1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #pragma ident "%Z%%M% %I% %E% SMI" 40 41 /* 42 * VM - anonymous pages. 43 * 44 * This layer sits immediately above the vm_swap layer. It manages 45 * physical pages that have no permanent identity in the file system 46 * name space, using the services of the vm_swap layer to allocate 47 * backing storage for these pages. Since these pages have no external 48 * identity, they are discarded when the last reference is removed. 49 * 50 * An important function of this layer is to manage low-level sharing 51 * of pages that are logically distinct but that happen to be 52 * physically identical (e.g., the corresponding pages of the processes 53 * resulting from a fork before one process or the other changes their 54 * contents). This pseudo-sharing is present only as an optimization 55 * and is not to be confused with true sharing in which multiple 56 * address spaces deliberately contain references to the same object; 57 * such sharing is managed at a higher level. 58 * 59 * The key data structure here is the anon struct, which contains a 60 * reference count for its associated physical page and a hint about 61 * the identity of that page. Anon structs typically live in arrays, 62 * with an instance's position in its array determining where the 63 * corresponding backing storage is allocated; however, the swap_xlate() 64 * routine abstracts away this representation information so that the 65 * rest of the anon layer need not know it. (See the swap layer for 66 * more details on anon struct layout.) 67 * 68 * In the future versions of the system, the association between an 69 * anon struct and its position on backing store will change so that 70 * we don't require backing store all anonymous pages in the system. 71 * This is important for consideration for large memory systems. 72 * We can also use this technique to delay binding physical locations 73 * to anonymous pages until pageout/swapout time where we can make 74 * smarter allocation decisions to improve anonymous klustering. 75 * 76 * Many of the routines defined here take a (struct anon **) argument, 77 * which allows the code at this level to manage anon pages directly, 78 * so that callers can regard anon structs as opaque objects and not be 79 * concerned with assigning or inspecting their contents. 80 * 81 * Clients of this layer refer to anon pages indirectly. That is, they 82 * maintain arrays of pointers to anon structs rather than maintaining 83 * anon structs themselves. The (struct anon **) arguments mentioned 84 * above are pointers to entries in these arrays. It is these arrays 85 * that capture the mapping between offsets within a given segment and 86 * the corresponding anonymous backing storage address. 87 */ 88 89 #ifdef DEBUG 90 #define ANON_DEBUG 91 #endif 92 93 #include <sys/types.h> 94 #include <sys/t_lock.h> 95 #include <sys/param.h> 96 #include <sys/systm.h> 97 #include <sys/mman.h> 98 #include <sys/cred.h> 99 #include <sys/thread.h> 100 #include <sys/vnode.h> 101 #include <sys/cpuvar.h> 102 #include <sys/swap.h> 103 #include <sys/cmn_err.h> 104 #include <sys/vtrace.h> 105 #include <sys/kmem.h> 106 #include <sys/sysmacros.h> 107 #include <sys/bitmap.h> 108 #include <sys/vmsystm.h> 109 #include <sys/debug.h> 110 #include <sys/fs/swapnode.h> 111 #include <sys/tnf_probe.h> 112 #include <sys/lgrp.h> 113 #include <sys/policy.h> 114 #include <sys/condvar_impl.h> 115 #include <sys/mutex_impl.h> 116 117 #include <vm/as.h> 118 #include <vm/hat.h> 119 #include <vm/anon.h> 120 #include <vm/page.h> 121 #include <vm/vpage.h> 122 #include <vm/seg.h> 123 #include <vm/rm.h> 124 125 #include <fs/fs_subr.h> 126 127 struct vnode *anon_vp; 128 129 int anon_debug; 130 131 kmutex_t anoninfo_lock; 132 struct k_anoninfo k_anoninfo; 133 ani_free_t ani_free_pool[ANI_MAX_POOL]; 134 pad_mutex_t anon_array_lock[ANON_LOCKSIZE]; 135 kcondvar_t anon_array_cv[ANON_LOCKSIZE]; 136 137 /* 138 * Global hash table for (vp, off) -> anon slot 139 */ 140 extern int swap_maxcontig; 141 size_t anon_hash_size; 142 struct anon **anon_hash; 143 144 static struct kmem_cache *anon_cache; 145 static struct kmem_cache *anonmap_cache; 146 147 #ifdef VM_STATS 148 static struct anonvmstats_str { 149 ulong_t getpages[30]; 150 ulong_t privatepages[10]; 151 ulong_t demotepages[9]; 152 ulong_t decrefpages[9]; 153 ulong_t dupfillholes[4]; 154 ulong_t freepages[1]; 155 } anonvmstats; 156 #endif /* VM_STATS */ 157 158 159 /*ARGSUSED*/ 160 static int 161 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags) 162 { 163 struct anon_map *amp = buf; 164 165 rw_init(&->a_rwlock, NULL, RW_DEFAULT, NULL); 166 return (0); 167 } 168 169 /*ARGSUSED1*/ 170 static void 171 anonmap_cache_destructor(void *buf, void *cdrarg) 172 { 173 struct anon_map *amp = buf; 174 175 rw_destroy(&->a_rwlock); 176 } 177 178 kmutex_t anonhash_lock[AH_LOCK_SIZE]; 179 kmutex_t anonpages_hash_lock[AH_LOCK_SIZE]; 180 181 void 182 anon_init(void) 183 { 184 int i; 185 186 anon_hash_size = 1L << highbit(physmem / ANON_HASHAVELEN); 187 188 for (i = 0; i < AH_LOCK_SIZE; i++) { 189 mutex_init(&anonhash_lock[i], NULL, MUTEX_DEFAULT, NULL); 190 mutex_init(&anonpages_hash_lock[i], NULL, MUTEX_DEFAULT, NULL); 191 } 192 193 for (i = 0; i < ANON_LOCKSIZE; i++) { 194 mutex_init(&anon_array_lock[i].pad_mutex, NULL, 195 MUTEX_DEFAULT, NULL); 196 cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL); 197 } 198 199 anon_hash = (struct anon **) 200 kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP); 201 anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon), 202 AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 203 anonmap_cache = kmem_cache_create("anonmap_cache", 204 sizeof (struct anon_map), 0, 205 anonmap_cache_constructor, anonmap_cache_destructor, NULL, 206 NULL, NULL, 0); 207 swap_maxcontig = (1024 * 1024) >> PAGESHIFT; /* 1MB of pages */ 208 209 anon_vp = vn_alloc(KM_SLEEP); 210 vn_setops(anon_vp, swap_vnodeops); 211 anon_vp->v_type = VREG; 212 anon_vp->v_flag |= (VISSWAP|VISSWAPFS); 213 } 214 215 /* 216 * Global anon slot hash table manipulation. 217 */ 218 219 static void 220 anon_addhash(struct anon *ap) 221 { 222 int index; 223 224 ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)])); 225 index = ANON_HASH(ap->an_vp, ap->an_off); 226 ap->an_hash = anon_hash[index]; 227 anon_hash[index] = ap; 228 } 229 230 static void 231 anon_rmhash(struct anon *ap) 232 { 233 struct anon **app; 234 235 ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)])); 236 237 for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)]; 238 *app; app = &((*app)->an_hash)) { 239 if (*app == ap) { 240 *app = ap->an_hash; 241 break; 242 } 243 } 244 } 245 246 /* 247 * The anon array interfaces. Functions allocating, 248 * freeing array of pointers, and returning/setting 249 * entries in the array of pointers for a given offset. 250 * 251 * Create the list of pointers 252 */ 253 struct anon_hdr * 254 anon_create(pgcnt_t npages, int flags) 255 { 256 struct anon_hdr *ahp; 257 ulong_t nchunks; 258 int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; 259 260 if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) { 261 return (NULL); 262 } 263 264 mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL); 265 /* 266 * Single level case. 267 */ 268 ahp->size = npages; 269 if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) { 270 271 if (flags & ANON_ALLOC_FORCE) 272 ahp->flags |= ANON_ALLOC_FORCE; 273 274 ahp->array_chunk = kmem_zalloc( 275 ahp->size * sizeof (struct anon *), kmemflags); 276 277 if (ahp->array_chunk == NULL) { 278 kmem_free(ahp, sizeof (struct anon_hdr)); 279 return (NULL); 280 } 281 } else { 282 /* 283 * 2 Level case. 284 */ 285 nchunks = (ahp->size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 286 287 ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *), 288 kmemflags); 289 290 if (ahp->array_chunk == NULL) { 291 kmem_free(ahp, sizeof (struct anon_hdr)); 292 return (NULL); 293 } 294 } 295 return (ahp); 296 } 297 298 /* 299 * Free the array of pointers 300 */ 301 void 302 anon_release(struct anon_hdr *ahp, pgcnt_t npages) 303 { 304 ulong_t i; 305 void **ppp; 306 ulong_t nchunks; 307 308 ASSERT(npages == ahp->size); 309 310 /* 311 * Single level case. 312 */ 313 if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) { 314 kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *)); 315 } else { 316 /* 317 * 2 level case. 318 */ 319 nchunks = (ahp->size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 320 for (i = 0; i < nchunks; i++) { 321 ppp = &ahp->array_chunk[i]; 322 if (*ppp != NULL) 323 kmem_free(*ppp, PAGESIZE); 324 } 325 kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *)); 326 } 327 mutex_destroy(&ahp->serial_lock); 328 kmem_free(ahp, sizeof (struct anon_hdr)); 329 } 330 331 /* 332 * Return the pointer from the list for a 333 * specified anon index. 334 */ 335 struct anon * 336 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx) 337 { 338 struct anon **app; 339 340 ASSERT(an_idx < ahp->size); 341 342 /* 343 * Single level case. 344 */ 345 if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) { 346 return ((struct anon *) 347 ((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK)); 348 } else { 349 350 /* 351 * 2 level case. 352 */ 353 app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT]; 354 if (app) { 355 return ((struct anon *) 356 ((uintptr_t)app[an_idx & ANON_CHUNK_OFF] & 357 ANON_PTRMASK)); 358 } else { 359 return (NULL); 360 } 361 } 362 } 363 364 /* 365 * Return the anon pointer for the first valid entry in the anon list, 366 * starting from the given index. 