xref: /illumos-gate/usr/src/uts/common/vm/vm_anon.c (revision 91b2cbb33f0dcb9fb5a72db1795003e07afeded9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved  	*/
27 
28 /*
29  * University Copyright- Copyright (c) 1982, 1986, 1988
30  * The Regents of the University of California
31  * All Rights Reserved
32  *
33  * University Acknowledgment- Portions of this document are derived from
34  * software developed by the University of California, Berkeley, and its
35  * contributors.
36  */
37 
38 /*
39  * VM - anonymous pages.
40  *
41  * This layer sits immediately above the vm_swap layer.  It manages
42  * physical pages that have no permanent identity in the file system
43  * name space, using the services of the vm_swap layer to allocate
44  * backing storage for these pages.  Since these pages have no external
45  * identity, they are discarded when the last reference is removed.
46  *
47  * An important function of this layer is to manage low-level sharing
48  * of pages that are logically distinct but that happen to be
49  * physically identical (e.g., the corresponding pages of the processes
50  * resulting from a fork before one process or the other changes their
51  * contents).  This pseudo-sharing is present only as an optimization
52  * and is not to be confused with true sharing in which multiple
53  * address spaces deliberately contain references to the same object;
54  * such sharing is managed at a higher level.
55  *
56  * The key data structure here is the anon struct, which contains a
57  * reference count for its associated physical page and a hint about
58  * the identity of that page.  Anon structs typically live in arrays,
59  * with an instance's position in its array determining where the
60  * corresponding backing storage is allocated; however, the swap_xlate()
61  * routine abstracts away this representation information so that the
62  * rest of the anon layer need not know it.  (See the swap layer for
63  * more details on anon struct layout.)
64  *
65  * In the future versions of the system, the association between an
66  * anon struct and its position on backing store will change so that
67  * we don't require backing store all anonymous pages in the system.
68  * This is important for consideration for large memory systems.
69  * We can also use this technique to delay binding physical locations
70  * to anonymous pages until pageout/swapout time where we can make
71  * smarter allocation decisions to improve anonymous klustering.
72  *
73  * Many of the routines defined here take a (struct anon **) argument,
74  * which allows the code at this level to manage anon pages directly,
75  * so that callers can regard anon structs as opaque objects and not be
76  * concerned with assigning or inspecting their contents.
77  *
78  * Clients of this layer refer to anon pages indirectly.  That is, they
79  * maintain arrays of pointers to anon structs rather than maintaining
80  * anon structs themselves.  The (struct anon **) arguments mentioned
81  * above are pointers to entries in these arrays.  It is these arrays
82  * that capture the mapping between offsets within a given segment and
83  * the corresponding anonymous backing storage address.
84  */
85 
86 #ifdef DEBUG
87 #define	ANON_DEBUG
88 #endif
89 
90 #include <sys/types.h>
91 #include <sys/t_lock.h>
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/mman.h>
95 #include <sys/cred.h>
96 #include <sys/thread.h>
97 #include <sys/vnode.h>
98 #include <sys/cpuvar.h>
99 #include <sys/swap.h>
100 #include <sys/cmn_err.h>
101 #include <sys/vtrace.h>
102 #include <sys/kmem.h>
103 #include <sys/sysmacros.h>
104 #include <sys/bitmap.h>
105 #include <sys/vmsystm.h>
106 #include <sys/tuneable.h>
107 #include <sys/debug.h>
108 #include <sys/fs/swapnode.h>
109 #include <sys/tnf_probe.h>
110 #include <sys/lgrp.h>
111 #include <sys/policy.h>
112 #include <sys/condvar_impl.h>
113 #include <sys/mutex_impl.h>
114 #include <sys/rctl.h>
115 
116 #include <vm/as.h>
117 #include <vm/hat.h>
118 #include <vm/anon.h>
119 #include <vm/page.h>
120 #include <vm/vpage.h>
121 #include <vm/seg.h>
122 #include <vm/rm.h>
123 
124 #include <fs/fs_subr.h>
125 
126 struct vnode *anon_vp;
127 
128 int anon_debug;
129 
130 kmutex_t	anoninfo_lock;
131 struct		k_anoninfo k_anoninfo;
132 ani_free_t	ani_free_pool[ANI_MAX_POOL];
133 pad_mutex_t	anon_array_lock[ANON_LOCKSIZE];
134 kcondvar_t	anon_array_cv[ANON_LOCKSIZE];
135 
136 /*
137  * Global hash table for (vp, off) -> anon slot
138  */
139 extern	int swap_maxcontig;
140 size_t	anon_hash_size;
141 struct anon **anon_hash;
142 
143 static struct kmem_cache *anon_cache;
144 static struct kmem_cache *anonmap_cache;
145 
146 #ifdef VM_STATS
147 static struct anonvmstats_str {
148 	ulong_t getpages[30];
149 	ulong_t privatepages[10];
150 	ulong_t demotepages[9];
151 	ulong_t decrefpages[9];
152 	ulong_t	dupfillholes[4];
153 	ulong_t freepages[1];
154 } anonvmstats;
155 #endif /* VM_STATS */
156 
157 /*ARGSUSED*/
158 static int
159 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags)
160 {
161 	struct anon_map *amp = buf;
162 
163 	rw_init(&amp->a_rwlock, NULL, RW_DEFAULT, NULL);
164 	cv_init(&amp->a_purgecv, NULL, CV_DEFAULT, NULL);
165 	mutex_init(&amp->a_pmtx, NULL, MUTEX_DEFAULT, NULL);
166 	mutex_init(&amp->a_purgemtx, NULL, MUTEX_DEFAULT, NULL);
167 	return (0);
168 }
169 
170 /*ARGSUSED1*/
171 static void
172 anonmap_cache_destructor(void *buf, void *cdrarg)
173 {
174 	struct anon_map *amp = buf;
175 
176 	rw_destroy(&amp->a_rwlock);
177 	cv_destroy(&amp->a_purgecv);
178 	mutex_destroy(&amp->a_pmtx);
179 	mutex_destroy(&amp->a_purgemtx);
180 }
181 
182 kmutex_t	anonhash_lock[AH_LOCK_SIZE];
183 kmutex_t	anonpages_hash_lock[AH_LOCK_SIZE];
184 
185 void
186 anon_init(void)
187 {
188 	int i;
189 
190 	anon_hash_size = 1L << highbit(physmem / ANON_HASHAVELEN);
191 
192 	for (i = 0; i < AH_LOCK_SIZE; i++) {
193 		mutex_init(&anonhash_lock[i], NULL, MUTEX_DEFAULT, NULL);
194 		mutex_init(&anonpages_hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
195 	}
196 
197 	for (i = 0; i < ANON_LOCKSIZE; i++) {
198 		mutex_init(&anon_array_lock[i].pad_mutex, NULL,
199 		    MUTEX_DEFAULT, NULL);
200 		cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL);
201 	}
202 
203 	anon_hash = (struct anon **)
204 	    kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP);
205 	anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon),
206 	    AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, KMC_PREFILL);
207 	anonmap_cache = kmem_cache_create("anonmap_cache",
208 	    sizeof (struct anon_map), 0,
209 	    anonmap_cache_constructor, anonmap_cache_destructor, NULL,
210 	    NULL, NULL, 0);
211 	swap_maxcontig = (1024 * 1024) >> PAGESHIFT;	/* 1MB of pages */
212 
213 	anon_vp = vn_alloc(KM_SLEEP);
214 	vn_setops(anon_vp, swap_vnodeops);
215 	anon_vp->v_type = VREG;
216 	anon_vp->v_flag |= (VISSWAP|VISSWAPFS);
217 }
218 
219 /*
220  * Global anon slot hash table manipulation.
221  */
222 
223 static void
224 anon_addhash(struct anon *ap)
225 {
226 	int index;
227 
228 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
229 	index = ANON_HASH(ap->an_vp, ap->an_off);
230 	ap->an_hash = anon_hash[index];
231 	anon_hash[index] = ap;
232 }
233 
234 static void
235 anon_rmhash(struct anon *ap)
236 {
237 	struct anon **app;
238 
239 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
240 
241 	for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)];
242 	    *app; app = &((*app)->an_hash)) {
243 		if (*app == ap) {
244 			*app = ap->an_hash;
245 			break;
246 		}
247 	}
248 }
249 
250 /*
251  * The anon array interfaces. Functions allocating,
252  * freeing array of pointers, and returning/setting
253  * entries in the array of pointers for a given offset.
254  *
255  * Create the list of pointers
256  */
257 struct anon_hdr *
258 anon_create(pgcnt_t npages, int flags)
259 {
260 	struct anon_hdr *ahp;
261 	ulong_t nchunks;
262 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
263 
264 	if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) {
265 		return (NULL);
266 	}
267 
268 	mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL);
269 	/*
270 	 * Single level case.
271 	 */
272 	ahp->size = npages;
273 	if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) {
274 
275 		if (flags & ANON_ALLOC_FORCE)
276 			ahp->flags |= ANON_ALLOC_FORCE;
277 
278 		ahp->array_chunk = kmem_zalloc(
279 		    ahp->size * sizeof (struct anon *), kmemflags);
280 
281 		if (ahp->array_chunk == NULL) {
282 			kmem_free(ahp, sizeof (struct anon_hdr));
283 			return (NULL);
284 		}
285 	} else {
286 		/*
287 		 * 2 Level case.
288 		 * anon hdr size needs to be rounded off  to be a multiple
289 		 * of ANON_CHUNK_SIZE. This is important as various anon
290 		 * related functions depend on this.
291 		 * NOTE -
292 		 * anon_grow()  makes anon hdr size a multiple of
293 		 * ANON_CHUNK_SIZE.
294 		 * amp size is <= anon hdr size.
295 		 * anon_index + seg_pgs <= anon hdr size.
296 		 */
297 		ahp->size = P2ROUNDUP(npages, ANON_CHUNK_SIZE);
298 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
299 
300 		ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *),
301 		    kmemflags);
302 
303 		if (ahp->array_chunk == NULL) {
304 			kmem_free(ahp, sizeof (struct anon_hdr));
305 			return (NULL);
306 		}
307 	}
308 	return (ahp);
309 }
310 
311 /*
312  * Free the array of pointers
313  */
314 void
315 anon_release(struct anon_hdr *ahp, pgcnt_t npages)
316 {
317 	ulong_t i;
318 	void **ppp;
319 	ulong_t nchunks;
320 
321 	ASSERT(npages <= ahp->size);
322 
323 	/*
324 	 * Single level case.
325 	 */
326 	if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
327 		kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *));
328 	} else {
329 		/*
330 		 * 2 level case.
331 		 */
332 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
333 		for (i = 0; i < nchunks; i++) {
334 			ppp = &ahp->array_chunk[i];
335 			if (*ppp != NULL)
336 				kmem_free(*ppp, PAGESIZE);
337 		}
338 		kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *));
339 	}
340 	mutex_destroy(&ahp->serial_lock);
341 	kmem_free(ahp, sizeof (struct anon_hdr));
342 }
343 
344 /*
345  * Return the pointer from the list for a
346  * specified anon index.
347  */
348 struct anon *
349 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx)
350 {
351 	struct anon **app;
352 
353 	ASSERT(an_idx < ahp->size);
354 
355 	/*
356 	 * Single level case.
357 	 */
358 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
359 		return ((struct anon *)
360 		    ((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK));
361 	} else {
362 
363 		/*
364 		 * 2 level case.
365 		 */
366 		app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
367 		if (app) {
368 			return ((struct anon *)
369 			    ((uintptr_t)app[an_idx & ANON_CHUNK_OFF] &
370 			    ANON_PTRMASK));
371 		} else {
372 			return (NULL);
373 		}
374 	}
375 }
376 
377 /*
378  * Return the anon pointer for the first valid entry in the anon list,
379  * starting from the given index.
380  */
381 struct anon *
382 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index)
383 {
384 	struct anon *ap;
385 	struct anon **app;
386 	ulong_t chunkoff;
387 	ulong_t i;
388 	ulong_t j;
389 	pgcnt_t size;
390 
391 	i = *index;
392 	size = ahp->size;
393 
394 	ASSERT(i < size);
395 
396 	if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
397 		/*
398 		 * 1 level case
399 		 */
400 		while (i < size) {
401 			ap = (struct anon *)
402 			    ((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK);
403 			if (ap) {
404 				*index = i;
405 				return (ap);
406 			}
407 			i++;
408 		}
409 	} else {
410 		/*
411 		 * 2 level case
412 		 */
413 		chunkoff = i & ANON_CHUNK_OFF;
414 		while (i < size) {
415 			app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT];
416 			if (app)
417 				for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) {
418 					ap = (struct anon *)
419 					    ((uintptr_t)app[j] & ANON_PTRMASK);
420 					if (ap) {
421 						*index = i + (j - chunkoff);
422 						return (ap);
423 					}
424 				}
425 			chunkoff = 0;
426 			i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF;
427 		}
428 	}
429 	*index = size;
430 	return (NULL);
431 }
432 
433 /*
434  * Set list entry with a given pointer for a specified offset
435  */
436 int
437 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags)
438 {
439 	void		**ppp;
440 	struct anon	**app;
441 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
442 	uintptr_t	*ap_addr;
443 
444 	ASSERT(an_idx < ahp->size);
445 
446 	/*
447 	 * Single level case.
448 	 */
449 	if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
450 		ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx];
451 	} else {
452 
453 		/*
454 		 * 2 level case.
455 		 */
456 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
457 
458 		ASSERT(ppp != NULL);
459 		if (*ppp == NULL) {
460 			mutex_enter(&ahp->serial_lock);
461 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
462 			if (*ppp == NULL) {
463 				*ppp = kmem_zalloc(PAGESIZE, kmemflags);
464 				if (*ppp == NULL) {
465 					mutex_exit(&ahp->serial_lock);
466 					return (ENOMEM);
467 				}
468 			}
469 			mutex_exit(&ahp->serial_lock);
470 		}
471 		app = *ppp;
472 		ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF];
473 	}
474 	*ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap;
475 	return (0);
476 }
477 
478 /*
479  * Copy anon array into a given new anon array
480  */
481 int
482 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx,
483 	struct anon_hdr *dahp, ulong_t d_idx,
484 	pgcnt_t npages, int flags)
485 {
486 	void **sapp, **dapp;
487 	void *ap;
488 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
489 
490 	ASSERT((s_idx < sahp->size) && (d_idx < dahp->size));
491 	ASSERT((npages <= sahp->size) && (npages <= dahp->size));
492 
493 	/*
494 	 * Both arrays are 1 level.
495 	 */
496 	if (((sahp->size <= ANON_CHUNK_SIZE) &&
497 	    (dahp->size <= ANON_CHUNK_SIZE)) ||
498 	    ((sahp->flags & ANON_ALLOC_FORCE) &&
499 	    (dahp->flags & ANON_ALLOC_FORCE))) {
500 
501 		bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx],
502 		    npages * sizeof (struct anon *));
503 		return (0);
504 	}
505 
506 	/*
507 	 * Both arrays are 2 levels.
