1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * Portions of this source code were derived from Berkeley 4.3 BSD 31 * under license from the Regents of the University of California. 32 */ 33 34 #pragma ident "%Z%%M% %I% %E% SMI" 35 36 /* 37 * VM - generic vnode mapping segment. 38 * 39 * The segmap driver is used only by the kernel to get faster (than seg_vn) 40 * mappings [lower routine overhead; more persistent cache] to random 41 * vnode/offsets. Note than the kernel may (and does) use seg_vn as well. 42 */ 43 44 #include <sys/types.h> 45 #include <sys/t_lock.h> 46 #include <sys/param.h> 47 #include <sys/sysmacros.h> 48 #include <sys/buf.h> 49 #include <sys/systm.h> 50 #include <sys/vnode.h> 51 #include <sys/mman.h> 52 #include <sys/errno.h> 53 #include <sys/cred.h> 54 #include <sys/kmem.h> 55 #include <sys/vtrace.h> 56 #include <sys/cmn_err.h> 57 #include <sys/debug.h> 58 #include <sys/thread.h> 59 #include <sys/dumphdr.h> 60 #include <sys/bitmap.h> 61 #include <sys/lgrp.h> 62 63 #include <vm/seg_kmem.h> 64 #include <vm/hat.h> 65 #include <vm/as.h> 66 #include <vm/seg.h> 67 #include <vm/seg_kpm.h> 68 #include <vm/seg_map.h> 69 #include <vm/page.h> 70 #include <vm/pvn.h> 71 #include <vm/rm.h> 72 73 /* 74 * Private seg op routines. 75 */ 76 static void segmap_free(struct seg *seg); 77 faultcode_t segmap_fault(struct hat *hat, struct seg *seg, caddr_t addr, 78 size_t len, enum fault_type type, enum seg_rw rw); 79 static faultcode_t segmap_faulta(struct seg *seg, caddr_t addr); 80 static int segmap_checkprot(struct seg *seg, caddr_t addr, size_t len, 81 uint_t prot); 82 static int segmap_kluster(struct seg *seg, caddr_t addr, ssize_t); 83 static int segmap_getprot(struct seg *seg, caddr_t addr, size_t len, 84 uint_t *protv); 85 static u_offset_t segmap_getoffset(struct seg *seg, caddr_t addr); 86 static int segmap_gettype(struct seg *seg, caddr_t addr); 87 static int segmap_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp); 88 static void segmap_dump(struct seg *seg); 89 static int segmap_pagelock(struct seg *seg, caddr_t addr, size_t len, 90 struct page ***ppp, enum lock_type type, 91 enum seg_rw rw); 92 static void segmap_badop(void); 93 static int segmap_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp); 94 static lgrp_mem_policy_info_t *segmap_getpolicy(struct seg *seg, 95 caddr_t addr); 96 static int segmap_capable(struct seg *seg, segcapability_t capability); 97 98 /* segkpm support */ 99 static caddr_t segmap_pagecreate_kpm(struct seg *, vnode_t *, u_offset_t, 100 struct smap *, enum seg_rw); 101 struct smap *get_smap_kpm(caddr_t, page_t **); 102 103 #define SEGMAP_BADOP(t) (t(*)())segmap_badop 104 105 static struct seg_ops segmap_ops = { 106 SEGMAP_BADOP(int), /* dup */ 107 SEGMAP_BADOP(int), /* unmap */ 108 segmap_free, 109 segmap_fault, 110 segmap_faulta, 111 SEGMAP_BADOP(int), /* setprot */ 112 segmap_checkprot, 113 segmap_kluster, 114 SEGMAP_BADOP(size_t), /* swapout */ 115 SEGMAP_BADOP(int), /* sync */ 116 SEGMAP_BADOP(size_t), /* incore */ 117 SEGMAP_BADOP(int), /* lockop */ 118 segmap_getprot, 119 segmap_getoffset, 120 segmap_gettype, 121 segmap_getvp, 122 SEGMAP_BADOP(int), /* advise */ 123 segmap_dump, 124 segmap_pagelock, /* pagelock */ 125 SEGMAP_BADOP(int), /* setpgsz */ 126 segmap_getmemid, /* getmemid */ 127 segmap_getpolicy, /* getpolicy */ 128 segmap_capable, /* capable */ 129 }; 130 131 /* 132 * Private segmap routines. 133 */ 134 static void segmap_unlock(struct hat *hat, struct seg *seg, caddr_t addr, 135 size_t len, enum seg_rw rw, struct smap *smp); 136 static void segmap_smapadd(struct smap *smp); 137 static struct smap *segmap_hashin(struct smap *smp, struct vnode *vp, 138 u_offset_t off, int hashid); 139 static void segmap_hashout(struct smap *smp); 140 141 142 /* 143 * Statistics for segmap operations. 144 * 145 * No explicit locking to protect these stats. 146 */ 147 struct segmapcnt segmapcnt = { 148 { "fault", KSTAT_DATA_ULONG }, 149 { "faulta", KSTAT_DATA_ULONG }, 150 { "getmap", KSTAT_DATA_ULONG }, 151 { "get_use", KSTAT_DATA_ULONG }, 152 { "get_reclaim", KSTAT_DATA_ULONG }, 153 { "get_reuse", KSTAT_DATA_ULONG }, 154 { "get_unused", KSTAT_DATA_ULONG }, 155 { "get_nofree", KSTAT_DATA_ULONG }, 156 { "rel_async", KSTAT_DATA_ULONG }, 157 { "rel_write", KSTAT_DATA_ULONG }, 158 { "rel_free", KSTAT_DATA_ULONG }, 159 { "rel_abort", KSTAT_DATA_ULONG }, 160 { "rel_dontneed", KSTAT_DATA_ULONG }, 161 { "release", KSTAT_DATA_ULONG }, 162 { "pagecreate", KSTAT_DATA_ULONG }, 163 { "free_notfree", KSTAT_DATA_ULONG }, 164 { "free_dirty", KSTAT_DATA_ULONG }, 165 { "free", KSTAT_DATA_ULONG }, 166 { "stolen", KSTAT_DATA_ULONG }, 167 { "get_nomtx", KSTAT_DATA_ULONG } 168 }; 169 170 kstat_named_t *segmapcnt_ptr = (kstat_named_t *)&segmapcnt; 171 uint_t segmapcnt_ndata = sizeof (segmapcnt) / sizeof (kstat_named_t); 172 173 /* 174 * Return number of map pages in segment. 175 */ 176 #define MAP_PAGES(seg) ((seg)->s_size >> MAXBSHIFT) 177 178 /* 179 * Translate addr into smap number within segment. 180 */ 181 #define MAP_PAGE(seg, addr) (((addr) - (seg)->s_base) >> MAXBSHIFT) 182 183 /* 184 * Translate addr in seg into struct smap pointer. 185 */ 186 #define GET_SMAP(seg, addr) \ 187 &(((struct segmap_data *)((seg)->s_data))->smd_sm[MAP_PAGE(seg, addr)]) 188 189 /* 190 * Bit in map (16 bit bitmap). 191 */ 192 #define SMAP_BIT_MASK(bitindex) (1 << ((bitindex) & 0xf)) 193 194 static int smd_colormsk = 0; 195 static int smd_ncolor = 0; 196 static int smd_nfree = 0; 197 static int smd_freemsk = 0; 198 #ifdef DEBUG 199 static int *colors_used; 200 #endif 201 static struct smap *smd_smap; 202 static struct smaphash *smd_hash; 203 #ifdef SEGMAP_HASHSTATS 204 static unsigned int *smd_hash_len; 205 #endif 206 static struct smfree *smd_free; 207 static ulong_t smd_hashmsk = 0; 208 209 #define SEGMAP_MAXCOLOR 2 210 #define SEGMAP_CACHE_PAD 64 211 212 union segmap_cpu { 213 struct { 214 uint32_t scpu_free_ndx[SEGMAP_MAXCOLOR]; 215 struct smap *scpu_last_smap; 216 ulong_t scpu_getmap; 217 ulong_t scpu_release; 218 ulong_t scpu_get_reclaim; 219 ulong_t scpu_fault; 220 ulong_t scpu_pagecreate; 221 ulong_t scpu_get_reuse; 222 } scpu; 223 char scpu_pad[SEGMAP_CACHE_PAD]; 224 }; 225 static union segmap_cpu *smd_cpu; 226 227 /* 228 * There are three locks in seg_map: 229 * - per freelist mutexes 230 * - per hashchain mutexes 231 * - per smap mutexes 232 * 233 * The lock ordering is to get the smap mutex to lock down the slot 234 * first then the hash lock (for hash in/out (vp, off) list) or the 235 * freelist lock to put the slot back on the free list. 236 * 237 * The hash search is done by only holding the hashchain lock, when a wanted 238 * slot is found, we drop the hashchain lock then lock the slot so there 239 * is no overlapping of hashchain and smap locks. After the slot is 240 * locked, we verify again if the slot is still what we are looking 241 * for. 242 * 243 * Allocation of a free slot is done by holding the freelist lock, 244 * then locking the smap slot at the head of the freelist. This is 245 * in reversed lock order so mutex_tryenter() is used. 246 * 247 * The smap lock protects all fields in smap structure except for 248 * the link fields for hash/free lists which are protected by 249 * hashchain and freelist locks. 