367 */ 368 struct anon * 369 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index) 370 { 371 struct anon *ap; 372 struct anon **app; 373 ulong_t chunkoff; 374 ulong_t i; 375 ulong_t j; 376 pgcnt_t size; 377 378 i = *index; 379 size = ahp->size; 380 381 ASSERT(i < size); 382 383 if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) { 384 /* 385 * 1 level case 386 */ 387 while (i < size) { 388 ap = (struct anon *) 389 ((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK); 390 if (ap) { 391 *index = i; 392 return (ap); 393 } 394 i++; 395 } 396 } else { 397 /* 398 * 2 level case 399 */ 400 chunkoff = i & ANON_CHUNK_OFF; 401 while (i < size) { 402 app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT]; 403 if (app) 404 for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) { 405 ap = (struct anon *) 406 ((uintptr_t)app[j] & 407 ANON_PTRMASK); 408 if (ap) { 409 *index = i + (j - chunkoff); 410 return (ap); 411 } 412 } 413 chunkoff = 0; 414 i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF; 415 } 416 } 417 *index = size; 418 return (NULL); 419 } 420 421 /* 422 * Set list entry with a given pointer for a specified offset 423 */ 424 int 425 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags) 426 { 427 void **ppp; 428 struct anon **app; 429 int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; 430 uintptr_t *ap_addr; 431 432 ASSERT(an_idx < ahp->size); 433 434 /* 435 * Single level case. 436 */ 437 if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) { 438 ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx]; 439 } else { 440 441 /* 442 * 2 level case. 443 */ 444 ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT]; 445 446 ASSERT(ppp != NULL); 447 if (*ppp == NULL) { 448 mutex_enter(&ahp->serial_lock); 449 ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT]; 450 if (*ppp == NULL) { 451 *ppp = kmem_zalloc(PAGESIZE, kmemflags); 452 if (*ppp == NULL) { 453 mutex_exit(&ahp->serial_lock); 454 return (ENOMEM); 455 } 456 } 457 mutex_exit(&ahp->serial_lock); 458 } 459 app = *ppp; 460 ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF]; 461 } 462 *ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap; 463 return (0); 464 } 465 466 /* 467 * Copy anon array into a given new anon array 468 */ 469 int 470 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx, 471 struct anon_hdr *dahp, ulong_t d_idx, 472 pgcnt_t npages, int flags) 473 { 474 void **sapp, **dapp; 475 void *ap; 476 int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; 477 478 ASSERT((s_idx < sahp->size) && (d_idx < dahp->size)); 479 ASSERT((npages <= sahp->size) && (npages <= dahp->size)); 480 481 /* 482 * Both arrays are 1 level. 483 */ 484 if (((sahp->size <= ANON_CHUNK_SIZE) && 485 (dahp->size <= ANON_CHUNK_SIZE)) || 486 ((sahp->flags & ANON_ALLOC_FORCE) && 487 (dahp->flags & ANON_ALLOC_FORCE))) { 488 489 bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx], 490 npages * sizeof (struct anon *)); 491 return (0); 492 } 493 494 /* 495 * Both arrays are 2 levels. 496 */ 497 if (sahp->size > ANON_CHUNK_SIZE && 498 dahp->size > ANON_CHUNK_SIZE && 499 ((sahp->flags & ANON_ALLOC_FORCE) == 0) && 500 ((dahp->flags & ANON_ALLOC_FORCE) == 0)) { 501 502 ulong_t sapidx, dapidx; 503 ulong_t *sap, *dap; 504 ulong_t chknp; 505 506 while (npages != 0) { 507 508 sapidx = s_idx & ANON_CHUNK_OFF; 509 dapidx = d_idx & ANON_CHUNK_OFF; 510 chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx); 511 if (chknp > npages) 512 chknp = npages; 513 514 sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT]; 515 if ((sap = *sapp) != NULL) { 516 dapp = &dahp->array_chunk[d_idx 517 >> ANON_CHUNK_SHIFT]; 518 if ((dap = *dapp) == NULL) { 519 *dapp = kmem_zalloc(PAGESIZE, 520 kmemflags); 521 if ((dap = *dapp) == NULL) 522 return (ENOMEM); 523 } 524 bcopy((sap + sapidx), (dap + dapidx), 525 chknp << ANON_PTRSHIFT); 526 } 527 s_idx += chknp; 528 d_idx += chknp; 529 npages -= chknp; 530 } 531 return (0); 532 } 533 534 /* 535 * At least one of the arrays is 2 level. 536 */ 537 while (npages--) { 538 if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) { 539 ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx))); 540 if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM) 541 return (ENOMEM); 542 } 543 s_idx++; 544 d_idx++; 545 } 546 return (0); 547 } 548 549 550 /* 551 * ANON_INITBUF is a convenience macro for anon_grow() below. It 552 * takes a buffer dst, which is at least as large as buffer src. It 553 * does a bcopy from src into dst, and then bzeros the extra bytes 554 * of dst. If tail is set, the data in src is tail aligned within 555 * dst instead of head aligned. 556 */ 557 558 #define ANON_INITBUF(src, srclen, dst, dstsize, tail) \ 559 if (tail) { \ 560 bzero((dst), (dstsize) - (srclen)); \ 561 bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \ 562 } else { \ 563 bcopy((src), (dst), (srclen)); \ 564 bzero((char *)(dst) + (srclen), (dstsize) - (srclen)); \ 565 } 566 567 #define ANON_1_LEVEL_INC (ANON_CHUNK_SIZE / 8) 568 #define ANON_2_LEVEL_INC (ANON_1_LEVEL_INC * ANON_CHUNK_SIZE) 569 570 /* 571 * anon_grow() is used to efficiently extend an existing anon array. 572 * startidx_p points to the index into the anon array of the first page 573 * that is in use. oldseg_pgs is the number of pages in use, starting at 574 * *startidx_p. newpages is the number of additional pages desired. 575 * 576 * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed. 577 * 578 * The growth is done by creating a new top level of the anon array, 579 * and (if the array is 2-level) reusing the existing second level arrays. 580 * 581 * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN. 582 * 583 * Returns the new number of pages in the anon array. 584 */ 585 pgcnt_t 586 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs, 587 pgcnt_t newseg_pgs, int flags) 588 { 589 ulong_t startidx = startidx_p ? *startidx_p : 0; 590 pgcnt_t oldamp_pgs = ahp->size, newamp_pgs; 591 pgcnt_t oelems, nelems, totpages; 592 void **level1; 593 int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; 594 int growdown = (flags & ANON_GROWDOWN); 595 size_t newarrsz, oldarrsz; 596 void *level2; 597 598 ASSERT(!(startidx_p == NULL && growdown)); 599 ASSERT(startidx + oldseg_pgs <= ahp->size); 600 601 /* 602 * Determine the total number of pages needed in the new 603 * anon array. If growing down, totpages is all pages from 604 * startidx through the end of the array, plus <newseg_pgs> 605 * pages. If growing up, keep all pages from page 0 through 606 * the last page currently in use, plus <newseg_pgs> pages. 607 */ 608 if (growdown) 609 totpages = oldamp_pgs - startidx + newseg_pgs; 610 else 611 totpages = startidx + oldseg_pgs + newseg_pgs; 612 613 /* If the array is already large enough, just return. */ 614 615 if (oldamp_pgs >= totpages) { 616 if (growdown) 617 *startidx_p = oldamp_pgs - totpages; 618 return (oldamp_pgs); 619 } 620 621 /* 622 * oldamp_pgs/newamp_pgs are the total numbers of pages represented 623 * by the corresponding arrays. 624 * oelems/nelems are the number of pointers in the top level arrays 625 * which may be either level 1 or level 2. 626 * Will the new anon array be one level or two levels? 627 */ 628 if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) { 629 newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC); 630 oelems = oldamp_pgs; 631 nelems = newamp_pgs; 632 } else { 633 newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC); 634 oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 635 nelems = newamp_pgs >> ANON_CHUNK_SHIFT; 636 } 637 638 newarrsz = nelems * sizeof (void *); 639 level1 = kmem_alloc(newarrsz, kmemflags); 640 if (level1 == NULL) 641 return (0); 642 643 /* Are we converting from a one level to a two level anon array? */ 644 645 if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE && 646 !(ahp->flags & ANON_ALLOC_FORCE)) { 647 648 /* 649 * Yes, we're converting to a two level. Reuse old level 1 650 * as new level 2 if it is exactly PAGESIZE. Otherwise 651 * alloc a new level 2 and copy the old level 1 data into it. 652 */ 653 if (oldamp_pgs == ANON_CHUNK_SIZE) { 654 level2 = (void *)ahp->array_chunk; 655 } else { 656 level2 = kmem_alloc(PAGESIZE, kmemflags); 657 if (level2 == NULL) { 658 kmem_free(level1, newarrsz); 659 return (0); 660 } 661 oldarrsz = oldamp_pgs * sizeof (void *); 662 663 ANON_INITBUF(ahp->array_chunk, oldarrsz, 664 level2, PAGESIZE, growdown); 665 kmem_free(ahp->array_chunk, oldarrsz); 666 } 667 bzero(level1, newarrsz); 668 if (growdown) 669 level1[nelems - 1] = level2; 670 else 671 level1[0] = level2; 672 } else { 673 oldarrsz = oelems * sizeof (void *); 674 675 ANON_INITBUF(ahp->array_chunk, oldarrsz, 676 level1, newarrsz, growdown); 677 kmem_free(ahp->array_chunk, oldarrsz); 678 } 679 680 ahp->array_chunk = level1; 681 ahp->size = newamp_pgs; 682 if (growdown) { 683 *startidx_p = newamp_pgs - totpages; 684 if (oldamp_pgs > ANON_CHUNK_SIZE) 685 *startidx_p -= P2NPHASE(oldseg_pgs, ANON_CHUNK_SIZE); 686 } 687 return (newamp_pgs); 688 } 689 690 691 /* 692 * Called from clock handler to sync ani_free value. 693 */ 694 695 void 696 set_anoninfo(void) 697 { 698 int ix; 699 pgcnt_t total = 0; 700 701 for (ix = 0; ix < ANI_MAX_POOL; ix++) { 702 total += ani_free_pool[ix].ani_count; 703 } 704 k_anoninfo.ani_free = total; 705 } 706 707 /* 708 * Reserve anon space. 709 * 710 * It's no longer simply a matter of incrementing ani_resv to 711 * reserve swap space, we need to check memory-based as well 712 * as disk-backed (physical) swap. The following algorithm 713 * is used: 714 * Check the space on physical swap 715 * i.e. amount needed < ani_max - ani_phys_resv 716 * If we are swapping on swapfs check 717 * amount needed < (availrmem - swapfs_minfree) 718 * Since the algorithm to check for the quantity of swap space is 719 * almost the same as that for reserving it, we'll just use anon_resvmem 720 * with a flag to decrement availrmem. 721 * 722 * Return non-zero on success. 723 */ 724 int 725 anon_resvmem(size_t size, uint_t takemem) 726 { 727 pgcnt_t npages = btopr(size); 728 pgcnt_t mswap_pages = 0; 729 pgcnt_t pswap_pages = 0; 730 731 mutex_enter(&anoninfo_lock); 732 733 /* 734 * pswap_pages is the number of pages we can take from 735 * physical (i.e. disk-backed) swap. 736 */ 737 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 738 pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv; 739 740 ANON_PRINT(A_RESV, 741 ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n", 742 npages, takemem, pswap_pages, (void *)caller())); 743 744 if (npages <= pswap_pages) { 745 /* 746 * we have enough space on a physical swap 747 */ 748 if (takemem) 749 k_anoninfo.ani_phys_resv += npages; 750 mutex_exit(&anoninfo_lock); 751 return (1); 752 } else if (pswap_pages != 0) { 753 /* 754 * we have some space on a physical swap 755 */ 756 if (takemem) { 757 /* 758 * use up remainder of phys swap 759 */ 760 k_anoninfo.ani_phys_resv += pswap_pages; 761 ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max); 762 } 763 } 764 /* 765 * since (npages > pswap_pages) we need mem swap 766 * mswap_pages is the number of pages needed from availrmem 767 */ 768 ASSERT(npages > pswap_pages); 769 mswap_pages = npages - pswap_pages; 770 771 ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n", 772 mswap_pages)); 773 774 /* 775 * priv processes can reserve memory as swap as long as availrmem 776 * remains greater than swapfs_minfree; in the case of non-priv 777 * processes, memory can be reserved as swap only if availrmem 778 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus, 779 * swapfs_reserve amount of memswap is not available to non-priv 780 * processes. This protects daemons such as automounter dying 781 * as a result of application processes eating away almost entire 782 * membased swap. This safeguard becomes useless if apps are run 783 * with root access. 784 * 785 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem. 786 * 787 */ 788 mutex_enter(&freemem_lock); 789 if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) || 790 (availrmem > (swapfs_minfree + mswap_pages) && 791 secpolicy_resource(CRED()) == 0)) { 792 793 if (takemem) { 794 /* 795 * Take the memory from the rest of the system. 