508 	 */
509 	if (sahp->size > ANON_CHUNK_SIZE &&
510 	    dahp->size > ANON_CHUNK_SIZE &&
511 	    ((sahp->flags & ANON_ALLOC_FORCE) == 0) &&
512 	    ((dahp->flags & ANON_ALLOC_FORCE) == 0)) {
513 
514 		ulong_t sapidx, dapidx;
515 		ulong_t *sap, *dap;
516 		ulong_t chknp;
517 
518 		while (npages != 0) {
519 
520 			sapidx = s_idx & ANON_CHUNK_OFF;
521 			dapidx = d_idx & ANON_CHUNK_OFF;
522 			chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx);
523 			if (chknp > npages)
524 				chknp = npages;
525 
526 			sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT];
527 			if ((sap = *sapp) != NULL) {
528 				dapp = &dahp->array_chunk[d_idx
529 				    >> ANON_CHUNK_SHIFT];
530 				if ((dap = *dapp) == NULL) {
531 					*dapp = kmem_zalloc(PAGESIZE,
532 					    kmemflags);
533 					if ((dap = *dapp) == NULL)
534 						return (ENOMEM);
535 				}
536 				bcopy((sap + sapidx), (dap + dapidx),
537 				    chknp << ANON_PTRSHIFT);
538 			}
539 			s_idx += chknp;
540 			d_idx += chknp;
541 			npages -= chknp;
542 		}
543 		return (0);
544 	}
545 
546 	/*
547 	 * At least one of the arrays is 2 level.
548 	 */
549 	while (npages--) {
550 		if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) {
551 			ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx)));
552 			if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM)
553 					return (ENOMEM);
554 		}
555 		s_idx++;
556 		d_idx++;
557 	}
558 	return (0);
559 }
560 
561 
562 /*
563  * ANON_INITBUF is a convenience macro for anon_grow() below. It
564  * takes a buffer dst, which is at least as large as buffer src. It
565  * does a bcopy from src into dst, and then bzeros the extra bytes
566  * of dst. If tail is set, the data in src is tail aligned within
567  * dst instead of head aligned.
568  */
569 
570 #define	ANON_INITBUF(src, srclen, dst, dstsize, tail)			      \
571 	if (tail) {							      \
572 		bzero((dst), (dstsize) - (srclen));			      \
573 		bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \
574 	} else {							      \
575 		bcopy((src), (dst), (srclen));				      \
576 		bzero((char *)(dst) + (srclen), (dstsize) - (srclen));	      \
577 	}
578 
579 #define	ANON_1_LEVEL_INC	(ANON_CHUNK_SIZE / 8)
580 #define	ANON_2_LEVEL_INC	(ANON_1_LEVEL_INC * ANON_CHUNK_SIZE)
581 
582 /*
583  * anon_grow() is used to efficiently extend an existing anon array.
584  * startidx_p points to the index into the anon array of the first page
585  * that is in use. oldseg_pgs is the number of pages in use, starting at
586  * *startidx_p. newpages is the number of additional pages desired.
587  *
588  * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed.
589  *
590  * The growth is done by creating a new top level of the anon array,
591  * and (if the array is 2-level) reusing the existing second level arrays.
592  *
593  * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN.
594  *
595  * Returns the new number of pages in the anon array.
596  */
597 pgcnt_t
598 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs,
599     pgcnt_t newseg_pgs, int flags)
600 {
601 	ulong_t startidx = startidx_p ? *startidx_p : 0;
602 	pgcnt_t oldamp_pgs = ahp->size, newamp_pgs;
603 	pgcnt_t oelems, nelems, totpages;
604 	void **level1;
605 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
606 	int growdown = (flags & ANON_GROWDOWN);
607 	size_t newarrsz, oldarrsz;
608 	void *level2;
609 
610 	ASSERT(!(startidx_p == NULL && growdown));
611 	ASSERT(startidx + oldseg_pgs <= ahp->size);
612 
613 	/*
614 	 * Determine the total number of pages needed in the new
615 	 * anon array. If growing down, totpages is all pages from
616 	 * startidx through the end of the array, plus <newseg_pgs>
617 	 * pages. If growing up, keep all pages from page 0 through
618 	 * the last page currently in use, plus <newseg_pgs> pages.
619 	 */
620 	if (growdown)
621 		totpages = oldamp_pgs - startidx + newseg_pgs;
622 	else
623 		totpages = startidx + oldseg_pgs + newseg_pgs;
624 
625 	/* If the array is already large enough, just return. */
626 
627 	if (oldamp_pgs >= totpages) {
628 		if (growdown)
629 			*startidx_p = oldamp_pgs - totpages;
630 		return (oldamp_pgs);
631 	}
632 
633 	/*
634 	 * oldamp_pgs/newamp_pgs are the total numbers of pages represented
635 	 * by the corresponding arrays.
636 	 * oelems/nelems are the number of pointers in the top level arrays
637 	 * which may be either level 1 or level 2.
638 	 * Will the new anon array be one level or two levels?
639 	 */
640 	if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
641 		newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC);
642 		oelems = oldamp_pgs;
643 		nelems = newamp_pgs;
644 	} else {
645 		newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC);
646 		oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
647 		nelems = newamp_pgs >> ANON_CHUNK_SHIFT;
648 	}
649 
650 	newarrsz = nelems * sizeof (void *);
651 	level1 = kmem_alloc(newarrsz, kmemflags);
652 	if (level1 == NULL)
653 		return (0);
654 
655 	/* Are we converting from a one level to a two level anon array? */
656 
657 	if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE &&
658 	    !(ahp->flags & ANON_ALLOC_FORCE)) {
659 
660 		/*
661 		 * Yes, we're converting to a two level. Reuse old level 1
662 		 * as new level 2 if it is exactly PAGESIZE. Otherwise
663 		 * alloc a new level 2 and copy the old level 1 data into it.
664 		 */
665 		if (oldamp_pgs == ANON_CHUNK_SIZE) {
666 			level2 = (void *)ahp->array_chunk;
667 		} else {
668 			level2 = kmem_alloc(PAGESIZE, kmemflags);
669 			if (level2 == NULL) {
670 				kmem_free(level1, newarrsz);
671 				return (0);
672 			}
673 			oldarrsz = oldamp_pgs * sizeof (void *);
674 
675 			ANON_INITBUF(ahp->array_chunk, oldarrsz,
676 			    level2, PAGESIZE, growdown);
677 			kmem_free(ahp->array_chunk, oldarrsz);
678 		}
679 		bzero(level1, newarrsz);
680 		if (growdown)
681 			level1[nelems - 1] = level2;
682 		else
683 			level1[0] = level2;
684 	} else {
685 		oldarrsz = oelems * sizeof (void *);
686 
687 		ANON_INITBUF(ahp->array_chunk, oldarrsz,
688 		    level1, newarrsz, growdown);
689 		kmem_free(ahp->array_chunk, oldarrsz);
690 	}
691 
692 	ahp->array_chunk = level1;
693 	ahp->size = newamp_pgs;
694 	if (growdown)
695 		*startidx_p = newamp_pgs - totpages;
696 
697 	return (newamp_pgs);
698 }
699 
700 
701 /*
702  * Called from clock handler to sync ani_free value.
703  */
704 
705 void
706 set_anoninfo(void)
707 {
708 	int	ix;
709 	pgcnt_t	total = 0;
710 
711 	for (ix = 0; ix < ANI_MAX_POOL; ix++) {
712 		total += ani_free_pool[ix].ani_count;
713 	}
714 	k_anoninfo.ani_free = total;
715 }
716 
717 /*
718  * Reserve anon space.
719  *
720  * It's no longer simply a matter of incrementing ani_resv to
721  * reserve swap space, we need to check memory-based as well
722  * as disk-backed (physical) swap.  The following algorithm
723  * is used:
724  * 	Check the space on physical swap
725  * 		i.e. amount needed < ani_max - ani_phys_resv
726  * 	If we are swapping on swapfs check
727  *		amount needed < (availrmem - swapfs_minfree)
728  * Since the algorithm to check for the quantity of swap space is
729  * almost the same as that for reserving it, we'll just use anon_resvmem
730  * with a flag to decrement availrmem.
731  *
732  * Return non-zero on success.
733  */
734 int
735 anon_resvmem(size_t size, boolean_t takemem, zone_t *zone, int tryhard)
736 {
737 	pgcnt_t npages = btopr(size);
738 	pgcnt_t mswap_pages = 0;
739 	pgcnt_t pswap_pages = 0;
740 	proc_t *p = curproc;
741 
742 	if (zone != NULL && takemem) {
743 		/* test zone.max-swap resource control */
744 		mutex_enter(&p->p_lock);
745 		if (rctl_incr_swap(p, zone, ptob(npages)) != 0) {
746 			mutex_exit(&p->p_lock);
747 			return (0);
748 		}
749 		mutex_exit(&p->p_lock);
750 	}
751 	mutex_enter(&anoninfo_lock);
752 
753 	/*
754 	 * pswap_pages is the number of pages we can take from
755 	 * physical (i.e. disk-backed) swap.
756 	 */
757 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
758 	pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv;
759 
760 	ANON_PRINT(A_RESV,
761 	    ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n",
762 	    npages, takemem, pswap_pages, (void *)caller()));
763 
764 	if (npages <= pswap_pages) {
765 		/*
766 		 * we have enough space on a physical swap
767 		 */
768 		if (takemem)
769 			k_anoninfo.ani_phys_resv += npages;
770 		mutex_exit(&anoninfo_lock);
771 		return (1);
772 	} else if (pswap_pages != 0) {
773 		/*
774 		 * we have some space on a physical swap
775 		 */
776 		if (takemem) {
777 			/*
778 			 * use up remainder of phys swap
779 			 */
780 			k_anoninfo.ani_phys_resv += pswap_pages;
781 			ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max);
782 		}
783 	}
784 	/*
785 	 * since (npages > pswap_pages) we need mem swap
786 	 * mswap_pages is the number of pages needed from availrmem
787 	 */
788 	ASSERT(npages > pswap_pages);
789 	mswap_pages = npages - pswap_pages;
790 
791 	ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n",
792 	    mswap_pages));
793 
794 	/*
795 	 * priv processes can reserve memory as swap as long as availrmem
796 	 * remains greater than swapfs_minfree; in the case of non-priv
797 	 * processes, memory can be reserved as swap only if availrmem
798 	 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus,
799 	 * swapfs_reserve amount of memswap is not available to non-priv
800 	 * processes. This protects daemons such as automounter dying
801 	 * as a result of application processes eating away almost entire
802 	 * membased swap. This safeguard becomes useless if apps are run
803 	 * with root access.
804 	 *
805 	 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem.
806 	 *
807 	 */
808 	if (tryhard) {
809 		pgcnt_t floor_pages;
810 
811 		if (secpolicy_resource_anon_mem(CRED())) {
812 			floor_pages = swapfs_minfree;
813 		} else {
814 			floor_pages = swapfs_minfree + swapfs_reserve;
815 		}
816 
817 		mutex_exit(&anoninfo_lock);
818 		(void) page_reclaim_mem(mswap_pages, floor_pages, 0);
819 		mutex_enter(&anoninfo_lock);
820 	}
821 
822 	mutex_enter(&freemem_lock);
823 	if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) ||
824 	    (availrmem > (swapfs_minfree + mswap_pages) &&
825 	    secpolicy_resource(CRED()) == 0)) {
826 
827 		if (takemem) {
828 			/*
829 			 * Take the memory from the rest of the system.
830 			 */
831 			availrmem -= mswap_pages;
832 			mutex_exit(&freemem_lock);
833 			k_anoninfo.ani_mem_resv += mswap_pages;
834 			ANI_ADD(mswap_pages);
835 			ANON_PRINT((A_RESV | A_MRESV),
836 			    ("anon_resvmem: took %ld pages of availrmem\n",
837 			    mswap_pages));
838 		} else {
839 			mutex_exit(&freemem_lock);
840 		}
841 
842 		ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
843 		mutex_exit(&anoninfo_lock);
844 		return (1);
845 	} else {
846 		/*
847 		 * Fail if not enough memory
848 		 */
849 		if (takemem) {
850 			k_anoninfo.ani_phys_resv -= pswap_pages;
851 		}
852 
853 		mutex_exit(&freemem_lock);
854 		mutex_exit(&anoninfo_lock);
855 		ANON_PRINT(A_RESV,
856 		    ("anon_resvmem: not enough space from swapfs\n"));
857 		if (zone != NULL && takemem)
858 			rctl_decr_swap(zone, ptob(npages));
859 		return (0);
860 	}
861 }
862 
863 /*
864  * Give back an anon reservation.
865  */
866 void
867 anon_unresvmem(size_t size, zone_t *zone)
868 {
869 	pgcnt_t npages = btopr(size);
870 	spgcnt_t mem_free_pages = 0;
871 	pgcnt_t phys_free_slots;
872 #ifdef	ANON_DEBUG
873 	pgcnt_t mem_resv;
874 #endif
875 	if (zone != NULL)
876 		rctl_decr_swap(zone, ptob(npages));
877 
878 	mutex_enter(&anoninfo_lock);
879 
880 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
881 
882 	/*
883 	 * If some of this reservation belonged to swapfs
884 	 * give it back to availrmem.
885 	 * ani_mem_resv is the amount of availrmem swapfs has reserved.
886 	 * but some of that memory could be locked by segspt so we can only
887 	 * return non locked ani_mem_resv back to availrmem
888 	 */
889 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
890 		ANON_PRINT((A_RESV | A_MRESV),
891 		    ("anon_unresv: growing availrmem by %ld pages\n",
892 		    MIN(k_anoninfo.ani_mem_resv, npages)));
893 
894 		mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv -
895 		    k_anoninfo.ani_locked_swap), npages);
896 		mutex_enter(&freemem_lock);
897 		availrmem += mem_free_pages;
898 		mutex_exit(&freemem_lock);
899 		k_anoninfo.ani_mem_resv -= mem_free_pages;
900 
901 		ANI_ADD(-mem_free_pages);
902 	}
903 	/*
904 	 * The remainder of the pages is returned to phys swap
905 	 */
906 	ASSERT(npages >= mem_free_pages);
907 	phys_free_slots = npages - mem_free_pages;
908 
909 	if (phys_free_slots) {
910 		k_anoninfo.ani_phys_resv -= phys_free_slots;
911 	}
912 
913 #ifdef	ANON_DEBUG
914 	mem_resv = k_anoninfo.ani_mem_resv;
915 #endif
916 
917 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
918 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
919 
920 	mutex_exit(&anoninfo_lock);
921 
922 	ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n",
923 	    npages, mem_resv, (void *)caller()));
924 }
925 
926 /*
927  * Allocate an anon slot and return it with the lock held.
928  */
929 struct anon *
930 anon_alloc(struct vnode *vp, anoff_t off)
931 {
932 	struct anon	*ap;
933 	kmutex_t	*ahm;
934 
935 	ap = kmem_cache_alloc(anon_cache, KM_SLEEP);
936 	if (vp == NULL) {
937 		swap_alloc(ap);
938 	} else {
939 		ap->an_vp = vp;
940 		ap->an_off = off;
941 	}
942 	ap->an_refcnt = 1;
943 	ap->an_pvp = NULL;
944 	ap->an_poff = 0;
945 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
946 	mutex_enter(ahm);
947 	anon_addhash(ap);
948 	mutex_exit(ahm);
949 	ANI_ADD(-1);
950 	ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n",
951 	    (void *)ap, (ap ? (void *)ap->an_vp : NULL)));
952 	return (ap);
953 }
954 
955 /*
956  * Called for pages locked in memory via softlock/pagelock/mlock to make sure
957  * such pages don't consume any physical swap resources needed for swapping
958  * unlocked pages.
