1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2015, Joyent, Inc. All rights reserved. 24 */ 25 26 #include <sys/param.h> 27 #include <sys/user.h> 28 #include <sys/mman.h> 29 #include <sys/kmem.h> 30 #include <sys/sysmacros.h> 31 #include <sys/cmn_err.h> 32 #include <sys/systm.h> 33 #include <sys/tuneable.h> 34 #include <vm/hat.h> 35 #include <vm/seg.h> 36 #include <vm/as.h> 37 #include <vm/anon.h> 38 #include <vm/page.h> 39 #include <sys/buf.h> 40 #include <sys/swap.h> 41 #include <sys/atomic.h> 42 #include <vm/seg_spt.h> 43 #include <sys/debug.h> 44 #include <sys/vtrace.h> 45 #include <sys/shm.h> 46 #include <sys/shm_impl.h> 47 #include <sys/lgrp.h> 48 #include <sys/vmsystm.h> 49 #include <sys/policy.h> 50 #include <sys/project.h> 51 #include <sys/tnf_probe.h> 52 #include <sys/zone.h> 53 54 #define SEGSPTADDR (caddr_t)0x0 55 56 /* 57 * # pages used for spt 58 */ 59 size_t spt_used; 60 61 /* 62 * segspt_minfree is the memory left for system after ISM 63 * locked its pages; it is set up to 5% of availrmem in 64 * sptcreate when ISM is created. ISM should not use more 65 * than ~90% of availrmem; if it does, then the performance 66 * of the system may decrease. Machines with large memories may 67 * be able to use up more memory for ISM so we set the default 68 * segspt_minfree to 5% (which gives ISM max 95% of availrmem. 69 * If somebody wants even more memory for ISM (risking hanging 70 * the system) they can patch the segspt_minfree to smaller number. 71 */ 72 pgcnt_t segspt_minfree = 0; 73 74 static int segspt_create(struct seg *seg, caddr_t argsp); 75 static int segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize); 76 static void segspt_free(struct seg *seg); 77 static void segspt_free_pages(struct seg *seg, caddr_t addr, size_t len); 78 static lgrp_mem_policy_info_t *segspt_getpolicy(struct seg *seg, caddr_t addr); 79 80 static void 81 segspt_badop() 82 { 83 panic("segspt_badop called"); 84 /*NOTREACHED*/ 85 } 86 87 #define SEGSPT_BADOP(t) (t(*)())segspt_badop 88 89 struct seg_ops segspt_ops = { 90 SEGSPT_BADOP(int), /* dup */ 91 segspt_unmap, 92 segspt_free, 93 SEGSPT_BADOP(int), /* fault */ 94 SEGSPT_BADOP(faultcode_t), /* faulta */ 95 SEGSPT_BADOP(int), /* setprot */ 96 SEGSPT_BADOP(int), /* checkprot */ 97 SEGSPT_BADOP(int), /* kluster */ 98 SEGSPT_BADOP(size_t), /* swapout */ 99 SEGSPT_BADOP(int), /* sync */ 100 SEGSPT_BADOP(size_t), /* incore */ 101 SEGSPT_BADOP(int), /* lockop */ 102 SEGSPT_BADOP(int), /* getprot */ 103 SEGSPT_BADOP(u_offset_t), /* getoffset */ 104 SEGSPT_BADOP(int), /* gettype */ 105 SEGSPT_BADOP(int), /* getvp */ 106 SEGSPT_BADOP(int), /* advise */ 107 SEGSPT_BADOP(void), /* dump */ 108 SEGSPT_BADOP(int), /* pagelock */ 109 SEGSPT_BADOP(int), /* setpgsz */ 110 SEGSPT_BADOP(int), /* getmemid */ 111 segspt_getpolicy, /* getpolicy */ 112 SEGSPT_BADOP(int), /* capable */ 113 seg_inherit_notsup /* inherit */ 114 }; 115 116 static int segspt_shmdup(struct seg *seg, struct seg *newseg); 117 static int segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize); 118 static void segspt_shmfree(struct seg *seg); 119 static faultcode_t segspt_shmfault(struct hat *hat, struct seg *seg, 120 caddr_t addr, size_t len, enum fault_type type, enum seg_rw rw); 121 static faultcode_t segspt_shmfaulta(struct seg *seg, caddr_t addr); 122 static int segspt_shmsetprot(register struct seg *seg, register caddr_t addr, 123 register size_t len, register uint_t prot); 124 static int segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size, 125 uint_t prot); 126 static int segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta); 127 static size_t segspt_shmswapout(struct seg *seg); 128 static size_t segspt_shmincore(struct seg *seg, caddr_t addr, size_t len, 129 register char *vec); 130 static int segspt_shmsync(struct seg *seg, register caddr_t addr, size_t len, 131 int attr, uint_t flags); 132 static int segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len, 133 int attr, int op, ulong_t *lockmap, size_t pos); 134 static int segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len, 135 uint_t *protv); 136 static u_offset_t segspt_shmgetoffset(struct seg *seg, caddr_t addr); 137 static int segspt_shmgettype(struct seg *seg, caddr_t addr); 138 static int segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp); 139 static int segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len, 140 uint_t behav); 141 static void segspt_shmdump(struct seg *seg); 142 static int segspt_shmpagelock(struct seg *, caddr_t, size_t, 143 struct page ***, enum lock_type, enum seg_rw); 144 static int segspt_shmsetpgsz(struct seg *, caddr_t, size_t, uint_t); 145 static int segspt_shmgetmemid(struct seg *, caddr_t, memid_t *); 146 static lgrp_mem_policy_info_t *segspt_shmgetpolicy(struct seg *, caddr_t); 147 static int segspt_shmcapable(struct seg *, segcapability_t); 148 149 struct seg_ops segspt_shmops = { 150 segspt_shmdup, 151 segspt_shmunmap, 152 segspt_shmfree, 153 segspt_shmfault, 154 segspt_shmfaulta, 155 segspt_shmsetprot, 156 segspt_shmcheckprot, 157 segspt_shmkluster, 158 segspt_shmswapout, 159 segspt_shmsync, 160 segspt_shmincore, 161 segspt_shmlockop, 162 segspt_shmgetprot, 163 segspt_shmgetoffset, 164 segspt_shmgettype, 165 segspt_shmgetvp, 166 segspt_shmadvise, /* advise */ 167 segspt_shmdump, 168 segspt_shmpagelock, 169 segspt_shmsetpgsz, 170 segspt_shmgetmemid, 171 segspt_shmgetpolicy, 172 segspt_shmcapable, 173 seg_inherit_notsup 174 }; 175 176 static void segspt_purge(struct seg *seg); 177 static int segspt_reclaim(void *, caddr_t, size_t, struct page **, 178 enum seg_rw, int); 179 static int spt_anon_getpages(struct seg *seg, caddr_t addr, size_t len, 180 page_t **ppa); 181 182 183 184 /*ARGSUSED*/ 185 int 186 sptcreate(size_t size, struct seg **sptseg, struct anon_map *amp, 187 uint_t prot, uint_t flags, uint_t share_szc) 188 { 189 int err; 190 struct as *newas; 191 struct segspt_crargs sptcargs; 192 193 #ifdef DEBUG 194 TNF_PROBE_1(sptcreate, "spt", /* CSTYLED */, 195 tnf_ulong, size, size ); 196 #endif 197 if (segspt_minfree == 0) /* leave min 5% of availrmem for */ 198 segspt_minfree = availrmem/20; /* for the system */ 199 200 if (!hat_supported(HAT_SHARED_PT, (void *)0)) 201 return (EINVAL); 202 203 /* 204 * get a new as for this shared memory segment 205 */ 206 newas = as_alloc(); 207 newas->a_proc = NULL; 208 sptcargs.amp = amp; 209 sptcargs.prot = prot; 210 sptcargs.flags = flags; 211 sptcargs.szc = share_szc; 212 /* 213 * create a shared page table (spt) segment 214 */ 215 216 if (err = as_map(newas, SEGSPTADDR, size, segspt_create, &sptcargs)) { 217 as_free(newas); 218 return (err); 219 } 220 *sptseg = sptcargs.seg_spt; 221 return (0); 222 } 223 224 void 225 sptdestroy(struct as *as, struct anon_map *amp) 226 { 227 228 #ifdef DEBUG 229 TNF_PROBE_0(sptdestroy, "spt", /* CSTYLED */); 230 #endif 231 (void) as_unmap(as, SEGSPTADDR, amp->size); 232 as_free(as); 233 } 234 235 /* 236 * called from seg_free(). 237 * free (i.e., unlock, unmap, return to free list) 238 * all the pages in the given seg. 239 */ 240 void 241 segspt_free(struct seg *seg) 242 { 243 struct spt_data *sptd = (struct spt_data *)seg->s_data; 244 245 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as)); 246 247 if (sptd != NULL) { 248 if (sptd->spt_realsize) 249 segspt_free_pages(seg, seg->s_base, sptd->spt_realsize); 250 251 if (sptd->spt_ppa_lckcnt) 252 kmem_free(sptd->spt_ppa_lckcnt, 253 sizeof (*sptd->spt_ppa_lckcnt) 254 * btopr(sptd->spt_amp->size)); 255 kmem_free(sptd->spt_vp, sizeof (*sptd->spt_vp)); 256 cv_destroy(&sptd->spt_cv); 257 mutex_destroy(&sptd->spt_lock); 258 kmem_free(sptd, sizeof (*sptd)); 259 } 260 } 261 262 /*ARGSUSED*/ 263 static int 264 segspt_shmsync(struct seg *seg, caddr_t addr, size_t len, int attr, 265 uint_t flags) 266 { 267 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 268 269 return (0); 270 } 271 272 /*ARGSUSED*/ 273 static size_t 274 segspt_shmincore(struct seg *seg, caddr_t addr, size_t len, char *vec) 275 { 276 caddr_t eo_seg; 277 pgcnt_t npages; 278 struct shm_data *shmd = (struct shm_data *)seg->s_data; 279 struct seg *sptseg; 280 struct spt_data *sptd; 281 282 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 283 #ifdef lint 284 seg = seg; 285 #endif 286 sptseg = shmd->shm_sptseg; 287 sptd = sptseg->s_data; 288 289 if ((sptd->spt_flags & SHM_PAGEABLE) == 0) { 290 eo_seg = addr + len; 291 while (addr < eo_seg) { 292 /* page exists, and it's locked. */ 293 *vec++ = SEG_PAGE_INCORE | SEG_PAGE_LOCKED | 294 SEG_PAGE_ANON; 295 addr += PAGESIZE; 296 } 297 return (len); 298 } else { 299 struct anon_map *amp = shmd->shm_amp; 300 struct anon *ap; 301 page_t *pp; 302 pgcnt_t anon_index; 303 struct vnode *vp; 304 u_offset_t off; 305 ulong_t i; 306 int ret; 307 anon_sync_obj_t cookie; 308 309 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 310 anon_index = seg_page(seg, addr); 311 npages = btopr(len); 312 if (anon_index + npages > btopr(shmd->shm_amp->size)) { 313 return (EINVAL); 314 } 315 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 316 for (i = 0; i < npages; i++, anon_index++) { 317 ret = 0; 318 anon_array_enter(amp, anon_index, &cookie); 319 ap = anon_get_ptr(amp->ahp, anon_index); 320 if (ap != NULL) { 321 swap_xlate(ap, &vp, &off); 322 anon_array_exit(&cookie); 323 pp = page_lookup_nowait(vp, off, SE_SHARED); 324 if (pp != NULL) { 325 ret |= SEG_PAGE_INCORE | SEG_PAGE_ANON; 326 page_unlock(pp); 327 } 328 } else { 329 anon_array_exit(&cookie); 330 } 331 if (shmd->shm_vpage[anon_index] & DISM_PG_LOCKED) { 332 ret |= SEG_PAGE_LOCKED; 333 } 334 *vec++ = (char)ret; 335 } 336 ANON_LOCK_EXIT(&->a_rwlock); 337 return (len); 338 } 339 } 340 341 static int 342 segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize) 343 { 344 size_t share_size; 345 346 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as)); 347 348 /* 349 * seg.s_size may have been rounded up to the largest page size 350 * in shmat(). 351 * XXX This should be cleanedup. sptdestroy should take a length 352 * argument which should be the same as sptcreate. Then 353 * this rounding would not be needed (or is done in shm.c) 354 * Only the check for full segment will be needed. 355 * 356 * XXX -- shouldn't raddr == 0 always? These tests don't seem 357 * to be useful at all. 358 */ 359 share_size = page_get_pagesize(seg->s_szc); 360 ssize = P2ROUNDUP(ssize, share_size); 361 362 if (raddr == seg->s_base && ssize == seg->s_size) { 363 seg_free(seg); 364 return (0); 365 } else 366 return (EINVAL); 367 } 368 369 int 370 segspt_create(struct seg *seg, caddr_t argsp) 371 { 372 int err; 373 caddr_t addr = seg->s_base; 374 struct spt_data *sptd; 375 struct segspt_crargs *sptcargs = (struct segspt_crargs *)argsp; 376 struct anon_map *amp = sptcargs->amp; 377 struct kshmid *sp = amp->a_sp; 378 struct cred *cred = CRED(); 379 ulong_t i, j, anon_index = 0; 380 pgcnt_t npages = btopr(amp->size); 381 struct vnode *vp; 382 page_t **ppa; 383 uint_t hat_flags; 384 size_t pgsz; 385 pgcnt_t pgcnt; 386 caddr_t a; 387 pgcnt_t pidx; 388 size_t sz; 389 proc_t *procp = curproc; 390 rctl_qty_t lockedbytes = 0; 391 kproject_t *proj; 392 393 /* 394 * We are holding the a_lock on the underlying dummy as, 395 * so we can make calls to the HAT layer. 