796 */ 797 availrmem -= mswap_pages; 798 mutex_exit(&freemem_lock); 799 k_anoninfo.ani_mem_resv += mswap_pages; 800 ANI_ADD(mswap_pages); 801 ANON_PRINT((A_RESV | A_MRESV), 802 ("anon_resvmem: took %ld pages of availrmem\n", 803 mswap_pages)); 804 } else { 805 mutex_exit(&freemem_lock); 806 } 807 808 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 809 mutex_exit(&anoninfo_lock); 810 return (1); 811 812 } else { 813 /* 814 * Fail if not enough memory 815 */ 816 817 if (takemem) { 818 k_anoninfo.ani_phys_resv -= pswap_pages; 819 } 820 821 mutex_exit(&freemem_lock); 822 mutex_exit(&anoninfo_lock); 823 ANON_PRINT(A_RESV, 824 ("anon_resvmem: not enough space from swapfs\n")); 825 return (0); 826 } 827 } 828 829 830 /* 831 * Give back an anon reservation. 832 */ 833 void 834 anon_unresv(size_t size) 835 { 836 pgcnt_t npages = btopr(size); 837 spgcnt_t mem_free_pages = 0; 838 pgcnt_t phys_free_slots; 839 #ifdef ANON_DEBUG 840 pgcnt_t mem_resv; 841 #endif 842 843 mutex_enter(&anoninfo_lock); 844 845 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); 846 /* 847 * If some of this reservation belonged to swapfs 848 * give it back to availrmem. 849 * ani_mem_resv is the amount of availrmem swapfs has reserved. 850 * but some of that memory could be locked by segspt so we can only 851 * return non locked ani_mem_resv back to availrmem 852 */ 853 if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) { 854 ANON_PRINT((A_RESV | A_MRESV), 855 ("anon_unresv: growing availrmem by %ld pages\n", 856 MIN(k_anoninfo.ani_mem_resv, npages))); 857 858 mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv - 859 k_anoninfo.ani_locked_swap), npages); 860 mutex_enter(&freemem_lock); 861 availrmem += mem_free_pages; 862 mutex_exit(&freemem_lock); 863 k_anoninfo.ani_mem_resv -= mem_free_pages; 864 865 ANI_ADD(-mem_free_pages); 866 } 867 /* 868 * The remainder of the pages is returned to phys swap 869 */ 870 ASSERT(npages >= mem_free_pages); 871 phys_free_slots = npages - mem_free_pages; 872 873 if (phys_free_slots) { 874 k_anoninfo.ani_phys_resv -= phys_free_slots; 875 } 876 877 #ifdef ANON_DEBUG 878 mem_resv = k_anoninfo.ani_mem_resv; 879 #endif 880 881 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); 882 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 883 884 mutex_exit(&anoninfo_lock); 885 886 ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n", 887 npages, mem_resv, (void *)caller())); 888 } 889 890 /* 891 * Allocate an anon slot and return it with the lock held. 892 */ 893 struct anon * 894 anon_alloc(struct vnode *vp, anoff_t off) 895 { 896 struct anon *ap; 897 kmutex_t *ahm; 898 899 ap = kmem_cache_alloc(anon_cache, KM_SLEEP); 900 if (vp == NULL) { 901 swap_alloc(ap); 902 } else { 903 ap->an_vp = vp; 904 ap->an_off = off; 905 } 906 ap->an_refcnt = 1; 907 ap->an_pvp = NULL; 908 ap->an_poff = 0; 909 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 910 mutex_enter(ahm); 911 anon_addhash(ap); 912 mutex_exit(ahm); 913 ANI_ADD(-1); 914 ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n", 915 (void *)ap, (ap ? (void *)ap->an_vp : NULL))); 916 return (ap); 917 } 918 919 /* 920 * Decrement the reference count of an anon page. 921 * If reference count goes to zero, free it and 922 * its associated page (if any). 923 */ 924 void 925 anon_decref(struct anon *ap) 926 { 927 page_t *pp; 928 struct vnode *vp; 929 anoff_t off; 930 kmutex_t *ahm; 931 932 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 933 mutex_enter(ahm); 934 ASSERT(ap->an_refcnt != 0); 935 if (ap->an_refcnt == 0) 936 panic("anon_decref: slot count 0"); 937 if (--ap->an_refcnt == 0) { 938 swap_xlate(ap, &vp, &off); 939 mutex_exit(ahm); 940 941 /* 942 * If there is a page for this anon slot we will need to 943 * call VN_DISPOSE to get rid of the vp association and 944 * put the page back on the free list as really free. 945 * Acquire the "exclusive" lock to ensure that any 946 * pending i/o always completes before the swap slot 947 * is freed. 948 */ 949 pp = page_lookup(vp, (u_offset_t)off, SE_EXCL); 950 951 /* 952 * If there was a page, we've synchronized on it (getting 953 * the exclusive lock is as good as gettting the iolock) 954 * so now we can free the physical backing store. Also, this 955 * is where we would free the name of the anonymous page 956 * (swap_free(ap)), a no-op in the current implementation. 957 */ 958 mutex_enter(ahm); 959 ASSERT(ap->an_refcnt == 0); 960 anon_rmhash(ap); 961 if (ap->an_pvp) 962 swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE); 963 mutex_exit(ahm); 964 965 if (pp != NULL) { 966 /*LINTED: constant in conditional context */ 967 VN_DISPOSE(pp, B_INVAL, 0, kcred); 968 } 969 ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n", 970 (void *)ap, (void *)ap->an_vp)); 971 kmem_cache_free(anon_cache, ap); 972 973 ANI_ADD(1); 974 } else { 975 mutex_exit(ahm); 976 } 977 } 978 979 static int 980 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots) 981 { 982 struct anon *ap; 983 984 while (nslots-- > 0) { 985 if ((ap = anon_get_ptr(ahp, anon_index)) != NULL && 986 ap->an_refcnt > 1) 987 return (1); 988 anon_index++; 989 } 990 991 return (0); 992 } 993 994 static void 995 anon_decref_pages( 996 struct anon_hdr *ahp, 997 ulong_t an_idx, 998 uint_t szc) 999 { 1000 struct anon *ap = anon_get_ptr(ahp, an_idx); 1001 kmutex_t *ahmpages = NULL; 1002 page_t *pp; 1003 pgcnt_t pgcnt = page_get_pagecnt(szc); 1004 pgcnt_t i; 1005 struct vnode *vp; 1006 anoff_t off; 1007 kmutex_t *ahm; 1008 #ifdef DEBUG 1009 int refcnt = 1; 1010 #endif 1011 1012 ASSERT(szc != 0); 1013 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 1014 ASSERT(IS_P2ALIGNED(an_idx, pgcnt)); 1015 1016 VM_STAT_ADD(anonvmstats.decrefpages[0]); 1017 1018 if (ap != NULL) { 1019 ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 1020 mutex_enter(ahmpages); 1021 ASSERT((refcnt = ap->an_refcnt) != 0); 1022 VM_STAT_ADD(anonvmstats.decrefpages[1]); 1023 if (ap->an_refcnt == 1) { 1024 VM_STAT_ADD(anonvmstats.decrefpages[2]); 1025 ASSERT(!anon_share(ahp, an_idx, pgcnt)); 1026 mutex_exit(ahmpages); 1027 ahmpages = NULL; 1028 } 1029 } 1030 1031 i = 0; 1032 while (i < pgcnt) { 1033 if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) { 1034 ASSERT(refcnt == 1 && ahmpages == NULL); 1035 i++; 1036 continue; 1037 } 1038 ASSERT(ap->an_refcnt == refcnt); 1039 ASSERT(ahmpages != NULL || ap->an_refcnt == 1); 1040 ASSERT(ahmpages == NULL || ap->an_refcnt > 1); 1041 1042 if (ahmpages == NULL) { 1043 swap_xlate(ap, &vp, &off); 1044 pp = page_lookup(vp, (u_offset_t)off, SE_EXCL); 1045 if (pp == NULL || pp->p_szc == 0) { 1046 VM_STAT_ADD(anonvmstats.decrefpages[3]); 1047 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, 1048 ap->an_off)]; 1049 (void) anon_set_ptr(ahp, an_idx + i, NULL, 1050 ANON_SLEEP); 1051 mutex_enter(ahm); 1052 ap->an_refcnt--; 1053 ASSERT(ap->an_refcnt == 0); 1054 anon_rmhash(ap); 1055 if (ap->an_pvp) 1056 swap_phys_free(ap->an_pvp, ap->an_poff, 1057 PAGESIZE); 1058 mutex_exit(ahm); 1059 if (pp != NULL) { 1060 VM_STAT_ADD(anonvmstats.decrefpages[4]); 1061 /*LINTED*/ 1062 VN_DISPOSE(pp, B_INVAL, 0, kcred); 1063 } 1064 kmem_cache_free(anon_cache, ap); 1065 ANI_ADD(1); 1066 i++; 1067 } else { 1068 pgcnt_t j; 1069 pgcnt_t curpgcnt = 1070 page_get_pagecnt(pp->p_szc); 1071 size_t ppasize = curpgcnt * sizeof (page_t *); 1072 page_t **ppa = kmem_alloc(ppasize, KM_SLEEP); 1073 int dispose = 0; 1074 1075 VM_STAT_ADD(anonvmstats.decrefpages[5]); 1076 1077 ASSERT(pp->p_szc <= szc); 1078 ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt)); 1079 ASSERT(IS_P2ALIGNED(i, curpgcnt)); 1080 ASSERT(i + curpgcnt <= pgcnt); 1081 ASSERT(!(page_pptonum(pp) & (curpgcnt - 1))); 1082 ppa[0] = pp; 1083 for (j = i + 1; j < i + curpgcnt; j++) { 1084 ap = anon_get_ptr(ahp, an_idx + j); 1085 ASSERT(ap != NULL && 1086 ap->an_refcnt == 1); 1087 swap_xlate(ap, &vp, &off); 1088 pp = page_lookup(vp, (u_offset_t)off, 1089 SE_EXCL); 1090 if (pp == NULL) 1091 panic("anon_decref_pages: " 1092 "no page"); 1093 1094 (void) hat_pageunload(pp, 1095 HAT_FORCE_PGUNLOAD); 1096 ASSERT(pp->p_szc == ppa[0]->p_szc); 1097 ASSERT(page_pptonum(pp) - 1 == 1098 page_pptonum(ppa[j - i - 1])); 1099 ppa[j - i] = pp; 1100 if (ap->an_pvp != NULL && 1101 !vn_matchopval(ap->an_pvp, 1102 VOPNAME_DISPOSE, 1103 (fs_generic_func_p)fs_dispose)) 1104 dispose = 1; 1105 } 1106 if (!dispose) { 1107 VM_STAT_ADD(anonvmstats.decrefpages[6]); 1108 page_destroy_pages(ppa[0]); 1109 } else { 1110 VM_STAT_ADD(anonvmstats.decrefpages[7]); 1111 for (j = 0; j < curpgcnt; j++) { 1112 ASSERT(PAGE_EXCL(ppa[j])); 1113 ppa[j]->p_szc = 0; 1114 } 1115 for (j = 0; j < curpgcnt; j++) { 1116 ASSERT(!hat_page_is_mapped( 1117 ppa[j])); 1118 /*LINTED*/ 1119 VN_DISPOSE(ppa[j], B_INVAL, 0, 1120 kcred); 1121 } 1122 } 1123 kmem_free(ppa, ppasize); 1124 for (j = i; j < i + curpgcnt; j++) { 1125 ap = anon_get_ptr(ahp, an_idx + j); 1126 ASSERT(ap != NULL && 1127 ap->an_refcnt == 1); 1128 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, 1129 ap->an_off)]; 1130 (void) anon_set_ptr(ahp, an_idx + j, 1131 NULL, ANON_SLEEP); 1132 mutex_enter(ahm); 1133 ap->an_refcnt--; 1134 ASSERT(ap->an_refcnt == 0); 1135 anon_rmhash(ap); 1136 if (ap->an_pvp) 1137 swap_phys_free(ap->an_pvp, 1138 ap->an_poff, PAGESIZE); 1139 mutex_exit(ahm); 1140 kmem_cache_free(anon_cache, ap); 1141 ANI_ADD(1); 1142 } 1143 i += curpgcnt; 1144 } 1145 } else { 1146 VM_STAT_ADD(anonvmstats.decrefpages[8]); 1147 (void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP); 1148 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 1149 mutex_enter(ahm); 1150 ap->an_refcnt--; 1151 mutex_exit(ahm); 1152 i++; 1153 } 1154 } 1155 1156 if (ahmpages != NULL) { 1157 mutex_exit(ahmpages); 1158 } 1159 } 1160 1161 /* 1162 * Duplicate references to size bytes worth of anon pages. 1163 * Used when duplicating a segment that contains private anon pages. 1164 * This code assumes that procedure calling this one has already used 1165 * hat_chgprot() to disable write access to the range of addresses that 1166 * that *old actually refers to. 1167 */ 1168 void 1169 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new, 1170 ulong_t new_idx, size_t size) 1171 { 1172 spgcnt_t npages; 1173 kmutex_t *ahm; 1174 struct anon *ap; 1175 ulong_t off; 1176 ulong_t index; 1177 1178 npages = btopr(size); 1179 while (npages > 0) { 1180 index = old_idx; 1181 if ((ap = anon_get_next_ptr(old, &index)) == NULL) 1182 break; 1183 1184 ASSERT(!ANON_ISBUSY(anon_get_slot(old, index))); 1185 off = index - old_idx; 1186 npages -= off; 1187 if (npages <= 0) 1188 break; 1189 1190 (void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP); 1191 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 1192 1193 mutex_enter(ahm); 1194 ap->an_refcnt++; 1195 mutex_exit(ahm); 1196 1197 off++; 1198 new_idx += off; 1199 old_idx += off; 1200 npages--; 1201 } 1202 } 1203 1204 /* 1205 * Just like anon_dup but also guarantees there are no holes (unallocated anon 1206 * slots) within any large page region. That means if a large page region is 1207 * empty in the old array it will skip it. If there are 1 or more valid slots 1208 * in the large page region of the old array it will make sure to fill in any 1209 * unallocated ones and also copy them to the new array. If noalloc is 1 large 1210 * page region should either have no valid anon slots or all slots should be 1211 * valid. 