xref: /illumos-gate/usr/src/uts/common/vm/seg_spt.c (revision d2ef9fe9425bdaf63cdf808ce90a1ef90c4d9ce8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/param.h>
29 #include <sys/user.h>
30 #include <sys/mman.h>
31 #include <sys/kmem.h>
32 #include <sys/sysmacros.h>
33 #include <sys/cmn_err.h>
34 #include <sys/systm.h>
35 #include <sys/tuneable.h>
36 #include <vm/hat.h>
37 #include <vm/seg.h>
38 #include <vm/as.h>
39 #include <vm/anon.h>
40 #include <vm/page.h>
41 #include <sys/buf.h>
42 #include <sys/swap.h>
43 #include <sys/atomic.h>
44 #include <vm/seg_spt.h>
45 #include <sys/debug.h>
46 #include <sys/vtrace.h>
47 #include <sys/shm.h>
48 #include <sys/shm_impl.h>
49 #include <sys/lgrp.h>
50 #include <sys/vmsystm.h>
51 #include <sys/policy.h>
52 #include <sys/project.h>
53 #include <sys/tnf_probe.h>
54 #include <sys/zone.h>
55 
56 #define	SEGSPTADDR	(caddr_t)0x0
57 
58 /*
59  * # pages used for spt
60  */
61 static size_t	spt_used;
62 
63 /*
64  * segspt_minfree is the memory left for system after ISM
65  * locked its pages; it is set up to 5% of availrmem in
66  * sptcreate when ISM is created.  ISM should not use more
67  * than ~90% of availrmem; if it does, then the performance
68  * of the system may decrease. Machines with large memories may
69  * be able to use up more memory for ISM so we set the default
70  * segspt_minfree to 5% (which gives ISM max 95% of availrmem.
71  * If somebody wants even more memory for ISM (risking hanging
72  * the system) they can patch the segspt_minfree to smaller number.
73  */
74 pgcnt_t segspt_minfree = 0;
75 
76 static int segspt_create(struct seg *seg, caddr_t argsp);
77 static int segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize);
78 static void segspt_free(struct seg *seg);
79 static void segspt_free_pages(struct seg *seg, caddr_t addr, size_t len);
80 static lgrp_mem_policy_info_t *segspt_getpolicy(struct seg *seg, caddr_t addr);
81 
82 static void
83 segspt_badop()
84 {
85 	panic("segspt_badop called");
86 	/*NOTREACHED*/
87 }
88 
89 #define	SEGSPT_BADOP(t)	(t(*)())segspt_badop
90 
91 struct seg_ops segspt_ops = {
92 	SEGSPT_BADOP(int),		/* dup */
93 	segspt_unmap,
94 	segspt_free,
95 	SEGSPT_BADOP(int),		/* fault */
96 	SEGSPT_BADOP(faultcode_t),	/* faulta */
97 	SEGSPT_BADOP(int),		/* setprot */
98 	SEGSPT_BADOP(int),		/* checkprot */
99 	SEGSPT_BADOP(int),		/* kluster */
100 	SEGSPT_BADOP(size_t),		/* swapout */
101 	SEGSPT_BADOP(int),		/* sync */
102 	SEGSPT_BADOP(size_t),		/* incore */
103 	SEGSPT_BADOP(int),		/* lockop */
104 	SEGSPT_BADOP(int),		/* getprot */
105 	SEGSPT_BADOP(u_offset_t), 	/* getoffset */
106 	SEGSPT_BADOP(int),		/* gettype */
107 	SEGSPT_BADOP(int),		/* getvp */
108 	SEGSPT_BADOP(int),		/* advise */
109 	SEGSPT_BADOP(void),		/* dump */
110 	SEGSPT_BADOP(int),		/* pagelock */
111 	SEGSPT_BADOP(int),		/* setpgsz */
112 	SEGSPT_BADOP(int),		/* getmemid */
113 	segspt_getpolicy,		/* getpolicy */
114 	SEGSPT_BADOP(int),		/* capable */
115 };
116 
117 static int segspt_shmdup(struct seg *seg, struct seg *newseg);
118 static int segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize);
119 static void segspt_shmfree(struct seg *seg);
120 static faultcode_t segspt_shmfault(struct hat *hat, struct seg *seg,
121 		caddr_t addr, size_t len, enum fault_type type, enum seg_rw rw);
122 static faultcode_t segspt_shmfaulta(struct seg *seg, caddr_t addr);
123 static int segspt_shmsetprot(register struct seg *seg, register caddr_t addr,
124 			register size_t len, register uint_t prot);
125 static int segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size,
126 			uint_t prot);
127 static int	segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta);
128 static size_t	segspt_shmswapout(struct seg *seg);
129 static size_t segspt_shmincore(struct seg *seg, caddr_t addr, size_t len,
130 			register char *vec);
131 static int segspt_shmsync(struct seg *seg, register caddr_t addr, size_t len,
132 			int attr, uint_t flags);
133 static int segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len,
134 			int attr, int op, ulong_t *lockmap, size_t pos);
135 static int segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len,
136 			uint_t *protv);
137 static u_offset_t segspt_shmgetoffset(struct seg *seg, caddr_t addr);
138 static int segspt_shmgettype(struct seg *seg, caddr_t addr);
139 static int segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp);
140 static int segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len,
141 			uint_t behav);
142 static void segspt_shmdump(struct seg *seg);
143 static int segspt_shmpagelock(struct seg *, caddr_t, size_t,
144 			struct page ***, enum lock_type, enum seg_rw);
145 static int segspt_shmsetpgsz(struct seg *, caddr_t, size_t, uint_t);
146 static int segspt_shmgetmemid(struct seg *, caddr_t, memid_t *);
147 static lgrp_mem_policy_info_t *segspt_shmgetpolicy(struct seg *, caddr_t);
148 static int segspt_shmcapable(struct seg *, segcapability_t);
149 
150 struct seg_ops segspt_shmops = {
151 	segspt_shmdup,
152 	segspt_shmunmap,
153 	segspt_shmfree,
154 	segspt_shmfault,
155 	segspt_shmfaulta,
156 	segspt_shmsetprot,
157 	segspt_shmcheckprot,
158 	segspt_shmkluster,
159 	segspt_shmswapout,
160 	segspt_shmsync,
161 	segspt_shmincore,
162 	segspt_shmlockop,
163 	segspt_shmgetprot,
164 	segspt_shmgetoffset,
165 	segspt_shmgettype,
166 	segspt_shmgetvp,
167 	segspt_shmadvise,	/* advise */
168 	segspt_shmdump,
169 	segspt_shmpagelock,
170 	segspt_shmsetpgsz,
171 	segspt_shmgetmemid,
172 	segspt_shmgetpolicy,
173 	segspt_shmcapable,
174 };
175 
176 static void segspt_purge(struct seg *seg);
177 static int segspt_reclaim(struct seg *, caddr_t, size_t, struct page **,
178 		enum seg_rw);
179 static int spt_anon_getpages(struct seg *seg, caddr_t addr, size_t len,
180 		page_t **ppa);
181 
182 
183 
184 /*ARGSUSED*/
185 int
186 sptcreate(size_t size, struct seg **sptseg, struct anon_map *amp,
187 	uint_t prot, uint_t flags, uint_t share_szc)
188 {
189 	int 	err;
190 	struct  as	*newas;
191 	struct	segspt_crargs sptcargs;
192 
193 #ifdef DEBUG
194 	TNF_PROBE_1(sptcreate, "spt", /* CSTYLED */,
195 			tnf_ulong, size, size );
196 #endif
197 	if (segspt_minfree == 0)	/* leave min 5% of availrmem for */
198 		segspt_minfree = availrmem/20;	/* for the system */
199 
200 	if (!hat_supported(HAT_SHARED_PT, (void *)0))
201 		return (EINVAL);
202 
203 	/*
204 	 * get a new as for this shared memory segment
205 	 */
206 	newas = as_alloc();
207 	newas->a_proc = NULL;
208 	sptcargs.amp = amp;
209 	sptcargs.prot = prot;
210 	sptcargs.flags = flags;
211 	sptcargs.szc = share_szc;
212 	/*
213 	 * create a shared page table (spt) segment
214 	 */
215 
216 	if (err = as_map(newas, SEGSPTADDR, size, segspt_create, &sptcargs)) {
217 		as_free(newas);
218 		return (err);
219 	}
220 	*sptseg = sptcargs.seg_spt;
221 	return (0);
222 }
223 
224 void
225 sptdestroy(struct as *as, struct anon_map *amp)
226 {
227 
228 #ifdef DEBUG
229 	TNF_PROBE_0(sptdestroy, "spt", /* CSTYLED */);
230 #endif
231 	(void) as_unmap(as, SEGSPTADDR, amp->size);
232 	as_free(as);
233 }
234 
235 /*
236  * called from seg_free().
237  * free (i.e., unlock, unmap, return to free list)
238  *  all the pages in the given seg.
239  */
240 void
241 segspt_free(struct seg	*seg)
242 {
243 	struct spt_data *sptd = (struct spt_data *)seg->s_data;
244 
245 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
246 
247 	if (sptd != NULL) {
248 		if (sptd->spt_realsize)
249 			segspt_free_pages(seg, seg->s_base, sptd->spt_realsize);
250 
251 	if (sptd->spt_ppa_lckcnt)
252 		kmem_free(sptd->spt_ppa_lckcnt,
253 		    sizeof (*sptd->spt_ppa_lckcnt)
254 		    * btopr(sptd->spt_amp->size));
255 		kmem_free(sptd->spt_vp, sizeof (*sptd->spt_vp));
256 		mutex_destroy(&sptd->spt_lock);
257 		kmem_free(sptd, sizeof (*sptd));
258 	}
259 }
260 
261 /*ARGSUSED*/
262 static int
263 segspt_shmsync(struct seg *seg, caddr_t addr, size_t len, int attr,
264 	uint_t flags)
265 {
266 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
267 
268 	return (0);
269 }
270 
271 /*ARGSUSED*/
272 static size_t
273 segspt_shmincore(struct seg *seg, caddr_t addr, size_t len, char *vec)
274 {
275 	caddr_t	eo_seg;
276 	pgcnt_t	npages;
277 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
278 	struct seg	*sptseg;
279 	struct spt_data *sptd;
280 
281 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
282 #ifdef lint
283 	seg = seg;
284 #endif
285 	sptseg = shmd->shm_sptseg;
286 	sptd = sptseg->s_data;
287 
288 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
289 		eo_seg = addr + len;
290 		while (addr < eo_seg) {
291 			/* page exists, and it's locked. */
292 			*vec++ = SEG_PAGE_INCORE | SEG_PAGE_LOCKED |
293 				SEG_PAGE_ANON;
294 			addr += PAGESIZE;
295 		}
296 		return (len);
297 	} else {
298 		struct  anon_map *amp = shmd->shm_amp;
299 		struct  anon	*ap;
300 		page_t		*pp;
301 		pgcnt_t 	anon_index;
302 		struct vnode 	*vp;
303 		u_offset_t 	off;
304 		ulong_t		i;
305 		int		ret;
306 		anon_sync_obj_t	cookie;
307 
308 		addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
309 		anon_index = seg_page(seg, addr);
310 		npages = btopr(len);
311 		if (anon_index + npages > btopr(shmd->shm_amp->size)) {
312 			return (EINVAL);
313 		}
314 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
315 		for (i = 0; i < npages; i++, anon_index++) {
316 			ret = 0;
317 			anon_array_enter(amp, anon_index, &cookie);
318 			ap = anon_get_ptr(amp->ahp, anon_index);
319 			if (ap != NULL) {
320 				swap_xlate(ap, &vp, &off);
321 				anon_array_exit(&cookie);
322 				pp = page_lookup_nowait(vp, off, SE_SHARED);
323 				if (pp != NULL) {
324 					ret |= SEG_PAGE_INCORE | SEG_PAGE_ANON;
325 					page_unlock(pp);
326 				}
327 			} else {
328 				anon_array_exit(&cookie);
329 			}
330 			if (shmd->shm_vpage[anon_index] & DISM_PG_LOCKED) {
331 				ret |= SEG_PAGE_LOCKED;
332 			}
333 			*vec++ = (char)ret;
334 		}
335 		ANON_LOCK_EXIT(&amp->a_rwlock);
336 		return (len);
337 	}
338 }
339 
340 static int
341 segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize)
342 {
343 	size_t share_size;
344 
345 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
346 
347 	/*
348 	 * seg.s_size may have been rounded up to the largest page size
349 	 * in shmat().
350 	 * XXX This should be cleanedup. sptdestroy should take a length
351 	 * argument which should be the same as sptcreate. Then
352 	 * this rounding would not be needed (or is done in shm.c)
353 	 * Only the check for full segment will be needed.
354 	 *
355 	 * XXX -- shouldn't raddr == 0 always? These tests don't seem
356 	 * to be useful at all.
357 	 */
358 	share_size = page_get_pagesize(seg->s_szc);
359 	ssize = P2ROUNDUP(ssize, share_size);
360 
361 	if (raddr == seg->s_base && ssize == seg->s_size) {
362 		seg_free(seg);
363 		return (0);
364 	} else
365 		return (EINVAL);
366 }
367 
368 int
369 segspt_create(struct seg *seg, caddr_t argsp)
370 {
371 	int		err;
372 	caddr_t		addr = seg->s_base;
373 	struct spt_data *sptd;
374 	struct 	segspt_crargs *sptcargs = (struct segspt_crargs *)argsp;
375 	struct anon_map *amp = sptcargs->amp;
376 	struct kshmid	*sp = amp->a_sp;
377 	struct	cred	*cred = CRED();
378 	ulong_t		i, j, anon_index = 0;
379 	pgcnt_t		npages = btopr(amp->size);
380 	struct vnode	*vp;
381 	page_t		**ppa;
382 	uint_t		hat_flags;
383 	size_t		pgsz;
384 	pgcnt_t		pgcnt;
385 	caddr_t		a;
386 	pgcnt_t		pidx;
387 	size_t		sz;
388 	proc_t		*procp = curproc;
389 	rctl_qty_t	lockedbytes = 0;
390 	kproject_t	*proj;
391 
392 	/*
393 	 * We are holding the a_lock on the underlying dummy as,
394 	 * so we can make calls to the HAT layer.
