross the existing large
2029 		 * page via VOP_GETPAGE.
2030 		 */
2031 		if (prealloc && pp != ppa[pg_idx]) {
2032 			VM_STAT_ADD(anonvmstats.getpages[15]);
2033 			ASSERT(slotcreate == 0);
2034 			ASSERT(pg_idx == 0);
2035 			conpp = NULL;
2036 			prealloc = 0;
2037 			page_free_pages(ppa[0]);
2038 		}
2039 
2040 		if (prealloc && nreloc > 1) {
2041 			/*
2042 			 * we have relocated out of a smaller large page.
2043 			 * skip npgs - 1 iterations and continue which will
2044 			 * increment by one the loop indices.
2045 			 */
2046 			spgcnt_t npgs = nreloc;
2047 
2048 			VM_STAT_ADD(anonvmstats.getpages[16]);
2049 
2050 			ASSERT(pp == ppa[pg_idx]);
2051 			ASSERT(slotcreate == 0);
2052 			ASSERT(pg_idx + npgs <= pgcnt);
2053 			if ((*protp & PROT_WRITE) &&
2054 			    anon_share(amp->ahp, an_idx, npgs)) {
2055 			    *protp &= ~PROT_WRITE;
2056 			}
2057 			pg_idx += npgs;
2058 			an_idx += npgs;
2059 			vaddr += PAGESIZE * npgs;
2060 			continue;
2061 		}
2062 
2063 		VM_STAT_ADD(anonvmstats.getpages[17]);
2064 
2065 		/*
2066 		 * Anon_zero case.
2067 		 */
2068 		if (slotcreate) {
2069 			ASSERT(prealloc);
2070 			pagezero(pp, 0, PAGESIZE);
2071 			CPU_STATS_ADD_K(vm, zfod, 1);
2072 			hat_setrefmod(pp);
2073 		}
2074 
2075 		ASSERT(prealloc == 0 || ppa[pg_idx] == pp);
2076 		ASSERT(prealloc != 0 || PAGE_SHARED(pp));
2077 		ASSERT(prealloc == 0 || PAGE_EXCL(pp));
2078 
2079 		if (pg_idx > 0 &&
2080 		    ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) ||
2081 		    (pp->p_szc != ppa[pg_idx - 1]->p_szc))) {
2082 			panic("anon_map_getpages: unexpected page");
2083 		} else if (pg_idx == 0 && (page_pptonum(pp) & (pgcnt - 1))) {
2084 			panic("anon_map_getpages: unaligned page");
2085 		}
2086 
2087 		if (prealloc == 0) {
2088 			ppa[pg_idx] = pp;
2089 		}
2090 
2091 		if (ap->an_refcnt > 1) {
2092 			VM_STAT_ADD(anonvmstats.getpages[18]);
2093 			*protp &= ~PROT_WRITE;
2094 		}
2095 
2096 		/*
2097 		 * If this is a new anon slot then initialize
2098 		 * the anon array entry.
2099 		 */
2100 		if (slotcreate) {
2101 			(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2102 		}
2103 		pg_idx++;
2104 		an_idx++;
2105 		vaddr += PAGESIZE;
2106 	}
2107 
2108 	/*
2109 	 * Since preallocated pages come off the freelist
2110 	 * they are locked SE_EXCL. Simply downgrade and return.
2111 	 */
2112 	if (prealloc) {
2113 		VM_STAT_ADD(anonvmstats.getpages[19]);
2114 		conpp = NULL;
2115 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2116 			page_downgrade(ppa[pg_idx]);
2117 		}
2118 	}
2119 	ASSERT(conpp == NULL);
2120 
2121 	if (brkcow == 0 || (*protp & PROT_WRITE)) {
2122 		VM_STAT_ADD(anonvmstats.getpages[20]);
2123 		return (0);
2124 	}
2125 
2126 	if (szc < seg->s_szc)
2127 		panic("anon_map_getpages: cowfault for szc %d", szc);
2128 
2129 	VM_STAT_ADD(anonvmstats.getpages[21]);
2130 
2131 	*protp = PROT_ALL;
2132 	return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot,
2133 	    ppa, vpage, anypgsz, cred));
2134 io_err:
2135 	/*
2136 	 * We got an IO error somewhere in our large page.
2137 	 * If we were using a preallocated page then just demote
2138 	 * all the constituent pages that we've succeeded with sofar
2139 	 * to PAGESIZE pages and leave them in the system
2140 	 * unlocked.
2141 	 */
2142 
2143 	ASSERT(err != -2 || ((pg_idx == 0) && upsize));
2144 
2145 	VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]);
2146 	VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]);
2147 	VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]);
2148 
2149 	if (prealloc) {
2150 		conpp = NULL;
2151 		if (pg_idx > 0) {
2152 			VM_STAT_ADD(anonvmstats.getpages[25]);
2153 			for (i = 0; i < pgcnt; i++) {
2154 				pp = ppa[i];
2155 				ASSERT(PAGE_EXCL(pp));
2156 				ASSERT(pp->p_szc == szc);
2157 				pp->p_szc = 0;
2158 			}
2159 			for (i = 0; i < pg_idx; i++) {
2160 				ASSERT(!hat_page_is_mapped(ppa[i]));
2161 				page_unlock(ppa[i]);
2162 			}
2163 			/*
2164 			 * Now free up the remaining unused constituent
2165 			 * pages.
2166 			 */
2167 			while (pg_idx < pgcnt) {
2168 				ASSERT(!hat_page_is_mapped(ppa[pg_idx]));
2169 				page_free(ppa[pg_idx], 0);
2170 				pg_idx++;
2171 			}
2172 		} else {
2173 			VM_STAT_ADD(anonvmstats.getpages[26]);
2174 			page_free_pages(ppa[0]);
2175 		}
2176 	} else {
2177 		VM_STAT_ADD(anonvmstats.getpages[27]);
2178 		ASSERT(err > 0);
2179 		for (i = 0; i < pg_idx; i++)
2180 			page_unlock(ppa[i]);
2181 	}
2182 	ASSERT(conpp == NULL);
2183 	if (err != -1)
2184 		return (err);
2185 	/*
2186 	 * we are here because we failed to relocate.