396 */ 397 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as)); 398 ASSERT(sp != NULL); 399 400 #ifdef DEBUG 401 TNF_PROBE_2(segspt_create, "spt", /* CSTYLED */, 402 tnf_opaque, addr, addr, tnf_ulong, len, seg->s_size); 403 #endif 404 if ((sptcargs->flags & SHM_PAGEABLE) == 0) { 405 if (err = anon_swap_adjust(npages)) 406 return (err); 407 } 408 err = ENOMEM; 409 410 if ((sptd = kmem_zalloc(sizeof (*sptd), KM_NOSLEEP)) == NULL) 411 goto out1; 412 413 if ((sptcargs->flags & SHM_PAGEABLE) == 0) { 414 if ((ppa = kmem_zalloc(((sizeof (page_t *)) * npages), 415 KM_NOSLEEP)) == NULL) 416 goto out2; 417 } 418 419 mutex_init(&sptd->spt_lock, NULL, MUTEX_DEFAULT, NULL); 420 421 if ((vp = kmem_zalloc(sizeof (*vp), KM_NOSLEEP)) == NULL) 422 goto out3; 423 424 seg->s_ops = &segspt_ops; 425 sptd->spt_vp = vp; 426 sptd->spt_amp = amp; 427 sptd->spt_prot = sptcargs->prot; 428 sptd->spt_flags = sptcargs->flags; 429 seg->s_data = (caddr_t)sptd; 430 sptd->spt_ppa = NULL; 431 sptd->spt_ppa_lckcnt = NULL; 432 seg->s_szc = sptcargs->szc; 433 cv_init(&sptd->spt_cv, NULL, CV_DEFAULT, NULL); 434 sptd->spt_gen = 0; 435 436 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 437 if (seg->s_szc > amp->a_szc) { 438 amp->a_szc = seg->s_szc; 439 } 440 ANON_LOCK_EXIT(&->a_rwlock); 441 442 /* 443 * Set policy to affect initial allocation of pages in 444 * anon_map_createpages() 445 */ 446 (void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, amp, anon_index, 447 NULL, 0, ptob(npages)); 448 449 if (sptcargs->flags & SHM_PAGEABLE) { 450 size_t share_sz; 451 pgcnt_t new_npgs, more_pgs; 452 struct anon_hdr *nahp; 453 zone_t *zone; 454 455 share_sz = page_get_pagesize(seg->s_szc); 456 if (!IS_P2ALIGNED(amp->size, share_sz)) { 457 /* 458 * We are rounding up the size of the anon array 459 * on 4 M boundary because we always create 4 M 460 * of page(s) when locking, faulting pages and we 461 * don't have to check for all corner cases e.g. 462 * if there is enough space to allocate 4 M 463 * page. 464 */ 465 new_npgs = btop(P2ROUNDUP(amp->size, share_sz)); 466 more_pgs = new_npgs - npages; 467 468 /* 469 * The zone will never be NULL, as a fully created 470 * shm always has an owning zone. 471 */ 472 zone = sp->shm_perm.ipc_zone_ref.zref_zone; 473 ASSERT(zone != NULL); 474 if (anon_resv_zone(ptob(more_pgs), zone) == 0) { 475 err = ENOMEM; 476 goto out4; 477 } 478 479 nahp = anon_create(new_npgs, ANON_SLEEP); 480 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 481 (void) anon_copy_ptr(amp->ahp, 0, nahp, 0, npages, 482 ANON_SLEEP); 483 anon_release(amp->ahp, npages); 484 amp->ahp = nahp; 485 ASSERT(amp->swresv == ptob(npages)); 486 amp->swresv = amp->size = ptob(new_npgs); 487 ANON_LOCK_EXIT(&->a_rwlock); 488 npages = new_npgs; 489 } 490 491 sptd->spt_ppa_lckcnt = kmem_zalloc(npages * 492 sizeof (*sptd->spt_ppa_lckcnt), KM_SLEEP); 493 sptd->spt_pcachecnt = 0; 494 sptd->spt_realsize = ptob(npages); 495 sptcargs->seg_spt = seg; 496 return (0); 497 } 498 499 /* 500 * get array of pages for each anon slot in amp 501 */ 502 if ((err = anon_map_createpages(amp, anon_index, ptob(npages), ppa, 503 seg, addr, S_CREATE, cred)) != 0) 504 goto out4; 505 506 mutex_enter(&sp->shm_mlock); 507 508 /* May be partially locked, so, count bytes to charge for locking */ 509 for (i = 0; i < npages; i++) 510 if (ppa[i]->p_lckcnt == 0) 511 lockedbytes += PAGESIZE; 512 513 proj = sp->shm_perm.ipc_proj; 514 515 if (lockedbytes > 0) { 516 mutex_enter(&procp->p_lock); 517 if (rctl_incr_locked_mem(procp, proj, lockedbytes, 0)) { 518 mutex_exit(&procp->p_lock); 519 mutex_exit(&sp->shm_mlock); 520 for (i = 0; i < npages; i++) 521 page_unlock(ppa[i]); 522 err = ENOMEM; 523 goto out4; 524 } 525 mutex_exit(&procp->p_lock); 526 } 527 528 /* 529 * addr is initial address corresponding to the first page on ppa list 530 */ 531 for (i = 0; i < npages; i++) { 532 /* attempt to lock all pages */ 533 if (page_pp_lock(ppa[i], 0, 1) == 0) { 534 /* 535 * if unable to lock any page, unlock all 536 * of them and return error 537 */ 538 for (j = 0; j < i; j++) 539 page_pp_unlock(ppa[j], 0, 1); 540 for (i = 0; i < npages; i++) 541 page_unlock(ppa[i]); 542 rctl_decr_locked_mem(NULL, proj, lockedbytes, 0); 543 mutex_exit(&sp->shm_mlock); 544 err = ENOMEM; 545 goto out4; 546 } 547 } 548 mutex_exit(&sp->shm_mlock); 549 550 /* 551 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK 552 * for the entire life of the segment. For example platforms 553 * that do not support Dynamic Reconfiguration. 554 */ 555 hat_flags = HAT_LOAD_SHARE; 556 if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, NULL)) 557 hat_flags |= HAT_LOAD_LOCK; 558 559 /* 560 * Load translations one lare page at a time 561 * to make sure we don't create mappings bigger than 562 * segment's size code in case underlying pages 563 * are shared with segvn's segment that uses bigger 564 * size code than we do. 565 */ 566 pgsz = page_get_pagesize(seg->s_szc); 567 pgcnt = page_get_pagecnt(seg->s_szc); 568 for (a = addr, pidx = 0; pidx < npages; a += pgsz, pidx += pgcnt) { 569 sz = MIN(pgsz, ptob(npages - pidx)); 570 hat_memload_array(seg->s_as->a_hat, a, sz, 571 &ppa[pidx], sptd->spt_prot, hat_flags); 572 } 573 574 /* 575 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP, 576 * we will leave the pages locked SE_SHARED for the life 577 * of the ISM segment. This will prevent any calls to 578 * hat_pageunload() on this ISM segment for those platforms. 579 */ 580 if (!(hat_flags & HAT_LOAD_LOCK)) { 581 /* 582 * On platforms that support HAT_DYNAMIC_ISM_UNMAP, 583 * we no longer need to hold the SE_SHARED lock on the pages, 584 * since L_PAGELOCK and F_SOFTLOCK calls will grab the 585 * SE_SHARED lock on the pages as necessary. 586 */ 587 for (i = 0; i < npages; i++) 588 page_unlock(ppa[i]); 589 } 590 sptd->spt_pcachecnt = 0; 591 kmem_free(ppa, ((sizeof (page_t *)) * npages)); 592 sptd->spt_realsize = ptob(npages); 593 atomic_add_long(&spt_used, npages); 594 sptcargs->seg_spt = seg; 595 return (0); 596 597 out4: 598 seg->s_data = NULL; 599 kmem_free(vp, sizeof (*vp)); 600 cv_destroy(&sptd->spt_cv); 601 out3: 602 mutex_destroy(&sptd->spt_lock); 603 if ((sptcargs->flags & SHM_PAGEABLE) == 0) 604 kmem_free(ppa, (sizeof (*ppa) * npages)); 605 out2: 606 kmem_free(sptd, sizeof (*sptd)); 607 out1: 608 if ((sptcargs->flags & SHM_PAGEABLE) == 0) 609 anon_swap_restore(npages); 610 return (err); 611 } 612 613 /*ARGSUSED*/ 614 void 615 segspt_free_pages(struct seg *seg, caddr_t addr, size_t len) 616 { 617 struct page *pp; 618 struct spt_data *sptd = (struct spt_data *)seg->s_data; 619 pgcnt_t npages; 620 ulong_t anon_idx; 621 struct anon_map *amp; 622 struct anon *ap; 623 struct vnode *vp; 624 u_offset_t off; 625 uint_t hat_flags; 626 int root = 0; 627 pgcnt_t pgs, curnpgs = 0; 628 page_t *rootpp; 629 rctl_qty_t unlocked_bytes = 0; 630 kproject_t *proj; 631 kshmid_t *sp; 632 633 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as)); 634 635 len = P2ROUNDUP(len, PAGESIZE); 636 637 npages = btop(len); 638 639 hat_flags = HAT_UNLOAD_UNLOCK | HAT_UNLOAD_UNMAP; 640 if ((hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) || 641 (sptd->spt_flags & SHM_PAGEABLE)) { 642 hat_flags = HAT_UNLOAD_UNMAP; 643 } 644 645 hat_unload(seg->s_as->a_hat, addr, len, hat_flags); 646 647 amp = sptd->spt_amp; 648 if (sptd->spt_flags & SHM_PAGEABLE) 649 npages = btop(amp->size); 650 651 ASSERT(amp != NULL); 652 653 if ((sptd->spt_flags & SHM_PAGEABLE) == 0) { 654 sp = amp->a_sp; 655 proj = sp->shm_perm.ipc_proj; 656 mutex_enter(&sp->shm_mlock); 657 } 658 for (anon_idx = 0; anon_idx < npages; anon_idx++) { 659 if ((sptd->spt_flags & SHM_PAGEABLE) == 0) { 660 if ((ap = anon_get_ptr(amp->ahp, anon_idx)) == NULL) { 661 panic("segspt_free_pages: null app"); 662 /*NOTREACHED*/ 663 } 664 } else { 665 if ((ap = anon_get_next_ptr(amp->ahp, &anon_idx)) 666 == NULL) 667 continue; 668 } 669 ASSERT(ANON_ISBUSY(anon_get_slot(amp->ahp, anon_idx)) == 0); 670 swap_xlate(ap, &vp, &off); 671 672 /* 673 * If this platform supports HAT_DYNAMIC_ISM_UNMAP, 674 * the pages won't be having SE_SHARED lock at this 675 * point. 676 * 677 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP, 678 * the pages are still held SE_SHARED locked from the 679 * original segspt_create() 680 * 681 * Our goal is to get SE_EXCL lock on each page, remove 682 * permanent lock on it and invalidate the page. 683 */ 684 if ((sptd->spt_flags & SHM_PAGEABLE) == 0) { 685 if (hat_flags == HAT_UNLOAD_UNMAP) 686 pp = page_lookup(vp, off, SE_EXCL); 687 else { 688 if ((pp = page_find(vp, off)) == NULL) { 689 panic("segspt_free_pages: " 690 "page not locked"); 691 /*NOTREACHED*/ 692 } 693 if (!page_tryupgrade(pp)) { 694 page_unlock(pp); 695 pp = page_lookup(vp, off, SE_EXCL); 696 } 697 } 698 if (pp == NULL) { 699 panic("segspt_free_pages: " 700 "page not in the system"); 701 /*NOTREACHED*/ 702 } 703 ASSERT(pp->p_lckcnt > 0); 704 page_pp_unlock(pp, 0, 1); 705 if (pp->p_lckcnt == 0) 706 unlocked_bytes += PAGESIZE; 707 } else { 708 if ((pp = page_lookup(vp, off, SE_EXCL)) == NULL) 709 continue; 710 } 711 /* 712 * It's logical to invalidate the pages here as in most cases 713 * these were created by segspt. 714 */ 715 if (pp->p_szc != 0) { 716 if (root == 0) { 717 ASSERT(curnpgs == 0); 718 root = 1; 719 rootpp = pp; 720 pgs = curnpgs = page_get_pagecnt(pp->p_szc); 721 ASSERT(pgs > 1); 722 ASSERT(IS_P2ALIGNED(pgs, pgs)); 723 ASSERT(!(page_pptonum(pp) & (pgs - 1))); 724 curnpgs--; 725 } else if ((page_pptonum(pp) & (pgs - 1)) == pgs - 1) { 726 ASSERT(curnpgs == 1); 727 ASSERT(page_pptonum(pp) == 728 page_pptonum(rootpp) + (pgs - 1)); 729 page_destroy_pages(rootpp); 730 root = 0; 731 curnpgs = 0; 732 } else { 733 ASSERT(curnpgs > 1); 734 ASSERT(page_pptonum(pp) == 735 page_pptonum(rootpp) + (pgs - curnpgs)); 736 curnpgs--; 737 } 738 } else { 739 if (root != 0 || curnpgs != 0) { 740 panic("segspt_free_pages: bad large page"); 741 /*NOTREACHED*/ 742 } 743 /* 744 * Before destroying the pages, we need to take care 745 * of the rctl locked memory accounting. For that 746 * we need to calculte the unlocked_bytes. 747 */ 748 if (pp->p_lckcnt > 0) 749 unlocked_bytes += PAGESIZE; 750 /*LINTED: constant in conditional context */ 751 VN_DISPOSE(pp, B_INVAL, 0, kcred); 752 } 753 } 754 if ((sptd->spt_flags & SHM_PAGEABLE) == 0) { 755 if (unlocked_bytes > 0) 756 rctl_decr_locked_mem(NULL, proj, unlocked_bytes, 0); 757 mutex_exit(&sp->shm_mlock); 758 } 759 if (root != 0 || curnpgs != 0) { 760 panic("segspt_free_pages: bad large page"); 761 /*NOTREACHED*/ 762 } 763 764 /* 765 * mark that pages have been released 766 */ 767 sptd->spt_realsize = 0; 768 769 if ((sptd->spt_flags & SHM_PAGEABLE) == 0) { 770 atomic_add_long(&spt_used, -npages); 771 anon_swap_restore(npages); 772 } 773 } 774 775 /* 776 * Get memory allocation policy info for specified address in given segment 777 */ 778 static lgrp_mem_policy_info_t * 779 segspt_getpolicy(struct seg *seg, caddr_t addr) 780 { 781 struct anon_map *amp; 782 ulong_t anon_index; 783 lgrp_mem_policy_info_t *policy_info; 784 struct spt_data *spt_data; 785 786 ASSERT(seg != NULL); 787 788 /* 789 * Get anon_map from segspt 790 * 791 * Assume that no lock needs to be held on anon_map, since 792 * it should be protected by its reference count which must be 793 * nonzero for an existing segment 794 * Need to grab readers lock on policy tree though 795 */ 796 spt_data = (struct spt_data *)seg->s_data; 797 if (spt_data == NULL) 798 return (NULL); 799 amp = spt_data->spt_amp; 800 ASSERT(amp->refcnt != 0); 801 802 /* 803 * Get policy info 804 * 805 * Assume starting anon index of 0 806 */ 807 anon_index = seg_page(seg, addr); 808 policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0); 809 810 return (policy_info); 811 } 812 813 /* 814 * DISM only. 815 * Return locked pages over a given range. 