959  */
960 void
961 anon_swap_free(struct anon *ap, page_t *pp)
962 {
963 	kmutex_t *ahm;
964 
965 	ASSERT(ap != NULL);
966 	ASSERT(pp != NULL);
967 	ASSERT(PAGE_LOCKED(pp));
968 	ASSERT(pp->p_vnode != NULL);
969 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
970 	ASSERT(ap->an_refcnt != 0);
971 	ASSERT(pp->p_vnode == ap->an_vp);
972 	ASSERT(pp->p_offset == ap->an_off);
973 
974 	if (ap->an_pvp == NULL)
975 		return;
976 
977 	page_io_lock(pp);
978 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
979 	mutex_enter(ahm);
980 
981 	ASSERT(ap->an_refcnt != 0);
982 	ASSERT(pp->p_vnode == ap->an_vp);
983 	ASSERT(pp->p_offset == ap->an_off);
984 
985 	if (ap->an_pvp != NULL) {
986 		swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
987 		ap->an_pvp = NULL;
988 		ap->an_poff = 0;
989 		mutex_exit(ahm);
990 		hat_setmod(pp);
991 	} else {
992 		mutex_exit(ahm);
993 	}
994 	page_io_unlock(pp);
995 }
996 
997 /*
998  * Decrement the reference count of an anon page.
999  * If reference count goes to zero, free it and
1000  * its associated page (if any).
1001  */
1002 void
1003 anon_decref(struct anon *ap)
1004 {
1005 	page_t *pp;
1006 	struct vnode *vp;
1007 	anoff_t off;
1008 	kmutex_t *ahm;
1009 
1010 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1011 	mutex_enter(ahm);
1012 	ASSERT(ap->an_refcnt != 0);
1013 	if (ap->an_refcnt == 0)
1014 		panic("anon_decref: slot count 0");
1015 	if (--ap->an_refcnt == 0) {
1016 		swap_xlate(ap, &vp, &off);
1017 		anon_rmhash(ap);
1018 		if (ap->an_pvp != NULL)
1019 			swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
1020 		mutex_exit(ahm);
1021 
1022 		/*
1023 		 * If there is a page for this anon slot we will need to
1024 		 * call VN_DISPOSE to get rid of the vp association and
1025 		 * put the page back on the free list as really free.
1026 		 * Acquire the "exclusive" lock to ensure that any
1027 		 * pending i/o always completes before the swap slot
1028 		 * is freed.
1029 		 */
1030 		pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1031 		if (pp != NULL) {
1032 			/*LINTED: constant in conditional context */
1033 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
1034 		}
1035 		ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n",
1036 		    (void *)ap, (void *)ap->an_vp));
1037 
1038 		kmem_cache_free(anon_cache, ap);
1039 
1040 		ANI_ADD(1);
1041 	} else {
1042 		mutex_exit(ahm);
1043 	}
1044 }
1045 
1046 
1047 /*
1048  * check an_refcnt of the root anon slot (anon_index argument is aligned at
1049  * seg->s_szc level) to determine whether COW processing is required.
1050  * anonpages_hash_lock[] held on the root ap ensures that if root's
1051  * refcnt is 1 all other refcnt's are 1 as well (and they can't increase
1052  * later since this process can't fork while its AS lock is held).
1053  *
1054  * returns 1 if the root anon slot has a refcnt > 1 otherwise returns 0.
1055  */
1056 int
1057 anon_szcshare(struct anon_hdr *ahp, ulong_t anon_index)
1058 {
1059 	struct anon	*ap;
1060 	kmutex_t	*ahmpages = NULL;
1061 
1062 	ap = anon_get_ptr(ahp, anon_index);
1063 	if (ap == NULL)
1064 		return (0);
1065 
1066 	ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1067 	mutex_enter(ahmpages);
1068 	ASSERT(ap->an_refcnt >= 1);
1069 	if (ap->an_refcnt == 1) {
1070 		mutex_exit(ahmpages);
1071 		return (0);
1072 	}
1073 	mutex_exit(ahmpages);
1074 	return (1);
1075 }
1076 /*
1077  * Check 'nslots' anon slots for refcnt > 1.
1078  *
1079  * returns 1 if any of the 'nslots' anon slots has a refcnt > 1 otherwise
1080  * returns 0.
1081  */
1082 static int
1083 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
1084 {
1085 	struct anon *ap;
1086 
1087 	while (nslots-- > 0) {
1088 		if ((ap = anon_get_ptr(ahp, anon_index)) != NULL &&
1089 		    ap->an_refcnt > 1)
1090 			return (1);
1091 		anon_index++;
1092 	}
1093 
1094 	return (0);
1095 }
1096 
1097 static void
1098 anon_decref_pages(
1099 	struct anon_hdr *ahp,
1100 	ulong_t an_idx,
1101 	uint_t szc)
1102 {
1103 	struct anon *ap = anon_get_ptr(ahp, an_idx);
1104 	kmutex_t *ahmpages = NULL;
1105 	page_t *pp;
1106 	pgcnt_t pgcnt = page_get_pagecnt(szc);
1107 	pgcnt_t i;
1108 	struct vnode *vp;
1109 	anoff_t   off;
1110 	kmutex_t *ahm;
1111 #ifdef DEBUG
1112 	int refcnt = 1;
1113 #endif
1114 
1115 	ASSERT(szc != 0);
1116 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1117 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1118 	ASSERT(an_idx < ahp->size);
1119 
1120 	if (ahp->size - an_idx < pgcnt) {
1121 		/*
1122 		 * In case of shared mappings total anon map size may not be
1123 		 * the largest page size aligned.
1124 		 */
1125 		pgcnt = ahp->size - an_idx;
1126 	}
1127 
1128 	VM_STAT_ADD(anonvmstats.decrefpages[0]);
1129 
1130 	if (ap != NULL) {
1131 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1132 		mutex_enter(ahmpages);
1133 		ASSERT((refcnt = ap->an_refcnt) != 0);
1134 		VM_STAT_ADD(anonvmstats.decrefpages[1]);
1135 		if (ap->an_refcnt == 1) {
1136 			VM_STAT_ADD(anonvmstats.decrefpages[2]);
1137 			ASSERT(!anon_share(ahp, an_idx, pgcnt));
1138 			mutex_exit(ahmpages);
1139 			ahmpages = NULL;
1140 		}
1141 	}
1142 
1143 	i = 0;
1144 	while (i < pgcnt) {
1145 		if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) {
1146 			ASSERT(refcnt == 1 && ahmpages == NULL);
1147 			i++;
1148 			continue;
1149 		}
1150 		ASSERT(ap->an_refcnt == refcnt);
1151 		ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1152 		ASSERT(ahmpages == NULL || ap->an_refcnt > 1);
1153 
1154 		if (ahmpages == NULL) {
1155 			swap_xlate(ap, &vp, &off);
1156 			pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1157 			if (pp == NULL || pp->p_szc == 0) {
1158 				VM_STAT_ADD(anonvmstats.decrefpages[3]);
1159 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1160 				    ap->an_off)];
1161 				(void) anon_set_ptr(ahp, an_idx + i, NULL,
1162 				    ANON_SLEEP);
1163 				mutex_enter(ahm);
1164 				ap->an_refcnt--;
1165 				ASSERT(ap->an_refcnt == 0);
1166 				anon_rmhash(ap);
1167 				if (ap->an_pvp)
1168 					swap_phys_free(ap->an_pvp, ap->an_poff,
1169 					    PAGESIZE);
1170 				mutex_exit(ahm);
1171 				if (pp == NULL) {
1172 					pp = page_lookup(vp, (u_offset_t)off,
1173 					    SE_EXCL);
1174 					ASSERT(pp == NULL || pp->p_szc == 0);
1175 				}
1176 				if (pp != NULL) {
1177 					VM_STAT_ADD(anonvmstats.decrefpages[4]);
1178 					/*LINTED*/
1179 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
1180 				}
1181 				kmem_cache_free(anon_cache, ap);
1182 				ANI_ADD(1);
1183 				i++;
1184 			} else {
1185 				pgcnt_t j;
1186 				pgcnt_t curpgcnt =
1187 				    page_get_pagecnt(pp->p_szc);
1188 				size_t ppasize = curpgcnt * sizeof (page_t *);
1189 				page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
1190 				int dispose = 0;
1191 
1192 				VM_STAT_ADD(anonvmstats.decrefpages[5]);
1193 
1194 				ASSERT(pp->p_szc <= szc);
1195 				ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt));
1196 				ASSERT(IS_P2ALIGNED(i, curpgcnt));
1197 				ASSERT(i + curpgcnt <= pgcnt);
1198 				ASSERT(!(page_pptonum(pp) & (curpgcnt - 1)));
1199 				ppa[0] = pp;
1200 				for (j = i + 1; j < i + curpgcnt; j++) {
1201 					ap = anon_get_ptr(ahp, an_idx + j);
1202 					ASSERT(ap != NULL &&
1203 					    ap->an_refcnt == 1);
1204 					swap_xlate(ap, &vp, &off);
1205 					pp = page_lookup(vp, (u_offset_t)off,
1206 					    SE_EXCL);
1207 					if (pp == NULL)
1208 						panic("anon_decref_pages: "
1209 						    "no page");
1210 
1211 					(void) hat_pageunload(pp,
1212 					    HAT_FORCE_PGUNLOAD);
1213 					ASSERT(pp->p_szc == ppa[0]->p_szc);
1214 					ASSERT(page_pptonum(pp) - 1 ==
1215 					    page_pptonum(ppa[j - i - 1]));
1216 					ppa[j - i] = pp;
1217 					if (ap->an_pvp != NULL &&
1218 					    !vn_matchopval(ap->an_pvp,
1219 					    VOPNAME_DISPOSE,
1220 					    (fs_generic_func_p)fs_dispose))
1221 						dispose = 1;
1222 				}
1223 				for (j = i; j < i + curpgcnt; j++) {
1224 					ap = anon_get_ptr(ahp, an_idx + j);
1225 					ASSERT(ap != NULL &&
1226 					    ap->an_refcnt == 1);
1227 					ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1228 					    ap->an_off)];
1229 					(void) anon_set_ptr(ahp, an_idx + j,
1230 					    NULL, ANON_SLEEP);
1231 					mutex_enter(ahm);
1232 					ap->an_refcnt--;
1233 					ASSERT(ap->an_refcnt == 0);
1234 					anon_rmhash(ap);
1235 					if (ap->an_pvp)
1236 						swap_phys_free(ap->an_pvp,
1237 						    ap->an_poff, PAGESIZE);
1238 					mutex_exit(ahm);
1239 					kmem_cache_free(anon_cache, ap);
1240 					ANI_ADD(1);
1241 				}
1242 				if (!dispose) {
1243 					VM_STAT_ADD(anonvmstats.decrefpages[6]);
1244 					page_destroy_pages(ppa[0]);
1245 				} else {
1246 					VM_STAT_ADD(anonvmstats.decrefpages[7]);
1247 					for (j = 0; j < curpgcnt; j++) {
1248 						ASSERT(PAGE_EXCL(ppa[j]));
1249 						ppa[j]->p_szc = 0;
1250 					}
1251 					for (j = 0; j < curpgcnt; j++) {
1252 						ASSERT(!hat_page_is_mapped(
1253 						    ppa[j]));
1254 						/*LINTED*/
1255 						VN_DISPOSE(ppa[j], B_INVAL, 0,
1256 						    kcred);
1257 					}
1258 				}
1259 				kmem_free(ppa, ppasize);
1260 				i += curpgcnt;
1261 			}
1262 		} else {
1263 			VM_STAT_ADD(anonvmstats.decrefpages[8]);
1264 			(void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP);
1265 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1266 			mutex_enter(ahm);
1267 			ap->an_refcnt--;
1268 			mutex_exit(ahm);
1269 			i++;
1270 		}
1271 	}
1272 
1273 	if (ahmpages != NULL) {
1274 		mutex_exit(ahmpages);
1275 	}
1276 }
1277 
1278 /*
1279  * Duplicate references to size bytes worth of anon pages.
1280  * Used when duplicating a segment that contains private anon pages.
1281  * This code assumes that procedure calling this one has already used
1282  * hat_chgprot() to disable write access to the range of addresses that
1283  * that *old actually refers to.
1284  */
1285 void
1286 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new,
1287 			ulong_t new_idx, size_t size)
1288 {
1289 	spgcnt_t npages;
1290 	kmutex_t *ahm;
1291 	struct anon *ap;
1292 	ulong_t off;
1293 	ulong_t index;
1294 
1295 	npages = btopr(size);
1296 	while (npages > 0) {
1297 		index = old_idx;
1298 		if ((ap = anon_get_next_ptr(old, &index)) == NULL)
1299 			break;
1300 
1301 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1302 		off = index - old_idx;
1303 		npages -= off;
1304 		if (npages <= 0)
1305 			break;
1306 
1307 		(void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP);
1308 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1309 
1310 		mutex_enter(ahm);
1311 		ap->an_refcnt++;
1312 		mutex_exit(ahm);
1313 
1314 		off++;
1315 		new_idx += off;
1316 		old_idx += off;
1317 		npages--;
1318 	}
1319 }
1320 
1321 /*
1322  * Just like anon_dup but also guarantees there are no holes (unallocated anon
1323  * slots) within any large page region. That means if a large page region is
1324  * empty in the old array it will skip it. If there are 1 or more valid slots
1325  * in the large page region of the old array it will make sure to fill in any
1326  * unallocated ones and also copy them to the new array. If noalloc is 1 large
1327  * page region should either have no valid anon slots or all slots should be
1328  * valid.
1329  */
1330 void
1331 anon_dup_fill_holes(
1332 	struct anon_hdr *old,
1333 	ulong_t old_idx,
1334 	struct anon_hdr *new,
1335 	ulong_t new_idx,
1336 	size_t size,
1337 	uint_t szc,
1338 	int noalloc)
1339 {
1340 	struct anon	*ap;
1341 	spgcnt_t	npages;
1342 	kmutex_t	*ahm, *ahmpages = NULL;
1343 	pgcnt_t		pgcnt, i;
1344 	ulong_t		index, off;
1345 #ifdef DEBUG
1346 	int		refcnt;
1347 #endif
1348 
1349 	ASSERT(szc != 0);
1350 	pgcnt = page_get_pagecnt(szc);
1351 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1352 	npages = btopr(size);
1353 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1354 	ASSERT(IS_P2ALIGNED(old_idx, pgcnt));
1355 
1356 	VM_STAT_ADD(anonvmstats.dupfillholes[0]);
1357 
1358 	while (npages > 0) {
1359 		index = old_idx;
1360 
1361 		/*
1362 		 * Find the next valid slot.
1363 		 */
1364 		if (anon_get_next_ptr(old, &index) == NULL)
1365 			break;
1366 
1367 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1368 		/*
1369 		 * Now backup index to the beginning of the
1370 		 * current large page region of the old array.
1371 		 */
1372 		index = P2ALIGN(index, pgcnt);
1373 		off = index - old_idx;
1374 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1375 		npages -= off;
1376 		if (npages <= 0)
1377 			break;
1378 
1379 		/*
1380 		 * Fill and copy a large page regions worth
1381 		 * of anon slots.
1382 		 */
1383 		for (i = 0; i < pgcnt; i++) {
1384 			if ((ap = anon_get_ptr(old, index + i)) == NULL) {
1385 				if (noalloc) {
1386 					panic("anon_dup_fill_holes: "
1387 					    "empty anon slot\n");
1388 				}
1389 				VM_STAT_ADD(anonvmstats.dupfillholes[1]);
1390 				ap = anon_alloc(NULL, 0);
1391 				(void) anon_set_ptr(old, index + i, ap,
1392 				    ANON_SLEEP);
1393 			} else if (i == 0) {
1394 				/*
1395 				 * make the increment of all refcnts of all
1396 				 * anon slots of a large page appear atomic by
1397 				 * getting an anonpages_hash_lock for the
1398 				 * first anon slot of a large page.