395 	 */
396 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
397 	ASSERT(sp != NULL);
398 
399 #ifdef DEBUG
400 	TNF_PROBE_2(segspt_create, "spt", /* CSTYLED */,
401 				tnf_opaque, addr, addr,
402 				tnf_ulong, len, seg->s_size);
403 #endif
404 	if ((sptcargs->flags & SHM_PAGEABLE) == 0) {
405 		if (err = anon_swap_adjust(npages))
406 			return (err);
407 	}
408 	err = ENOMEM;
409 
410 	if ((sptd = kmem_zalloc(sizeof (*sptd), KM_NOSLEEP)) == NULL)
411 		goto out1;
412 
413 	if ((sptcargs->flags & SHM_PAGEABLE) == 0) {
414 		if ((ppa = kmem_zalloc(((sizeof (page_t *)) * npages),
415 		    KM_NOSLEEP)) == NULL)
416 			goto out2;
417 	}
418 
419 	mutex_init(&sptd->spt_lock, NULL, MUTEX_DEFAULT, NULL);
420 
421 	if ((vp = kmem_zalloc(sizeof (*vp), KM_NOSLEEP)) == NULL)
422 		goto out3;
423 
424 	seg->s_ops = &segspt_ops;
425 	sptd->spt_vp = vp;
426 	sptd->spt_amp = amp;
427 	sptd->spt_prot = sptcargs->prot;
428 	sptd->spt_flags = sptcargs->flags;
429 	seg->s_data = (caddr_t)sptd;
430 	sptd->spt_ppa = NULL;
431 	sptd->spt_ppa_lckcnt = NULL;
432 	seg->s_szc = sptcargs->szc;
433 
434 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
435 	if (seg->s_szc > amp->a_szc) {
436 		amp->a_szc = seg->s_szc;
437 	}
438 	ANON_LOCK_EXIT(&amp->a_rwlock);
439 
440 	/*
441 	 * Set policy to affect initial allocation of pages in
442 	 * anon_map_createpages()
443 	 */
444 	(void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, amp, anon_index,
445 	    NULL, 0, ptob(npages));
446 
447 	if (sptcargs->flags & SHM_PAGEABLE) {
448 		size_t  share_sz;
449 		pgcnt_t new_npgs, more_pgs;
450 		struct anon_hdr *nahp;
451 
452 		share_sz = page_get_pagesize(seg->s_szc);
453 		if (!IS_P2ALIGNED(amp->size, share_sz)) {
454 			/*
455 			 * We are rounding up the size of the anon array
456 			 * on 4 M boundary because we always create 4 M
457 			 * of page(s) when locking, faulting pages and we
458 			 * don't have to check for all corner cases e.g.
459 			 * if there is enough space to allocate 4 M
460 			 * page.
461 			 */
462 			new_npgs = btop(P2ROUNDUP(amp->size, share_sz));
463 			more_pgs = new_npgs - npages;
464 
465 			if (anon_resv(ptob(more_pgs)) == 0) {
466 				err = ENOMEM;
467 				goto out4;
468 			}
469 			nahp = anon_create(new_npgs, ANON_SLEEP);
470 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
471 			(void) anon_copy_ptr(amp->ahp, 0, nahp, 0, npages,
472 			    ANON_SLEEP);
473 			anon_release(amp->ahp, npages);
474 			amp->ahp = nahp;
475 			amp->swresv = amp->size = ptob(new_npgs);
476 			ANON_LOCK_EXIT(&amp->a_rwlock);
477 			npages = new_npgs;
478 		}
479 
480 		sptd->spt_ppa_lckcnt = kmem_zalloc(npages *
481 		    sizeof (*sptd->spt_ppa_lckcnt), KM_SLEEP);
482 		sptd->spt_pcachecnt = 0;
483 		sptd->spt_realsize = ptob(npages);
484 		sptcargs->seg_spt = seg;
485 		return (0);
486 	}
487 
488 	/*
489 	 * get array of pages for each anon slot in amp
490 	 */
491 	if ((err = anon_map_createpages(amp, anon_index, ptob(npages), ppa,
492 	    seg, addr, S_CREATE, cred)) != 0)
493 		goto out4;
494 
495 	mutex_enter(&sp->shm_mlock);
496 
497 	/* May be partially locked, so, count bytes to charge for locking */
498 	for (i = 0; i < npages; i++)
499 		if (ppa[i]->p_lckcnt == 0)
500 			lockedbytes += PAGESIZE;
501 
502 	proj = sp->shm_perm.ipc_proj;
503 
504 	if (lockedbytes > 0) {
505 		mutex_enter(&procp->p_lock);
506 		if (rctl_incr_locked_mem(procp, proj, lockedbytes, 0)) {
507 			mutex_exit(&procp->p_lock);
508 			mutex_exit(&sp->shm_mlock);
509 			for (i = 0; i < npages; i++)
510 				page_unlock(ppa[i]);
511 			err = ENOMEM;
512 			goto out4;
513 		}
514 		mutex_exit(&procp->p_lock);
515 	}
516 
517 	/*
518 	 * addr is initial address corresponding to the first page on ppa list
519 	 */
520 	for (i = 0; i < npages; i++) {
521 		/* attempt to lock all pages */
522 		if (page_pp_lock(ppa[i], 0, 1) == 0) {
523 			/*
524 			 * if unable to lock any page, unlock all
525 			 * of them and return error
526 			 */
527 			for (j = 0; j < i; j++)
528 				page_pp_unlock(ppa[j], 0, 1);
529 			for (i = 0; i < npages; i++)
530 				page_unlock(ppa[i]);
531 			rctl_decr_locked_mem(NULL, proj, lockedbytes, 0);
532 			mutex_exit(&sp->shm_mlock);
533 			err = ENOMEM;
534 			goto out4;
535 		}
536 	}
537 	mutex_exit(&sp->shm_mlock);
538 
539 	/*
540 	 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
541 	 * for the entire life of the segment. For example platforms
542 	 * that do not support Dynamic Reconfiguration.
543 	 */
544 	hat_flags = HAT_LOAD_SHARE;
545 	if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, NULL))
546 		hat_flags |= HAT_LOAD_LOCK;
547 
548 	/*
549 	 * Load translations one lare page at a time
550 	 * to make sure we don't create mappings bigger than
551 	 * segment's size code in case underlying pages
552 	 * are shared with segvn's segment that uses bigger
553 	 * size code than we do.
554 	 */
555 	pgsz = page_get_pagesize(seg->s_szc);
556 	pgcnt = page_get_pagecnt(seg->s_szc);
557 	for (a = addr, pidx = 0; pidx < npages; a += pgsz, pidx += pgcnt) {
558 		sz = MIN(pgsz, ptob(npages - pidx));
559 		hat_memload_array(seg->s_as->a_hat, a, sz,
560 		    &ppa[pidx], sptd->spt_prot, hat_flags);
561 	}
562 
563 	/*
564 	 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
565 	 * we will leave the pages locked SE_SHARED for the life
566 	 * of the ISM segment. This will prevent any calls to
567 	 * hat_pageunload() on this ISM segment for those platforms.
568 	 */
569 	if (!(hat_flags & HAT_LOAD_LOCK)) {
570 		/*
571 		 * On platforms that support HAT_DYNAMIC_ISM_UNMAP,
572 		 * we no longer need to hold the SE_SHARED lock on the pages,
573 		 * since L_PAGELOCK and F_SOFTLOCK calls will grab the
574 		 * SE_SHARED lock on the pages as necessary.
575 		 */
576 		for (i = 0; i < npages; i++)
577 			page_unlock(ppa[i]);
578 	}
579 	sptd->spt_pcachecnt = 0;
580 	kmem_free(ppa, ((sizeof (page_t *)) * npages));
581 	sptd->spt_realsize = ptob(npages);
582 	atomic_add_long(&spt_used, npages);
583 	sptcargs->seg_spt = seg;
584 	return (0);
585 
586 out4:
587 	seg->s_data = NULL;
588 	kmem_free(vp, sizeof (*vp));
589 out3:
590 	mutex_destroy(&sptd->spt_lock);
591 	if ((sptcargs->flags & SHM_PAGEABLE) == 0)
592 		kmem_free(ppa, (sizeof (*ppa) * npages));
593 out2:
594 	kmem_free(sptd, sizeof (*sptd));
595 out1:
596 	if ((sptcargs->flags & SHM_PAGEABLE) == 0)
597 		anon_swap_restore(npages);
598 	return (err);
599 }
600 
601 /*ARGSUSED*/
602 void
603 segspt_free_pages(struct seg *seg, caddr_t addr, size_t len)
604 {
605 	struct page 	*pp;
606 	struct spt_data *sptd = (struct spt_data *)seg->s_data;
607 	pgcnt_t		npages;
608 	ulong_t		anon_idx;
609 	struct anon_map *amp;
610 	struct anon 	*ap;
611 	struct vnode 	*vp;
612 	u_offset_t 	off;
613 	uint_t		hat_flags;
614 	int		root = 0;
615 	pgcnt_t		pgs, curnpgs = 0;
616 	page_t		*rootpp;
617 	rctl_qty_t	unlocked_bytes = 0;
618 	kproject_t	*proj;
619 	kshmid_t	*sp;
620 
621 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
622 
623 	len = P2ROUNDUP(len, PAGESIZE);
624 
625 	npages = btop(len);
626 
627 	hat_flags = HAT_UNLOAD_UNLOCK;
628 	if ((hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) ||
629 	    (sptd->spt_flags & SHM_PAGEABLE)) {
630 		hat_flags = HAT_UNLOAD;
631 	}
632 
633 	hat_unload(seg->s_as->a_hat, addr, len, hat_flags);
634 
635 	amp = sptd->spt_amp;
636 	if (sptd->spt_flags & SHM_PAGEABLE)
637 		npages = btop(amp->size);
638 
639 	ASSERT(amp != NULL);
640 
641 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
642 		sp = amp->a_sp;
643 		proj = sp->shm_perm.ipc_proj;
644 		mutex_enter(&sp->shm_mlock);
645 	}
646 	for (anon_idx = 0; anon_idx < npages; anon_idx++) {
647 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
648 			if ((ap = anon_get_ptr(amp->ahp, anon_idx)) == NULL) {
649 				panic("segspt_free_pages: null app");
650 				/*NOTREACHED*/
651 			}
652 		} else {
653 			if ((ap = anon_get_next_ptr(amp->ahp, &anon_idx))
654 			    == NULL)
655 				continue;
656 		}
657 		ASSERT(ANON_ISBUSY(anon_get_slot(amp->ahp, anon_idx)) == 0);
658 		swap_xlate(ap, &vp, &off);
659 
660 		/*
661 		 * If this platform supports HAT_DYNAMIC_ISM_UNMAP,
662 		 * the pages won't be having SE_SHARED lock at this
663 		 * point.
664 		 *
665 		 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
666 		 * the pages are still held SE_SHARED locked from the
667 		 * original segspt_create()
668 		 *
669 		 * Our goal is to get SE_EXCL lock on each page, remove
670 		 * permanent lock on it and invalidate the page.
671 		 */
672 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
673 			if (hat_flags == HAT_UNLOAD)
674 				pp = page_lookup(vp, off, SE_EXCL);
675 			else {
676 				if ((pp = page_find(vp, off)) == NULL) {
677 					panic("segspt_free_pages: "
678 					    "page not locked");
679 					/*NOTREACHED*/
680 				}
681 				if (!page_tryupgrade(pp)) {
682 					page_unlock(pp);
683 					pp = page_lookup(vp, off, SE_EXCL);
684 				}
685 			}
686 			if (pp == NULL) {
687 				panic("segspt_free_pages: "
688 				    "page not in the system");
689 				/*NOTREACHED*/
690 			}
691 			ASSERT(pp->p_lckcnt > 0);
692 			page_pp_unlock(pp, 0, 1);
693 			if (pp->p_lckcnt == 0)
694 				    unlocked_bytes += PAGESIZE;
695 		} else {
696 			if ((pp = page_lookup(vp, off, SE_EXCL)) == NULL)
697 				continue;
698 		}
699 		/*
700 		 * It's logical to invalidate the pages here as in most cases
701 		 * these were created by segspt.
702 		 */
703 		if (pp->p_szc != 0) {
704 			/*
705 			 * For DISM swap is released in shm_rm_amp.
