xref: /illumos-gate/usr/src/uts/common/vm/vm_anon.c (revision 4aab0a3be69ed9c4e0119c5c3f17d8cac3b27c17)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2015, Joyent, Inc. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 /*
40  * VM - anonymous pages.
41  *
42  * This layer sits immediately above the vm_swap layer.  It manages
43  * physical pages that have no permanent identity in the file system
44  * name space, using the services of the vm_swap layer to allocate
45  * backing storage for these pages.  Since these pages have no external
46  * identity, they are discarded when the last reference is removed.
47  *
48  * An important function of this layer is to manage low-level sharing
49  * of pages that are logically distinct but that happen to be
50  * physically identical (e.g., the corresponding pages of the processes
51  * resulting from a fork before one process or the other changes their
52  * contents).  This pseudo-sharing is present only as an optimization
53  * and is not to be confused with true sharing in which multiple
54  * address spaces deliberately contain references to the same object;
55  * such sharing is managed at a higher level.
56  *
57  * The key data structure here is the anon struct, which contains a
58  * reference count for its associated physical page and a hint about
59  * the identity of that page.  Anon structs typically live in arrays,
60  * with an instance's position in its array determining where the
61  * corresponding backing storage is allocated; however, the swap_xlate()
62  * routine abstracts away this representation information so that the
63  * rest of the anon layer need not know it.  (See the swap layer for
64  * more details on anon struct layout.)
65  *
66  * In the future versions of the system, the association between an
67  * anon struct and its position on backing store will change so that
68  * we don't require backing store all anonymous pages in the system.
69  * This is important for consideration for large memory systems.
70  * We can also use this technique to delay binding physical locations
71  * to anonymous pages until pageout/swapout time where we can make
72  * smarter allocation decisions to improve anonymous klustering.
73  *
74  * Many of the routines defined here take a (struct anon **) argument,
75  * which allows the code at this level to manage anon pages directly,
76  * so that callers can regard anon structs as opaque objects and not be
77  * concerned with assigning or inspecting their contents.
78  *
79  * Clients of this layer refer to anon pages indirectly.  That is, they
80  * maintain arrays of pointers to anon structs rather than maintaining
81  * anon structs themselves.  The (struct anon **) arguments mentioned
82  * above are pointers to entries in these arrays.  It is these arrays
83  * that capture the mapping between offsets within a given segment and
84  * the corresponding anonymous backing storage address.
85  */
86 
87 #ifdef DEBUG
88 #define	ANON_DEBUG
89 #endif
90 
91 #include <sys/types.h>
92 #include <sys/t_lock.h>
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/mman.h>
96 #include <sys/cred.h>
97 #include <sys/thread.h>
98 #include <sys/vnode.h>
99 #include <sys/cpuvar.h>
100 #include <sys/swap.h>
101 #include <sys/cmn_err.h>
102 #include <sys/vtrace.h>
103 #include <sys/kmem.h>
104 #include <sys/sysmacros.h>
105 #include <sys/bitmap.h>
106 #include <sys/vmsystm.h>
107 #include <sys/tuneable.h>
108 #include <sys/debug.h>
109 #include <sys/fs/swapnode.h>
110 #include <sys/tnf_probe.h>
111 #include <sys/lgrp.h>
112 #include <sys/policy.h>
113 #include <sys/condvar_impl.h>
114 #include <sys/mutex_impl.h>
115 #include <sys/rctl.h>
116 
117 #include <vm/as.h>
118 #include <vm/hat.h>
119 #include <vm/anon.h>
120 #include <vm/page.h>
121 #include <vm/vpage.h>
122 #include <vm/seg.h>
123 #include <vm/rm.h>
124 
125 #include <fs/fs_subr.h>
126 
127 struct vnode *anon_vp;
128 
129 int anon_debug;
130 
131 kmutex_t	anoninfo_lock;
132 struct		k_anoninfo k_anoninfo;
133 ani_free_t	*ani_free_pool;
134 pad_mutex_t	anon_array_lock[ANON_LOCKSIZE];
135 kcondvar_t	anon_array_cv[ANON_LOCKSIZE];
136 
137 /*
138  * Global hash table for (vp, off) -> anon slot
139  */
140 extern	int swap_maxcontig;
141 size_t	anon_hash_size;
142 unsigned int anon_hash_shift;
143 struct anon **anon_hash;
144 
145 static struct kmem_cache *anon_cache;
146 static struct kmem_cache *anonmap_cache;
147 
148 pad_mutex_t	*anonhash_lock;
149 
150 /*
151  * Used to make the increment of all refcnts of all anon slots of a large
152  * page appear to be atomic.  The lock is grabbed for the first anon slot of
153  * a large page.
154  */
155 pad_mutex_t	*anonpages_hash_lock;
156 
157 #define	APH_MUTEX(vp, off)				\
158 	(&anonpages_hash_lock[(ANON_HASH((vp), (off)) &	\
159 	    (AH_LOCK_SIZE - 1))].pad_mutex)
160 
161 #ifdef VM_STATS
162 static struct anonvmstats_str {
163 	ulong_t getpages[30];
164 	ulong_t privatepages[10];
165 	ulong_t demotepages[9];
166 	ulong_t decrefpages[9];
167 	ulong_t	dupfillholes[4];
168 	ulong_t freepages[1];
169 } anonvmstats;
170 #endif /* VM_STATS */
171 
172 /*ARGSUSED*/
173 static int
174 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags)
175 {
176 	struct anon_map *amp = buf;
177 
178 	rw_init(&amp->a_rwlock, NULL, RW_DEFAULT, NULL);
179 	cv_init(&amp->a_purgecv, NULL, CV_DEFAULT, NULL);
180 	mutex_init(&amp->a_pmtx, NULL, MUTEX_DEFAULT, NULL);
181 	mutex_init(&amp->a_purgemtx, NULL, MUTEX_DEFAULT, NULL);
182 	return (0);
183 }
184 
185 /*ARGSUSED1*/
186 static void
187 anonmap_cache_destructor(void *buf, void *cdrarg)
188 {
189 	struct anon_map *amp = buf;
190 
191 	rw_destroy(&amp->a_rwlock);
192 	cv_destroy(&amp->a_purgecv);
193 	mutex_destroy(&amp->a_pmtx);
194 	mutex_destroy(&amp->a_purgemtx);
195 }
196 
197 void
198 anon_init(void)
199 {
200 	int i;
201 	pad_mutex_t *tmp;
202 
203 	/* These both need to be powers of 2 so round up to the next power */
204 	anon_hash_shift = highbit((physmem / ANON_HASHAVELEN) - 1);
205 	anon_hash_size = 1L << anon_hash_shift;
206 
207 	/*
208 	 * We need to align the anonhash_lock and anonpages_hash_lock arrays
209 	 * to a 64B boundary to avoid false sharing.  We add 63B to our
210 	 * allocation so that we can get a 64B aligned address to use.
211 	 * We allocate both of these together to avoid wasting an additional
212 	 * 63B.
213 	 */
214 	tmp = kmem_zalloc((2 * AH_LOCK_SIZE * sizeof (pad_mutex_t)) + 63,
215 	    KM_SLEEP);
216 	anonhash_lock = (pad_mutex_t *)P2ROUNDUP((uintptr_t)tmp, 64);
217 	anonpages_hash_lock = anonhash_lock + AH_LOCK_SIZE;
218 
219 	for (i = 0; i < AH_LOCK_SIZE; i++) {
220 		mutex_init(&anonhash_lock[i].pad_mutex, NULL, MUTEX_DEFAULT,
221 		    NULL);
222 		mutex_init(&anonpages_hash_lock[i].pad_mutex, NULL,
223 		    MUTEX_DEFAULT, NULL);
224 	}
225 
226 	for (i = 0; i < ANON_LOCKSIZE; i++) {
227 		mutex_init(&anon_array_lock[i].pad_mutex, NULL,
228 		    MUTEX_DEFAULT, NULL);
229 		cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL);
230 	}
231 
232 	anon_hash = (struct anon **)
233 	    kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP);
234 	anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon),
235 	    AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, KMC_PREFILL);
236 	anonmap_cache = kmem_cache_create("anonmap_cache",
237 	    sizeof (struct anon_map), 0,
238 	    anonmap_cache_constructor, anonmap_cache_destructor, NULL,
239 	    NULL, NULL, 0);
240 	swap_maxcontig = (1024 * 1024) >> PAGESHIFT;	/* 1MB of pages */
241 
242 	tmp = kmem_zalloc((ANI_MAX_POOL * sizeof (ani_free_t)) + 63, KM_SLEEP);
243 	/* Round ani_free_pool to cacheline boundary to avoid false sharing. */
244 	ani_free_pool = (ani_free_t *)P2ROUNDUP((uintptr_t)tmp, 64);
245 
246 	anon_vp = vn_alloc(KM_SLEEP);
247 	vn_setops(anon_vp, swap_vnodeops);
248 	anon_vp->v_type = VREG;
249 	anon_vp->v_flag |= (VISSWAP|VISSWAPFS);
250 }
251 
252 /*
253  * Global anon slot hash table manipulation.
254  */
255 
256 static void
257 anon_addhash(struct anon *ap)
258 {
259 	int index;
260 
261 	ASSERT(MUTEX_HELD(AH_MUTEX(ap->an_vp, ap->an_off)));
262 	index = ANON_HASH(ap->an_vp, ap->an_off);
263 	ap->an_hash = anon_hash[index];
264 	anon_hash[index] = ap;
265 }
266 
267 static void
268 anon_rmhash(struct anon *ap)
269 {
270 	struct anon **app;
271 
272 	ASSERT(MUTEX_HELD(AH_MUTEX(ap->an_vp, ap->an_off)));
273 
274 	for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)];
275 	    *app; app = &((*app)->an_hash)) {
276 		if (*app == ap) {
277 			*app = ap->an_hash;
278 			break;
279 		}
280 	}
281 }
282 
283 /*
284  * The anon array interfaces. Functions allocating,
285  * freeing array of pointers, and returning/setting
286  * entries in the array of pointers for a given offset.
287  *
288  * Create the list of pointers
289  */
290 struct anon_hdr *
291 anon_create(pgcnt_t npages, int flags)
292 {
293 	struct anon_hdr *ahp;
294 	ulong_t nchunks;
295 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
296 
297 	if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) {
298 		return (NULL);
299 	}
300 
301 	mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL);
302 	/*
303 	 * Single level case.
304 	 */
305 	ahp->size = npages;
306 	if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) {
307 
308 		if (flags & ANON_ALLOC_FORCE)
309 			ahp->flags |= ANON_ALLOC_FORCE;
310 
311 		ahp->array_chunk = kmem_zalloc(
312 		    ahp->size * sizeof (struct anon *), kmemflags);
313 
314 		if (ahp->array_chunk == NULL) {
315 			kmem_free(ahp, sizeof (struct anon_hdr));
316 			return (NULL);
317 		}
318 	} else {
319 		/*
320 		 * 2 Level case.
321 		 * anon hdr size needs to be rounded off  to be a multiple
322 		 * of ANON_CHUNK_SIZE. This is important as various anon
323 		 * related functions depend on this.
324 		 * NOTE -
325 		 * anon_grow()  makes anon hdr size a multiple of
326 		 * ANON_CHUNK_SIZE.
327 		 * amp size is <= anon hdr size.
328 		 * anon_index + seg_pgs <= anon hdr size.
329 		 */
330 		ahp->size = P2ROUNDUP(npages, ANON_CHUNK_SIZE);
331 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
332 
333 		ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *),
334 		    kmemflags);
335 
336 		if (ahp->array_chunk == NULL) {
337 			kmem_free(ahp, sizeof (struct anon_hdr));
338 			return (NULL);
339 		}
340 	}
341 	return (ahp);
342 }
343 
344 /*
345  * Free the array of pointers
346  */
347 void
348 anon_release(struct anon_hdr *ahp, pgcnt_t npages)
349 {
350 	ulong_t i;
351 	void **ppp;
352 	ulong_t nchunks;
353 
354 	ASSERT(npages <= ahp->size);
355 
356 	/*
357 	 * Single level case.
358 	 */
359 	if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
360 		kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *));
361 	} else {
362 		/*
363 		 * 2 level case.
364 		 */
365 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
366 		for (i = 0; i < nchunks; i++) {
367 			ppp = &ahp->array_chunk[i];
368 			if (*ppp != NULL)
369 				kmem_free(*ppp, PAGESIZE);
370 		}
371 		kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *));
372 	}
373 	mutex_destroy(&ahp->serial_lock);
374 	kmem_free(ahp, sizeof (struct anon_hdr));
375 }
376 
377 /*
378  * Return the pointer from the list for a
379  * specified anon index.
380  */
381 struct anon *
382 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx)
383 {
384 	struct anon **app;
385 
386 	ASSERT(an_idx < ahp->size);
387 
388 	/*
389 	 * Single level case.
390 	 */
391 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
392 		return ((struct anon *)
393 		    ((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK));
394 	} else {
395 
396 		/*
397 		 * 2 level case.
398 		 */
399 		app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
400 		if (app) {
401 			return ((struct anon *)
402 			    ((uintptr_t)app[an_idx & ANON_CHUNK_OFF] &
403 			    ANON_PTRMASK));
404 		} else {
405 			return (NULL);
406 		}
407 	}
408 }
409 
410 /*
411  * Return the anon pointer for the first valid entry in the anon list,
412  * starting from the given index.
413  */
414 struct anon *
415 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index)
416 {
417 	struct anon *ap;
418 	struct anon **app;
419 	ulong_t chunkoff;
420 	ulong_t i;
421 	ulong_t j;
422 	pgcnt_t size;
423 
424 	i = *index;
425 	size = ahp->size;
426 
427 	ASSERT(i < size);
428 
429 	if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
430 		/*
431 		 * 1 level case
432 		 */
433 		while (i < size) {
434 			ap = (struct anon *)
435 			    ((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK);
436 			if (ap) {
437 				*index = i;
438 				return (ap);
439 			}
440 			i++;
441 		}
442 	} else {
443 		/*
444 		 * 2 level case
445 		 */
446 		chunkoff = i & ANON_CHUNK_OFF;
447 		while (i < size) {
448 			app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT];
449 			if (app)
450 				for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) {
451 					ap = (struct anon *)
452 					    ((uintptr_t)app[j] & ANON_PTRMASK);
453 					if (ap) {
454 						*index = i + (j - chunkoff);
455 						return (ap);
456 					}
457 				}
458 			chunkoff = 0;
459 			i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF;
460 		}
461 	}
462 	*index = size;
463 	return (NULL);
464 }
465 
466 /*
467  * Set list entry with a given pointer for a specified offset
468  */
469 int
470 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags)
471 {
472 	void		**ppp;
473 	struct anon	**app;
474 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
475 	uintptr_t	*ap_addr;
476 
477 	ASSERT(an_idx < ahp->size);
478 
479 	/*
480 	 * Single level case.
481 	 */
482 	if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
483 		ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx];
484 	} else {
485 
486 		/*
487 		 * 2 level case.
488 		 */
489 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
490 
491 		ASSERT(ppp != NULL);
492 		if (*ppp == NULL) {
493 			mutex_enter(&ahp->serial_lock);
494 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
495 			if (*ppp == NULL) {
496 				*ppp = kmem_zalloc(PAGESIZE, kmemflags);
497 				if (*ppp == NULL) {
498 					mutex_exit(&ahp->serial_lock);
499 					return (ENOMEM);
500 				}
501 			}
502 			mutex_exit(&ahp->serial_lock);
503 		}
504 		app = *ppp;
505 		ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF];
506 	}
507 	*ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap;
508 	return (0);
509 }
510 
511 /*
512  * Copy anon array into a given new anon array
513  */
514 int
515 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx, struct anon_hdr *dahp,
516     ulong_t d_idx, pgcnt_t npages, int flags)
517 {
518 	void **sapp, **dapp;
519 	void *ap;
520 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
521 
522 	ASSERT((s_idx < sahp->size) && (d_idx < dahp->size));
523 	ASSERT((npages <= sahp->size) && (npages <= dahp->size));
524 
525 	/*
526 	 * Both arrays are 1 level.