1399 				 */
1400 				int hash = AH_LOCK(ap->an_vp, ap->an_off);
1401 
1402 				VM_STAT_ADD(anonvmstats.dupfillholes[2]);
1403 
1404 				ahmpages = &anonpages_hash_lock[hash];
1405 				mutex_enter(ahmpages);
1406 				/*LINTED*/
1407 				ASSERT(refcnt = ap->an_refcnt);
1408 
1409 				VM_STAT_COND_ADD(ap->an_refcnt > 1,
1410 				    anonvmstats.dupfillholes[3]);
1411 			}
1412 			(void) anon_set_ptr(new, new_idx + off + i, ap,
1413 			    ANON_SLEEP);
1414 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1415 			mutex_enter(ahm);
1416 			ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1417 			ASSERT(i == 0 || ahmpages == NULL ||
1418 			    refcnt == ap->an_refcnt);
1419 			ap->an_refcnt++;
1420 			mutex_exit(ahm);
1421 		}
1422 		if (ahmpages != NULL) {
1423 			mutex_exit(ahmpages);
1424 			ahmpages = NULL;
1425 		}
1426 		off += pgcnt;
1427 		new_idx += off;
1428 		old_idx += off;
1429 		npages -= pgcnt;
1430 	}
1431 }
1432 
1433 /*
1434  * Used when a segment with a vnode changes szc. similarly to
1435  * anon_dup_fill_holes() makes sure each large page region either has no anon
1436  * slots or all of them. but new slots are created by COWing the file
1437  * pages. on entrance no anon slots should be shared.
1438  */
1439 int
1440 anon_fill_cow_holes(
1441 	struct seg *seg,
1442 	caddr_t addr,
1443 	struct anon_hdr *ahp,
1444 	ulong_t an_idx,
1445 	struct vnode *vp,
1446 	u_offset_t vp_off,
1447 	size_t size,
1448 	uint_t szc,
1449 	uint_t prot,
1450 	struct vpage vpage[],
1451 	struct cred *cred)
1452 {
1453 	struct anon	*ap;
1454 	spgcnt_t	npages;
1455 	pgcnt_t		pgcnt, i;
1456 	ulong_t		index, off;
1457 	int		err = 0;
1458 	int		pageflags = 0;
1459 
1460 	ASSERT(szc != 0);
1461 	pgcnt = page_get_pagecnt(szc);
1462 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1463 	npages = btopr(size);
1464 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1465 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1466 
1467 	while (npages > 0) {
1468 		index = an_idx;
1469 
1470 		/*
1471 		 * Find the next valid slot.
1472 		 */
1473 		if (anon_get_next_ptr(ahp, &index) == NULL) {
1474 			break;
1475 		}
1476 
1477 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1478 		/*
1479 		 * Now backup index to the beginning of the
1480 		 * current large page region of the anon array.
1481 		 */
1482 		index = P2ALIGN(index, pgcnt);
1483 		off = index - an_idx;
1484 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1485 		npages -= off;
1486 		if (npages <= 0)
1487 			break;
1488 		an_idx += off;
1489 		vp_off += ptob(off);
1490 		addr += ptob(off);
1491 		if (vpage != NULL) {
1492 			vpage += off;
1493 		}
1494 
1495 		for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) {
1496 			if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) {
1497 				page_t *pl[1 + 1];
1498 				page_t *pp;
1499 
1500 				err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL,
1501 				    pl, PAGESIZE, seg, addr, S_READ, cred,
1502 				    NULL);
1503 				if (err) {
1504 					break;
1505 				}
1506 				if (vpage != NULL) {
1507 					prot = VPP_PROT(vpage);
1508 					pageflags = VPP_ISPPLOCK(vpage) ?
1509 					    LOCK_PAGE : 0;
1510 				}
1511 				pp = anon_private(&ap, seg, addr, prot, pl[0],
1512 				    pageflags, cred);
1513 				if (pp == NULL) {
1514 					err = ENOMEM;
1515 					break;
1516 				}
1517 				(void) anon_set_ptr(ahp, an_idx, ap,
1518 				    ANON_SLEEP);
1519 				page_unlock(pp);
1520 			}
1521 			ASSERT(ap->an_refcnt == 1);
1522 			addr += PAGESIZE;
1523 			if (vpage != NULL) {
1524 				vpage++;
1525 			}
1526 		}
1527 		npages -= pgcnt;
1528 	}
1529 
1530 	return (err);
1531 }
1532 
1533 /*
1534  * Free a group of "size" anon pages, size in bytes,
1535  * and clear out the pointers to the anon entries.
1536  */
1537 void
1538 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size)
1539 {
1540 	spgcnt_t npages;
1541 	struct anon *ap;
1542 	ulong_t old;
1543 
1544 	npages = btopr(size);
1545 
1546 	while (npages > 0) {
1547 		old = index;
1548 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1549 			break;
1550 
1551 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1552 		npages -= index - old;
1553 		if (npages <= 0)
1554 			break;
1555 
1556 		(void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP);
1557 		anon_decref(ap);
1558 		/*
1559 		 * Bump index and decrement page count
1560 		 */
1561 		index++;
1562 		npages--;
1563 	}
1564 }
1565 
1566 void
1567 anon_free_pages(
1568 	struct anon_hdr *ahp,
1569 	ulong_t an_idx,
1570 	size_t size,
1571 	uint_t szc)
1572 {
1573 	spgcnt_t	npages;
1574 	pgcnt_t		pgcnt;
1575 	ulong_t		index, off;
1576 
1577 	ASSERT(szc != 0);
1578 	pgcnt = page_get_pagecnt(szc);
1579 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1580 	npages = btopr(size);
1581 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1582 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1583 	ASSERT(an_idx < ahp->size);
1584 
1585 	VM_STAT_ADD(anonvmstats.freepages[0]);
1586 
1587 	while (npages > 0) {
1588 		index = an_idx;
1589 
1590 		/*
1591 		 * Find the next valid slot.
1592 		 */
1593 		if (anon_get_next_ptr(ahp, &index) == NULL)
1594 			break;
1595 
1596 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1597 		/*
1598 		 * Now backup index to the beginning of the
1599 		 * current large page region of the old array.
1600 		 */
1601 		index = P2ALIGN(index, pgcnt);
1602 		off = index - an_idx;
1603 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1604 		npages -= off;
1605 		if (npages <= 0)
1606 			break;
1607 
1608 		anon_decref_pages(ahp, index, szc);
1609 
1610 		off += pgcnt;
1611 		an_idx += off;
1612 		npages -= pgcnt;
1613 	}
1614 }
1615 
1616 /*
1617  * Make anonymous pages discardable
1618  */
1619 void
1620 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size)
1621 {
1622 	spgcnt_t npages = btopr(size);
1623 	struct anon *ap;
1624 	struct vnode *vp;
1625 	anoff_t off;
1626 	page_t *pp, *root_pp;
1627 	kmutex_t *ahm;
1628 	pgcnt_t pgcnt;
1629 	ulong_t old_idx, idx, i;
1630 	struct anon_hdr *ahp = amp->ahp;
1631 	anon_sync_obj_t cookie;
1632 
1633 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
1634 	pgcnt = 1;
1635 	for (; npages > 0; index = (pgcnt == 1) ? index + 1 :
1636 	    P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) {
1637 
1638 		/*
1639 		 * get anon pointer and index for the first valid entry
1640 		 * in the anon list, starting from "index"
1641 		 */
1642 		old_idx = index;
1643 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1644 			break;
1645 
1646 		/*
1647 		 * decrement npages by number of NULL anon slots we skipped
1648 		 */
1649 		npages -= index - old_idx;
1650 		if (npages <= 0)
1651 			break;
1652 
1653 		anon_array_enter(amp, index, &cookie);
1654 		ap = anon_get_ptr(ahp, index);
1655 		ASSERT(ap != NULL);
1656 
1657 		/*
1658 		 * Get anonymous page and try to lock it SE_EXCL;
1659 		 * if we couldn't grab the lock we skip to next page.
1660 		 */
1661 		swap_xlate(ap, &vp, &off);
1662 		pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL);
1663 		if (pp == NULL) {
1664 			segadvstat.MADV_FREE_miss.value.ul++;
1665 			pgcnt = 1;
1666 			anon_array_exit(&cookie);
1667 			continue;
1668 		}
1669 		pgcnt = page_get_pagecnt(pp->p_szc);
1670 
1671 		/*
1672 		 * we cannot free a page which is permanently locked.
1673 		 * The page_struct_lock need not be acquired to examine
1674 		 * these fields since the page has an "exclusive" lock.
1675 		 */
1676 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1677 			page_unlock(pp);
1678 			segadvstat.MADV_FREE_miss.value.ul++;
1679 			anon_array_exit(&cookie);
1680 			continue;
1681 		}
1682 
1683 		ahm = &anonhash_lock[AH_LOCK(vp, off)];
1684 		mutex_enter(ahm);
1685 		ASSERT(ap->an_refcnt != 0);
1686 		/*
1687 		 * skip this one if copy-on-write is not yet broken.
1688 		 */
1689 		if (ap->an_refcnt > 1) {
1690 			mutex_exit(ahm);
1691 			page_unlock(pp);
1692 			segadvstat.MADV_FREE_miss.value.ul++;
1693 			anon_array_exit(&cookie);
1694 			continue;
1695 		}
1696 
1697 		if (pp->p_szc == 0) {
1698 			pgcnt = 1;
1699 
1700 			/*
1701 			 * free swap slot;
1702 			 */
1703 			if (ap->an_pvp) {
1704 				swap_phys_free(ap->an_pvp, ap->an_poff,
1705 				    PAGESIZE);
1706 				ap->an_pvp = NULL;
1707 				ap->an_poff = 0;
1708 			}
1709 			mutex_exit(ahm);
1710 			segadvstat.MADV_FREE_hit.value.ul++;
1711 
1712 			/*
1713 			 * while we are at it, unload all the translations
1714 			 * and attempt to free the page.
1715 			 */
1716 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1717 			/*LINTED: constant in conditional context */
1718 			VN_DISPOSE(pp, B_FREE, 0, kcred);
1719 			anon_array_exit(&cookie);
1720 			continue;
1721 		}
1722 
1723 		pgcnt = page_get_pagecnt(pp->p_szc);
1724 		if (!IS_P2ALIGNED(index, pgcnt) || npages < pgcnt) {
1725 			if (!page_try_demote_pages(pp)) {
1726 				mutex_exit(ahm);
1727 				page_unlock(pp);
1728 				segadvstat.MADV_FREE_miss.value.ul++;
1729 				anon_array_exit(&cookie);
1730 				continue;
1731 			} else {
1732 				pgcnt = 1;
1733 				if (ap->an_pvp) {
1734 					swap_phys_free(ap->an_pvp,
1735 					    ap->an_poff, PAGESIZE);
1736 					ap->an_pvp = NULL;
1737 					ap->an_poff = 0;
1738 				}
1739 				mutex_exit(ahm);
1740 				(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1741 				/*LINTED*/
1742 				VN_DISPOSE(pp, B_FREE, 0, kcred);
1743 				segadvstat.MADV_FREE_hit.value.ul++;
1744 				anon_array_exit(&cookie);
1745 				continue;
1746 			}
1747 		}
1748 		mutex_exit(ahm);
1749 		root_pp = pp;
1750 
1751 		/*
1752 		 * try to lock remaining pages
1753 		 */
1754 		for (idx = 1; idx < pgcnt; idx++) {
1755 			pp++;
1756 			if (!page_trylock(pp, SE_EXCL))
1757 				break;
1758 			if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1759 				page_unlock(pp);
1760 				break;
1761 			}
1762 		}
1763 
1764 		if (idx == pgcnt) {
1765 			for (i = 0; i < pgcnt; i++) {
1766 				ap = anon_get_ptr(ahp, index + i);
1767 				if (ap == NULL)
1768 					break;
1769 				swap_xlate(ap, &vp, &off);
1770 				ahm = &anonhash_lock[AH_LOCK(vp, off)];
1771 				mutex_enter(ahm);
1772 				ASSERT(ap->an_refcnt != 0);
1773 
1774 				/*
1775 				 * skip this one if copy-on-write
1776 				 * is not yet broken.
1777 				 */
1778 				if (ap->an_refcnt > 1) {
1779 					mutex_exit(ahm);
1780 					goto skiplp;
1781 				}
1782 				if (ap->an_pvp) {
1783 					swap_phys_free(ap->an_pvp,
1784 					    ap->an_poff, PAGESIZE);
1785 					ap->an_pvp = NULL;
1786 					ap->an_poff = 0;
1787 				}
1788 				mutex_exit(ahm);
1789 			}
1790 			page_destroy_pages(root_pp);
1791 			segadvstat.MADV_FREE_hit.value.ul += pgcnt;
1792 			anon_array_exit(&cookie);
1793 			continue;
1794 		}
1795 skiplp:
1796 		segadvstat.MADV_FREE_miss.value.ul += pgcnt;
1797 		for (i = 0, pp = root_pp; i < idx; pp++, i++)
1798 			page_unlock(pp);
1799 		anon_array_exit(&cookie);
1800 	}
1801 }
1802 
1803 /*
1804  * Return the kept page(s) and protections back to the segment driver.
1805  */
1806 int
1807 anon_getpage(
1808 	struct anon **app,
1809 	uint_t *protp,
1810 	page_t *pl[],
1811 	size_t plsz,
1812 	struct seg *seg,
1813 	caddr_t addr,
1814 	enum seg_rw rw,
1815 	struct cred *cred)
1816 {
1817 	page_t *pp;
1818 	struct anon *ap = *app;
1819 	struct vnode *vp;
1820 	anoff_t off;
1821 	int err;
1822 	kmutex_t *ahm;
1823 
1824 	swap_xlate(ap, &vp, &off);
1825 
1826 	/*
1827 	 * Lookup the page. If page is being paged in,
1828 	 * wait for it to finish as we must return a list of
1829 	 * pages since this routine acts like the VOP_GETPAGE
1830 	 * routine does.
1831 	 */
1832 	if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) {
1833 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1834 		mutex_enter(ahm);
1835 		if (ap->an_refcnt == 1)
1836 			*protp = PROT_ALL;
1837 		else
1838 			*protp = PROT_ALL & ~PROT_WRITE;
1839 		mutex_exit(ahm);
1840 		pl[0] = pp;
1841 		pl[1] = NULL;
1842 		return (0);
1843 	}
1844 
1845 	/*
1846 	 * Simply treat it as a vnode fault on the anon vp.
1847 	 */
1848 
1849 	TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE,
1850 	    "anon_getpage:seg %x addr %x vp %x",
1851 	    seg, addr, vp);
1852 
1853 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz,
1854 	    seg, addr, rw, cred, NULL);
1855 
1856 	if (err == 0 && pl != NULL) {
1857 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1858 		mutex_enter(ahm);
1859 		if (ap->an_refcnt != 1)
1860 			*protp &= ~PROT_WRITE;	/* make read-only */
1861 		mutex_exit(ahm);
1862 	}
1863 	return (err);
1864 }
1865 
1866 /*
1867  * Creates or returns kept pages to the segment driver.  returns -1 if a large
1868  * page cannot be allocated. returns -2 if some other process has allocated a
1869  * larger page.
1870  *
1871  * For cowfault it will allocate any size pages to fill the requested area to
1872  * avoid partially overwriting anon slots (i.e. sharing only some of the anon
1873  * slots within a large page with other processes). This policy greatly
1874  * simplifies large page freeing (which is only freed when all anon slot
1875  * refcnts are 0).