1212 */ 1213 void 1214 anon_dup_fill_holes( 1215 struct anon_hdr *old, 1216 ulong_t old_idx, 1217 struct anon_hdr *new, 1218 ulong_t new_idx, 1219 size_t size, 1220 uint_t szc, 1221 int noalloc) 1222 { 1223 struct anon *ap; 1224 spgcnt_t npages; 1225 kmutex_t *ahm, *ahmpages = NULL; 1226 pgcnt_t pgcnt, i; 1227 ulong_t index, off; 1228 #ifdef DEBUG 1229 int refcnt; 1230 #endif 1231 1232 ASSERT(szc != 0); 1233 pgcnt = page_get_pagecnt(szc); 1234 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 1235 npages = btopr(size); 1236 ASSERT(IS_P2ALIGNED(npages, pgcnt)); 1237 ASSERT(IS_P2ALIGNED(old_idx, pgcnt)); 1238 1239 VM_STAT_ADD(anonvmstats.dupfillholes[0]); 1240 1241 while (npages > 0) { 1242 index = old_idx; 1243 1244 /* 1245 * Find the next valid slot. 1246 */ 1247 if (anon_get_next_ptr(old, &index) == NULL) 1248 break; 1249 1250 ASSERT(!ANON_ISBUSY(anon_get_slot(old, index))); 1251 /* 1252 * Now backup index to the beginning of the 1253 * current large page region of the old array. 1254 */ 1255 index = P2ALIGN(index, pgcnt); 1256 off = index - old_idx; 1257 ASSERT(IS_P2ALIGNED(off, pgcnt)); 1258 npages -= off; 1259 if (npages <= 0) 1260 break; 1261 1262 /* 1263 * Fill and copy a large page regions worth 1264 * of anon slots. 1265 */ 1266 for (i = 0; i < pgcnt; i++) { 1267 if ((ap = anon_get_ptr(old, index + i)) == NULL) { 1268 if (noalloc) { 1269 panic("anon_dup_fill_holes: " 1270 "empty anon slot\n"); 1271 } 1272 VM_STAT_ADD(anonvmstats.dupfillholes[1]); 1273 ap = anon_alloc(NULL, 0); 1274 (void) anon_set_ptr(old, index + i, ap, 1275 ANON_SLEEP); 1276 } else if (i == 0) { 1277 /* 1278 * make the increment of all refcnts of all 1279 * anon slots of a large page appear atomic by 1280 * getting an anonpages_hash_lock for the 1281 * first anon slot of a large page. 1282 */ 1283 int hash = AH_LOCK(ap->an_vp, ap->an_off); 1284 1285 VM_STAT_ADD(anonvmstats.dupfillholes[2]); 1286 1287 ahmpages = &anonpages_hash_lock[hash]; 1288 mutex_enter(ahmpages); 1289 /*LINTED*/ 1290 ASSERT(refcnt = ap->an_refcnt); 1291 1292 VM_STAT_COND_ADD(ap->an_refcnt > 1, 1293 anonvmstats.dupfillholes[3]); 1294 } 1295 (void) anon_set_ptr(new, new_idx + off + i, ap, 1296 ANON_SLEEP); 1297 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 1298 mutex_enter(ahm); 1299 ASSERT(ahmpages != NULL || ap->an_refcnt == 1); 1300 ASSERT(i == 0 || ahmpages == NULL || 1301 refcnt == ap->an_refcnt); 1302 ap->an_refcnt++; 1303 mutex_exit(ahm); 1304 } 1305 if (ahmpages != NULL) { 1306 mutex_exit(ahmpages); 1307 ahmpages = NULL; 1308 } 1309 off += pgcnt; 1310 new_idx += off; 1311 old_idx += off; 1312 npages -= pgcnt; 1313 } 1314 } 1315 1316 /* 1317 * Used when a segment with a vnode changes szc. similarly to 1318 * anon_dup_fill_holes() makes sure each large page region either has no anon 1319 * slots or all of them. but new slots are created by COWing the file 1320 * pages. on entrance no anon slots should be shared. 1321 */ 1322 int 1323 anon_fill_cow_holes( 1324 struct seg *seg, 1325 caddr_t addr, 1326 struct anon_hdr *ahp, 1327 ulong_t an_idx, 1328 struct vnode *vp, 1329 u_offset_t vp_off, 1330 size_t size, 1331 uint_t szc, 1332 uint_t prot, 1333 struct vpage vpage[], 1334 struct cred *cred) 1335 { 1336 struct anon *ap; 1337 spgcnt_t npages; 1338 pgcnt_t pgcnt, i; 1339 ulong_t index, off; 1340 int err = 0; 1341 int pageflags = 0; 1342 1343 ASSERT(szc != 0); 1344 pgcnt = page_get_pagecnt(szc); 1345 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 1346 npages = btopr(size); 1347 ASSERT(IS_P2ALIGNED(npages, pgcnt)); 1348 ASSERT(IS_P2ALIGNED(an_idx, pgcnt)); 1349 1350 while (npages > 0) { 1351 index = an_idx; 1352 1353 /* 1354 * Find the next valid slot. 1355 */ 1356 if (anon_get_next_ptr(ahp, &index) == NULL) { 1357 break; 1358 } 1359 1360 ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index))); 1361 /* 1362 * Now backup index to the beginning of the 1363 * current large page region of the anon array. 1364 */ 1365 index = P2ALIGN(index, pgcnt); 1366 off = index - an_idx; 1367 ASSERT(IS_P2ALIGNED(off, pgcnt)); 1368 npages -= off; 1369 if (npages <= 0) 1370 break; 1371 an_idx += off; 1372 vp_off += ptob(off); 1373 addr += ptob(off); 1374 if (vpage != NULL) { 1375 vpage += off; 1376 } 1377 1378 for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) { 1379 if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) { 1380 page_t *pl[1 + 1]; 1381 page_t *pp; 1382 1383 err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL, 1384 pl, PAGESIZE, seg, addr, S_READ, cred); 1385 if (err) { 1386 break; 1387 } 1388 if (vpage != NULL) { 1389 prot = VPP_PROT(vpage); 1390 pageflags = VPP_ISPPLOCK(vpage) ? 1391 LOCK_PAGE : 0; 1392 } 1393 pp = anon_private(&ap, seg, addr, prot, pl[0], 1394 pageflags, cred); 1395 if (pp == NULL) { 1396 err = ENOMEM; 1397 break; 1398 } 1399 (void) anon_set_ptr(ahp, an_idx, ap, 1400 ANON_SLEEP); 1401 page_unlock(pp); 1402 } 1403 ASSERT(ap->an_refcnt == 1); 1404 addr += PAGESIZE; 1405 if (vpage != NULL) { 1406 vpage++; 1407 } 1408 } 1409 npages -= pgcnt; 1410 } 1411 1412 return (err); 1413 } 1414 1415 /* 1416 * Free a group of "size" anon pages, size in bytes, 1417 * and clear out the pointers to the anon entries. 1418 */ 1419 void 1420 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size) 1421 { 1422 spgcnt_t npages; 1423 struct anon *ap; 1424 ulong_t old; 1425 1426 npages = btopr(size); 1427 1428 while (npages > 0) { 1429 old = index; 1430 if ((ap = anon_get_next_ptr(ahp, &index)) == NULL) 1431 break; 1432 1433 ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index))); 1434 npages -= index - old; 1435 if (npages <= 0) 1436 break; 1437 1438 (void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP); 1439 anon_decref(ap); 1440 /* 1441 * Bump index and decrement page count 1442 */ 1443 index++; 1444 npages--; 1445 } 1446 } 1447 1448 void 1449 anon_free_pages( 1450 struct anon_hdr *ahp, 1451 ulong_t an_idx, 1452 size_t size, 1453 uint_t szc) 1454 { 1455 spgcnt_t npages; 1456 pgcnt_t pgcnt; 1457 ulong_t index, off; 1458 1459 ASSERT(szc != 0); 1460 pgcnt = page_get_pagecnt(szc); 1461 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 1462 npages = btopr(size); 1463 ASSERT(IS_P2ALIGNED(npages, pgcnt)); 1464 ASSERT(IS_P2ALIGNED(an_idx, pgcnt)); 1465 1466 VM_STAT_ADD(anonvmstats.freepages[0]); 1467 1468 while (npages > 0) { 1469 index = an_idx; 1470 1471 /* 1472 * Find the next valid slot. 1473 */ 1474 if (anon_get_next_ptr(ahp, &index) == NULL) 1475 break; 1476 1477 ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index))); 1478 /* 1479 * Now backup index to the beginning of the 1480 * current large page region of the old array. 1481 */ 1482 index = P2ALIGN(index, pgcnt); 1483 off = index - an_idx; 1484 ASSERT(IS_P2ALIGNED(off, pgcnt)); 1485 npages -= off; 1486 if (npages <= 0) 1487 break; 1488 1489 anon_decref_pages(ahp, index, szc); 1490 1491 off += pgcnt; 1492 an_idx += off; 1493 npages -= pgcnt; 1494 } 1495 } 1496 1497 /* 1498 * Make anonymous pages discardable 1499 */ 1500 void 1501 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size, int flags) 1502 { 1503 spgcnt_t npages = btopr(size); 1504 struct anon *ap; 1505 struct vnode *vp; 1506 anoff_t off; 1507 page_t *pp, *root_pp; 1508 kmutex_t *ahm; 1509 pgcnt_t pgcnt; 1510 ulong_t old_idx, idx, i; 1511 struct anon_hdr *ahp = amp->ahp; 1512 anon_sync_obj_t cookie; 1513 1514 ASSERT(RW_READ_HELD(&->a_rwlock)); 1515 pgcnt = 1; 1516 for (; npages > 0; index = (pgcnt == 1) ? index + 1: 1517 P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) { 1518 1519 /* 1520 * get anon pointer and index for the first valid entry 1521 * in the anon list, starting from "index" 1522 */ 1523 old_idx = index; 1524 if ((ap = anon_get_next_ptr(ahp, &index)) == NULL) 1525 break; 1526 1527 /* 1528 * decrement npages by number of NULL anon slots we skipped 1529 */ 1530 npages -= index - old_idx; 1531 if (npages <= 0) 1532 break; 1533 1534 anon_array_enter(amp, index, &cookie); 1535 ap = anon_get_ptr(ahp, index); 1536 ASSERT(ap != NULL); 1537 1538 /* 1539 * Get anonymous page and try to lock it SE_EXCL; 1540 * For non blocking case if we couldn't grab the lock 1541 * we skip to next page. 1542 * For blocking case (ANON_PGLOOKUP_BLK) block 1543 * until we grab SE_EXCL lock. 1544 */ 1545 swap_xlate(ap, &vp, &off); 1546 if (flags & ANON_PGLOOKUP_BLK) 1547 pp = page_lookup_create(vp, (u_offset_t)off, 1548 SE_EXCL, NULL, NULL, SE_EXCL_WANTED); 1549 else 1550 pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL); 1551 if (pp == NULL) { 1552 segadvstat.MADV_FREE_miss.value.ul++; 1553 pgcnt = 1; 1554 anon_array_exit(&cookie); 1555 continue; 1556 } 1557 pgcnt = page_get_pagecnt(pp->p_szc); 1558 1559 /* 1560 * we cannot free a page which is permanently locked. 1561 * The page_struct_lock need not be acquired to examine 1562 * these fields since the page has an "exclusive" lock. 1563 */ 1564 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { 1565 page_unlock(pp); 1566 segadvstat.MADV_FREE_miss.value.ul++; 1567 anon_array_exit(&cookie); 1568 continue; 1569 } 1570 1571 ahm = &anonhash_lock[AH_LOCK(vp, off)]; 1572 mutex_enter(ahm); 1573 ASSERT(ap->an_refcnt != 0); 1574 /* 1575 * skip this one if copy-on-write is not yet broken. 1576 */ 1577 if (ap->an_refcnt > 1) { 1578 mutex_exit(ahm); 1579 page_unlock(pp); 1580 segadvstat.MADV_FREE_miss.value.ul++; 1581 anon_array_exit(&cookie); 1582 continue; 1583 } 1584 1585 if (pp->p_szc == 0) { 1586 pgcnt = 1; 1587 1588 /* 1589 * free swap slot; 1590 */ 1591 if (ap->an_pvp) { 1592 swap_phys_free(ap->an_pvp, ap->an_poff, 1593 PAGESIZE); 1594 ap->an_pvp = NULL; 1595 ap->an_poff = 0; 1596 } 1597 mutex_exit(ahm); 1598 segadvstat.MADV_FREE_hit.value.ul++; 1599 1600 /* 1601 * while we are at it, unload all the translations 1602 * and attempt to free the page. 1603 */ 1604 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 1605 /*LINTED: constant in conditional context */ 1606 VN_DISPOSE(pp, B_FREE, 0, kcred); 1607 anon_array_exit(&cookie); 1608 continue; 1609 } 1610 1611 pgcnt = page_get_pagecnt(pp->p_szc); 1612 if (!IS_P2ALIGNED(index, pgcnt)) { 1613 if (!page_try_demote_pages(pp)) { 1614 mutex_exit(ahm); 1615 page_unlock(pp); 1616 segadvstat.MADV_FREE_miss.value.ul++; 1617 anon_array_exit(&cookie); 1618 continue; 1619 } else { 1620 pgcnt = 1; 1621 if (ap->an_pvp) { 1622 swap_phys_free(ap->an_pvp, 1623 ap->an_poff, PAGESIZE); 1624 ap->an_pvp = NULL; 1625 ap->an_poff = 0; 1626 } 1627 mutex_exit(ahm); 1628 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 1629 /*LINTED*/ 1630 VN_DISPOSE(pp, B_FREE, 0, kcred); 1631 segadvstat.MADV_FREE_hit.value.ul++; 1632 anon_array_exit(&cookie); 1633 continue; 1634 } 1635 } 1636 mutex_exit(ahm); 1637 root_pp = pp; 1638 1639 /* 1640 * try to lock remaining pages 1641 */ 1642 for (idx = 1; idx < pgcnt; idx++) { 1643 pp++; 1644 if (!page_trylock(pp, SE_EXCL)) 1645 break; 1646 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { 1647 page_unlock(pp); 1648 break; 1649 } 1650 } 1651 1652 if (idx == pgcnt) { 1653 for (i = 0; i < pgcnt; i++) { 1654 ap = anon_get_ptr(ahp, index + i); 1655 if (ap == NULL) 1656 break; 1657 swap_xlate(ap, &vp, &off); 1658 ahm = &anonhash_lock[AH_LOCK(vp, off)]; 1659 mutex_enter(ahm); 1660 ASSERT(ap->an_refcnt != 0); 1661 1662 /* 1663 * skip this one if copy-on-write 1664 * is not yet broken. 