706 			 */
707 			if ((sptd->spt_flags & SHM_PAGEABLE) == 0 &&
708 			    ap->an_pvp != NULL) {
709 				panic("segspt_free_pages: pvp non NULL");
710 				/*NOTREACHED*/
711 			}
712 			if (root == 0) {
713 				ASSERT(curnpgs == 0);
714 				root = 1;
715 				rootpp = pp;
716 				pgs = curnpgs = page_get_pagecnt(pp->p_szc);
717 				ASSERT(pgs > 1);
718 				ASSERT(IS_P2ALIGNED(pgs, pgs));
719 				ASSERT(!(page_pptonum(pp) & (pgs - 1)));
720 				curnpgs--;
721 			} else if ((page_pptonum(pp) & (pgs - 1)) == pgs - 1) {
722 				ASSERT(curnpgs == 1);
723 				ASSERT(page_pptonum(pp) ==
724 				    page_pptonum(rootpp) + (pgs - 1));
725 				page_destroy_pages(rootpp);
726 				root = 0;
727 				curnpgs = 0;
728 			} else {
729 				ASSERT(curnpgs > 1);
730 				ASSERT(page_pptonum(pp) ==
731 				    page_pptonum(rootpp) + (pgs - curnpgs));
732 				curnpgs--;
733 			}
734 		} else {
735 			if (root != 0 || curnpgs != 0) {
736 				panic("segspt_free_pages: bad large page");
737 				/*NOTREACHED*/
738 			}
739 			/*LINTED: constant in conditional context */
740 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
741 		}
742 	}
743 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
744 		if (unlocked_bytes > 0)
745 			rctl_decr_locked_mem(NULL, proj, unlocked_bytes, 0);
746 		mutex_exit(&sp->shm_mlock);
747 	}
748 	if (root != 0 || curnpgs != 0) {
749 		panic("segspt_free_pages: bad large page");
750 		/*NOTREACHED*/
751 	}
752 
753 	/*
754 	 * mark that pages have been released
755 	 */
756 	sptd->spt_realsize = 0;
757 
758 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
759 		atomic_add_long(&spt_used, -npages);
760 		anon_swap_restore(npages);
761 	}
762 }
763 
764 /*
765  * Get memory allocation policy info for specified address in given segment
766  */
767 static lgrp_mem_policy_info_t *
768 segspt_getpolicy(struct seg *seg, caddr_t addr)
769 {
770 	struct anon_map		*amp;
771 	ulong_t			anon_index;
772 	lgrp_mem_policy_info_t	*policy_info;
773 	struct spt_data		*spt_data;
774 
775 	ASSERT(seg != NULL);
776 
777 	/*
778 	 * Get anon_map from segspt
779 	 *
780 	 * Assume that no lock needs to be held on anon_map, since
781 	 * it should be protected by its reference count which must be
782 	 * nonzero for an existing segment
783 	 * Need to grab readers lock on policy tree though
784 	 */
785 	spt_data = (struct spt_data *)seg->s_data;
786 	if (spt_data == NULL)
787 		return (NULL);
788 	amp = spt_data->spt_amp;
789 	ASSERT(amp->refcnt != 0);
790 
791 	/*
792 	 * Get policy info
793 	 *
794 	 * Assume starting anon index of 0
795 	 */
796 	anon_index = seg_page(seg, addr);
797 	policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0);
798 
799 	return (policy_info);
800 }
801 
802 /*
803  * DISM only.
804  * Return locked pages over a given range.
805  *
806  * We will cache all DISM locked pages and save the pplist for the
807  * entire segment in the ppa field of the underlying DISM segment structure.
808  * Later, during a call to segspt_reclaim() we will use this ppa array
809  * to page_unlock() all of the pages and then we will free this ppa list.
810  */
811 /*ARGSUSED*/
812 static int
813 segspt_dismpagelock(struct seg *seg, caddr_t addr, size_t len,
814     struct page ***ppp, enum lock_type type, enum seg_rw rw)
815 {
816 	struct  shm_data *shmd = (struct shm_data *)seg->s_data;
817 	struct  seg	*sptseg = shmd->shm_sptseg;
818 	struct  spt_data *sptd = sptseg->s_data;
819 	pgcnt_t pg_idx, npages, tot_npages, npgs;
820 	struct  page **pplist, **pl, **ppa, *pp;
821 	struct  anon_map *amp;
822 	spgcnt_t	an_idx;
823 	int 	ret = ENOTSUP;
824 	uint_t	pl_built = 0;
825 	struct  anon *ap;
826 	struct  vnode *vp;
827 	u_offset_t off;
828 	pgcnt_t claim_availrmem = 0;
829 	uint_t	szc;
830 
831 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
832 
833 	/*
834 	 * We want to lock/unlock the entire ISM segment. Therefore,
835 	 * we will be using the underlying sptseg and it's base address
836 	 * and length for the caching arguments.
837 	 */
838 	ASSERT(sptseg);
839 	ASSERT(sptd);
840 
841 	pg_idx = seg_page(seg, addr);
842 	npages = btopr(len);
843 
844 	/*
845 	 * check if the request is larger than number of pages covered
846 	 * by amp
847 	 */
848 	if (pg_idx + npages > btopr(sptd->spt_amp->size)) {
849 		*ppp = NULL;
850 		return (ENOTSUP);
851 	}
852 
853 	if (type == L_PAGEUNLOCK) {
854 		ASSERT(sptd->spt_ppa != NULL);
855 
856 		seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
857 		    sptd->spt_ppa, sptd->spt_prot, segspt_reclaim);
858 
859 		/*
860 		 * If someone is blocked while unmapping, we purge
861 		 * segment page cache and thus reclaim pplist synchronously
862 		 * without waiting for seg_pasync_thread. This speeds up
863 		 * unmapping in cases where munmap(2) is called, while
864 		 * raw async i/o is still in progress or where a thread
865 		 * exits on data fault in a multithreaded application.
866 		 */
867 		if (AS_ISUNMAPWAIT(seg->s_as) && (shmd->shm_softlockcnt > 0)) {
868 			segspt_purge(seg);
869 		}
870 		return (0);
871 	} else if (type == L_PAGERECLAIM) {
872 		ASSERT(sptd->spt_ppa != NULL);
873 		(void) segspt_reclaim(seg, seg->s_base, sptd->spt_amp->size,
874 		    sptd->spt_ppa, sptd->spt_prot);
875 		return (0);
876 	}
877 
878 	if (sptd->spt_flags & DISM_PPA_CHANGED) {
879 		segspt_purge(seg);
880 		/*
881 		 * for DISM ppa needs to be rebuild since
882 		 * number of locked pages could be changed
883 		 */
884 		*ppp = NULL;
885 		return (ENOTSUP);
886 	}
887 
888 	/*
889 	 * First try to find pages in segment page cache, without
890 	 * holding the segment lock.
891 	 */
892 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
893 	    sptd->spt_prot);
894 	if (pplist != NULL) {
895 		ASSERT(sptd->spt_ppa != NULL);
896 		ASSERT(sptd->spt_ppa == pplist);
897 		ppa = sptd->spt_ppa;
898 		for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
899 			if (ppa[an_idx] == NULL) {
900 				seg_pinactive(seg, seg->s_base,
901 				    sptd->spt_amp->size, ppa,
902 				    sptd->spt_prot, segspt_reclaim);
903 				*ppp = NULL;
904 				return (ENOTSUP);
905 			}
906 			if ((szc = ppa[an_idx]->p_szc) != 0) {
907 				npgs = page_get_pagecnt(szc);
908 				an_idx = P2ROUNDUP(an_idx + 1, npgs);
909 			} else {
910 				an_idx++;
911 			}
912 		}
913 		/*
914 		 * Since we cache the entire DISM segment, we want to
915 		 * set ppp to point to the first slot that corresponds
916 		 * to the requested addr, i.e. pg_idx.
917 		 */
918 		*ppp = &(sptd->spt_ppa[pg_idx]);
919 		return (0);
920 	}
921 
922 	/* The L_PAGELOCK case... */
923 	mutex_enter(&sptd->spt_lock);
924 	/*
925 	 * try to find pages in segment page cache with mutex
926 	 */
927 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
928 	    sptd->spt_prot);
929 	if (pplist != NULL) {
930 		ASSERT(sptd->spt_ppa != NULL);
931 		ASSERT(sptd->spt_ppa == pplist);
932 		ppa = sptd->spt_ppa;
933 		for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
934 			if (ppa[an_idx] == NULL) {
935 				mutex_exit(&sptd->spt_lock);
936 				seg_pinactive(seg, seg->s_base,
937 				    sptd->spt_amp->size, ppa,
938 				    sptd->spt_prot, segspt_reclaim);
939 				*ppp = NULL;
940 				return (ENOTSUP);
941 			}
942 			if ((szc = ppa[an_idx]->p_szc) != 0) {
943 				npgs = page_get_pagecnt(szc);
944 				an_idx = P2ROUNDUP(an_idx + 1, npgs);
945 			} else {
946 				an_idx++;
947 			}
948 		}
949 		/*
950 		 * Since we cache the entire DISM segment, we want to
951 		 * set ppp to point to the first slot that corresponds
952 		 * to the requested addr, i.e. pg_idx.
953 		 */
954 		mutex_exit(&sptd->spt_lock);
955 		*ppp = &(sptd->spt_ppa[pg_idx]);
956 		return (0);
957 	}
958 	if (seg_pinsert_check(seg, sptd->spt_amp->size, SEGP_FORCE_WIRED) ==
959 	    SEGP_FAIL) {
960 		mutex_exit(&sptd->spt_lock);
961 		*ppp = NULL;
962 		return (ENOTSUP);
963 	}
964 
965 	/*
966 	 * No need to worry about protections because DISM pages are always rw.
967 	 */
968 	pl = pplist = NULL;
969 	amp = sptd->spt_amp;
970 
971 	/*
972 	 * Do we need to build the ppa array?
973 	 */
974 	if (sptd->spt_ppa == NULL) {
975 		pgcnt_t lpg_cnt = 0;
976 
977 		pl_built = 1;
978 		tot_npages = btopr(sptd->spt_amp->size);
979 
980 		ASSERT(sptd->spt_pcachecnt == 0);
981 		pplist = kmem_zalloc(sizeof (page_t *) * tot_npages, KM_SLEEP);
982 		pl = pplist;
983 
984 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
985 		for (an_idx = 0; an_idx < tot_npages; ) {
986 			ap = anon_get_ptr(amp->ahp, an_idx);
987 			/*
988 			 * Cache only mlocked pages. For large pages
989 			 * if one (constituent) page is mlocked
990 			 * all pages for that large page
991 			 * are cached also. This is for quick
992 			 * lookups of ppa array;
993 			 */
994 			if ((ap != NULL) && (lpg_cnt != 0 ||
995 			    (sptd->spt_ppa_lckcnt[an_idx] != 0))) {
996 
997 				swap_xlate(ap, &vp, &off);
998 				pp = page_lookup(vp, off, SE_SHARED);
999 				ASSERT(pp != NULL);
1000 				if (lpg_cnt == 0) {
1001 					lpg_cnt++;
1002 					/*
1003 					 * For a small page, we are done --
1004 					 * lpg_count is reset to 0 below.
1005 					 *
1006 					 * For a large page, we are guaranteed
1007 					 * to find the anon structures of all
1008 					 * constituent pages and a non-zero
1009 					 * lpg_cnt ensures that we don't test
1010 					 * for mlock for these. We are done
1011 					 * when lpg_count reaches (npgs + 1).
1012 					 * If we are not the first constituent
1013 					 * page, restart at the first one.
1014 					 */
1015 					npgs = page_get_pagecnt(pp->p_szc);
1016 					if (!IS_P2ALIGNED(an_idx, npgs)) {
1017 						an_idx = P2ALIGN(an_idx, npgs);
1018 						page_unlock(pp);
1019 						continue;
1020 					}
1021 				}
1022 				if (++lpg_cnt > npgs)
1023 					lpg_cnt = 0;
1024 
1025 				/*
1026 				 * availrmem is decremented only
1027 				 * for unlocked pages
1028 				 */
1029 				if (sptd->spt_ppa_lckcnt[an_idx] == 0)
1030 					claim_availrmem++;
1031 				pplist[an_idx] = pp;
1032 			}
1033 			an_idx++;
1034 		}
1035 		ANON_LOCK_EXIT(&amp->a_rwlock);
1036 
1037 		mutex_enter(&freemem_lock);
1038 		if (availrmem < tune.t_minarmem + claim_availrmem) {
1039 			mutex_exit(&freemem_lock);
1040 			ret = FC_MAKE_ERR(ENOMEM);
1041 			claim_availrmem = 0;
1042 			goto insert_fail;
1043 		} else {
1044 			availrmem -= claim_availrmem;
1045 		}
1046 		mutex_exit(&freemem_lock);
1047 
1048 		sptd->spt_ppa = pl;
1049 	} else {
1050 		/*
1051 		 * We already have a valid ppa[].
1052 		 */
1053 		pl = sptd->spt_ppa;
1054 	}
1055 
1056 	ASSERT(pl != NULL);
1057 
1058 	ret = seg_pinsert(seg, seg->s_base, sptd->spt_amp->size,
1059 	    pl, sptd->spt_prot, SEGP_FORCE_WIRED | SEGP_ASYNC_FLUSH,
1060 	    segspt_reclaim);
1061 	if (ret == SEGP_FAIL) {
1062 		/*
1063 		 * seg_pinsert failed. We return
1064 		 * ENOTSUP, so that the as_pagelock() code will
1065 		 * then try the slower F_SOFTLOCK path.
1066 		 */
1067 		if (pl_built) {
1068 			/*
1069 			 * No one else has referenced the ppa[].
1070 			 * We created it and we need to destroy it.
1071 			 */
1072 			sptd->spt_ppa = NULL;
1073 		}
1074 		ret = ENOTSUP;
1075 		goto insert_fail;
1076 	}
1077 
1078 	/*
1079 	 * In either case, we increment softlockcnt on the 'real' segment.
1080 	 */
1081 	sptd->spt_pcachecnt++;
1082 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), 1);
1083 
1084 	ppa = sptd->spt_ppa;
1085 	for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
1086 		if (ppa[an_idx] == NULL) {
1087 			mutex_exit(&sptd->spt_lock);
1088 			seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
1089 			    pl, sptd->spt_prot, segspt_reclaim);
1090 			*ppp = NULL;
1091 			return (ENOTSUP);
1092 		}
1093 		if ((szc = ppa[an_idx]->p_szc) != 0) {
1094 			npgs = page_get_pagecnt(szc);
1095 			an_idx = P2ROUNDUP(an_idx + 1, npgs);
1096 		} else {
1097 			an_idx++;
1098 		}
1099 	}
1100 	/*
1101 	 * We can now drop the sptd->spt_lock since the ppa[]
1102 	 * exists and he have incremented pacachecnt.