1876  */
1877 int
1878 anon_map_getpages(
1879 	struct anon_map *amp,
1880 	ulong_t	start_idx,
1881 	uint_t	szc,
1882 	struct seg *seg,
1883 	caddr_t	addr,
1884 	uint_t prot,
1885 	uint_t *protp,
1886 	page_t	*ppa[],
1887 	uint_t	*ppa_szc,
1888 	struct vpage vpage[],
1889 	enum seg_rw rw,
1890 	int brkcow,
1891 	int anypgsz,
1892 	int pgflags,
1893 	struct cred *cred)
1894 {
1895 	pgcnt_t		pgcnt;
1896 	struct anon	*ap;
1897 	struct vnode	*vp;
1898 	anoff_t		off;
1899 	page_t		*pp, *pl[2], *conpp = NULL;
1900 	caddr_t		vaddr;
1901 	ulong_t		pg_idx, an_idx, i;
1902 	spgcnt_t	nreloc = 0;
1903 	int		prealloc = 1;
1904 	int		err, slotcreate;
1905 	uint_t		vpprot;
1906 	int		upsize = (szc < seg->s_szc);
1907 
1908 #if !defined(__i386) && !defined(__amd64)
1909 	ASSERT(seg->s_szc != 0);
1910 #endif
1911 	ASSERT(szc <= seg->s_szc);
1912 	ASSERT(ppa_szc != NULL);
1913 	ASSERT(rw != S_CREATE);
1914 
1915 	*protp = PROT_ALL;
1916 
1917 	VM_STAT_ADD(anonvmstats.getpages[0]);
1918 
1919 	if (szc == 0) {
1920 		VM_STAT_ADD(anonvmstats.getpages[1]);
1921 		if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) {
1922 			err = anon_getpage(&ap, protp, pl, PAGESIZE, seg,
1923 			    addr, rw, cred);
1924 			if (err)
1925 				return (err);
1926 			ppa[0] = pl[0];
1927 			if (brkcow == 0 || (*protp & PROT_WRITE)) {
1928 				VM_STAT_ADD(anonvmstats.getpages[2]);
1929 				if (ppa[0]->p_szc != 0 && upsize) {
1930 					VM_STAT_ADD(anonvmstats.getpages[3]);
1931 					*ppa_szc = MIN(ppa[0]->p_szc,
1932 					    seg->s_szc);
1933 					page_unlock(ppa[0]);
1934 					return (-2);
1935 				}
1936 				return (0);
1937 			}
1938 			panic("anon_map_getpages: cowfault for szc 0");
1939 		} else {
1940 			VM_STAT_ADD(anonvmstats.getpages[4]);
1941 			ppa[0] = anon_zero(seg, addr, &ap, cred);
1942 			if (ppa[0] == NULL)
1943 				return (ENOMEM);
1944 			(void) anon_set_ptr(amp->ahp, start_idx, ap,
1945 			    ANON_SLEEP);
1946 			return (0);
1947 		}
1948 	}
1949 
1950 	pgcnt = page_get_pagecnt(szc);
1951 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1952 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
1953 
1954 	/*
1955 	 * First we check for the case that the requtested large
1956 	 * page or larger page already exists in the system.
1957 	 * Actually we only check if the first constituent page
1958 	 * exists and only preallocate if it's not found.
1959 	 */
1960 	ap = anon_get_ptr(amp->ahp, start_idx);
1961 	if (ap) {
1962 		uint_t pszc;
1963 		swap_xlate(ap, &vp, &off);
1964 		if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) {
1965 			if (pszc > szc && upsize) {
1966 				*ppa_szc = MIN(pszc, seg->s_szc);
1967 				return (-2);
1968 			}
1969 			if (pszc >= szc) {
1970 				prealloc = 0;
1971 			}
1972 		}
1973 	}
1974 
1975 	VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]);
1976 	VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]);
1977 
1978 top:
1979 	/*
1980 	 * If a smaller page or no page at all was found,
1981 	 * grab a large page off the freelist.
1982 	 */
1983 	if (prealloc) {
1984 		ASSERT(conpp == NULL);
1985 		if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa,
1986 		    szc, 0, pgflags) != 0) {
1987 			VM_STAT_ADD(anonvmstats.getpages[7]);
1988 			if (brkcow == 0 || szc < seg->s_szc ||
1989 			    !anon_szcshare(amp->ahp, start_idx)) {
1990 				/*
1991 				 * If the refcnt's of all anon slots are <= 1
1992 				 * they can't increase since we are holding
1993 				 * the address space's lock. So segvn can
1994 				 * safely decrease szc without risking to
1995 				 * generate a cow fault for the region smaller
1996 				 * than the segment's largest page size.
1997 				 */
1998 				VM_STAT_ADD(anonvmstats.getpages[8]);
1999 				return (-1);
2000 			}
2001 		docow:
2002 			/*
2003 			 * This is a cow fault. Copy away the entire 1 large
2004 			 * page region of this segment.
2005 			 */
2006 			if (szc != seg->s_szc)
2007 				panic("anon_map_getpages: cowfault for szc %d",
2008 				    szc);
2009 			vaddr = addr;
2010 			for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
2011 			    pg_idx++, an_idx++, vaddr += PAGESIZE) {
2012 				if ((ap = anon_get_ptr(amp->ahp, an_idx)) !=
2013 				    NULL) {
2014 					err = anon_getpage(&ap, &vpprot, pl,
2015 					    PAGESIZE, seg, vaddr, rw, cred);
2016 					if (err) {
2017 						for (i = 0; i < pg_idx; i++) {
2018 							if ((pp = ppa[i]) !=
2019 							    NULL)
2020 								page_unlock(pp);
2021 						}
2022 						return (err);
2023 					}
2024 					ppa[pg_idx] = pl[0];
2025 				} else {
2026 					/*
2027 					 * Since this is a cowfault we know
2028 					 * that this address space has a
2029 					 * parent or children which means
2030 					 * anon_dup_fill_holes() has initialized
2031 					 * all anon slots within a large page
2032 					 * region that had at least one anon
2033 					 * slot at the time of fork().
2034 					 */
2035 					panic("anon_map_getpages: "
2036 					    "cowfault but anon slot is empty");
2037 				}
2038 			}
2039 			VM_STAT_ADD(anonvmstats.getpages[9]);
2040 			*protp = PROT_ALL;
2041 			return (anon_map_privatepages(amp, start_idx, szc, seg,
2042 			    addr, prot, ppa, vpage, anypgsz, pgflags, cred));
2043 		}
2044 	}
2045 
2046 	VM_STAT_ADD(anonvmstats.getpages[10]);
2047 
2048 	an_idx = start_idx;
2049 	pg_idx = 0;
2050 	vaddr = addr;
2051 	while (pg_idx < pgcnt) {
2052 		slotcreate = 0;
2053 		if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) {
2054 			VM_STAT_ADD(anonvmstats.getpages[11]);
2055 			/*
2056 			 * For us to have decided not to preallocate
2057 			 * would have meant that a large page
2058 			 * was found. Which also means that all of the
2059 			 * anon slots for that page would have been
2060 			 * already created for us.
2061 			 */
2062 			if (prealloc == 0)
2063 				panic("anon_map_getpages: prealloc = 0");
2064 
2065 			slotcreate = 1;
2066 			ap = anon_alloc(NULL, 0);
2067 		}
2068 		swap_xlate(ap, &vp, &off);
2069 
2070 		/*
2071 		 * Now setup our preallocated page to pass down
2072 		 * to swap_getpage().
2073 		 */
2074 		if (prealloc) {
2075 			ASSERT(ppa[pg_idx]->p_szc == szc);
2076 			conpp = ppa[pg_idx];
2077 		}
2078 		ASSERT(prealloc || conpp == NULL);
2079 
2080 		/*
2081 		 * If we just created this anon slot then call
2082 		 * with S_CREATE to prevent doing IO on the page.
2083 		 * Similar to the anon_zero case.
2084 		 */
2085 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE,
2086 		    NULL, pl, PAGESIZE, conpp, ppa_szc, &nreloc, seg, vaddr,
2087 		    slotcreate == 1 ? S_CREATE : rw, cred);
2088 
2089 		if (err) {
2090 			ASSERT(err != -2 || upsize);
2091 			VM_STAT_ADD(anonvmstats.getpages[12]);
2092 			ASSERT(slotcreate == 0);
2093 			goto io_err;
2094 		}
2095 
2096 		pp = pl[0];
2097 
2098 		if (pp->p_szc < szc || (pp->p_szc > szc && upsize)) {
2099 			VM_STAT_ADD(anonvmstats.getpages[13]);
2100 			ASSERT(slotcreate == 0);
2101 			ASSERT(prealloc == 0);
2102 			ASSERT(pg_idx == 0);
2103 			if (pp->p_szc > szc) {
2104 				ASSERT(upsize);
2105 				*ppa_szc = MIN(pp->p_szc, seg->s_szc);
2106 				page_unlock(pp);
2107 				VM_STAT_ADD(anonvmstats.getpages[14]);
2108 				return (-2);
2109 			}
2110 			page_unlock(pp);
2111 			prealloc = 1;
2112 			goto top;
2113 		}
2114 
2115 		/*
2116 		 * If we decided to preallocate but VOP_GETPAGE
2117 		 * found a page in the system that satisfies our
2118 		 * request then free up our preallocated large page
2119 		 * and continue looping accross the existing large
2120 		 * page via VOP_GETPAGE.
2121 		 */
2122 		if (prealloc && pp != ppa[pg_idx]) {
2123 			VM_STAT_ADD(anonvmstats.getpages[15]);
2124 			ASSERT(slotcreate == 0);
2125 			ASSERT(pg_idx == 0);
2126 			conpp = NULL;
2127 			prealloc = 0;
2128 			page_free_pages(ppa[0]);
2129 		}
2130 
2131 		if (prealloc && nreloc > 1) {
2132 			/*
2133 			 * we have relocated out of a smaller large page.
2134 			 * skip npgs - 1 iterations and continue which will
2135 			 * increment by one the loop indices.
2136 			 */
2137 			spgcnt_t npgs = nreloc;
2138 
2139 			VM_STAT_ADD(anonvmstats.getpages[16]);
2140 
2141 			ASSERT(pp == ppa[pg_idx]);
2142 			ASSERT(slotcreate == 0);
2143 			ASSERT(pg_idx + npgs <= pgcnt);
2144 			if ((*protp & PROT_WRITE) &&
2145 			    anon_share(amp->ahp, an_idx, npgs)) {
2146 				*protp &= ~PROT_WRITE;
2147 			}
2148 			pg_idx += npgs;
2149 			an_idx += npgs;
2150 			vaddr += PAGESIZE * npgs;
2151 			continue;
2152 		}
2153 
2154 		VM_STAT_ADD(anonvmstats.getpages[17]);
2155 
2156 		/*
2157 		 * Anon_zero case.
2158 		 */
2159 		if (slotcreate) {
2160 			ASSERT(prealloc);
2161 			pagezero(pp, 0, PAGESIZE);
2162 			CPU_STATS_ADD_K(vm, zfod, 1);
2163 			hat_setrefmod(pp);
2164 		}
2165 
2166 		ASSERT(prealloc == 0 || ppa[pg_idx] == pp);
2167 		ASSERT(prealloc != 0 || PAGE_SHARED(pp));
2168 		ASSERT(prealloc == 0 || PAGE_EXCL(pp));
2169 
2170 		if (pg_idx > 0 &&
2171 		    ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) ||
2172 		    (pp->p_szc != ppa[pg_idx - 1]->p_szc))) {
2173 			panic("anon_map_getpages: unexpected page");
2174 		} else if (pg_idx == 0 && (page_pptonum(pp) & (pgcnt - 1))) {
2175 			panic("anon_map_getpages: unaligned page");
2176 		}
2177 
2178 		if (prealloc == 0) {
2179 			ppa[pg_idx] = pp;
2180 		}
2181 
2182 		if (ap->an_refcnt > 1) {
2183 			VM_STAT_ADD(anonvmstats.getpages[18]);
2184 			*protp &= ~PROT_WRITE;
2185 		}
2186 
2187 		/*
2188 		 * If this is a new anon slot then initialize
2189 		 * the anon array entry.
2190 		 */
2191 		if (slotcreate) {
2192 			(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2193 		}
2194 		pg_idx++;
2195 		an_idx++;
2196 		vaddr += PAGESIZE;
2197 	}
2198 
2199 	/*
2200 	 * Since preallocated pages come off the freelist
2201 	 * they are locked SE_EXCL. Simply downgrade and return.
2202 	 */
2203 	if (prealloc) {
2204 		VM_STAT_ADD(anonvmstats.getpages[19]);
2205 		conpp = NULL;
2206 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2207 			page_downgrade(ppa[pg_idx]);
2208 		}
2209 	}
2210 	ASSERT(conpp == NULL);
2211 
2212 	if (brkcow == 0 || (*protp & PROT_WRITE)) {
2213 		VM_STAT_ADD(anonvmstats.getpages[20]);
2214 		return (0);
2215 	}
2216 
2217 	if (szc < seg->s_szc)
2218 		panic("anon_map_getpages: cowfault for szc %d", szc);
2219 
2220 	VM_STAT_ADD(anonvmstats.getpages[21]);
2221 
2222 	*protp = PROT_ALL;
2223 	return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot,
2224 	    ppa, vpage, anypgsz, pgflags, cred));
2225 io_err:
2226 	/*
2227 	 * We got an IO error somewhere in our large page.
2228 	 * If we were using a preallocated page then just demote
2229 	 * all the constituent pages that we've succeeded with sofar
2230 	 * to PAGESIZE pages and leave them in the system
2231 	 * unlocked.
2232 	 */
2233 
2234 	ASSERT(err != -2 || ((pg_idx == 0) && upsize));
2235 
2236 	VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]);
2237 	VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]);
2238 	VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]);
2239 
2240 	if (prealloc) {
2241 		conpp = NULL;
2242 		if (pg_idx > 0) {
2243 			VM_STAT_ADD(anonvmstats.getpages[25]);
2244 			for (i = 0; i < pgcnt; i++) {
2245 				pp = ppa[i];
2246 				ASSERT(PAGE_EXCL(pp));
2247 				ASSERT(pp->p_szc == szc);
2248 				pp->p_szc = 0;
2249 			}
2250 			for (i = 0; i < pg_idx; i++) {
2251 				ASSERT(!hat_page_is_mapped(ppa[i]));
2252 				page_unlock(ppa[i]);
2253 			}
2254 			/*
2255 			 * Now free up the remaining unused constituent
2256 			 * pages.
2257 			 */
2258 			while (pg_idx < pgcnt) {
2259 				ASSERT(!hat_page_is_mapped(ppa[pg_idx]));
2260 				page_free(ppa[pg_idx], 0);
2261 				pg_idx++;
2262 			}
2263 		} else {
2264 			VM_STAT_ADD(anonvmstats.getpages[26]);
2265 			page_free_pages(ppa[0]);
2266 		}
2267 	} else {
2268 		VM_STAT_ADD(anonvmstats.getpages[27]);
2269 		ASSERT(err > 0);
2270 		for (i = 0; i < pg_idx; i++)
2271 			page_unlock(ppa[i]);
2272 	}
2273 	ASSERT(conpp == NULL);
2274 	if (err != -1)
2275 		return (err);
2276 	/*
2277 	 * we are here because we failed to relocate.
2278 	 */
2279 	ASSERT(prealloc);
2280 	if (brkcow == 0 || szc < seg->s_szc ||
2281 	    !anon_szcshare(amp->ahp, start_idx)) {
2282 		VM_STAT_ADD(anonvmstats.getpages[28]);
2283 		return (-1);
2284 	}
2285 	VM_STAT_ADD(anonvmstats.getpages[29]);
2286 	goto docow;
2287 }
2288 
2289 
2290 /*
2291  * Turn a reference to an object or shared anon page
2292  * into a private page with a copy of the data from the
2293  * original page which is always locked by the caller.