250 */ 251 252 #define SHASHMTX(hashid) (&smd_hash[hashid].sh_mtx) 253 254 #define SMP2SMF(smp) (&smd_free[(smp - smd_smap) & smd_freemsk]) 255 #define SMP2SMF_NDX(smp) (ushort_t)((smp - smd_smap) & smd_freemsk) 256 257 #define SMAPMTX(smp) (&smp->sm_mtx) 258 259 #define SMAP_HASHFUNC(vp, off, hashid) \ 260 { \ 261 hashid = ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 262 ((off) >> MAXBSHIFT)) & smd_hashmsk); \ 263 } 264 265 /* 266 * The most frequently updated kstat counters are kept in the 267 * per cpu array to avoid hot cache blocks. The update function 268 * sums the cpu local counters to update the global counters. 269 */ 270 271 /* ARGSUSED */ 272 int 273 segmap_kstat_update(kstat_t *ksp, int rw) 274 { 275 int i; 276 ulong_t getmap, release, get_reclaim; 277 ulong_t fault, pagecreate, get_reuse; 278 279 if (rw == KSTAT_WRITE) 280 return (EACCES); 281 getmap = release = get_reclaim = (ulong_t)0; 282 fault = pagecreate = get_reuse = (ulong_t)0; 283 for (i = 0; i < max_ncpus; i++) { 284 getmap += smd_cpu[i].scpu.scpu_getmap; 285 release += smd_cpu[i].scpu.scpu_release; 286 get_reclaim += smd_cpu[i].scpu.scpu_get_reclaim; 287 fault += smd_cpu[i].scpu.scpu_fault; 288 pagecreate += smd_cpu[i].scpu.scpu_pagecreate; 289 get_reuse += smd_cpu[i].scpu.scpu_get_reuse; 290 } 291 segmapcnt.smp_getmap.value.ul = getmap; 292 segmapcnt.smp_release.value.ul = release; 293 segmapcnt.smp_get_reclaim.value.ul = get_reclaim; 294 segmapcnt.smp_fault.value.ul = fault; 295 segmapcnt.smp_pagecreate.value.ul = pagecreate; 296 segmapcnt.smp_get_reuse.value.ul = get_reuse; 297 return (0); 298 } 299 300 int 301 segmap_create(struct seg *seg, void *argsp) 302 { 303 struct segmap_data *smd; 304 struct smap *smp; 305 struct smfree *sm; 306 struct segmap_crargs *a = (struct segmap_crargs *)argsp; 307 struct smaphash *shashp; 308 union segmap_cpu *scpu; 309 long i, npages; 310 size_t hashsz; 311 uint_t nfreelist; 312 extern void prefetch_smap_w(void *); 313 extern int max_ncpus; 314 315 ASSERT(seg->s_as && RW_WRITE_HELD(&seg->s_as->a_lock)); 316 317 if (((uintptr_t)seg->s_base | seg->s_size) & MAXBOFFSET) { 318 panic("segkmap not MAXBSIZE aligned"); 319 /*NOTREACHED*/ 320 } 321 322 smd = kmem_zalloc(sizeof (struct segmap_data), KM_SLEEP); 323 324 seg->s_data = (void *)smd; 325 seg->s_ops = &segmap_ops; 326 smd->smd_prot = a->prot; 327 328 /* 329 * Scale the number of smap freelists to be 330 * proportional to max_ncpus * number of virtual colors. 331 * The caller can over-ride this scaling by providing 332 * a non-zero a->nfreelist argument. 333 */ 334 nfreelist = a->nfreelist; 335 if (nfreelist == 0) 336 nfreelist = max_ncpus; 337 else if (nfreelist < 0 || nfreelist > 4 * max_ncpus) { 338 cmn_err(CE_WARN, "segmap_create: nfreelist out of range " 339 "%d, using %d", nfreelist, max_ncpus); 340 nfreelist = max_ncpus; 341 } 342 if (nfreelist & (nfreelist - 1)) { 343 /* round up nfreelist to the next power of two. */ 344 nfreelist = 1 << (highbit(nfreelist)); 345 } 346 347 /* 348 * Get the number of virtual colors - must be a power of 2. 349 */ 350 if (a->shmsize) 351 smd_ncolor = a->shmsize >> MAXBSHIFT; 352 else 353 smd_ncolor = 1; 354 ASSERT((smd_ncolor & (smd_ncolor - 1)) == 0); 355 ASSERT(smd_ncolor <= SEGMAP_MAXCOLOR); 356 smd_colormsk = smd_ncolor - 1; 357 smd->smd_nfree = smd_nfree = smd_ncolor * nfreelist; 358 smd_freemsk = smd_nfree - 1; 359 360 /* 361 * Allocate and initialize the freelist headers. 362 * Note that sm_freeq[1] starts out as the release queue. This 363 * is known when the smap structures are initialized below. 364 */ 365 smd_free = smd->smd_free = 366 kmem_zalloc(smd_nfree * sizeof (struct smfree), KM_SLEEP); 367 for (i = 0; i < smd_nfree; i++) { 368 sm = &smd->smd_free[i]; 369 mutex_init(&sm->sm_freeq[0].smq_mtx, NULL, MUTEX_DEFAULT, NULL); 370 mutex_init(&sm->sm_freeq[1].smq_mtx, NULL, MUTEX_DEFAULT, NULL); 371 sm->sm_allocq = &sm->sm_freeq[0]; 372 sm->sm_releq = &sm->sm_freeq[1]; 373 } 374 375 /* 376 * Allocate and initialize the smap hash chain headers. 377 * Compute hash size rounding down to the next power of two. 378 */ 379 npages = MAP_PAGES(seg); 380 smd->smd_npages = npages; 381 hashsz = npages / SMAP_HASHAVELEN; 382 hashsz = 1 << (highbit(hashsz)-1); 383 smd_hashmsk = hashsz - 1; 384 smd_hash = smd->smd_hash = 385 kmem_alloc(hashsz * sizeof (struct smaphash), KM_SLEEP); 386 #ifdef SEGMAP_HASHSTATS 387 smd_hash_len = 388 kmem_zalloc(hashsz * sizeof (unsigned int), KM_SLEEP); 389 #endif 390 for (i = 0, shashp = smd_hash; i < hashsz; i++, shashp++) { 391 shashp->sh_hash_list = NULL; 392 mutex_init(&shashp->sh_mtx, NULL, MUTEX_DEFAULT, NULL); 393 } 394 395 /* 396 * Allocate and initialize the smap structures. 397 * Link all slots onto the appropriate freelist. 398 * The smap array is large enough to affect boot time 399 * on large systems, so use memory prefetching and only 400 * go through the array 1 time. Inline a optimized version 401 * of segmap_smapadd to add structures to freelists with 402 * knowledge that no locks are needed here. 403 */ 404 smd_smap = smd->smd_sm = 405 kmem_alloc(sizeof (struct smap) * npages, KM_SLEEP); 406 407 for (smp = &smd->smd_sm[MAP_PAGES(seg) - 1]; 408 smp >= smd->smd_sm; smp--) { 409 struct smap *smpfreelist; 410 struct sm_freeq *releq; 411 412 prefetch_smap_w((char *)smp); 413 414 smp->sm_vp = NULL; 415 smp->sm_hash = NULL; 416 smp->sm_off = 0; 417 smp->sm_bitmap = 0; 418 smp->sm_refcnt = 0; 419 mutex_init(&smp->sm_mtx, NULL, MUTEX_DEFAULT, NULL); 420 smp->sm_free_ndx = SMP2SMF_NDX(smp); 421 422 sm = SMP2SMF(smp); 423 releq = sm->sm_releq; 424 425 smpfreelist = releq->smq_free; 426 if (smpfreelist == 0) { 427 releq->smq_free = smp->sm_next = smp->sm_prev = smp; 428 } else { 429 smp->sm_next = smpfreelist; 430 smp->sm_prev = smpfreelist->sm_prev; 431 smpfreelist->sm_prev = smp; 432 smp->sm_prev->sm_next = smp; 433 releq->smq_free = smp->sm_next; 434 } 435 436 /* 437 * sm_flag = 0 (no SM_QNDX_ZERO) implies smap on sm_freeq[1] 438 */ 439 smp->sm_flags = 0; 440 441 #ifdef SEGKPM_SUPPORT 442 /* 443 * Due to the fragile prefetch loop no 444 * separate function is used here. 445 */ 446 smp->sm_kpme_next = NULL; 447 smp->sm_kpme_prev = NULL; 448 smp->sm_kpme_page = NULL; 449 #endif 450 } 451 452 /* 453 * Allocate the per color indices that distribute allocation 454 * requests over the free lists. Each cpu will have a private 455 * rotor index to spread the allocations even across the available 456 * smap freelists. Init the scpu_last_smap field to the first 457 * smap element so there is no need to check for NULL. 458 */ 459 smd_cpu = 460 kmem_zalloc(sizeof (union segmap_cpu) * max_ncpus, KM_SLEEP); 461 for (i = 0, scpu = smd_cpu; i < max_ncpus; i++, scpu++) { 462 int j; 463 for (j = 0; j < smd_ncolor; j++) 464 scpu->scpu.scpu_free_ndx[j] = j; 465 scpu->scpu.scpu_last_smap = smd_smap; 466 } 467 468 if (vpm_enable) { 469 vpm_init(); 470 } 471 472 #ifdef DEBUG 473 /* 474 * Keep track of which colors are used more often. 475 */ 476 colors_used = kmem_zalloc(smd_nfree * sizeof (int), KM_SLEEP); 477 #endif /* DEBUG */ 478 479 return (0); 480 } 481 482 static void 483 segmap_free(seg) 484 struct seg *seg; 485 { 486 ASSERT(seg->s_as && RW_WRITE_HELD(&seg->s_as->a_lock)); 487 } 488 489 /* 490 * Do a F_SOFTUNLOCK call over the range requested. 491 * The range must have already been F_SOFTLOCK'ed. 492 */ 493 static void 494 segmap_unlock( 495 struct hat *hat, 496 struct seg *seg, 497 caddr_t addr, 498 size_t len, 499 enum seg_rw rw, 500 struct smap *smp) 501 { 502 page_t *pp; 503 caddr_t adr; 504 u_offset_t off; 505 struct vnode *vp; 506 kmutex_t *smtx; 507 508 ASSERT(smp->sm_refcnt > 0); 509 510 #ifdef lint 511 seg = seg; 512 #endif 513 514 if (segmap_kpm && IS_KPM_ADDR(addr)) { 515 516 /* 517 * We're called only from segmap_fault and this was a 518 * NOP in case of a kpm based smap, so dangerous things 519 * must have happened in the meantime. Pages are prefaulted 520 * and locked in segmap_getmapflt and they will not be 521 * unlocked until segmap_release. 