816 * 817 * We will cache all DISM locked pages and save the pplist for the 818 * entire segment in the ppa field of the underlying DISM segment structure. 819 * Later, during a call to segspt_reclaim() we will use this ppa array 820 * to page_unlock() all of the pages and then we will free this ppa list. 821 */ 822 /*ARGSUSED*/ 823 static int 824 segspt_dismpagelock(struct seg *seg, caddr_t addr, size_t len, 825 struct page ***ppp, enum lock_type type, enum seg_rw rw) 826 { 827 struct shm_data *shmd = (struct shm_data *)seg->s_data; 828 struct seg *sptseg = shmd->shm_sptseg; 829 struct spt_data *sptd = sptseg->s_data; 830 pgcnt_t pg_idx, npages, tot_npages, npgs; 831 struct page **pplist, **pl, **ppa, *pp; 832 struct anon_map *amp; 833 spgcnt_t an_idx; 834 int ret = ENOTSUP; 835 uint_t pl_built = 0; 836 struct anon *ap; 837 struct vnode *vp; 838 u_offset_t off; 839 pgcnt_t claim_availrmem = 0; 840 uint_t szc; 841 842 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 843 ASSERT(type == L_PAGELOCK || type == L_PAGEUNLOCK); 844 845 /* 846 * We want to lock/unlock the entire ISM segment. Therefore, 847 * we will be using the underlying sptseg and it's base address 848 * and length for the caching arguments. 849 */ 850 ASSERT(sptseg); 851 ASSERT(sptd); 852 853 pg_idx = seg_page(seg, addr); 854 npages = btopr(len); 855 856 /* 857 * check if the request is larger than number of pages covered 858 * by amp 859 */ 860 if (pg_idx + npages > btopr(sptd->spt_amp->size)) { 861 *ppp = NULL; 862 return (ENOTSUP); 863 } 864 865 if (type == L_PAGEUNLOCK) { 866 ASSERT(sptd->spt_ppa != NULL); 867 868 seg_pinactive(seg, NULL, seg->s_base, sptd->spt_amp->size, 869 sptd->spt_ppa, S_WRITE, SEGP_FORCE_WIRED, segspt_reclaim); 870 871 /* 872 * If someone is blocked while unmapping, we purge 873 * segment page cache and thus reclaim pplist synchronously 874 * without waiting for seg_pasync_thread. This speeds up 875 * unmapping in cases where munmap(2) is called, while 876 * raw async i/o is still in progress or where a thread 877 * exits on data fault in a multithreaded application. 878 */ 879 if ((sptd->spt_flags & DISM_PPA_CHANGED) || 880 (AS_ISUNMAPWAIT(seg->s_as) && 881 shmd->shm_softlockcnt > 0)) { 882 segspt_purge(seg); 883 } 884 return (0); 885 } 886 887 /* The L_PAGELOCK case ... */ 888 889 if (sptd->spt_flags & DISM_PPA_CHANGED) { 890 segspt_purge(seg); 891 /* 892 * for DISM ppa needs to be rebuild since 893 * number of locked pages could be changed 894 */ 895 *ppp = NULL; 896 return (ENOTSUP); 897 } 898 899 /* 900 * First try to find pages in segment page cache, without 901 * holding the segment lock. 902 */ 903 pplist = seg_plookup(seg, NULL, seg->s_base, sptd->spt_amp->size, 904 S_WRITE, SEGP_FORCE_WIRED); 905 if (pplist != NULL) { 906 ASSERT(sptd->spt_ppa != NULL); 907 ASSERT(sptd->spt_ppa == pplist); 908 ppa = sptd->spt_ppa; 909 for (an_idx = pg_idx; an_idx < pg_idx + npages; ) { 910 if (ppa[an_idx] == NULL) { 911 seg_pinactive(seg, NULL, seg->s_base, 912 sptd->spt_amp->size, ppa, 913 S_WRITE, SEGP_FORCE_WIRED, segspt_reclaim); 914 *ppp = NULL; 915 return (ENOTSUP); 916 } 917 if ((szc = ppa[an_idx]->p_szc) != 0) { 918 npgs = page_get_pagecnt(szc); 919 an_idx = P2ROUNDUP(an_idx + 1, npgs); 920 } else { 921 an_idx++; 922 } 923 } 924 /* 925 * Since we cache the entire DISM segment, we want to 926 * set ppp to point to the first slot that corresponds 927 * to the requested addr, i.e. pg_idx. 928 */ 929 *ppp = &(sptd->spt_ppa[pg_idx]); 930 return (0); 931 } 932 933 mutex_enter(&sptd->spt_lock); 934 /* 935 * try to find pages in segment page cache with mutex 936 */ 937 pplist = seg_plookup(seg, NULL, seg->s_base, sptd->spt_amp->size, 938 S_WRITE, SEGP_FORCE_WIRED); 939 if (pplist != NULL) { 940 ASSERT(sptd->spt_ppa != NULL); 941 ASSERT(sptd->spt_ppa == pplist); 942 ppa = sptd->spt_ppa; 943 for (an_idx = pg_idx; an_idx < pg_idx + npages; ) { 944 if (ppa[an_idx] == NULL) { 945 mutex_exit(&sptd->spt_lock); 946 seg_pinactive(seg, NULL, seg->s_base, 947 sptd->spt_amp->size, ppa, 948 S_WRITE, SEGP_FORCE_WIRED, segspt_reclaim); 949 *ppp = NULL; 950 return (ENOTSUP); 951 } 952 if ((szc = ppa[an_idx]->p_szc) != 0) { 953 npgs = page_get_pagecnt(szc); 954 an_idx = P2ROUNDUP(an_idx + 1, npgs); 955 } else { 956 an_idx++; 957 } 958 } 959 /* 960 * Since we cache the entire DISM segment, we want to 961 * set ppp to point to the first slot that corresponds 962 * to the requested addr, i.e. pg_idx. 963 */ 964 mutex_exit(&sptd->spt_lock); 965 *ppp = &(sptd->spt_ppa[pg_idx]); 966 return (0); 967 } 968 if (seg_pinsert_check(seg, NULL, seg->s_base, sptd->spt_amp->size, 969 SEGP_FORCE_WIRED) == SEGP_FAIL) { 970 mutex_exit(&sptd->spt_lock); 971 *ppp = NULL; 972 return (ENOTSUP); 973 } 974 975 /* 976 * No need to worry about protections because DISM pages are always rw. 977 */ 978 pl = pplist = NULL; 979 amp = sptd->spt_amp; 980 981 /* 982 * Do we need to build the ppa array? 983 */ 984 if (sptd->spt_ppa == NULL) { 985 pgcnt_t lpg_cnt = 0; 986 987 pl_built = 1; 988 tot_npages = btopr(sptd->spt_amp->size); 989 990 ASSERT(sptd->spt_pcachecnt == 0); 991 pplist = kmem_zalloc(sizeof (page_t *) * tot_npages, KM_SLEEP); 992 pl = pplist; 993 994 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 995 for (an_idx = 0; an_idx < tot_npages; ) { 996 ap = anon_get_ptr(amp->ahp, an_idx); 997 /* 998 * Cache only mlocked pages. For large pages 999 * if one (constituent) page is mlocked 1000 * all pages for that large page 1001 * are cached also. This is for quick 1002 * lookups of ppa array; 1003 */ 1004 if ((ap != NULL) && (lpg_cnt != 0 || 1005 (sptd->spt_ppa_lckcnt[an_idx] != 0))) { 1006 1007 swap_xlate(ap, &vp, &off); 1008 pp = page_lookup(vp, off, SE_SHARED); 1009 ASSERT(pp != NULL); 1010 if (lpg_cnt == 0) { 1011 lpg_cnt++; 1012 /* 1013 * For a small page, we are done -- 1014 * lpg_count is reset to 0 below. 1015 * 1016 * For a large page, we are guaranteed 1017 * to find the anon structures of all 1018 * constituent pages and a non-zero 1019 * lpg_cnt ensures that we don't test 1020 * for mlock for these. We are done 1021 * when lpg_count reaches (npgs + 1). 1022 * If we are not the first constituent 1023 * page, restart at the first one. 1024 */ 1025 npgs = page_get_pagecnt(pp->p_szc); 1026 if (!IS_P2ALIGNED(an_idx, npgs)) { 1027 an_idx = P2ALIGN(an_idx, npgs); 1028 page_unlock(pp); 1029 continue; 1030 } 1031 } 1032 if (++lpg_cnt > npgs) 1033 lpg_cnt = 0; 1034 1035 /* 1036 * availrmem is decremented only 1037 * for unlocked pages 1038 */ 1039 if (sptd->spt_ppa_lckcnt[an_idx] == 0) 1040 claim_availrmem++; 1041 pplist[an_idx] = pp; 1042 } 1043 an_idx++; 1044 } 1045 ANON_LOCK_EXIT(&->a_rwlock); 1046 1047 if (claim_availrmem) { 1048 mutex_enter(&freemem_lock); 1049 if (availrmem < tune.t_minarmem + claim_availrmem) { 1050 mutex_exit(&freemem_lock); 1051 ret = ENOTSUP; 1052 claim_availrmem = 0; 1053 goto insert_fail; 1054 } else { 1055 availrmem -= claim_availrmem; 1056 } 1057 mutex_exit(&freemem_lock); 1058 } 1059 1060 sptd->spt_ppa = pl; 1061 } else { 1062 /* 1063 * We already have a valid ppa[]. 1064 */ 1065 pl = sptd->spt_ppa; 1066 } 1067 1068 ASSERT(pl != NULL); 1069 1070 ret = seg_pinsert(seg, NULL, seg->s_base, sptd->spt_amp->size, 1071 sptd->spt_amp->size, pl, S_WRITE, SEGP_FORCE_WIRED, 1072 segspt_reclaim); 1073 if (ret == SEGP_FAIL) { 1074 /* 1075 * seg_pinsert failed. We return 1076 * ENOTSUP, so that the as_pagelock() code will 1077 * then try the slower F_SOFTLOCK path. 1078 */ 1079 if (pl_built) { 1080 /* 1081 * No one else has referenced the ppa[]. 1082 * We created it and we need to destroy it. 1083 */ 1084 sptd->spt_ppa = NULL; 1085 } 1086 ret = ENOTSUP; 1087 goto insert_fail; 1088 } 1089 1090 /* 1091 * In either case, we increment softlockcnt on the 'real' segment. 1092 */ 1093 sptd->spt_pcachecnt++; 1094 atomic_inc_ulong((ulong_t *)(&(shmd->shm_softlockcnt))); 1095 1096 ppa = sptd->spt_ppa; 1097 for (an_idx = pg_idx; an_idx < pg_idx + npages; ) { 1098 if (ppa[an_idx] == NULL) { 1099 mutex_exit(&sptd->spt_lock); 1100 seg_pinactive(seg, NULL, seg->s_base, 1101 sptd->spt_amp->size, 1102 pl, S_WRITE, SEGP_FORCE_WIRED, segspt_reclaim); 1103 *ppp = NULL; 1104 return (ENOTSUP); 1105 } 1106 if ((szc = ppa[an_idx]->p_szc) != 0) { 1107 npgs = page_get_pagecnt(szc); 1108 an_idx = P2ROUNDUP(an_idx + 1, npgs); 1109 } else { 1110 an_idx++; 1111 } 1112 } 1113 /* 1114 * We can now drop the sptd->spt_lock since the ppa[] 1115 * exists and he have incremented pacachecnt. 1116 */ 1117 mutex_exit(&sptd->spt_lock); 1118 1119 /* 1120 * Since we cache the entire segment, we want to 1121 * set ppp to point to the first slot that corresponds 1122 * to the requested addr, i.e. pg_idx. 1123 */ 1124 *ppp = &(sptd->spt_ppa[pg_idx]); 1125 return (0); 1126 1127 insert_fail: 1128 /* 1129 * We will only reach this code if we tried and failed. 1130 * 1131 * And we can drop the lock on the dummy seg, once we've failed 1132 * to set up a new ppa[]. 1133 */ 1134 mutex_exit(&sptd->spt_lock); 1135 1136 if (pl_built) { 1137 if (claim_availrmem) { 1138 mutex_enter(&freemem_lock); 1139 availrmem += claim_availrmem; 1140 mutex_exit(&freemem_lock); 1141 } 1142 1143 /* 1144 * We created pl and we need to destroy it. 1145 */ 1146 pplist = pl; 1147 for (an_idx = 0; an_idx < tot_npages; an_idx++) { 1148 if (pplist[an_idx] != NULL) 1149 page_unlock(pplist[an_idx]); 1150 } 1151 kmem_free(pl, sizeof (page_t *) * tot_npages); 1152 } 1153 1154 if (shmd->shm_softlockcnt <= 0) { 1155 if (AS_ISUNMAPWAIT(seg->s_as)) { 1156 mutex_enter(&seg->s_as->a_contents); 1157 if (AS_ISUNMAPWAIT(seg->s_as)) { 1158 AS_CLRUNMAPWAIT(seg->s_as); 1159 cv_broadcast(&seg->s_as->a_cv); 1160 } 1161 mutex_exit(&seg->s_as->a_contents); 1162 } 1163 } 1164 *ppp = NULL; 1165 return (ret); 1166 } 1167 1168 1169 1170 /* 1171 * return locked pages over a given range. 1172 * 1173 * We will cache the entire ISM segment and save the pplist for the 1174 * entire segment in the ppa field of the underlying ISM segment structure. 1175 * Later, during a call to segspt_reclaim() we will use this ppa array 1176 * to page_unlock() all of the pages and then we will free this ppa list. 1177 */ 1178 /*ARGSUSED*/ 1179 static int 1180 segspt_shmpagelock(struct seg *seg, caddr_t addr, size_t len, 1181 struct page ***ppp, enum lock_type type, enum seg_rw rw) 1182 { 1183 struct shm_data *shmd = (struct shm_data *)seg->s_data; 1184 struct seg *sptseg = shmd->shm_sptseg; 1185 struct spt_data *sptd = sptseg->s_data; 1186 pgcnt_t np, page_index, npages; 1187 caddr_t a, spt_base; 1188 struct page **pplist, **pl, *pp; 1189 struct anon_map *amp; 1190 ulong_t anon_index; 1191 int ret = ENOTSUP; 1192 uint_t pl_built = 0; 1193 struct anon *ap; 1194 struct vnode *vp; 1195 u_offset_t off; 1196 1197 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 1198 ASSERT(type == L_PAGELOCK || type == L_PAGEUNLOCK); 1199 1200 1201 /* 1202 * We want to lock/unlock the entire ISM segment. Therefore, 1203 * we will be using the underlying sptseg and it's base address 1204 * and length for the caching arguments. 