1665 */ 1666 if (ap->an_refcnt > 1) { 1667 mutex_exit(ahm); 1668 goto skiplp; 1669 } 1670 if (ap->an_pvp) { 1671 swap_phys_free(ap->an_pvp, 1672 ap->an_poff, PAGESIZE); 1673 ap->an_pvp = NULL; 1674 ap->an_poff = 0; 1675 } 1676 mutex_exit(ahm); 1677 } 1678 page_destroy_pages(root_pp); 1679 segadvstat.MADV_FREE_hit.value.ul += pgcnt; 1680 anon_array_exit(&cookie); 1681 continue; 1682 } 1683 skiplp: 1684 segadvstat.MADV_FREE_miss.value.ul += pgcnt; 1685 for (i = 0, pp = root_pp; i < idx; pp++, i++) 1686 page_unlock(pp); 1687 anon_array_exit(&cookie); 1688 } 1689 } 1690 1691 /* 1692 * Return the kept page(s) and protections back to the segment driver. 1693 */ 1694 int 1695 anon_getpage( 1696 struct anon **app, 1697 uint_t *protp, 1698 page_t *pl[], 1699 size_t plsz, 1700 struct seg *seg, 1701 caddr_t addr, 1702 enum seg_rw rw, 1703 struct cred *cred) 1704 { 1705 page_t *pp; 1706 struct anon *ap = *app; 1707 struct vnode *vp; 1708 anoff_t off; 1709 int err; 1710 kmutex_t *ahm; 1711 1712 swap_xlate(ap, &vp, &off); 1713 1714 /* 1715 * Lookup the page. If page is being paged in, 1716 * wait for it to finish as we must return a list of 1717 * pages since this routine acts like the VOP_GETPAGE 1718 * routine does. 1719 */ 1720 if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) { 1721 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 1722 mutex_enter(ahm); 1723 if (ap->an_refcnt == 1) 1724 *protp = PROT_ALL; 1725 else 1726 *protp = PROT_ALL & ~PROT_WRITE; 1727 mutex_exit(ahm); 1728 pl[0] = pp; 1729 pl[1] = NULL; 1730 return (0); 1731 } 1732 1733 /* 1734 * Simply treat it as a vnode fault on the anon vp. 1735 */ 1736 1737 TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE, 1738 "anon_getpage:seg %x addr %x vp %x", 1739 seg, addr, vp); 1740 1741 err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz, 1742 seg, addr, rw, cred); 1743 1744 if (err == 0 && pl != NULL) { 1745 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 1746 mutex_enter(ahm); 1747 if (ap->an_refcnt != 1) 1748 *protp &= ~PROT_WRITE; /* make read-only */ 1749 mutex_exit(ahm); 1750 } 1751 return (err); 1752 } 1753 1754 /* 1755 * Creates or returns kept pages to the segment driver. returns -1 if a large 1756 * page cannot be allocated. returns -2 if some other process has allocated a 1757 * larger page. 1758 * 1759 * For cowfault it will alocate any size pages to fill the requested area to 1760 * avoid partially overwritting anon slots (i.e. sharing only some of the anon 1761 * slots within a large page with other processes). This policy greatly 1762 * simplifies large page freeing (which is only freed when all anon slot 1763 * refcnts are 0). 1764 */ 1765 int 1766 anon_map_getpages( 1767 struct anon_map *amp, 1768 ulong_t start_idx, 1769 uint_t szc, 1770 struct seg *seg, 1771 caddr_t addr, 1772 uint_t prot, 1773 uint_t *protp, 1774 page_t *ppa[], 1775 uint_t *ppa_szc, 1776 struct vpage vpage[], 1777 enum seg_rw rw, 1778 int brkcow, 1779 int anypgsz, 1780 struct cred *cred) 1781 { 1782 pgcnt_t pgcnt; 1783 struct anon *ap; 1784 struct vnode *vp; 1785 anoff_t off; 1786 page_t *pp, *pl[2], *conpp = NULL; 1787 caddr_t vaddr; 1788 ulong_t pg_idx, an_idx, i; 1789 spgcnt_t nreloc = 0; 1790 int prealloc = 1; 1791 int err, slotcreate; 1792 uint_t vpprot; 1793 1794 #if !defined(__i386) && !defined(__amd64) 1795 ASSERT(seg->s_szc != 0); 1796 #endif 1797 ASSERT(szc <= seg->s_szc); 1798 ASSERT(ppa_szc != NULL); 1799 ASSERT(rw != S_CREATE); 1800 1801 *protp = PROT_ALL; 1802 1803 VM_STAT_ADD(anonvmstats.getpages[0]); 1804 1805 if (szc == 0) { 1806 VM_STAT_ADD(anonvmstats.getpages[1]); 1807 if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) { 1808 err = anon_getpage(&ap, protp, pl, PAGESIZE, seg, 1809 addr, rw, cred); 1810 if (err) 1811 return (err); 1812 ppa[0] = pl[0]; 1813 if (brkcow == 0 || (*protp & PROT_WRITE)) { 1814 VM_STAT_ADD(anonvmstats.getpages[2]); 1815 if (ppa[0]->p_szc != 0) { 1816 VM_STAT_ADD(anonvmstats.getpages[3]); 1817 *ppa_szc = ppa[0]->p_szc; 1818 page_unlock(ppa[0]); 1819 return (-2); 1820 } 1821 return (0); 1822 } 1823 panic("anon_map_getpages: cowfault for szc 0"); 1824 } else { 1825 VM_STAT_ADD(anonvmstats.getpages[4]); 1826 ppa[0] = anon_zero(seg, addr, &ap, cred); 1827 if (ppa[0] == NULL) 1828 return (ENOMEM); 1829 (void) anon_set_ptr(amp->ahp, start_idx, ap, 1830 ANON_SLEEP); 1831 return (0); 1832 } 1833 } 1834 1835 pgcnt = page_get_pagecnt(szc); 1836 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 1837 ASSERT(IS_P2ALIGNED(start_idx, pgcnt)); 1838 1839 /* 1840 * First we check for the case that the requtested large 1841 * page or larger page already exists in the system. 1842 * Actually we only check if the first constituent page 1843 * exists and only preallocate if it's not found. 1844 */ 1845 ap = anon_get_ptr(amp->ahp, start_idx); 1846 if (ap) { 1847 uint_t pszc; 1848 swap_xlate(ap, &vp, &off); 1849 if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) { 1850 if (pszc > szc) { 1851 *ppa_szc = pszc; 1852 return (-2); 1853 } 1854 if (pszc == szc) { 1855 prealloc = 0; 1856 } 1857 } 1858 } 1859 1860 VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]); 1861 VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]); 1862 1863 top: 1864 /* 1865 * If a smaller page or no page at all was found, 1866 * grab a large page off the freelist. 1867 */ 1868 if (prealloc) { 1869 ASSERT(conpp == NULL); 1870 if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa, 1871 szc, 0) != 0) { 1872 VM_STAT_ADD(anonvmstats.getpages[7]); 1873 if (brkcow == 0 || 1874 !anon_share(amp->ahp, start_idx, pgcnt)) { 1875 /* 1876 * If the refcnt's of all anon slots are <= 1 1877 * they can't increase since we are holding 1878 * the address space's lock. So segvn can 1879 * safely decrease szc without risking to 1880 * generate a cow fault for the region smaller 1881 * than the segment's largest page size. 1882 */ 1883 VM_STAT_ADD(anonvmstats.getpages[8]); 1884 return (-1); 1885 } 1886 docow: 1887 /* 1888 * This is a cow fault. Copy away the entire 1 large 1889 * page region of this segment. 1890 */ 1891 if (szc != seg->s_szc) 1892 panic("anon_map_getpages: cowfault for szc %d", 1893 szc); 1894 vaddr = addr; 1895 for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt; 1896 pg_idx++, an_idx++, vaddr += PAGESIZE) { 1897 if ((ap = anon_get_ptr(amp->ahp, an_idx)) != 1898 NULL) { 1899 err = anon_getpage(&ap, &vpprot, pl, 1900 PAGESIZE, seg, vaddr, rw, cred); 1901 if (err) { 1902 for (i = 0; i < pg_idx; i++) { 1903 if ((pp = ppa[i]) != 1904 NULL) 1905 page_unlock(pp); 1906 } 1907 return (err); 1908 } 1909 ppa[pg_idx] = pl[0]; 1910 } else { 1911 /* 1912 * Since this is a cowfault we know 1913 * that this address space has a 1914 * parent or children which means 1915 * anon_dup_fill_holes() has initialized 1916 * all anon slots within a large page 1917 * region that had at least one anon 1918 * slot at the time of fork(). 1919 */ 1920 panic("anon_map_getpages: " 1921 "cowfault but anon slot is empty"); 1922 } 1923 } 1924 VM_STAT_ADD(anonvmstats.getpages[9]); 1925 *protp = PROT_ALL; 1926 return (anon_map_privatepages(amp, start_idx, szc, seg, 1927 addr, prot, ppa, vpage, anypgsz, cred)); 1928 } 1929 } 1930 1931 VM_STAT_ADD(anonvmstats.getpages[10]); 1932 1933 an_idx = start_idx; 1934 pg_idx = 0; 1935 vaddr = addr; 1936 while (pg_idx < pgcnt) { 1937 slotcreate = 0; 1938 if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) { 1939 VM_STAT_ADD(anonvmstats.getpages[11]); 1940 /* 1941 * For us to have decided not to preallocate 1942 * would have meant that a large page 1943 * was found. Which also means that all of the 1944 * anon slots for that page would have been 1945 * already created for us. 1946 */ 1947 if (prealloc == 0) 1948 panic("anon_map_getpages: prealloc = 0"); 1949 1950 slotcreate = 1; 1951 ap = anon_alloc(NULL, 0); 1952 } 1953 swap_xlate(ap, &vp, &off); 1954 1955 /* 1956 * Now setup our preallocated page to pass down 1957 * to swap_getpage(). 1958 */ 1959 if (prealloc) { 1960 ASSERT(ppa[pg_idx]->p_szc == szc); 1961 conpp = ppa[pg_idx]; 1962 } 1963 ASSERT(prealloc || conpp == NULL); 1964 1965 /* 1966 * If we just created this anon slot then call 1967 * with S_CREATE to prevent doing IO on the page. 1968 * Similar to the anon_zero case. 1969 */ 1970 err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, 1971 NULL, pl, PAGESIZE, conpp, &nreloc, seg, vaddr, 1972 slotcreate == 1 ? S_CREATE : rw, cred); 1973 1974 if (err) { 1975 VM_STAT_ADD(anonvmstats.getpages[12]); 1976 ASSERT(slotcreate == 0); 1977 goto io_err; 1978 } 1979 1980 pp = pl[0]; 1981 1982 if (pp->p_szc != szc) { 1983 VM_STAT_ADD(anonvmstats.getpages[13]); 1984 ASSERT(slotcreate == 0); 1985 ASSERT(prealloc == 0); 1986 ASSERT(pg_idx == 0); 1987 if (pp->p_szc > szc) { 1988 page_unlock(pp); 1989 VM_STAT_ADD(anonvmstats.getpages[14]); 1990 return (-2); 1991 } 1992 page_unlock(pp); 1993 prealloc = 1; 1994 goto top; 1995 } 1996 1997 /* 1998 * If we decided to preallocate but VOP_GETPAGE 1999 * found a page in the system that satisfies our 2000 * request then free up our preallocated large page 2001 * and continue looping accross the existing large 2002 * page via VOP_GETPAGE. 2003 */ 2004 if (prealloc && pp != ppa[pg_idx]) { 2005 VM_STAT_ADD(anonvmstats.getpages[15]); 2006 ASSERT(slotcreate == 0); 2007 ASSERT(pg_idx == 0); 2008 conpp = NULL; 2009 prealloc = 0; 2010 page_free_pages(ppa[0]); 2011 } 2012 2013 if (prealloc && nreloc > 1) { 2014 /* 2015 * we have relocated out of a smaller large page. 2016 * skip npgs - 1 iterations and continue which will 2017 * increment by one the loop indices. 