1103 	 */
1104 	mutex_exit(&sptd->spt_lock);
1105 
1106 	/*
1107 	 * Since we cache the entire segment, we want to
1108 	 * set ppp to point to the first slot that corresponds
1109 	 * to the requested addr, i.e. pg_idx.
1110 	 */
1111 	*ppp = &(sptd->spt_ppa[pg_idx]);
1112 	return (ret);
1113 
1114 insert_fail:
1115 	/*
1116 	 * We will only reach this code if we tried and failed.
1117 	 *
1118 	 * And we can drop the lock on the dummy seg, once we've failed
1119 	 * to set up a new ppa[].
1120 	 */
1121 	mutex_exit(&sptd->spt_lock);
1122 
1123 	if (pl_built) {
1124 		mutex_enter(&freemem_lock);
1125 		availrmem += claim_availrmem;
1126 		mutex_exit(&freemem_lock);
1127 
1128 		/*
1129 		 * We created pl and we need to destroy it.
1130 		 */
1131 		pplist = pl;
1132 		for (an_idx = 0; an_idx < tot_npages; an_idx++) {
1133 			if (pplist[an_idx] != NULL)
1134 				page_unlock(pplist[an_idx]);
1135 		}
1136 		kmem_free(pl, sizeof (page_t *) * tot_npages);
1137 	}
1138 
1139 	if (shmd->shm_softlockcnt <= 0) {
1140 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1141 			mutex_enter(&seg->s_as->a_contents);
1142 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1143 				AS_CLRUNMAPWAIT(seg->s_as);
1144 				cv_broadcast(&seg->s_as->a_cv);
1145 			}
1146 			mutex_exit(&seg->s_as->a_contents);
1147 		}
1148 	}
1149 	*ppp = NULL;
1150 	return (ret);
1151 }
1152 
1153 
1154 
1155 /*
1156  * return locked pages over a given range.
1157  *
1158  * We will cache the entire ISM segment and save the pplist for the
1159  * entire segment in the ppa field of the underlying ISM segment structure.
1160  * Later, during a call to segspt_reclaim() we will use this ppa array
1161  * to page_unlock() all of the pages and then we will free this ppa list.
1162  */
1163 /*ARGSUSED*/
1164 static int
1165 segspt_shmpagelock(struct seg *seg, caddr_t addr, size_t len,
1166     struct page ***ppp, enum lock_type type, enum seg_rw rw)
1167 {
1168 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1169 	struct seg	*sptseg = shmd->shm_sptseg;
1170 	struct spt_data *sptd = sptseg->s_data;
1171 	pgcnt_t np, page_index, npages;
1172 	caddr_t a, spt_base;
1173 	struct page **pplist, **pl, *pp;
1174 	struct anon_map *amp;
1175 	ulong_t anon_index;
1176 	int ret = ENOTSUP;
1177 	uint_t	pl_built = 0;
1178 	struct anon *ap;
1179 	struct vnode *vp;
1180 	u_offset_t off;
1181 
1182 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1183 
1184 	/*
1185 	 * We want to lock/unlock the entire ISM segment. Therefore,
1186 	 * we will be using the underlying sptseg and it's base address
1187 	 * and length for the caching arguments.
1188 	 */
1189 	ASSERT(sptseg);
1190 	ASSERT(sptd);
1191 
1192 	if (sptd->spt_flags & SHM_PAGEABLE) {
1193 		return (segspt_dismpagelock(seg, addr, len, ppp, type, rw));
1194 	}
1195 
1196 	page_index = seg_page(seg, addr);
1197 	npages = btopr(len);
1198 
1199 	/*
1200 	 * check if the request is larger than number of pages covered
1201 	 * by amp
1202 	 */
1203 	if (page_index + npages > btopr(sptd->spt_amp->size)) {
1204 		*ppp = NULL;
1205 		return (ENOTSUP);
1206 	}
1207 
1208 	if (type == L_PAGEUNLOCK) {
1209 
1210 		ASSERT(sptd->spt_ppa != NULL);
1211 
1212 		seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
1213 		    sptd->spt_ppa, sptd->spt_prot, segspt_reclaim);
1214 
1215 		/*
1216 		 * If someone is blocked while unmapping, we purge
1217 		 * segment page cache and thus reclaim pplist synchronously
1218 		 * without waiting for seg_pasync_thread. This speeds up
1219 		 * unmapping in cases where munmap(2) is called, while
1220 		 * raw async i/o is still in progress or where a thread
1221 		 * exits on data fault in a multithreaded application.
1222 		 */
1223 		if (AS_ISUNMAPWAIT(seg->s_as) && (shmd->shm_softlockcnt > 0)) {
1224 			segspt_purge(seg);
1225 		}
1226 		return (0);
1227 	} else if (type == L_PAGERECLAIM) {
1228 		ASSERT(sptd->spt_ppa != NULL);
1229 
1230 		(void) segspt_reclaim(seg, seg->s_base, sptd->spt_amp->size,
1231 		    sptd->spt_ppa, sptd->spt_prot);
1232 		return (0);
1233 	}
1234 
1235 	/*
1236 	 * First try to find pages in segment page cache, without
1237 	 * holding the segment lock.
1238 	 */
1239 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
1240 	    sptd->spt_prot);
1241 	if (pplist != NULL) {
1242 		ASSERT(sptd->spt_ppa == pplist);
1243 		ASSERT(sptd->spt_ppa[page_index]);
1244 		/*
1245 		 * Since we cache the entire ISM segment, we want to
1246 		 * set ppp to point to the first slot that corresponds
1247 		 * to the requested addr, i.e. page_index.
1248 		 */
1249 		*ppp = &(sptd->spt_ppa[page_index]);
1250 		return (0);
1251 	}
1252 
1253 	/* The L_PAGELOCK case... */
1254 	mutex_enter(&sptd->spt_lock);
1255 
1256 	/*
1257 	 * try to find pages in segment page cache
1258 	 */
1259 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
1260 	    sptd->spt_prot);
1261 	if (pplist != NULL) {
1262 		ASSERT(sptd->spt_ppa == pplist);
1263 		/*
1264 		 * Since we cache the entire segment, we want to
1265 		 * set ppp to point to the first slot that corresponds
1266 		 * to the requested addr, i.e. page_index.
1267 		 */
1268 		mutex_exit(&sptd->spt_lock);
1269 		*ppp = &(sptd->spt_ppa[page_index]);
1270 		return (0);
1271 	}
1272 
1273 	if (seg_pinsert_check(seg, sptd->spt_amp->size, SEGP_FORCE_WIRED) ==
1274 	    SEGP_FAIL) {
1275 		mutex_exit(&sptd->spt_lock);
1276 		*ppp = NULL;
1277 		return (ENOTSUP);
1278 	}
1279 
1280 	/*
1281 	 * No need to worry about protections because ISM pages
1282 	 * are always rw.
1283 	 */
1284 	pl = pplist = NULL;
1285 
1286 	/*
1287 	 * Do we need to build the ppa array?
1288 	 */
1289 	if (sptd->spt_ppa == NULL) {
1290 		ASSERT(sptd->spt_ppa == pplist);
1291 
1292 		spt_base = sptseg->s_base;
1293 		pl_built = 1;
1294 
1295 		/*
1296 		 * availrmem is decremented once during anon_swap_adjust()
1297 		 * and is incremented during the anon_unresv(), which is
1298 		 * called from shm_rm_amp() when the segment is destroyed.
1299 		 */
1300 		amp = sptd->spt_amp;
1301 		ASSERT(amp != NULL);
1302 
1303 		/* pcachecnt is protected by sptd->spt_lock */
1304 		ASSERT(sptd->spt_pcachecnt == 0);
1305 		pplist = kmem_zalloc(sizeof (page_t *)
1306 		    * btopr(sptd->spt_amp->size), KM_SLEEP);
1307 		pl = pplist;
1308 
1309 		anon_index = seg_page(sptseg, spt_base);
1310 
1311 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1312 		for (a = spt_base; a < (spt_base + sptd->spt_amp->size);
1313 		    a += PAGESIZE, anon_index++, pplist++) {
1314 			ap = anon_get_ptr(amp->ahp, anon_index);
1315 			ASSERT(ap != NULL);
1316 			swap_xlate(ap, &vp, &off);
1317 			pp = page_lookup(vp, off, SE_SHARED);
1318 			ASSERT(pp != NULL);
1319 			*pplist = pp;
1320 		}
1321 		ANON_LOCK_EXIT(&amp->a_rwlock);
1322 
1323 		if (a < (spt_base + sptd->spt_amp->size)) {
1324 			ret = ENOTSUP;
1325 			goto insert_fail;
1326 		}
1327 		sptd->spt_ppa = pl;
1328 	} else {
1329 		/*
1330 		 * We already have a valid ppa[].
1331 		 */
1332 		pl = sptd->spt_ppa;
1333 	}
1334 
1335 	ASSERT(pl != NULL);
1336 
1337 	ret = seg_pinsert(seg, seg->s_base, sptd->spt_amp->size,
1338 	    pl, sptd->spt_prot, SEGP_FORCE_WIRED, segspt_reclaim);
1339 	if (ret == SEGP_FAIL) {
1340 		/*
1341 		 * seg_pinsert failed. We return
1342 		 * ENOTSUP, so that the as_pagelock() code will
1343 		 * then try the slower F_SOFTLOCK path.
1344 		 */
1345 		if (pl_built) {
1346 			/*
1347 			 * No one else has referenced the ppa[].
1348 			 * We created it and we need to destroy it.
1349 			 */
1350 			sptd->spt_ppa = NULL;
1351 		}
1352 		ret = ENOTSUP;
1353 		goto insert_fail;
1354 	}
1355 
1356 	/*
1357 	 * In either case, we increment softlockcnt on the 'real' segment.
1358 	 */
1359 	sptd->spt_pcachecnt++;
1360 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), 1);
1361 
1362 	/*
1363 	 * We can now drop the sptd->spt_lock since the ppa[]
1364 	 * exists and he have incremented pacachecnt.
1365 	 */
1366 	mutex_exit(&sptd->spt_lock);
1367 
1368 	/*
1369 	 * Since we cache the entire segment, we want to
1370 	 * set ppp to point to the first slot that corresponds
1371 	 * to the requested addr, i.e. page_index.
1372 	 */
1373 	*ppp = &(sptd->spt_ppa[page_index]);
1374 	return (ret);
1375 
1376 insert_fail:
1377 	/*
1378 	 * We will only reach this code if we tried and failed.
1379 	 *
1380 	 * And we can drop the lock on the dummy seg, once we've failed
1381 	 * to set up a new ppa[].
1382 	 */
1383 	mutex_exit(&sptd->spt_lock);
1384 
1385 	if (pl_built) {
1386 		/*
1387 		 * We created pl and we need to destroy it.
1388 		 */
1389 		pplist = pl;
1390 		np = (((uintptr_t)(a - spt_base)) >> PAGESHIFT);
1391 		while (np) {
1392 			page_unlock(*pplist);
1393 			np--;
1394 			pplist++;
1395 		}
1396 		kmem_free(pl, sizeof (page_t *) *
1397 				btopr(sptd->spt_amp->size));
1398 	}
1399 	if (shmd->shm_softlockcnt <= 0) {
1400 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1401 			mutex_enter(&seg->s_as->a_contents);
1402 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1403 				AS_CLRUNMAPWAIT(seg->s_as);
1404 				cv_broadcast(&seg->s_as->a_cv);
1405 			}
1406 			mutex_exit(&seg->s_as->a_contents);
1407 		}
1408 	}
1409 	*ppp = NULL;
1410 	return (ret);
1411 }
1412 
1413 /*
1414  * purge any cached pages in the I/O page cache
1415  */
1416 static void
1417 segspt_purge(struct seg *seg)
1418 {
1419 	seg_ppurge(seg);
1420 }
1421 
1422 static int
1423 segspt_reclaim(struct seg *seg, caddr_t addr, size_t len, struct page **pplist,
1424 	enum seg_rw rw)
1425 {
1426 	struct	shm_data *shmd = (struct shm_data *)seg->s_data;
1427 	struct	seg	*sptseg;
1428 	struct	spt_data *sptd;
1429 	pgcnt_t npages, i, free_availrmem = 0;
1430 	int	done = 0;
1431 
1432 #ifdef lint
1433 	addr = addr;
1434 #endif
1435 	sptseg = shmd->shm_sptseg;
1436 	sptd = sptseg->s_data;
1437 	npages = (len >> PAGESHIFT);
1438 	ASSERT(npages);
1439 	ASSERT(sptd->spt_pcachecnt != 0);
1440 	ASSERT(sptd->spt_ppa == pplist);
1441 	ASSERT(npages == btopr(sptd->spt_amp->size));
1442 	/*
1443 	 * Acquire the lock on the dummy seg and destroy the
1444 	 * ppa array IF this is the last pcachecnt.
1445 	 */
1446 	mutex_enter(&sptd->spt_lock);
1447 	if (--sptd->spt_pcachecnt == 0) {
1448 		for (i = 0; i < npages; i++) {
1449 			if (pplist[i] == NULL) {
1450 				continue;
1451 			}
1452 			if (rw == S_WRITE) {
1453 				hat_setrefmod(pplist[i]);
1454 			} else {
1455 				hat_setref(pplist[i]);
1456 			}
1457 			if ((sptd->spt_flags & SHM_PAGEABLE) &&
1458 			    (sptd->spt_ppa_lckcnt[i] == 0))
1459 				free_availrmem++;
1460 			page_unlock(pplist[i]);
1461 		}
1462 		if (sptd->spt_flags & SHM_PAGEABLE) {
1463 			mutex_enter(&freemem_lock);
1464 			availrmem += free_availrmem;
1465 			mutex_exit(&freemem_lock);
1466 		}
1467 		/*
1468 		 * Since we want to cach/uncache the entire ISM segment,
1469 		 * we will track the pplist in a segspt specific field
1470 		 * ppa, that is initialized at the time we add an entry to
1471 		 * the cache.