522 */ 523 panic("segmap_unlock: called with kpm addr %p", (void *)addr); 524 /*NOTREACHED*/ 525 } 526 527 vp = smp->sm_vp; 528 off = smp->sm_off + (u_offset_t)((uintptr_t)addr & MAXBOFFSET); 529 530 hat_unlock(hat, addr, P2ROUNDUP(len, PAGESIZE)); 531 for (adr = addr; adr < addr + len; adr += PAGESIZE, off += PAGESIZE) { 532 ushort_t bitmask; 533 534 /* 535 * Use page_find() instead of page_lookup() to 536 * find the page since we know that it has 537 * "shared" lock. 538 */ 539 pp = page_find(vp, off); 540 if (pp == NULL) { 541 panic("segmap_unlock: page not found"); 542 /*NOTREACHED*/ 543 } 544 545 if (rw == S_WRITE) { 546 hat_setrefmod(pp); 547 } else if (rw != S_OTHER) { 548 TRACE_3(TR_FAC_VM, TR_SEGMAP_FAULT, 549 "segmap_fault:pp %p vp %p offset %llx", 550 pp, vp, off); 551 hat_setref(pp); 552 } 553 554 /* 555 * Clear bitmap, if the bit corresponding to "off" is set, 556 * since the page and translation are being unlocked. 557 */ 558 bitmask = SMAP_BIT_MASK((off - smp->sm_off) >> PAGESHIFT); 559 560 /* 561 * Large Files: Following assertion is to verify 562 * the correctness of the cast to (int) above. 563 */ 564 ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX); 565 smtx = SMAPMTX(smp); 566 mutex_enter(smtx); 567 if (smp->sm_bitmap & bitmask) { 568 smp->sm_bitmap &= ~bitmask; 569 } 570 mutex_exit(smtx); 571 572 page_unlock(pp); 573 } 574 } 575 576 #define MAXPPB (MAXBSIZE/4096) /* assumes minimum page size of 4k */ 577 578 /* 579 * This routine is called via a machine specific fault handling 580 * routine. It is also called by software routines wishing to 581 * lock or unlock a range of addresses. 582 * 583 * Note that this routine expects a page-aligned "addr". 584 */ 585 faultcode_t 586 segmap_fault( 587 struct hat *hat, 588 struct seg *seg, 589 caddr_t addr, 590 size_t len, 591 enum fault_type type, 592 enum seg_rw rw) 593 { 594 struct segmap_data *smd = (struct segmap_data *)seg->s_data; 595 struct smap *smp; 596 page_t *pp, **ppp; 597 struct vnode *vp; 598 u_offset_t off; 599 page_t *pl[MAXPPB + 1]; 600 uint_t prot; 601 u_offset_t addroff; 602 caddr_t adr; 603 int err; 604 u_offset_t sm_off; 605 int hat_flag; 606 607 if (segmap_kpm && IS_KPM_ADDR(addr)) { 608 int newpage; 609 kmutex_t *smtx; 610 611 /* 612 * Pages are successfully prefaulted and locked in 613 * segmap_getmapflt and can't be unlocked until 614 * segmap_release. No hat mappings have to be locked 615 * and they also can't be unlocked as long as the 616 * caller owns an active kpm addr. 617 */ 618 #ifndef DEBUG 619 if (type != F_SOFTUNLOCK) 620 return (0); 621 #endif 622 623 if ((smp = get_smap_kpm(addr, NULL)) == NULL) { 624 panic("segmap_fault: smap not found " 625 "for addr %p", (void *)addr); 626 /*NOTREACHED*/ 627 } 628 629 smtx = SMAPMTX(smp); 630 #ifdef DEBUG 631 newpage = smp->sm_flags & SM_KPM_NEWPAGE; 632 if (newpage) { 633 cmn_err(CE_WARN, "segmap_fault: newpage? smp %p", 634 (void *)smp); 635 } 636 637 if (type != F_SOFTUNLOCK) { 638 mutex_exit(smtx); 639 return (0); 640 } 641 #endif 642 mutex_exit(smtx); 643 vp = smp->sm_vp; 644 sm_off = smp->sm_off; 645 646 if (vp == NULL) 647 return (FC_MAKE_ERR(EIO)); 648 649 ASSERT(smp->sm_refcnt > 0); 650 651 addroff = (u_offset_t)((uintptr_t)addr & MAXBOFFSET); 652 if (addroff + len > MAXBSIZE) 653 panic("segmap_fault: endaddr %p exceeds MAXBSIZE chunk", 654 (void *)(addr + len)); 655 656 off = sm_off + addroff; 657 658 pp = page_find(vp, off); 659 660 if (pp == NULL) 661 panic("segmap_fault: softunlock page not found"); 662 663 /* 664 * Set ref bit also here in case of S_OTHER to avoid the 665 * overhead of supporting other cases than F_SOFTUNLOCK 666 * with segkpm. We can do this because the underlying 667 * pages are locked anyway. 668 */ 669 if (rw == S_WRITE) { 670 hat_setrefmod(pp); 671 } else { 672 TRACE_3(TR_FAC_VM, TR_SEGMAP_FAULT, 673 "segmap_fault:pp %p vp %p offset %llx", 674 pp, vp, off); 675 hat_setref(pp); 676 } 677 678 return (0); 679 } 680 681 smd_cpu[CPU->cpu_seqid].scpu.scpu_fault++; 682 smp = GET_SMAP(seg, addr); 683 vp = smp->sm_vp; 684 sm_off = smp->sm_off; 685 686 if (vp == NULL) 687 return (FC_MAKE_ERR(EIO)); 688 689 ASSERT(smp->sm_refcnt > 0); 690 691 addroff = (u_offset_t)((uintptr_t)addr & MAXBOFFSET); 692 if (addroff + len > MAXBSIZE) { 693 panic("segmap_fault: endaddr %p " 694 "exceeds MAXBSIZE chunk", (void *)(addr + len)); 695 /*NOTREACHED*/ 696 } 697 off = sm_off + addroff; 698 699 /* 700 * First handle the easy stuff 701 */ 702 if (type == F_SOFTUNLOCK) { 703 segmap_unlock(hat, seg, addr, len, rw, smp); 704 return (0); 705 } 706 707 TRACE_3(TR_FAC_VM, TR_SEGMAP_GETPAGE, 708 "segmap_getpage:seg %p addr %p vp %p", seg, addr, vp); 709 err = VOP_GETPAGE(vp, (offset_t)off, len, &prot, pl, MAXBSIZE, 710 seg, addr, rw, CRED(), NULL); 711 712 if (err) 713 return (FC_MAKE_ERR(err)); 714 715 prot &= smd->smd_prot; 716 717 /* 718 * Handle all pages returned in the pl[] array. 719 * This loop is coded on the assumption that if 720 * there was no error from the VOP_GETPAGE routine, 721 * that the page list returned will contain all the 722 * needed pages for the vp from [off..off + len]. 723 */ 724 ppp = pl; 725 while ((pp = *ppp++) != NULL) { 726 u_offset_t poff; 727 ASSERT(pp->p_vnode == vp); 728 hat_flag = HAT_LOAD; 729 730 /* 731 * Verify that the pages returned are within the range 732 * of this segmap region. Note that it is theoretically 733 * possible for pages outside this range to be returned, 734 * but it is not very likely. If we cannot use the 735 * page here, just release it and go on to the next one. 736 */ 737 if (pp->p_offset < sm_off || 738 pp->p_offset >= sm_off + MAXBSIZE) { 739 (void) page_release(pp, 1); 740 continue; 741 } 742 743 ASSERT(hat == kas.a_hat); 744 poff = pp->p_offset; 745 adr = addr + (poff - off); 746 if (adr >= addr && adr < addr + len) { 747 hat_setref(pp); 748 TRACE_3(TR_FAC_VM, TR_SEGMAP_FAULT, 749 "segmap_fault:pp %p vp %p offset %llx", 750 pp, vp, poff); 751 if (type == F_SOFTLOCK) 752 hat_flag = HAT_LOAD_LOCK; 753 } 754 755 /* 756 * Deal with VMODSORT pages here. If we know this is a write 757 * do the setmod now and allow write protection. 758 * As long as it's modified or not S_OTHER, remove write 759 * protection. With S_OTHER it's up to the FS to deal with this. 760 */ 761 if (IS_VMODSORT(vp)) { 762 if (rw == S_WRITE) 763 hat_setmod(pp); 764 else if (rw != S_OTHER && !hat_ismod(pp)) 765 prot &= ~PROT_WRITE; 766 } 767 768 hat_memload(hat, adr, pp, prot, hat_flag); 769 if (hat_flag != HAT_LOAD_LOCK) 770 page_unlock(pp); 771 } 772 return (0); 773 } 774 775 /* 776 * This routine is used to start I/O on pages asynchronously. 