1205 */ 1206 ASSERT(sptseg); 1207 ASSERT(sptd); 1208 1209 if (sptd->spt_flags & SHM_PAGEABLE) { 1210 return (segspt_dismpagelock(seg, addr, len, ppp, type, rw)); 1211 } 1212 1213 page_index = seg_page(seg, addr); 1214 npages = btopr(len); 1215 1216 /* 1217 * check if the request is larger than number of pages covered 1218 * by amp 1219 */ 1220 if (page_index + npages > btopr(sptd->spt_amp->size)) { 1221 *ppp = NULL; 1222 return (ENOTSUP); 1223 } 1224 1225 if (type == L_PAGEUNLOCK) { 1226 1227 ASSERT(sptd->spt_ppa != NULL); 1228 1229 seg_pinactive(seg, NULL, seg->s_base, sptd->spt_amp->size, 1230 sptd->spt_ppa, S_WRITE, SEGP_FORCE_WIRED, segspt_reclaim); 1231 1232 /* 1233 * If someone is blocked while unmapping, we purge 1234 * segment page cache and thus reclaim pplist synchronously 1235 * without waiting for seg_pasync_thread. This speeds up 1236 * unmapping in cases where munmap(2) is called, while 1237 * raw async i/o is still in progress or where a thread 1238 * exits on data fault in a multithreaded application. 1239 */ 1240 if (AS_ISUNMAPWAIT(seg->s_as) && (shmd->shm_softlockcnt > 0)) { 1241 segspt_purge(seg); 1242 } 1243 return (0); 1244 } 1245 1246 /* The L_PAGELOCK case... */ 1247 1248 /* 1249 * First try to find pages in segment page cache, without 1250 * holding the segment lock. 1251 */ 1252 pplist = seg_plookup(seg, NULL, seg->s_base, sptd->spt_amp->size, 1253 S_WRITE, SEGP_FORCE_WIRED); 1254 if (pplist != NULL) { 1255 ASSERT(sptd->spt_ppa == pplist); 1256 ASSERT(sptd->spt_ppa[page_index]); 1257 /* 1258 * Since we cache the entire ISM segment, we want to 1259 * set ppp to point to the first slot that corresponds 1260 * to the requested addr, i.e. page_index. 1261 */ 1262 *ppp = &(sptd->spt_ppa[page_index]); 1263 return (0); 1264 } 1265 1266 mutex_enter(&sptd->spt_lock); 1267 1268 /* 1269 * try to find pages in segment page cache 1270 */ 1271 pplist = seg_plookup(seg, NULL, seg->s_base, sptd->spt_amp->size, 1272 S_WRITE, SEGP_FORCE_WIRED); 1273 if (pplist != NULL) { 1274 ASSERT(sptd->spt_ppa == pplist); 1275 /* 1276 * Since we cache the entire segment, we want to 1277 * set ppp to point to the first slot that corresponds 1278 * to the requested addr, i.e. page_index. 1279 */ 1280 mutex_exit(&sptd->spt_lock); 1281 *ppp = &(sptd->spt_ppa[page_index]); 1282 return (0); 1283 } 1284 1285 if (seg_pinsert_check(seg, NULL, seg->s_base, sptd->spt_amp->size, 1286 SEGP_FORCE_WIRED) == SEGP_FAIL) { 1287 mutex_exit(&sptd->spt_lock); 1288 *ppp = NULL; 1289 return (ENOTSUP); 1290 } 1291 1292 /* 1293 * No need to worry about protections because ISM pages 1294 * are always rw. 1295 */ 1296 pl = pplist = NULL; 1297 1298 /* 1299 * Do we need to build the ppa array? 1300 */ 1301 if (sptd->spt_ppa == NULL) { 1302 ASSERT(sptd->spt_ppa == pplist); 1303 1304 spt_base = sptseg->s_base; 1305 pl_built = 1; 1306 1307 /* 1308 * availrmem is decremented once during anon_swap_adjust() 1309 * and is incremented during the anon_unresv(), which is 1310 * called from shm_rm_amp() when the segment is destroyed. 1311 */ 1312 amp = sptd->spt_amp; 1313 ASSERT(amp != NULL); 1314 1315 /* pcachecnt is protected by sptd->spt_lock */ 1316 ASSERT(sptd->spt_pcachecnt == 0); 1317 pplist = kmem_zalloc(sizeof (page_t *) 1318 * btopr(sptd->spt_amp->size), KM_SLEEP); 1319 pl = pplist; 1320 1321 anon_index = seg_page(sptseg, spt_base); 1322 1323 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 1324 for (a = spt_base; a < (spt_base + sptd->spt_amp->size); 1325 a += PAGESIZE, anon_index++, pplist++) { 1326 ap = anon_get_ptr(amp->ahp, anon_index); 1327 ASSERT(ap != NULL); 1328 swap_xlate(ap, &vp, &off); 1329 pp = page_lookup(vp, off, SE_SHARED); 1330 ASSERT(pp != NULL); 1331 *pplist = pp; 1332 } 1333 ANON_LOCK_EXIT(&->a_rwlock); 1334 1335 if (a < (spt_base + sptd->spt_amp->size)) { 1336 ret = ENOTSUP; 1337 goto insert_fail; 1338 } 1339 sptd->spt_ppa = pl; 1340 } else { 1341 /* 1342 * We already have a valid ppa[]. 1343 */ 1344 pl = sptd->spt_ppa; 1345 } 1346 1347 ASSERT(pl != NULL); 1348 1349 ret = seg_pinsert(seg, NULL, seg->s_base, sptd->spt_amp->size, 1350 sptd->spt_amp->size, pl, S_WRITE, SEGP_FORCE_WIRED, 1351 segspt_reclaim); 1352 if (ret == SEGP_FAIL) { 1353 /* 1354 * seg_pinsert failed. We return 1355 * ENOTSUP, so that the as_pagelock() code will 1356 * then try the slower F_SOFTLOCK path. 1357 */ 1358 if (pl_built) { 1359 /* 1360 * No one else has referenced the ppa[]. 1361 * We created it and we need to destroy it. 1362 */ 1363 sptd->spt_ppa = NULL; 1364 } 1365 ret = ENOTSUP; 1366 goto insert_fail; 1367 } 1368 1369 /* 1370 * In either case, we increment softlockcnt on the 'real' segment. 1371 */ 1372 sptd->spt_pcachecnt++; 1373 atomic_inc_ulong((ulong_t *)(&(shmd->shm_softlockcnt))); 1374 1375 /* 1376 * We can now drop the sptd->spt_lock since the ppa[] 1377 * exists and he have incremented pacachecnt. 1378 */ 1379 mutex_exit(&sptd->spt_lock); 1380 1381 /* 1382 * Since we cache the entire segment, we want to 1383 * set ppp to point to the first slot that corresponds 1384 * to the requested addr, i.e. page_index. 1385 */ 1386 *ppp = &(sptd->spt_ppa[page_index]); 1387 return (0); 1388 1389 insert_fail: 1390 /* 1391 * We will only reach this code if we tried and failed. 1392 * 1393 * And we can drop the lock on the dummy seg, once we've failed 1394 * to set up a new ppa[]. 1395 */ 1396 mutex_exit(&sptd->spt_lock); 1397 1398 if (pl_built) { 1399 /* 1400 * We created pl and we need to destroy it. 1401 */ 1402 pplist = pl; 1403 np = (((uintptr_t)(a - spt_base)) >> PAGESHIFT); 1404 while (np) { 1405 page_unlock(*pplist); 1406 np--; 1407 pplist++; 1408 } 1409 kmem_free(pl, sizeof (page_t *) * btopr(sptd->spt_amp->size)); 1410 } 1411 if (shmd->shm_softlockcnt <= 0) { 1412 if (AS_ISUNMAPWAIT(seg->s_as)) { 1413 mutex_enter(&seg->s_as->a_contents); 1414 if (AS_ISUNMAPWAIT(seg->s_as)) { 1415 AS_CLRUNMAPWAIT(seg->s_as); 1416 cv_broadcast(&seg->s_as->a_cv); 1417 } 1418 mutex_exit(&seg->s_as->a_contents); 1419 } 1420 } 1421 *ppp = NULL; 1422 return (ret); 1423 } 1424 1425 /* 1426 * purge any cached pages in the I/O page cache 1427 */ 1428 static void 1429 segspt_purge(struct seg *seg) 1430 { 1431 seg_ppurge(seg, NULL, SEGP_FORCE_WIRED); 1432 } 1433 1434 static int 1435 segspt_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist, 1436 enum seg_rw rw, int async) 1437 { 1438 struct seg *seg = (struct seg *)ptag; 1439 struct shm_data *shmd = (struct shm_data *)seg->s_data; 1440 struct seg *sptseg; 1441 struct spt_data *sptd; 1442 pgcnt_t npages, i, free_availrmem = 0; 1443 int done = 0; 1444 1445 #ifdef lint 1446 addr = addr; 1447 #endif 1448 sptseg = shmd->shm_sptseg; 1449 sptd = sptseg->s_data; 1450 npages = (len >> PAGESHIFT); 1451 ASSERT(npages); 1452 ASSERT(sptd->spt_pcachecnt != 0); 1453 ASSERT(sptd->spt_ppa == pplist); 1454 ASSERT(npages == btopr(sptd->spt_amp->size)); 1455 ASSERT(async || AS_LOCK_HELD(seg->s_as)); 1456 1457 /* 1458 * Acquire the lock on the dummy seg and destroy the 1459 * ppa array IF this is the last pcachecnt. 1460 */ 1461 mutex_enter(&sptd->spt_lock); 1462 if (--sptd->spt_pcachecnt == 0) { 1463 for (i = 0; i < npages; i++) { 1464 if (pplist[i] == NULL) { 1465 continue; 1466 } 1467 if (rw == S_WRITE) { 1468 hat_setrefmod(pplist[i]); 1469 } else { 1470 hat_setref(pplist[i]); 1471 } 1472 if ((sptd->spt_flags & SHM_PAGEABLE) && 1473 (sptd->spt_ppa_lckcnt[i] == 0)) 1474 free_availrmem++; 1475 page_unlock(pplist[i]); 1476 } 1477 if ((sptd->spt_flags & SHM_PAGEABLE) && free_availrmem) { 1478 mutex_enter(&freemem_lock); 1479 availrmem += free_availrmem; 1480 mutex_exit(&freemem_lock); 1481 } 1482 /* 1483 * Since we want to cach/uncache the entire ISM segment, 1484 * we will track the pplist in a segspt specific field 1485 * ppa, that is initialized at the time we add an entry to 1486 * the cache. 1487 */ 1488 ASSERT(sptd->spt_pcachecnt == 0); 1489 kmem_free(pplist, sizeof (page_t *) * npages); 1490 sptd->spt_ppa = NULL; 1491 sptd->spt_flags &= ~DISM_PPA_CHANGED; 1492 sptd->spt_gen++; 1493 cv_broadcast(&sptd->spt_cv); 1494 done = 1; 1495 } 1496 mutex_exit(&sptd->spt_lock); 1497 1498 /* 1499 * If we are pcache async thread or called via seg_ppurge_wiredpp() we 1500 * may not hold AS lock (in this case async argument is not 0). This 1501 * means if softlockcnt drops to 0 after the decrement below address 1502 * space may get freed. We can't allow it since after softlock 1503 * derement to 0 we still need to access as structure for possible 1504 * wakeup of unmap waiters. To prevent the disappearance of as we take 1505 * this segment's shm_segfree_syncmtx. segspt_shmfree() also takes 1506 * this mutex as a barrier to make sure this routine completes before 1507 * segment is freed. 1508 * 1509 * The second complication we have to deal with in async case is a 1510 * possibility of missed wake up of unmap wait thread. When we don't 1511 * hold as lock here we may take a_contents lock before unmap wait 1512 * thread that was first to see softlockcnt was still not 0. As a 1513 * result we'll fail to wake up an unmap wait thread. To avoid this 1514 * race we set nounmapwait flag in as structure if we drop softlockcnt 1515 * to 0 if async is not 0. unmapwait thread 1516 * will not block if this flag is set. 1517 */ 1518 if (async) 1519 mutex_enter(&shmd->shm_segfree_syncmtx); 1520 1521 /* 1522 * Now decrement softlockcnt. 1523 */ 1524 ASSERT(shmd->shm_softlockcnt > 0); 1525 atomic_dec_ulong((ulong_t *)(&(shmd->shm_softlockcnt))); 1526 1527 if (shmd->shm_softlockcnt <= 0) { 1528 if (async || AS_ISUNMAPWAIT(seg->s_as)) { 1529 mutex_enter(&seg->s_as->a_contents); 1530 if (async) 1531 AS_SETNOUNMAPWAIT(seg->s_as); 1532 if (AS_ISUNMAPWAIT(seg->s_as)) { 1533 AS_CLRUNMAPWAIT(seg->s_as); 1534 cv_broadcast(&seg->s_as->a_cv); 1535 } 1536 mutex_exit(&seg->s_as->a_contents); 1537 } 1538 } 1539 1540 if (async) 1541 mutex_exit(&shmd->shm_segfree_syncmtx); 1542 1543 return (done); 1544 } 1545 1546 /* 1547 * Do a F_SOFTUNLOCK call over the range requested. 1548 * The range must have already been F_SOFTLOCK'ed. 1549 * 1550 * The calls to acquire and release the anon map lock mutex were 1551 * removed in order to avoid a deadly embrace during a DR 1552 * memory delete operation. (Eg. DR blocks while waiting for a 1553 * exclusive lock on a page that is being used for kaio; the 1554 * thread that will complete the kaio and call segspt_softunlock 1555 * blocks on the anon map lock; another thread holding the anon 1556 * map lock blocks on another page lock via the segspt_shmfault 1557 * -> page_lookup -> page_lookup_create -> page_lock_es code flow.) 1558 * 1559 * The appropriateness of the removal is based upon the following: 1560 * 1. If we are holding a segment's reader lock and the page is held 1561 * shared, then the corresponding element in anonmap which points to 1562 * anon struct cannot change and there is no need to acquire the 1563 * anonymous map lock. 1564 * 2. Threads in segspt_softunlock have a reader lock on the segment 1565 * and already have the shared page lock, so we are guaranteed that 1566 * the anon map slot cannot change and therefore can call anon_get_ptr() 1567 * without grabbing the anonymous map lock. 1568 * 3. Threads that softlock a shared page break copy-on-write, even if 1569 * its a read. Thus cow faults can be ignored with respect to soft 1570 * unlocking, since the breaking of cow means that the anon slot(s) will 1571 * not be shared. 