2187 	 */
2188 	ASSERT(prealloc);
2189 	if (brkcow == 0 || !anon_share(amp->ahp, start_idx, pgcnt)) {
2190 		VM_STAT_ADD(anonvmstats.getpages[28]);
2191 		return (-1);
2192 	}
2193 	VM_STAT_ADD(anonvmstats.getpages[29]);
2194 	goto docow;
2195 }
2196 
2197 
2198 /*
2199  * Turn a reference to an object or shared anon page
2200  * into a private page with a copy of the data from the
2201  * original page which is always locked by the caller.
2202  * This routine unloads the translation and unlocks the
2203  * original page, if it isn't being stolen, before returning
2204  * to the caller.
2205  *
2206  * NOTE:  The original anon slot is not freed by this routine
2207  *	  It must be freed by the caller while holding the
2208  *	  "anon_map" lock to prevent races which can occur if
2209  *	  a process has multiple lwps in its address space.
2210  */
2211 page_t *
2212 anon_private(
2213 	struct anon **app,
2214 	struct seg *seg,
2215 	caddr_t addr,
2216 	uint_t	prot,
2217 	page_t *opp,
2218 	int oppflags,
2219 	struct cred *cred)
2220 {
2221 	struct anon *old = *app;
2222 	struct anon *new;
2223 	page_t *pp = NULL;
2224 	struct vnode *vp;
2225 	anoff_t off;
2226 	page_t *anon_pl[1 + 1];
2227 	int err;
2228 
2229 	if (oppflags & STEAL_PAGE)
2230 		ASSERT(PAGE_EXCL(opp));
2231 	else
2232 		ASSERT(PAGE_LOCKED(opp));
2233 
2234 	CPU_STATS_ADD_K(vm, cow_fault, 1);
2235 
2236 	/* Kernel probe */
2237 	TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */,
2238 		tnf_opaque,	address,	addr);
2239 
2240 	*app = new = anon_alloc(NULL, 0);
2241 	swap_xlate(new, &vp, &off);
2242 
2243 	if (oppflags & STEAL_PAGE) {
2244 		page_rename(opp, vp, (u_offset_t)off);
2245 		pp = opp;
2246 		TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE,
2247 			"anon_private:seg %p addr %x pp %p vp %p off %lx",
2248 			seg, addr, pp, vp, off);
2249 		hat_setmod(pp);
2250 
2251 		/* bug 4026339 */
2252 		page_downgrade(pp);
2253 		return (pp);
2254 	}
2255 
2256 	/*
2257 	 * Call the VOP_GETPAGE routine to create the page, thereby
2258 	 * enabling the vnode driver to allocate any filesystem
2259 	 * space (e.g., disk block allocation for UFS).  This also
2260 	 * prevents more than one page from being added to the
2261 	 * vnode at the same time.
2262 	 */
2263 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL,
2264 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred);
2265 	if (err)
2266 		goto out;
2267 
2268 	pp = anon_pl[0];
2269 
2270 	/*
2271 	 * If the original page was locked, we need to move the lock
2272 	 * to the new page by transfering 'cowcnt/lckcnt' of the original
2273 	 * page to 'cowcnt/lckcnt' of the new page.
2274 	 *
2275 	 * See Statement at the beginning of segvn_lockop() and
2276 	 * comments in page_pp_useclaim() regarding the way
2277 	 * cowcnts/lckcnts are handled.
2278 	 *
2279 	 * Also availrmem must be decremented up front for read only mapping
2280 	 * before calling page_pp_useclaim. page_pp_useclaim will bump it back
2281 	 * if availrmem did not need to be decremented after all.
2282 	 */
2283 	if (oppflags & LOCK_PAGE) {
2284 		if ((prot & PROT_WRITE) == 0) {
2285 			mutex_enter(&freemem_lock);
2286 			if (availrmem > pages_pp_maximum) {
2287 				availrmem--;
2288 				pages_useclaim++;
2289 			} else {
2290 				mutex_exit(&freemem_lock);
2291 				goto out;
2292 			}
2293 			mutex_exit(&freemem_lock);
2294 		}
2295 		page_pp_useclaim(opp, pp, prot & PROT_WRITE);
2296 	}
2297 
2298 	/*
2299 	 * Now copy the contents from the original page,
2300 	 * which is locked and loaded in the MMU by
2301 	 * the caller to prevent yet another page fault.
2302 	 */
2303 	ppcopy(opp, pp);		/* XXX - should set mod bit in here */
2304 
2305 	hat_setrefmod(pp);		/* mark as modified */
2306 
2307 	/*
2308 	 * Unload the old translation.
2309 	 */
2310 	hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD);
2311 
2312 	/*
2313 	 * Free unmapped, unmodified original page.
2314 	 * or release the lock on the original page,
2315 	 * otherwise the process will sleep forever in
2316 	 * anon_decref() waiting for the "exclusive" lock
2317 	 * on the page.
2318 	 */
2319 	(void) page_release(opp, 1);
2320 
2321 	/*
2322 	 * we are done with page creation so downgrade the new
2323 	 * page's selock to shared, this helps when multiple
2324 	 * as_fault(...SOFTLOCK...) are done to the same
2325 	 * page(aio)
2326 	 */
2327 	page_downgrade(pp);
2328 
2329 	/*
2330 	 * NOTE:  The original anon slot must be freed by the
2331 	 * caller while holding the "anon_map" lock, if we
2332 	 * copied away from an anonymous page.