777 */ 778 static faultcode_t 779 segmap_faulta(struct seg *seg, caddr_t addr) 780 { 781 struct smap *smp; 782 struct vnode *vp; 783 u_offset_t off; 784 int err; 785 786 if (segmap_kpm && IS_KPM_ADDR(addr)) { 787 int newpage; 788 kmutex_t *smtx; 789 790 /* 791 * Pages are successfully prefaulted and locked in 792 * segmap_getmapflt and can't be unlocked until 793 * segmap_release. No hat mappings have to be locked 794 * and they also can't be unlocked as long as the 795 * caller owns an active kpm addr. 796 */ 797 #ifdef DEBUG 798 if ((smp = get_smap_kpm(addr, NULL)) == NULL) { 799 panic("segmap_faulta: smap not found " 800 "for addr %p", (void *)addr); 801 /*NOTREACHED*/ 802 } 803 804 smtx = SMAPMTX(smp); 805 newpage = smp->sm_flags & SM_KPM_NEWPAGE; 806 mutex_exit(smtx); 807 if (newpage) 808 cmn_err(CE_WARN, "segmap_faulta: newpage? smp %p", 809 (void *)smp); 810 #endif 811 return (0); 812 } 813 814 segmapcnt.smp_faulta.value.ul++; 815 smp = GET_SMAP(seg, addr); 816 817 ASSERT(smp->sm_refcnt > 0); 818 819 vp = smp->sm_vp; 820 off = smp->sm_off; 821 822 if (vp == NULL) { 823 cmn_err(CE_WARN, "segmap_faulta - no vp"); 824 return (FC_MAKE_ERR(EIO)); 825 } 826 827 TRACE_3(TR_FAC_VM, TR_SEGMAP_GETPAGE, 828 "segmap_getpage:seg %p addr %p vp %p", seg, addr, vp); 829 830 err = VOP_GETPAGE(vp, (offset_t)(off + ((offset_t)((uintptr_t)addr 831 & MAXBOFFSET))), PAGESIZE, (uint_t *)NULL, (page_t **)NULL, 0, 832 seg, addr, S_READ, CRED(), NULL); 833 834 if (err) 835 return (FC_MAKE_ERR(err)); 836 return (0); 837 } 838 839 /*ARGSUSED*/ 840 static int 841 segmap_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot) 842 { 843 struct segmap_data *smd = (struct segmap_data *)seg->s_data; 844 845 ASSERT(seg->s_as && RW_LOCK_HELD(&seg->s_as->a_lock)); 846 847 /* 848 * Need not acquire the segment lock since 849 * "smd_prot" is a read-only field. 850 */ 851 return (((smd->smd_prot & prot) != prot) ? EACCES : 0); 852 } 853 854 static int 855 segmap_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv) 856 { 857 struct segmap_data *smd = (struct segmap_data *)seg->s_data; 858 size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1; 859 860 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 861 862 if (pgno != 0) { 863 do 864 protv[--pgno] = smd->smd_prot; 865 while (pgno != 0); 866 } 867 return (0); 868 } 869 870 static u_offset_t 871 segmap_getoffset(struct seg *seg, caddr_t addr) 872 { 873 struct segmap_data *smd = (struct segmap_data *)seg->s_data; 874 875 ASSERT(seg->s_as && RW_READ_HELD(&seg->s_as->a_lock)); 876 877 return ((u_offset_t)smd->smd_sm->sm_off + (addr - seg->s_base)); 878 } 879 880 /*ARGSUSED*/ 881 static int 882 segmap_gettype(struct seg *seg, caddr_t addr) 883 { 884 ASSERT(seg->s_as && RW_READ_HELD(&seg->s_as->a_lock)); 885 886 return (MAP_SHARED); 887 } 888 889 /*ARGSUSED*/ 890 static int 891 segmap_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp) 892 { 893 struct segmap_data *smd = (struct segmap_data *)seg->s_data; 894 895 ASSERT(seg->s_as && RW_READ_HELD(&seg->s_as->a_lock)); 896 897 /* XXX - This doesn't make any sense */ 898 *vpp = smd->smd_sm->sm_vp; 899 return (0); 900 } 901 902 /* 903 * Check to see if it makes sense to do kluster/read ahead to 904 * addr + delta relative to the mapping at addr. We assume here 905 * that delta is a signed PAGESIZE'd multiple (which can be negative). 906 * 907 * For segmap we always "approve" of this action from our standpoint. 908 */ 909 /*ARGSUSED*/ 910 static int 911 segmap_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 912 { 913 return (0); 914 } 915 916 static void 917 segmap_badop() 918 { 919 panic("segmap_badop"); 920 /*NOTREACHED*/ 921 } 922 923 /* 924 * Special private segmap operations 925 */ 926 927 /* 928 * Add smap to the appropriate free list. 929 */ 930 static void 931 segmap_smapadd(struct smap *smp) 932 { 933 struct smfree *sm; 934 struct smap *smpfreelist; 935 struct sm_freeq *releq; 936 937 ASSERT(MUTEX_HELD(SMAPMTX(smp))); 938 939 if (smp->sm_refcnt != 0) { 940 panic("segmap_smapadd"); 941 /*NOTREACHED*/ 942 } 943 944 sm = &smd_free[smp->sm_free_ndx]; 945 /* 946 * Add to the tail of the release queue 947 * Note that sm_releq and sm_allocq could toggle 948 * before we get the lock. This does not affect 949 * correctness as the 2 queues are only maintained 950 * to reduce lock pressure. 951 */ 952 releq = sm->sm_releq; 953 if (releq == &sm->sm_freeq[0]) 954 smp->sm_flags |= SM_QNDX_ZERO; 955 else 956 smp->sm_flags &= ~SM_QNDX_ZERO; 957 mutex_enter(&releq->smq_mtx); 958 smpfreelist = releq->smq_free; 959 if (smpfreelist == 0) { 960 int want; 961 962 releq->smq_free = smp->sm_next = smp->sm_prev = smp; 963 /* 964 * Both queue mutexes held to set sm_want; 965 * snapshot the value before dropping releq mutex. 966 * If sm_want appears after the releq mutex is dropped, 967 * then the smap just freed is already gone. 968 */ 969 want = sm->sm_want; 970 mutex_exit(&releq->smq_mtx); 971 /* 972 * See if there was a waiter before dropping the releq mutex 973 * then recheck after obtaining sm_freeq[0] mutex as 974 * the another thread may have already signaled. 975 */ 976 if (want) { 977 mutex_enter(&sm->sm_freeq[0].smq_mtx); 978 if (sm->sm_want) 979 cv_signal(&sm->sm_free_cv); 980 mutex_exit(&sm->sm_freeq[0].smq_mtx); 981 } 982 } else { 983 smp->sm_next = smpfreelist; 984 smp->sm_prev = smpfreelist->sm_prev; 985 smpfreelist->sm_prev = smp; 986 smp->sm_prev->sm_next = smp; 987 mutex_exit(&releq->smq_mtx); 988 } 989 } 990 991 992 static struct smap * 993 segmap_hashin(struct smap *smp, struct vnode *vp, u_offset_t off, int hashid) 994 { 995 struct smap **hpp; 996 struct smap *tmp; 997 kmutex_t *hmtx; 998 999 ASSERT(MUTEX_HELD(SMAPMTX(smp))); 1000 ASSERT(smp->sm_vp == NULL); 1001 ASSERT(smp->sm_hash == NULL); 1002 ASSERT(smp->sm_prev == NULL); 1003 ASSERT(smp->sm_next == NULL); 1004 ASSERT(hashid >= 0 && hashid <= smd_hashmsk); 1005 1006 hmtx = SHASHMTX(hashid); 1007 1008 mutex_enter(hmtx); 1009 /* 1010 * First we need to verify that no one has created a smp 1011 * with (vp,off) as its tag before we us. 1012 */ 1013 for (tmp = smd_hash[hashid].sh_hash_list; 1014 tmp != NULL; tmp = tmp->sm_hash) 1015 if (tmp->sm_vp == vp && tmp->sm_off == off) 1016 break; 1017 1018 if (tmp == NULL) { 1019 /* 1020 * No one created one yet. 1021 * 1022 * Funniness here - we don't increment the ref count on the 1023 * vnode * even though we have another pointer to it here. 1024 * The reason for this is that we don't want the fact that 1025 * a seg_map entry somewhere refers to a vnode to prevent the 1026 * vnode * itself from going away. This is because this 1027 * reference to the vnode is a "soft one". In the case where 1028 * a mapping is being used by a rdwr [or directory routine?] 1029 * there already has to be a non-zero ref count on the vnode. 1030 * In the case where the vp has been freed and the the smap 1031 * structure is on the free list, there are no pages in memory 1032 * that can refer to the vnode. Thus even if we reuse the same 1033 * vnode/smap structure for a vnode which has the same 1034 * address but represents a different object, we are ok. 1035 */ 1036 smp->sm_vp = vp; 1037 smp->sm_off = off; 1038 1039 hpp = &smd_hash[hashid].sh_hash_list; 1040 smp->sm_hash = *hpp; 1041 *hpp = smp; 1042 #ifdef SEGMAP_HASHSTATS 1043 smd_hash_len[hashid]++; 1044 #endif 1045 } 1046 mutex_exit(hmtx); 1047 1048 return (tmp); 1049 } 1050 1051 static void 1052 segmap_hashout(struct smap *smp) 1053 { 1054 struct smap **hpp, *hp; 1055 struct vnode *vp; 1056 kmutex_t *mtx; 1057 int hashid; 1058 u_offset_t off; 1059 1060 ASSERT(MUTEX_HELD(SMAPMTX(smp))); 1061 1062 vp = smp->sm_vp; 1063 off = smp->sm_off; 1064 1065 SMAP_HASHFUNC(vp, off, hashid); /* macro assigns hashid */ 1066 mtx = SHASHMTX(hashid); 1067 mutex_enter(mtx); 1068 1069 hpp = &smd_hash[hashid].sh_hash_list; 1070 for (;;) { 1071 hp = *hpp; 1072 if (hp == NULL) { 1073 panic("segmap_hashout"); 1074 /*NOTREACHED*/ 1075 } 1076 if (hp == smp) 1077 break; 1078 hpp = &hp->sm_hash; 1079 } 1080 1081 *hpp = smp->sm_hash; 1082 smp->sm_hash = NULL; 1083 #ifdef SEGMAP_HASHSTATS 1084 smd_hash_len[hashid]--; 1085 #endif 1086 mutex_exit(mtx); 1087 1088 smp->sm_vp = NULL; 1089 smp->sm_off = (u_offset_t)0; 1090 1091 } 1092 1093 /* 1094 * Attempt to free unmodified, unmapped, and non locked segmap 1095 * pages. 