1572 */ 1573 static void 1574 segspt_softunlock(struct seg *seg, caddr_t sptseg_addr, 1575 size_t len, enum seg_rw rw) 1576 { 1577 struct shm_data *shmd = (struct shm_data *)seg->s_data; 1578 struct seg *sptseg; 1579 struct spt_data *sptd; 1580 page_t *pp; 1581 caddr_t adr; 1582 struct vnode *vp; 1583 u_offset_t offset; 1584 ulong_t anon_index; 1585 struct anon_map *amp; /* XXX - for locknest */ 1586 struct anon *ap = NULL; 1587 pgcnt_t npages; 1588 1589 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 1590 1591 sptseg = shmd->shm_sptseg; 1592 sptd = sptseg->s_data; 1593 1594 /* 1595 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK 1596 * and therefore their pages are SE_SHARED locked 1597 * for the entire life of the segment. 1598 */ 1599 if ((!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) && 1600 ((sptd->spt_flags & SHM_PAGEABLE) == 0)) { 1601 goto softlock_decrement; 1602 } 1603 1604 /* 1605 * Any thread is free to do a page_find and 1606 * page_unlock() on the pages within this seg. 1607 * 1608 * We are already holding the as->a_lock on the user's 1609 * real segment, but we need to hold the a_lock on the 1610 * underlying dummy as. This is mostly to satisfy the 1611 * underlying HAT layer. 1612 */ 1613 AS_LOCK_ENTER(sptseg->s_as, RW_READER); 1614 hat_unlock(sptseg->s_as->a_hat, sptseg_addr, len); 1615 AS_LOCK_EXIT(sptseg->s_as); 1616 1617 amp = sptd->spt_amp; 1618 ASSERT(amp != NULL); 1619 anon_index = seg_page(sptseg, sptseg_addr); 1620 1621 for (adr = sptseg_addr; adr < sptseg_addr + len; adr += PAGESIZE) { 1622 ap = anon_get_ptr(amp->ahp, anon_index++); 1623 ASSERT(ap != NULL); 1624 swap_xlate(ap, &vp, &offset); 1625 1626 /* 1627 * Use page_find() instead of page_lookup() to 1628 * find the page since we know that it has a 1629 * "shared" lock. 1630 */ 1631 pp = page_find(vp, offset); 1632 ASSERT(ap == anon_get_ptr(amp->ahp, anon_index - 1)); 1633 if (pp == NULL) { 1634 panic("segspt_softunlock: " 1635 "addr %p, ap %p, vp %p, off %llx", 1636 (void *)adr, (void *)ap, (void *)vp, offset); 1637 /*NOTREACHED*/ 1638 } 1639 1640 if (rw == S_WRITE) { 1641 hat_setrefmod(pp); 1642 } else if (rw != S_OTHER) { 1643 hat_setref(pp); 1644 } 1645 page_unlock(pp); 1646 } 1647 1648 softlock_decrement: 1649 npages = btopr(len); 1650 ASSERT(shmd->shm_softlockcnt >= npages); 1651 atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -npages); 1652 if (shmd->shm_softlockcnt == 0) { 1653 /* 1654 * All SOFTLOCKS are gone. Wakeup any waiting 1655 * unmappers so they can try again to unmap. 1656 * Check for waiters first without the mutex 1657 * held so we don't always grab the mutex on 1658 * softunlocks. 1659 */ 1660 if (AS_ISUNMAPWAIT(seg->s_as)) { 1661 mutex_enter(&seg->s_as->a_contents); 1662 if (AS_ISUNMAPWAIT(seg->s_as)) { 1663 AS_CLRUNMAPWAIT(seg->s_as); 1664 cv_broadcast(&seg->s_as->a_cv); 1665 } 1666 mutex_exit(&seg->s_as->a_contents); 1667 } 1668 } 1669 } 1670 1671 int 1672 segspt_shmattach(struct seg *seg, caddr_t *argsp) 1673 { 1674 struct shm_data *shmd_arg = (struct shm_data *)argsp; 1675 struct shm_data *shmd; 1676 struct anon_map *shm_amp = shmd_arg->shm_amp; 1677 struct spt_data *sptd; 1678 int error = 0; 1679 1680 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as)); 1681 1682 shmd = kmem_zalloc((sizeof (*shmd)), KM_NOSLEEP); 1683 if (shmd == NULL) 1684 return (ENOMEM); 1685 1686 shmd->shm_sptas = shmd_arg->shm_sptas; 1687 shmd->shm_amp = shm_amp; 1688 shmd->shm_sptseg = shmd_arg->shm_sptseg; 1689 1690 (void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, shm_amp, 0, 1691 NULL, 0, seg->s_size); 1692 1693 mutex_init(&shmd->shm_segfree_syncmtx, NULL, MUTEX_DEFAULT, NULL); 1694 1695 seg->s_data = (void *)shmd; 1696 seg->s_ops = &segspt_shmops; 1697 seg->s_szc = shmd->shm_sptseg->s_szc; 1698 sptd = shmd->shm_sptseg->s_data; 1699 1700 if (sptd->spt_flags & SHM_PAGEABLE) { 1701 if ((shmd->shm_vpage = kmem_zalloc(btopr(shm_amp->size), 1702 KM_NOSLEEP)) == NULL) { 1703 seg->s_data = (void *)NULL; 1704 kmem_free(shmd, (sizeof (*shmd))); 1705 return (ENOMEM); 1706 } 1707 shmd->shm_lckpgs = 0; 1708 if (hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) { 1709 if ((error = hat_share(seg->s_as->a_hat, seg->s_base, 1710 shmd_arg->shm_sptas->a_hat, SEGSPTADDR, 1711 seg->s_size, seg->s_szc)) != 0) { 1712 kmem_free(shmd->shm_vpage, 1713 btopr(shm_amp->size)); 1714 } 1715 } 1716 } else { 1717 error = hat_share(seg->s_as->a_hat, seg->s_base, 1718 shmd_arg->shm_sptas->a_hat, SEGSPTADDR, 1719 seg->s_size, seg->s_szc); 1720 } 1721 if (error) { 1722 seg->s_szc = 0; 1723 seg->s_data = (void *)NULL; 1724 kmem_free(shmd, (sizeof (*shmd))); 1725 } else { 1726 ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER); 1727 shm_amp->refcnt++; 1728 ANON_LOCK_EXIT(&shm_amp->a_rwlock); 1729 } 1730 return (error); 1731 } 1732 1733 int 1734 segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize) 1735 { 1736 struct shm_data *shmd = (struct shm_data *)seg->s_data; 1737 int reclaim = 1; 1738 1739 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as)); 1740 retry: 1741 if (shmd->shm_softlockcnt > 0) { 1742 if (reclaim == 1) { 1743 segspt_purge(seg); 1744 reclaim = 0; 1745 goto retry; 1746 } 1747 return (EAGAIN); 1748 } 1749 1750 if (ssize != seg->s_size) { 1751 #ifdef DEBUG 1752 cmn_err(CE_WARN, "Incompatible ssize %lx s_size %lx\n", 1753 ssize, seg->s_size); 1754 #endif 1755 return (EINVAL); 1756 } 1757 1758 (void) segspt_shmlockop(seg, raddr, shmd->shm_amp->size, 0, MC_UNLOCK, 1759 NULL, 0); 1760 hat_unshare(seg->s_as->a_hat, raddr, ssize, seg->s_szc); 1761 1762 seg_free(seg); 1763 1764 return (0); 1765 } 1766 1767 void 1768 segspt_shmfree(struct seg *seg) 1769 { 1770 struct shm_data *shmd = (struct shm_data *)seg->s_data; 1771 struct anon_map *shm_amp = shmd->shm_amp; 1772 1773 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as)); 1774 1775 (void) segspt_shmlockop(seg, seg->s_base, shm_amp->size, 0, 1776 MC_UNLOCK, NULL, 0); 1777 1778 /* 1779 * Need to increment refcnt when attaching 1780 * and decrement when detaching because of dup(). 1781 */ 1782 ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER); 1783 shm_amp->refcnt--; 1784 ANON_LOCK_EXIT(&shm_amp->a_rwlock); 1785 1786 if (shmd->shm_vpage) { /* only for DISM */ 1787 kmem_free(shmd->shm_vpage, btopr(shm_amp->size)); 1788 shmd->shm_vpage = NULL; 1789 } 1790 1791 /* 1792 * Take shm_segfree_syncmtx lock to let segspt_reclaim() finish if it's 1793 * still working with this segment without holding as lock. 1794 */ 1795 ASSERT(shmd->shm_softlockcnt == 0); 1796 mutex_enter(&shmd->shm_segfree_syncmtx); 1797 mutex_destroy(&shmd->shm_segfree_syncmtx); 1798 1799 kmem_free(shmd, sizeof (*shmd)); 1800 } 1801 1802 /*ARGSUSED*/ 1803 int 1804 segspt_shmsetprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot) 1805 { 1806 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 1807 1808 /* 1809 * Shared page table is more than shared mapping. 1810 * Individual process sharing page tables can't change prot 1811 * because there is only one set of page tables. 1812 * This will be allowed after private page table is 1813 * supported. 1814 */ 1815 /* need to return correct status error? */ 1816 return (0); 1817 } 1818 1819 1820 faultcode_t 1821 segspt_dismfault(struct hat *hat, struct seg *seg, caddr_t addr, 1822 size_t len, enum fault_type type, enum seg_rw rw) 1823 { 1824 struct shm_data *shmd = (struct shm_data *)seg->s_data; 1825 struct seg *sptseg = shmd->shm_sptseg; 1826 struct as *curspt = shmd->shm_sptas; 1827 struct spt_data *sptd = sptseg->s_data; 1828 pgcnt_t npages; 1829 size_t size; 1830 caddr_t segspt_addr, shm_addr; 1831 page_t **ppa; 1832 int i; 1833 ulong_t an_idx = 0; 1834 int err = 0; 1835 int dyn_ism_unmap = hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0); 1836 size_t pgsz; 1837 pgcnt_t pgcnt; 1838 caddr_t a; 1839 pgcnt_t pidx; 1840 1841 #ifdef lint 1842 hat = hat; 1843 #endif 1844 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 1845 1846 /* 1847 * Because of the way spt is implemented 1848 * the realsize of the segment does not have to be 1849 * equal to the segment size itself. The segment size is 1850 * often in multiples of a page size larger than PAGESIZE. 1851 * The realsize is rounded up to the nearest PAGESIZE 1852 * based on what the user requested. This is a bit of 1853 * ungliness that is historical but not easily fixed 1854 * without re-designing the higher levels of ISM. 1855 */ 1856 ASSERT(addr >= seg->s_base); 1857 if (((addr + len) - seg->s_base) > sptd->spt_realsize) 1858 return (FC_NOMAP); 1859 /* 1860 * For all of the following cases except F_PROT, we need to 1861 * make any necessary adjustments to addr and len 1862 * and get all of the necessary page_t's into an array called ppa[]. 1863 * 1864 * The code in shmat() forces base addr and len of ISM segment 1865 * to be aligned to largest page size supported. Therefore, 1866 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large 1867 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK 1868 * in large pagesize chunks, or else we will screw up the HAT 1869 * layer by calling hat_memload_array() with differing page sizes 1870 * over a given virtual range. 1871 */ 1872 pgsz = page_get_pagesize(sptseg->s_szc); 1873 pgcnt = page_get_pagecnt(sptseg->s_szc); 1874 shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz); 1875 size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), pgsz); 1876 npages = btopr(size); 1877 1878 /* 1879 * Now we need to convert from addr in segshm to addr in segspt. 1880 */ 1881 an_idx = seg_page(seg, shm_addr); 1882 segspt_addr = sptseg->s_base + ptob(an_idx); 1883 1884 ASSERT((segspt_addr + ptob(npages)) <= 1885 (sptseg->s_base + sptd->spt_realsize)); 1886 ASSERT(segspt_addr < (sptseg->s_base + sptseg->s_size)); 1887 1888 switch (type) { 1889 1890 case F_SOFTLOCK: 1891 1892 atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages); 1893 /* 1894 * Fall through to the F_INVAL case to load up the hat layer 1895 * entries with the HAT_LOAD_LOCK flag. 1896 */ 1897 /* FALLTHRU */ 1898 case F_INVAL: 1899 1900 if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC)) 1901 return (FC_NOMAP); 1902 1903 ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP); 1904 1905 err = spt_anon_getpages(sptseg, segspt_addr, size, ppa); 1906 if (err != 0) { 1907 if (type == F_SOFTLOCK) { 1908 atomic_add_long((ulong_t *)( 1909 &(shmd->shm_softlockcnt)), -npages); 1910 } 1911 goto dism_err; 1912 } 1913 AS_LOCK_ENTER(sptseg->s_as, RW_READER); 1914 a = segspt_addr; 1915 pidx = 0; 1916 if (type == F_SOFTLOCK) { 1917 1918 /* 1919 * Load up the translation keeping it 1920 * locked and don't unlock the page. 1921 */ 1922 for (; pidx < npages; a += pgsz, pidx += pgcnt) { 1923 hat_memload_array(sptseg->s_as->a_hat, 1924 a, pgsz, &ppa[pidx], sptd->spt_prot, 1925 HAT_LOAD_LOCK | HAT_LOAD_SHARE); 1926 } 1927 } else { 1928 /* 1929 * Migrate pages marked for migration 1930 */ 1931 if (lgrp_optimizations()) 1932 page_migrate(seg, shm_addr, ppa, npages); 1933 1934 for (; pidx < npages; a += pgsz, pidx += pgcnt) { 1935 hat_memload_array(sptseg->s_as->a_hat, 1936 a, pgsz, &ppa[pidx], 1937 sptd->spt_prot, 1938 HAT_LOAD_SHARE); 1939 } 1940 1941 /* 1942 * And now drop the SE_SHARED lock(s). 