527 	 */
528 	if (((sahp->size <= ANON_CHUNK_SIZE) &&
529 	    (dahp->size <= ANON_CHUNK_SIZE)) ||
530 	    ((sahp->flags & ANON_ALLOC_FORCE) &&
531 	    (dahp->flags & ANON_ALLOC_FORCE))) {
532 
533 		bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx],
534 		    npages * sizeof (struct anon *));
535 		return (0);
536 	}
537 
538 	/*
539 	 * Both arrays are 2 levels.
540 	 */
541 	if (sahp->size > ANON_CHUNK_SIZE &&
542 	    dahp->size > ANON_CHUNK_SIZE &&
543 	    ((sahp->flags & ANON_ALLOC_FORCE) == 0) &&
544 	    ((dahp->flags & ANON_ALLOC_FORCE) == 0)) {
545 
546 		ulong_t sapidx, dapidx;
547 		ulong_t *sap, *dap;
548 		ulong_t chknp;
549 
550 		while (npages != 0) {
551 
552 			sapidx = s_idx & ANON_CHUNK_OFF;
553 			dapidx = d_idx & ANON_CHUNK_OFF;
554 			chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx);
555 			if (chknp > npages)
556 				chknp = npages;
557 
558 			sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT];
559 			if ((sap = *sapp) != NULL) {
560 				dapp = &dahp->array_chunk[d_idx
561 				    >> ANON_CHUNK_SHIFT];
562 				if ((dap = *dapp) == NULL) {
563 					*dapp = kmem_zalloc(PAGESIZE,
564 					    kmemflags);
565 					if ((dap = *dapp) == NULL)
566 						return (ENOMEM);
567 				}
568 				bcopy((sap + sapidx), (dap + dapidx),
569 				    chknp << ANON_PTRSHIFT);
570 			}
571 			s_idx += chknp;
572 			d_idx += chknp;
573 			npages -= chknp;
574 		}
575 		return (0);
576 	}
577 
578 	/*
579 	 * At least one of the arrays is 2 level.
580 	 */
581 	while (npages--) {
582 		if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) {
583 			ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx)));
584 			if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM)
585 					return (ENOMEM);
586 		}
587 		s_idx++;
588 		d_idx++;
589 	}
590 	return (0);
591 }
592 
593 
594 /*
595  * ANON_INITBUF is a convenience macro for anon_grow() below. It
596  * takes a buffer dst, which is at least as large as buffer src. It
597  * does a bcopy from src into dst, and then bzeros the extra bytes
598  * of dst. If tail is set, the data in src is tail aligned within
599  * dst instead of head aligned.
600  */
601 
602 #define	ANON_INITBUF(src, srclen, dst, dstsize, tail)			      \
603 	if (tail) {							      \
604 		bzero((dst), (dstsize) - (srclen));			      \
605 		bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \
606 	} else {							      \
607 		bcopy((src), (dst), (srclen));				      \
608 		bzero((char *)(dst) + (srclen), (dstsize) - (srclen));	      \
609 	}
610 
611 #define	ANON_1_LEVEL_INC	(ANON_CHUNK_SIZE / 8)
612 #define	ANON_2_LEVEL_INC	(ANON_1_LEVEL_INC * ANON_CHUNK_SIZE)
613 
614 /*
615  * anon_grow() is used to efficiently extend an existing anon array.
616  * startidx_p points to the index into the anon array of the first page
617  * that is in use. oldseg_pgs is the number of pages in use, starting at
618  * *startidx_p. newpages is the number of additional pages desired.
619  *
620  * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed.
621  *
622  * The growth is done by creating a new top level of the anon array,
623  * and (if the array is 2-level) reusing the existing second level arrays.
624  *
625  * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN.
626  *
627  * Returns the new number of pages in the anon array.
628  */
629 pgcnt_t
630 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs,
631     pgcnt_t newseg_pgs, int flags)
632 {
633 	ulong_t startidx = startidx_p ? *startidx_p : 0;
634 	pgcnt_t oldamp_pgs = ahp->size, newamp_pgs;
635 	pgcnt_t oelems, nelems, totpages;
636 	void **level1;
637 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
638 	int growdown = (flags & ANON_GROWDOWN);
639 	size_t newarrsz, oldarrsz;
640 	void *level2;
641 
642 	ASSERT(!(startidx_p == NULL && growdown));
643 	ASSERT(startidx + oldseg_pgs <= ahp->size);
644 
645 	/*
646 	 * Determine the total number of pages needed in the new
647 	 * anon array. If growing down, totpages is all pages from
648 	 * startidx through the end of the array, plus <newseg_pgs>
649 	 * pages. If growing up, keep all pages from page 0 through
650 	 * the last page currently in use, plus <newseg_pgs> pages.
651 	 */
652 	if (growdown)
653 		totpages = oldamp_pgs - startidx + newseg_pgs;
654 	else
655 		totpages = startidx + oldseg_pgs + newseg_pgs;
656 
657 	/* If the array is already large enough, just return. */
658 
659 	if (oldamp_pgs >= totpages) {
660 		if (growdown)
661 			*startidx_p = oldamp_pgs - totpages;
662 		return (oldamp_pgs);
663 	}
664 
665 	/*
666 	 * oldamp_pgs/newamp_pgs are the total numbers of pages represented
667 	 * by the corresponding arrays.
668 	 * oelems/nelems are the number of pointers in the top level arrays
669 	 * which may be either level 1 or level 2.
670 	 * Will the new anon array be one level or two levels?
671 	 */
672 	if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
673 		newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC);
674 		oelems = oldamp_pgs;
675 		nelems = newamp_pgs;
676 	} else {
677 		newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC);
678 		oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
679 		nelems = newamp_pgs >> ANON_CHUNK_SHIFT;
680 	}
681 
682 	newarrsz = nelems * sizeof (void *);
683 	level1 = kmem_alloc(newarrsz, kmemflags);
684 	if (level1 == NULL)
685 		return (0);
686 
687 	/* Are we converting from a one level to a two level anon array? */
688 
689 	if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE &&
690 	    !(ahp->flags & ANON_ALLOC_FORCE)) {
691 
692 		/*
693 		 * Yes, we're converting to a two level. Reuse old level 1
694 		 * as new level 2 if it is exactly PAGESIZE. Otherwise
695 		 * alloc a new level 2 and copy the old level 1 data into it.
696 		 */
697 		if (oldamp_pgs == ANON_CHUNK_SIZE) {
698 			level2 = (void *)ahp->array_chunk;
699 		} else {
700 			level2 = kmem_alloc(PAGESIZE, kmemflags);
701 			if (level2 == NULL) {
702 				kmem_free(level1, newarrsz);
703 				return (0);
704 			}
705 			oldarrsz = oldamp_pgs * sizeof (void *);
706 
707 			ANON_INITBUF(ahp->array_chunk, oldarrsz,
708 			    level2, PAGESIZE, growdown);
709 			kmem_free(ahp->array_chunk, oldarrsz);
710 		}
711 		bzero(level1, newarrsz);
712 		if (growdown)
713 			level1[nelems - 1] = level2;
714 		else
715 			level1[0] = level2;
716 	} else {
717 		oldarrsz = oelems * sizeof (void *);
718 
719 		ANON_INITBUF(ahp->array_chunk, oldarrsz,
720 		    level1, newarrsz, growdown);
721 		kmem_free(ahp->array_chunk, oldarrsz);
722 	}
723 
724 	ahp->array_chunk = level1;
725 	ahp->size = newamp_pgs;
726 	if (growdown)
727 		*startidx_p = newamp_pgs - totpages;
728 
729 	return (newamp_pgs);
730 }
731 
732 
733 /*
734  * Called to sync ani_free value.
735  */
736 
737 void
738 set_anoninfo(void)
739 {
740 	processorid_t	ix, max_seqid;
741 	pgcnt_t		total = 0;
742 	static clock_t	last_time;
743 	clock_t		new_time;
744 
745 	if (ani_free_pool == NULL)
746 		return;
747 
748 	/*
749 	 * Recompute ani_free at most once per tick. Use max_cpu_seqid_ever to
750 	 * identify the maximum number of CPUs were ever online.
751 	 */
752 	new_time = ddi_get_lbolt();
753 	if (new_time > last_time) {
754 
755 		max_seqid = max_cpu_seqid_ever;
756 		ASSERT(ANI_MAX_POOL > max_seqid);
757 		for (ix = 0; ix <= max_seqid; ix++)
758 			total += ani_free_pool[ix].ani_count;
759 
760 		last_time = new_time;
761 		k_anoninfo.ani_free = total;
762 	}
763 }
764 
765 /*
766  * Reserve anon space.
767  *
768  * It's no longer simply a matter of incrementing ani_resv to
769  * reserve swap space, we need to check memory-based as well
770  * as disk-backed (physical) swap.  The following algorithm
771  * is used:
772  *	Check the space on physical swap
773  *		i.e. amount needed < ani_max - ani_phys_resv
774  *	If we are swapping on swapfs check
775  *		amount needed < (availrmem - swapfs_minfree)
776  * Since the algorithm to check for the quantity of swap space is
777  * almost the same as that for reserving it, we'll just use anon_resvmem
778  * with a flag to decrement availrmem.
779  *
780  * Return non-zero on success.
781  */
782 int
783 anon_resvmem(size_t size, boolean_t takemem, zone_t *zone, int tryhard)
784 {
785 	pgcnt_t npages = btopr(size);
786 	pgcnt_t mswap_pages = 0;
787 	pgcnt_t pswap_pages = 0;
788 	proc_t *p = curproc;
789 
790 	if (zone != NULL) {
791 		/* test zone.max-swap resource control */
792 		mutex_enter(&p->p_lock);
793 		if (rctl_incr_swap(p, zone, ptob(npages)) != 0) {
794 			mutex_exit(&p->p_lock);
795 
796 			if (takemem)
797 				atomic_add_64(&zone->zone_anon_alloc_fail, 1);
798 
799 			return (0);
800 		}
801 
802 		if (!takemem)
803 			rctl_decr_swap(zone, ptob(npages));
804 
805 		mutex_exit(&p->p_lock);
806 	}
807 	mutex_enter(&anoninfo_lock);
808 
809 	/*
810 	 * pswap_pages is the number of pages we can take from
811 	 * physical (i.e. disk-backed) swap.
812 	 */
813 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
814 	pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv;
815 
816 	ANON_PRINT(A_RESV,
817 	    ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n",
818 	    npages, takemem, pswap_pages, (void *)caller()));
819 
820 	if (npages <= pswap_pages) {
821 		/*
822 		 * we have enough space on a physical swap
823 		 */
824 		if (takemem)
825 			k_anoninfo.ani_phys_resv += npages;
826 		mutex_exit(&anoninfo_lock);
827 		return (1);
828 	} else if (pswap_pages != 0) {
829 		/*
830 		 * we have some space on a physical swap
831 		 */
832 		if (takemem) {
833 			/*
834 			 * use up remainder of phys swap
835 			 */
836 			k_anoninfo.ani_phys_resv += pswap_pages;
837 			ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max);
838 		}
839 	}
840 	/*
841 	 * since (npages > pswap_pages) we need mem swap
842 	 * mswap_pages is the number of pages needed from availrmem
843 	 */
844 	ASSERT(npages > pswap_pages);
845 	mswap_pages = npages - pswap_pages;
846 
847 	ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n",
848 	    mswap_pages));
849 
850 	/*
851 	 * priv processes can reserve memory as swap as long as availrmem
852 	 * remains greater than swapfs_minfree; in the case of non-priv
853 	 * processes, memory can be reserved as swap only if availrmem
854 	 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus,
855 	 * swapfs_reserve amount of memswap is not available to non-priv
856 	 * processes. This protects daemons such as automounter dying
857 	 * as a result of application processes eating away almost entire
858 	 * membased swap. This safeguard becomes useless if apps are run
859 	 * with root access.
860 	 *
861 	 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem.
862 	 *
863 	 */
864 	if (tryhard) {
865 		pgcnt_t floor_pages;
866 
867 		if (secpolicy_resource_anon_mem(CRED())) {
868 			floor_pages = swapfs_minfree;
869 		} else {
870 			floor_pages = swapfs_minfree + swapfs_reserve;
871 		}
872 
873 		mutex_exit(&anoninfo_lock);
874 		(void) page_reclaim_mem(mswap_pages, floor_pages, 0);
875 		mutex_enter(&anoninfo_lock);
876 	}
877 
878 	mutex_enter(&freemem_lock);
879 	if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) ||
880 	    (availrmem > (swapfs_minfree + mswap_pages) &&
881 	    secpolicy_resource(CRED()) == 0)) {
882 
883 		if (takemem) {
884 			/*
885 			 * Take the memory from the rest of the system.
886 			 */
887 			availrmem -= mswap_pages;
888 			mutex_exit(&freemem_lock);
889 			k_anoninfo.ani_mem_resv += mswap_pages;
890 			ANI_ADD(mswap_pages);
891 			ANON_PRINT((A_RESV | A_MRESV),
892 			    ("anon_resvmem: took %ld pages of availrmem\n",
893 			    mswap_pages));
894 		} else {
895 			mutex_exit(&freemem_lock);
896 		}
897 
898 		ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
899 		mutex_exit(&anoninfo_lock);
900 		return (1);
901 	} else {
902 		/*
903 		 * Fail if not enough memory
904 		 */
905 		if (takemem) {
906 			k_anoninfo.ani_phys_resv -= pswap_pages;
907 		}
908 
909 		mutex_exit(&freemem_lock);
910 		mutex_exit(&anoninfo_lock);
911 		ANON_PRINT(A_RESV,
912 		    ("anon_resvmem: not enough space from swapfs\n"));
913 		if (zone != NULL && takemem)
914 			rctl_decr_swap(zone, ptob(npages));
915 		return (0);
916 	}
917 }
918 
919 /*
920  * Give back an anon reservation.
921  */
922 void
923 anon_unresvmem(size_t size, zone_t *zone)
924 {
925 	pgcnt_t npages = btopr(size);
926 	spgcnt_t mem_free_pages = 0;
927 	pgcnt_t phys_free_slots;
928 #ifdef	ANON_DEBUG
929 	pgcnt_t mem_resv;
930 #endif
931 	if (zone != NULL)
932 		rctl_decr_swap(zone, ptob(npages));
933 
934 	mutex_enter(&anoninfo_lock);
935 
936 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
937 
938 	/*
939 	 * If some of this reservation belonged to swapfs
940 	 * give it back to availrmem.
941 	 * ani_mem_resv is the amount of availrmem swapfs has reserved.
942 	 * but some of that memory could be locked by segspt so we can only
943 	 * return non locked ani_mem_resv back to availrmem
944 	 */
945 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
946 		ANON_PRINT((A_RESV | A_MRESV),
947 		    ("anon_unresv: growing availrmem by %ld pages\n",
948 		    MIN(k_anoninfo.ani_mem_resv, npages)));
949 
950 		mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv -
951 		    k_anoninfo.ani_locked_swap), npages);
952 		mutex_enter(&freemem_lock);
953 		availrmem += mem_free_pages;
954 		mutex_exit(&freemem_lock);
955 		k_anoninfo.ani_mem_resv -= mem_free_pages;
956 
957 		ANI_ADD(-mem_free_pages);
958 	}
959 	/*
960 	 * The remainder of the pages is returned to phys swap
961 	 */
962 	ASSERT(npages >= mem_free_pages);
963 	phys_free_slots = npages - mem_free_pages;
964 
965 	if (phys_free_slots) {
966 		k_anoninfo.ani_phys_resv -= phys_free_slots;
967 	}
968 
969 #ifdef	ANON_DEBUG
970 	mem_resv = k_anoninfo.ani_mem_resv;
971 #endif
972 
973 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
974 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
975 
976 	mutex_exit(&anoninfo_lock);
977 
978 	ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n",
979 	    npages, mem_resv, (void *)caller()));
980 }
981 
982 /*
983  * Allocate an anon slot and return it with the lock held.