2018 */ 2019 spgcnt_t npgs = nreloc; 2020 2021 VM_STAT_ADD(anonvmstats.getpages[16]); 2022 2023 ASSERT(pp == ppa[pg_idx]); 2024 ASSERT(slotcreate == 0); 2025 ASSERT(pg_idx + npgs <= pgcnt); 2026 if ((*protp & PROT_WRITE) && 2027 anon_share(amp->ahp, an_idx, npgs)) { 2028 *protp &= ~PROT_WRITE; 2029 } 2030 pg_idx += npgs; 2031 an_idx += npgs; 2032 vaddr += PAGESIZE * npgs; 2033 continue; 2034 } 2035 2036 VM_STAT_ADD(anonvmstats.getpages[17]); 2037 2038 /* 2039 * Anon_zero case. 2040 */ 2041 if (slotcreate) { 2042 ASSERT(prealloc); 2043 pagezero(pp, 0, PAGESIZE); 2044 CPU_STATS_ADD_K(vm, zfod, 1); 2045 hat_setrefmod(pp); 2046 } 2047 2048 ASSERT(prealloc == 0 || ppa[pg_idx] == pp); 2049 ASSERT(prealloc != 0 || PAGE_SHARED(pp)); 2050 ASSERT(prealloc == 0 || PAGE_EXCL(pp)); 2051 2052 if (pg_idx > 0 && 2053 ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) || 2054 (pp->p_szc != ppa[pg_idx - 1]->p_szc))) 2055 panic("anon_map_getpages: unexpected page"); 2056 2057 if (prealloc == 0) { 2058 ppa[pg_idx] = pp; 2059 } 2060 2061 if (ap->an_refcnt > 1) { 2062 VM_STAT_ADD(anonvmstats.getpages[18]); 2063 *protp &= ~PROT_WRITE; 2064 } 2065 2066 /* 2067 * If this is a new anon slot then initialize 2068 * the anon array entry. 2069 */ 2070 if (slotcreate) { 2071 (void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP); 2072 } 2073 pg_idx++; 2074 an_idx++; 2075 vaddr += PAGESIZE; 2076 } 2077 2078 /* 2079 * Since preallocated pages come off the freelist 2080 * they are locked SE_EXCL. Simply downgrade and return. 2081 */ 2082 if (prealloc) { 2083 VM_STAT_ADD(anonvmstats.getpages[19]); 2084 conpp = NULL; 2085 for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) { 2086 page_downgrade(ppa[pg_idx]); 2087 } 2088 } 2089 ASSERT(conpp == NULL); 2090 2091 if (brkcow == 0 || (*protp & PROT_WRITE)) { 2092 VM_STAT_ADD(anonvmstats.getpages[20]); 2093 return (0); 2094 } 2095 2096 if (szc < seg->s_szc) 2097 panic("anon_map_getpages: cowfault for szc %d", szc); 2098 2099 VM_STAT_ADD(anonvmstats.getpages[21]); 2100 2101 *protp = PROT_ALL; 2102 return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, 2103 ppa, vpage, anypgsz, cred)); 2104 io_err: 2105 /* 2106 * We got an IO error somewhere in our large page. 2107 * If we were using a preallocated page then just demote 2108 * all the constituent pages that we've succeeded with sofar 2109 * to PAGESIZE pages and leave them in the system 2110 * unlocked. 2111 */ 2112 2113 ASSERT(err != -2 || pg_idx == 0); 2114 2115 VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]); 2116 VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]); 2117 VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]); 2118 2119 if (prealloc) { 2120 conpp = NULL; 2121 if (pg_idx > 0) { 2122 VM_STAT_ADD(anonvmstats.getpages[25]); 2123 for (i = 0; i < pgcnt; i++) { 2124 pp = ppa[i]; 2125 ASSERT(PAGE_EXCL(pp)); 2126 ASSERT(pp->p_szc == szc); 2127 pp->p_szc = 0; 2128 } 2129 for (i = 0; i < pg_idx; i++) { 2130 ASSERT(!hat_page_is_mapped(ppa[i])); 2131 page_unlock(ppa[i]); 2132 } 2133 /* 2134 * Now free up the remaining unused constituent 2135 * pages. 2136 */ 2137 while (pg_idx < pgcnt) { 2138 ASSERT(!hat_page_is_mapped(ppa[pg_idx])); 2139 page_free(ppa[pg_idx], 0); 2140 pg_idx++; 2141 } 2142 } else { 2143 VM_STAT_ADD(anonvmstats.getpages[26]); 2144 page_free_pages(ppa[0]); 2145 } 2146 } else { 2147 VM_STAT_ADD(anonvmstats.getpages[27]); 2148 ASSERT(err > 0); 2149 for (i = 0; i < pg_idx; i++) 2150 page_unlock(ppa[i]); 2151 } 2152 ASSERT(conpp == NULL); 2153 if (err != -1) 2154 return (err); 2155 /* 2156 * we are here because we failed to relocate. 2157 */ 2158 ASSERT(prealloc); 2159 if (brkcow == 0 || !anon_share(amp->ahp, start_idx, pgcnt)) { 2160 VM_STAT_ADD(anonvmstats.getpages[28]); 2161 return (-1); 2162 } 2163 VM_STAT_ADD(anonvmstats.getpages[29]); 2164 goto docow; 2165 } 2166 2167 2168 /* 2169 * Turn a reference to an object or shared anon page 2170 * into a private page with a copy of the data from the 2171 * original page which is always locked by the caller. 2172 * This routine unloads the translation and unlocks the 2173 * original page, if it isn't being stolen, before returning 2174 * to the caller. 2175 * 2176 * NOTE: The original anon slot is not freed by this routine 2177 * It must be freed by the caller while holding the 2178 * "anon_map" lock to prevent races which can occur if 2179 * a process has multiple lwps in its address space. 2180 */ 2181 page_t * 2182 anon_private( 2183 struct anon **app, 2184 struct seg *seg, 2185 caddr_t addr, 2186 uint_t prot, 2187 page_t *opp, 2188 int oppflags, 2189 struct cred *cred) 2190 { 2191 struct anon *old = *app; 2192 struct anon *new; 2193 page_t *pp = NULL; 2194 struct vnode *vp; 2195 anoff_t off; 2196 page_t *anon_pl[1 + 1]; 2197 int err; 2198 2199 if (oppflags & STEAL_PAGE) 2200 ASSERT(PAGE_EXCL(opp)); 2201 else 2202 ASSERT(PAGE_LOCKED(opp)); 2203 2204 CPU_STATS_ADD_K(vm, cow_fault, 1); 2205 2206 /* Kernel probe */ 2207 TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */, 2208 tnf_opaque, address, addr); 2209 2210 *app = new = anon_alloc(NULL, 0); 2211 swap_xlate(new, &vp, &off); 2212 2213 if (oppflags & STEAL_PAGE) { 2214 page_rename(opp, vp, (u_offset_t)off); 2215 pp = opp; 2216 TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE, 2217 "anon_private:seg %p addr %x pp %p vp %p off %lx", 2218 seg, addr, pp, vp, off); 2219 hat_setmod(pp); 2220 2221 /* bug 4026339 */ 2222 page_downgrade(pp); 2223 return (pp); 2224 } 2225 2226 /* 2227 * Call the VOP_GETPAGE routine to create the page, thereby 2228 * enabling the vnode driver to allocate any filesystem 2229 * space (e.g., disk block allocation for UFS). This also 2230 * prevents more than one page from being added to the 2231 * vnode at the same time. 2232 */ 2233 err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL, 2234 anon_pl, PAGESIZE, seg, addr, S_CREATE, cred); 2235 if (err) 2236 goto out; 2237 2238 pp = anon_pl[0]; 2239 2240 /* 2241 * If the original page was locked, we need to move the lock 2242 * to the new page by transfering 'cowcnt/lckcnt' of the original 2243 * page to 'cowcnt/lckcnt' of the new page. 2244 * 2245 * See Statement at the beginning of segvn_lockop() and 2246 * comments in page_pp_useclaim() regarding the way 2247 * cowcnts/lckcnts are handled. 2248 * 2249 * Also availrmem must be decremented up front for read only mapping 2250 * before calling page_pp_useclaim. page_pp_useclaim will bump it back 2251 * if availrmem did not need to be decremented after all. 2252 */ 2253 if (oppflags & LOCK_PAGE) { 2254 if ((prot & PROT_WRITE) == 0) { 2255 mutex_enter(&freemem_lock); 2256 if (availrmem > pages_pp_maximum) { 2257 availrmem--; 2258 pages_useclaim++; 2259 } else { 2260 mutex_exit(&freemem_lock); 2261 goto out; 2262 } 2263 mutex_exit(&freemem_lock); 2264 } 2265 page_pp_useclaim(opp, pp, prot & PROT_WRITE); 2266 } 2267 2268 /* 2269 * Now copy the contents from the original page, 2270 * which is locked and loaded in the MMU by 2271 * the caller to prevent yet another page fault. 2272 */ 2273 ppcopy(opp, pp); /* XXX - should set mod bit in here */ 2274 2275 hat_setrefmod(pp); /* mark as modified */ 2276 2277 /* 2278 * Unload the old translation. 2279 */ 2280 hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD); 2281 2282 /* 2283 * Free unmapped, unmodified original page. 2284 * or release the lock on the original page, 2285 * otherwise the process will sleep forever in 2286 * anon_decref() waiting for the "exclusive" lock 2287 * on the page. 2288 */ 2289 (void) page_release(opp, 1); 2290 2291 /* 2292 * we are done with page creation so downgrade the new 2293 * page's selock to shared, this helps when multiple 2294 * as_fault(...SOFTLOCK...) are done to the same 2295 * page(aio) 2296 */ 2297 page_downgrade(pp); 2298 2299 /* 2300 * NOTE: The original anon slot must be freed by the 2301 * caller while holding the "anon_map" lock, if we 2302 * copied away from an anonymous page. 2303 */ 2304 return (pp); 2305 2306 out: 2307 *app = old; 2308 if (pp) 2309 page_unlock(pp); 2310 anon_decref(new); 2311 page_unlock(opp); 2312 return ((page_t *)NULL); 2313 } 2314 2315 int 2316 anon_map_privatepages( 2317 struct anon_map *amp, 2318 ulong_t start_idx, 2319 uint_t szc, 2320 struct seg *seg, 2321 caddr_t addr, 2322 uint_t prot, 2323 page_t *ppa[], 2324 struct vpage vpage[], 2325 int anypgsz, 2326 struct cred *cred) 2327 { 2328 pgcnt_t pgcnt; 2329 struct vnode *vp; 2330 anoff_t off; 2331 page_t *pl[2], *conpp = NULL; 2332 int err; 2333 int prealloc = 1; 2334 struct anon *ap, *oldap; 2335 caddr_t vaddr; 2336 page_t *pplist, *pp; 2337 ulong_t pg_idx, an_idx; 2338 spgcnt_t nreloc = 0; 2339 int pagelock = 0; 2340 kmutex_t *ahmpages = NULL; 2341 #ifdef DEBUG 2342 int refcnt; 2343 #endif 2344 2345 ASSERT(szc != 0); 2346 ASSERT(szc == seg->s_szc); 2347 2348 VM_STAT_ADD(anonvmstats.privatepages[0]); 2349 2350 pgcnt = page_get_pagecnt(szc); 2351 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 2352 ASSERT(IS_P2ALIGNED(start_idx, pgcnt)); 2353 2354 ASSERT(amp != NULL); 2355 ap = anon_get_ptr(amp->ahp, start_idx); 2356 ASSERT(ap == NULL || ap->an_refcnt >= 1); 2357 2358 VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]); 2359 2360 /* 2361 * Now try and allocate the large page. If we fail then just 2362 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let 2363 * the caller make this decision but to avoid added complexity 2364 * it's simplier to handle that case here. 2365 */ 2366 if (anypgsz == -1) { 2367 VM_STAT_ADD(anonvmstats.privatepages[2]); 2368 prealloc = 0; 2369 } else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc, 2370 anypgsz) != 0) { 2371 VM_STAT_ADD(anonvmstats.privatepages[3]); 2372 prealloc = 0; 2373 } 2374 2375 /* 2376 * make the decrement of all refcnts of all 2377 * anon slots of a large page appear atomic by 2378 * getting an anonpages_hash_lock for the 2379 * first anon slot of a large page. 2380 */ 2381 if (ap != NULL) { 2382 ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, 2383 ap->an_off)]; 2384 mutex_enter(ahmpages); 2385 if (ap->an_refcnt == 1) { 2386 VM_STAT_ADD(anonvmstats.privatepages[4]); 2387 ASSERT(!anon_share(amp->ahp, start_idx, pgcnt)); 2388 mutex_exit(ahmpages); 2389 2390 if (prealloc) { 2391 page_free_replacement_page(pplist); 2392 page_create_putback(pgcnt); 2393 } 2394 ASSERT(ppa[0]->p_szc <= szc); 2395 if (ppa[0]->p_szc == szc) { 2396 VM_STAT_ADD(anonvmstats.privatepages[5]); 2397 return (0); 2398 } 2399 for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) { 2400 ASSERT(ppa[pg_idx] != NULL); 2401 page_unlock(ppa[pg_idx]); 2402 } 2403 return (-1); 2404 } 2405 } 2406 2407 /* 2408 * If we are passed in the vpage array and this is 2409 * not PROT_WRITE then we need to decrement availrmem 2410 * up front before we try anything. If we need to and 2411 * can't decrement availrmem then its better to fail now 2412 * than in the middle of processing the new large page. 2413 * page_pp_usclaim() on behalf of each constituent page 2414 * below will adjust availrmem back for the cases not needed. 