1943 */ 1944 if (dyn_ism_unmap) { 1945 for (i = 0; i < npages; i++) { 1946 page_unlock(ppa[i]); 1947 } 1948 } 1949 } 1950 1951 if (!dyn_ism_unmap) { 1952 if (hat_share(seg->s_as->a_hat, shm_addr, 1953 curspt->a_hat, segspt_addr, ptob(npages), 1954 seg->s_szc) != 0) { 1955 panic("hat_share err in DISM fault"); 1956 /* NOTREACHED */ 1957 } 1958 if (type == F_INVAL) { 1959 for (i = 0; i < npages; i++) { 1960 page_unlock(ppa[i]); 1961 } 1962 } 1963 } 1964 AS_LOCK_EXIT(sptseg->s_as); 1965 dism_err: 1966 kmem_free(ppa, npages * sizeof (page_t *)); 1967 return (err); 1968 1969 case F_SOFTUNLOCK: 1970 1971 /* 1972 * This is a bit ugly, we pass in the real seg pointer, 1973 * but the segspt_addr is the virtual address within the 1974 * dummy seg. 1975 */ 1976 segspt_softunlock(seg, segspt_addr, size, rw); 1977 return (0); 1978 1979 case F_PROT: 1980 1981 /* 1982 * This takes care of the unusual case where a user 1983 * allocates a stack in shared memory and a register 1984 * window overflow is written to that stack page before 1985 * it is otherwise modified. 1986 * 1987 * We can get away with this because ISM segments are 1988 * always rw. Other than this unusual case, there 1989 * should be no instances of protection violations. 1990 */ 1991 return (0); 1992 1993 default: 1994 #ifdef DEBUG 1995 panic("segspt_dismfault default type?"); 1996 #else 1997 return (FC_NOMAP); 1998 #endif 1999 } 2000 } 2001 2002 2003 faultcode_t 2004 segspt_shmfault(struct hat *hat, struct seg *seg, caddr_t addr, 2005 size_t len, enum fault_type type, enum seg_rw rw) 2006 { 2007 struct shm_data *shmd = (struct shm_data *)seg->s_data; 2008 struct seg *sptseg = shmd->shm_sptseg; 2009 struct as *curspt = shmd->shm_sptas; 2010 struct spt_data *sptd = sptseg->s_data; 2011 pgcnt_t npages; 2012 size_t size; 2013 caddr_t sptseg_addr, shm_addr; 2014 page_t *pp, **ppa; 2015 int i; 2016 u_offset_t offset; 2017 ulong_t anon_index = 0; 2018 struct vnode *vp; 2019 struct anon_map *amp; /* XXX - for locknest */ 2020 struct anon *ap = NULL; 2021 size_t pgsz; 2022 pgcnt_t pgcnt; 2023 caddr_t a; 2024 pgcnt_t pidx; 2025 size_t sz; 2026 2027 #ifdef lint 2028 hat = hat; 2029 #endif 2030 2031 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 2032 2033 if (sptd->spt_flags & SHM_PAGEABLE) { 2034 return (segspt_dismfault(hat, seg, addr, len, type, rw)); 2035 } 2036 2037 /* 2038 * Because of the way spt is implemented 2039 * the realsize of the segment does not have to be 2040 * equal to the segment size itself. The segment size is 2041 * often in multiples of a page size larger than PAGESIZE. 2042 * The realsize is rounded up to the nearest PAGESIZE 2043 * based on what the user requested. This is a bit of 2044 * ungliness that is historical but not easily fixed 2045 * without re-designing the higher levels of ISM. 2046 */ 2047 ASSERT(addr >= seg->s_base); 2048 if (((addr + len) - seg->s_base) > sptd->spt_realsize) 2049 return (FC_NOMAP); 2050 /* 2051 * For all of the following cases except F_PROT, we need to 2052 * make any necessary adjustments to addr and len 2053 * and get all of the necessary page_t's into an array called ppa[]. 2054 * 2055 * The code in shmat() forces base addr and len of ISM segment 2056 * to be aligned to largest page size supported. Therefore, 2057 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large 2058 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK 2059 * in large pagesize chunks, or else we will screw up the HAT 2060 * layer by calling hat_memload_array() with differing page sizes 2061 * over a given virtual range. 2062 */ 2063 pgsz = page_get_pagesize(sptseg->s_szc); 2064 pgcnt = page_get_pagecnt(sptseg->s_szc); 2065 shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz); 2066 size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), pgsz); 2067 npages = btopr(size); 2068 2069 /* 2070 * Now we need to convert from addr in segshm to addr in segspt. 2071 */ 2072 anon_index = seg_page(seg, shm_addr); 2073 sptseg_addr = sptseg->s_base + ptob(anon_index); 2074 2075 /* 2076 * And now we may have to adjust npages downward if we have 2077 * exceeded the realsize of the segment or initial anon 2078 * allocations. 2079 */ 2080 if ((sptseg_addr + ptob(npages)) > 2081 (sptseg->s_base + sptd->spt_realsize)) 2082 size = (sptseg->s_base + sptd->spt_realsize) - sptseg_addr; 2083 2084 npages = btopr(size); 2085 2086 ASSERT(sptseg_addr < (sptseg->s_base + sptseg->s_size)); 2087 ASSERT((sptd->spt_flags & SHM_PAGEABLE) == 0); 2088 2089 switch (type) { 2090 2091 case F_SOFTLOCK: 2092 2093 /* 2094 * availrmem is decremented once during anon_swap_adjust() 2095 * and is incremented during the anon_unresv(), which is 2096 * called from shm_rm_amp() when the segment is destroyed. 2097 */ 2098 atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages); 2099 /* 2100 * Some platforms assume that ISM pages are SE_SHARED 2101 * locked for the entire life of the segment. 2102 */ 2103 if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) 2104 return (0); 2105 /* 2106 * Fall through to the F_INVAL case to load up the hat layer 2107 * entries with the HAT_LOAD_LOCK flag. 2108 */ 2109 2110 /* FALLTHRU */ 2111 case F_INVAL: 2112 2113 if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC)) 2114 return (FC_NOMAP); 2115 2116 /* 2117 * Some platforms that do NOT support DYNAMIC_ISM_UNMAP 2118 * may still rely on this call to hat_share(). That 2119 * would imply that those hat's can fault on a 2120 * HAT_LOAD_LOCK translation, which would seem 2121 * contradictory. 2122 */ 2123 if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) { 2124 if (hat_share(seg->s_as->a_hat, seg->s_base, 2125 curspt->a_hat, sptseg->s_base, 2126 sptseg->s_size, sptseg->s_szc) != 0) { 2127 panic("hat_share error in ISM fault"); 2128 /*NOTREACHED*/ 2129 } 2130 return (0); 2131 } 2132 ppa = kmem_zalloc(sizeof (page_t *) * npages, KM_SLEEP); 2133 2134 /* 2135 * I see no need to lock the real seg, 2136 * here, because all of our work will be on the underlying 2137 * dummy seg. 2138 * 2139 * sptseg_addr and npages now account for large pages. 2140 */ 2141 amp = sptd->spt_amp; 2142 ASSERT(amp != NULL); 2143 anon_index = seg_page(sptseg, sptseg_addr); 2144 2145 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 2146 for (i = 0; i < npages; i++) { 2147 ap = anon_get_ptr(amp->ahp, anon_index++); 2148 ASSERT(ap != NULL); 2149 swap_xlate(ap, &vp, &offset); 2150 pp = page_lookup(vp, offset, SE_SHARED); 2151 ASSERT(pp != NULL); 2152 ppa[i] = pp; 2153 } 2154 ANON_LOCK_EXIT(&->a_rwlock); 2155 ASSERT(i == npages); 2156 2157 /* 2158 * We are already holding the as->a_lock on the user's 2159 * real segment, but we need to hold the a_lock on the 2160 * underlying dummy as. This is mostly to satisfy the 2161 * underlying HAT layer. 2162 */ 2163 AS_LOCK_ENTER(sptseg->s_as, RW_READER); 2164 a = sptseg_addr; 2165 pidx = 0; 2166 if (type == F_SOFTLOCK) { 2167 /* 2168 * Load up the translation keeping it 2169 * locked and don't unlock the page. 2170 */ 2171 for (; pidx < npages; a += pgsz, pidx += pgcnt) { 2172 sz = MIN(pgsz, ptob(npages - pidx)); 2173 hat_memload_array(sptseg->s_as->a_hat, a, 2174 sz, &ppa[pidx], sptd->spt_prot, 2175 HAT_LOAD_LOCK | HAT_LOAD_SHARE); 2176 } 2177 } else { 2178 /* 2179 * Migrate pages marked for migration. 2180 */ 2181 if (lgrp_optimizations()) 2182 page_migrate(seg, shm_addr, ppa, npages); 2183 2184 for (; pidx < npages; a += pgsz, pidx += pgcnt) { 2185 sz = MIN(pgsz, ptob(npages - pidx)); 2186 hat_memload_array(sptseg->s_as->a_hat, 2187 a, sz, &ppa[pidx], 2188 sptd->spt_prot, HAT_LOAD_SHARE); 2189 } 2190 2191 /* 2192 * And now drop the SE_SHARED lock(s). 2193 */ 2194 for (i = 0; i < npages; i++) 2195 page_unlock(ppa[i]); 2196 } 2197 AS_LOCK_EXIT(sptseg->s_as); 2198 2199 kmem_free(ppa, sizeof (page_t *) * npages); 2200 return (0); 2201 case F_SOFTUNLOCK: 2202 2203 /* 2204 * This is a bit ugly, we pass in the real seg pointer, 2205 * but the sptseg_addr is the virtual address within the 2206 * dummy seg. 2207 */ 2208 segspt_softunlock(seg, sptseg_addr, ptob(npages), rw); 2209 return (0); 2210 2211 case F_PROT: 2212 2213 /* 2214 * This takes care of the unusual case where a user 2215 * allocates a stack in shared memory and a register 2216 * window overflow is written to that stack page before 2217 * it is otherwise modified. 2218 * 2219 * We can get away with this because ISM segments are 2220 * always rw. Other than this unusual case, there 2221 * should be no instances of protection violations. 2222 */ 2223 return (0); 2224 2225 default: 2226 #ifdef DEBUG 2227 cmn_err(CE_WARN, "segspt_shmfault default type?"); 2228 #endif 2229 return (FC_NOMAP); 2230 } 2231 } 2232 2233 /*ARGSUSED*/ 2234 static faultcode_t 2235 segspt_shmfaulta(struct seg *seg, caddr_t addr) 2236 { 2237 return (0); 2238 } 2239 2240 /*ARGSUSED*/ 2241 static int 2242 segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta) 2243 { 2244 return (0); 2245 } 2246 2247 /*ARGSUSED*/ 2248 static size_t 2249 segspt_shmswapout(struct seg *seg) 2250 { 2251 return (0); 2252 } 2253 2254 /* 2255 * duplicate the shared page tables 2256 */ 2257 int 2258 segspt_shmdup(struct seg *seg, struct seg *newseg) 2259 { 2260 struct shm_data *shmd = (struct shm_data *)seg->s_data; 2261 struct anon_map *amp = shmd->shm_amp; 2262 struct shm_data *shmd_new; 2263 struct seg *spt_seg = shmd->shm_sptseg; 2264 struct spt_data *sptd = spt_seg->s_data; 2265 int error = 0; 2266 2267 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as)); 2268 2269 shmd_new = kmem_zalloc((sizeof (*shmd_new)), KM_SLEEP); 2270 newseg->s_data = (void *)shmd_new; 2271 shmd_new->shm_sptas = shmd->shm_sptas; 2272 shmd_new->shm_amp = amp; 2273 shmd_new->shm_sptseg = shmd->shm_sptseg; 2274 newseg->s_ops = &segspt_shmops; 2275 newseg->s_szc = seg->s_szc; 2276 ASSERT(seg->s_szc == shmd->shm_sptseg->s_szc); 2277 2278 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 2279 amp->refcnt++; 2280 ANON_LOCK_EXIT(&->a_rwlock); 2281 2282 if (sptd->spt_flags & SHM_PAGEABLE) { 2283 shmd_new->shm_vpage = kmem_zalloc(btopr(amp->size), KM_SLEEP); 2284 shmd_new->shm_lckpgs = 0; 2285 if (hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) { 2286 if ((error = hat_share(newseg->s_as->a_hat, 2287 newseg->s_base, shmd->shm_sptas->a_hat, SEGSPTADDR, 2288 seg->s_size, seg->s_szc)) != 0) { 2289 kmem_free(shmd_new->shm_vpage, 2290 btopr(amp->size)); 2291 } 2292 } 2293 return (error); 2294 } else { 2295 return (hat_share(newseg->s_as->a_hat, newseg->s_base, 2296 shmd->shm_sptas->a_hat, SEGSPTADDR, seg->s_size, 2297 seg->s_szc)); 2298 2299 } 2300 } 2301 2302 /*ARGSUSED*/ 2303 int 2304 segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 2305 { 2306 struct shm_data *shmd = (struct shm_data *)seg->s_data; 2307 struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data; 2308 2309 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 2310 2311 /* 2312 * ISM segment is always rw. 2313 */ 2314 return (((sptd->spt_prot & prot) != prot) ? EACCES : 0); 2315 } 2316 2317 /* 2318 * Return an array of locked large pages, for empty slots allocate 2319 * private zero-filled anon pages. 