984  */
985 struct anon *
986 anon_alloc(struct vnode *vp, anoff_t off)
987 {
988 	struct anon	*ap;
989 	kmutex_t	*ahm;
990 
991 	ap = kmem_cache_alloc(anon_cache, KM_SLEEP);
992 	if (vp == NULL) {
993 		swap_alloc(ap);
994 	} else {
995 		ap->an_vp = vp;
996 		ap->an_off = off;
997 	}
998 	ap->an_refcnt = 1;
999 	ap->an_pvp = NULL;
1000 	ap->an_poff = 0;
1001 	ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1002 	mutex_enter(ahm);
1003 	anon_addhash(ap);
1004 	mutex_exit(ahm);
1005 	ANI_ADD(-1);
1006 	ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n",
1007 	    (void *)ap, (ap ? (void *)ap->an_vp : NULL)));
1008 	return (ap);
1009 }
1010 
1011 /*
1012  * Called for pages locked in memory via softlock/pagelock/mlock to make sure
1013  * such pages don't consume any physical swap resources needed for swapping
1014  * unlocked pages.
1015  */
1016 void
1017 anon_swap_free(struct anon *ap, page_t *pp)
1018 {
1019 	kmutex_t *ahm;
1020 
1021 	ASSERT(ap != NULL);
1022 	ASSERT(pp != NULL);
1023 	ASSERT(PAGE_LOCKED(pp));
1024 	ASSERT(pp->p_vnode != NULL);
1025 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
1026 	ASSERT(ap->an_refcnt != 0);
1027 	ASSERT(pp->p_vnode == ap->an_vp);
1028 	ASSERT(pp->p_offset == ap->an_off);
1029 
1030 	if (ap->an_pvp == NULL)
1031 		return;
1032 
1033 	page_io_lock(pp);
1034 	ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1035 	mutex_enter(ahm);
1036 
1037 	ASSERT(ap->an_refcnt != 0);
1038 	ASSERT(pp->p_vnode == ap->an_vp);
1039 	ASSERT(pp->p_offset == ap->an_off);
1040 
1041 	if (ap->an_pvp != NULL) {
1042 		swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
1043 		ap->an_pvp = NULL;
1044 		ap->an_poff = 0;
1045 		mutex_exit(ahm);
1046 		hat_setmod(pp);
1047 	} else {
1048 		mutex_exit(ahm);
1049 	}
1050 	page_io_unlock(pp);
1051 }
1052 
1053 /*
1054  * Decrement the reference count of an anon page.
1055  * If reference count goes to zero, free it and
1056  * its associated page (if any).
1057  */
1058 void
1059 anon_decref(struct anon *ap)
1060 {
1061 	page_t *pp;
1062 	struct vnode *vp;
1063 	anoff_t off;
1064 	kmutex_t *ahm;
1065 
1066 	ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1067 	mutex_enter(ahm);
1068 	ASSERT(ap->an_refcnt != 0);
1069 	if (ap->an_refcnt == 0)
1070 		panic("anon_decref: slot count 0");
1071 	if (--ap->an_refcnt == 0) {
1072 		swap_xlate(ap, &vp, &off);
1073 		anon_rmhash(ap);
1074 		if (ap->an_pvp != NULL)
1075 			swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
1076 		mutex_exit(ahm);
1077 
1078 		/*
1079 		 * If there is a page for this anon slot we will need to
1080 		 * call VN_DISPOSE to get rid of the vp association and
1081 		 * put the page back on the free list as really free.
1082 		 * Acquire the "exclusive" lock to ensure that any
1083 		 * pending i/o always completes before the swap slot
1084 		 * is freed.
1085 		 */
1086 		pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1087 		if (pp != NULL) {
1088 			/*LINTED: constant in conditional context */
1089 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
1090 		}
1091 		ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n",
1092 		    (void *)ap, (void *)ap->an_vp));
1093 
1094 		kmem_cache_free(anon_cache, ap);
1095 
1096 		ANI_ADD(1);
1097 	} else {
1098 		mutex_exit(ahm);
1099 	}
1100 }
1101 
1102 
1103 /*
1104  * check an_refcnt of the root anon slot (anon_index argument is aligned at
1105  * seg->s_szc level) to determine whether COW processing is required.
1106  * anonpages_hash_lock[] held on the root ap ensures that if root's
1107  * refcnt is 1 all other refcnt's are 1 as well (and they can't increase
1108  * later since this process can't fork while its AS lock is held).
1109  *
1110  * returns 1 if the root anon slot has a refcnt > 1 otherwise returns 0.
1111  */
1112 int
1113 anon_szcshare(struct anon_hdr *ahp, ulong_t anon_index)
1114 {
1115 	struct anon	*ap;
1116 	kmutex_t	*ahmpages = NULL;
1117 
1118 	ap = anon_get_ptr(ahp, anon_index);
1119 	if (ap == NULL)
1120 		return (0);
1121 
1122 	ahmpages = APH_MUTEX(ap->an_vp, ap->an_off);
1123 	mutex_enter(ahmpages);
1124 	ASSERT(ap->an_refcnt >= 1);
1125 	if (ap->an_refcnt == 1) {
1126 		mutex_exit(ahmpages);
1127 		return (0);
1128 	}
1129 	mutex_exit(ahmpages);
1130 	return (1);
1131 }
1132 /*
1133  * Check 'nslots' anon slots for refcnt > 1.
1134  *
1135  * returns 1 if any of the 'nslots' anon slots has a refcnt > 1 otherwise
1136  * returns 0.
1137  */
1138 static int
1139 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
1140 {
1141 	struct anon *ap;
1142 
1143 	while (nslots-- > 0) {
1144 		if ((ap = anon_get_ptr(ahp, anon_index)) != NULL &&
1145 		    ap->an_refcnt > 1)
1146 			return (1);
1147 		anon_index++;
1148 	}
1149 
1150 	return (0);
1151 }
1152 
1153 static void
1154 anon_decref_pages(
1155 	struct anon_hdr *ahp,
1156 	ulong_t an_idx,
1157 	uint_t szc)
1158 {
1159 	struct anon *ap = anon_get_ptr(ahp, an_idx);
1160 	kmutex_t *ahmpages = NULL;
1161 	page_t *pp;
1162 	pgcnt_t pgcnt = page_get_pagecnt(szc);
1163 	pgcnt_t i;
1164 	struct vnode *vp;
1165 	anoff_t   off;
1166 	kmutex_t *ahm;
1167 #ifdef DEBUG
1168 	int refcnt = 1;
1169 #endif
1170 
1171 	ASSERT(szc != 0);
1172 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1173 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1174 	ASSERT(an_idx < ahp->size);
1175 
1176 	if (ahp->size - an_idx < pgcnt) {
1177 		/*
1178 		 * In case of shared mappings total anon map size may not be
1179 		 * the largest page size aligned.
1180 		 */
1181 		pgcnt = ahp->size - an_idx;
1182 	}
1183 
1184 	VM_STAT_ADD(anonvmstats.decrefpages[0]);
1185 
1186 	if (ap != NULL) {
1187 		ahmpages = APH_MUTEX(ap->an_vp, ap->an_off);
1188 		mutex_enter(ahmpages);
1189 		ASSERT((refcnt = ap->an_refcnt) != 0);
1190 		VM_STAT_ADD(anonvmstats.decrefpages[1]);
1191 		if (ap->an_refcnt == 1) {
1192 			VM_STAT_ADD(anonvmstats.decrefpages[2]);
1193 			ASSERT(!anon_share(ahp, an_idx, pgcnt));
1194 			mutex_exit(ahmpages);
1195 			ahmpages = NULL;
1196 		}
1197 	}
1198 
1199 	i = 0;
1200 	while (i < pgcnt) {
1201 		if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) {
1202 			ASSERT(refcnt == 1 && ahmpages == NULL);
1203 			i++;
1204 			continue;
1205 		}
1206 		ASSERT(ap->an_refcnt == refcnt);
1207 		ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1208 		ASSERT(ahmpages == NULL || ap->an_refcnt > 1);
1209 
1210 		if (ahmpages == NULL) {
1211 			swap_xlate(ap, &vp, &off);
1212 			pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1213 			if (pp == NULL || pp->p_szc == 0) {
1214 				VM_STAT_ADD(anonvmstats.decrefpages[3]);
1215 				ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1216 				(void) anon_set_ptr(ahp, an_idx + i, NULL,
1217 				    ANON_SLEEP);
1218 				mutex_enter(ahm);
1219 				ap->an_refcnt--;
1220 				ASSERT(ap->an_refcnt == 0);
1221 				anon_rmhash(ap);
1222 				if (ap->an_pvp)
1223 					swap_phys_free(ap->an_pvp, ap->an_poff,
1224 					    PAGESIZE);
1225 				mutex_exit(ahm);
1226 				if (pp == NULL) {
1227 					pp = page_lookup(vp, (u_offset_t)off,
1228 					    SE_EXCL);
1229 					ASSERT(pp == NULL || pp->p_szc == 0);
1230 				}
1231 				if (pp != NULL) {
1232 					VM_STAT_ADD(anonvmstats.decrefpages[4]);
1233 					/*LINTED*/
1234 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
1235 				}
1236 				kmem_cache_free(anon_cache, ap);
1237 				ANI_ADD(1);
1238 				i++;
1239 			} else {
1240 				pgcnt_t j;
1241 				pgcnt_t curpgcnt =
1242 				    page_get_pagecnt(pp->p_szc);
1243 				size_t ppasize = curpgcnt * sizeof (page_t *);
1244 				page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
1245 				int dispose = 0;
1246 
1247 				VM_STAT_ADD(anonvmstats.decrefpages[5]);
1248 
1249 				ASSERT(pp->p_szc <= szc);
1250 				ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt));
1251 				ASSERT(IS_P2ALIGNED(i, curpgcnt));
1252 				ASSERT(i + curpgcnt <= pgcnt);
1253 				ASSERT(!(page_pptonum(pp) & (curpgcnt - 1)));
1254 				ppa[0] = pp;
1255 				for (j = i + 1; j < i + curpgcnt; j++) {
1256 					ap = anon_get_ptr(ahp, an_idx + j);
1257 					ASSERT(ap != NULL &&
1258 					    ap->an_refcnt == 1);
1259 					swap_xlate(ap, &vp, &off);
1260 					pp = page_lookup(vp, (u_offset_t)off,
1261 					    SE_EXCL);
1262 					if (pp == NULL)
1263 						panic("anon_decref_pages: "
1264 						    "no page");
1265 
1266 					(void) hat_pageunload(pp,
1267 					    HAT_FORCE_PGUNLOAD);
1268 					ASSERT(pp->p_szc == ppa[0]->p_szc);
1269 					ASSERT(page_pptonum(pp) - 1 ==
1270 					    page_pptonum(ppa[j - i - 1]));
1271 					ppa[j - i] = pp;
1272 					if (ap->an_pvp != NULL &&
1273 					    !vn_matchopval(ap->an_pvp,
1274 					    VOPNAME_DISPOSE,
1275 					    (fs_generic_func_p)(uintptr_t)
1276 					    fs_dispose))
1277 						dispose = 1;
1278 				}
1279 				for (j = i; j < i + curpgcnt; j++) {
1280 					ap = anon_get_ptr(ahp, an_idx + j);
1281 					ASSERT(ap != NULL &&
1282 					    ap->an_refcnt == 1);
1283 					ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1284 					(void) anon_set_ptr(ahp, an_idx + j,
1285 					    NULL, ANON_SLEEP);
1286 					mutex_enter(ahm);
1287 					ap->an_refcnt--;
1288 					ASSERT(ap->an_refcnt == 0);
1289 					anon_rmhash(ap);
1290 					if (ap->an_pvp)
1291 						swap_phys_free(ap->an_pvp,
1292 						    ap->an_poff, PAGESIZE);
1293 					mutex_exit(ahm);
1294 					kmem_cache_free(anon_cache, ap);
1295 					ANI_ADD(1);
1296 				}
1297 				if (!dispose) {
1298 					VM_STAT_ADD(anonvmstats.decrefpages[6]);
1299 					page_destroy_pages(ppa[0]);
1300 				} else {
1301 					VM_STAT_ADD(anonvmstats.decrefpages[7]);
1302 					for (j = 0; j < curpgcnt; j++) {
1303 						ASSERT(PAGE_EXCL(ppa[j]));
1304 						ppa[j]->p_szc = 0;
1305 					}
1306 					for (j = 0; j < curpgcnt; j++) {
1307 						ASSERT(!hat_page_is_mapped(
1308 						    ppa[j]));
1309 						/*LINTED*/
1310 						VN_DISPOSE(ppa[j], B_INVAL, 0,
1311 						    kcred);
1312 					}
1313 				}
1314 				kmem_free(ppa, ppasize);
1315 				i += curpgcnt;
1316 			}
1317 		} else {
1318 			VM_STAT_ADD(anonvmstats.decrefpages[8]);
1319 			(void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP);
1320 			ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1321 			mutex_enter(ahm);
1322 			ap->an_refcnt--;
1323 			mutex_exit(ahm);
1324 			i++;
1325 		}
1326 	}
1327 
1328 	if (ahmpages != NULL) {
1329 		mutex_exit(ahmpages);
1330 	}
1331 }
1332 
1333 /*
1334  * Duplicate references to size bytes worth of anon pages.
1335  * Used when duplicating a segment that contains private anon pages.
1336  * This code assumes that procedure calling this one has already used
1337  * hat_chgprot() to disable write access to the range of addresses that
1338  * that *old actually refers to.
1339  */
1340 void
1341 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new,
1342     ulong_t new_idx, size_t size)
1343 {
1344 	spgcnt_t npages;
1345 	kmutex_t *ahm;
1346 	struct anon *ap;
1347 	ulong_t off;
1348 	ulong_t index;
1349 
1350 	npages = btopr(size);
1351 	while (npages > 0) {
1352 		index = old_idx;
1353 		if ((ap = anon_get_next_ptr(old, &index)) == NULL)
1354 			break;
1355 
1356 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1357 		off = index - old_idx;
1358 		npages -= off;
1359 		if (npages <= 0)
1360 			break;
1361 
1362 		(void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP);
1363 		ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1364 
1365 		mutex_enter(ahm);
1366 		ap->an_refcnt++;
1367 		mutex_exit(ahm);
1368 
1369 		off++;
1370 		new_idx += off;
1371 		old_idx += off;
1372 		npages--;
1373 	}
1374 }
1375 
1376 /*
1377  * Just like anon_dup but also guarantees there are no holes (unallocated anon
1378  * slots) within any large page region. That means if a large page region is
1379  * empty in the old array it will skip it. If there are 1 or more valid slots
1380  * in the large page region of the old array it will make sure to fill in any
1381  * unallocated ones and also copy them to the new array. If noalloc is 1 large
1382  * page region should either have no valid anon slots or all slots should be
1383  * valid.
1384  */
1385 void
1386 anon_dup_fill_holes(
1387 	struct anon_hdr *old,
1388 	ulong_t old_idx,
1389 	struct anon_hdr *new,
1390 	ulong_t new_idx,
1391 	size_t size,
1392 	uint_t szc,
1393 	int noalloc)
1394 {
1395 	struct anon	*ap;
1396 	spgcnt_t	npages;
1397 	kmutex_t	*ahm, *ahmpages = NULL;
1398 	pgcnt_t		pgcnt, i;
1399 	ulong_t		index, off;
1400 #ifdef DEBUG
1401 	int		refcnt;
1402 #endif
1403 
1404 	ASSERT(szc != 0);
1405 	pgcnt = page_get_pagecnt(szc);
1406 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1407 	npages = btopr(size);
1408 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1409 	ASSERT(IS_P2ALIGNED(old_idx, pgcnt));
1410 
1411 	VM_STAT_ADD(anonvmstats.dupfillholes[0]);
1412 
1413 	while (npages > 0) {
1414 		index = old_idx;
1415 
1416 		/*
1417 		 * Find the next valid slot.
1418 		 */
1419 		if (anon_get_next_ptr(old, &index) == NULL)
1420 			break;
1421 
1422 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1423 		/*
1424 		 * Now backup index to the beginning of the
1425 		 * current large page region of the old array.