1096 */ 1097 void 1098 segmap_pagefree(struct vnode *vp, u_offset_t off) 1099 { 1100 u_offset_t pgoff; 1101 page_t *pp; 1102 1103 for (pgoff = off; pgoff < off + MAXBSIZE; pgoff += PAGESIZE) { 1104 1105 if ((pp = page_lookup_nowait(vp, pgoff, SE_EXCL)) == NULL) 1106 continue; 1107 1108 switch (page_release(pp, 1)) { 1109 case PGREL_NOTREL: 1110 segmapcnt.smp_free_notfree.value.ul++; 1111 break; 1112 case PGREL_MOD: 1113 segmapcnt.smp_free_dirty.value.ul++; 1114 break; 1115 case PGREL_CLEAN: 1116 segmapcnt.smp_free.value.ul++; 1117 break; 1118 } 1119 } 1120 } 1121 1122 /* 1123 * Locks held on entry: smap lock 1124 * Locks held on exit : smap lock. 1125 */ 1126 1127 static void 1128 grab_smp(struct smap *smp, page_t *pp) 1129 { 1130 ASSERT(MUTEX_HELD(SMAPMTX(smp))); 1131 ASSERT(smp->sm_refcnt == 0); 1132 1133 if (smp->sm_vp != (struct vnode *)NULL) { 1134 struct vnode *vp = smp->sm_vp; 1135 u_offset_t off = smp->sm_off; 1136 /* 1137 * Destroy old vnode association and 1138 * unload any hardware translations to 1139 * the old object. 1140 */ 1141 smd_cpu[CPU->cpu_seqid].scpu.scpu_get_reuse++; 1142 segmap_hashout(smp); 1143 1144 /* 1145 * This node is off freelist and hashlist, 1146 * so there is no reason to drop/reacquire sm_mtx 1147 * across calls to hat_unload. 1148 */ 1149 if (segmap_kpm) { 1150 caddr_t vaddr; 1151 int hat_unload_needed = 0; 1152 1153 /* 1154 * unload kpm mapping 1155 */ 1156 if (pp != NULL) { 1157 vaddr = hat_kpm_page2va(pp, 1); 1158 hat_kpm_mapout(pp, GET_KPME(smp), vaddr); 1159 page_unlock(pp); 1160 } 1161 1162 /* 1163 * Check if we have (also) the rare case of a 1164 * non kpm mapping. 1165 */ 1166 if (smp->sm_flags & SM_NOTKPM_RELEASED) { 1167 hat_unload_needed = 1; 1168 smp->sm_flags &= ~SM_NOTKPM_RELEASED; 1169 } 1170 1171 if (hat_unload_needed) { 1172 hat_unload(kas.a_hat, segkmap->s_base + 1173 ((smp - smd_smap) * MAXBSIZE), 1174 MAXBSIZE, HAT_UNLOAD); 1175 } 1176 1177 } else { 1178 ASSERT(smp->sm_flags & SM_NOTKPM_RELEASED); 1179 smp->sm_flags &= ~SM_NOTKPM_RELEASED; 1180 hat_unload(kas.a_hat, segkmap->s_base + 1181 ((smp - smd_smap) * MAXBSIZE), 1182 MAXBSIZE, HAT_UNLOAD); 1183 } 1184 segmap_pagefree(vp, off); 1185 } 1186 } 1187 1188 static struct smap * 1189 get_free_smp(int free_ndx) 1190 { 1191 struct smfree *sm; 1192 kmutex_t *smtx; 1193 struct smap *smp, *first; 1194 struct sm_freeq *allocq, *releq; 1195 struct kpme *kpme; 1196 page_t *pp = NULL; 1197 int end_ndx, page_locked = 0; 1198 1199 end_ndx = free_ndx; 1200 sm = &smd_free[free_ndx]; 1201 1202 retry_queue: 1203 allocq = sm->sm_allocq; 1204 mutex_enter(&allocq->smq_mtx); 1205 1206 if ((smp = allocq->smq_free) == NULL) { 1207 1208 skip_queue: 1209 /* 1210 * The alloc list is empty or this queue is being skipped; 1211 * first see if the allocq toggled. 1212 */ 1213 if (sm->sm_allocq != allocq) { 1214 /* queue changed */ 1215 mutex_exit(&allocq->smq_mtx); 1216 goto retry_queue; 1217 } 1218 releq = sm->sm_releq; 1219 if (!mutex_tryenter(&releq->smq_mtx)) { 1220 /* cannot get releq; a free smp may be there now */ 1221 mutex_exit(&allocq->smq_mtx); 1222 1223 /* 1224 * This loop could spin forever if this thread has 1225 * higher priority than the thread that is holding 1226 * releq->smq_mtx. In order to force the other thread 1227 * to run, we'll lock/unlock the mutex which is safe 1228 * since we just unlocked the allocq mutex. 1229 */ 1230 mutex_enter(&releq->smq_mtx); 1231 mutex_exit(&releq->smq_mtx); 1232 goto retry_queue; 1233 } 1234 if (releq->smq_free == NULL) { 1235 /* 1236 * This freelist is empty. 1237 * This should not happen unless clients 1238 * are failing to release the segmap 1239 * window after accessing the data. 1240 * Before resorting to sleeping, try 1241 * the next list of the same color. 1242 */ 1243 free_ndx = (free_ndx + smd_ncolor) & smd_freemsk; 1244 if (free_ndx != end_ndx) { 1245 mutex_exit(&releq->smq_mtx); 1246 mutex_exit(&allocq->smq_mtx); 1247 sm = &smd_free[free_ndx]; 1248 goto retry_queue; 1249 } 1250 /* 1251 * Tried all freelists of the same color once, 1252 * wait on this list and hope something gets freed. 1253 */ 1254 segmapcnt.smp_get_nofree.value.ul++; 1255 sm->sm_want++; 1256 mutex_exit(&sm->sm_freeq[1].smq_mtx); 1257 cv_wait(&sm->sm_free_cv, 1258 &sm->sm_freeq[0].smq_mtx); 1259 sm->sm_want--; 1260 mutex_exit(&sm->sm_freeq[0].smq_mtx); 1261 sm = &smd_free[free_ndx]; 1262 goto retry_queue; 1263 } else { 1264 /* 1265 * Something on the rele queue; flip the alloc 1266 * and rele queues and retry. 1267 */ 1268 sm->sm_allocq = releq; 1269 sm->sm_releq = allocq; 1270 mutex_exit(&allocq->smq_mtx); 1271 mutex_exit(&releq->smq_mtx); 1272 if (page_locked) { 1273 delay(hz >> 2); 1274 page_locked = 0; 1275 } 1276 goto retry_queue; 1277 } 1278 } else { 1279 /* 1280 * Fastpath the case we get the smap mutex 1281 * on the first try. 1282 */ 1283 first = smp; 1284 next_smap: 1285 smtx = SMAPMTX(smp); 1286 if (!mutex_tryenter(smtx)) { 1287 /* 1288 * Another thread is trying to reclaim this slot. 1289 * Skip to the next queue or smap. 1290 */ 1291 if ((smp = smp->sm_next) == first) { 1292 goto skip_queue; 1293 } else { 1294 goto next_smap; 1295 } 1296 } else { 1297 /* 1298 * if kpme exists, get shared lock on the page 1299 */ 1300 if (segmap_kpm && smp->sm_vp != NULL) { 1301 1302 kpme = GET_KPME(smp); 1303 pp = kpme->kpe_page; 1304 1305 if (pp != NULL) { 1306 if (!page_trylock(pp, SE_SHARED)) { 1307 smp = smp->sm_next; 1308 mutex_exit(smtx); 1309 page_locked = 1; 1310 1311 pp = NULL; 1312 1313 if (smp == first) { 1314 goto skip_queue; 1315 } else { 1316 goto next_smap; 1317 } 1318 } else { 1319 if (kpme->kpe_page == NULL) { 1320 page_unlock(pp); 1321 pp = NULL; 1322 } 1323 } 1324 } 1325 } 1326 1327 /* 1328 * At this point, we've selected smp. Remove smp 1329 * from its freelist. If smp is the first one in 1330 * the freelist, update the head of the freelist. 1331 */ 1332 if (first == smp) { 1333 ASSERT(first == allocq->smq_free); 1334 allocq->smq_free = smp->sm_next; 1335 } 1336 1337 /* 1338 * if the head of the freelist still points to smp, 1339 * then there are no more free smaps in that list. 1340 */ 1341 if (allocq->smq_free == smp) 1342 /* 1343 * Took the last one 1344 */ 1345 allocq->smq_free = NULL; 1346 else { 1347 smp->sm_prev->sm_next = smp->sm_next; 1348 smp->sm_next->sm_prev = smp->sm_prev; 1349 } 1350 mutex_exit(&allocq->smq_mtx); 1351 smp->sm_prev = smp->sm_next = NULL; 1352 1353 /* 1354 * if pp != NULL, pp must have been locked; 1355 * grab_smp() unlocks pp. 1356 */ 1357 ASSERT((pp == NULL) || PAGE_LOCKED(pp)); 1358 grab_smp(smp, pp); 1359 /* return smp locked. */ 1360 ASSERT(SMAPMTX(smp) == smtx); 1361 ASSERT(MUTEX_HELD(smtx)); 1362 return (smp); 1363 } 1364 } 1365 } 1366 1367 /* 1368 * Special public segmap operations 1369 */ 1370 1371 /* 1372 * Create pages (without using VOP_GETPAGE) and load up translations to them. 1373 * If softlock is TRUE, then set things up so that it looks like a call 1374 * to segmap_fault with F_SOFTLOCK. 1375 * 1376 * Returns 1, if a page is created by calling page_create_va(), or 0 otherwise. 1377 * 1378 * All fields in the generic segment (struct seg) are considered to be 1379 * read-only for "segmap" even though the kernel address space (kas) may 1380 * not be locked, hence no lock is needed to access them. 1381 */ 1382 int 1383 segmap_pagecreate(struct seg *seg, caddr_t addr, size_t len, int softlock) 1384 { 1385 struct segmap_data *smd = (struct segmap_data *)seg->s_data; 1386 page_t *pp; 1387 u_offset_t off; 1388 struct smap *smp; 1389 struct vnode *vp; 1390 caddr_t eaddr; 1391 int newpage = 0; 1392 uint_t prot; 1393 kmutex_t *smtx; 1394 int hat_flag; 1395 1396 ASSERT(seg->s_as == &kas); 1397 1398 if (segmap_kpm && IS_KPM_ADDR(addr)) { 1399 /* 1400 * Pages are successfully prefaulted and locked in 1401 * segmap_getmapflt and can't be unlocked until 1402 * segmap_release. The SM_KPM_NEWPAGE flag is set 1403 * in segmap_pagecreate_kpm when new pages are created. 