1472 		 */
1473 		ASSERT(sptd->spt_pcachecnt == 0);
1474 		kmem_free(pplist, sizeof (page_t *) * npages);
1475 		sptd->spt_ppa = NULL;
1476 		sptd->spt_flags &= ~DISM_PPA_CHANGED;
1477 		done = 1;
1478 	}
1479 	mutex_exit(&sptd->spt_lock);
1480 	/*
1481 	 * Now decrement softlockcnt.
1482 	 */
1483 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -1);
1484 
1485 	if (shmd->shm_softlockcnt <= 0) {
1486 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1487 			mutex_enter(&seg->s_as->a_contents);
1488 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1489 				AS_CLRUNMAPWAIT(seg->s_as);
1490 				cv_broadcast(&seg->s_as->a_cv);
1491 			}
1492 			mutex_exit(&seg->s_as->a_contents);
1493 		}
1494 	}
1495 	return (done);
1496 }
1497 
1498 /*
1499  * Do a F_SOFTUNLOCK call over the range requested.
1500  * The range must have already been F_SOFTLOCK'ed.
1501  *
1502  * The calls to acquire and release the anon map lock mutex were
1503  * removed in order to avoid a deadly embrace during a DR
1504  * memory delete operation.  (Eg. DR blocks while waiting for a
1505  * exclusive lock on a page that is being used for kaio; the
1506  * thread that will complete the kaio and call segspt_softunlock
1507  * blocks on the anon map lock; another thread holding the anon
1508  * map lock blocks on another page lock via the segspt_shmfault
1509  * -> page_lookup -> page_lookup_create -> page_lock_es code flow.)
1510  *
1511  * The appropriateness of the removal is based upon the following:
1512  * 1. If we are holding a segment's reader lock and the page is held
1513  * shared, then the corresponding element in anonmap which points to
1514  * anon struct cannot change and there is no need to acquire the
1515  * anonymous map lock.
1516  * 2. Threads in segspt_softunlock have a reader lock on the segment
1517  * and already have the shared page lock, so we are guaranteed that
1518  * the anon map slot cannot change and therefore can call anon_get_ptr()
1519  * without grabbing the anonymous map lock.
1520  * 3. Threads that softlock a shared page break copy-on-write, even if
1521  * its a read.  Thus cow faults can be ignored with respect to soft
1522  * unlocking, since the breaking of cow means that the anon slot(s) will
1523  * not be shared.
1524  */
1525 static void
1526 segspt_softunlock(struct seg *seg, caddr_t sptseg_addr,
1527 	size_t len, enum seg_rw rw)
1528 {
1529 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1530 	struct seg	*sptseg;
1531 	struct spt_data *sptd;
1532 	page_t *pp;
1533 	caddr_t adr;
1534 	struct vnode *vp;
1535 	u_offset_t offset;
1536 	ulong_t anon_index;
1537 	struct anon_map *amp;		/* XXX - for locknest */
1538 	struct anon *ap = NULL;
1539 	pgcnt_t npages;
1540 
1541 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1542 
1543 	sptseg = shmd->shm_sptseg;
1544 	sptd = sptseg->s_data;
1545 
1546 	/*
1547 	 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
1548 	 * and therefore their pages are SE_SHARED locked
1549 	 * for the entire life of the segment.
1550 	 */
1551 	if ((!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) &&
1552 		((sptd->spt_flags & SHM_PAGEABLE) == 0)) {
1553 		goto softlock_decrement;
1554 	}
1555 
1556 	/*
1557 	 * Any thread is free to do a page_find and
1558 	 * page_unlock() on the pages within this seg.
1559 	 *
1560 	 * We are already holding the as->a_lock on the user's
1561 	 * real segment, but we need to hold the a_lock on the
1562 	 * underlying dummy as. This is mostly to satisfy the
1563 	 * underlying HAT layer.
1564 	 */
1565 	AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
1566 	hat_unlock(sptseg->s_as->a_hat, sptseg_addr, len);
1567 	AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
1568 
1569 	amp = sptd->spt_amp;
1570 	ASSERT(amp != NULL);
1571 	anon_index = seg_page(sptseg, sptseg_addr);
1572 
1573 	for (adr = sptseg_addr; adr < sptseg_addr + len; adr += PAGESIZE) {
1574 		ap = anon_get_ptr(amp->ahp, anon_index++);
1575 		ASSERT(ap != NULL);
1576 		swap_xlate(ap, &vp, &offset);
1577 
1578 		/*
1579 		 * Use page_find() instead of page_lookup() to
1580 		 * find the page since we know that it has a
1581 		 * "shared" lock.
1582 		 */
1583 		pp = page_find(vp, offset);
1584 		ASSERT(ap == anon_get_ptr(amp->ahp, anon_index - 1));
1585 		if (pp == NULL) {
1586 			panic("segspt_softunlock: "
1587 			    "addr %p, ap %p, vp %p, off %llx",
1588 			    (void *)adr, (void *)ap, (void *)vp, offset);
1589 			/*NOTREACHED*/
1590 		}
1591 
1592 		if (rw == S_WRITE) {
1593 			hat_setrefmod(pp);
1594 		} else if (rw != S_OTHER) {
1595 			hat_setref(pp);
1596 		}
1597 		page_unlock(pp);
1598 	}
1599 
1600 softlock_decrement:
1601 	npages = btopr(len);
1602 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -npages);
1603 	if (shmd->shm_softlockcnt == 0) {
1604 		/*
1605 		 * All SOFTLOCKS are gone. Wakeup any waiting
1606 		 * unmappers so they can try again to unmap.
1607 		 * Check for waiters first without the mutex
1608 		 * held so we don't always grab the mutex on
1609 		 * softunlocks.
1610 		 */
1611 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1612 			mutex_enter(&seg->s_as->a_contents);
1613 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1614 				AS_CLRUNMAPWAIT(seg->s_as);
1615 				cv_broadcast(&seg->s_as->a_cv);
1616 			}
1617 			mutex_exit(&seg->s_as->a_contents);
1618 		}
1619 	}
1620 }
1621 
1622 int
1623 segspt_shmattach(struct seg *seg, caddr_t *argsp)
1624 {
1625 	struct shm_data *shmd_arg = (struct shm_data *)argsp;
1626 	struct shm_data *shmd;
1627 	struct anon_map *shm_amp = shmd_arg->shm_amp;
1628 	struct spt_data *sptd;
1629 	int error = 0;
1630 
1631 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1632 
1633 	shmd = kmem_zalloc((sizeof (*shmd)), KM_NOSLEEP);
1634 	if (shmd == NULL)
1635 		return (ENOMEM);
1636 
1637 	shmd->shm_sptas = shmd_arg->shm_sptas;
1638 	shmd->shm_amp = shm_amp;
1639 	shmd->shm_sptseg = shmd_arg->shm_sptseg;
1640 
1641 	(void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, shm_amp, 0,
1642 	    NULL, 0, seg->s_size);
1643 
1644 	seg->s_data = (void *)shmd;
1645 	seg->s_ops = &segspt_shmops;
1646 	seg->s_szc = shmd->shm_sptseg->s_szc;
1647 	sptd = shmd->shm_sptseg->s_data;
1648 
1649 	if (sptd->spt_flags & SHM_PAGEABLE) {
1650 		if ((shmd->shm_vpage = kmem_zalloc(btopr(shm_amp->size),
1651 		    KM_NOSLEEP)) == NULL) {
1652 			seg->s_data = (void *)NULL;
1653 			kmem_free(shmd, (sizeof (*shmd)));
1654 			return (ENOMEM);
1655 		}
1656 		shmd->shm_lckpgs = 0;
1657 		if (hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
1658 			if ((error = hat_share(seg->s_as->a_hat, seg->s_base,
1659 			    shmd_arg->shm_sptas->a_hat, SEGSPTADDR,
1660 			    seg->s_size, seg->s_szc)) != 0) {
1661 				kmem_free(shmd->shm_vpage,
1662 					btopr(shm_amp->size));
1663 			}
1664 		}
1665 	} else {
1666 		error = hat_share(seg->s_as->a_hat, seg->s_base,
1667 				shmd_arg->shm_sptas->a_hat, SEGSPTADDR,
1668 				seg->s_size, seg->s_szc);
1669 	}
1670 	if (error) {
1671 		seg->s_szc = 0;
1672 		seg->s_data = (void *)NULL;
1673 		kmem_free(shmd, (sizeof (*shmd)));
1674 	} else {
1675 		ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER);
1676 		shm_amp->refcnt++;
1677 		ANON_LOCK_EXIT(&shm_amp->a_rwlock);
1678 	}
1679 	return (error);
1680 }
1681 
1682 int
1683 segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize)
1684 {
1685 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1686 	int reclaim = 1;
1687 
1688 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1689 retry:
1690 	if (shmd->shm_softlockcnt > 0) {
1691 		if (reclaim == 1) {
1692 			segspt_purge(seg);
1693 			reclaim = 0;
1694 			goto retry;
1695 		}
1696 		return (EAGAIN);
1697 	}
1698 
1699 	if (ssize != seg->s_size) {
1700 #ifdef DEBUG
1701 		cmn_err(CE_WARN, "Incompatible ssize %lx s_size %lx\n",
1702 		    ssize, seg->s_size);
1703 #endif
1704 		return (EINVAL);
1705 	}
1706 
1707 	(void) segspt_shmlockop(seg, raddr, shmd->shm_amp->size, 0, MC_UNLOCK,
1708 	    NULL, 0);
1709 	hat_unshare(seg->s_as->a_hat, raddr, ssize, seg->s_szc);
1710 
1711 	seg_free(seg);
1712 
1713 	return (0);
1714 }
1715 
1716 void
1717 segspt_shmfree(struct seg *seg)
1718 {
1719 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1720 	struct anon_map *shm_amp = shmd->shm_amp;
1721 
1722 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1723 
1724 	(void) segspt_shmlockop(seg, seg->s_base, shm_amp->size, 0,
1725 		MC_UNLOCK, NULL, 0);
1726 
1727 	/*
1728 	 * Need to increment refcnt when attaching
1729 	 * and decrement when detaching because of dup().
1730 	 */
1731 	ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER);
1732 	shm_amp->refcnt--;
1733 	ANON_LOCK_EXIT(&shm_amp->a_rwlock);
1734 
1735 	if (shmd->shm_vpage) {	/* only for DISM */
1736 		kmem_free(shmd->shm_vpage, btopr(shm_amp->size));
1737 		shmd->shm_vpage = NULL;
1738 	}
1739 	kmem_free(shmd, sizeof (*shmd));
1740 }
1741 
1742 /*ARGSUSED*/
1743 int
1744 segspt_shmsetprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
1745 {
1746 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1747 
1748 	/*
1749 	 * Shared page table is more than shared mapping.
1750 	 *  Individual process sharing page tables can't change prot
1751 	 *  because there is only one set of page tables.
1752 	 *  This will be allowed after private page table is
1753 	 *  supported.
1754 	 */
1755 /* need to return correct status error? */
1756 	return (0);
1757 }
1758 
1759 
1760 faultcode_t
1761 segspt_dismfault(struct hat *hat, struct seg *seg, caddr_t addr,
1762     size_t len, enum fault_type type, enum seg_rw rw)
1763 {
1764 	struct  shm_data 	*shmd = (struct shm_data *)seg->s_data;
1765 	struct  seg		*sptseg = shmd->shm_sptseg;
1766 	struct  as		*curspt = shmd->shm_sptas;
1767 	struct  spt_data 	*sptd = sptseg->s_data;
1768 	pgcnt_t npages;
1769 	size_t  size;
1770 	caddr_t segspt_addr, shm_addr;
1771 	page_t  **ppa;
1772 	int	i;
1773 	ulong_t an_idx = 0;
1774 	int	err = 0;
1775 	int	dyn_ism_unmap = hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0);
1776 	size_t	pgsz;
1777 	pgcnt_t	pgcnt;
1778 	caddr_t	a;
1779 	pgcnt_t	pidx;
1780 
1781 #ifdef lint
1782 	hat = hat;
1783 #endif
1784 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1785 
1786 	/*
1787 	 * Because of the way spt is implemented
1788 	 * the realsize of the segment does not have to be
1789 	 * equal to the segment size itself. The segment size is
1790 	 * often in multiples of a page size larger than PAGESIZE.
1791 	 * The realsize is rounded up to the nearest PAGESIZE
1792 	 * based on what the user requested. This is a bit of
1793 	 * ungliness that is historical but not easily fixed
1794 	 * without re-designing the higher levels of ISM.
1795 	 */
1796 	ASSERT(addr >= seg->s_base);
1797 	if (((addr + len) - seg->s_base) > sptd->spt_realsize)
1798 		return (FC_NOMAP);
1799 	/*
1800 	 * For all of the following cases except F_PROT, we need to
1801 	 * make any necessary adjustments to addr and len
1802 	 * and get all of the necessary page_t's into an array called ppa[].
1803 	 *
1804 	 * The code in shmat() forces base addr and len of ISM segment
1805 	 * to be aligned to largest page size supported. Therefore,
1806 	 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
1807 	 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
1808 	 * in large pagesize chunks, or else we will screw up the HAT
1809 	 * layer by calling hat_memload_array() with differing page sizes
1810 	 * over a given virtual range.
1811 	 */
1812 	pgsz = page_get_pagesize(sptseg->s_szc);
1813 	pgcnt = page_get_pagecnt(sptseg->s_szc);
1814 	shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);
1815 	size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), pgsz);
1816 	npages = btopr(size);
1817 
1818 	/*
1819 	 * Now we need to convert from addr in segshm to addr in segspt.