2333 	 */
2334 	return (pp);
2335 
2336 out:
2337 	*app = old;
2338 	if (pp)
2339 		page_unlock(pp);
2340 	anon_decref(new);
2341 	page_unlock(opp);
2342 	return ((page_t *)NULL);
2343 }
2344 
2345 int
2346 anon_map_privatepages(
2347 	struct anon_map *amp,
2348 	ulong_t	start_idx,
2349 	uint_t	szc,
2350 	struct seg *seg,
2351 	caddr_t addr,
2352 	uint_t	prot,
2353 	page_t	*ppa[],
2354 	struct vpage vpage[],
2355 	int anypgsz,
2356 	struct cred *cred)
2357 {
2358 	pgcnt_t		pgcnt;
2359 	struct vnode	*vp;
2360 	anoff_t		off;
2361 	page_t		*pl[2], *conpp = NULL;
2362 	int		err;
2363 	int		prealloc = 1;
2364 	struct anon	*ap, *oldap;
2365 	caddr_t		vaddr;
2366 	page_t		*pplist, *pp;
2367 	ulong_t		pg_idx, an_idx;
2368 	spgcnt_t	nreloc = 0;
2369 	int		pagelock = 0;
2370 	kmutex_t	*ahmpages = NULL;
2371 #ifdef DEBUG
2372 	int		refcnt;
2373 #endif
2374 
2375 	ASSERT(szc != 0);
2376 	ASSERT(szc == seg->s_szc);
2377 
2378 	VM_STAT_ADD(anonvmstats.privatepages[0]);
2379 
2380 	pgcnt = page_get_pagecnt(szc);
2381 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2382 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2383 
2384 	ASSERT(amp != NULL);
2385 	ap = anon_get_ptr(amp->ahp, start_idx);
2386 	ASSERT(ap == NULL || ap->an_refcnt >= 1);
2387 
2388 	VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]);
2389 
2390 	/*
2391 	 * Now try and allocate the large page. If we fail then just
2392 	 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let
2393 	 * the caller make this decision but to avoid added complexity
2394 	 * it's simplier to handle that case here.
2395 	 */
2396 	if (anypgsz == -1) {
2397 		VM_STAT_ADD(anonvmstats.privatepages[2]);
2398 		prealloc = 0;
2399 	} else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc,
2400 	    anypgsz) != 0) {
2401 		VM_STAT_ADD(anonvmstats.privatepages[3]);
2402 		prealloc = 0;
2403 	}
2404 
2405 	/*
2406 	 * make the decrement of all refcnts of all
2407 	 * anon slots of a large page appear atomic by
2408 	 * getting an anonpages_hash_lock for the
2409 	 * first anon slot of a large page.
2410 	 */
2411 	if (ap != NULL) {
2412 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp,
2413 		    ap->an_off)];
2414 		mutex_enter(ahmpages);
2415 		if (ap->an_refcnt == 1) {
2416 			VM_STAT_ADD(anonvmstats.privatepages[4]);
2417 			ASSERT(!anon_share(amp->ahp, start_idx, pgcnt));
2418 			mutex_exit(ahmpages);
2419 
2420 			if (prealloc) {
2421 				page_free_replacement_page(pplist);
2422 				page_create_putback(pgcnt);
2423 			}
2424 			ASSERT(ppa[0]->p_szc <= szc);
2425 			if (ppa[0]->p_szc == szc) {
2426 				VM_STAT_ADD(anonvmstats.privatepages[5]);
2427 				return (0);
2428 			}
2429 			for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2430 				ASSERT(ppa[pg_idx] != NULL);
2431 				page_unlock(ppa[pg_idx]);
2432 			}
2433 			return (-1);
2434 		}
2435 	}
2436 
2437 	/*
2438 	 * If we are passed in the vpage array and this is
2439 	 * not PROT_WRITE then we need to decrement availrmem
2440 	 * up front before we try anything. If we need to and
2441 	 * can't decrement availrmem then its better to fail now
2442 	 * than in the middle of processing the new large page.
2443 	 * page_pp_usclaim() on behalf of each constituent page
2444 	 * below will adjust availrmem back for the cases not needed.
2445 	 */
2446 	if (vpage != NULL && (prot & PROT_WRITE) == 0) {
2447 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2448 			if (VPP_ISPPLOCK(&vpage[pg_idx])) {
2449 				pagelock = 1;
2450 				break;
2451 			}
2452 		}
2453 		if (pagelock) {
2454 			VM_STAT_ADD(anonvmstats.privatepages[6]);
2455 			mutex_enter(&freemem_lock);
2456 			if (availrmem >= pages_pp_maximum + pgcnt) {
2457 				availrmem -= pgcnt;
2458 				pages_useclaim += pgcnt;
2459 			} else {
2460 				VM_STAT_ADD(anonvmstats.privatepages[7]);
2461 				mutex_exit(&freemem_lock);
2462 				if (ahmpages != NULL) {
2463 					mutex_exit(ahmpages);
2464 				}
2465 				if (prealloc) {
2466 					page_free_replacement_page(pplist);
2467 					page_create_putback(pgcnt);
2468 				}
2469 				for (pg_idx = 0; pg_idx < pgcnt; pg_idx++)
2470 					if (ppa[pg_idx] != NULL)
2471 						page_unlock(ppa[pg_idx]);
2472 				return (ENOMEM);
2473 			}
2474 			mutex_exit(&freemem_lock);
2475 		}
2476 	}
2477 
2478 	CPU_STATS_ADD_K(vm, cow_fault, pgcnt);
2479 
2480 	VM_STAT_ADD(anonvmstats.privatepages[8]);
2481 
2482 	an_idx = start_idx;
2483 	pg_idx = 0;
2484 	vaddr = addr;
2485 	for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) {
2486 		ASSERT(ppa[pg_idx] != NULL);
2487 		oldap = anon_get_ptr(amp->ahp, an_idx);
2488 		ASSERT(ahmpages != NULL || oldap == NULL);
2489 		ASSERT(ahmpages == NULL || oldap != NULL);
2490 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2491 		ASSERT(ahmpages == NULL || pg_idx != 0 ||
2492 		    (refcnt = oldap->an_refcnt));
2493 		ASSERT(ahmpages == NULL || pg_idx == 0 ||
2494 		    refcnt == oldap->an_refcnt);
2495 
2496 		ap = anon_alloc(NULL, 0);
2497 
2498 		swap_xlate(ap, &vp, &off);
2499 
2500 		/*
2501 		 * Now setup our preallocated page to pass down to
2502 		 * swap_getpage().
2503 		 */
2504 		if (prealloc) {
2505 			pp = pplist;
2506 			page_sub(&pplist, pp);
2507 			conpp = pp;
2508 		}
2509 
2510 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl,
2511 			PAGESIZE, conpp, NULL, &nreloc, seg, vaddr,
2512 			S_CREATE, cred);
2513 
2514 		/*
2515 		 * Impossible to fail this is S_CREATE.