2294  * This routine unloads the translation and unlocks the
2295  * original page, if it isn't being stolen, before returning
2296  * to the caller.
2297  *
2298  * NOTE:  The original anon slot is not freed by this routine
2299  *	  It must be freed by the caller while holding the
2300  *	  "anon_map" lock to prevent races which can occur if
2301  *	  a process has multiple lwps in its address space.
2302  */
2303 page_t *
2304 anon_private(
2305 	struct anon **app,
2306 	struct seg *seg,
2307 	caddr_t addr,
2308 	uint_t	prot,
2309 	page_t *opp,
2310 	int oppflags,
2311 	struct cred *cred)
2312 {
2313 	struct anon *old = *app;
2314 	struct anon *new;
2315 	page_t *pp = NULL;
2316 	struct vnode *vp;
2317 	anoff_t off;
2318 	page_t *anon_pl[1 + 1];
2319 	int err;
2320 
2321 	if (oppflags & STEAL_PAGE)
2322 		ASSERT(PAGE_EXCL(opp));
2323 	else
2324 		ASSERT(PAGE_LOCKED(opp));
2325 
2326 	CPU_STATS_ADD_K(vm, cow_fault, 1);
2327 
2328 	/* Kernel probe */
2329 	TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */,
2330 		tnf_opaque,	address,	addr);
2331 
2332 	*app = new = anon_alloc(NULL, 0);
2333 	swap_xlate(new, &vp, &off);
2334 
2335 	if (oppflags & STEAL_PAGE) {
2336 		page_rename(opp, vp, (u_offset_t)off);
2337 		pp = opp;
2338 		TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE,
2339 		    "anon_private:seg %p addr %x pp %p vp %p off %lx",
2340 		    seg, addr, pp, vp, off);
2341 		hat_setmod(pp);
2342 
2343 		/* bug 4026339 */
2344 		page_downgrade(pp);
2345 		return (pp);
2346 	}
2347 
2348 	/*
2349 	 * Call the VOP_GETPAGE routine to create the page, thereby
2350 	 * enabling the vnode driver to allocate any filesystem
2351 	 * space (e.g., disk block allocation for UFS).  This also
2352 	 * prevents more than one page from being added to the
2353 	 * vnode at the same time.
2354 	 */
2355 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL,
2356 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2357 	if (err)
2358 		goto out;
2359 
2360 	pp = anon_pl[0];
2361 
2362 	/*
2363 	 * If the original page was locked, we need to move the lock
2364 	 * to the new page by transfering 'cowcnt/lckcnt' of the original
2365 	 * page to 'cowcnt/lckcnt' of the new page.
2366 	 *
2367 	 * See Statement at the beginning of segvn_lockop() and
2368 	 * comments in page_pp_useclaim() regarding the way
2369 	 * cowcnts/lckcnts are handled.
2370 	 *
2371 	 * Also availrmem must be decremented up front for read only mapping
2372 	 * before calling page_pp_useclaim. page_pp_useclaim will bump it back
2373 	 * if availrmem did not need to be decremented after all.
2374 	 */
2375 	if (oppflags & LOCK_PAGE) {
2376 		if ((prot & PROT_WRITE) == 0) {
2377 			mutex_enter(&freemem_lock);
2378 			if (availrmem > pages_pp_maximum) {
2379 				availrmem--;
2380 				pages_useclaim++;
2381 			} else {
2382 				mutex_exit(&freemem_lock);
2383 				goto out;
2384 			}
2385 			mutex_exit(&freemem_lock);
2386 		}
2387 		page_pp_useclaim(opp, pp, prot & PROT_WRITE);
2388 	}
2389 
2390 	/*
2391 	 * Now copy the contents from the original page,
2392 	 * which is locked and loaded in the MMU by
2393 	 * the caller to prevent yet another page fault.
2394 	 */
2395 	/* XXX - should set mod bit in here */
2396 	if (ppcopy(opp, pp) == 0) {
2397 		/*
2398 		 * Before ppcopy could hanlde UE or other faults, we
2399 		 * would have panicked here, and still have no option
2400 		 * but to do so now.
2401 		 */
2402 		panic("anon_private, ppcopy failed, opp = 0x%p, pp = 0x%p",
2403 		    (void *)opp, (void *)pp);
2404 	}
2405 
2406 	hat_setrefmod(pp);		/* mark as modified */
2407 
2408 	/*
2409 	 * Unload the old translation.
2410 	 */
2411 	hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD);
2412 
2413 	/*
2414 	 * Free unmapped, unmodified original page.
2415 	 * or release the lock on the original page,
2416 	 * otherwise the process will sleep forever in
2417 	 * anon_decref() waiting for the "exclusive" lock
2418 	 * on the page.
2419 	 */
2420 	(void) page_release(opp, 1);
2421 
2422 	/*
2423 	 * we are done with page creation so downgrade the new
2424 	 * page's selock to shared, this helps when multiple
2425 	 * as_fault(...SOFTLOCK...) are done to the same
2426 	 * page(aio)
2427 	 */
2428 	page_downgrade(pp);
2429 
2430 	/*
2431 	 * NOTE:  The original anon slot must be freed by the
2432 	 * caller while holding the "anon_map" lock, if we
2433 	 * copied away from an anonymous page.
2434 	 */
2435 	return (pp);
2436 
2437 out:
2438 	*app = old;
2439 	if (pp)
2440 		page_unlock(pp);
2441 	anon_decref(new);
2442 	page_unlock(opp);
2443 	return ((page_t *)NULL);
2444 }
2445 
2446 int
2447 anon_map_privatepages(
2448 	struct anon_map *amp,
2449 	ulong_t	start_idx,
2450 	uint_t	szc,
2451 	struct seg *seg,
2452 	caddr_t addr,
2453 	uint_t	prot,
2454 	page_t	*ppa[],
2455 	struct vpage vpage[],
2456 	int anypgsz,
2457 	int pgflags,
2458 	struct cred *cred)
2459 {
2460 	pgcnt_t		pgcnt;
2461 	struct vnode	*vp;
2462 	anoff_t		off;
2463 	page_t		*pl[2], *conpp = NULL;
2464 	int		err;
2465 	int		prealloc = 1;
2466 	struct anon	*ap, *oldap;
2467 	caddr_t		vaddr;
2468 	page_t		*pplist, *pp;
2469 	ulong_t		pg_idx, an_idx;
2470 	spgcnt_t	nreloc = 0;
2471 	int		pagelock = 0;
2472 	kmutex_t	*ahmpages = NULL;
2473 #ifdef DEBUG
2474 	int		refcnt;
2475 #endif
2476 
2477 	ASSERT(szc != 0);
2478 	ASSERT(szc == seg->s_szc);
2479 
2480 	VM_STAT_ADD(anonvmstats.privatepages[0]);
2481 
2482 	pgcnt = page_get_pagecnt(szc);
2483 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2484 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2485 
2486 	ASSERT(amp != NULL);
2487 	ap = anon_get_ptr(amp->ahp, start_idx);
2488 	ASSERT(ap == NULL || ap->an_refcnt >= 1);
2489 
2490 	VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]);
2491 
2492 	/*
2493 	 * Now try and allocate the large page. If we fail then just
2494 	 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let
2495 	 * the caller make this decision but to avoid added complexity
2496 	 * it's simplier to handle that case here.
2497 	 */
2498 	if (anypgsz == -1) {
2499 		VM_STAT_ADD(anonvmstats.privatepages[2]);
2500 		prealloc = 0;
2501 	} else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc,
2502 	    anypgsz, pgflags) != 0) {
2503 		VM_STAT_ADD(anonvmstats.privatepages[3]);
2504 		prealloc = 0;
2505 	}
2506 
2507 	/*
2508 	 * make the decrement of all refcnts of all
2509 	 * anon slots of a large page appear atomic by
2510 	 * getting an anonpages_hash_lock for the
2511 	 * first anon slot of a large page.
2512 	 */
2513 	if (ap != NULL) {
2514 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp,
2515 		    ap->an_off)];
2516 		mutex_enter(ahmpages);
2517 		if (ap->an_refcnt == 1) {
2518 			VM_STAT_ADD(anonvmstats.privatepages[4]);
2519 			ASSERT(!anon_share(amp->ahp, start_idx, pgcnt));
2520 			mutex_exit(ahmpages);
2521 
2522 			if (prealloc) {
2523 				page_free_replacement_page(pplist);
2524 				page_create_putback(pgcnt);
2525 			}
2526 			ASSERT(ppa[0]->p_szc <= szc);
2527 			if (ppa[0]->p_szc == szc) {
2528 				VM_STAT_ADD(anonvmstats.privatepages[5]);
2529 				return (0);
2530 			}
2531 			for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2532 				ASSERT(ppa[pg_idx] != NULL);
2533 				page_unlock(ppa[pg_idx]);
2534 			}
2535 			return (-1);
2536 		}
2537 	}
2538 
2539 	/*
2540 	 * If we are passed in the vpage array and this is
2541 	 * not PROT_WRITE then we need to decrement availrmem
2542 	 * up front before we try anything. If we need to and
2543 	 * can't decrement availrmem then its better to fail now
2544 	 * than in the middle of processing the new large page.
2545 	 * page_pp_usclaim() on behalf of each constituent page
2546 	 * below will adjust availrmem back for the cases not needed.
2547 	 */
2548 	if (vpage != NULL && (prot & PROT_WRITE) == 0) {
2549 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2550 			if (VPP_ISPPLOCK(&vpage[pg_idx])) {
2551 				pagelock = 1;
2552 				break;
2553 			}
2554 		}
2555 		if (pagelock) {
2556 			VM_STAT_ADD(anonvmstats.privatepages[6]);
2557 			mutex_enter(&freemem_lock);
2558 			if (availrmem >= pages_pp_maximum + pgcnt) {
2559 				availrmem -= pgcnt;
2560 				pages_useclaim += pgcnt;
2561 			} else {
2562 				VM_STAT_ADD(anonvmstats.privatepages[7]);
2563 				mutex_exit(&freemem_lock);
2564 				if (ahmpages != NULL) {
2565 					mutex_exit(ahmpages);
2566 				}
2567 				if (prealloc) {
2568 					page_free_replacement_page(pplist);
2569 					page_create_putback(pgcnt);
2570 				}
2571 				for (pg_idx = 0; pg_idx < pgcnt; pg_idx++)
2572 					if (ppa[pg_idx] != NULL)
2573 						page_unlock(ppa[pg_idx]);
2574 				return (ENOMEM);
2575 			}
2576 			mutex_exit(&freemem_lock);
2577 		}
2578 	}
2579 
2580 	CPU_STATS_ADD_K(vm, cow_fault, pgcnt);
2581 
2582 	VM_STAT_ADD(anonvmstats.privatepages[8]);
2583 
2584 	an_idx = start_idx;
2585 	pg_idx = 0;
2586 	vaddr = addr;
2587 	for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) {
2588 		ASSERT(ppa[pg_idx] != NULL);
2589 		oldap = anon_get_ptr(amp->ahp, an_idx);
2590 		ASSERT(ahmpages != NULL || oldap == NULL);
2591 		ASSERT(ahmpages == NULL || oldap != NULL);
2592 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2593 		ASSERT(ahmpages == NULL || pg_idx != 0 ||
2594 		    (refcnt = oldap->an_refcnt));
2595 		ASSERT(ahmpages == NULL || pg_idx == 0 ||
2596 		    refcnt == oldap->an_refcnt);
2597 
2598 		ap = anon_alloc(NULL, 0);
2599 
2600 		swap_xlate(ap, &vp, &off);
2601 
2602 		/*
2603 		 * Now setup our preallocated page to pass down to
2604 		 * swap_getpage().
2605 		 */
2606 		if (prealloc) {
2607 			pp = pplist;
2608 			page_sub(&pplist, pp);
2609 			conpp = pp;
2610 		}
2611 
2612 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl,
2613 		    PAGESIZE, conpp, NULL, &nreloc, seg, vaddr,
2614 		    S_CREATE, cred);
2615 
2616 		/*
2617 		 * Impossible to fail this is S_CREATE.
2618 		 */
2619 		if (err)
2620 			panic("anon_map_privatepages: VOP_GETPAGE failed");
2621 
2622 		ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0);
2623 		ASSERT(prealloc == 0 || nreloc == 1);
2624 
2625 		pp = pl[0];
2626 
2627 		/*
2628 		 * If the original page was locked, we need to move
2629 		 * the lock to the new page by transfering
2630 		 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt'
2631 		 * of the new page. pg_idx can be used to index
2632 		 * into the vpage array since the caller will guarentee
2633 		 * that vpage struct passed in corresponds to addr
2634 		 * and forward.
2635 		 */
2636 		if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) {
2637 			page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE);
2638 		} else if (pagelock) {
2639 			mutex_enter(&freemem_lock);
2640 			availrmem++;
2641 			pages_useclaim--;
2642 			mutex_exit(&freemem_lock);
2643 		}
2644 
2645 		/*
2646 		 * Now copy the contents from the original page.
2647 		 */
2648 		if (ppcopy(ppa[pg_idx], pp) == 0) {
2649 			/*
2650 			 * Before ppcopy could hanlde UE or other faults, we
2651 			 * would have panicked here, and still have no option
2652 			 * but to do so now.
2653 			 */
2654 			panic("anon_map_privatepages, ppcopy failed");
2655 		}
2656 
2657 		hat_setrefmod(pp);		/* mark as modified */
2658 
2659 		/*
2660 		 * Release the lock on the original page,
2661 		 * derement the old slot, and down grade the lock
2662 		 * on the new copy.
2663 		 */
2664 		page_unlock(ppa[pg_idx]);
2665 
2666 		if (!prealloc)
2667 			page_downgrade(pp);
2668 
2669 		ppa[pg_idx] = pp;
2670 
2671 		/*
2672 		 * Now reflect the copy in the new anon array.
2673 		 */
2674 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2675 		if (oldap != NULL)
2676 			anon_decref(oldap);
2677 		(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2678 	}
2679 
2680 	/*
2681 	 * Unload the old large page translation.
2682 	 */
2683 	hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD);
2684 
2685 	if (ahmpages != NULL) {
2686 		mutex_exit(ahmpages);
2687 	}
2688 	ASSERT(prealloc == 0 || pplist == NULL);
2689 	if (prealloc) {
2690 		VM_STAT_ADD(anonvmstats.privatepages[9]);
2691 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2692 			page_downgrade(ppa[pg_idx]);
2693 		}
2694 	}
2695 
2696 	return (0);
2697 }
2698 
2699 /*
2700  * Allocate a private zero-filled anon page.
2701  */
2702 page_t *
2703 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred)
2704 {
2705 	struct anon *ap;
2706 	page_t *pp;
2707 	struct vnode *vp;
2708 	anoff_t off;
2709 	page_t *anon_pl[1 + 1];
2710 	int err;
2711 
2712 	/* Kernel probe */
2713 	TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */,
2714 		tnf_opaque,	address,	addr);
2715 
2716 	*app = ap = anon_alloc(NULL, 0);
2717 	swap_xlate(ap, &vp, &off);
2718 
2719 	/*
2720 	 * Call the VOP_GETPAGE routine to create the page, thereby
2721 	 * enabling the vnode driver to allocate any filesystem
2722 	 * dependent structures (e.g., disk block allocation for UFS).
2723 	 * This also prevents more than on page from being added to
2724 	 * the vnode at the same time since it is locked.