1820 	 */
1821 	an_idx = seg_page(seg, shm_addr);
1822 	segspt_addr = sptseg->s_base + ptob(an_idx);
1823 
1824 	ASSERT((segspt_addr + ptob(npages)) <=
1825 		(sptseg->s_base + sptd->spt_realsize));
1826 	ASSERT(segspt_addr < (sptseg->s_base + sptseg->s_size));
1827 
1828 	switch (type) {
1829 
1830 	case F_SOFTLOCK:
1831 
1832 		mutex_enter(&freemem_lock);
1833 		if (availrmem < tune.t_minarmem + npages) {
1834 			mutex_exit(&freemem_lock);
1835 			return (FC_MAKE_ERR(ENOMEM));
1836 		} else {
1837 			availrmem -= npages;
1838 		}
1839 		mutex_exit(&freemem_lock);
1840 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages);
1841 		/*
1842 		 * Fall through to the F_INVAL case to load up the hat layer
1843 		 * entries with the HAT_LOAD_LOCK flag.
1844 		 */
1845 		/* FALLTHRU */
1846 	case F_INVAL:
1847 
1848 		if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC))
1849 			return (FC_NOMAP);
1850 
1851 		ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
1852 
1853 		err = spt_anon_getpages(sptseg, segspt_addr, size, ppa);
1854 		if (err != 0) {
1855 			if (type == F_SOFTLOCK) {
1856 				mutex_enter(&freemem_lock);
1857 				availrmem += npages;
1858 				mutex_exit(&freemem_lock);
1859 				atomic_add_long((ulong_t *)(
1860 				    &(shmd->shm_softlockcnt)), -npages);
1861 			}
1862 			goto dism_err;
1863 		}
1864 		AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
1865 		a = segspt_addr;
1866 		pidx = 0;
1867 		if (type == F_SOFTLOCK) {
1868 
1869 			/*
1870 			 * Load up the translation keeping it
1871 			 * locked and don't unlock the page.
1872 			 */
1873 			for (; pidx < npages; a += pgsz, pidx += pgcnt) {
1874 				hat_memload_array(sptseg->s_as->a_hat,
1875 				    a, pgsz, &ppa[pidx], sptd->spt_prot,
1876 				    HAT_LOAD_LOCK | HAT_LOAD_SHARE);
1877 			}
1878 		} else {
1879 			if (hat == seg->s_as->a_hat) {
1880 
1881 				/*
1882 				 * Migrate pages marked for migration
1883 				 */
1884 				if (lgrp_optimizations())
1885 					page_migrate(seg, shm_addr, ppa,
1886 					    npages);
1887 
1888 				/* CPU HAT */
1889 				for (; pidx < npages;
1890 				    a += pgsz, pidx += pgcnt) {
1891 					hat_memload_array(sptseg->s_as->a_hat,
1892 					    a, pgsz, &ppa[pidx],
1893 					    sptd->spt_prot,
1894 					    HAT_LOAD_SHARE);
1895 				}
1896 			} else {
1897 				/* XHAT. Pass real address */
1898 				hat_memload_array(hat, shm_addr,
1899 				    size, ppa, sptd->spt_prot, HAT_LOAD_SHARE);
1900 			}
1901 
1902 			/*
1903 			 * And now drop the SE_SHARED lock(s).
1904 			 */
1905 			if (dyn_ism_unmap) {
1906 				for (i = 0; i < npages; i++) {
1907 					page_unlock(ppa[i]);
1908 				}
1909 			}
1910 		}
1911 
1912 		if (!dyn_ism_unmap) {
1913 			if (hat_share(seg->s_as->a_hat, shm_addr,
1914 			    curspt->a_hat, segspt_addr, ptob(npages),
1915 			    seg->s_szc) != 0) {
1916 				panic("hat_share err in DISM fault");
1917 				/* NOTREACHED */
1918 			}
1919 			if (type == F_INVAL) {
1920 				for (i = 0; i < npages; i++) {
1921 					page_unlock(ppa[i]);
1922 				}
1923 			}
1924 		}
1925 		AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
1926 dism_err:
1927 		kmem_free(ppa, npages * sizeof (page_t *));
1928 		return (err);
1929 
1930 	case F_SOFTUNLOCK:
1931 
1932 		mutex_enter(&freemem_lock);
1933 		availrmem += npages;
1934 		mutex_exit(&freemem_lock);
1935 
1936 		/*
1937 		 * This is a bit ugly, we pass in the real seg pointer,
1938 		 * but the segspt_addr is the virtual address within the
1939 		 * dummy seg.
1940 		 */
1941 		segspt_softunlock(seg, segspt_addr, size, rw);
1942 		return (0);
1943 
1944 	case F_PROT:
1945 
1946 		/*
1947 		 * This takes care of the unusual case where a user
1948 		 * allocates a stack in shared memory and a register
1949 		 * window overflow is written to that stack page before
1950 		 * it is otherwise modified.
1951 		 *
1952 		 * We can get away with this because ISM segments are
1953 		 * always rw. Other than this unusual case, there
1954 		 * should be no instances of protection violations.
1955 		 */
1956 		return (0);
1957 
1958 	default:
1959 #ifdef DEBUG
1960 		panic("segspt_dismfault default type?");
1961 #else
1962 		return (FC_NOMAP);
1963 #endif
1964 	}
1965 }
1966 
1967 
1968 faultcode_t
1969 segspt_shmfault(struct hat *hat, struct seg *seg, caddr_t addr,
1970     size_t len, enum fault_type type, enum seg_rw rw)
1971 {
1972 	struct shm_data 	*shmd = (struct shm_data *)seg->s_data;
1973 	struct seg		*sptseg = shmd->shm_sptseg;
1974 	struct as		*curspt = shmd->shm_sptas;
1975 	struct spt_data 	*sptd   = sptseg->s_data;
1976 	pgcnt_t npages;
1977 	size_t size;
1978 	caddr_t sptseg_addr, shm_addr;
1979 	page_t *pp, **ppa;
1980 	int	i;
1981 	u_offset_t offset;
1982 	ulong_t anon_index = 0;
1983 	struct vnode *vp;
1984 	struct anon_map *amp;		/* XXX - for locknest */
1985 	struct anon *ap = NULL;
1986 	anon_sync_obj_t cookie;
1987 	size_t		pgsz;
1988 	pgcnt_t		pgcnt;
1989 	caddr_t		a;
1990 	pgcnt_t		pidx;
1991 	size_t		sz;
1992 
1993 #ifdef lint
1994 	hat = hat;
1995 #endif
1996 
1997 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1998 
1999 	if (sptd->spt_flags & SHM_PAGEABLE) {
2000 		return (segspt_dismfault(hat, seg, addr, len, type, rw));
2001 	}
2002 
2003 	/*
2004 	 * Because of the way spt is implemented
2005 	 * the realsize of the segment does not have to be
2006 	 * equal to the segment size itself. The segment size is
2007 	 * often in multiples of a page size larger than PAGESIZE.
2008 	 * The realsize is rounded up to the nearest PAGESIZE
2009 	 * based on what the user requested. This is a bit of
2010 	 * ungliness that is historical but not easily fixed
2011 	 * without re-designing the higher levels of ISM.
2012 	 */
2013 	ASSERT(addr >= seg->s_base);
2014 	if (((addr + len) - seg->s_base) > sptd->spt_realsize)
2015 		return (FC_NOMAP);
2016 	/*
2017 	 * For all of the following cases except F_PROT, we need to
2018 	 * make any necessary adjustments to addr and len
2019 	 * and get all of the necessary page_t's into an array called ppa[].
2020 	 *
2021 	 * The code in shmat() forces base addr and len of ISM segment
2022 	 * to be aligned to largest page size supported. Therefore,
2023 	 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
2024 	 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
2025 	 * in large pagesize chunks, or else we will screw up the HAT
2026 	 * layer by calling hat_memload_array() with differing page sizes
2027 	 * over a given virtual range.
2028 	 */
2029 	pgsz = page_get_pagesize(sptseg->s_szc);
2030 	pgcnt = page_get_pagecnt(sptseg->s_szc);
2031 	shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);
2032 	size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), pgsz);
2033 	npages = btopr(size);
2034 
2035 	/*
2036 	 * Now we need to convert from addr in segshm to addr in segspt.
2037 	 */
2038 	anon_index = seg_page(seg, shm_addr);
2039 	sptseg_addr = sptseg->s_base + ptob(anon_index);
2040 
2041 	/*
2042 	 * And now we may have to adjust npages downward if we have
2043 	 * exceeded the realsize of the segment or initial anon
2044 	 * allocations.
2045 	 */
2046 	if ((sptseg_addr + ptob(npages)) >
2047 	    (sptseg->s_base + sptd->spt_realsize))
2048 		size = (sptseg->s_base + sptd->spt_realsize) - sptseg_addr;
2049 
2050 	npages = btopr(size);
2051 
2052 	ASSERT(sptseg_addr < (sptseg->s_base + sptseg->s_size));
2053 	ASSERT((sptd->spt_flags & SHM_PAGEABLE) == 0);
2054 
2055 	switch (type) {
2056 
2057 	case F_SOFTLOCK:
2058 
2059 		/*
2060 		 * availrmem is decremented once during anon_swap_adjust()
2061 		 * and is incremented during the anon_unresv(), which is
2062 		 * called from shm_rm_amp() when the segment is destroyed.
2063 		 */
2064 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages);
2065 		/*
2066 		 * Some platforms assume that ISM pages are SE_SHARED
2067 		 * locked for the entire life of the segment.
2068 		 */
2069 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0))
2070 			return (0);
2071 		/*
2072 		 * Fall through to the F_INVAL case to load up the hat layer
2073 		 * entries with the HAT_LOAD_LOCK flag.
2074 		 */
2075 
2076 		/* FALLTHRU */
2077 	case F_INVAL:
2078 
2079 		if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC))
2080 			return (FC_NOMAP);
2081 
2082 		/*
2083 		 * Some platforms that do NOT support DYNAMIC_ISM_UNMAP
2084 		 * may still rely on this call to hat_share(). That
2085 		 * would imply that those hat's can fault on a
2086 		 * HAT_LOAD_LOCK translation, which would seem
2087 		 * contradictory.
2088 		 */
2089 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
2090 			if (hat_share(seg->s_as->a_hat, seg->s_base,
2091 			    curspt->a_hat, sptseg->s_base,
2092 			    sptseg->s_size, sptseg->s_szc) != 0) {
2093 				panic("hat_share error in ISM fault");
2094 				/*NOTREACHED*/
2095 			}
2096 			return (0);
2097 		}
2098 		ppa = kmem_zalloc(sizeof (page_t *) * npages, KM_SLEEP);
2099 
2100 		/*
2101 		 * I see no need to lock the real seg,
2102 		 * here, because all of our work will be on the underlying
2103 		 * dummy seg.
2104 		 *
2105 		 * sptseg_addr and npages now account for large pages.
2106 		 */
2107 		amp = sptd->spt_amp;
2108 		ASSERT(amp != NULL);
2109 		anon_index = seg_page(sptseg, sptseg_addr);
2110 
2111 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2112 		for (i = 0; i < npages; i++) {
2113 			anon_array_enter(amp, anon_index, &cookie);
2114 			ap = anon_get_ptr(amp->ahp, anon_index++);
2115 			ASSERT(ap != NULL);
2116 			swap_xlate(ap, &vp, &offset);
2117 			anon_array_exit(&cookie);
2118 			pp = page_lookup(vp, offset, SE_SHARED);
2119 			ASSERT(pp != NULL);
2120 			ppa[i] = pp;
2121 		}
2122 		ANON_LOCK_EXIT(&amp->a_rwlock);
2123 		ASSERT(i == npages);
2124 
2125 		/*
2126 		 * We are already holding the as->a_lock on the user's
2127 		 * real segment, but we need to hold the a_lock on the
2128 		 * underlying dummy as. This is mostly to satisfy the
2129 		 * underlying HAT layer.
2130 		 */
2131 		AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
2132 		a = sptseg_addr;
2133 		pidx = 0;
2134 		if (type == F_SOFTLOCK) {
2135 			/*
2136 			 * Load up the translation keeping it
2137 			 * locked and don't unlock the page.
2138 			 */
2139 			for (; pidx < npages; a += pgsz, pidx += pgcnt) {
2140 				sz = MIN(pgsz, ptob(npages - pidx));
2141 				hat_memload_array(sptseg->s_as->a_hat, a,
2142 				    sz, &ppa[pidx], sptd->spt_prot,
2143 				    HAT_LOAD_LOCK | HAT_LOAD_SHARE);
2144 			}
2145 		} else {
2146 			if (hat == seg->s_as->a_hat) {
2147 
2148 				/*
2149 				 * Migrate pages marked for migration.
2150 				 */
2151 				if (lgrp_optimizations())
2152 					page_migrate(seg, shm_addr, ppa,
2153 					    npages);
2154 
2155 				/* CPU HAT */
2156 				for (; pidx < npages;
2157 				    a += pgsz, pidx += pgcnt) {
2158 					sz = MIN(pgsz, ptob(npages - pidx));
2159 					hat_memload_array(sptseg->s_as->a_hat,
2160 					    a, sz, &ppa[pidx],
2161 					    sptd->spt_prot, HAT_LOAD_SHARE);
2162 				}
2163 			} else {
2164 				/* XHAT. Pass real address */
2165 				hat_memload_array(hat, shm_addr,
2166 				    ptob(npages), ppa, sptd->spt_prot,
2167 				    HAT_LOAD_SHARE);
2168 			}
2169 
2170 			/*
2171 			 * And now drop the SE_SHARED lock(s).
2172 			 */
2173 			for (i = 0; i < npages; i++)
2174 				page_unlock(ppa[i]);
2175 		}
2176 		AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
2177 
2178 		kmem_free(ppa, sizeof (page_t *) * npages);
2179 		return (0);
2180 	case F_SOFTUNLOCK:
2181 
2182 		/*
2183 		 * This is a bit ugly, we pass in the real seg pointer,
2184 		 * but the sptseg_addr is the virtual address within the
2185 		 * dummy seg.