2516 		 */
2517 		if (err)
2518 			panic("anon_map_privatepages: VOP_GETPAGE failed");
2519 
2520 		ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0);
2521 		ASSERT(prealloc == 0 || nreloc == 1);
2522 
2523 		pp = pl[0];
2524 
2525 		/*
2526 		 * If the original page was locked, we need to move
2527 		 * the lock to the new page by transfering
2528 		 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt'
2529 		 * of the new page. pg_idx can be used to index
2530 		 * into the vpage array since the caller will guarentee
2531 		 * that vpage struct passed in corresponds to addr
2532 		 * and forward.
2533 		 */
2534 		if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) {
2535 			page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE);
2536 		} else if (pagelock) {
2537 			mutex_enter(&freemem_lock);
2538 			availrmem++;
2539 			pages_useclaim--;
2540 			mutex_exit(&freemem_lock);
2541 		}
2542 
2543 		/*
2544 		 * Now copy the contents from the original page.
2545 		 */
2546 		ppcopy(ppa[pg_idx], pp);
2547 
2548 		hat_setrefmod(pp);		/* mark as modified */
2549 
2550 		/*
2551 		 * Release the lock on the original page,
2552 		 * derement the old slot, and down grade the lock
2553 		 * on the new copy.
2554 		 */
2555 		page_unlock(ppa[pg_idx]);
2556 
2557 		if (!prealloc)
2558 			page_downgrade(pp);
2559 
2560 		ppa[pg_idx] = pp;
2561 
2562 		/*
2563 		 * Now reflect the copy in the new anon array.
2564 		 */
2565 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2566 		if (oldap != NULL)
2567 			anon_decref(oldap);
2568 		(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2569 	}
2570 	if (ahmpages != NULL) {
2571 		mutex_exit(ahmpages);
2572 	}
2573 	ASSERT(prealloc == 0 || pplist == NULL);
2574 	if (prealloc) {
2575 		VM_STAT_ADD(anonvmstats.privatepages[9]);
2576 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2577 			page_downgrade(ppa[pg_idx]);
2578 		}
2579 	}
2580 
2581 	/*
2582 	 * Unload the old large page translation.
2583 	 */
2584 	hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD);
2585 	return (0);
2586 }
2587 
2588 /*
2589  * Allocate a private zero-filled anon page.
2590  */
2591 page_t *
2592 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred)
2593 {
2594 	struct anon *ap;
2595 	page_t *pp;
2596 	struct vnode *vp;
2597 	anoff_t off;
2598 	page_t *anon_pl[1 + 1];
2599 	int err;
2600 
2601 	/* Kernel probe */
2602 	TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */,
2603 		tnf_opaque,	address,	addr);
2604 
2605 	*app = ap = anon_alloc(NULL, 0);
2606 	swap_xlate(ap, &vp, &off);
2607 
2608 	/*
2609 	 * Call the VOP_GETPAGE routine to create the page, thereby
2610 	 * enabling the vnode driver to allocate any filesystem
2611 	 * dependent structures (e.g., disk block allocation for UFS).
2612 	 * This also prevents more than on page from being added to
2613 	 * the vnode at the same time since it is locked.
2614 	 */
2615 	err = VOP_GETPAGE(vp, off, PAGESIZE, NULL,
2616 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred);
2617 	if (err) {
2618 		*app = NULL;
2619 		anon_decref(ap);
2620 		return (NULL);
2621 	}
2622 	pp = anon_pl[0];
2623 
2624 	pagezero(pp, 0, PAGESIZE);	/* XXX - should set mod bit */
2625 	page_downgrade(pp);
2626 	CPU_STATS_ADD_K(vm, zfod, 1);
2627 	hat_setrefmod(pp);	/* mark as modified so pageout writes back */
2628 	return (pp);
2629 }
2630 
2631 
2632 /*
2633  * Allocate array of private zero-filled anon pages for empty slots
2634  * and kept pages for non empty slots within given range.
2635  *
2636  * NOTE: This rontine will try and use large pages
2637  *	if available and supported by underlying platform.
2638  */
2639 int
2640 anon_map_createpages(
2641 	struct anon_map *amp,
2642 	ulong_t start_index,
2643 	size_t len,
2644 	page_t *ppa[],
2645 	struct seg *seg,
2646 	caddr_t addr,
2647 	enum seg_rw rw,
2648 	struct cred *cred)
2649 {
2650 
2651 	struct anon	*ap;
2652 	struct vnode	*ap_vp;
2653 	page_t		*pp, *pplist, *anon_pl[1 + 1], *conpp = NULL;
2654 	int		err = 0;
2655 	ulong_t		p_index, index;
2656 	pgcnt_t		npgs, pg_cnt;
2657 	spgcnt_t	nreloc = 0;
2658 	uint_t		l_szc, szc, prot;
2659 	anoff_t		ap_off;
2660 	size_t		pgsz;
2661 	lgrp_t		*lgrp;
2662 
2663 	/*
2664 	 * XXX For now only handle S_CREATE.
2665 	 */
2666 	ASSERT(rw == S_CREATE);
2667 
2668 	index	= start_index;
2669 	p_index	= 0;
2670 	npgs = btopr(len);
2671 
2672 	/*
2673 	 * If this platform supports multiple page sizes
2674 	 * then try and allocate directly from the free
2675 	 * list for pages larger than PAGESIZE.
2676 	 *
2677 	 * NOTE:When we have page_create_ru we can stop
2678 	 *	directly allocating from the freelist.
2679 	 */
2680 	l_szc  = seg->s_szc;
2681 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2682 	while (npgs) {
2683 
2684 		/*
2685 		 * if anon slot already exists
2686 		 *   (means page has been created)
2687 		 * so 1) look up the page
2688 		 *    2) if the page is still in memory, get it.
2689 		 *    3) if not, create a page and
2690 		 *	  page in from physical swap device.
2691 		 * These are done in anon_getpage().
2692 		 */
2693 		ap = anon_get_ptr(amp->ahp, index);
2694 		if (ap) {
2695 			err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE,
2696 			    seg, addr, S_READ, cred);
2697 			if (err) {
2698 				ANON_LOCK_EXIT(&amp->a_rwlock);
2699 				panic("anon_map_createpages: anon_getpage");
2700 			}
2701 			pp = anon_pl[0];
2702 			ppa[p_index++] = pp;
2703 
2704 			addr += PAGESIZE;
2705 			index++;
2706 			npgs--;
2707 			continue;
2708 		}
2709 		/*
2710 		 * Now try and allocate the largest page possible
2711 		 * for the current address and range.