2415 */ 2416 if (vpage != NULL && (prot & PROT_WRITE) == 0) { 2417 for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) { 2418 if (VPP_ISPPLOCK(&vpage[pg_idx])) { 2419 pagelock = 1; 2420 break; 2421 } 2422 } 2423 if (pagelock) { 2424 VM_STAT_ADD(anonvmstats.privatepages[6]); 2425 mutex_enter(&freemem_lock); 2426 if (availrmem >= pages_pp_maximum + pgcnt) { 2427 availrmem -= pgcnt; 2428 pages_useclaim += pgcnt; 2429 } else { 2430 VM_STAT_ADD(anonvmstats.privatepages[7]); 2431 mutex_exit(&freemem_lock); 2432 if (ahmpages != NULL) { 2433 mutex_exit(ahmpages); 2434 } 2435 if (prealloc) { 2436 page_free_replacement_page(pplist); 2437 page_create_putback(pgcnt); 2438 } 2439 for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) 2440 if (ppa[pg_idx] != NULL) 2441 page_unlock(ppa[pg_idx]); 2442 return (ENOMEM); 2443 } 2444 mutex_exit(&freemem_lock); 2445 } 2446 } 2447 2448 CPU_STATS_ADD_K(vm, cow_fault, pgcnt); 2449 2450 VM_STAT_ADD(anonvmstats.privatepages[8]); 2451 2452 an_idx = start_idx; 2453 pg_idx = 0; 2454 vaddr = addr; 2455 for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) { 2456 ASSERT(ppa[pg_idx] != NULL); 2457 oldap = anon_get_ptr(amp->ahp, an_idx); 2458 ASSERT(ahmpages != NULL || oldap == NULL); 2459 ASSERT(ahmpages == NULL || oldap != NULL); 2460 ASSERT(ahmpages == NULL || oldap->an_refcnt > 1); 2461 ASSERT(ahmpages == NULL || pg_idx != 0 || 2462 (refcnt = oldap->an_refcnt)); 2463 ASSERT(ahmpages == NULL || pg_idx == 0 || 2464 refcnt == oldap->an_refcnt); 2465 2466 ap = anon_alloc(NULL, 0); 2467 2468 swap_xlate(ap, &vp, &off); 2469 2470 /* 2471 * Now setup our preallocated page to pass down to 2472 * swap_getpage(). 2473 */ 2474 if (prealloc) { 2475 pp = pplist; 2476 page_sub(&pplist, pp); 2477 conpp = pp; 2478 } 2479 2480 err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl, 2481 PAGESIZE, conpp, &nreloc, seg, vaddr, S_CREATE, cred); 2482 2483 /* 2484 * Impossible to fail this is S_CREATE. 2485 */ 2486 if (err) 2487 panic("anon_map_privatepages: VOP_GETPAGE failed"); 2488 2489 ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0); 2490 ASSERT(prealloc == 0 || nreloc == 1); 2491 2492 pp = pl[0]; 2493 2494 /* 2495 * If the original page was locked, we need to move 2496 * the lock to the new page by transfering 2497 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt' 2498 * of the new page. pg_idx can be used to index 2499 * into the vpage array since the caller will guarentee 2500 * that vpage struct passed in corresponds to addr 2501 * and forward. 2502 */ 2503 if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) { 2504 page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE); 2505 } else if (pagelock) { 2506 mutex_enter(&freemem_lock); 2507 availrmem++; 2508 pages_useclaim--; 2509 mutex_exit(&freemem_lock); 2510 } 2511 2512 /* 2513 * Now copy the contents from the original page. 2514 */ 2515 ppcopy(ppa[pg_idx], pp); 2516 2517 hat_setrefmod(pp); /* mark as modified */ 2518 2519 /* 2520 * Release the lock on the original page, 2521 * derement the old slot, and down grade the lock 2522 * on the new copy. 2523 */ 2524 page_unlock(ppa[pg_idx]); 2525 2526 if (!prealloc) 2527 page_downgrade(pp); 2528 2529 ppa[pg_idx] = pp; 2530 2531 /* 2532 * Now reflect the copy in the new anon array. 2533 */ 2534 ASSERT(ahmpages == NULL || oldap->an_refcnt > 1); 2535 if (oldap != NULL) 2536 anon_decref(oldap); 2537 (void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP); 2538 } 2539 if (ahmpages != NULL) { 2540 mutex_exit(ahmpages); 2541 } 2542 ASSERT(prealloc == 0 || pplist == NULL); 2543 if (prealloc) { 2544 VM_STAT_ADD(anonvmstats.privatepages[9]); 2545 for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) { 2546 page_downgrade(ppa[pg_idx]); 2547 } 2548 } 2549 2550 /* 2551 * Unload the old large page translation. 2552 */ 2553 hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD); 2554 return (0); 2555 } 2556 2557 /* 2558 * Allocate a private zero-filled anon page. 2559 */ 2560 page_t * 2561 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred) 2562 { 2563 struct anon *ap; 2564 page_t *pp; 2565 struct vnode *vp; 2566 anoff_t off; 2567 page_t *anon_pl[1 + 1]; 2568 int err; 2569 2570 /* Kernel probe */ 2571 TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */, 2572 tnf_opaque, address, addr); 2573 2574 *app = ap = anon_alloc(NULL, 0); 2575 swap_xlate(ap, &vp, &off); 2576 2577 /* 2578 * Call the VOP_GETPAGE routine to create the page, thereby 2579 * enabling the vnode driver to allocate any filesystem 2580 * dependent structures (e.g., disk block allocation for UFS). 2581 * This also prevents more than on page from being added to 2582 * the vnode at the same time since it is locked. 2583 */ 2584 err = VOP_GETPAGE(vp, off, PAGESIZE, NULL, 2585 anon_pl, PAGESIZE, seg, addr, S_CREATE, cred); 2586 if (err) { 2587 *app = NULL; 2588 anon_decref(ap); 2589 return (NULL); 2590 } 2591 pp = anon_pl[0]; 2592 2593 pagezero(pp, 0, PAGESIZE); /* XXX - should set mod bit */ 2594 page_downgrade(pp); 2595 CPU_STATS_ADD_K(vm, zfod, 1); 2596 hat_setrefmod(pp); /* mark as modified so pageout writes back */ 2597 return (pp); 2598 } 2599 2600 2601 /* 2602 * Allocate array of private zero-filled anon pages for empty slots 2603 * and kept pages for non empty slots within given range. 2604 * 2605 * NOTE: This rontine will try and use large pages 2606 * if available and supported by underlying platform. 2607 */ 2608 int 2609 anon_map_createpages( 2610 struct anon_map *amp, 2611 ulong_t start_index, 2612 size_t len, 2613 page_t *ppa[], 2614 struct seg *seg, 2615 caddr_t addr, 2616 enum seg_rw rw, 2617 struct cred *cred) 2618 { 2619 2620 struct anon *ap; 2621 struct vnode *ap_vp; 2622 page_t *pp, *pplist, *anon_pl[1 + 1], *conpp = NULL; 2623 int err = 0; 2624 ulong_t p_index, index; 2625 pgcnt_t npgs, pg_cnt; 2626 spgcnt_t nreloc = 0; 2627 uint_t l_szc, szc, prot; 2628 anoff_t ap_off; 2629 size_t pgsz; 2630 lgrp_t *lgrp; 2631 2632 /* 2633 * XXX For now only handle S_CREATE. 2634 */ 2635 ASSERT(rw == S_CREATE); 2636 2637 index = start_index; 2638 p_index = 0; 2639 npgs = btopr(len); 2640 2641 /* 2642 * If this platform supports multiple page sizes 2643 * then try and allocate directly from the free 2644 * list for pages larger than PAGESIZE. 2645 * 2646 * NOTE:When we have page_create_ru we can stop 2647 * directly allocating from the freelist. 2648 */ 2649 l_szc = seg->s_szc; 2650 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 2651 while (npgs) { 2652 2653 /* 2654 * if anon slot already exists 2655 * (means page has been created) 2656 * so 1) look up the page 2657 * 2) if the page is still in memory, get it. 2658 * 3) if not, create a page and 2659 * page in from physical swap device. 2660 * These are done in anon_getpage(). 2661 */ 2662 ap = anon_get_ptr(amp->ahp, index); 2663 if (ap) { 2664 err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE, 2665 seg, addr, S_READ, cred); 2666 if (err) { 2667 ANON_LOCK_EXIT(&->a_rwlock); 2668 panic("anon_map_createpages: anon_getpage"); 2669 } 2670 pp = anon_pl[0]; 2671 ppa[p_index++] = pp; 2672 2673 addr += PAGESIZE; 2674 index++; 2675 npgs--; 2676 continue; 2677 } 2678 /* 2679 * Now try and allocate the largest page possible 2680 * for the current address and range. 2681 * Keep dropping down in page size until: 2682 * 2683 * 1) Properly aligned 2684 * 2) Does not overlap existing anon pages 2685 * 3) Fits in remaining range. 2686 * 4) able to allocate one. 2687 * 2688 * NOTE: XXX When page_create_ru is completed this code 2689 * will change. 2690 */ 2691 szc = l_szc; 2692 pplist = NULL; 2693 pg_cnt = 0; 2694 while (szc) { 2695 pgsz = page_get_pagesize(szc); 2696 pg_cnt = pgsz >> PAGESHIFT; 2697 if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs && 2698 anon_pages(amp->ahp, index, pg_cnt) == 0) { 2699 /* 2700 * XXX 2701 * Since we are faking page_create() 2702 * we also need to do the freemem and 2703 * pcf accounting. 2704 */ 2705 (void) page_create_wait(pg_cnt, PG_WAIT); 2706 2707 /* 2708 * Get lgroup to allocate next page of shared 2709 * memory from and use it to specify where to 2710 * allocate the physical memory 2711 */ 2712 lgrp = lgrp_mem_choose(seg, addr, pgsz); 2713 2714 pplist = page_get_freelist( 2715 anon_vp, (u_offset_t)0, seg, 2716 addr, pgsz, 0, lgrp); 2717 2718 if (pplist == NULL) { 2719 page_create_putback(pg_cnt); 2720 } 2721 2722 /* 2723 * If a request for a page of size 2724 * larger than PAGESIZE failed 2725 * then don't try that size anymore. 2726 */ 2727 if (pplist == NULL) { 2728 l_szc = szc - 1; 2729 } else { 2730 break; 2731 } 2732 } 2733 szc--; 2734 } 2735 2736 /* 2737 * If just using PAGESIZE pages then don't 2738 * directly allocate from the free list. 2739 */ 2740 if (pplist == NULL) { 2741 ASSERT(szc == 0); 2742 pp = anon_zero(seg, addr, &ap, cred); 2743 if (pp == NULL) { 2744 ANON_LOCK_EXIT(&->a_rwlock); 2745 panic("anon_map_createpages: anon_zero"); 2746 } 2747 ppa[p_index++] = pp; 2748 2749 ASSERT(anon_get_ptr(amp->ahp, index) == NULL); 2750 (void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP); 2751 2752 addr += PAGESIZE; 2753 index++; 2754 npgs--; 2755 continue; 2756 } 2757 2758 /* 2759 * pplist is a list of pg_cnt PAGESIZE pages. 2760 * These pages are locked SE_EXCL since they 2761 * came directly off the free list. 2762 */ 2763 ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt)); 2764 ASSERT(IS_P2ALIGNED(index, pg_cnt)); 2765 ASSERT(conpp == NULL); 2766 while (pg_cnt--) { 2767 2768 ap = anon_alloc(NULL, 0); 2769 swap_xlate(ap, &ap_vp, &ap_off); 2770 2771 ASSERT(pplist != NULL); 2772 pp = pplist; 2773 page_sub(&pplist, pp); 2774 PP_CLRFREE(pp); 2775 PP_CLRAGED(pp); 2776 conpp = pp; 2777 2778 err = swap_getconpage(ap_vp, ap_off, PAGESIZE, 2779 (uint_t *)NULL, anon_pl, PAGESIZE, conpp, &nreloc, 2780 seg, addr, S_CREATE, cred); 2781 2782 if (err) { 2783 ANON_LOCK_EXIT(&->a_rwlock); 2784 panic("anon_map_createpages: S_CREATE"); 2785 } 2786 2787 ASSERT(anon_pl[0] == pp); 2788 ASSERT(nreloc == 1); 2789 pagezero(pp, 0, PAGESIZE); 2790 CPU_STATS_ADD_K(vm, zfod, 1); 2791 hat_setrefmod(pp); 2792 2793 ASSERT(anon_get_ptr(amp->ahp, index) == NULL); 2794 (void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP); 2795 2796 ppa[p_index++] = pp; 2797 2798 addr += PAGESIZE; 2799 index++; 2800 npgs--; 2801 } 2802 conpp = NULL; 2803 pg_cnt = pgsz >> PAGESHIFT; 2804 p_index = p_index - pg_cnt; 2805 while (pg_cnt--) { 2806 page_downgrade(ppa[p_index++]); 2807 } 2808 } 2809 ANON_LOCK_EXIT(&->a_rwlock); 2810 return (0); 2811 } 2812 2813 int 2814 anon_map_demotepages( 2815 struct anon_map *amp, 2816 ulong_t start_idx, 2817 struct seg *seg, 2818 caddr_t addr, 2819 uint_t prot, 2820 struct vpage vpage[], 2821 struct cred *cred) 2822 { 2823 struct anon *ap; 2824 uint_t szc = seg->s_szc; 2825 pgcnt_t pgcnt = page_get_pagecnt(szc); 2826 size_t ppasize = pgcnt * sizeof (page_t *); 2827 page_t **ppa = kmem_alloc(ppasize, KM_SLEEP); 2828 page_t *pp; 2829 page_t *pl[2]; 2830 pgcnt_t i, pg_idx; 2831 ulong_t an_idx; 2832 caddr_t vaddr; 2833 kmutex_t *ahmpages = NULL; 2834 int err; 2835 int retry = 0; 2836 uint_t vpprot; 2837 2838 ASSERT(RW_WRITE_HELD(&->a_rwlock)); 2839 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 2840 ASSERT(IS_P2ALIGNED(start_idx, pgcnt)); 2841 ASSERT(ppa != NULL); 2842 2843 VM_STAT_ADD(anonvmstats.demotepages[0]); 2844 2845 ap = anon_get_ptr(amp->ahp, start_idx); 2846 if (ap != NULL) { 2847 VM_STAT_ADD(anonvmstats.demotepages[1]); 2848 ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 2849 mutex_enter(ahmpages); 2850 } 2851 top: 2852 if (ap == NULL || ap->an_refcnt <= 1) { 2853 int root = 0; 2854 pgcnt_t npgs, curnpgs = 0; 2855 2856 VM_STAT_ADD(anonvmstats.demotepages[2]); 2857 2858 ASSERT(retry == 0 || ap != NULL); 2859 2860 if (ahmpages != NULL) 2861 mutex_exit(ahmpages); 2862 an_idx = start_idx; 2863 for (i = 0; i < pgcnt; i++, an_idx++) { 2864 ap = anon_get_ptr(amp->ahp, an_idx); 2865 if (ap != NULL) { 2866 ASSERT(ap->an_refcnt == 1); 2867 pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off, 2868 SE_EXCL); 2869 if (pp != NULL) { 2870 (void) hat_pageunload(pp, 2871 HAT_FORCE_PGUNLOAD); 2872 } 2873 } else { 2874 ppa[i] = NULL; 2875 } 2876 } 2877 for (i = 0; i < pgcnt; i++) { 2878 if ((pp = ppa[i]) != NULL && pp->p_szc != 0) { 2879 ASSERT(pp->p_szc <= szc); 2880 if (!root) { 2881 VM_STAT_ADD(anonvmstats.demotepages[3]); 2882 if (curnpgs != 0) 2883 panic("anon_map_demotepages: " 2884 "bad large page"); 2885 2886 root = 1; 2887 curnpgs = npgs = 2888 page_get_pagecnt(pp->p_szc); 2889 2890 ASSERT(npgs <= pgcnt); 2891 ASSERT(IS_P2ALIGNED(npgs, npgs)); 2892 ASSERT(!