2320 */ 2321 static int 2322 spt_anon_getpages( 2323 struct seg *sptseg, 2324 caddr_t sptaddr, 2325 size_t len, 2326 page_t *ppa[]) 2327 { 2328 struct spt_data *sptd = sptseg->s_data; 2329 struct anon_map *amp = sptd->spt_amp; 2330 enum seg_rw rw = sptd->spt_prot; 2331 uint_t szc = sptseg->s_szc; 2332 size_t pg_sz, share_sz = page_get_pagesize(szc); 2333 pgcnt_t lp_npgs; 2334 caddr_t lp_addr, e_sptaddr; 2335 uint_t vpprot, ppa_szc = 0; 2336 struct vpage *vpage = NULL; 2337 ulong_t j, ppa_idx; 2338 int err, ierr = 0; 2339 pgcnt_t an_idx; 2340 anon_sync_obj_t cookie; 2341 int anon_locked = 0; 2342 pgcnt_t amp_pgs; 2343 2344 2345 ASSERT(IS_P2ALIGNED(sptaddr, share_sz) && IS_P2ALIGNED(len, share_sz)); 2346 ASSERT(len != 0); 2347 2348 pg_sz = share_sz; 2349 lp_npgs = btop(pg_sz); 2350 lp_addr = sptaddr; 2351 e_sptaddr = sptaddr + len; 2352 an_idx = seg_page(sptseg, sptaddr); 2353 ppa_idx = 0; 2354 2355 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 2356 2357 amp_pgs = page_get_pagecnt(amp->a_szc); 2358 2359 /*CONSTCOND*/ 2360 while (1) { 2361 for (; lp_addr < e_sptaddr; 2362 an_idx += lp_npgs, lp_addr += pg_sz, ppa_idx += lp_npgs) { 2363 2364 /* 2365 * If we're currently locked, and we get to a new 2366 * page, unlock our current anon chunk. 2367 */ 2368 if (anon_locked && P2PHASE(an_idx, amp_pgs) == 0) { 2369 anon_array_exit(&cookie); 2370 anon_locked = 0; 2371 } 2372 if (!anon_locked) { 2373 anon_array_enter(amp, an_idx, &cookie); 2374 anon_locked = 1; 2375 } 2376 ppa_szc = (uint_t)-1; 2377 ierr = anon_map_getpages(amp, an_idx, szc, sptseg, 2378 lp_addr, sptd->spt_prot, &vpprot, &ppa[ppa_idx], 2379 &ppa_szc, vpage, rw, 0, segvn_anypgsz, 0, kcred); 2380 2381 if (ierr != 0) { 2382 if (ierr > 0) { 2383 err = FC_MAKE_ERR(ierr); 2384 goto lpgs_err; 2385 } 2386 break; 2387 } 2388 } 2389 if (lp_addr == e_sptaddr) { 2390 break; 2391 } 2392 ASSERT(lp_addr < e_sptaddr); 2393 2394 /* 2395 * ierr == -1 means we failed to allocate a large page. 2396 * so do a size down operation. 2397 * 2398 * ierr == -2 means some other process that privately shares 2399 * pages with this process has allocated a larger page and we 2400 * need to retry with larger pages. So do a size up 2401 * operation. This relies on the fact that large pages are 2402 * never partially shared i.e. if we share any constituent 2403 * page of a large page with another process we must share the 2404 * entire large page. Note this cannot happen for SOFTLOCK 2405 * case, unless current address (lpaddr) is at the beginning 2406 * of the next page size boundary because the other process 2407 * couldn't have relocated locked pages. 2408 */ 2409 ASSERT(ierr == -1 || ierr == -2); 2410 if (segvn_anypgsz) { 2411 ASSERT(ierr == -2 || szc != 0); 2412 ASSERT(ierr == -1 || szc < sptseg->s_szc); 2413 szc = (ierr == -1) ? szc - 1 : szc + 1; 2414 } else { 2415 /* 2416 * For faults and segvn_anypgsz == 0 2417 * we need to be careful not to loop forever 2418 * if existing page is found with szc other 2419 * than 0 or seg->s_szc. This could be due 2420 * to page relocations on behalf of DR or 2421 * more likely large page creation. For this 2422 * case simply re-size to existing page's szc 2423 * if returned by anon_map_getpages(). 2424 */ 2425 if (ppa_szc == (uint_t)-1) { 2426 szc = (ierr == -1) ? 0 : sptseg->s_szc; 2427 } else { 2428 ASSERT(ppa_szc <= sptseg->s_szc); 2429 ASSERT(ierr == -2 || ppa_szc < szc); 2430 ASSERT(ierr == -1 || ppa_szc > szc); 2431 szc = ppa_szc; 2432 } 2433 } 2434 pg_sz = page_get_pagesize(szc); 2435 lp_npgs = btop(pg_sz); 2436 ASSERT(IS_P2ALIGNED(lp_addr, pg_sz)); 2437 } 2438 if (anon_locked) { 2439 anon_array_exit(&cookie); 2440 } 2441 ANON_LOCK_EXIT(&->a_rwlock); 2442 return (0); 2443 2444 lpgs_err: 2445 if (anon_locked) { 2446 anon_array_exit(&cookie); 2447 } 2448 ANON_LOCK_EXIT(&->a_rwlock); 2449 for (j = 0; j < ppa_idx; j++) 2450 page_unlock(ppa[j]); 2451 return (err); 2452 } 2453 2454 /* 2455 * count the number of bytes in a set of spt pages that are currently not 2456 * locked 2457 */ 2458 static rctl_qty_t 2459 spt_unlockedbytes(pgcnt_t npages, page_t **ppa) 2460 { 2461 ulong_t i; 2462 rctl_qty_t unlocked = 0; 2463 2464 for (i = 0; i < npages; i++) { 2465 if (ppa[i]->p_lckcnt == 0) 2466 unlocked += PAGESIZE; 2467 } 2468 return (unlocked); 2469 } 2470 2471 extern u_longlong_t randtick(void); 2472 /* number of locks to reserve/skip by spt_lockpages() and spt_unlockpages() */ 2473 #define NLCK (NCPU_P2) 2474 /* Random number with a range [0, n-1], n must be power of two */ 2475 #define RAND_P2(n) \ 2476 ((((long)curthread >> PTR24_LSB) ^ (long)randtick()) & ((n) - 1)) 2477 2478 int 2479 spt_lockpages(struct seg *seg, pgcnt_t anon_index, pgcnt_t npages, 2480 page_t **ppa, ulong_t *lockmap, size_t pos, 2481 rctl_qty_t *locked) 2482 { 2483 struct shm_data *shmd = seg->s_data; 2484 struct spt_data *sptd = shmd->shm_sptseg->s_data; 2485 ulong_t i; 2486 int kernel; 2487 pgcnt_t nlck = 0; 2488 int rv = 0; 2489 int use_reserved = 1; 2490 2491 /* return the number of bytes actually locked */ 2492 *locked = 0; 2493 2494 /* 2495 * To avoid contention on freemem_lock, availrmem and pages_locked 2496 * global counters are updated only every nlck locked pages instead of 2497 * every time. Reserve nlck locks up front and deduct from this 2498 * reservation for each page that requires a lock. When the reservation 2499 * is consumed, reserve again. nlck is randomized, so the competing 2500 * threads do not fall into a cyclic lock contention pattern. When 2501 * memory is low, the lock ahead is disabled, and instead page_pp_lock() 2502 * is used to lock pages. 2503 */ 2504 for (i = 0; i < npages; anon_index++, pos++, i++) { 2505 if (nlck == 0 && use_reserved == 1) { 2506 nlck = NLCK + RAND_P2(NLCK); 2507 /* if fewer loops left, decrease nlck */ 2508 nlck = MIN(nlck, npages - i); 2509 /* 2510 * Reserve nlck locks up front and deduct from this 2511 * reservation for each page that requires a lock. When 2512 * the reservation is consumed, reserve again. 2513 */ 2514 mutex_enter(&freemem_lock); 2515 if ((availrmem - nlck) < pages_pp_maximum) { 2516 /* Do not do advance memory reserves */ 2517 use_reserved = 0; 2518 } else { 2519 availrmem -= nlck; 2520 pages_locked += nlck; 2521 } 2522 mutex_exit(&freemem_lock); 2523 } 2524 if (!(shmd->shm_vpage[anon_index] & DISM_PG_LOCKED)) { 2525 if (sptd->spt_ppa_lckcnt[anon_index] < 2526 (ushort_t)DISM_LOCK_MAX) { 2527 if (++sptd->spt_ppa_lckcnt[anon_index] == 2528 (ushort_t)DISM_LOCK_MAX) { 2529 cmn_err(CE_WARN, 2530 "DISM page lock limit " 2531 "reached on DISM offset 0x%lx\n", 2532 anon_index << PAGESHIFT); 2533 } 2534 kernel = (sptd->spt_ppa && 2535 sptd->spt_ppa[anon_index]); 2536 if (!page_pp_lock(ppa[i], 0, kernel || 2537 use_reserved)) { 2538 sptd->spt_ppa_lckcnt[anon_index]--; 2539 rv = EAGAIN; 2540 break; 2541 } 2542 /* if this is a newly locked page, count it */ 2543 if (ppa[i]->p_lckcnt == 1) { 2544 if (kernel == 0 && use_reserved == 1) 2545 nlck--; 2546 *locked += PAGESIZE; 2547 } 2548 shmd->shm_lckpgs++; 2549 shmd->shm_vpage[anon_index] |= DISM_PG_LOCKED; 2550 if (lockmap != NULL) 2551 BT_SET(lockmap, pos); 2552 } 2553 } 2554 } 2555 /* Return unused lock reservation */ 2556 if (nlck != 0 && use_reserved == 1) { 2557 mutex_enter(&freemem_lock); 2558 availrmem += nlck; 2559 pages_locked -= nlck; 2560 mutex_exit(&freemem_lock); 2561 } 2562 2563 return (rv); 2564 } 2565 2566 int 2567 spt_unlockpages(struct seg *seg, pgcnt_t anon_index, pgcnt_t npages, 2568 rctl_qty_t *unlocked) 2569 { 2570 struct shm_data *shmd = seg->s_data; 2571 struct spt_data *sptd = shmd->shm_sptseg->s_data; 2572 struct anon_map *amp = sptd->spt_amp; 2573 struct anon *ap; 2574 struct vnode *vp; 2575 u_offset_t off; 2576 struct page *pp; 2577 int kernel; 2578 anon_sync_obj_t cookie; 2579 ulong_t i; 2580 pgcnt_t nlck = 0; 2581 pgcnt_t nlck_limit = NLCK; 2582 2583 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 2584 for (i = 0; i < npages; i++, anon_index++) { 2585 if (shmd->shm_vpage[anon_index] & DISM_PG_LOCKED) { 2586 anon_array_enter(amp, anon_index, &cookie); 2587 ap = anon_get_ptr(amp->ahp, anon_index); 2588 ASSERT(ap); 2589 2590 swap_xlate(ap, &vp, &off); 2591 anon_array_exit(&cookie); 2592 pp = page_lookup(vp, off, SE_SHARED); 2593 ASSERT(pp); 2594 /* 2595 * availrmem is decremented only for pages which are not 2596 * in seg pcache, for pages in seg pcache availrmem was 2597 * decremented in _dismpagelock() 2598 */ 2599 kernel = (sptd->spt_ppa && sptd->spt_ppa[anon_index]); 2600 ASSERT(pp->p_lckcnt > 0); 2601 2602 /* 2603 * lock page but do not change availrmem, we do it 2604 * ourselves every nlck loops. 2605 */ 2606 page_pp_unlock(pp, 0, 1); 2607 if (pp->p_lckcnt == 0) { 2608 if (kernel == 0) 2609 nlck++; 2610 *unlocked += PAGESIZE; 2611 } 2612 page_unlock(pp); 2613 shmd->shm_vpage[anon_index] &= ~DISM_PG_LOCKED; 2614 sptd->spt_ppa_lckcnt[anon_index]--; 2615 shmd->shm_lckpgs--; 2616 } 2617 2618 /* 2619 * To reduce freemem_lock contention, do not update availrmem 2620 * until at least NLCK pages have been unlocked. 2621 * 1. No need to update if nlck is zero 2622 * 2. Always update if the last iteration 2623 */ 2624 if (nlck > 0 && (nlck == nlck_limit || i == npages - 1)) { 2625 mutex_enter(&freemem_lock); 2626 availrmem += nlck; 2627 pages_locked -= nlck; 2628 mutex_exit(&freemem_lock); 2629 nlck = 0; 2630 nlck_limit = NLCK + RAND_P2(NLCK); 2631 } 2632 } 2633 ANON_LOCK_EXIT(&->a_rwlock); 2634 2635 return (0); 2636 } 2637 2638 /*ARGSUSED*/ 2639 static int 2640 segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len, 2641 int attr, int op, ulong_t *lockmap, size_t pos) 2642 { 2643 struct shm_data *shmd = seg->s_data; 2644 struct seg *sptseg = shmd->shm_sptseg; 2645 struct spt_data *sptd = sptseg->s_data; 2646 struct kshmid *sp = sptd->spt_amp->a_sp; 2647 pgcnt_t npages, a_npages; 2648 page_t **ppa; 2649 pgcnt_t an_idx, a_an_idx, ppa_idx; 2650 caddr_t spt_addr, a_addr; /* spt and aligned address */ 2651 size_t a_len; /* aligned len */ 2652 size_t share_sz; 2653 ulong_t i; 2654 int sts = 0; 2655 rctl_qty_t unlocked = 0; 2656 rctl_qty_t locked = 0; 2657 struct proc *p = curproc; 2658 kproject_t *proj; 2659 2660 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 2661 ASSERT(sp != NULL); 2662 2663 if ((sptd->spt_flags & SHM_PAGEABLE) == 0) { 2664 return (0); 2665 } 2666 2667 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2668 an_idx = seg_page(seg, addr); 2669 npages = btopr(len); 2670 2671 if (an_idx + npages > btopr(shmd->shm_amp->size)) { 2672 return (ENOMEM); 2673 } 2674 2675 /* 2676 * A shm's project never changes, so no lock needed. 2677 * The shm has a hold on the project, so it will not go away. 2678 * Since we have a mapping to shm within this zone, we know 2679 * that the zone will not go away. 2680 */ 2681 proj = sp->shm_perm.ipc_proj; 2682 2683 if (op == MC_LOCK) { 2684 2685 /* 2686 * Need to align addr and size request if they are not 2687 * aligned so we can always allocate large page(s) however 2688 * we only lock what was requested in initial request. 