2712 		 * Keep dropping down in page size until:
2713 		 *
2714 		 *	1) Properly aligned
2715 		 *	2) Does not overlap existing anon pages
2716 		 *	3) Fits in remaining range.
2717 		 *	4) able to allocate one.
2718 		 *
2719 		 * NOTE: XXX When page_create_ru is completed this code
2720 		 *	 will change.
2721 		 */
2722 		szc    = l_szc;
2723 		pplist = NULL;
2724 		pg_cnt = 0;
2725 		while (szc) {
2726 			pgsz	= page_get_pagesize(szc);
2727 			pg_cnt	= pgsz >> PAGESHIFT;
2728 			if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs &&
2729 				anon_pages(amp->ahp, index, pg_cnt) == 0) {
2730 				/*
2731 				 * XXX
2732 				 * Since we are faking page_create()
2733 				 * we also need to do the freemem and
2734 				 * pcf accounting.
2735 				 */
2736 				(void) page_create_wait(pg_cnt, PG_WAIT);
2737 
2738 				/*
2739 				 * Get lgroup to allocate next page of shared
2740 				 * memory from and use it to specify where to
2741 				 * allocate the physical memory
2742 				 */
2743 				lgrp = lgrp_mem_choose(seg, addr, pgsz);
2744 
2745 				pplist = page_get_freelist(
2746 				    anon_vp, (u_offset_t)0, seg,
2747 				    addr, pgsz, 0, lgrp);
2748 
2749 				if (pplist == NULL) {
2750 					page_create_putback(pg_cnt);
2751 				}
2752 
2753 				/*
2754 				 * If a request for a page of size
2755 				 * larger than PAGESIZE failed
2756 				 * then don't try that size anymore.
2757 				 */
2758 				if (pplist == NULL) {
2759 					l_szc = szc - 1;
2760 				} else {
2761 					break;
2762 				}
2763 			}
2764 			szc--;
2765 		}
2766 
2767 		/*
2768 		 * If just using PAGESIZE pages then don't
2769 		 * directly allocate from the free list.
2770 		 */
2771 		if (pplist == NULL) {
2772 			ASSERT(szc == 0);
2773 			pp = anon_zero(seg, addr, &ap, cred);
2774 			if (pp == NULL) {
2775 				ANON_LOCK_EXIT(&amp->a_rwlock);
2776 				panic("anon_map_createpages: anon_zero");
2777 			}
2778 			ppa[p_index++] = pp;
2779 
2780 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2781 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2782 
2783 			addr += PAGESIZE;
2784 			index++;
2785 			npgs--;
2786 			continue;
2787 		}
2788 
2789 		/*
2790 		 * pplist is a list of pg_cnt PAGESIZE pages.
2791 		 * These pages are locked SE_EXCL since they
2792 		 * came directly off the free list.
2793 		 */
2794 		ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt));
2795 		ASSERT(IS_P2ALIGNED(index, pg_cnt));
2796 		ASSERT(conpp == NULL);
2797 		while (pg_cnt--) {
2798 
2799 			ap = anon_alloc(NULL, 0);
2800 			swap_xlate(ap, &ap_vp, &ap_off);
2801 
2802 			ASSERT(pplist != NULL);
2803 			pp = pplist;
2804 			page_sub(&pplist, pp);
2805 			PP_CLRFREE(pp);
2806 			PP_CLRAGED(pp);
2807 			conpp = pp;
2808 
2809 			err = swap_getconpage(ap_vp, ap_off, PAGESIZE,
2810 			    (uint_t *)NULL, anon_pl, PAGESIZE, conpp, NULL,
2811 			    &nreloc, seg, addr, S_CREATE, cred);
2812 
2813 			if (err) {
2814 				ANON_LOCK_EXIT(&amp->a_rwlock);
2815 				panic("anon_map_createpages: S_CREATE");
2816 			}
2817 
2818 			ASSERT(anon_pl[0] == pp);
2819 			ASSERT(nreloc == 1);
2820 			pagezero(pp, 0, PAGESIZE);
2821 			CPU_STATS_ADD_K(vm, zfod, 1);
2822 			hat_setrefmod(pp);
2823 
2824 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2825 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2826 
2827 			ppa[p_index++] = pp;
2828 
2829 			addr += PAGESIZE;
2830 			index++;
2831 			npgs--;
2832 		}
2833 		conpp = NULL;
2834 		pg_cnt	= pgsz >> PAGESHIFT;
2835 		p_index = p_index - pg_cnt;
2836 		while (pg_cnt--) {
2837 			page_downgrade(ppa[p_index++]);
2838 		}
2839 	}
2840 	ANON_LOCK_EXIT(&amp->a_rwlock);
2841 	return (0);
2842 }
2843 
2844 static int
2845 anon_try_demote_pages(
2846 	struct anon_hdr *ahp,
2847 	ulong_t sidx,
2848 	uint_t szc,
2849 	page_t **ppa,
2850 	int private)
2851 {
2852 	struct anon	*ap;
2853 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
2854 	page_t		*pp;
2855 	pgcnt_t		i;
2856 	kmutex_t	*ahmpages = NULL;
2857 	int		root = 0;
2858 	pgcnt_t		npgs;
2859 	pgcnt_t		curnpgs = 0;
2860 	size_t		ppasize = 0;
2861 
2862 	ASSERT(szc != 0);
2863 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2864 	ASSERT(IS_P2ALIGNED(sidx, pgcnt));
2865 	ASSERT(sidx < ahp->size);
2866 
2867 	if (ppa == NULL) {
2868 		ppasize = pgcnt * sizeof (page_t *);
2869 		ppa = kmem_alloc(ppasize, KM_SLEEP);
2870 	}
2871 
2872 	ap = anon_get_ptr(ahp, sidx);
2873 	if (ap != NULL && private) {
2874 		VM_STAT_ADD(anonvmstats.demotepages[1]);
2875 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
2876 		mutex_enter(ahmpages);
2877 	}
2878 
2879 	if (ap != NULL && ap->an_refcnt > 1) {
2880 		if (ahmpages != NULL) {
2881 			VM_STAT_ADD(anonvmstats.demotepages[2]);
2882 			mutex_exit(ahmpages);
2883 		}
2884 		if (ppasize != 0) {
2885 			kmem_free(ppa, ppasize);
2886 		}
2887 		return (0);
2888 	}
2889 	if (ahmpages != NULL) {