1404 * and it is returned as "newpage" indication here. 1405 */ 1406 if ((smp = get_smap_kpm(addr, NULL)) == NULL) { 1407 panic("segmap_pagecreate: smap not found " 1408 "for addr %p", (void *)addr); 1409 /*NOTREACHED*/ 1410 } 1411 1412 smtx = SMAPMTX(smp); 1413 newpage = smp->sm_flags & SM_KPM_NEWPAGE; 1414 smp->sm_flags &= ~SM_KPM_NEWPAGE; 1415 mutex_exit(smtx); 1416 1417 return (newpage); 1418 } 1419 1420 smd_cpu[CPU->cpu_seqid].scpu.scpu_pagecreate++; 1421 1422 eaddr = addr + len; 1423 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1424 1425 smp = GET_SMAP(seg, addr); 1426 1427 /* 1428 * We don't grab smp mutex here since we assume the smp 1429 * has a refcnt set already which prevents the slot from 1430 * changing its id. 1431 */ 1432 ASSERT(smp->sm_refcnt > 0); 1433 1434 vp = smp->sm_vp; 1435 off = smp->sm_off + ((u_offset_t)((uintptr_t)addr & MAXBOFFSET)); 1436 prot = smd->smd_prot; 1437 1438 for (; addr < eaddr; addr += PAGESIZE, off += PAGESIZE) { 1439 hat_flag = HAT_LOAD; 1440 pp = page_lookup(vp, off, SE_SHARED); 1441 if (pp == NULL) { 1442 ushort_t bitindex; 1443 1444 if ((pp = page_create_va(vp, off, 1445 PAGESIZE, PG_WAIT, seg, addr)) == NULL) { 1446 panic("segmap_pagecreate: page_create failed"); 1447 /*NOTREACHED*/ 1448 } 1449 newpage = 1; 1450 page_io_unlock(pp); 1451 1452 /* 1453 * Since pages created here do not contain valid 1454 * data until the caller writes into them, the 1455 * "exclusive" lock will not be dropped to prevent 1456 * other users from accessing the page. We also 1457 * have to lock the translation to prevent a fault 1458 * from occurring when the virtual address mapped by 1459 * this page is written into. This is necessary to 1460 * avoid a deadlock since we haven't dropped the 1461 * "exclusive" lock. 1462 */ 1463 bitindex = (ushort_t)((off - smp->sm_off) >> PAGESHIFT); 1464 1465 /* 1466 * Large Files: The following assertion is to 1467 * verify the cast above. 1468 */ 1469 ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX); 1470 smtx = SMAPMTX(smp); 1471 mutex_enter(smtx); 1472 smp->sm_bitmap |= SMAP_BIT_MASK(bitindex); 1473 mutex_exit(smtx); 1474 1475 hat_flag = HAT_LOAD_LOCK; 1476 } else if (softlock) { 1477 hat_flag = HAT_LOAD_LOCK; 1478 } 1479 1480 if (IS_VMODSORT(pp->p_vnode) && (prot & PROT_WRITE)) 1481 hat_setmod(pp); 1482 1483 hat_memload(kas.a_hat, addr, pp, prot, hat_flag); 1484 1485 if (hat_flag != HAT_LOAD_LOCK) 1486 page_unlock(pp); 1487 1488 TRACE_5(TR_FAC_VM, TR_SEGMAP_PAGECREATE, 1489 "segmap_pagecreate:seg %p addr %p pp %p vp %p offset %llx", 1490 seg, addr, pp, vp, off); 1491 } 1492 1493 return (newpage); 1494 } 1495 1496 void 1497 segmap_pageunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw) 1498 { 1499 struct smap *smp; 1500 ushort_t bitmask; 1501 page_t *pp; 1502 struct vnode *vp; 1503 u_offset_t off; 1504 caddr_t eaddr; 1505 kmutex_t *smtx; 1506 1507 ASSERT(seg->s_as == &kas); 1508 1509 eaddr = addr + len; 1510 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1511 1512 if (segmap_kpm && IS_KPM_ADDR(addr)) { 1513 /* 1514 * Pages are successfully prefaulted and locked in 1515 * segmap_getmapflt and can't be unlocked until 1516 * segmap_release, so no pages or hat mappings have 1517 * to be unlocked at this point. 1518 */ 1519 #ifdef DEBUG 1520 if ((smp = get_smap_kpm(addr, NULL)) == NULL) { 1521 panic("segmap_pageunlock: smap not found " 1522 "for addr %p", (void *)addr); 1523 /*NOTREACHED*/ 1524 } 1525 1526 ASSERT(smp->sm_refcnt > 0); 1527 mutex_exit(SMAPMTX(smp)); 1528 #endif 1529 return; 1530 } 1531 1532 smp = GET_SMAP(seg, addr); 1533 smtx = SMAPMTX(smp); 1534 1535 ASSERT(smp->sm_refcnt > 0); 1536 1537 vp = smp->sm_vp; 1538 off = smp->sm_off + ((u_offset_t)((uintptr_t)addr & MAXBOFFSET)); 1539 1540 for (; addr < eaddr; addr += PAGESIZE, off += PAGESIZE) { 1541 bitmask = SMAP_BIT_MASK((int)(off - smp->sm_off) >> PAGESHIFT); 1542 1543 /* 1544 * Large Files: Following assertion is to verify 1545 * the correctness of the cast to (int) above. 1546 */ 1547 ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX); 1548 1549 /* 1550 * If the bit corresponding to "off" is set, 1551 * clear this bit in the bitmap, unlock translations, 1552 * and release the "exclusive" lock on the page. 1553 */ 1554 if (smp->sm_bitmap & bitmask) { 1555 mutex_enter(smtx); 1556 smp->sm_bitmap &= ~bitmask; 1557 mutex_exit(smtx); 1558 1559 hat_unlock(kas.a_hat, addr, PAGESIZE); 1560 1561 /* 1562 * Use page_find() instead of page_lookup() to 1563 * find the page since we know that it has 1564 * "exclusive" lock. 1565 */ 1566 pp = page_find(vp, off); 1567 if (pp == NULL) { 1568 panic("segmap_pageunlock: page not found"); 1569 /*NOTREACHED*/ 1570 } 1571 if (rw == S_WRITE) { 1572 hat_setrefmod(pp); 1573 } else if (rw != S_OTHER) { 1574 hat_setref(pp); 1575 } 1576 1577 page_unlock(pp); 1578 } 1579 } 1580 } 1581 1582 caddr_t 1583 segmap_getmap(struct seg *seg, struct vnode *vp, u_offset_t off) 1584 { 1585 return (segmap_getmapflt(seg, vp, off, MAXBSIZE, 0, S_OTHER)); 1586 } 1587 1588 /* 1589 * This is the magic virtual address that offset 0 of an ELF 1590 * file gets mapped to in user space. This is used to pick 1591 * the vac color on the freelist. 1592 */ 1593 #define ELF_OFFZERO_VA (0x10000) 1594 /* 1595 * segmap_getmap allocates a MAXBSIZE big slot to map the vnode vp 1596 * in the range <off, off + len). off doesn't need to be MAXBSIZE aligned. 1597 * The return address is always MAXBSIZE aligned. 1598 * 1599 * If forcefault is nonzero and the MMU translations haven't yet been created, 1600 * segmap_getmap will call segmap_fault(..., F_INVAL, rw) to create them. 1601 */ 1602 caddr_t 1603 segmap_getmapflt( 1604 struct seg *seg, 1605 struct vnode *vp, 1606 u_offset_t off, 1607 size_t len, 1608 int forcefault, 1609 enum seg_rw rw) 1610 { 1611 struct smap *smp, *nsmp; 1612 extern struct vnode *common_specvp(); 1613 caddr_t baseaddr; /* MAXBSIZE aligned */ 1614 u_offset_t baseoff; 1615 int newslot; 1616 caddr_t vaddr; 1617 int color, hashid; 1618 kmutex_t *hashmtx, *smapmtx; 1619 struct smfree *sm; 1620 page_t *pp; 1621 struct kpme *kpme; 1622 uint_t prot; 1623 caddr_t base; 1624 page_t *pl[MAXPPB + 1]; 1625 int error; 1626 int is_kpm = 1; 1627 1628 ASSERT(seg->s_as == &kas); 1629 ASSERT(seg == segkmap); 1630 1631 baseoff = off & (offset_t)MAXBMASK; 1632 if (off + len > baseoff + MAXBSIZE) { 1633 panic("segmap_getmap bad len"); 1634 /*NOTREACHED*/ 1635 } 1636 1637 /* 1638 * If this is a block device we have to be sure to use the 1639 * "common" block device vnode for the mapping. 