2186 		 */
2187 		segspt_softunlock(seg, sptseg_addr, ptob(npages), rw);
2188 		return (0);
2189 
2190 	case F_PROT:
2191 
2192 		/*
2193 		 * This takes care of the unusual case where a user
2194 		 * allocates a stack in shared memory and a register
2195 		 * window overflow is written to that stack page before
2196 		 * it is otherwise modified.
2197 		 *
2198 		 * We can get away with this because ISM segments are
2199 		 * always rw. Other than this unusual case, there
2200 		 * should be no instances of protection violations.
2201 		 */
2202 		return (0);
2203 
2204 	default:
2205 #ifdef DEBUG
2206 		cmn_err(CE_WARN, "segspt_shmfault default type?");
2207 #endif
2208 		return (FC_NOMAP);
2209 	}
2210 }
2211 
2212 /*ARGSUSED*/
2213 static faultcode_t
2214 segspt_shmfaulta(struct seg *seg, caddr_t addr)
2215 {
2216 	return (0);
2217 }
2218 
2219 /*ARGSUSED*/
2220 static int
2221 segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta)
2222 {
2223 	return (0);
2224 }
2225 
2226 /*ARGSUSED*/
2227 static size_t
2228 segspt_shmswapout(struct seg *seg)
2229 {
2230 	return (0);
2231 }
2232 
2233 /*
2234  * duplicate the shared page tables
2235  */
2236 int
2237 segspt_shmdup(struct seg *seg, struct seg *newseg)
2238 {
2239 	struct shm_data		*shmd = (struct shm_data *)seg->s_data;
2240 	struct anon_map 	*amp = shmd->shm_amp;
2241 	struct shm_data 	*shmd_new;
2242 	struct seg		*spt_seg = shmd->shm_sptseg;
2243 	struct spt_data		*sptd = spt_seg->s_data;
2244 	int			error = 0;
2245 
2246 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
2247 
2248 	shmd_new = kmem_zalloc((sizeof (*shmd_new)), KM_SLEEP);
2249 	newseg->s_data = (void *)shmd_new;
2250 	shmd_new->shm_sptas = shmd->shm_sptas;
2251 	shmd_new->shm_amp = amp;
2252 	shmd_new->shm_sptseg = shmd->shm_sptseg;
2253 	newseg->s_ops = &segspt_shmops;
2254 	newseg->s_szc = seg->s_szc;
2255 	ASSERT(seg->s_szc == shmd->shm_sptseg->s_szc);
2256 
2257 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2258 	amp->refcnt++;
2259 	ANON_LOCK_EXIT(&amp->a_rwlock);
2260 
2261 	if (sptd->spt_flags & SHM_PAGEABLE) {
2262 		shmd_new->shm_vpage = kmem_zalloc(btopr(amp->size), KM_SLEEP);
2263 		shmd_new->shm_lckpgs = 0;
2264 		if (hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
2265 			if ((error = hat_share(newseg->s_as->a_hat,
2266 			    newseg->s_base, shmd->shm_sptas->a_hat, SEGSPTADDR,
2267 			    seg->s_size, seg->s_szc)) != 0) {
2268 				kmem_free(shmd_new->shm_vpage,
2269 				btopr(amp->size));
2270 			}
2271 		}
2272 		return (error);
2273 	} else {
2274 		return (hat_share(newseg->s_as->a_hat, newseg->s_base,
2275 		    shmd->shm_sptas->a_hat, SEGSPTADDR, seg->s_size,
2276 		    seg->s_szc));
2277 
2278 	}
2279 }
2280 
2281 /*ARGSUSED*/
2282 int
2283 segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
2284 {
2285 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2286 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2287 
2288 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2289 
2290 	/*
2291 	 * ISM segment is always rw.
2292 	 */
2293 	return (((sptd->spt_prot & prot) != prot) ? EACCES : 0);
2294 }
2295 
2296 /*
2297  * Return an array of locked large pages, for empty slots allocate
2298  * private zero-filled anon pages.
2299  */
2300 static int
2301 spt_anon_getpages(
2302 	struct seg *sptseg,
2303 	caddr_t sptaddr,
2304 	size_t len,
2305 	page_t *ppa[])
2306 {
2307 	struct  spt_data *sptd = sptseg->s_data;
2308 	struct  anon_map *amp = sptd->spt_amp;
2309 	enum 	seg_rw rw = sptd->spt_prot;
2310 	uint_t	szc = sptseg->s_szc;
2311 	size_t	pg_sz, share_sz = page_get_pagesize(szc);
2312 	pgcnt_t	lp_npgs;
2313 	caddr_t	lp_addr, e_sptaddr;
2314 	uint_t	vpprot, ppa_szc = 0;
2315 	struct  vpage *vpage = NULL;
2316 	ulong_t	j, ppa_idx;
2317 	int	err, ierr = 0;
2318 	pgcnt_t	an_idx;
2319 	anon_sync_obj_t cookie;
2320 
2321 	ASSERT(IS_P2ALIGNED(sptaddr, share_sz) && IS_P2ALIGNED(len, share_sz));
2322 	ASSERT(len != 0);
2323 
2324 	pg_sz = share_sz;
2325 	lp_npgs = btop(pg_sz);
2326 	lp_addr = sptaddr;
2327 	e_sptaddr = sptaddr + len;
2328 	an_idx = seg_page(sptseg, sptaddr);
2329 	ppa_idx = 0;
2330 
2331 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2332 	/*CONSTCOND*/
2333 	while (1) {
2334 		for (; lp_addr < e_sptaddr;
2335 			an_idx += lp_npgs, lp_addr += pg_sz,
2336 			ppa_idx += lp_npgs) {
2337 
2338 			anon_array_enter(amp, an_idx, &cookie);
2339 			ppa_szc = (uint_t)-1;
2340 			ierr = anon_map_getpages(amp, an_idx, szc, sptseg,
2341 			    lp_addr, sptd->spt_prot, &vpprot, &ppa[ppa_idx],
2342 			    &ppa_szc, vpage, rw, 0, segvn_anypgsz, kcred);
2343 			anon_array_exit(&cookie);
2344 
2345 			if (ierr != 0) {
2346 				if (ierr > 0) {
2347 					err = FC_MAKE_ERR(ierr);
2348 					goto lpgs_err;
2349 				}
2350 				break;
2351 			}
2352 		}
2353 		if (lp_addr == e_sptaddr) {
2354 			break;
2355 		}
2356 		ASSERT(lp_addr < e_sptaddr);
2357 
2358 		/*
2359 		 * ierr == -1 means we failed to allocate a large page.
2360 		 * so do a size down operation.
2361 		 *
2362 		 * ierr == -2 means some other process that privately shares
2363 		 * pages with this process has allocated a larger page and we
2364 		 * need to retry with larger pages. So do a size up
2365 		 * operation. This relies on the fact that large pages are
2366 		 * never partially shared i.e. if we share any constituent
2367 		 * page of a large page with another process we must share the
2368 		 * entire large page. Note this cannot happen for SOFTLOCK
2369 		 * case, unless current address (lpaddr) is at the beginning
2370 		 * of the next page size boundary because the other process
2371 		 * couldn't have relocated locked pages.
2372 		 */
2373 		ASSERT(ierr == -1 || ierr == -2);
2374 		if (segvn_anypgsz) {
2375 			ASSERT(ierr == -2 || szc != 0);
2376 			ASSERT(ierr == -1 || szc < sptseg->s_szc);
2377 			szc = (ierr == -1) ? szc - 1 : szc + 1;
2378 		} else {
2379 			/*
2380 			 * For faults and segvn_anypgsz == 0
2381 			 * we need to be careful not to loop forever
2382 			 * if existing page is found with szc other
2383 			 * than 0 or seg->s_szc. This could be due
2384 			 * to page relocations on behalf of DR or
2385 			 * more likely large page creation. For this
2386 			 * case simply re-size to existing page's szc
2387 			 * if returned by anon_map_getpages().
2388 			 */
2389 			if (ppa_szc == (uint_t)-1) {
2390 				szc = (ierr == -1) ? 0 : sptseg->s_szc;
2391 			} else {
2392 				ASSERT(ppa_szc <= sptseg->s_szc);
2393 				ASSERT(ierr == -2 || ppa_szc < szc);
2394 				ASSERT(ierr == -1 || ppa_szc > szc);
2395 				szc = ppa_szc;
2396 			}
2397 		}
2398 		pg_sz = page_get_pagesize(szc);
2399 		lp_npgs = btop(pg_sz);
2400 		ASSERT(IS_P2ALIGNED(lp_addr, pg_sz));
2401 	}
2402 	ANON_LOCK_EXIT(&amp->a_rwlock);
2403 	return (0);
2404 
2405 lpgs_err:
2406 	ANON_LOCK_EXIT(&amp->a_rwlock);
2407 	for (j = 0; j < ppa_idx; j++)
2408 		page_unlock(ppa[j]);
2409 	return (err);
2410 }
2411 
2412 /*
2413  * count the number of bytes in a set of spt pages that are currently not
2414  * locked
2415  */
2416 static rctl_qty_t
2417 spt_unlockedbytes(pgcnt_t npages, page_t **ppa)
2418 {
2419 	ulong_t	i;
2420 	rctl_qty_t unlocked = 0;
2421 
2422 	for (i = 0; i < npages; i++) {
2423 		if (ppa[i]->p_lckcnt == 0)
2424 			unlocked += PAGESIZE;
2425 	}
2426 	return (unlocked);
2427 }
2428 
2429 int
2430 spt_lockpages(struct seg *seg, pgcnt_t anon_index, pgcnt_t npages,
2431     page_t **ppa, ulong_t *lockmap, size_t pos,
2432     rctl_qty_t *locked)
2433 {
2434 	struct shm_data *shmd = seg->s_data;
2435 	struct spt_data *sptd = shmd->shm_sptseg->s_data;
2436 	ulong_t	i;
2437 	int	kernel;
2438 
2439 	/* return the number of bytes actually locked */
2440 	*locked = 0;
2441 	for (i = 0; i < npages; anon_index++, pos++, i++) {
2442 		if (!(shmd->shm_vpage[anon_index] & DISM_PG_LOCKED)) {
2443 			if (sptd->spt_ppa_lckcnt[anon_index] <
2444 			    (ushort_t)DISM_LOCK_MAX) {
2445 				if (++sptd->spt_ppa_lckcnt[anon_index] ==
2446 				    (ushort_t)DISM_LOCK_MAX) {
2447 					cmn_err(CE_WARN,
2448 					    "DISM page lock limit "
2449 					    "reached on DISM offset 0x%lx\n",
2450 					    anon_index << PAGESHIFT);
2451 				}
2452 				kernel = (sptd->spt_ppa &&
2453 				    sptd->spt_ppa[anon_index]) ? 1 : 0;
2454 				if (!page_pp_lock(ppa[i], 0, kernel)) {
2455 					sptd->spt_ppa_lckcnt[anon_index]--;
2456 					return (EAGAIN);
2457 				}
2458 				/* if this is a newly locked page, count it */
2459 				if (ppa[i]->p_lckcnt == 1) {
2460 					*locked += PAGESIZE;
2461 				}
2462 				shmd->shm_lckpgs++;
2463 				shmd->shm_vpage[anon_index] |= DISM_PG_LOCKED;
2464 				if (lockmap != NULL)
2465 					BT_SET(lockmap, pos);
2466 			}
2467 		}
2468 	}
2469 	return (0);
2470 }
2471 
2472 /*ARGSUSED*/
2473 static int
2474 segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len,
2475     int attr, int op, ulong_t *lockmap, size_t pos)
2476 {
2477 	struct shm_data *shmd = seg->s_data;
2478 	struct seg	*sptseg = shmd->shm_sptseg;
2479 	struct spt_data *sptd = sptseg->s_data;
2480 	struct kshmid	*sp = sptd->spt_amp->a_sp;
2481 	pgcnt_t		npages, a_npages;
2482 	page_t		**ppa;
2483 	pgcnt_t 	an_idx, a_an_idx, ppa_idx;
2484 	caddr_t		spt_addr, a_addr;	/* spt and aligned address */
2485 	size_t		a_len;			/* aligned len */
2486 	size_t		share_sz;
2487 	ulong_t		i;
2488 	int		sts = 0;
2489 	rctl_qty_t	unlocked = 0;
2490 	rctl_qty_t	locked = 0;
2491 	struct proc	*p = curproc;
2492 	kproject_t	*proj;
2493 
2494 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2495 	ASSERT(sp != NULL);
2496 
2497 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
2498 		return (0);
2499 	}
2500 
2501 	addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2502 	an_idx = seg_page(seg, addr);
2503 	npages = btopr(len);
2504 
2505 	if (an_idx + npages > btopr(shmd->shm_amp->size)) {
2506 		return (ENOMEM);
2507 	}
2508 
2509 	/*
2510 	 * A shm's project never changes, so no lock needed.
2511 	 * The shm has a hold on the project, so it will not go away.
2512 	 * Since we have a mapping to shm within this zone, we know
2513 	 * that the zone will not go away.
2514 	 */
2515 	proj = sp->shm_perm.ipc_proj;
2516 
2517 	if (op == MC_LOCK) {
2518 
2519 		/*
2520 		 * Need to align addr and size request if they are not
2521 		 * aligned so we can always allocate large page(s) however
2522 		 * we only lock what was requested in initial request.