2890 		mutex_exit(ahmpages);
2891 	}
2892 	if (ahp->size - sidx < pgcnt) {
2893 		ASSERT(private == 0);
2894 		pgcnt = ahp->size - sidx;
2895 	}
2896 	for (i = 0; i < pgcnt; i++, sidx++) {
2897 		ap = anon_get_ptr(ahp, sidx);
2898 		if (ap != NULL) {
2899 			if (ap->an_refcnt != 1) {
2900 				panic("anon_try_demote_pages: an_refcnt != 1");
2901 			}
2902 			pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off,
2903 				SE_EXCL);
2904 			if (pp != NULL) {
2905 				(void) hat_pageunload(pp,
2906 					HAT_FORCE_PGUNLOAD);
2907 			}
2908 		} else {
2909 			ppa[i] = NULL;
2910 		}
2911 	}
2912 	for (i = 0; i < pgcnt; i++) {
2913 		if ((pp = ppa[i]) != NULL && pp->p_szc != 0) {
2914 			ASSERT(pp->p_szc <= szc);
2915 			if (!root) {
2916 				VM_STAT_ADD(anonvmstats.demotepages[3]);
2917 				if (curnpgs != 0)
2918 					panic("anon_try_demote_pages: "
2919 						"bad large page");
2920 
2921 				root = 1;
2922 				curnpgs = npgs =
2923 					page_get_pagecnt(pp->p_szc);
2924 
2925 				ASSERT(npgs <= pgcnt);
2926 				ASSERT(IS_P2ALIGNED(npgs, npgs));
2927 				ASSERT(!(page_pptonum(pp) &
2928 					(npgs - 1)));
2929 			} else {
2930 				ASSERT(i > 0);
2931 				ASSERT(page_pptonum(pp) - 1 ==
2932 					page_pptonum(ppa[i - 1]));
2933 				if ((page_pptonum(pp) & (npgs - 1)) ==
2934 					npgs - 1)
2935 					root = 0;
2936 			}
2937 			ASSERT(PAGE_EXCL(pp));
2938 			pp->p_szc = 0;
2939 			ASSERT(curnpgs > 0);
2940 			curnpgs--;
2941 		}
2942 	}
2943 	if (root != 0 || curnpgs != 0)
2944 		panic("anon_try_demote_pages: bad large page");
2945 
2946 	for (i = 0; i < pgcnt; i++) {
2947 		if ((pp = ppa[i]) != NULL) {
2948 			ASSERT(!hat_page_is_mapped(pp));
2949 			ASSERT(pp->p_szc == 0);
2950 			page_unlock(pp);
2951 		}
2952 	}
2953 	if (ppasize != 0) {
2954 		kmem_free(ppa, ppasize);
2955 	}
2956 	return (1);
2957 }
2958 
2959 /*
2960  * anon_map_demotepages() can only be called by MAP_PRIVATE segments.
2961  */
2962 int
2963 anon_map_demotepages(
2964 	struct anon_map *amp,
2965 	ulong_t	start_idx,
2966 	struct seg *seg,
2967 	caddr_t addr,
2968 	uint_t prot,
2969 	struct vpage vpage[],
2970 	struct cred *cred)
2971 {
2972 	struct anon	*ap;
2973 	uint_t		szc = seg->s_szc;
2974 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
2975 	size_t		ppasize = pgcnt * sizeof (page_t *);
2976 	page_t		**ppa = kmem_alloc(ppasize, KM_SLEEP);
2977 	page_t		*pp;
2978 	page_t		*pl[2];
2979 	pgcnt_t		i, pg_idx;
2980 	ulong_t		an_idx;
2981 	caddr_t		vaddr;
2982 	int 		err;
2983 	int		retry = 0;
2984 	uint_t		vpprot;
2985 
2986 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
2987 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2988 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2989 	ASSERT(ppa != NULL);
2990 	ASSERT(szc != 0);
2991 	ASSERT(szc == amp->a_szc);
2992 
2993 	VM_STAT_ADD(anonvmstats.demotepages[0]);
2994 
2995 top:
2996 	if (anon_try_demote_pages(amp->ahp, start_idx, szc, ppa, 1)) {
2997 		return (0);
2998 	}
2999 
3000 	VM_STAT_ADD(anonvmstats.demotepages[4]);
3001 
3002 	ASSERT(retry == 0); /* we can be here only once */
3003 
3004 	vaddr = addr;
3005 	for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
3006 	    pg_idx++, an_idx++, vaddr += PAGESIZE) {
3007 		ap = anon_get_ptr(amp->ahp, an_idx);
3008 		if (ap == NULL)
3009 			panic("anon_map_demotepages: no anon slot");
3010 		err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr,
3011 		    S_READ, cred);
3012 		if (err) {
3013 			for (i = 0; i < pg_idx; i++) {
3014 				if ((pp = ppa[i]) != NULL)
3015 					page_unlock(pp);
3016 			}
3017 			kmem_free(ppa, ppasize);
3018 			return (err);
3019 		}
3020 		ppa[pg_idx] = pl[0];
3021 	}
3022 
3023 	err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa,
3024 	    vpage, -1, cred);
3025 	if (err > 0) {
3026 		VM_STAT_ADD(anonvmstats.demotepages[5]);
3027 		kmem_free(ppa, ppasize);
3028 		return (err);
3029 	}
3030 	ASSERT(err == 0 || err == -1);
3031 	if (err == -1) {
3032 		VM_STAT_ADD(anonvmstats.demotepages[6]);
3033 		retry = 1;
3034 		goto top;
3035 	}
3036 	for (i = 0; i < pgcnt; i++) {
3037 		ASSERT(ppa[i] != NULL);
3038 		if (ppa[i]->p_szc != 0)
3039 			retry = 1;
3040 		page_unlock(ppa[i]);
3041 	}
3042 	if (retry) {
3043 		VM_STAT_ADD(anonvmstats.demotepages[7]);
3044 		goto top;
3045 	}
3046 
3047 	VM_STAT_ADD(anonvmstats.demotepages[8]);
3048 
3049 	kmem_free(ppa, ppasize);
3050 
3051 	return (0);
3052 }
3053 
3054 /*
3055  * Free pages of shared anon map. It's assumed that anon maps don't share anon
3056  * structures with private anon maps. Therefore all anon structures should
3057  * have at most one reference at this point. This means underlying pages can
3058  * be exclusively locked and demoted or freed.  If not freeing the entire
3059  * large pages demote the ends of the region we free to be able to free
3060  * subpages. Page roots correspend to aligned index positions in anon map.