1640 */ 1641 if (vp->v_type == VBLK) 1642 vp = common_specvp(vp); 1643 1644 smd_cpu[CPU->cpu_seqid].scpu.scpu_getmap++; 1645 1646 if (segmap_kpm == 0 || 1647 (forcefault == SM_PAGECREATE && rw != S_WRITE)) { 1648 is_kpm = 0; 1649 } 1650 1651 SMAP_HASHFUNC(vp, off, hashid); /* macro assigns hashid */ 1652 hashmtx = SHASHMTX(hashid); 1653 1654 retry_hash: 1655 mutex_enter(hashmtx); 1656 for (smp = smd_hash[hashid].sh_hash_list; 1657 smp != NULL; smp = smp->sm_hash) 1658 if (smp->sm_vp == vp && smp->sm_off == baseoff) 1659 break; 1660 mutex_exit(hashmtx); 1661 1662 vrfy_smp: 1663 if (smp != NULL) { 1664 1665 ASSERT(vp->v_count != 0); 1666 1667 /* 1668 * Get smap lock and recheck its tag. The hash lock 1669 * is dropped since the hash is based on (vp, off) 1670 * and (vp, off) won't change when we have smap mtx. 1671 */ 1672 smapmtx = SMAPMTX(smp); 1673 mutex_enter(smapmtx); 1674 if (smp->sm_vp != vp || smp->sm_off != baseoff) { 1675 mutex_exit(smapmtx); 1676 goto retry_hash; 1677 } 1678 1679 if (smp->sm_refcnt == 0) { 1680 1681 smd_cpu[CPU->cpu_seqid].scpu.scpu_get_reclaim++; 1682 1683 /* 1684 * Could still be on the free list. However, this 1685 * could also be an smp that is transitioning from 1686 * the free list when we have too much contention 1687 * for the smapmtx's. In this case, we have an 1688 * unlocked smp that is not on the free list any 1689 * longer, but still has a 0 refcnt. The only way 1690 * to be sure is to check the freelist pointers. 1691 * Since we now have the smapmtx, we are guaranteed 1692 * that the (vp, off) won't change, so we are safe 1693 * to reclaim it. get_free_smp() knows that this 1694 * can happen, and it will check the refcnt. 1695 */ 1696 1697 if ((smp->sm_next != NULL)) { 1698 struct sm_freeq *freeq; 1699 1700 ASSERT(smp->sm_prev != NULL); 1701 sm = &smd_free[smp->sm_free_ndx]; 1702 1703 if (smp->sm_flags & SM_QNDX_ZERO) 1704 freeq = &sm->sm_freeq[0]; 1705 else 1706 freeq = &sm->sm_freeq[1]; 1707 1708 mutex_enter(&freeq->smq_mtx); 1709 if (freeq->smq_free != smp) { 1710 /* 1711 * fastpath normal case 1712 */ 1713 smp->sm_prev->sm_next = smp->sm_next; 1714 smp->sm_next->sm_prev = smp->sm_prev; 1715 } else if (smp == smp->sm_next) { 1716 /* 1717 * Taking the last smap on freelist 1718 */ 1719 freeq->smq_free = NULL; 1720 } else { 1721 /* 1722 * Reclaiming 1st smap on list 1723 */ 1724 freeq->smq_free = smp->sm_next; 1725 smp->sm_prev->sm_next = smp->sm_next; 1726 smp->sm_next->sm_prev = smp->sm_prev; 1727 } 1728 mutex_exit(&freeq->smq_mtx); 1729 smp->sm_prev = smp->sm_next = NULL; 1730 } else { 1731 ASSERT(smp->sm_prev == NULL); 1732 segmapcnt.smp_stolen.value.ul++; 1733 } 1734 1735 } else { 1736 segmapcnt.smp_get_use.value.ul++; 1737 } 1738 smp->sm_refcnt++; /* another user */ 1739 1740 /* 1741 * We don't invoke segmap_fault via TLB miss, so we set ref 1742 * and mod bits in advance. For S_OTHER we set them in 1743 * segmap_fault F_SOFTUNLOCK. 1744 */ 1745 if (is_kpm) { 1746 if (rw == S_WRITE) { 1747 smp->sm_flags |= SM_WRITE_DATA; 1748 } else if (rw == S_READ) { 1749 smp->sm_flags |= SM_READ_DATA; 1750 } 1751 } 1752 mutex_exit(smapmtx); 1753 1754 newslot = 0; 1755 } else { 1756 1757 uint32_t free_ndx, *free_ndxp; 1758 union segmap_cpu *scpu; 1759 1760 /* 1761 * On a PAC machine or a machine with anti-alias 1762 * hardware, smd_colormsk will be zero. 1763 * 1764 * On a VAC machine- pick color by offset in the file 1765 * so we won't get VAC conflicts on elf files. 1766 * On data files, color does not matter but we 1767 * don't know what kind of file it is so we always 1768 * pick color by offset. This causes color 1769 * corresponding to file offset zero to be used more 1770 * heavily. 1771 */ 1772 color = (baseoff >> MAXBSHIFT) & smd_colormsk; 1773 scpu = smd_cpu+CPU->cpu_seqid; 1774 free_ndxp = &scpu->scpu.scpu_free_ndx[color]; 1775 free_ndx = (*free_ndxp += smd_ncolor) & smd_freemsk; 1776 #ifdef DEBUG 1777 colors_used[free_ndx]++; 1778 #endif /* DEBUG */ 1779 1780 /* 1781 * Get a locked smp slot from the free list. 1782 */ 1783 smp = get_free_smp(free_ndx); 1784 smapmtx = SMAPMTX(smp); 1785 1786 ASSERT(smp->sm_vp == NULL); 1787 1788 if ((nsmp = segmap_hashin(smp, vp, baseoff, hashid)) != NULL) { 1789 /* 1790 * Failed to hashin, there exists one now. 1791 * Return the smp we just allocated. 1792 */ 1793 segmap_smapadd(smp); 1794 mutex_exit(smapmtx); 1795 1796 smp = nsmp; 1797 goto vrfy_smp; 1798 } 1799 smp->sm_refcnt++; /* another user */ 1800 1801 /* 1802 * We don't invoke segmap_fault via TLB miss, so we set ref 1803 * and mod bits in advance. For S_OTHER we set them in 1804 * segmap_fault F_SOFTUNLOCK. 1805 */ 1806 if (is_kpm) { 1807 if (rw == S_WRITE) { 1808 smp->sm_flags |= SM_WRITE_DATA; 1809 } else if (rw == S_READ) { 1810 smp->sm_flags |= SM_READ_DATA; 1811 } 1812 } 1813 mutex_exit(smapmtx); 1814 1815 newslot = 1; 1816 } 1817 1818 if (!is_kpm) 1819 goto use_segmap_range; 1820 1821 /* 1822 * Use segkpm 1823 */ 1824 ASSERT(PAGESIZE == MAXBSIZE); 1825 1826 /* 1827 * remember the last smp faulted on this cpu. 1828 */ 1829 (smd_cpu+CPU->cpu_seqid)->scpu.scpu_last_smap = smp; 1830 1831 if (forcefault == SM_PAGECREATE) { 1832 baseaddr = segmap_pagecreate_kpm(seg, vp, baseoff, smp, rw); 1833 return (baseaddr); 1834 } 1835 1836 if (newslot == 0 && 1837 (pp = GET_KPME(smp)->kpe_page) != NULL) { 1838 1839 /* fastpath */ 1840 switch (rw) { 1841 case S_READ: 1842 case S_WRITE: 1843 if (page_trylock(pp, SE_SHARED)) { 1844 if (PP_ISFREE(pp) || 1845 !(pp->p_vnode == vp && 1846 pp->p_offset == baseoff)) { 1847 page_unlock(pp); 1848 pp = page_lookup(vp, baseoff, 1849 SE_SHARED); 1850 } 1851 } else { 1852 pp = page_lookup(vp, baseoff, SE_SHARED); 1853 } 1854 1855 if (pp == NULL) { 1856 ASSERT(GET_KPME(smp)->kpe_page == NULL); 1857 break; 1858 } 1859 1860 if (rw == S_WRITE && 1861 hat_page_getattr(pp, P_MOD | P_REF) != 1862 (P_MOD | P_REF)) { 1863 page_unlock(pp); 1864 break; 1865 } 1866 1867 /* 1868 * We have the p_selock as reader, grab_smp 1869 * can't hit us, we have bumped the smap 1870 * refcnt and hat_pageunload needs the 1871 * p_selock exclusive. 1872 */ 1873 kpme = GET_KPME(smp); 1874 if (kpme->kpe_page == pp) { 1875 baseaddr = hat_kpm_page2va(pp, 0); 1876 } else if (kpme->kpe_page == NULL) { 1877 baseaddr = hat_kpm_mapin(pp, kpme); 1878 } else { 1879 panic("segmap_getmapflt: stale " 1880 "kpme page, kpme %p", (void *)kpme); 1881 /*NOTREACHED*/ 1882 } 1883 1884 /* 1885 * We don't invoke segmap_fault via TLB miss, 1886 * so we set ref and mod bits in advance. 1887 * For S_OTHER and we set them in segmap_fault 1888 * F_SOFTUNLOCK. 1889 */ 1890 if (rw == S_READ && !hat_isref(pp)) 1891 hat_setref(pp); 1892 1893 return (baseaddr); 1894 default: 1895 break; 1896 } 1897 } 1898 1899 base = segkpm_create_va(baseoff); 1900 error = VOP_GETPAGE(vp, (offset_t)baseoff, len, &prot, pl, MAXBSIZE, 1901 seg, base, rw, CRED(), NULL); 1902 1903 pp = pl[0]; 1904 if (error || pp == NULL) { 1905 /* 1906 * Use segmap address slot and let segmap_fault deal 1907 * with the error cases. There is no error return 1908 * possible here. 1909 */ 1910 goto use_segmap_range; 1911 } 1912 1913 ASSERT(pl[1] == NULL); 1914 1915 /* 1916 * When prot is not returned w/ PROT_ALL the returned pages 1917 * are not backed by fs blocks. For most of the segmap users 1918 * this is no problem, they don't write to the pages in the 1919 * same request and therefore don't rely on a following 1920 * trap driven segmap_fault. With SM_LOCKPROTO users it 1921 * is more secure to use segkmap adresses to allow 1922 * protection segmap_fault's. 1923 */ 1924 if (prot != PROT_ALL && forcefault == SM_LOCKPROTO) { 1925 /* 1926 * Use segmap address slot and let segmap_fault 1927 * do the error return. 1928 */ 1929 ASSERT(rw != S_WRITE); 1930 ASSERT(PAGE_LOCKED(pp)); 1931 page_unlock(pp); 1932 forcefault = 0; 1933 goto use_segmap_range; 1934 } 1935 1936 /* 1937 * We have the p_selock as reader, grab_smp can't hit us, we 1938 * have bumped the smap refcnt and hat_pageunload needs the 1939 * p_selock exclusive. 