2725 	 */
2726 	err = VOP_GETPAGE(vp, off, PAGESIZE, NULL,
2727 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2728 	if (err) {
2729 		*app = NULL;
2730 		anon_decref(ap);
2731 		return (NULL);
2732 	}
2733 	pp = anon_pl[0];
2734 
2735 	pagezero(pp, 0, PAGESIZE);	/* XXX - should set mod bit */
2736 	page_downgrade(pp);
2737 	CPU_STATS_ADD_K(vm, zfod, 1);
2738 	hat_setrefmod(pp);	/* mark as modified so pageout writes back */
2739 	return (pp);
2740 }
2741 
2742 
2743 /*
2744  * Allocate array of private zero-filled anon pages for empty slots
2745  * and kept pages for non empty slots within given range.
2746  *
2747  * NOTE: This rontine will try and use large pages
2748  *	if available and supported by underlying platform.
2749  */
2750 int
2751 anon_map_createpages(
2752 	struct anon_map *amp,
2753 	ulong_t start_index,
2754 	size_t len,
2755 	page_t *ppa[],
2756 	struct seg *seg,
2757 	caddr_t addr,
2758 	enum seg_rw rw,
2759 	struct cred *cred)
2760 {
2761 
2762 	struct anon	*ap;
2763 	struct vnode	*ap_vp;
2764 	page_t		*pp, *pplist, *anon_pl[1 + 1], *conpp = NULL;
2765 	int		err = 0;
2766 	ulong_t		p_index, index;
2767 	pgcnt_t		npgs, pg_cnt;
2768 	spgcnt_t	nreloc = 0;
2769 	uint_t		l_szc, szc, prot;
2770 	anoff_t		ap_off;
2771 	size_t		pgsz;
2772 	lgrp_t		*lgrp;
2773 	kmutex_t	*ahm;
2774 
2775 	/*
2776 	 * XXX For now only handle S_CREATE.
2777 	 */
2778 	ASSERT(rw == S_CREATE);
2779 
2780 	index	= start_index;
2781 	p_index	= 0;
2782 	npgs = btopr(len);
2783 
2784 	/*
2785 	 * If this platform supports multiple page sizes
2786 	 * then try and allocate directly from the free
2787 	 * list for pages larger than PAGESIZE.
2788 	 *
2789 	 * NOTE:When we have page_create_ru we can stop
2790 	 *	directly allocating from the freelist.
2791 	 */
2792 	l_szc  = seg->s_szc;
2793 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2794 	while (npgs) {
2795 
2796 		/*
2797 		 * if anon slot already exists
2798 		 *   (means page has been created)
2799 		 * so 1) look up the page
2800 		 *    2) if the page is still in memory, get it.
2801 		 *    3) if not, create a page and
2802 		 *	  page in from physical swap device.
2803 		 * These are done in anon_getpage().
2804 		 */
2805 		ap = anon_get_ptr(amp->ahp, index);
2806 		if (ap) {
2807 			err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE,
2808 			    seg, addr, S_READ, cred);
2809 			if (err) {
2810 				ANON_LOCK_EXIT(&amp->a_rwlock);
2811 				panic("anon_map_createpages: anon_getpage");
2812 			}
2813 			pp = anon_pl[0];
2814 			ppa[p_index++] = pp;
2815 
2816 			/*
2817 			 * an_pvp can become non-NULL after SysV's page was
2818 			 * paged out before ISM was attached to this SysV
2819 			 * shared memory segment. So free swap slot if needed.
2820 			 */
2821 			if (ap->an_pvp != NULL) {
2822 				page_io_lock(pp);
2823 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
2824 				    ap->an_off)];
2825 				mutex_enter(ahm);
2826 				if (ap->an_pvp != NULL) {
2827 					swap_phys_free(ap->an_pvp,
2828 					    ap->an_poff, PAGESIZE);
2829 					ap->an_pvp = NULL;
2830 					ap->an_poff = 0;
2831 					mutex_exit(ahm);
2832 					hat_setmod(pp);
2833 				} else {
2834 					mutex_exit(ahm);
2835 				}
2836 				page_io_unlock(pp);
2837 			}
2838 
2839 			addr += PAGESIZE;
2840 			index++;
2841 			npgs--;
2842 			continue;
2843 		}
2844 		/*
2845 		 * Now try and allocate the largest page possible
2846 		 * for the current address and range.
2847 		 * Keep dropping down in page size until:
2848 		 *
2849 		 *	1) Properly aligned
2850 		 *	2) Does not overlap existing anon pages
2851 		 *	3) Fits in remaining range.
2852 		 *	4) able to allocate one.
2853 		 *
2854 		 * NOTE: XXX When page_create_ru is completed this code
2855 		 *	 will change.
2856 		 */
2857 		szc    = l_szc;
2858 		pplist = NULL;
2859 		pg_cnt = 0;
2860 		while (szc) {
2861 			pgsz	= page_get_pagesize(szc);
2862 			pg_cnt	= pgsz >> PAGESHIFT;
2863 			if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs &&
2864 			    anon_pages(amp->ahp, index, pg_cnt) == 0) {
2865 				/*
2866 				 * XXX
2867 				 * Since we are faking page_create()
2868 				 * we also need to do the freemem and
2869 				 * pcf accounting.
2870 				 */
2871 				(void) page_create_wait(pg_cnt, PG_WAIT);
2872 
2873 				/*
2874 				 * Get lgroup to allocate next page of shared
2875 				 * memory from and use it to specify where to
2876 				 * allocate the physical memory
2877 				 */
2878 				lgrp = lgrp_mem_choose(seg, addr, pgsz);
2879 
2880 				pplist = page_get_freelist(
2881 				    anon_vp, (u_offset_t)0, seg,
2882 				    addr, pgsz, 0, lgrp);
2883 
2884 				if (pplist == NULL) {
2885 					page_create_putback(pg_cnt);
2886 				}
2887 
2888 				/*
2889 				 * If a request for a page of size
2890 				 * larger than PAGESIZE failed
2891 				 * then don't try that size anymore.
2892 				 */
2893 				if (pplist == NULL) {
2894 					l_szc = szc - 1;
2895 				} else {
2896 					break;
2897 				}
2898 			}
2899 			szc--;
2900 		}
2901 
2902 		/*
2903 		 * If just using PAGESIZE pages then don't
2904 		 * directly allocate from the free list.
2905 		 */
2906 		if (pplist == NULL) {
2907 			ASSERT(szc == 0);
2908 			pp = anon_zero(seg, addr, &ap, cred);
2909 			if (pp == NULL) {
2910 				ANON_LOCK_EXIT(&amp->a_rwlock);
2911 				panic("anon_map_createpages: anon_zero");
2912 			}
2913 			ppa[p_index++] = pp;
2914 
2915 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2916 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2917 
2918 			addr += PAGESIZE;
2919 			index++;
2920 			npgs--;
2921 			continue;
2922 		}
2923 
2924 		/*
2925 		 * pplist is a list of pg_cnt PAGESIZE pages.
2926 		 * These pages are locked SE_EXCL since they
2927 		 * came directly off the free list.
2928 		 */
2929 		ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt));
2930 		ASSERT(IS_P2ALIGNED(index, pg_cnt));
2931 		ASSERT(conpp == NULL);
2932 		while (pg_cnt--) {
2933 
2934 			ap = anon_alloc(NULL, 0);
2935 			swap_xlate(ap, &ap_vp, &ap_off);
2936 
2937 			ASSERT(pplist != NULL);
2938 			pp = pplist;
2939 			page_sub(&pplist, pp);
2940 			PP_CLRFREE(pp);
2941 			PP_CLRAGED(pp);
2942 			conpp = pp;
2943 
2944 			err = swap_getconpage(ap_vp, ap_off, PAGESIZE,
2945 			    (uint_t *)NULL, anon_pl, PAGESIZE, conpp, NULL,
2946 			    &nreloc, seg, addr, S_CREATE, cred);
2947 
2948 			if (err) {
2949 				ANON_LOCK_EXIT(&amp->a_rwlock);
2950 				panic("anon_map_createpages: S_CREATE");
2951 			}
2952 
2953 			ASSERT(anon_pl[0] == pp);
2954 			ASSERT(nreloc == 1);
2955 			pagezero(pp, 0, PAGESIZE);
2956 			CPU_STATS_ADD_K(vm, zfod, 1);
2957 			hat_setrefmod(pp);
2958 
2959 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2960 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2961 
2962 			ppa[p_index++] = pp;
2963 
2964 			addr += PAGESIZE;
2965 			index++;
2966 			npgs--;
2967 		}
2968 		conpp = NULL;
2969 		pg_cnt	= pgsz >> PAGESHIFT;
2970 		p_index = p_index - pg_cnt;
2971 		while (pg_cnt--) {
2972 			page_downgrade(ppa[p_index++]);
2973 		}
2974 	}
2975 	ANON_LOCK_EXIT(&amp->a_rwlock);
2976 	return (0);
2977 }
2978 
2979 static int
2980 anon_try_demote_pages(
2981 	struct anon_hdr *ahp,
2982 	ulong_t sidx,
2983 	uint_t szc,
2984 	page_t **ppa,
2985 	int private)
2986 {
2987 	struct anon	*ap;
2988 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
2989 	page_t		*pp;
2990 	pgcnt_t		i;
2991 	kmutex_t	*ahmpages = NULL;
2992 	int		root = 0;
2993 	pgcnt_t		npgs;
2994 	pgcnt_t		curnpgs = 0;
2995 	size_t		ppasize = 0;
2996 
2997 	ASSERT(szc != 0);
2998 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2999 	ASSERT(IS_P2ALIGNED(sidx, pgcnt));
3000 	ASSERT(sidx < ahp->size);
3001 
3002 	if (ppa == NULL) {
3003 		ppasize = pgcnt * sizeof (page_t *);
3004 		ppa = kmem_alloc(ppasize, KM_SLEEP);
3005 	}
3006 
3007 	ap = anon_get_ptr(ahp, sidx);
3008 	if (ap != NULL && private) {
3009 		VM_STAT_ADD(anonvmstats.demotepages[1]);
3010 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
3011 		mutex_enter(ahmpages);
3012 	}
3013 
3014 	if (ap != NULL && ap->an_refcnt > 1) {
3015 		if (ahmpages != NULL) {
3016 			VM_STAT_ADD(anonvmstats.demotepages[2]);
3017 			mutex_exit(ahmpages);
3018 		}
3019 		if (ppasize != 0) {
3020 			kmem_free(ppa, ppasize);
3021 		}
3022 		return (0);
3023 	}
3024 	if (ahmpages != NULL) {
3025 		mutex_exit(ahmpages);
3026 	}
3027 	if (ahp->size - sidx < pgcnt) {
3028 		ASSERT(private == 0);
3029 		pgcnt = ahp->size - sidx;
3030 	}
3031 	for (i = 0; i < pgcnt; i++, sidx++) {
3032 		ap = anon_get_ptr(ahp, sidx);
3033 		if (ap != NULL) {
3034 			if (ap->an_refcnt != 1) {
3035 				panic("anon_try_demote_pages: an_refcnt != 1");
3036 			}
3037 			pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off,
3038 			    SE_EXCL);
3039 			if (pp != NULL) {
3040 				(void) hat_pageunload(pp,
3041 				    HAT_FORCE_PGUNLOAD);
3042 			}
3043 		} else {
3044 			ppa[i] = NULL;
3045 		}
3046 	}
3047 	for (i = 0; i < pgcnt; i++) {
3048 		if ((pp = ppa[i]) != NULL && pp->p_szc != 0) {
3049 			ASSERT(pp->p_szc <= szc);
3050 			if (!root) {
3051 				VM_STAT_ADD(anonvmstats.demotepages[3]);
3052 				if (curnpgs != 0)
3053 					panic("anon_try_demote_pages: "
3054 					    "bad large page");
3055 
3056 				root = 1;
3057 				curnpgs = npgs =
3058 				    page_get_pagecnt(pp->p_szc);
3059 
3060 				ASSERT(npgs <= pgcnt);
3061 				ASSERT(IS_P2ALIGNED(npgs, npgs));
3062 				ASSERT(!(page_pptonum(pp) & (npgs - 1)));
3063 			} else {
3064 				ASSERT(i > 0);
3065 				ASSERT(page_pptonum(pp) - 1 ==
3066 				    page_pptonum(ppa[i - 1]));
3067 				if ((page_pptonum(pp) & (npgs - 1)) ==
3068 				    npgs - 1)
3069 					root = 0;
3070 			}
3071 			ASSERT(PAGE_EXCL(pp));
3072 			pp->p_szc = 0;
3073 			ASSERT(curnpgs > 0);
3074 			curnpgs--;
3075 		}
3076 	}
3077 	if (root != 0 || curnpgs != 0)
3078 		panic("anon_try_demote_pages: bad large page");
3079 
3080 	for (i = 0; i < pgcnt; i++) {
3081 		if ((pp = ppa[i]) != NULL) {
3082 			ASSERT(!hat_page_is_mapped(pp));
3083 			ASSERT(pp->p_szc == 0);
3084 			page_unlock(pp);
3085 		}
3086 	}
3087 	if (ppasize != 0) {
3088 		kmem_free(ppa, ppasize);
3089 	}
3090 	return (1);
3091 }
3092 
3093 /*
3094  * anon_map_demotepages() can only be called by MAP_PRIVATE segments.
3095  */
3096 int
3097 anon_map_demotepages(
3098 	struct anon_map *amp,
3099 	ulong_t	start_idx,
3100 	struct seg *seg,
3101 	caddr_t addr,
3102 	uint_t prot,
3103 	struct vpage vpage[],
3104 	struct cred *cred)
3105 {
3106 	struct anon	*ap;
3107 	uint_t		szc = seg->s_szc;
3108 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
3109 	size_t		ppasize = pgcnt * sizeof (page_t *);
3110 	page_t		**ppa = kmem_alloc(ppasize, KM_SLEEP);
3111 	page_t		*pp;
3112 	page_t		*pl[2];
3113 	pgcnt_t		i, pg_idx;
3114 	ulong_t		an_idx;
3115 	caddr_t		vaddr;
3116 	int 		err;
3117 	int		retry = 0;
3118 	uint_t		vpprot;
3119 
3120 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
3121 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
3122 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
3123 	ASSERT(ppa != NULL);
3124 	ASSERT(szc != 0);
3125 	ASSERT(szc == amp->a_szc);
3126 
3127 	VM_STAT_ADD(anonvmstats.demotepages[0]);
3128 
3129 top:
3130 	if (anon_try_demote_pages(amp->ahp, start_idx, szc, ppa, 1)) {
3131 		kmem_free(ppa, ppasize);
3132 		return (0);
3133 	}
3134 
3135 	VM_STAT_ADD(anonvmstats.demotepages[4]);
3136 
3137 	ASSERT(retry == 0); /* we can be here only once */
3138 
3139 	vaddr = addr;
3140 	for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
3141 	    pg_idx++, an_idx++, vaddr += PAGESIZE) {
3142 		ap = anon_get_ptr(amp->ahp, an_idx);
3143 		if (ap == NULL)
3144 			panic("anon_map_demotepages: no anon slot");
3145 		err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr,
3146 		    S_READ, cred);
3147 		if (err) {
3148 			for (i = 0; i < pg_idx; i++) {
3149 				if ((pp = ppa[i]) != NULL)
3150 					page_unlock(pp);
3151 			}
3152 			kmem_free(ppa, ppasize);
3153 			return (err);
3154 		}
3155 		ppa[pg_idx] = pl[0];
3156 	}
3157 
3158 	err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa,
3159 	    vpage, -1, 0, cred);
3160 	if (err > 0) {
3161 		VM_STAT_ADD(anonvmstats.demotepages[5]);
3162 		kmem_free(ppa, ppasize);
3163 		return (err);
3164 	}
3165 	ASSERT(err == 0 || err == -1);
3166 	if (err == -1) {
3167 		VM_STAT_ADD(anonvmstats.demotepages[6]);
3168 		retry = 1;
3169 		goto top;
3170 	}
3171 	for (i = 0; i < pgcnt; i++) {
3172 		ASSERT(ppa[i] != NULL);
3173 		if (ppa[i]->p_szc != 0)
3174 			retry = 1;
3175 		page_unlock(ppa[i]);
3176 	}
3177 	if (retry) {
3178 		VM_STAT_ADD(anonvmstats.demotepages[7]);
3179 		goto top;
3180 	}
3181 
3182 	VM_STAT_ADD(anonvmstats.demotepages[8]);
3183 
3184 	kmem_free(ppa, ppasize);
3185 
3186 	return (0);
3187 }
3188 
3189 /*
3190  * Free pages of shared anon map. It's assumed that anon maps don't share anon
3191  * structures with private anon maps. Therefore all anon structures should
3192  * have at most one reference at this point. This means underlying pages can
3193  * be exclusively locked and demoted or freed.  If not freeing the entire
3194  * large pages demote the ends of the region we free to be able to free
3195  * subpages. Page roots correspond to aligned index positions in anon map.