3061  */
3062 void
3063 anon_shmap_free_pages(struct anon_map *amp, ulong_t sidx, size_t len)
3064 {
3065 	ulong_t eidx = sidx + btopr(len);
3066 	pgcnt_t pages = page_get_pagecnt(amp->a_szc);
3067 	struct anon_hdr *ahp = amp->ahp;
3068 	ulong_t tidx;
3069 	size_t size;
3070 	ulong_t sidx_aligned;
3071 	ulong_t eidx_aligned;
3072 
3073 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
3074 	ASSERT(amp->refcnt <= 1);
3075 	ASSERT(amp->a_szc > 0);
3076 	ASSERT(eidx <= ahp->size);
3077 	ASSERT(!anon_share(ahp, sidx, btopr(len)));
3078 
3079 	if (len == 0) {	/* XXX */
3080 		return;
3081 	}
3082 
3083 	sidx_aligned = P2ALIGN(sidx, pages);
3084 	if (sidx_aligned != sidx ||
3085 	    (eidx < sidx_aligned + pages && eidx < ahp->size)) {
3086 		if (!anon_try_demote_pages(ahp, sidx_aligned,
3087 		    amp->a_szc, NULL, 0)) {
3088 			panic("anon_shmap_free_pages: demote failed");
3089 		}
3090 		size = (eidx <= sidx_aligned + pages) ? (eidx - sidx) :
3091 		    P2NPHASE(sidx, pages);
3092 		size <<= PAGESHIFT;
3093 		anon_free(ahp, sidx, size);
3094 		sidx = sidx_aligned + pages;
3095 		if (eidx <= sidx) {
3096 			return;
3097 		}
3098 	}
3099 	eidx_aligned = P2ALIGN(eidx, pages);
3100 	if (sidx < eidx_aligned) {
3101 		anon_free_pages(ahp, sidx,
3102 		    (eidx_aligned - sidx) << PAGESHIFT,
3103 		    amp->a_szc);
3104 		sidx = eidx_aligned;
3105 	}
3106 	ASSERT(sidx == eidx_aligned);
3107 	if (eidx == eidx_aligned) {
3108 		return;
3109 	}
3110 	tidx = eidx;
3111 	if (eidx != ahp->size && anon_get_next_ptr(ahp, &tidx) != NULL &&
3112 	    tidx - sidx < pages) {
3113 		if (!anon_try_demote_pages(ahp, sidx, amp->a_szc, NULL, 0)) {
3114 			panic("anon_shmap_free_pages: demote failed");
3115 		}
3116 		size = (eidx - sidx) << PAGESHIFT;
3117 		anon_free(ahp, sidx, size);
3118 	} else {
3119 		anon_free_pages(ahp, sidx, pages << PAGESHIFT, amp->a_szc);
3120 	}
3121 }
3122 
3123 /*
3124  * Allocate and initialize an anon_map structure for seg
3125  * associating the given swap reservation with the new anon_map.
3126  */
3127 struct anon_map *
3128 anonmap_alloc(size_t size, size_t swresv)
3129 {
3130 	struct anon_map *amp;
3131 
3132 	amp = kmem_cache_alloc(anonmap_cache, KM_SLEEP);
3133 
3134 	amp->refcnt = 1;
3135 	amp->size = size;
3136 
3137 	amp->ahp = anon_create(btopr(size), ANON_SLEEP);
3138 	amp->swresv = swresv;
3139 	amp->locality = 0;
3140 	amp->a_szc = 0;
3141 	return (amp);
3142 }
3143 
3144 void
3145 anonmap_free(struct anon_map *amp)
3146 {
3147 	ASSERT(amp->ahp);
3148 	ASSERT(amp->refcnt == 0);
3149 
3150 	lgrp_shm_policy_fini(amp, NULL);
3151 	anon_release(amp->ahp, btopr(amp->size));
3152 	kmem_cache_free(anonmap_cache, amp);
3153 }
3154 
3155 /*
3156  * Returns true if the app array has some empty slots.
3157  * The offp and lenp paramters are in/out paramters.  On entry
3158  * these values represent the starting offset and length of the
3159  * mapping.  When true is returned, these values may be modified
3160  * to be the largest range which includes empty slots.
3161  */
3162 int
3163 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp,
3164 				size_t *lenp)
3165 {
3166 	ulong_t i, el;
3167 	ssize_t low, high;
3168 	struct anon *ap;
3169 
3170 	low = -1;
3171 	for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) {
3172 		ap = anon_get_ptr(ahp, anon_idx);
3173 		if (ap == NULL) {
3174 			if (low == -1)
3175 				low = i;
3176 			high = i;
3177 		}
3178 	}
3179 	if (low != -1) {
3180 		/*
3181 		 * Found at least one non-anon page.
3182 		 * Set up the off and len return values.
3183 		 */
3184 		if (low != 0)
3185 			*offp += low;
3186 		*lenp = high - low + PAGESIZE;
3187 		return (1);
3188 	}
3189 	return (0);
3190 }
3191 
3192 /*
3193  * Return a count of the number of existing anon pages in the anon array
3194  * app in the range (off, off+len). The array and slots must be guaranteed
3195  * stable by the caller.
3196  */
3197 pgcnt_t
3198 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
3199 {
3200 	pgcnt_t cnt = 0;
3201 
3202 	while (nslots-- > 0) {
3203 		if ((anon_get_ptr(ahp, anon_index)) != NULL)
3204 			cnt++;
3205 		anon_index++;
3206 	}
3207 	return (cnt);
3208 }
3209 
3210 /*
3211  * Move reserved phys swap into memory swap (unreserve phys swap
3212  * and reserve mem swap by the same amount).