1426 		 */
1427 		index = P2ALIGN(index, pgcnt);
1428 		off = index - old_idx;
1429 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1430 		npages -= off;
1431 		if (npages <= 0)
1432 			break;
1433 
1434 		/*
1435 		 * Fill and copy a large page regions worth
1436 		 * of anon slots.
1437 		 */
1438 		for (i = 0; i < pgcnt; i++) {
1439 			if ((ap = anon_get_ptr(old, index + i)) == NULL) {
1440 				if (noalloc) {
1441 					panic("anon_dup_fill_holes: "
1442 					    "empty anon slot\n");
1443 				}
1444 				VM_STAT_ADD(anonvmstats.dupfillholes[1]);
1445 				ap = anon_alloc(NULL, 0);
1446 				(void) anon_set_ptr(old, index + i, ap,
1447 				    ANON_SLEEP);
1448 			} else if (i == 0) {
1449 				/*
1450 				 * make the increment of all refcnts of all
1451 				 * anon slots of a large page appear atomic by
1452 				 * getting an anonpages_hash_lock for the
1453 				 * first anon slot of a large page.
1454 				 */
1455 				VM_STAT_ADD(anonvmstats.dupfillholes[2]);
1456 
1457 				ahmpages = APH_MUTEX(ap->an_vp, ap->an_off);
1458 				mutex_enter(ahmpages);
1459 				/*LINTED*/
1460 				ASSERT(refcnt = ap->an_refcnt);
1461 
1462 				VM_STAT_COND_ADD(ap->an_refcnt > 1,
1463 				    anonvmstats.dupfillholes[3]);
1464 			}
1465 			(void) anon_set_ptr(new, new_idx + off + i, ap,
1466 			    ANON_SLEEP);
1467 			ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1468 			mutex_enter(ahm);
1469 			ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1470 			ASSERT(i == 0 || ahmpages == NULL ||
1471 			    refcnt == ap->an_refcnt);
1472 			ap->an_refcnt++;
1473 			mutex_exit(ahm);
1474 		}
1475 		if (ahmpages != NULL) {
1476 			mutex_exit(ahmpages);
1477 			ahmpages = NULL;
1478 		}
1479 		off += pgcnt;
1480 		new_idx += off;
1481 		old_idx += off;
1482 		npages -= pgcnt;
1483 	}
1484 }
1485 
1486 /*
1487  * Used when a segment with a vnode changes szc. similarly to
1488  * anon_dup_fill_holes() makes sure each large page region either has no anon
1489  * slots or all of them. but new slots are created by COWing the file
1490  * pages. on entrance no anon slots should be shared.
1491  */
1492 int
1493 anon_fill_cow_holes(
1494 	struct seg *seg,
1495 	caddr_t addr,
1496 	struct anon_hdr *ahp,
1497 	ulong_t an_idx,
1498 	struct vnode *vp,
1499 	u_offset_t vp_off,
1500 	size_t size,
1501 	uint_t szc,
1502 	uint_t prot,
1503 	struct vpage vpage[],
1504 	struct cred *cred)
1505 {
1506 	struct anon	*ap;
1507 	spgcnt_t	npages;
1508 	pgcnt_t		pgcnt, i;
1509 	ulong_t		index, off;
1510 	int		err = 0;
1511 	int		pageflags = 0;
1512 
1513 	ASSERT(szc != 0);
1514 	pgcnt = page_get_pagecnt(szc);
1515 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1516 	npages = btopr(size);
1517 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1518 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1519 
1520 	while (npages > 0) {
1521 		index = an_idx;
1522 
1523 		/*
1524 		 * Find the next valid slot.
1525 		 */
1526 		if (anon_get_next_ptr(ahp, &index) == NULL) {
1527 			break;
1528 		}
1529 
1530 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1531 		/*
1532 		 * Now backup index to the beginning of the
1533 		 * current large page region of the anon array.
1534 		 */
1535 		index = P2ALIGN(index, pgcnt);
1536 		off = index - an_idx;
1537 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1538 		npages -= off;
1539 		if (npages <= 0)
1540 			break;
1541 		an_idx += off;
1542 		vp_off += ptob(off);
1543 		addr += ptob(off);
1544 		if (vpage != NULL) {
1545 			vpage += off;
1546 		}
1547 
1548 		for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) {
1549 			if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) {
1550 				page_t *pl[1 + 1];
1551 				page_t *pp;
1552 
1553 				err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL,
1554 				    pl, PAGESIZE, seg, addr, S_READ, cred,
1555 				    NULL);
1556 				if (err) {
1557 					break;
1558 				}
1559 				if (vpage != NULL) {
1560 					prot = VPP_PROT(vpage);
1561 					pageflags = VPP_ISPPLOCK(vpage) ?
1562 					    LOCK_PAGE : 0;
1563 				}
1564 				pp = anon_private(&ap, seg, addr, prot, pl[0],
1565 				    pageflags, cred);
1566 				if (pp == NULL) {
1567 					err = ENOMEM;
1568 					break;
1569 				}
1570 				(void) anon_set_ptr(ahp, an_idx, ap,
1571 				    ANON_SLEEP);
1572 				page_unlock(pp);
1573 			}
1574 			ASSERT(ap->an_refcnt == 1);
1575 			addr += PAGESIZE;
1576 			if (vpage != NULL) {
1577 				vpage++;
1578 			}
1579 		}
1580 		npages -= pgcnt;
1581 	}
1582 
1583 	return (err);
1584 }
1585 
1586 /*
1587  * Free a group of "size" anon pages, size in bytes,
1588  * and clear out the pointers to the anon entries.
1589  */
1590 void
1591 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size)
1592 {
1593 	spgcnt_t npages;
1594 	struct anon *ap;
1595 	ulong_t old;
1596 
1597 	npages = btopr(size);
1598 
1599 	while (npages > 0) {
1600 		old = index;
1601 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1602 			break;
1603 
1604 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1605 		npages -= index - old;
1606 		if (npages <= 0)
1607 			break;
1608 
1609 		(void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP);
1610 		anon_decref(ap);
1611 		/*
1612 		 * Bump index and decrement page count
1613 		 */
1614 		index++;
1615 		npages--;
1616 	}
1617 }
1618 
1619 void
1620 anon_free_pages(
1621 	struct anon_hdr *ahp,
1622 	ulong_t an_idx,
1623 	size_t size,
1624 	uint_t szc)
1625 {
1626 	spgcnt_t	npages;
1627 	pgcnt_t		pgcnt;
1628 	ulong_t		index, off;
1629 
1630 	ASSERT(szc != 0);
1631 	pgcnt = page_get_pagecnt(szc);
1632 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1633 	npages = btopr(size);
1634 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1635 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1636 	ASSERT(an_idx < ahp->size);
1637 
1638 	VM_STAT_ADD(anonvmstats.freepages[0]);
1639 
1640 	while (npages > 0) {
1641 		index = an_idx;
1642 
1643 		/*
1644 		 * Find the next valid slot.
1645 		 */
1646 		if (anon_get_next_ptr(ahp, &index) == NULL)
1647 			break;
1648 
1649 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1650 		/*
1651 		 * Now backup index to the beginning of the
1652 		 * current large page region of the old array.
1653 		 */
1654 		index = P2ALIGN(index, pgcnt);
1655 		off = index - an_idx;
1656 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1657 		npages -= off;
1658 		if (npages <= 0)
1659 			break;
1660 
1661 		anon_decref_pages(ahp, index, szc);
1662 
1663 		off += pgcnt;
1664 		an_idx += off;
1665 		npages -= pgcnt;
1666 	}
1667 }
1668 
1669 /*
1670  * Make anonymous pages discardable
1671  */
1672 int
1673 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size,
1674     uint_t behav, pgcnt_t *purged)
1675 {
1676 	spgcnt_t npages = btopr(size);
1677 	struct anon *ap;
1678 	struct vnode *vp;
1679 	anoff_t off;
1680 	page_t *pp, *root_pp;
1681 	kmutex_t *ahm;
1682 	pgcnt_t pgcnt, npurged = 0;
1683 	ulong_t old_idx, idx, i;
1684 	struct anon_hdr *ahp = amp->ahp;
1685 	anon_sync_obj_t cookie;
1686 	int err = 0;
1687 
1688 	VERIFY(behav == MADV_FREE || behav == MADV_PURGE);
1689 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
1690 	pgcnt = 1;
1691 	for (; npages > 0; index = (pgcnt == 1) ? index + 1 :
1692 	    P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) {
1693 
1694 		/*
1695 		 * get anon pointer and index for the first valid entry
1696 		 * in the anon list, starting from "index"
1697 		 */
1698 		old_idx = index;
1699 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1700 			break;
1701 
1702 		/*
1703 		 * decrement npages by number of NULL anon slots we skipped
1704 		 */
1705 		npages -= index - old_idx;
1706 		if (npages <= 0)
1707 			break;
1708 
1709 		anon_array_enter(amp, index, &cookie);
1710 		ap = anon_get_ptr(ahp, index);
1711 		ASSERT(ap != NULL);
1712 
1713 		/*
1714 		 * Get anonymous page and try to lock it SE_EXCL;
1715 		 * if we couldn't grab the lock we skip to next page.
1716 		 */
1717 		swap_xlate(ap, &vp, &off);
1718 		pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL);
1719 		if (pp == NULL) {
1720 			segadvstat.MADV_FREE_miss.value.ul++;
1721 			pgcnt = 1;
1722 			anon_array_exit(&cookie);
1723 			continue;
1724 		}
1725 		pgcnt = page_get_pagecnt(pp->p_szc);
1726 
1727 		/*
1728 		 * we cannot free a page which is permanently locked.
1729 		 * The page_struct_lock need not be acquired to examine
1730 		 * these fields since the page has an "exclusive" lock.
1731 		 */
1732 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1733 			page_unlock(pp);
1734 			segadvstat.MADV_FREE_miss.value.ul++;
1735 			anon_array_exit(&cookie);
1736 			err = EBUSY;
1737 			continue;
1738 		}
1739 
1740 		ahm = AH_MUTEX(vp, off);
1741 		mutex_enter(ahm);
1742 		ASSERT(ap->an_refcnt != 0);
1743 		/*
1744 		 * skip this one if copy-on-write is not yet broken.
1745 		 */
1746 		if (ap->an_refcnt > 1) {
1747 			mutex_exit(ahm);
1748 			page_unlock(pp);
1749 			segadvstat.MADV_FREE_miss.value.ul++;
1750 			anon_array_exit(&cookie);
1751 			continue;
1752 		}
1753 
1754 		if (behav == MADV_PURGE && pp->p_szc != 0) {
1755 			/*
1756 			 * If we're purging and we have a large page, simplify
1757 			 * things a bit by demoting ourselves into the base
1758 			 * page case.
1759 			 */
1760 			(void) page_try_demote_pages(pp);
1761 		}
1762 
1763 		if (pp->p_szc == 0) {
1764 			pgcnt = 1;
1765 
1766 			/*
1767 			 * free swap slot;
1768 			 */
1769 			if (ap->an_pvp) {
1770 				swap_phys_free(ap->an_pvp, ap->an_poff,
1771 				    PAGESIZE);
1772 				ap->an_pvp = NULL;
1773 				ap->an_poff = 0;
1774 			}
1775 
1776 			if (behav == MADV_PURGE) {
1777 				/*
1778 				 * If we're purging (instead of merely freeing),
1779 				 * rip out this anon structure entirely to
1780 				 * assure that any subsequent fault pulls from
1781 				 * the backing vnode (if any).
1782 				 */
1783 				if (--ap->an_refcnt == 0)
1784 					anon_rmhash(ap);
1785 
1786 				mutex_exit(ahm);
1787 				(void) anon_set_ptr(ahp, index,
1788 				    NULL, ANON_SLEEP);
1789 				npurged++;
1790 				ANI_ADD(1);
1791 				kmem_cache_free(anon_cache, ap);
1792 			} else {
1793 				mutex_exit(ahm);
1794 			}
1795 
1796 			segadvstat.MADV_FREE_hit.value.ul++;
1797 
1798 			/*
1799 			 * while we are at it, unload all the translations
1800 			 * and attempt to free the page.
1801 			 */
1802 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1803 			/*LINTED: constant in conditional context */
1804 			VN_DISPOSE(pp,
1805 			    behav == MADV_FREE ? B_FREE : B_INVAL, 0, kcred);
1806 
1807 			anon_array_exit(&cookie);
1808 			continue;
1809 		}
1810 
1811 		pgcnt = page_get_pagecnt(pp->p_szc);
1812 		if (!IS_P2ALIGNED(index, pgcnt) || npages < pgcnt) {
1813 			if (!page_try_demote_pages(pp)) {
1814 				mutex_exit(ahm);
1815 				page_unlock(pp);
1816 				segadvstat.MADV_FREE_miss.value.ul++;
1817 				anon_array_exit(&cookie);
1818 				err = EBUSY;
1819 				continue;
1820 			} else {
1821 				pgcnt = 1;
1822 				if (ap->an_pvp) {
1823 					swap_phys_free(ap->an_pvp,
1824 					    ap->an_poff, PAGESIZE);
1825 					ap->an_pvp = NULL;
1826 					ap->an_poff = 0;
1827 				}
1828 				mutex_exit(ahm);
1829 				(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1830 				/*LINTED*/
1831 				VN_DISPOSE(pp, B_FREE, 0, kcred);
1832 				segadvstat.MADV_FREE_hit.value.ul++;
1833 				anon_array_exit(&cookie);
1834 				continue;
1835 			}
1836 		}
1837 		mutex_exit(ahm);
1838 		root_pp = pp;
1839 
1840 		/*
1841 		 * try to lock remaining pages
1842 		 */
1843 		for (idx = 1; idx < pgcnt; idx++) {
1844 			pp++;
1845 			if (!page_trylock(pp, SE_EXCL))
1846 				break;
1847 			if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1848 				page_unlock(pp);
1849 				break;
1850 			}
1851 		}
1852 
1853 		if (idx == pgcnt) {
1854 			for (i = 0; i < pgcnt; i++) {
1855 				ap = anon_get_ptr(ahp, index + i);
1856 				if (ap == NULL)
1857 					break;
1858 				swap_xlate(ap, &vp, &off);
1859 				ahm = AH_MUTEX(vp, off);
1860 				mutex_enter(ahm);
1861 				ASSERT(ap->an_refcnt != 0);
1862 
1863 				/*
1864 				 * skip this one if copy-on-write
1865 				 * is not yet broken.
1866 				 */
1867 				if (ap->an_refcnt > 1) {
1868 					mutex_exit(ahm);
1869 					goto skiplp;
1870 				}
1871 				if (ap->an_pvp) {
1872 					swap_phys_free(ap->an_pvp,
1873 					    ap->an_poff, PAGESIZE);
1874 					ap->an_pvp = NULL;
1875 					ap->an_poff = 0;
1876 				}
1877 				mutex_exit(ahm);
1878 			}
1879 			page_destroy_pages(root_pp);
1880 			segadvstat.MADV_FREE_hit.value.ul += pgcnt;
1881 			anon_array_exit(&cookie);
1882 			continue;
1883 		}
1884 skiplp:
1885 		segadvstat.MADV_FREE_miss.value.ul += pgcnt;
1886 		for (i = 0, pp = root_pp; i < idx; pp++, i++)
1887 			page_unlock(pp);
1888 		anon_array_exit(&cookie);
1889 	}
1890 
1891 	if (purged != NULL)
1892 		*purged = npurged;
1893 
1894 	return (err);
1895 }
1896 
1897 /*
1898  * Return the kept page(s) and protections back to the segment driver.
1899  */
1900 int
1901 anon_getpage(
1902 	struct anon **app,
1903 	uint_t *protp,
1904 	page_t *pl[],
1905 	size_t plsz,
1906 	struct seg *seg,
1907 	caddr_t addr,
1908 	enum seg_rw rw,
1909 	struct cred *cred)
1910 {
1911 	page_t *pp;
1912 	struct anon *ap = *app;
1913 	struct vnode *vp;
1914 	anoff_t off;
1915 	int err;
1916 	kmutex_t *ahm;
1917 
1918 	swap_xlate(ap, &vp, &off);
1919 
1920 	/*
1921 	 * Lookup the page. If page is being paged in,
1922 	 * wait for it to finish as we must return a list of
1923 	 * pages since this routine acts like the VOP_GETPAGE
1924 	 * routine does.