3196  */
3197 void
3198 anon_shmap_free_pages(struct anon_map *amp, ulong_t sidx, size_t len)
3199 {
3200 	ulong_t eidx = sidx + btopr(len);
3201 	pgcnt_t pages = page_get_pagecnt(amp->a_szc);
3202 	struct anon_hdr *ahp = amp->ahp;
3203 	ulong_t tidx;
3204 	size_t size;
3205 	ulong_t sidx_aligned;
3206 	ulong_t eidx_aligned;
3207 
3208 	ASSERT(ANON_WRITE_HELD(&amp->a_rwlock));
3209 	ASSERT(amp->refcnt <= 1);
3210 	ASSERT(amp->a_szc > 0);
3211 	ASSERT(eidx <= ahp->size);
3212 	ASSERT(!anon_share(ahp, sidx, btopr(len)));
3213 
3214 	if (len == 0) {	/* XXX */
3215 		return;
3216 	}
3217 
3218 	sidx_aligned = P2ALIGN(sidx, pages);
3219 	if (sidx_aligned != sidx ||
3220 	    (eidx < sidx_aligned + pages && eidx < ahp->size)) {
3221 		if (!anon_try_demote_pages(ahp, sidx_aligned,
3222 		    amp->a_szc, NULL, 0)) {
3223 			panic("anon_shmap_free_pages: demote failed");
3224 		}
3225 		size = (eidx <= sidx_aligned + pages) ? (eidx - sidx) :
3226 		    P2NPHASE(sidx, pages);
3227 		size <<= PAGESHIFT;
3228 		anon_free(ahp, sidx, size);
3229 		sidx = sidx_aligned + pages;
3230 		if (eidx <= sidx) {
3231 			return;
3232 		}
3233 	}
3234 	eidx_aligned = P2ALIGN(eidx, pages);
3235 	if (sidx < eidx_aligned) {
3236 		anon_free_pages(ahp, sidx,
3237 		    (eidx_aligned - sidx) << PAGESHIFT,
3238 		    amp->a_szc);
3239 		sidx = eidx_aligned;
3240 	}
3241 	ASSERT(sidx == eidx_aligned);
3242 	if (eidx == eidx_aligned) {
3243 		return;
3244 	}
3245 	tidx = eidx;
3246 	if (eidx != ahp->size && anon_get_next_ptr(ahp, &tidx) != NULL &&
3247 	    tidx - sidx < pages) {
3248 		if (!anon_try_demote_pages(ahp, sidx, amp->a_szc, NULL, 0)) {
3249 			panic("anon_shmap_free_pages: demote failed");
3250 		}
3251 		size = (eidx - sidx) << PAGESHIFT;
3252 		anon_free(ahp, sidx, size);
3253 	} else {
3254 		anon_free_pages(ahp, sidx, pages << PAGESHIFT, amp->a_szc);
3255 	}
3256 }
3257 
3258 /*
3259  * This routine should be called with amp's writer lock when there're no other
3260  * users of amp.  All pcache entries of this amp must have been already
3261  * inactivated. We must not drop a_rwlock here to prevent new users from
3262  * attaching to this amp.
3263  */
3264 void
3265 anonmap_purge(struct anon_map *amp)
3266 {
3267 	ASSERT(ANON_WRITE_HELD(&amp->a_rwlock));
3268 	ASSERT(amp->refcnt <= 1);
3269 
3270 	if (amp->a_softlockcnt != 0) {
3271 		seg_ppurge(NULL, amp, 0);
3272 	}
3273 
3274 	/*
3275 	 * Since all pcache entries were already inactive before this routine
3276 	 * was called seg_ppurge() couldn't return while there're still
3277 	 * entries that can be found via the list anchored at a_phead. So we
3278 	 * can assert this list is empty now. a_softlockcnt may be still non 0
3279 	 * if asynchronous thread that manages pcache already removed pcache
3280 	 * entries but hasn't unlocked the pages yet. If a_softlockcnt is non
3281 	 * 0 we just wait on a_purgecv for shamp_reclaim() to finish. Even if
3282 	 * a_softlockcnt is 0 we grab a_purgemtx to avoid freeing anon map
3283 	 * before shamp_reclaim() is done with it. a_purgemtx also taken by
3284 	 * shamp_reclaim() while a_softlockcnt was still not 0 acts as a
3285 	 * barrier that prevents anonmap_purge() to complete while
3286 	 * shamp_reclaim() may still be referencing this amp.
3287 	 */
3288 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3289 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3290 
3291 	mutex_enter(&amp->a_purgemtx);
3292 	while (amp->a_softlockcnt != 0) {
3293 		ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3294 		ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3295 		amp->a_purgewait = 1;
3296 		cv_wait(&amp->a_purgecv, &amp->a_purgemtx);
3297 	}
3298 	mutex_exit(&amp->a_purgemtx);
3299 
3300 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3301 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3302 	ASSERT(amp->a_softlockcnt == 0);
3303 }
3304 
3305 /*
3306  * Allocate and initialize an anon_map structure for seg
3307  * associating the given swap reservation with the new anon_map.
3308  */
3309 struct anon_map *
3310 anonmap_alloc(size_t size, size_t swresv, int flags)
3311 {
3312 	struct anon_map *amp;
3313 	int kmflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
3314 
3315 	amp = kmem_cache_alloc(anonmap_cache, kmflags);
3316 	if (amp == NULL) {
3317 		ASSERT(kmflags == KM_NOSLEEP);
3318 		return (NULL);
3319 	}
3320 
3321 	amp->ahp = anon_create(btopr(size), flags);
3322 	if (amp->ahp == NULL) {
3323 		ASSERT(flags == ANON_NOSLEEP);
3324 		kmem_cache_free(anonmap_cache, amp);
3325 		return (NULL);
3326 	}
3327 	amp->refcnt = 1;
3328 	amp->size = size;
3329 	amp->swresv = swresv;
3330 	amp->locality = 0;
3331 	amp->a_szc = 0;
3332 	amp->a_sp = NULL;
3333 	amp->a_softlockcnt = 0;
3334 	amp->a_purgewait = 0;
3335 	amp->a_phead.p_lnext = &amp->a_phead;
3336 	amp->a_phead.p_lprev = &amp->a_phead;
3337 
3338 	return (amp);
3339 }
3340 
3341 void
3342 anonmap_free(struct anon_map *amp)
3343 {
3344 	ASSERT(amp->ahp != NULL);
3345 	ASSERT(amp->refcnt == 0);
3346 	ASSERT(amp->a_softlockcnt == 0);
3347 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3348 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3349 
3350 	lgrp_shm_policy_fini(amp, NULL);
3351 	anon_release(amp->ahp, btopr(amp->size));
3352 	kmem_cache_free(anonmap_cache, amp);
3353 }
3354 
3355 /*
3356  * Returns true if the app array has some empty slots.
3357  * The offp and lenp parameters are in/out parameters.  On entry
3358  * these values represent the starting offset and length of the
3359  * mapping.  When true is returned, these values may be modified
3360  * to be the largest range which includes empty slots.
3361  */
3362 int
3363 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp,
3364 				size_t *lenp)
3365 {
3366 	ulong_t i, el;
3367 	ssize_t low, high;
3368 	struct anon *ap;
3369 
3370 	low = -1;
3371 	for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) {
3372 		ap = anon_get_ptr(ahp, anon_idx);
3373 		if (ap == NULL) {
3374 			if (low == -1)
3375 				low = i;
3376 			high = i;
3377 		}
3378 	}
3379 	if (low != -1) {
3380 		/*
3381 		 * Found at least one non-anon page.
3382 		 * Set up the off and len return values.
3383 		 */
3384 		if (low != 0)
3385 			*offp += low;
3386 		*lenp = high - low + PAGESIZE;
3387 		return (1);
3388 	}
3389 	return (0);
3390 }
3391 
3392 /*
3393  * Return a count of the number of existing anon pages in the anon array
3394  * app in the range (off, off+len). The array and slots must be guaranteed
3395  * stable by the caller.
3396  */
3397 pgcnt_t
3398 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
3399 {
3400 	pgcnt_t cnt = 0;
3401 
3402 	while (nslots-- > 0) {
3403 		if ((anon_get_ptr(ahp, anon_index)) != NULL)
3404 			cnt++;
3405 		anon_index++;
3406 	}
3407 	return (cnt);
3408 }
3409 
3410 /*
3411  * Move reserved phys swap into memory swap (unreserve phys swap
3412  * and reserve mem swap by the same amount).
3413  * Used by segspt when it needs to lock reserved swap npages in memory
3414  */
3415 int
3416 anon_swap_adjust(pgcnt_t npages)
3417 {
3418 	pgcnt_t unlocked_mem_swap;
3419 
3420 	mutex_enter(&anoninfo_lock);
3421 
3422 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3423 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3424 
3425 	unlocked_mem_swap = k_anoninfo.ani_mem_resv
3426 	    - k_anoninfo.ani_locked_swap;
3427 	if (npages > unlocked_mem_swap) {
3428 		spgcnt_t adjusted_swap = npages - unlocked_mem_swap;
3429 
3430 		/*
3431 		 * if there is not enough unlocked mem swap we take missing
3432 		 * amount from phys swap and give it to mem swap
3433 		 */
3434 		if (!page_reclaim_mem(adjusted_swap, segspt_minfree, 1)) {
3435 			mutex_exit(&anoninfo_lock);
3436 			return (ENOMEM);
3437 		}
3438 
3439 		k_anoninfo.ani_mem_resv += adjusted_swap;
3440 		ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap);
3441 		k_anoninfo.ani_phys_resv -= adjusted_swap;
3442 
3443 		ANI_ADD(adjusted_swap);
3444 	}
3445 	k_anoninfo.ani_locked_swap += npages;
3446 
3447 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3448 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3449 
3450 	mutex_exit(&anoninfo_lock);
3451 
3452 	return (0);
3453 }
3454 
3455 /*
3456  * 'unlocked' reserved mem swap so when it is unreserved it
3457  * can be moved back phys (disk) swap
3458  */
3459 void
3460 anon_swap_restore(pgcnt_t npages)
3461 {
3462 	mutex_enter(&anoninfo_lock);
3463 
3464 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3465 
3466 	ASSERT(k_anoninfo.ani_locked_swap >= npages);
3467 	k_anoninfo.ani_locked_swap -= npages;
3468 
3469 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3470 
3471 	mutex_exit(&anoninfo_lock);
3472 }
3473 
3474 /*
3475  * Return the pointer from the list for a
3476  * specified anon index.
3477  */
3478 ulong_t *
3479 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx)
3480 {
3481 	struct anon	**app;
3482 	void 		**ppp;
3483 
3484 	ASSERT(an_idx < ahp->size);
3485 
3486 	/*
3487 	 * Single level case.
3488 	 */
3489 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
3490 		return ((ulong_t *)&ahp->array_chunk[an_idx]);
3491 	} else {
3492 
3493 		/*
3494 		 * 2 level case.
3495 		 */
3496 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3497 		if (*ppp == NULL) {
3498 			mutex_enter(&ahp->serial_lock);
3499 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3500 			if (*ppp == NULL)
3501 				*ppp = kmem_zalloc(PAGESIZE, KM_SLEEP);
3502 			mutex_exit(&ahp->serial_lock);
3503 		}
3504 		app = *ppp;
3505 		return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]);
3506 	}
3507 }
3508 
3509 void
3510 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj)
3511 {
3512 	ulong_t		*ap_slot;
3513 	kmutex_t	*mtx;
3514 	kcondvar_t	*cv;
3515 	int		hash;
3516 
3517 	/*
3518 	 * Use szc to determine anon slot(s) to appear atomic.
3519 	 * If szc = 0, then lock the anon slot and mark it busy.
3520 	 * If szc > 0, then lock the range of slots by getting the
3521 	 * anon_array_lock for the first anon slot, and mark only the
3522 	 * first anon slot busy to represent whole range being busy.
3523 	 */
3524 
3525 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3526 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3527 	hash = ANON_ARRAY_HASH(amp, an_idx);
3528 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3529 	sobj->sync_cv = cv = &anon_array_cv[hash];
3530 	mutex_enter(mtx);
3531 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3532 	while (ANON_ISBUSY(ap_slot))
3533 		cv_wait(cv, mtx);
3534 	ANON_SETBUSY(ap_slot);
3535 	sobj->sync_data = ap_slot;
3536 	mutex_exit(mtx);
3537 }
3538 
3539 int
3540 anon_array_try_enter(struct anon_map *amp, ulong_t an_idx,
3541 			anon_sync_obj_t *sobj)
3542 {
3543 	ulong_t		*ap_slot;
3544 	kmutex_t	*mtx;
3545 	int		hash;
3546 
3547 	/*
3548 	 * Try to lock a range of anon slots.
3549 	 * Use szc to determine anon slot(s) to appear atomic.
3550 	 * If szc = 0, then lock the anon slot and mark it busy.
3551 	 * If szc > 0, then lock the range of slots by getting the
3552 	 * anon_array_lock for the first anon slot, and mark only the
3553 	 * first anon slot busy to represent whole range being busy.
3554 	 * Fail if the mutex or the anon_array are busy.
3555 	 */
3556 
3557 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3558 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3559 	hash = ANON_ARRAY_HASH(amp, an_idx);
3560 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3561 	sobj->sync_cv = &anon_array_cv[hash];
3562 	if (!mutex_tryenter(mtx)) {
3563 		return (EWOULDBLOCK);
3564 	}
3565 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3566 	if (ANON_ISBUSY(ap_slot)) {
3567 		mutex_exit(mtx);
3568 		return (EWOULDBLOCK);
3569 	}
3570 	ANON_SETBUSY(ap_slot);
3571 	sobj->sync_data = ap_slot;
3572 	mutex_exit(mtx);
3573 	return (0);
3574 }
3575 
3576 void
3577 anon_array_exit(anon_sync_obj_t *sobj)
3578 {
3579 	mutex_enter(sobj->sync_mutex);
3580 	ASSERT(ANON_ISBUSY(sobj->sync_data));
3581 	ANON_CLRBUSY(sobj->sync_data);
3582 	if (CV_HAS_WAITERS(sobj->sync_cv))
3583 		cv_broadcast(sobj->sync_cv);
3584 	mutex_exit(sobj->sync_mutex);
3585 }
3586