2523 		 */
2524 		share_sz = page_get_pagesize(sptseg->s_szc);
2525 		a_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_sz);
2526 		a_len = P2ROUNDUP((uintptr_t)(((addr + len) - a_addr)),
2527 				share_sz);
2528 		a_npages = btop(a_len);
2529 		a_an_idx = seg_page(seg, a_addr);
2530 		spt_addr = sptseg->s_base + ptob(a_an_idx);
2531 		ppa_idx = an_idx - a_an_idx;
2532 
2533 		if ((ppa = kmem_zalloc(((sizeof (page_t *)) * a_npages),
2534 			KM_NOSLEEP)) == NULL) {
2535 			return (ENOMEM);
2536 		}
2537 
2538 		/*
2539 		 * Don't cache any new pages for IO and
2540 		 * flush any cached pages.
2541 		 */
2542 		mutex_enter(&sptd->spt_lock);
2543 		if (sptd->spt_ppa != NULL)
2544 			sptd->spt_flags |= DISM_PPA_CHANGED;
2545 
2546 		sts = spt_anon_getpages(sptseg, spt_addr, a_len, ppa);
2547 		if (sts != 0) {
2548 			mutex_exit(&sptd->spt_lock);
2549 			kmem_free(ppa, ((sizeof (page_t *)) * a_npages));
2550 			return (sts);
2551 		}
2552 
2553 		mutex_enter(&sp->shm_mlock);
2554 		/* enforce locked memory rctl */
2555 		unlocked = spt_unlockedbytes(npages, &ppa[ppa_idx]);
2556 
2557 		mutex_enter(&p->p_lock);
2558 		if (rctl_incr_locked_mem(p, proj, unlocked, 0)) {
2559 			mutex_exit(&p->p_lock);
2560 			sts = EAGAIN;
2561 		} else {
2562 			mutex_exit(&p->p_lock);
2563 			sts = spt_lockpages(seg, an_idx, npages,
2564 			    &ppa[ppa_idx], lockmap, pos, &locked);
2565 
2566 			/*
2567 			 * correct locked count if not all pages could be
2568 			 * locked
2569 			 */
2570 			if ((unlocked - locked) > 0) {
2571 				rctl_decr_locked_mem(NULL, proj,
2572 				    (unlocked - locked), 0);
2573 			}
2574 		}
2575 		/*
2576 		 * unlock pages
2577 		 */
2578 		for (i = 0; i < a_npages; i++)
2579 			page_unlock(ppa[i]);
2580 		if (sptd->spt_ppa != NULL)
2581 			sptd->spt_flags |= DISM_PPA_CHANGED;
2582 		mutex_exit(&sp->shm_mlock);
2583 		mutex_exit(&sptd->spt_lock);
2584 
2585 		kmem_free(ppa, ((sizeof (page_t *)) * a_npages));
2586 
2587 	} else if (op == MC_UNLOCK) { /* unlock */
2588 		struct anon_map *amp;
2589 		struct anon 	*ap;
2590 		struct vnode 	*vp;
2591 		u_offset_t 	off;
2592 		struct page	*pp;
2593 		int		kernel;
2594 		anon_sync_obj_t cookie;
2595 		rctl_qty_t	unlocked = 0;
2596 
2597 		amp = sptd->spt_amp;
2598 		mutex_enter(&sptd->spt_lock);
2599 		if (shmd->shm_lckpgs == 0) {
2600 			mutex_exit(&sptd->spt_lock);
2601 			return (0);
2602 		}
2603 		/*
2604 		 * Don't cache new IO pages.
2605 		 */
2606 		if (sptd->spt_ppa != NULL)
2607 			sptd->spt_flags |= DISM_PPA_CHANGED;
2608 
2609 		mutex_enter(&sp->shm_mlock);
2610 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2611 		for (i = 0; i < npages; i++, an_idx++) {
2612 			if (shmd->shm_vpage[an_idx] & DISM_PG_LOCKED) {
2613 				anon_array_enter(amp, an_idx, &cookie);
2614 				ap = anon_get_ptr(amp->ahp, an_idx);
2615 				ASSERT(ap);
2616 
2617 				swap_xlate(ap, &vp, &off);
2618 				anon_array_exit(&cookie);
2619 				pp = page_lookup(vp, off, SE_SHARED);
2620 				ASSERT(pp);
2621 				/*
2622 				 * the availrmem is decremented only for
2623 				 * pages which are not in seg pcache,
2624 				 * for pages in seg pcache availrmem was
2625 				 * decremented in _dismpagelock() (if
2626 				 * they were not locked here)
2627 				 */
2628 				kernel = (sptd->spt_ppa &&
2629 				    sptd->spt_ppa[an_idx]) ? 1 : 0;
2630 				ASSERT(pp->p_lckcnt > 0);
2631 				page_pp_unlock(pp, 0, kernel);
2632 				if (pp->p_lckcnt == 0)
2633 					unlocked += PAGESIZE;
2634 				page_unlock(pp);
2635 				shmd->shm_vpage[an_idx] &= ~DISM_PG_LOCKED;
2636 				sptd->spt_ppa_lckcnt[an_idx]--;
2637 				shmd->shm_lckpgs--;
2638 			}
2639 		}
2640 		ANON_LOCK_EXIT(&amp->a_rwlock);
2641 		if (sptd->spt_ppa != NULL)
2642 			sptd->spt_flags |= DISM_PPA_CHANGED;
2643 		mutex_exit(&sptd->spt_lock);
2644 
2645 		rctl_decr_locked_mem(NULL, proj, unlocked, 0);
2646 		mutex_exit(&sp->shm_mlock);
2647 	}
2648 	return (sts);
2649 }
2650 
2651 /*ARGSUSED*/
2652 int
2653 segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
2654 {
2655 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2656 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2657 	spgcnt_t pgno = seg_page(seg, addr+len) - seg_page(seg, addr) + 1;
2658 
2659 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2660 
2661 	/*
2662 	 * ISM segment is always rw.
2663 	 */
2664 	while (--pgno >= 0)
2665 		*protv++ = sptd->spt_prot;
2666 	return (0);
2667 }
2668 
2669 /*ARGSUSED*/
2670 u_offset_t
2671 segspt_shmgetoffset(struct seg *seg, caddr_t addr)
2672 {
2673 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2674 
2675 	/* Offset does not matter in ISM memory */
2676 
2677 	return ((u_offset_t)0);
2678 }
2679 
2680 /* ARGSUSED */
2681 int
2682 segspt_shmgettype(struct seg *seg, caddr_t addr)
2683 {
2684 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2685 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2686 
2687 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2688 
2689 	/*
2690 	 * The shared memory mapping is always MAP_SHARED, SWAP is only
2691 	 * reserved for DISM
2692 	 */
2693 	return (MAP_SHARED |
2694 		((sptd->spt_flags & SHM_PAGEABLE) ? 0 : MAP_NORESERVE));
2695 }
2696 
2697 /*ARGSUSED*/
2698 int
2699 segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
2700 {
2701 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2702 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2703 
2704 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2705 
2706 	*vpp = sptd->spt_vp;
2707 	return (0);
2708 }
2709 
2710 /*ARGSUSED*/
2711 static int
2712 segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
2713 {
2714 	struct shm_data 	*shmd = (struct shm_data *)seg->s_data;
2715 	struct spt_data	*sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2716 	struct anon_map	*amp;
2717 	pgcnt_t		pg_idx;
2718 
2719 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2720 
2721 	if (behav == MADV_FREE) {
2722 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0)
2723 			return (0);
2724 
2725 		amp = sptd->spt_amp;
2726 		pg_idx = seg_page(seg, addr);
2727 
2728 		mutex_enter(&sptd->spt_lock);
2729 		if (sptd->spt_ppa != NULL)
2730 			sptd->spt_flags |= DISM_PPA_CHANGED;
2731 		mutex_exit(&sptd->spt_lock);
2732 
2733 		/*
2734 		 * Purge all DISM cached pages
2735 		 */
2736 		seg_ppurge_seg(segspt_reclaim);
2737 
2738 		mutex_enter(&sptd->spt_lock);
2739 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2740 		anon_disclaim(amp, pg_idx, len, ANON_PGLOOKUP_BLK);
2741 		ANON_LOCK_EXIT(&amp->a_rwlock);
2742 		mutex_exit(&sptd->spt_lock);
2743 	} else if (lgrp_optimizations() && (behav == MADV_ACCESS_LWP ||
2744 	    behav == MADV_ACCESS_MANY || behav == MADV_ACCESS_DEFAULT)) {
2745 		int			already_set;
2746 		ulong_t			anon_index;
2747 		lgrp_mem_policy_t	policy;
2748 		caddr_t			shm_addr;
2749 		size_t			share_size;
2750 		size_t			size;
2751 		struct seg		*sptseg = shmd->shm_sptseg;
2752 		caddr_t			sptseg_addr;
2753 
2754 		/*
2755 		 * Align address and length to page size of underlying segment
2756 		 */
2757 		share_size = page_get_pagesize(shmd->shm_sptseg->s_szc);
2758 		shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_size);
2759 		size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)),
2760 		    share_size);
2761 
2762 		amp = shmd->shm_amp;
2763 		anon_index = seg_page(seg, shm_addr);
2764 
2765 		/*
2766 		 * And now we may have to adjust size downward if we have
2767 		 * exceeded the realsize of the segment or initial anon
2768 		 * allocations.
2769 		 */
2770 		sptseg_addr = sptseg->s_base + ptob(anon_index);
2771 		if ((sptseg_addr + size) >
2772 		    (sptseg->s_base + sptd->spt_realsize))
2773 			size = (sptseg->s_base + sptd->spt_realsize) -
2774 			    sptseg_addr;
2775 
2776 		/*
2777 		 * Set memory allocation policy for this segment
2778 		 */
2779 		policy = lgrp_madv_to_policy(behav, len, MAP_SHARED);
2780 		already_set = lgrp_shm_policy_set(policy, amp, anon_index,
2781 		    NULL, 0, len);
2782 
2783 		/*
2784 		 * If random memory allocation policy set already,
2785 		 * don't bother reapplying it.
2786 		 */
2787 		if (already_set && !LGRP_MEM_POLICY_REAPPLICABLE(policy))
2788 			return (0);
2789 
2790 		/*
2791 		 * Mark any existing pages in the given range for
2792 		 * migration, flushing the I/O page cache, and using
2793 		 * underlying segment to calculate anon index and get
2794 		 * anonmap and vnode pointer from
2795 		 */
2796 		if (shmd->shm_softlockcnt > 0)
2797 			segspt_purge(seg);
2798 
2799 		page_mark_migrate(seg, shm_addr, size, amp, 0, NULL, 0, 0);
2800 	}
2801 
2802 	return (0);
2803 }
2804 
2805 /*ARGSUSED*/
2806 void
2807 segspt_shmdump(struct seg *seg)
2808 {
2809 	/* no-op for ISM segment */
2810 }
2811 
2812 /*ARGSUSED*/
2813 static faultcode_t
2814 segspt_shmsetpgsz(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
2815 {
2816 	return (ENOTSUP);
2817 }
2818 
2819 /*
2820  * get a memory ID for an addr in a given segment
2821  */
2822 static int
2823 segspt_shmgetmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
2824 {
2825 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2826 	struct anon 	*ap;
2827 	size_t		anon_index;
2828 	struct anon_map	*amp = shmd->shm_amp;
2829 	struct spt_data	*sptd = shmd->shm_sptseg->s_data;
2830 	struct seg	*sptseg = shmd->shm_sptseg;
2831 	anon_sync_obj_t	cookie;
2832 
2833 	anon_index = seg_page(seg, addr);
2834 
2835 	if (addr > (seg->s_base + sptd->spt_realsize)) {
2836 		return (EFAULT);
2837 	}
2838 
2839 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2840 	anon_array_enter(amp, anon_index, &cookie);
2841 	ap = anon_get_ptr(amp->ahp, anon_index);
2842 	if (ap == NULL) {
2843 		struct page *pp;
2844 		caddr_t spt_addr = sptseg->s_base + ptob(anon_index);
2845 
2846 		pp = anon_zero(sptseg, spt_addr, &ap, kcred);
2847 		if (pp == NULL) {
2848 			anon_array_exit(&cookie);
2849 			ANON_LOCK_EXIT(&amp->a_rwlock);
2850 			return (ENOMEM);
2851 		}
2852 		(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
2853 		page_unlock(pp);
2854 	}
2855 	anon_array_exit(&cookie);
2856 	ANON_LOCK_EXIT(&amp->a_rwlock);
2857 	memidp->val[0] = (uintptr_t)ap;
2858 	memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
2859 	return (0);
2860 }
2861 
2862 /*
2863  * Get memory allocation policy info for specified address in given segment
2864  */
2865 static lgrp_mem_policy_info_t *
2866 segspt_shmgetpolicy(struct seg *seg, caddr_t addr)
2867 {
2868 	struct anon_map		*amp;
2869 	ulong_t			anon_index;
2870 	lgrp_mem_policy_info_t	*policy_info;
2871 	struct shm_data		*shm_data;
2872 
2873 	ASSERT(seg != NULL);
2874 
2875 	/*
2876 	 * Get anon_map from segshm
2877 	 *
2878 	 * Assume that no lock needs to be held on anon_map, since
2879 	 * it should be protected by its reference count which must be
2880 	 * nonzero for an existing segment
2881 	 * Need to grab readers lock on policy tree though
2882 	 */
2883 	shm_data = (struct shm_data *)seg->s_data;
2884 	if (shm_data == NULL)
2885 		return (NULL);
2886 	amp = shm_data->shm_amp;
2887 	ASSERT(amp->refcnt != 0);
2888 
2889 	/*
2890 	 * Get policy info
2891 	 *
2892 	 * Assume starting anon index of 0
2893 	 */
2894 	anon_index = seg_page(seg, addr);
2895 	policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0);
2896 
2897 	return (policy_info);
2898 }
2899 
2900 /*ARGSUSED*/
2901 static int
2902 segspt_shmcapable(struct seg *seg, segcapability_t capability)
2903 {
2904 	return (0);
2905 }
2906