2689 */ 2690 share_sz = page_get_pagesize(sptseg->s_szc); 2691 a_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_sz); 2692 a_len = P2ROUNDUP((uintptr_t)(((addr + len) - a_addr)), 2693 share_sz); 2694 a_npages = btop(a_len); 2695 a_an_idx = seg_page(seg, a_addr); 2696 spt_addr = sptseg->s_base + ptob(a_an_idx); 2697 ppa_idx = an_idx - a_an_idx; 2698 2699 if ((ppa = kmem_zalloc(((sizeof (page_t *)) * a_npages), 2700 KM_NOSLEEP)) == NULL) { 2701 return (ENOMEM); 2702 } 2703 2704 /* 2705 * Don't cache any new pages for IO and 2706 * flush any cached pages. 2707 */ 2708 mutex_enter(&sptd->spt_lock); 2709 if (sptd->spt_ppa != NULL) 2710 sptd->spt_flags |= DISM_PPA_CHANGED; 2711 2712 sts = spt_anon_getpages(sptseg, spt_addr, a_len, ppa); 2713 if (sts != 0) { 2714 mutex_exit(&sptd->spt_lock); 2715 kmem_free(ppa, ((sizeof (page_t *)) * a_npages)); 2716 return (sts); 2717 } 2718 2719 mutex_enter(&sp->shm_mlock); 2720 /* enforce locked memory rctl */ 2721 unlocked = spt_unlockedbytes(npages, &ppa[ppa_idx]); 2722 2723 mutex_enter(&p->p_lock); 2724 if (rctl_incr_locked_mem(p, proj, unlocked, 0)) { 2725 mutex_exit(&p->p_lock); 2726 sts = EAGAIN; 2727 } else { 2728 mutex_exit(&p->p_lock); 2729 sts = spt_lockpages(seg, an_idx, npages, 2730 &ppa[ppa_idx], lockmap, pos, &locked); 2731 2732 /* 2733 * correct locked count if not all pages could be 2734 * locked 2735 */ 2736 if ((unlocked - locked) > 0) { 2737 rctl_decr_locked_mem(NULL, proj, 2738 (unlocked - locked), 0); 2739 } 2740 } 2741 /* 2742 * unlock pages 2743 */ 2744 for (i = 0; i < a_npages; i++) 2745 page_unlock(ppa[i]); 2746 if (sptd->spt_ppa != NULL) 2747 sptd->spt_flags |= DISM_PPA_CHANGED; 2748 mutex_exit(&sp->shm_mlock); 2749 mutex_exit(&sptd->spt_lock); 2750 2751 kmem_free(ppa, ((sizeof (page_t *)) * a_npages)); 2752 2753 } else if (op == MC_UNLOCK) { /* unlock */ 2754 page_t **ppa; 2755 2756 mutex_enter(&sptd->spt_lock); 2757 if (shmd->shm_lckpgs == 0) { 2758 mutex_exit(&sptd->spt_lock); 2759 return (0); 2760 } 2761 /* 2762 * Don't cache new IO pages. 2763 */ 2764 if (sptd->spt_ppa != NULL) 2765 sptd->spt_flags |= DISM_PPA_CHANGED; 2766 2767 mutex_enter(&sp->shm_mlock); 2768 sts = spt_unlockpages(seg, an_idx, npages, &unlocked); 2769 if ((ppa = sptd->spt_ppa) != NULL) 2770 sptd->spt_flags |= DISM_PPA_CHANGED; 2771 mutex_exit(&sptd->spt_lock); 2772 2773 rctl_decr_locked_mem(NULL, proj, unlocked, 0); 2774 mutex_exit(&sp->shm_mlock); 2775 2776 if (ppa != NULL) 2777 seg_ppurge_wiredpp(ppa); 2778 } 2779 return (sts); 2780 } 2781 2782 /*ARGSUSED*/ 2783 int 2784 segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv) 2785 { 2786 struct shm_data *shmd = (struct shm_data *)seg->s_data; 2787 struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data; 2788 spgcnt_t pgno = seg_page(seg, addr+len) - seg_page(seg, addr) + 1; 2789 2790 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 2791 2792 /* 2793 * ISM segment is always rw. 2794 */ 2795 while (--pgno >= 0) 2796 *protv++ = sptd->spt_prot; 2797 return (0); 2798 } 2799 2800 /*ARGSUSED*/ 2801 u_offset_t 2802 segspt_shmgetoffset(struct seg *seg, caddr_t addr) 2803 { 2804 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 2805 2806 /* Offset does not matter in ISM memory */ 2807 2808 return ((u_offset_t)0); 2809 } 2810 2811 /* ARGSUSED */ 2812 int 2813 segspt_shmgettype(struct seg *seg, caddr_t addr) 2814 { 2815 struct shm_data *shmd = (struct shm_data *)seg->s_data; 2816 struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data; 2817 2818 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 2819 2820 /* 2821 * The shared memory mapping is always MAP_SHARED, SWAP is only 2822 * reserved for DISM 2823 */ 2824 return (MAP_SHARED | 2825 ((sptd->spt_flags & SHM_PAGEABLE) ? 0 : MAP_NORESERVE)); 2826 } 2827 2828 /*ARGSUSED*/ 2829 int 2830 segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp) 2831 { 2832 struct shm_data *shmd = (struct shm_data *)seg->s_data; 2833 struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data; 2834 2835 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 2836 2837 *vpp = sptd->spt_vp; 2838 return (0); 2839 } 2840 2841 /* 2842 * We need to wait for pending IO to complete to a DISM segment in order for 2843 * pages to get kicked out of the seg_pcache. 120 seconds should be more 2844 * than enough time to wait. 2845 */ 2846 static clock_t spt_pcache_wait = 120; 2847 2848 /*ARGSUSED*/ 2849 static int 2850 segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len, uint_t behav) 2851 { 2852 struct shm_data *shmd = (struct shm_data *)seg->s_data; 2853 struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data; 2854 struct anon_map *amp; 2855 pgcnt_t pg_idx; 2856 ushort_t gen; 2857 clock_t end_lbolt; 2858 int writer; 2859 page_t **ppa; 2860 2861 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 2862 2863 if (behav == MADV_FREE || behav == MADV_PURGE) { 2864 if ((sptd->spt_flags & SHM_PAGEABLE) == 0) 2865 return (0); 2866 2867 amp = sptd->spt_amp; 2868 pg_idx = seg_page(seg, addr); 2869 2870 mutex_enter(&sptd->spt_lock); 2871 if ((ppa = sptd->spt_ppa) == NULL) { 2872 mutex_exit(&sptd->spt_lock); 2873 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 2874 (void) anon_disclaim(amp, pg_idx, len, behav, NULL); 2875 ANON_LOCK_EXIT(&->a_rwlock); 2876 return (0); 2877 } 2878 2879 sptd->spt_flags |= DISM_PPA_CHANGED; 2880 gen = sptd->spt_gen; 2881 2882 mutex_exit(&sptd->spt_lock); 2883 2884 /* 2885 * Purge all DISM cached pages 2886 */ 2887 seg_ppurge_wiredpp(ppa); 2888 2889 /* 2890 * Drop the AS_LOCK so that other threads can grab it 2891 * in the as_pageunlock path and hopefully get the segment 2892 * kicked out of the seg_pcache. We bump the shm_softlockcnt 2893 * to keep this segment resident. 2894 */ 2895 writer = AS_WRITE_HELD(seg->s_as); 2896 atomic_inc_ulong((ulong_t *)(&(shmd->shm_softlockcnt))); 2897 AS_LOCK_EXIT(seg->s_as); 2898 2899 mutex_enter(&sptd->spt_lock); 2900 2901 end_lbolt = ddi_get_lbolt() + (hz * spt_pcache_wait); 2902 2903 /* 2904 * Try to wait for pages to get kicked out of the seg_pcache. 2905 */ 2906 while (sptd->spt_gen == gen && 2907 (sptd->spt_flags & DISM_PPA_CHANGED) && 2908 ddi_get_lbolt() < end_lbolt) { 2909 if (!cv_timedwait_sig(&sptd->spt_cv, 2910 &sptd->spt_lock, end_lbolt)) { 2911 break; 2912 } 2913 } 2914 2915 mutex_exit(&sptd->spt_lock); 2916 2917 /* Regrab the AS_LOCK and release our hold on the segment */ 2918 AS_LOCK_ENTER(seg->s_as, writer ? RW_WRITER : RW_READER); 2919 atomic_dec_ulong((ulong_t *)(&(shmd->shm_softlockcnt))); 2920 if (shmd->shm_softlockcnt <= 0) { 2921 if (AS_ISUNMAPWAIT(seg->s_as)) { 2922 mutex_enter(&seg->s_as->a_contents); 2923 if (AS_ISUNMAPWAIT(seg->s_as)) { 2924 AS_CLRUNMAPWAIT(seg->s_as); 2925 cv_broadcast(&seg->s_as->a_cv); 2926 } 2927 mutex_exit(&seg->s_as->a_contents); 2928 } 2929 } 2930 2931 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 2932 (void) anon_disclaim(amp, pg_idx, len, behav, NULL); 2933 ANON_LOCK_EXIT(&->a_rwlock); 2934 } else if (lgrp_optimizations() && (behav == MADV_ACCESS_LWP || 2935 behav == MADV_ACCESS_MANY || behav == MADV_ACCESS_DEFAULT)) { 2936 int already_set; 2937 ulong_t anon_index; 2938 lgrp_mem_policy_t policy; 2939 caddr_t shm_addr; 2940 size_t share_size; 2941 size_t size; 2942 struct seg *sptseg = shmd->shm_sptseg; 2943 caddr_t sptseg_addr; 2944 2945 /* 2946 * Align address and length to page size of underlying segment 2947 */ 2948 share_size = page_get_pagesize(shmd->shm_sptseg->s_szc); 2949 shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_size); 2950 size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), 2951 share_size); 2952 2953 amp = shmd->shm_amp; 2954 anon_index = seg_page(seg, shm_addr); 2955 2956 /* 2957 * And now we may have to adjust size downward if we have 2958 * exceeded the realsize of the segment or initial anon 2959 * allocations. 2960 */ 2961 sptseg_addr = sptseg->s_base + ptob(anon_index); 2962 if ((sptseg_addr + size) > 2963 (sptseg->s_base + sptd->spt_realsize)) 2964 size = (sptseg->s_base + sptd->spt_realsize) - 2965 sptseg_addr; 2966 2967 /* 2968 * Set memory allocation policy for this segment 2969 */ 2970 policy = lgrp_madv_to_policy(behav, len, MAP_SHARED); 2971 already_set = lgrp_shm_policy_set(policy, amp, anon_index, 2972 NULL, 0, len); 2973 2974 /* 2975 * If random memory allocation policy set already, 2976 * don't bother reapplying it. 2977 */ 2978 if (already_set && !LGRP_MEM_POLICY_REAPPLICABLE(policy)) 2979 return (0); 2980 2981 /* 2982 * Mark any existing pages in the given range for 2983 * migration, flushing the I/O page cache, and using 2984 * underlying segment to calculate anon index and get 2985 * anonmap and vnode pointer from 2986 */ 2987 if (shmd->shm_softlockcnt > 0) 2988 segspt_purge(seg); 2989 2990 page_mark_migrate(seg, shm_addr, size, amp, 0, NULL, 0, 0); 2991 } 2992 2993 return (0); 2994 } 2995 2996 /*ARGSUSED*/ 2997 void 2998 segspt_shmdump(struct seg *seg) 2999 { 3000 /* no-op for ISM segment */ 3001 } 3002 3003 /*ARGSUSED*/ 3004 static faultcode_t 3005 segspt_shmsetpgsz(struct seg *seg, caddr_t addr, size_t len, uint_t szc) 3006 { 3007 return (ENOTSUP); 3008 } 3009 3010 /* 3011 * get a memory ID for an addr in a given segment 3012 */ 3013 static int 3014 segspt_shmgetmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 3015 { 3016 struct shm_data *shmd = (struct shm_data *)seg->s_data; 3017 struct anon *ap; 3018 size_t anon_index; 3019 struct anon_map *amp = shmd->shm_amp; 3020 struct spt_data *sptd = shmd->shm_sptseg->s_data; 3021 struct seg *sptseg = shmd->shm_sptseg; 3022 anon_sync_obj_t cookie; 3023 3024 anon_index = seg_page(seg, addr); 3025 3026 if (addr > (seg->s_base + sptd->spt_realsize)) { 3027 return (EFAULT); 3028 } 3029 3030 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 3031 anon_array_enter(amp, anon_index, &cookie); 3032 ap = anon_get_ptr(amp->ahp, anon_index); 3033 if (ap == NULL) { 3034 struct page *pp; 3035 caddr_t spt_addr = sptseg->s_base + ptob(anon_index); 3036 3037 pp = anon_zero(sptseg, spt_addr, &ap, kcred); 3038 if (pp == NULL) { 3039 anon_array_exit(&cookie); 3040 ANON_LOCK_EXIT(&->a_rwlock); 3041 return (ENOMEM); 3042 } 3043 (void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP); 3044 page_unlock(pp); 3045 } 3046 anon_array_exit(&cookie); 3047 ANON_LOCK_EXIT(&->a_rwlock); 3048 memidp->val[0] = (uintptr_t)ap; 3049 memidp->val[1] = (uintptr_t)addr & PAGEOFFSET; 3050 return (0); 3051 } 3052 3053 /* 3054 * Get memory allocation policy info for specified address in given segment 3055 */ 3056 static lgrp_mem_policy_info_t * 3057 segspt_shmgetpolicy(struct seg *seg, caddr_t addr) 3058 { 3059 struct anon_map *amp; 3060 ulong_t anon_index; 3061 lgrp_mem_policy_info_t *policy_info; 3062 struct shm_data *shm_data; 3063 3064 ASSERT(seg != NULL); 3065 3066 /* 3067 * Get anon_map from segshm 3068 * 3069 * Assume that no lock needs to be held on anon_map, since 3070 * it should be protected by its reference count which must be 3071 * nonzero for an existing segment 3072 * Need to grab readers lock on policy tree though 3073 */ 3074 shm_data = (struct shm_data *)seg->s_data; 3075 if (shm_data == NULL) 3076 return (NULL); 3077 amp = shm_data->shm_amp; 3078 ASSERT(amp->refcnt != 0); 3079 3080 /* 3081 * Get policy info 3082 * 3083 * Assume starting anon index of 0 3084 */ 3085 anon_index = seg_page(seg, addr); 3086 policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0); 3087 3088 return (policy_info); 3089 } 3090 3091 /*ARGSUSED*/ 3092 static int 3093 segspt_shmcapable(struct seg *seg, segcapability_t capability) 3094 { 3095 return (0); 3096 } 3097