1925 	 */
1926 	if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) {
1927 		ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1928 		mutex_enter(ahm);
1929 		if (ap->an_refcnt == 1)
1930 			*protp = PROT_ALL;
1931 		else
1932 			*protp = PROT_ALL & ~PROT_WRITE;
1933 		mutex_exit(ahm);
1934 		pl[0] = pp;
1935 		pl[1] = NULL;
1936 		return (0);
1937 	}
1938 
1939 	/*
1940 	 * Simply treat it as a vnode fault on the anon vp.
1941 	 */
1942 
1943 	TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE,
1944 	    "anon_getpage:seg %x addr %x vp %x",
1945 	    seg, addr, vp);
1946 
1947 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz,
1948 	    seg, addr, rw, cred, NULL);
1949 
1950 	if (err == 0 && pl != NULL) {
1951 		ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1952 		mutex_enter(ahm);
1953 		if (ap->an_refcnt != 1)
1954 			*protp &= ~PROT_WRITE;	/* make read-only */
1955 		mutex_exit(ahm);
1956 	}
1957 	return (err);
1958 }
1959 
1960 /*
1961  * Creates or returns kept pages to the segment driver.  returns -1 if a large
1962  * page cannot be allocated. returns -2 if some other process has allocated a
1963  * larger page.
1964  *
1965  * For cowfault it will allocate any size pages to fill the requested area to
1966  * avoid partially overwriting anon slots (i.e. sharing only some of the anon
1967  * slots within a large page with other processes). This policy greatly
1968  * simplifies large page freeing (which is only freed when all anon slot
1969  * refcnts are 0).
1970  */
1971 int
1972 anon_map_getpages(
1973 	struct anon_map *amp,
1974 	ulong_t	start_idx,
1975 	uint_t	szc,
1976 	struct seg *seg,
1977 	caddr_t	addr,
1978 	uint_t prot,
1979 	uint_t *protp,
1980 	page_t	*ppa[],
1981 	uint_t	*ppa_szc,
1982 	struct vpage vpage[],
1983 	enum seg_rw rw,
1984 	int brkcow,
1985 	int anypgsz,
1986 	int pgflags,
1987 	struct cred *cred)
1988 {
1989 	pgcnt_t		pgcnt;
1990 	struct anon	*ap;
1991 	struct vnode	*vp;
1992 	anoff_t		off;
1993 	page_t		*pp, *pl[2], *conpp = NULL;
1994 	caddr_t		vaddr;
1995 	ulong_t		pg_idx, an_idx, i;
1996 	spgcnt_t	nreloc = 0;
1997 	int		prealloc = 1;
1998 	int		err, slotcreate;
1999 	uint_t		vpprot;
2000 	int		upsize = (szc < seg->s_szc);
2001 
2002 #if !defined(__i386) && !defined(__amd64)
2003 	ASSERT(seg->s_szc != 0);
2004 #endif
2005 	ASSERT(szc <= seg->s_szc);
2006 	ASSERT(ppa_szc != NULL);
2007 	ASSERT(rw != S_CREATE);
2008 
2009 	*protp = PROT_ALL;
2010 
2011 	VM_STAT_ADD(anonvmstats.getpages[0]);
2012 
2013 	if (szc == 0) {
2014 		VM_STAT_ADD(anonvmstats.getpages[1]);
2015 		if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) {
2016 			err = anon_getpage(&ap, protp, pl, PAGESIZE, seg,
2017 			    addr, rw, cred);
2018 			if (err)
2019 				return (err);
2020 			ppa[0] = pl[0];
2021 			if (brkcow == 0 || (*protp & PROT_WRITE)) {
2022 				VM_STAT_ADD(anonvmstats.getpages[2]);
2023 				if (ppa[0]->p_szc != 0 && upsize) {
2024 					VM_STAT_ADD(anonvmstats.getpages[3]);
2025 					*ppa_szc = MIN(ppa[0]->p_szc,
2026 					    seg->s_szc);
2027 					page_unlock(ppa[0]);
2028 					return (-2);
2029 				}
2030 				return (0);
2031 			}
2032 			panic("anon_map_getpages: cowfault for szc 0");
2033 		} else {
2034 			VM_STAT_ADD(anonvmstats.getpages[4]);
2035 			ppa[0] = anon_zero(seg, addr, &ap, cred);
2036 			if (ppa[0] == NULL)
2037 				return (ENOMEM);
2038 			(void) anon_set_ptr(amp->ahp, start_idx, ap,
2039 			    ANON_SLEEP);
2040 			return (0);
2041 		}
2042 	}
2043 
2044 	pgcnt = page_get_pagecnt(szc);
2045 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2046 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2047 
2048 	/*
2049 	 * First we check for the case that the requtested large
2050 	 * page or larger page already exists in the system.
2051 	 * Actually we only check if the first constituent page
2052 	 * exists and only preallocate if it's not found.
2053 	 */
2054 	ap = anon_get_ptr(amp->ahp, start_idx);
2055 	if (ap) {
2056 		uint_t pszc;
2057 		swap_xlate(ap, &vp, &off);
2058 		if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) {
2059 			if (pszc > szc && upsize) {
2060 				*ppa_szc = MIN(pszc, seg->s_szc);
2061 				return (-2);
2062 			}
2063 			if (pszc >= szc) {
2064 				prealloc = 0;
2065 			}
2066 		}
2067 	}
2068 
2069 	VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]);
2070 	VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]);
2071 
2072 top:
2073 	/*
2074 	 * If a smaller page or no page at all was found,
2075 	 * grab a large page off the freelist.
2076 	 */
2077 	if (prealloc) {
2078 		ASSERT(conpp == NULL);
2079 		if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa,
2080 		    szc, 0, pgflags) != 0) {
2081 			VM_STAT_ADD(anonvmstats.getpages[7]);
2082 			if (brkcow == 0 || szc < seg->s_szc ||
2083 			    !anon_szcshare(amp->ahp, start_idx)) {
2084 				/*
2085 				 * If the refcnt's of all anon slots are <= 1
2086 				 * they can't increase since we are holding
2087 				 * the address space's lock. So segvn can
2088 				 * safely decrease szc without risking to
2089 				 * generate a cow fault for the region smaller
2090 				 * than the segment's largest page size.
2091 				 */
2092 				VM_STAT_ADD(anonvmstats.getpages[8]);
2093 				return (-1);
2094 			}
2095 		docow:
2096 			/*
2097 			 * This is a cow fault. Copy away the entire 1 large
2098 			 * page region of this segment.
2099 			 */
2100 			if (szc != seg->s_szc)
2101 				panic("anon_map_getpages: cowfault for szc %d",
2102 				    szc);
2103 			vaddr = addr;
2104 			for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
2105 			    pg_idx++, an_idx++, vaddr += PAGESIZE) {
2106 				if ((ap = anon_get_ptr(amp->ahp, an_idx)) !=
2107 				    NULL) {
2108 					err = anon_getpage(&ap, &vpprot, pl,
2109 					    PAGESIZE, seg, vaddr, rw, cred);
2110 					if (err) {
2111 						for (i = 0; i < pg_idx; i++) {
2112 							if ((pp = ppa[i]) !=
2113 							    NULL)
2114 								page_unlock(pp);
2115 						}
2116 						return (err);
2117 					}
2118 					ppa[pg_idx] = pl[0];
2119 				} else {
2120 					/*
2121 					 * Since this is a cowfault we know
2122 					 * that this address space has a
2123 					 * parent or children which means
2124 					 * anon_dup_fill_holes() has initialized
2125 					 * all anon slots within a large page
2126 					 * region that had at least one anon
2127 					 * slot at the time of fork().
2128 					 */
2129 					panic("anon_map_getpages: "
2130 					    "cowfault but anon slot is empty");
2131 				}
2132 			}
2133 			VM_STAT_ADD(anonvmstats.getpages[9]);
2134 			*protp = PROT_ALL;
2135 			return (anon_map_privatepages(amp, start_idx, szc, seg,
2136 			    addr, prot, ppa, vpage, anypgsz, pgflags, cred));
2137 		}
2138 	}
2139 
2140 	VM_STAT_ADD(anonvmstats.getpages[10]);
2141 
2142 	an_idx = start_idx;
2143 	pg_idx = 0;
2144 	vaddr = addr;
2145 	while (pg_idx < pgcnt) {
2146 		slotcreate = 0;
2147 		if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) {
2148 			VM_STAT_ADD(anonvmstats.getpages[11]);
2149 			/*
2150 			 * For us to have decided not to preallocate
2151 			 * would have meant that a large page
2152 			 * was found. Which also means that all of the
2153 			 * anon slots for that page would have been
2154 			 * already created for us.
2155 			 */
2156 			if (prealloc == 0)
2157 				panic("anon_map_getpages: prealloc = 0");
2158 
2159 			slotcreate = 1;
2160 			ap = anon_alloc(NULL, 0);
2161 		}
2162 		swap_xlate(ap, &vp, &off);
2163 
2164 		/*
2165 		 * Now setup our preallocated page to pass down
2166 		 * to swap_getpage().
2167 		 */
2168 		if (prealloc) {
2169 			ASSERT(ppa[pg_idx]->p_szc == szc);
2170 			conpp = ppa[pg_idx];
2171 		}
2172 		ASSERT(prealloc || conpp == NULL);
2173 
2174 		/*
2175 		 * If we just created this anon slot then call
2176 		 * with S_CREATE to prevent doing IO on the page.
2177 		 * Similar to the anon_zero case.
2178 		 */
2179 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE,
2180 		    NULL, pl, PAGESIZE, conpp, ppa_szc, &nreloc, seg, vaddr,
2181 		    slotcreate == 1 ? S_CREATE : rw, cred);
2182 
2183 		if (err) {
2184 			ASSERT(err != -2 || upsize);
2185 			VM_STAT_ADD(anonvmstats.getpages[12]);
2186 			ASSERT(slotcreate == 0);
2187 			goto io_err;
2188 		}
2189 
2190 		pp = pl[0];
2191 
2192 		if (pp->p_szc < szc || (pp->p_szc > szc && upsize)) {
2193 			VM_STAT_ADD(anonvmstats.getpages[13]);
2194 			ASSERT(slotcreate == 0);
2195 			ASSERT(prealloc == 0);
2196 			ASSERT(pg_idx == 0);
2197 			if (pp->p_szc > szc) {
2198 				ASSERT(upsize);
2199 				*ppa_szc = MIN(pp->p_szc, seg->s_szc);
2200 				page_unlock(pp);
2201 				VM_STAT_ADD(anonvmstats.getpages[14]);
2202 				return (-2);
2203 			}
2204 			page_unlock(pp);
2205 			prealloc = 1;
2206 			goto top;
2207 		}
2208 
2209 		/*
2210 		 * If we decided to preallocate but VOP_GETPAGE
2211 		 * found a page in the system that satisfies our
2212 		 * request then free up our preallocated large page
2213 		 * and continue looping accross the existing large
2214 		 * page via VOP_GETPAGE.
2215 		 */
2216 		if (prealloc && pp != ppa[pg_idx]) {
2217 			VM_STAT_ADD(anonvmstats.getpages[15]);
2218 			ASSERT(slotcreate == 0);
2219 			ASSERT(pg_idx == 0);
2220 			conpp = NULL;
2221 			prealloc = 0;
2222 			page_free_pages(ppa[0]);
2223 		}
2224 
2225 		if (prealloc && nreloc > 1) {
2226 			/*
2227 			 * we have relocated out of a smaller large page.
2228 			 * skip npgs - 1 iterations and continue which will
2229 			 * increment by one the loop indices.
2230 			 */
2231 			spgcnt_t npgs = nreloc;
2232 
2233 			VM_STAT_ADD(anonvmstats.getpages[16]);
2234 
2235 			ASSERT(pp == ppa[pg_idx]);
2236 			ASSERT(slotcreate == 0);
2237 			ASSERT(pg_idx + npgs <= pgcnt);
2238 			if ((*protp & PROT_WRITE) &&
2239 			    anon_share(amp->ahp, an_idx, npgs)) {
2240 				*protp &= ~PROT_WRITE;
2241 			}
2242 			pg_idx += npgs;
2243 			an_idx += npgs;
2244 			vaddr += PAGESIZE * npgs;
2245 			continue;
2246 		}
2247 
2248 		VM_STAT_ADD(anonvmstats.getpages[17]);
2249 
2250 		/*
2251 		 * Anon_zero case.
2252 		 */
2253 		if (slotcreate) {
2254 			ASSERT(prealloc);
2255 			pagezero(pp, 0, PAGESIZE);
2256 			CPU_STATS_ADD_K(vm, zfod, 1);
2257 			hat_setrefmod(pp);
2258 		}
2259 
2260 		ASSERT(prealloc == 0 || ppa[pg_idx] == pp);
2261 		ASSERT(prealloc != 0 || PAGE_SHARED(pp));
2262 		ASSERT(prealloc == 0 || PAGE_EXCL(pp));
2263 
2264 		if (pg_idx > 0 &&
2265 		    ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) ||
2266 		    (pp->p_szc != ppa[pg_idx - 1]->p_szc))) {
2267 			panic("anon_map_getpages: unexpected page");
2268 		} else if (pg_idx == 0 && (page_pptonum(pp) & (pgcnt - 1))) {
2269 			panic("anon_map_getpages: unaligned page");
2270 		}
2271 
2272 		if (prealloc == 0) {
2273 			ppa[pg_idx] = pp;
2274 		}
2275 
2276 		if (ap->an_refcnt > 1) {
2277 			VM_STAT_ADD(anonvmstats.getpages[18]);
2278 			*protp &= ~PROT_WRITE;
2279 		}
2280 
2281 		/*
2282 		 * If this is a new anon slot then initialize
2283 		 * the anon array entry.
2284 		 */
2285 		if (slotcreate) {
2286 			(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2287 		}
2288 		pg_idx++;
2289 		an_idx++;
2290 		vaddr += PAGESIZE;
2291 	}
2292 
2293 	/*
2294 	 * Since preallocated pages come off the freelist
2295 	 * they are locked SE_EXCL. Simply downgrade and return.
2296 	 */
2297 	if (prealloc) {
2298 		VM_STAT_ADD(anonvmstats.getpages[19]);
2299 		conpp = NULL;
2300 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2301 			page_downgrade(ppa[pg_idx]);
2302 		}
2303 	}
2304 	ASSERT(conpp == NULL);
2305 
2306 	if (brkcow == 0 || (*protp & PROT_WRITE)) {
2307 		VM_STAT_ADD(anonvmstats.getpages[20]);
2308 		return (0);
2309 	}
2310 
2311 	if (szc < seg->s_szc)
2312 		panic("anon_map_getpages: cowfault for szc %d", szc);
2313 
2314 	VM_STAT_ADD(anonvmstats.getpages[21]);
2315 
2316 	*protp = PROT_ALL;
2317 	return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot,
2318 	    ppa, vpage, anypgsz, pgflags, cred));
2319 io_err:
2320 	/*
2321 	 * We got an IO error somewhere in our large page.
2322 	 * If we were using a preallocated page then just demote
2323 	 * all the constituent pages that we've succeeded with sofar
2324 	 * to PAGESIZE pages and leave them in the system
2325 	 * unlocked.
2326 	 */
2327 
2328 	ASSERT(err != -2 || ((pg_idx == 0) && upsize));
2329 
2330 	VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]);
2331 	VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]);
2332 	VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]);
2333 
2334 	if (prealloc) {
2335 		conpp = NULL;
2336 		if (pg_idx > 0) {
2337 			VM_STAT_ADD(anonvmstats.getpages[25]);
2338 			for (i = 0; i < pgcnt; i++) {
2339 				pp = ppa[i];
2340 				ASSERT(PAGE_EXCL(pp));
2341 				ASSERT(pp->p_szc == szc);
2342 				pp->p_szc = 0;
2343 			}
2344 			for (i = 0; i < pg_idx; i++) {
2345 				ASSERT(!hat_page_is_mapped(ppa[i]));
2346 				page_unlock(ppa[i]);
2347 			}
2348 			/*
2349 			 * Now free up the remaining unused constituent
2350 			 * pages.