(page_pptonum(pp) & 2893 (npgs - 1))); 2894 } else { 2895 ASSERT(i > 0); 2896 ASSERT(page_pptonum(pp) - 1 == 2897 page_pptonum(ppa[i - 1])); 2898 if ((page_pptonum(pp) & (npgs - 1)) == 2899 npgs - 1) 2900 root = 0; 2901 } 2902 ASSERT(PAGE_EXCL(pp)); 2903 pp->p_szc = 0; 2904 curnpgs--; 2905 } 2906 } 2907 if (root != 0 || curnpgs != 0) 2908 panic("anon_map_demotepages: bad large page"); 2909 2910 for (i = 0; i < pgcnt; i++) { 2911 if ((pp = ppa[i]) != NULL) { 2912 ASSERT(!hat_page_is_mapped(pp)); 2913 ASSERT(pp->p_szc == 0); 2914 page_unlock(pp); 2915 } 2916 } 2917 kmem_free(ppa, ppasize); 2918 return (0); 2919 } 2920 ASSERT(ahmpages != NULL); 2921 mutex_exit(ahmpages); 2922 ahmpages = NULL; 2923 2924 VM_STAT_ADD(anonvmstats.demotepages[4]); 2925 2926 ASSERT(retry == 0); /* we can be here only once */ 2927 2928 vaddr = addr; 2929 for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt; 2930 pg_idx++, an_idx++, vaddr += PAGESIZE) { 2931 ap = anon_get_ptr(amp->ahp, an_idx); 2932 if (ap == NULL) 2933 panic("anon_map_demotepages: no anon slot"); 2934 err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr, 2935 S_READ, cred); 2936 if (err) { 2937 for (i = 0; i < pg_idx; i++) { 2938 if ((pp = ppa[i]) != NULL) 2939 page_unlock(pp); 2940 } 2941 kmem_free(ppa, ppasize); 2942 return (err); 2943 } 2944 ppa[pg_idx] = pl[0]; 2945 } 2946 2947 err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa, 2948 vpage, -1, cred); 2949 if (err > 0) { 2950 VM_STAT_ADD(anonvmstats.demotepages[5]); 2951 kmem_free(ppa, ppasize); 2952 return (err); 2953 } 2954 ASSERT(err == 0 || err == -1); 2955 if (err == -1) { 2956 VM_STAT_ADD(anonvmstats.demotepages[6]); 2957 retry = 1; 2958 goto top; 2959 } 2960 for (i = 0; i < pgcnt; i++) { 2961 ASSERT(ppa[i] != NULL); 2962 if (ppa[i]->p_szc != 0) 2963 retry = 1; 2964 page_unlock(ppa[i]); 2965 } 2966 if (retry) { 2967 VM_STAT_ADD(anonvmstats.demotepages[7]); 2968 goto top; 2969 } 2970 2971 VM_STAT_ADD(anonvmstats.demotepages[8]); 2972 2973 kmem_free(ppa, ppasize); 2974 2975 return (0); 2976 } 2977 2978 /* 2979 * Allocate and initialize an anon_map structure for seg 2980 * associating the given swap reservation with the new anon_map. 2981 */ 2982 struct anon_map * 2983 anonmap_alloc(size_t size, size_t swresv) 2984 { 2985 struct anon_map *amp; 2986 2987 amp = kmem_cache_alloc(anonmap_cache, KM_SLEEP); 2988 2989 amp->refcnt = 1; 2990 amp->size = size; 2991 2992 amp->ahp = anon_create(btopr(size), ANON_SLEEP); 2993 amp->swresv = swresv; 2994 amp->locality = 0; 2995 amp->a_szc = 0; 2996 return (amp); 2997 } 2998 2999 void 3000 anonmap_free(struct anon_map *amp) 3001 { 3002 ASSERT(amp->ahp); 3003 ASSERT(amp->refcnt == 0); 3004 3005 lgrp_shm_policy_fini(amp, NULL); 3006 anon_release(amp->ahp, btopr(amp->size)); 3007 kmem_cache_free(anonmap_cache, amp); 3008 } 3009 3010 /* 3011 * Returns true if the app array has some empty slots. 3012 * The offp and lenp paramters are in/out paramters. On entry 3013 * these values represent the starting offset and length of the 3014 * mapping. When true is returned, these values may be modified 3015 * to be the largest range which includes empty slots. 3016 */ 3017 int 3018 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp, 3019 size_t *lenp) 3020 { 3021 ulong_t i, el; 3022 ssize_t low, high; 3023 struct anon *ap; 3024 3025 low = -1; 3026 for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) { 3027 ap = anon_get_ptr(ahp, anon_idx); 3028 if (ap == NULL) { 3029 if (low == -1) 3030 low = i; 3031 high = i; 3032 } 3033 } 3034 if (low != -1) { 3035 /* 3036 * Found at least one non-anon page. 3037 * Set up the off and len return values. 3038 */ 3039 if (low != 0) 3040 *offp += low; 3041 *lenp = high - low + PAGESIZE; 3042 return (1); 3043 } 3044 return (0); 3045 } 3046 3047 /* 3048 * Return a count of the number of existing anon pages in the anon array 3049 * app in the range (off, off+len). The array and slots must be guaranteed 3050 * stable by the caller. 3051 */ 3052 pgcnt_t 3053 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots) 3054 { 3055 pgcnt_t cnt = 0; 3056 3057 while (nslots-- > 0) { 3058 if ((anon_get_ptr(ahp, anon_index)) != NULL) 3059 cnt++; 3060 anon_index++; 3061 } 3062 return (cnt); 3063 } 3064 3065 /* 3066 * Move reserved phys swap into memory swap (unreserve phys swap 3067 * and reserve mem swap by the same amount). 3068 * Used by segspt when it needs to lock resrved swap npages in memory 3069 */ 3070 int 3071 anon_swap_adjust(pgcnt_t npages) 3072 { 3073 pgcnt_t unlocked_mem_swap; 3074 3075 mutex_enter(&anoninfo_lock); 3076 3077 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); 3078 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 3079 3080 unlocked_mem_swap = k_anoninfo.ani_mem_resv 3081 - k_anoninfo.ani_locked_swap; 3082 if (npages > unlocked_mem_swap) { 3083 spgcnt_t adjusted_swap = npages - unlocked_mem_swap; 3084 3085 /* 3086 * if there is not enough unlocked mem swap we take missing 3087 * amount from phys swap and give it to mem swap 3088 */ 3089 mutex_enter(&freemem_lock); 3090 if (availrmem < adjusted_swap + segspt_minfree) { 3091 mutex_exit(&freemem_lock); 3092 mutex_exit(&anoninfo_lock); 3093 return (ENOMEM); 3094 } 3095 availrmem -= adjusted_swap; 3096 mutex_exit(&freemem_lock); 3097 3098 k_anoninfo.ani_mem_resv += adjusted_swap; 3099 ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap); 3100 k_anoninfo.ani_phys_resv -= adjusted_swap; 3101 3102 ANI_ADD(adjusted_swap); 3103 } 3104 k_anoninfo.ani_locked_swap += npages; 3105 3106 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); 3107 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 3108 3109 mutex_exit(&anoninfo_lock); 3110 3111 return (0); 3112 } 3113 3114 /* 3115 * 'unlocked' reserved mem swap so when it is unreserved it 3116 * can be moved back phys (disk) swap 3117 */ 3118 void 3119 anon_swap_restore(pgcnt_t npages) 3120 { 3121 mutex_enter(&anoninfo_lock); 3122 3123 ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv); 3124 3125 ASSERT(k_anoninfo.ani_locked_swap >= npages); 3126 k_anoninfo.ani_locked_swap -= npages; 3127 3128 ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv); 3129 3130 mutex_exit(&anoninfo_lock); 3131 } 3132 3133 /* 3134 * Return the pointer from the list for a 3135 * specified anon index. 3136 */ 3137 ulong_t * 3138 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx) 3139 { 3140 struct anon **app; 3141 void **ppp; 3142 3143 ASSERT(an_idx < ahp->size); 3144 3145 /* 3146 * Single level case. 3147 */ 3148 if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) { 3149 return ((ulong_t *)&ahp->array_chunk[an_idx]); 3150 } else { 3151 3152 /* 3153 * 2 level case. 3154 */ 3155 ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT]; 3156 if (*ppp == NULL) { 3157 mutex_enter(&ahp->serial_lock); 3158 ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT]; 3159 if (*ppp == NULL) 3160 *ppp = kmem_zalloc(PAGESIZE, KM_SLEEP); 3161 mutex_exit(&ahp->serial_lock); 3162 } 3163 app = *ppp; 3164 return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]); 3165 } 3166 } 3167 3168 void 3169 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj) 3170 { 3171 ulong_t *ap_slot; 3172 kmutex_t *mtx; 3173 kcondvar_t *cv; 3174 int hash; 3175 3176 /* 3177 * Use szc to determine anon slot(s) to appear atomic. 3178 * If szc = 0, then lock the anon slot and mark it busy. 3179 * If szc > 0, then lock the range of slots by getting the 3180 * anon_array_lock for the first anon slot, and mark only the 3181 * first anon slot busy to represent whole range being busy. 3182 */ 3183 3184 ASSERT(RW_READ_HELD(&->a_rwlock)); 3185 an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc)); 3186 hash = ANON_ARRAY_HASH(amp, an_idx); 3187 sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex; 3188 sobj->sync_cv = cv = &anon_array_cv[hash]; 3189 mutex_enter(mtx); 3190 ap_slot = anon_get_slot(amp->ahp, an_idx); 3191 while (ANON_ISBUSY(ap_slot)) 3192 cv_wait(cv, mtx); 3193 ANON_SETBUSY(ap_slot); 3194 sobj->sync_data = ap_slot; 3195 mutex_exit(mtx); 3196 } 3197 3198 int 3199 anon_array_try_enter(struct anon_map *amp, ulong_t an_idx, 3200 anon_sync_obj_t *sobj) 3201 { 3202 ulong_t *ap_slot; 3203 kmutex_t *mtx; 3204 int hash; 3205 3206 /* 3207 * Try to lock a range of anon slots. 3208 * Use szc to determine anon slot(s) to appear atomic. 3209 * If szc = 0, then lock the anon slot and mark it busy. 3210 * If szc > 0, then lock the range of slots by getting the 3211 * anon_array_lock for the first anon slot, and mark only the 3212 * first anon slot busy to represent whole range being busy. 3213 * Fail if the mutex or the anon_array are busy. 3214 */ 3215 3216 ASSERT(RW_READ_HELD(&->a_rwlock)); 3217 an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc)); 3218 hash = ANON_ARRAY_HASH(amp, an_idx); 3219 sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex; 3220 sobj->sync_cv = &anon_array_cv[hash]; 3221 if (!mutex_tryenter(mtx)) { 3222 return (EWOULDBLOCK); 3223 } 3224 ap_slot = anon_get_slot(amp->ahp, an_idx); 3225 if (ANON_ISBUSY(ap_slot)) { 3226 mutex_exit(mtx); 3227 return (EWOULDBLOCK); 3228 } 3229 ANON_SETBUSY(ap_slot); 3230 sobj->sync_data = ap_slot; 3231 mutex_exit(mtx); 3232 return (0); 3233 } 3234 3235 void 3236 anon_array_exit(anon_sync_obj_t *sobj) 3237 { 3238 mutex_enter(sobj->sync_mutex); 3239 ASSERT(ANON_ISBUSY(sobj->sync_data)); 3240 ANON_CLRBUSY(sobj->sync_data); 3241 if (CV_HAS_WAITERS(sobj->sync_cv)) 3242 cv_broadcast(sobj->sync_cv); 3243 mutex_exit(sobj->sync_mutex); 3244 } 3245