3213  * Used by segspt when it needs to lock resrved swap npages in memory
3214  */
3215 int
3216 anon_swap_adjust(pgcnt_t npages)
3217 {
3218 	pgcnt_t unlocked_mem_swap;
3219 
3220 	mutex_enter(&anoninfo_lock);
3221 
3222 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3223 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3224 
3225 	unlocked_mem_swap = k_anoninfo.ani_mem_resv
3226 					- k_anoninfo.ani_locked_swap;
3227 	if (npages > unlocked_mem_swap) {
3228 		spgcnt_t adjusted_swap = npages - unlocked_mem_swap;
3229 
3230 		/*
3231 		 * if there is not enough unlocked mem swap we take missing
3232 		 * amount from phys swap and give it to mem swap
3233 		 */
3234 		if (!page_reclaim_mem(adjusted_swap, segspt_minfree, 1)) {
3235 			mutex_exit(&anoninfo_lock);
3236 			return (ENOMEM);
3237 		}
3238 
3239 		k_anoninfo.ani_mem_resv += adjusted_swap;
3240 		ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap);
3241 		k_anoninfo.ani_phys_resv -= adjusted_swap;
3242 
3243 		ANI_ADD(adjusted_swap);
3244 	}
3245 	k_anoninfo.ani_locked_swap += npages;
3246 
3247 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3248 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3249 
3250 	mutex_exit(&anoninfo_lock);
3251 
3252 	return (0);
3253 }
3254 
3255 /*
3256  * 'unlocked' reserved mem swap so when it is unreserved it
3257  * can be moved back phys (disk) swap
3258  */
3259 void
3260 anon_swap_restore(pgcnt_t npages)
3261 {
3262 	mutex_enter(&anoninfo_lock);
3263 
3264 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3265 
3266 	ASSERT(k_anoninfo.ani_locked_swap >= npages);
3267 	k_anoninfo.ani_locked_swap -= npages;
3268 
3269 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3270 
3271 	mutex_exit(&anoninfo_lock);
3272 }
3273 
3274 /*
3275  * Return the pointer from the list for a
3276  * specified anon index.
3277  */
3278 ulong_t *
3279 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx)
3280 {
3281 	struct anon	**app;
3282 	void 		**ppp;
3283 
3284 	ASSERT(an_idx < ahp->size);
3285 
3286 	/*
3287 	 * Single level case.
3288 	 */
3289 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
3290 		return ((ulong_t *)&ahp->array_chunk[an_idx]);
3291 	} else {
3292 
3293 		/*
3294 		 * 2 level case.
3295 		 */
3296 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3297 		if (*ppp == NULL) {
3298 			mutex_enter(&ahp->serial_lock);
3299 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3300 			if (*ppp == NULL)
3301 				*ppp = kmem_zalloc(PAGESIZE, KM_SLEEP);
3302 			mutex_exit(&ahp->serial_lock);
3303 		}
3304 		app = *ppp;
3305 		return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]);
3306 	}
3307 }
3308 
3309 void
3310 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj)
3311 {
3312 	ulong_t		*ap_slot;
3313 	kmutex_t	*mtx;
3314 	kcondvar_t	*cv;
3315 	int		hash;
3316 
3317 	/*
3318 	 * Use szc to determine anon slot(s) to appear atomic.
3319 	 * If szc = 0, then lock the anon slot and mark it busy.
3320 	 * If szc > 0, then lock the range of slots by getting the
3321 	 * anon_array_lock for the first anon slot, and mark only the
3322 	 * first anon slot busy to represent whole range being busy.
3323 	 */
3324 
3325 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3326 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3327 	hash = ANON_ARRAY_HASH(amp, an_idx);
3328 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3329 	sobj->sync_cv = cv = &anon_array_cv[hash];
3330 	mutex_enter(mtx);
3331 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3332 	while (ANON_ISBUSY(ap_slot))
3333 		cv_wait(cv, mtx);
3334 	ANON_SETBUSY(ap_slot);
3335 	sobj->sync_data = ap_slot;
3336 	mutex_exit(mtx);
3337 }
3338 
3339 int
3340 anon_array_try_enter(struct anon_map *amp, ulong_t an_idx,
3341 			anon_sync_obj_t *sobj)
3342 {
3343 	ulong_t		*ap_slot;
3344 	kmutex_t	*mtx;
3345 	int		hash;
3346 
3347 	/*
3348 	 * Try to lock a range of anon slots.
3349 	 * Use szc to determine anon slot(s) to appear atomic.
3350 	 * If szc = 0, then lock the anon slot and mark it busy.
3351 	 * If szc > 0, then lock the range of slots by getting the
3352 	 * anon_array_lock for the first anon slot, and mark only the
3353 	 * first anon slot busy to represent whole range being busy.
3354 	 * Fail if the mutex or the anon_array are busy.
3355 	 */
3356 
3357 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3358 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3359 	hash = ANON_ARRAY_HASH(amp, an_idx);
3360 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3361 	sobj->sync_cv = &anon_array_cv[hash];
3362 	if (!mutex_tryenter(mtx)) {
3363 		return (EWOULDBLOCK);
3364 	}
3365 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3366 	if (ANON_ISBUSY(ap_slot)) {
3367 		mutex_exit(mtx);
3368 		return (EWOULDBLOCK);
3369 	}
3370 	ANON_SETBUSY(ap_slot);
3371 	sobj->sync_data = ap_slot;
3372 	mutex_exit(mtx);
3373 	return (0);
3374 }
3375 
3376 void
3377 anon_array_exit(anon_sync_obj_t *sobj)
3378 {
3379 	mutex_enter(sobj->sync_mutex);
3380 	ASSERT(ANON_ISBUSY(sobj->sync_data));
3381 	ANON_CLRBUSY(sobj->sync_data);
3382 	if (CV_HAS_WAITERS(sobj->sync_cv))
3383 		cv_broadcast(sobj->sync_cv);
3384 	mutex_exit(sobj->sync_mutex);
3385 }
3386