2351 			 */
2352 			while (pg_idx < pgcnt) {
2353 				ASSERT(!hat_page_is_mapped(ppa[pg_idx]));
2354 				page_free(ppa[pg_idx], 0);
2355 				pg_idx++;
2356 			}
2357 		} else {
2358 			VM_STAT_ADD(anonvmstats.getpages[26]);
2359 			page_free_pages(ppa[0]);
2360 		}
2361 	} else {
2362 		VM_STAT_ADD(anonvmstats.getpages[27]);
2363 		ASSERT(err > 0);
2364 		for (i = 0; i < pg_idx; i++)
2365 			page_unlock(ppa[i]);
2366 	}
2367 	ASSERT(conpp == NULL);
2368 	if (err != -1)
2369 		return (err);
2370 	/*
2371 	 * we are here because we failed to relocate.
2372 	 */
2373 	ASSERT(prealloc);
2374 	if (brkcow == 0 || szc < seg->s_szc ||
2375 	    !anon_szcshare(amp->ahp, start_idx)) {
2376 		VM_STAT_ADD(anonvmstats.getpages[28]);
2377 		return (-1);
2378 	}
2379 	VM_STAT_ADD(anonvmstats.getpages[29]);
2380 	goto docow;
2381 }
2382 
2383 
2384 /*
2385  * Turn a reference to an object or shared anon page
2386  * into a private page with a copy of the data from the
2387  * original page which is always locked by the caller.
2388  * This routine unloads the translation and unlocks the
2389  * original page, if it isn't being stolen, before returning
2390  * to the caller.
2391  *
2392  * NOTE:  The original anon slot is not freed by this routine
2393  *	  It must be freed by the caller while holding the
2394  *	  "anon_map" lock to prevent races which can occur if
2395  *	  a process has multiple lwps in its address space.
2396  */
2397 page_t *
2398 anon_private(
2399 	struct anon **app,
2400 	struct seg *seg,
2401 	caddr_t addr,
2402 	uint_t	prot,
2403 	page_t *opp,
2404 	int oppflags,
2405 	struct cred *cred)
2406 {
2407 	struct anon *old = *app;
2408 	struct anon *new;
2409 	page_t *pp = NULL;
2410 	struct vnode *vp;
2411 	anoff_t off;
2412 	page_t *anon_pl[1 + 1];
2413 	int err;
2414 
2415 	if (oppflags & STEAL_PAGE)
2416 		ASSERT(PAGE_EXCL(opp));
2417 	else
2418 		ASSERT(PAGE_LOCKED(opp));
2419 
2420 	CPU_STATS_ADD_K(vm, cow_fault, 1);
2421 
2422 	/* Kernel probe */
2423 	TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */,
2424 		tnf_opaque,	address,	addr);
2425 
2426 	*app = new = anon_alloc(NULL, 0);
2427 	swap_xlate(new, &vp, &off);
2428 
2429 	if (oppflags & STEAL_PAGE) {
2430 		page_rename(opp, vp, (u_offset_t)off);
2431 		pp = opp;
2432 		TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE,
2433 		    "anon_private:seg %p addr %x pp %p vp %p off %lx",
2434 		    seg, addr, pp, vp, off);
2435 		hat_setmod(pp);
2436 
2437 		/* bug 4026339 */
2438 		page_downgrade(pp);
2439 		return (pp);
2440 	}
2441 
2442 	/*
2443 	 * Call the VOP_GETPAGE routine to create the page, thereby
2444 	 * enabling the vnode driver to allocate any filesystem
2445 	 * space (e.g., disk block allocation for UFS).  This also
2446 	 * prevents more than one page from being added to the
2447 	 * vnode at the same time.
2448 	 */
2449 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL,
2450 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2451 	if (err)
2452 		goto out;
2453 
2454 	pp = anon_pl[0];
2455 
2456 	/*
2457 	 * If the original page was locked, we need to move the lock
2458 	 * to the new page by transfering 'cowcnt/lckcnt' of the original
2459 	 * page to 'cowcnt/lckcnt' of the new page.
2460 	 *
2461 	 * See Statement at the beginning of segvn_lockop() and
2462 	 * comments in page_pp_useclaim() regarding the way
2463 	 * cowcnts/lckcnts are handled.
2464 	 *
2465 	 * Also availrmem must be decremented up front for read only mapping
2466 	 * before calling page_pp_useclaim. page_pp_useclaim will bump it back
2467 	 * if availrmem did not need to be decremented after all.
2468 	 */
2469 	if (oppflags & LOCK_PAGE) {
2470 		if ((prot & PROT_WRITE) == 0) {
2471 			mutex_enter(&freemem_lock);
2472 			if (availrmem > pages_pp_maximum) {
2473 				availrmem--;
2474 				pages_useclaim++;
2475 			} else {
2476 				mutex_exit(&freemem_lock);
2477 				goto out;
2478 			}
2479 			mutex_exit(&freemem_lock);
2480 		}
2481 		page_pp_useclaim(opp, pp, prot & PROT_WRITE);
2482 	}
2483 
2484 	/*
2485 	 * Now copy the contents from the original page,
2486 	 * which is locked and loaded in the MMU by
2487 	 * the caller to prevent yet another page fault.
2488 	 */
2489 	/* XXX - should set mod bit in here */
2490 	if (ppcopy(opp, pp) == 0) {
2491 		/*
2492 		 * Before ppcopy could hanlde UE or other faults, we
2493 		 * would have panicked here, and still have no option
2494 		 * but to do so now.
2495 		 */
2496 		panic("anon_private, ppcopy failed, opp = 0x%p, pp = 0x%p",
2497 		    (void *)opp, (void *)pp);
2498 	}
2499 
2500 	hat_setrefmod(pp);		/* mark as modified */
2501 
2502 	/*
2503 	 * Unload the old translation.
2504 	 */
2505 	hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD);
2506 
2507 	/*
2508 	 * Free unmapped, unmodified original page.
2509 	 * or release the lock on the original page,
2510 	 * otherwise the process will sleep forever in
2511 	 * anon_decref() waiting for the "exclusive" lock
2512 	 * on the page.
2513 	 */
2514 	(void) page_release(opp, 1);
2515 
2516 	/*
2517 	 * we are done with page creation so downgrade the new
2518 	 * page's selock to shared, this helps when multiple
2519 	 * as_fault(...SOFTLOCK...) are done to the same
2520 	 * page(aio)
2521 	 */
2522 	page_downgrade(pp);
2523 
2524 	/*
2525 	 * NOTE:  The original anon slot must be freed by the
2526 	 * caller while holding the "anon_map" lock, if we
2527 	 * copied away from an anonymous page.
2528 	 */
2529 	return (pp);
2530 
2531 out:
2532 	*app = old;
2533 	if (pp)
2534 		page_unlock(pp);
2535 	anon_decref(new);
2536 	page_unlock(opp);
2537 	return ((page_t *)NULL);
2538 }
2539 
2540 int
2541 anon_map_privatepages(
2542 	struct anon_map *amp,
2543 	ulong_t	start_idx,
2544 	uint_t	szc,
2545 	struct seg *seg,
2546 	caddr_t addr,
2547 	uint_t	prot,
2548 	page_t	*ppa[],
2549 	struct vpage vpage[],
2550 	int anypgsz,
2551 	int pgflags,
2552 	struct cred *cred)
2553 {
2554 	pgcnt_t		pgcnt;
2555 	struct vnode	*vp;
2556 	anoff_t		off;
2557 	page_t		*pl[2], *conpp = NULL;
2558 	int		err;
2559 	int		prealloc = 1;
2560 	struct anon	*ap, *oldap;
2561 	caddr_t		vaddr;
2562 	page_t		*pplist, *pp;
2563 	ulong_t		pg_idx, an_idx;
2564 	spgcnt_t	nreloc = 0;
2565 	int		pagelock = 0;
2566 	kmutex_t	*ahmpages = NULL;
2567 #ifdef DEBUG
2568 	int		refcnt;
2569 #endif
2570 
2571 	ASSERT(szc != 0);
2572 	ASSERT(szc == seg->s_szc);
2573 
2574 	VM_STAT_ADD(anonvmstats.privatepages[0]);
2575 
2576 	pgcnt = page_get_pagecnt(szc);
2577 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2578 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2579 
2580 	ASSERT(amp != NULL);
2581 	ap = anon_get_ptr(amp->ahp, start_idx);
2582 	ASSERT(ap == NULL || ap->an_refcnt >= 1);
2583 
2584 	VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]);
2585 
2586 	/*
2587 	 * Now try and allocate the large page. If we fail then just
2588 	 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let
2589 	 * the caller make this decision but to avoid added complexity
2590 	 * it's simplier to handle that case here.
2591 	 */
2592 	if (anypgsz == -1) {
2593 		VM_STAT_ADD(anonvmstats.privatepages[2]);
2594 		prealloc = 0;
2595 	} else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc,
2596 	    anypgsz, pgflags) != 0) {
2597 		VM_STAT_ADD(anonvmstats.privatepages[3]);
2598 		prealloc = 0;
2599 	}
2600 
2601 	/*
2602 	 * make the decrement of all refcnts of all
2603 	 * anon slots of a large page appear atomic by
2604 	 * getting an anonpages_hash_lock for the
2605 	 * first anon slot of a large page.
2606 	 */
2607 	if (ap != NULL) {
2608 		ahmpages = APH_MUTEX(ap->an_vp, ap->an_off);
2609 		mutex_enter(ahmpages);
2610 		if (ap->an_refcnt == 1) {
2611 			VM_STAT_ADD(anonvmstats.privatepages[4]);
2612 			ASSERT(!anon_share(amp->ahp, start_idx, pgcnt));
2613 			mutex_exit(ahmpages);
2614 
2615 			if (prealloc) {
2616 				page_free_replacement_page(pplist);
2617 				page_create_putback(pgcnt);
2618 			}
2619 			ASSERT(ppa[0]->p_szc <= szc);
2620 			if (ppa[0]->p_szc == szc) {
2621 				VM_STAT_ADD(anonvmstats.privatepages[5]);
2622 				return (0);
2623 			}
2624 			for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2625 				ASSERT(ppa[pg_idx] != NULL);
2626 				page_unlock(ppa[pg_idx]);
2627 			}
2628 			return (-1);
2629 		}
2630 	}
2631 
2632 	/*
2633 	 * If we are passed in the vpage array and this is
2634 	 * not PROT_WRITE then we need to decrement availrmem
2635 	 * up front before we try anything. If we need to and
2636 	 * can't decrement availrmem then its better to fail now
2637 	 * than in the middle of processing the new large page.
2638 	 * page_pp_usclaim() on behalf of each constituent page
2639 	 * below will adjust availrmem back for the cases not needed.
2640 	 */
2641 	if (vpage != NULL && (prot & PROT_WRITE) == 0) {
2642 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2643 			if (VPP_ISPPLOCK(&vpage[pg_idx])) {
2644 				pagelock = 1;
2645 				break;
2646 			}
2647 		}
2648 		if (pagelock) {
2649 			VM_STAT_ADD(anonvmstats.privatepages[6]);
2650 			mutex_enter(&freemem_lock);
2651 			if (availrmem >= pages_pp_maximum + pgcnt) {
2652 				availrmem -= pgcnt;
2653 				pages_useclaim += pgcnt;
2654 			} else {
2655 				VM_STAT_ADD(anonvmstats.privatepages[7]);
2656 				mutex_exit(&freemem_lock);
2657 				if (ahmpages != NULL) {
2658 					mutex_exit(ahmpages);
2659 				}
2660 				if (prealloc) {
2661 					page_free_replacement_page(pplist);
2662 					page_create_putback(pgcnt);
2663 				}
2664 				for (pg_idx = 0; pg_idx < pgcnt; pg_idx++)
2665 					if (ppa[pg_idx] != NULL)
2666 						page_unlock(ppa[pg_idx]);
2667 				return (ENOMEM);
2668 			}
2669 			mutex_exit(&freemem_lock);
2670 		}
2671 	}
2672 
2673 	CPU_STATS_ADD_K(vm, cow_fault, pgcnt);
2674 
2675 	VM_STAT_ADD(anonvmstats.privatepages[8]);
2676 
2677 	an_idx = start_idx;
2678 	pg_idx = 0;
2679 	vaddr = addr;
2680 	for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) {
2681 		ASSERT(ppa[pg_idx] != NULL);
2682 		oldap = anon_get_ptr(amp->ahp, an_idx);
2683 		ASSERT(ahmpages != NULL || oldap == NULL);
2684 		ASSERT(ahmpages == NULL || oldap != NULL);
2685 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2686 		ASSERT(ahmpages == NULL || pg_idx != 0 ||
2687 		    (refcnt = oldap->an_refcnt));
2688 		ASSERT(ahmpages == NULL || pg_idx == 0 ||
2689 		    refcnt == oldap->an_refcnt);
2690 
2691 		ap = anon_alloc(NULL, 0);
2692 
2693 		swap_xlate(ap, &vp, &off);
2694 
2695 		/*
2696 		 * Now setup our preallocated page to pass down to
2697 		 * swap_getpage().
2698 		 */
2699 		if (prealloc) {
2700 			pp = pplist;
2701 			page_sub(&pplist, pp);
2702 			conpp = pp;
2703 		}
2704 
2705 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl,
2706 		    PAGESIZE, conpp, NULL, &nreloc, seg, vaddr,
2707 		    S_CREATE, cred);
2708 
2709 		/*
2710 		 * Impossible to fail this is S_CREATE.
2711 		 */
2712 		if (err)
2713 			panic("anon_map_privatepages: VOP_GETPAGE failed");
2714 
2715 		ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0);
2716 		ASSERT(prealloc == 0 || nreloc == 1);
2717 
2718 		pp = pl[0];
2719 
2720 		/*
2721 		 * If the original page was locked, we need to move
2722 		 * the lock to the new page by transfering
2723 		 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt'
2724 		 * of the new page. pg_idx can be used to index
2725 		 * into the vpage array since the caller will guarentee
2726 		 * that vpage struct passed in corresponds to addr
2727 		 * and forward.
2728 		 */
2729 		if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) {
2730 			page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE);
2731 		} else if (pagelock) {
2732 			mutex_enter(&freemem_lock);
2733 			availrmem++;
2734 			pages_useclaim--;
2735 			mutex_exit(&freemem_lock);
2736 		}
2737 
2738 		/*
2739 		 * Now copy the contents from the original page.
2740 		 */
2741 		if (ppcopy(ppa[pg_idx], pp) == 0) {
2742 			/*
2743 			 * Before ppcopy could hanlde UE or other faults, we
2744 			 * would have panicked here, and still have no option
2745 			 * but to do so now.
2746 			 */
2747 			panic("anon_map_privatepages, ppcopy failed");
2748 		}
2749 
2750 		hat_setrefmod(pp);		/* mark as modified */
2751 
2752 		/*
2753 		 * Release the lock on the original page,
2754 		 * derement the old slot, and down grade the lock
2755 		 * on the new copy.
2756 		 */
2757 		page_unlock(ppa[pg_idx]);
2758 
2759 		if (!prealloc)
2760 			page_downgrade(pp);
2761 
2762 		ppa[pg_idx] = pp;
2763 
2764 		/*
2765 		 * Now reflect the copy in the new anon array.
2766 		 */
2767 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2768 		if (oldap != NULL)
2769 			anon_decref(oldap);
2770 		(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2771 	}
2772 
2773 	/*
2774 	 * Unload the old large page translation.
2775 	 */
2776 	hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD);
2777 
2778 	if (ahmpages != NULL) {
2779 		mutex_exit(ahmpages);
2780 	}
2781 	ASSERT(prealloc == 0 || pplist == NULL);
2782 	if (prealloc) {
2783 		VM_STAT_ADD(anonvmstats.privatepages[9]);
2784 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2785 			page_downgrade(ppa[pg_idx]);
2786 		}
2787 	}
2788 
2789 	return (0);
2790 }
2791 
2792 /*
2793  * Allocate a private zero-filled anon page.
2794  */
2795 page_t *
2796 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred)
2797 {
2798 	struct anon *ap;
2799 	page_t *pp;
2800 	struct vnode *vp;
2801 	anoff_t off;
2802 	page_t *anon_pl[1 + 1];
2803 	int err;
2804 
2805 	/* Kernel probe */
2806 	TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */,
2807 		tnf_opaque,	address,	addr);
2808 
2809 	*app = ap = anon_alloc(NULL, 0);
2810 	swap_xlate(ap, &vp, &off);
2811 
2812 	/*
2813 	 * Call the VOP_GETPAGE routine to create the page, thereby
2814 	 * enabling the vnode driver to allocate any filesystem
2815 	 * dependent structures (e.g., disk block allocation for UFS).
2816 	 * This also prevents more than on page from being added to
2817 	 * the vnode at the same time since it is locked.
2818 	 */
2819 	err = VOP_GETPAGE(vp, off, PAGESIZE, NULL,
2820 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2821 	if (err) {
2822 		*app = NULL;
2823 		anon_decref(ap);
2824 		return (NULL);
2825 	}
2826 	pp = anon_pl[0];
2827 
2828 	pagezero(pp, 0, PAGESIZE);	/* XXX - should set mod bit */
2829 	page_downgrade(pp);
2830 	CPU_STATS_ADD_K(vm, zfod, 1);
2831 	hat_setrefmod(pp);	/* mark as modified so pageout writes back */
2832 	return (pp);
2833 }
2834 
2835 
2836 /*
2837  * Allocate array of private zero-filled anon pages for empty slots
2838  * and kept pages for non empty slots within given range.
2839  *
2840  * NOTE: This rontine will try and use large pages
2841  *	if available and supported by underlying platform.
2842  */
2843 int
2844 anon_map_createpages(
2845 	struct anon_map *amp,
2846 	ulong_t start_index,
2847 	size_t len,
2848 	page_t *ppa[],
2849 	struct seg *seg,
2850 	caddr_t addr,
2851 	enum seg_rw rw,
2852 	struct cred *cred)
2853 {
2854 
2855 	struct anon	*ap;
2856 	struct vnode	*ap_vp;
2857 	page_t		*pp, *pplist, *anon_pl[1 + 1], *conpp = NULL;
2858 	int		err = 0;
2859 	ulong_t		p_index, index;
2860 	pgcnt_t		npgs, pg_cnt;
2861 	spgcnt_t	nreloc = 0;
2862 	uint_t		l_szc, szc, prot;
2863 	anoff_t		ap_off;
2864 	size_t		pgsz;
2865 	lgrp_t		*lgrp;
2866 	kmutex_t	*ahm;
2867 
2868 	/*
2869 	 * XXX For now only handle S_CREATE.
2870 	 */
2871 	ASSERT(rw == S_CREATE);
2872 
2873 	index	= start_index;
2874 	p_index	= 0;
2875 	npgs = btopr(len);
2876 
2877 	/*
2878 	 * If this platform supports multiple page sizes
2879 	 * then try and allocate directly from the free
2880 	 * list for pages larger than PAGESIZE.
2881 	 *
2882 	 * NOTE:When we have page_create_ru we can stop
2883 	 *	directly allocating from the freelist.
2884 	 */
2885 	l_szc  = seg->s_szc;
2886 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2887 	while (npgs) {
2888 
2889 		/*
2890 		 * if anon slot already exists
2891 		 *   (means page has been created)
2892 		 * so 1) look up the page
2893 		 *    2) if the page is still in memory, get it.
2894 		 *    3) if not, create a page and
2895 		 *	  page in from physical swap device.
2896 		 * These are done in anon_getpage().
2897 		 */
2898 		ap = anon_get_ptr(amp->ahp, index);
2899 		if (ap) {
2900 			err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE,
2901 			    seg, addr, S_READ, cred);
2902 			if (err) {
2903 				ANON_LOCK_EXIT(&amp->a_rwlock);
2904 				panic("anon_map_createpages: anon_getpage");
2905 			}
2906 			pp = anon_pl[0];
2907 			ppa[p_index++] = pp;
2908 
2909 			/*
2910 			 * an_pvp can become non-NULL after SysV's page was
2911 			 * paged out before ISM was attached to this SysV
2912 			 * shared memory segment. So free swap slot if needed.
2913 			 */
2914 			if (ap->an_pvp != NULL) {
2915 				page_io_lock(pp);
2916 				ahm = AH_MUTEX(ap->an_vp, ap->an_off);
2917 				mutex_enter(ahm);
2918 				if (ap->an_pvp != NULL) {
2919 					swap_phys_free(ap->an_pvp,
2920 					    ap->an_poff, PAGESIZE);
2921 					ap->an_pvp = NULL;
2922 					ap->an_poff = 0;
2923 					mutex_exit(ahm);
2924 					hat_setmod(pp);
2925 				} else {
2926 					mutex_exit(ahm);
2927 				}
2928 				page_io_unlock(pp);
2929 			}
2930 
2931 			addr += PAGESIZE;
2932 			index++;
2933 			npgs--;
2934 			continue;
2935 		}
2936 		/*
2937 		 * Now try and allocate the largest page possible
2938 		 * for the current address and range.
2939 		 * Keep dropping down in page size until:
2940 		 *
2941 		 *	1) Properly aligned
2942 		 *	2) Does not overlap existing anon pages
2943 		 *	3) Fits in remaining range.
2944 		 *	4) able to allocate one.
2945 		 *
2946 		 * NOTE: XXX When page_create_ru is completed this code
2947 		 *	 will change.
2948 		 */
2949 		szc    = l_szc;
2950 		pplist = NULL;
2951 		pg_cnt = 0;
2952 		while (szc) {
2953 			pgsz	= page_get_pagesize(szc);
2954 			pg_cnt	= pgsz >> PAGESHIFT;
2955 			if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs &&
2956 			    anon_pages(amp->ahp, index, pg_cnt) == 0) {
2957 				/*
2958 				 * XXX
2959 				 * Since we are faking page_create()
2960 				 * we also need to do the freemem and
2961 				 * pcf accounting.
2962 				 */
2963 				(void) page_create_wait(pg_cnt, PG_WAIT);
2964 
2965 				/*
2966 				 * Get lgroup to allocate next page of shared
2967 				 * memory from and use it to specify where to
2968 				 * allocate the physical memory
2969 				 */
2970 				lgrp = lgrp_mem_choose(seg, addr, pgsz);
2971 
2972 				pplist = page_get_freelist(
2973 				    anon_vp, (u_offset_t)0, seg,
2974 				    addr, pgsz, 0, lgrp);
2975 
2976 				if (pplist == NULL) {
2977 					page_create_putback(pg_cnt);
2978 				}
2979 
2980 				/*
2981 				 * If a request for a page of size
2982 				 * larger than PAGESIZE failed
2983 				 * then don't try that size anymore.
2984 				 */
2985 				if (pplist == NULL) {
2986 					l_szc = szc - 1;
2987 				} else {
2988 					break;
2989 				}
2990 			}
2991 			szc--;
2992 		}
2993 
2994 		/*
2995 		 * If just using PAGESIZE pages then don't
2996 		 * directly allocate from the free list.
2997 		 */
2998 		if (pplist == NULL) {
2999 			ASSERT(szc == 0);
3000 			pp = anon_zero(seg, addr, &ap, cred);
3001 			if (pp == NULL) {
3002 				ANON_LOCK_EXIT(&amp->a_rwlock);
3003 				panic("anon_map_createpages: anon_zero");
3004 			}
3005 			ppa[p_index++] = pp;
3006 
3007 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
3008 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
3009 
3010 			addr += PAGESIZE;
3011 			index++;
3012 			npgs--;
3013 			continue;
3014 		}
3015 
3016 		/*
3017 		 * pplist is a list of pg_cnt PAGESIZE pages.
3018 		 * These pages are locked SE_EXCL since they
3019 		 * came directly off the free list.
3020 		 */
3021 		ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt));
3022 		ASSERT(IS_P2ALIGNED(index, pg_cnt));
3023 		ASSERT(conpp == NULL);
3024 		while (pg_cnt--) {
3025 
3026 			ap = anon_alloc(NULL, 0);
3027 			swap_xlate(ap, &ap_vp, &ap_off);
3028 
3029 			ASSERT(pplist != NULL);
3030 			pp = pplist;
3031 			page_sub(&pplist, pp);
3032 			PP_CLRFREE(pp);
3033 			PP_CLRAGED(pp);
3034 			conpp = pp;
3035 
3036 			err = swap_getconpage(ap_vp, ap_off, PAGESIZE,
3037 			    (uint_t *)NULL, anon_pl, PAGESIZE, conpp, NULL,
3038 			    &nreloc, seg, addr, S_CREATE, cred);
3039 
3040 			if (err) {
3041 				ANON_LOCK_EXIT(&amp->a_rwlock);
3042 				panic("anon_map_createpages: S_CREATE");
3043 			}
3044 
3045 			ASSERT(anon_pl[0] == pp);
3046 			ASSERT(nreloc == 1);
3047 			pagezero(pp, 0, PAGESIZE);
3048 			CPU_STATS_ADD_K(vm, zfod, 1);
3049 			hat_setrefmod(pp);
3050 
3051 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
3052 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
3053 
3054 			ppa[p_index++] = pp;
3055 
3056 			addr += PAGESIZE;
3057 			index++;
3058 			npgs--;
3059 		}
3060 		conpp = NULL;
3061 		pg_cnt	= pgsz >> PAGESHIFT;
3062 		p_index = p_index - pg_cnt;
3063 		while (pg_cnt--) {
3064 			page_downgrade(ppa[p_index++]);
3065 		}
3066 	}
3067 	ANON_LOCK_EXIT(&amp->a_rwlock);
3068 	return (0);
3069 }
3070 
3071 static int
3072 anon_try_demote_pages(
3073 	struct anon_hdr *ahp,
3074 	ulong_t sidx,
3075 	uint_t szc,
3076 	page_t **ppa,
3077 	int private)
3078 {
3079 	struct anon	*ap;
3080 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
3081 	page_t		*pp;
3082 	pgcnt_t		i;
3083 	kmutex_t	*ahmpages = NULL;
3084 	int		root = 0;
3085 	pgcnt_t		npgs;
3086 	pgcnt_t		curnpgs = 0;
3087 	size_t		ppasize = 0;
3088 
3089 	ASSERT(szc != 0);
3090 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
3091 	ASSERT(IS_P2ALIGNED(sidx, pgcnt));
3092 	ASSERT(sidx < ahp->size);
3093 
3094 	if (ppa == NULL) {
3095 		ppasize = pgcnt * sizeof (page_t *);
3096 		ppa = kmem_alloc(ppasize, KM_SLEEP);
3097 	}
3098 
3099 	ap = anon_get_ptr(ahp, sidx);
3100 	if (ap != NULL && private) {
3101 		VM_STAT_ADD(anonvmstats.demotepages[1]);
3102 		ahmpages = APH_MUTEX(ap->an_vp, ap->an_off);
3103 		mutex_enter(ahmpages);
3104 	}
3105 
3106 	if (ap != NULL && ap->an_refcnt > 1) {
3107 		if (ahmpages != NULL) {
3108 			VM_STAT_ADD(anonvmstats.demotepages[2]);
3109 			mutex_exit(ahmpages);
3110 		}
3111 		if (ppasize != 0) {
3112 			kmem_free(ppa, ppasize);
3113 		}
3114 		return (0);
3115 	}
3116 	if (ahmpages != NULL) {
3117 		mutex_exit(ahmpages);
3118 	}
3119 	if (ahp->size - sidx < pgcnt) {
3120 		ASSERT(private == 0);
3121 		pgcnt = ahp->size - sidx;
3122 	}
3123 	for (i = 0; i < pgcnt; i++, sidx++) {
3124 		ap = anon_get_ptr(ahp, sidx);
3125 		if (ap != NULL) {
3126 			if (ap->an_refcnt != 1) {
3127 				panic("anon_try_demote_pages: an_refcnt != 1");
3128 			}
3129 			pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off,
3130 			    SE_EXCL);
3131 			if (pp != NULL) {
3132 				(void) hat_pageunload(pp,
3133 				    HAT_FORCE_PGUNLOAD);
3134 			}
3135 		} else {
3136 			ppa[i] = NULL;
3137 		}
3138 	}
3139 	for (i = 0; i < pgcnt; i++) {
3140 		if ((pp = ppa[i]) != NULL && pp->p_szc != 0) {
3141 			ASSERT(pp->p_szc <= szc);
3142 			if (!root) {
3143 				VM_STAT_ADD(anonvmstats.demotepages[3]);
3144 				if (curnpgs != 0)
3145 					panic("anon_try_demote_pages: "
3146 					    "bad large page");
3147 
3148 				root = 1;
3149 				curnpgs = npgs =
3150 				    page_get_pagecnt(pp->p_szc);
3151 
3152 				ASSERT(npgs <= pgcnt);
3153 				ASSERT(IS_P2ALIGNED(npgs, npgs));
3154 				ASSERT(!(page_pptonum(pp) & (npgs - 1)));
3155 			} else {
3156 				ASSERT(i > 0);
3157 				ASSERT(page_pptonum(pp) - 1 ==
3158 				    page_pptonum(ppa[i - 1]));
3159 				if ((page_pptonum(pp) & (npgs - 1)) ==
3160 				    npgs - 1)
3161 					root = 0;
3162 			}
3163 			ASSERT(PAGE_EXCL(pp));
3164 			pp->p_szc = 0;
3165 			ASSERT(curnpgs > 0);
3166 			curnpgs--;
3167 		}
3168 	}
3169 	if (root != 0 || curnpgs != 0)
3170 		panic("anon_try_demote_pages: bad large page");
3171 
3172 	for (i = 0; i < pgcnt; i++) {
3173 		if ((pp = ppa[i]) != NULL) {
3174 			ASSERT(!hat_page_is_mapped(pp));
3175 			ASSERT(pp->p_szc == 0);
3176 			page_unlock(pp);
3177 		}
3178 	}
3179 	if (ppasize != 0) {
3180 		kmem_free(ppa, ppasize);
3181 	}
3182 	return (1);
3183 }
3184 
3185 /*
3186  * anon_map_demotepages() can only be called by MAP_PRIVATE segments.
3187  */
3188 int
3189 anon_map_demotepages(
3190 	struct anon_map *amp,
3191 	ulong_t	start_idx,
3192 	struct seg *seg,
3193 	caddr_t addr,
3194 	uint_t prot,
3195 	struct vpage vpage[],
3196 	struct cred *cred)
3197 {
3198 	struct anon	*ap;
3199 	uint_t		szc = seg->s_szc;
3200 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
3201 	size_t		ppasize = pgcnt * sizeof (page_t *);
3202 	page_t		**ppa = kmem_alloc(ppasize, KM_SLEEP);
3203 	page_t		*pp;
3204 	page_t		*pl[2];
3205 	pgcnt_t		i, pg_idx;
3206 	ulong_t		an_idx;
3207 	caddr_t		vaddr;
3208 	int		err;
3209 	int		retry = 0;
3210 	uint_t		vpprot;
3211 
3212 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
3213 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
3214 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
3215 	ASSERT(ppa != NULL);
3216 	ASSERT(szc != 0);
3217 	ASSERT(szc == amp->a_szc);
3218 
3219 	VM_STAT_ADD(anonvmstats.demotepages[0]);
3220 
3221 top:
3222 	if (anon_try_demote_pages(amp->ahp, start_idx, szc, ppa, 1)) {
3223 		kmem_free(ppa, ppasize);
3224 		return (0);
3225 	}
3226 
3227 	VM_STAT_ADD(anonvmstats.demotepages[4]);
3228 
3229 	ASSERT(retry == 0); /* we can be here only once */
3230 
3231 	vaddr = addr;
3232 	for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
3233 	    pg_idx++, an_idx++, vaddr += PAGESIZE) {
3234 		ap = anon_get_ptr(amp->ahp, an_idx);
3235 		if (ap == NULL)
3236 			panic("anon_map_demotepages: no anon slot");
3237 		err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr,
3238 		    S_READ, cred);
3239 		if (err) {
3240 			for (i = 0; i < pg_idx; i++) {
3241 				if ((pp = ppa[i]) != NULL)
3242 					page_unlock(pp);
3243 			}
3244 			kmem_free(ppa, ppasize);
3245 			return (err);
3246 		}
3247 		ppa[pg_idx] = pl[0];
3248 	}
3249 
3250 	err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa,
3251 	    vpage, -1, 0, cred);
3252 	if (err > 0) {
3253 		VM_STAT_ADD(anonvmstats.demotepages[5]);
3254 		kmem_free(ppa, ppasize);
3255 		return (err);
3256 	}
3257 	ASSERT(err == 0 || err == -1);
3258 	if (err == -1) {
3259 		VM_STAT_ADD(anonvmstats.demotepages[6]);
3260 		retry = 1;
3261 		goto top;
3262 	}
3263 	for (i = 0; i < pgcnt; i++) {
3264 		ASSERT(ppa[i] != NULL);
3265 		if (ppa[i]->p_szc != 0)
3266 			retry = 1;
3267 		page_unlock(ppa[i]);
3268 	}
3269 	if (retry) {
3270 		VM_STAT_ADD(anonvmstats.demotepages[7]);
3271 		goto top;
3272 	}
3273 
3274 	VM_STAT_ADD(anonvmstats.demotepages[8]);
3275 
3276 	kmem_free(ppa, ppasize);
3277 
3278 	return (0);
3279 }
3280 
3281 /*
3282  * Free pages of shared anon map. It's assumed that anon maps don't share anon
3283  * structures with private anon maps. Therefore all anon structures should
3284  * have at most one reference at this point. This means underlying pages can
3285  * be exclusively locked and demoted or freed.  If not freeing the entire
3286  * large pages demote the ends of the region we free to be able to free
3287  * subpages. Page roots correspond to aligned index positions in anon map.
3288  */
3289 void
3290 anon_shmap_free_pages(struct anon_map *amp, ulong_t sidx, size_t len)
3291 {
3292 	ulong_t eidx = sidx + btopr(len);
3293 	pgcnt_t pages = page_get_pagecnt(amp->a_szc);
3294 	struct anon_hdr *ahp = amp->ahp;
3295 	ulong_t tidx;
3296 	size_t size;
3297 	ulong_t sidx_aligned;
3298 	ulong_t eidx_aligned;
3299 
3300 	ASSERT(ANON_WRITE_HELD(&amp->a_rwlock));
3301 	ASSERT(amp->refcnt <= 1);
3302 	ASSERT(amp->a_szc > 0);
3303 	ASSERT(eidx <= ahp->size);
3304 	ASSERT(!anon_share(ahp, sidx, btopr(len)));
3305 
3306 	if (len == 0) {	/* XXX */
3307 		return;
3308 	}
3309 
3310 	sidx_aligned = P2ALIGN(sidx, pages);
3311 	if (sidx_aligned != sidx ||
3312 	    (eidx < sidx_aligned + pages && eidx < ahp->size)) {
3313 		if (!anon_try_demote_pages(ahp, sidx_aligned,
3314 		    amp->a_szc, NULL, 0)) {
3315 			panic("anon_shmap_free_pages: demote failed");
3316 		}
3317 		size = (eidx <= sidx_aligned + pages) ? (eidx - sidx) :
3318 		    P2NPHASE(sidx, pages);
3319 		size <<= PAGESHIFT;
3320 		anon_free(ahp, sidx, size);
3321 		sidx = sidx_aligned + pages;
3322 		if (eidx <= sidx) {
3323 			return;
3324 		}
3325 	}
3326 	eidx_aligned = P2ALIGN(eidx, pages);
3327 	if (sidx < eidx_aligned) {
3328 		anon_free_pages(ahp, sidx,
3329 		    (eidx_aligned - sidx) << PAGESHIFT,
3330 		    amp->a_szc);
3331 		sidx = eidx_aligned;
3332 	}
3333 	ASSERT(sidx == eidx_aligned);
3334 	if (eidx == eidx_aligned) {
3335 		return;
3336 	}
3337 	tidx = eidx;
3338 	if (eidx != ahp->size && anon_get_next_ptr(ahp, &tidx) != NULL &&
3339 	    tidx - sidx < pages) {
3340 		if (!anon_try_demote_pages(ahp, sidx, amp->a_szc, NULL, 0)) {
3341 			panic("anon_shmap_free_pages: demote failed");
3342 		}
3343 		size = (eidx - sidx) << PAGESHIFT;
3344 		anon_free(ahp, sidx, size);
3345 	} else {
3346 		anon_free_pages(ahp, sidx, pages << PAGESHIFT, amp->a_szc);
3347 	}
3348 }
3349 
3350 /*
3351  * This routine should be called with amp's writer lock when there're no other
3352  * users of amp.  All pcache entries of this amp must have been already
3353  * inactivated. We must not drop a_rwlock here to prevent new users from
3354  * attaching to this amp.
3355  */
3356 void
3357 anonmap_purge(struct anon_map *amp)
3358 {
3359 	ASSERT(ANON_WRITE_HELD(&amp->a_rwlock));
3360 	ASSERT(amp->refcnt <= 1);
3361 
3362 	if (amp->a_softlockcnt != 0) {
3363 		seg_ppurge(NULL, amp, 0);
3364 	}
3365 
3366 	/*
3367 	 * Since all pcache entries were already inactive before this routine
3368 	 * was called seg_ppurge() couldn't return while there're still
3369 	 * entries that can be found via the list anchored at a_phead. So we
3370 	 * can assert this list is empty now. a_softlockcnt may be still non 0
3371 	 * if asynchronous thread that manages pcache already removed pcache
3372 	 * entries but hasn't unlocked the pages yet. If a_softlockcnt is non
3373 	 * 0 we just wait on a_purgecv for shamp_reclaim() to finish. Even if
3374 	 * a_softlockcnt is 0 we grab a_purgemtx to avoid freeing anon map
3375 	 * before shamp_reclaim() is done with it. a_purgemtx also taken by
3376 	 * shamp_reclaim() while a_softlockcnt was still not 0 acts as a
3377 	 * barrier that prevents anonmap_purge() to complete while
3378 	 * shamp_reclaim() may still be referencing this amp.
3379 	 */
3380 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3381 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3382 
3383 	mutex_enter(&amp->a_purgemtx);
3384 	while (amp->a_softlockcnt != 0) {
3385 		ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3386 		ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3387 		amp->a_purgewait = 1;
3388 		cv_wait(&amp->a_purgecv, &amp->a_purgemtx);
3389 	}
3390 	mutex_exit(&amp->a_purgemtx);
3391 
3392 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3393 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3394 	ASSERT(amp->a_softlockcnt == 0);
3395 }
3396 
3397 /*
3398  * Allocate and initialize an anon_map structure for seg
3399  * associating the given swap reservation with the new anon_map.
3400  */
3401 struct anon_map *
3402 anonmap_alloc(size_t size, size_t swresv, int flags)
3403 {
3404 	struct anon_map *amp;
3405 	int kmflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
3406 
3407 	amp = kmem_cache_alloc(anonmap_cache, kmflags);
3408 	if (amp == NULL) {
3409 		ASSERT(kmflags == KM_NOSLEEP);
3410 		return (NULL);
3411 	}
3412 
3413 	amp->ahp = anon_create(btopr(size), flags);
3414 	if (amp->ahp == NULL) {
3415 		ASSERT(flags == ANON_NOSLEEP);
3416 		kmem_cache_free(anonmap_cache, amp);
3417 		return (NULL);
3418 	}
3419 	amp->refcnt = 1;
3420 	amp->size = size;
3421 	amp->swresv = swresv;
3422 	amp->locality = 0;
3423 	amp->a_szc = 0;
3424 	amp->a_sp = NULL;
3425 	amp->a_softlockcnt = 0;
3426 	amp->a_purgewait = 0;
3427 	amp->a_phead.p_lnext = &amp->a_phead;
3428 	amp->a_phead.p_lprev = &amp->a_phead;
3429 
3430 	return (amp);
3431 }
3432 
3433 void
3434 anonmap_free(struct anon_map *amp)
3435 {
3436 	ASSERT(amp->ahp != NULL);
3437 	ASSERT(amp->refcnt == 0);
3438 	ASSERT(amp->a_softlockcnt == 0);
3439 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3440 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3441 
3442 	lgrp_shm_policy_fini(amp, NULL);
3443 	anon_release(amp->ahp, btopr(amp->size));
3444 	kmem_cache_free(anonmap_cache, amp);
3445 }
3446 
3447 /*
3448  * Returns true if the app array has some empty slots.
3449  * The offp and lenp parameters are in/out parameters.  On entry
3450  * these values represent the starting offset and length of the
3451  * mapping.  When true is returned, these values may be modified
3452  * to be the largest range which includes empty slots.
3453  */
3454 int
3455 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp,
3456     size_t *lenp)
3457 {
3458 	ulong_t i, el;
3459 	ssize_t low, high;
3460 	struct anon *ap;
3461 
3462 	low = -1;
3463 	for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) {
3464 		ap = anon_get_ptr(ahp, anon_idx);
3465 		if (ap == NULL) {
3466 			if (low == -1)
3467 				low = i;
3468 			high = i;
3469 		}
3470 	}
3471 	if (low != -1) {
3472 		/*
3473 		 * Found at least one non-anon page.
3474 		 * Set up the off and len return values.
3475 		 */
3476 		if (low != 0)
3477 			*offp += low;
3478 		*lenp = high - low + PAGESIZE;
3479 		return (1);
3480 	}
3481 	return (0);
3482 }
3483 
3484 /*
3485  * Return a count of the number of existing anon pages in the anon array
3486  * app in the range (off, off+len). The array and slots must be guaranteed
3487  * stable by the caller.
3488  */
3489 pgcnt_t
3490 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
3491 {
3492 	pgcnt_t cnt = 0;
3493 
3494 	while (nslots-- > 0) {
3495 		if ((anon_get_ptr(ahp, anon_index)) != NULL)
3496 			cnt++;
3497 		anon_index++;
3498 	}
3499 	return (cnt);
3500 }
3501 
3502 /*
3503  * Move reserved phys swap into memory swap (unreserve phys swap
3504  * and reserve mem swap by the same amount).
3505  * Used by segspt when it needs to lock reserved swap npages in memory
3506  */
3507 int
3508 anon_swap_adjust(pgcnt_t npages)
3509 {
3510 	pgcnt_t unlocked_mem_swap;
3511 
3512 	mutex_enter(&anoninfo_lock);
3513 
3514 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3515 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3516 
3517 	unlocked_mem_swap = k_anoninfo.ani_mem_resv
3518 	    - k_anoninfo.ani_locked_swap;
3519 	if (npages > unlocked_mem_swap) {
3520 		spgcnt_t adjusted_swap = npages - unlocked_mem_swap;
3521 
3522 		/*
3523 		 * if there is not enough unlocked mem swap we take missing
3524 		 * amount from phys swap and give it to mem swap
3525 		 */
3526 		if (!page_reclaim_mem(adjusted_swap, segspt_minfree, 1)) {
3527 			mutex_exit(&anoninfo_lock);
3528 			return (ENOMEM);
3529 		}
3530 
3531 		k_anoninfo.ani_mem_resv += adjusted_swap;
3532 		ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap);
3533 		k_anoninfo.ani_phys_resv -= adjusted_swap;
3534 
3535 		ANI_ADD(adjusted_swap);
3536 	}
3537 	k_anoninfo.ani_locked_swap += npages;
3538 
3539 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3540 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3541 
3542 	mutex_exit(&anoninfo_lock);
3543 
3544 	return (0);
3545 }
3546 
3547 /*
3548  * 'unlocked' reserved mem swap so when it is unreserved it
3549  * can be moved back phys (disk) swap
3550  */
3551 void
3552 anon_swap_restore(pgcnt_t npages)
3553 {
3554 	mutex_enter(&anoninfo_lock);
3555 
3556 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3557 
3558 	ASSERT(k_anoninfo.ani_locked_swap >= npages);
3559 	k_anoninfo.ani_locked_swap -= npages;
3560 
3561 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3562 
3563 	mutex_exit(&anoninfo_lock);
3564 }
3565 
3566 /*
3567  * Return the pointer from the list for a
3568  * specified anon index.
3569  */
3570 ulong_t *
3571 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx)
3572 {
3573 	struct anon	**app;
3574 	void		**ppp;
3575 
3576 	ASSERT(an_idx < ahp->size);
3577 
3578 	/*
3579 	 * Single level case.
3580 	 */
3581 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
3582 		return ((ulong_t *)&ahp->array_chunk[an_idx]);
3583 	} else {
3584 
3585 		/*
3586 		 * 2 level case.
3587 		 */
3588 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3589 		if (*ppp == NULL) {
3590 			mutex_enter(&ahp->serial_lock);
3591 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3592 			if (*ppp == NULL)
3593 				*ppp = kmem_zalloc(PAGESIZE, KM_SLEEP);
3594 			mutex_exit(&ahp->serial_lock);
3595 		}
3596 		app = *ppp;
3597 		return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]);
3598 	}
3599 }
3600 
3601 void
3602 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj)
3603 {
3604 	ulong_t		*ap_slot;
3605 	kmutex_t	*mtx;
3606 	kcondvar_t	*cv;
3607 	int		hash;
3608 
3609 	/*
3610 	 * Use szc to determine anon slot(s) to appear atomic.
3611 	 * If szc = 0, then lock the anon slot and mark it busy.
3612 	 * If szc > 0, then lock the range of slots by getting the
3613 	 * anon_array_lock for the first anon slot, and mark only the
3614 	 * first anon slot busy to represent whole range being busy.
3615 	 */
3616 
3617 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3618 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3619 	hash = ANON_ARRAY_HASH(amp, an_idx);
3620 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3621 	sobj->sync_cv = cv = &anon_array_cv[hash];
3622 	mutex_enter(mtx);
3623 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3624 	while (ANON_ISBUSY(ap_slot))
3625 		cv_wait(cv, mtx);
3626 	ANON_SETBUSY(ap_slot);
3627 	sobj->sync_data = ap_slot;
3628 	mutex_exit(mtx);
3629 }
3630 
3631 int
3632 anon_array_try_enter(struct anon_map *amp, ulong_t an_idx,
3633     anon_sync_obj_t *sobj)
3634 {
3635 	ulong_t		*ap_slot;
3636 	kmutex_t	*mtx;
3637 	int		hash;
3638 
3639 	/*
3640 	 * Try to lock a range of anon slots.
3641 	 * Use szc to determine anon slot(s) to appear atomic.
3642 	 * If szc = 0, then lock the anon slot and mark it busy.
3643 	 * If szc > 0, then lock the range of slots by getting the
3644 	 * anon_array_lock for the first anon slot, and mark only the
3645 	 * first anon slot busy to represent whole range being busy.
3646 	 * Fail if the mutex or the anon_array are busy.
3647 	 */
3648 
3649 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3650 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3651 	hash = ANON_ARRAY_HASH(amp, an_idx);
3652 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3653 	sobj->sync_cv = &anon_array_cv[hash];
3654 	if (!mutex_tryenter(mtx)) {
3655 		return (EWOULDBLOCK);
3656 	}
3657 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3658 	if (ANON_ISBUSY(ap_slot)) {
3659 		mutex_exit(mtx);
3660 		return (EWOULDBLOCK);
3661 	}
3662 	ANON_SETBUSY(ap_slot);
3663 	sobj->sync_data = ap_slot;
3664 	mutex_exit(mtx);
3665 	return (0);
3666 }
3667 
3668 void
3669 anon_array_exit(anon_sync_obj_t *sobj)
3670 {
3671 	mutex_enter(sobj->sync_mutex);
3672 	ASSERT(ANON_ISBUSY(sobj->sync_data));
3673 	ANON_CLRBUSY(sobj->sync_data);
3674 	if (CV_HAS_WAITERS(sobj->sync_cv))
3675 		cv_broadcast(sobj->sync_cv);
3676 	mutex_exit(sobj->sync_mutex);
3677 }
3678