1940 */ 1941 kpme = GET_KPME(smp); 1942 if (kpme->kpe_page == pp) { 1943 baseaddr = hat_kpm_page2va(pp, 0); 1944 } else if (kpme->kpe_page == NULL) { 1945 baseaddr = hat_kpm_mapin(pp, kpme); 1946 } else { 1947 panic("segmap_getmapflt: stale kpme page after " 1948 "VOP_GETPAGE, kpme %p", (void *)kpme); 1949 /*NOTREACHED*/ 1950 } 1951 1952 smd_cpu[CPU->cpu_seqid].scpu.scpu_fault++; 1953 1954 return (baseaddr); 1955 1956 1957 use_segmap_range: 1958 baseaddr = seg->s_base + ((smp - smd_smap) * MAXBSIZE); 1959 TRACE_4(TR_FAC_VM, TR_SEGMAP_GETMAP, 1960 "segmap_getmap:seg %p addr %p vp %p offset %llx", 1961 seg, baseaddr, vp, baseoff); 1962 1963 /* 1964 * Prefault the translations 1965 */ 1966 vaddr = baseaddr + (off - baseoff); 1967 if (forcefault && (newslot || !hat_probe(kas.a_hat, vaddr))) { 1968 1969 caddr_t pgaddr = (caddr_t)((uintptr_t)vaddr & 1970 (uintptr_t)PAGEMASK); 1971 1972 (void) segmap_fault(kas.a_hat, seg, pgaddr, 1973 (vaddr + len - pgaddr + PAGESIZE - 1) & (uintptr_t)PAGEMASK, 1974 F_INVAL, rw); 1975 } 1976 1977 return (baseaddr); 1978 } 1979 1980 int 1981 segmap_release(struct seg *seg, caddr_t addr, uint_t flags) 1982 { 1983 struct smap *smp; 1984 int error; 1985 int bflags = 0; 1986 struct vnode *vp; 1987 u_offset_t offset; 1988 kmutex_t *smtx; 1989 int is_kpm = 0; 1990 page_t *pp; 1991 1992 if (segmap_kpm && IS_KPM_ADDR(addr)) { 1993 1994 if (((uintptr_t)addr & MAXBOFFSET) != 0) { 1995 panic("segmap_release: addr %p not " 1996 "MAXBSIZE aligned", (void *)addr); 1997 /*NOTREACHED*/ 1998 } 1999 2000 if ((smp = get_smap_kpm(addr, &pp)) == NULL) { 2001 panic("segmap_release: smap not found " 2002 "for addr %p", (void *)addr); 2003 /*NOTREACHED*/ 2004 } 2005 2006 TRACE_3(TR_FAC_VM, TR_SEGMAP_RELMAP, 2007 "segmap_relmap:seg %p addr %p smp %p", 2008 seg, addr, smp); 2009 2010 smtx = SMAPMTX(smp); 2011 2012 /* 2013 * For compatibility reasons segmap_pagecreate_kpm sets this 2014 * flag to allow a following segmap_pagecreate to return 2015 * this as "newpage" flag. When segmap_pagecreate is not 2016 * called at all we clear it now. 2017 */ 2018 smp->sm_flags &= ~SM_KPM_NEWPAGE; 2019 is_kpm = 1; 2020 if (smp->sm_flags & SM_WRITE_DATA) { 2021 hat_setrefmod(pp); 2022 } else if (smp->sm_flags & SM_READ_DATA) { 2023 hat_setref(pp); 2024 } 2025 } else { 2026 if (addr < seg->s_base || addr >= seg->s_base + seg->s_size || 2027 ((uintptr_t)addr & MAXBOFFSET) != 0) { 2028 panic("segmap_release: bad addr %p", (void *)addr); 2029 /*NOTREACHED*/ 2030 } 2031 smp = GET_SMAP(seg, addr); 2032 2033 TRACE_3(TR_FAC_VM, TR_SEGMAP_RELMAP, 2034 "segmap_relmap:seg %p addr %p smp %p", 2035 seg, addr, smp); 2036 2037 smtx = SMAPMTX(smp); 2038 mutex_enter(smtx); 2039 smp->sm_flags |= SM_NOTKPM_RELEASED; 2040 } 2041 2042 ASSERT(smp->sm_refcnt > 0); 2043 2044 /* 2045 * Need to call VOP_PUTPAGE() if any flags (except SM_DONTNEED) 2046 * are set. 2047 */ 2048 if ((flags & ~SM_DONTNEED) != 0) { 2049 if (flags & SM_WRITE) 2050 segmapcnt.smp_rel_write.value.ul++; 2051 if (flags & SM_ASYNC) { 2052 bflags |= B_ASYNC; 2053 segmapcnt.smp_rel_async.value.ul++; 2054 } 2055 if (flags & SM_INVAL) { 2056 bflags |= B_INVAL; 2057 segmapcnt.smp_rel_abort.value.ul++; 2058 } 2059 if (flags & SM_DESTROY) { 2060 bflags |= (B_INVAL|B_TRUNC); 2061 segmapcnt.smp_rel_abort.value.ul++; 2062 } 2063 if (smp->sm_refcnt == 1) { 2064 /* 2065 * We only bother doing the FREE and DONTNEED flags 2066 * if no one else is still referencing this mapping. 2067 */ 2068 if (flags & SM_FREE) { 2069 bflags |= B_FREE; 2070 segmapcnt.smp_rel_free.value.ul++; 2071 } 2072 if (flags & SM_DONTNEED) { 2073 bflags |= B_DONTNEED; 2074 segmapcnt.smp_rel_dontneed.value.ul++; 2075 } 2076 } 2077 } else { 2078 smd_cpu[CPU->cpu_seqid].scpu.scpu_release++; 2079 } 2080 2081 vp = smp->sm_vp; 2082 offset = smp->sm_off; 2083 2084 if (--smp->sm_refcnt == 0) { 2085 2086 smp->sm_flags &= ~(SM_WRITE_DATA | SM_READ_DATA); 2087 2088 if (flags & (SM_INVAL|SM_DESTROY)) { 2089 segmap_hashout(smp); /* remove map info */ 2090 if (is_kpm) { 2091 hat_kpm_mapout(pp, GET_KPME(smp), addr); 2092 if (smp->sm_flags & SM_NOTKPM_RELEASED) { 2093 smp->sm_flags &= ~SM_NOTKPM_RELEASED; 2094 hat_unload(kas.a_hat, addr, MAXBSIZE, 2095 HAT_UNLOAD); 2096 } 2097 2098 } else { 2099 if (segmap_kpm) 2100 segkpm_mapout_validkpme(GET_KPME(smp)); 2101 2102 smp->sm_flags &= ~SM_NOTKPM_RELEASED; 2103 hat_unload(kas.a_hat, addr, MAXBSIZE, 2104 HAT_UNLOAD); 2105 } 2106 } 2107 segmap_smapadd(smp); /* add to free list */ 2108 } 2109 2110 mutex_exit(smtx); 2111 2112 if (is_kpm) 2113 page_unlock(pp); 2114 /* 2115 * Now invoke VOP_PUTPAGE() if any flags (except SM_DONTNEED) 2116 * are set. 2117 */ 2118 if ((flags & ~SM_DONTNEED) != 0) { 2119 error = VOP_PUTPAGE(vp, offset, MAXBSIZE, 2120 bflags, CRED(), NULL); 2121 } else { 2122 error = 0; 2123 } 2124 2125 return (error); 2126 } 2127 2128 /* 2129 * Dump the pages belonging to this segmap segment. 2130 */ 2131 static void 2132 segmap_dump(struct seg *seg) 2133 { 2134 struct segmap_data *smd; 2135 struct smap *smp, *smp_end; 2136 page_t *pp; 2137 pfn_t pfn; 2138 u_offset_t off; 2139 caddr_t addr; 2140 2141 smd = (struct segmap_data *)seg->s_data; 2142 addr = seg->s_base; 2143 for (smp = smd->smd_sm, smp_end = smp + smd->smd_npages; 2144 smp < smp_end; smp++) { 2145 2146 if (smp->sm_refcnt) { 2147 for (off = 0; off < MAXBSIZE; off += PAGESIZE) { 2148 int we_own_it = 0; 2149 2150 /* 2151 * If pp == NULL, the page either does 2152 * not exist or is exclusively locked. 2153 * So determine if it exists before 2154 * searching for it. 2155 */ 2156 if ((pp = page_lookup_nowait(smp->sm_vp, 2157 smp->sm_off + off, SE_SHARED))) 2158 we_own_it = 1; 2159 else 2160 pp = page_exists(smp->sm_vp, 2161 smp->sm_off + off); 2162 2163 if (pp) { 2164 pfn = page_pptonum(pp); 2165 dump_addpage(seg->s_as, 2166 addr + off, pfn); 2167 if (we_own_it) 2168 page_unlock(pp); 2169 } 2170 dump_timeleft = dump_timeout; 2171 } 2172 } 2173 addr += MAXBSIZE; 2174 } 2175 } 2176 2177 /*ARGSUSED*/ 2178 static int 2179 segmap_pagelock(struct seg *seg, caddr_t addr, size_t len, 2180 struct page ***ppp, enum lock_type type, enum seg_rw rw) 2181 { 2182 return (ENOTSUP); 2183 } 2184 2185 static int 2186 segmap_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 2187 { 2188 struct segmap_data *smd = (struct segmap_data *)seg->s_data; 2189 2190 memidp->val[0] = (uintptr_t)smd->smd_sm->sm_vp; 2191 memidp->val[1] = smd->smd_sm->sm_off + (uintptr_t)(addr - seg->s_base); 2192 return (0); 2193 } 2194 2195 /*ARGSUSED*/ 2196 static lgrp_mem_policy_info_t * 2197 segmap_getpolicy(struct seg *seg, caddr_t addr) 2198 { 2199 return (NULL); 2200 } 2201 2202 /*ARGSUSED*/ 2203 static int 2204 segmap_capable(struct seg *seg, segcapability_t capability) 2205 { 2206 return (0); 2207 } 2208 2209 2210 #ifdef SEGKPM_SUPPORT 2211 2212 /* 2213 * segkpm support routines 2214 */ 2215 2216 static caddr_t 2217 segmap_pagecreate_kpm(struct seg *seg, vnode_t *vp, u_offset_t off, 2218 struct smap *smp, enum seg_rw rw) 2219 { 2220 caddr_t base; 2221 page_t *pp; 2222 int newpage = 0; 2223 struct kpme *kpme; 2224 2225 ASSERT(smp->sm_refcnt > 0); 2226 2227 if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) { 2228 kmutex_t *smtx; 2229 2230 base = segkpm_create_va(off); 2231 2232 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, 2233 seg, base)) == NULL) { 2234 panic("segmap_pagecreate_kpm: " 2235 "page_create failed"); 2236 /*NOTREACHED*/ 2237 } 2238 2239 newpage = 1; 2240 page_io_unlock(pp); 2241 ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX); 2242 2243 /* 2244 * Mark this here until the following segmap_pagecreate 2245 * or segmap_release. 2246 */ 2247 smtx = SMAPMTX(smp); 2248 mutex_enter(smtx); 2249 smp->sm_flags |= SM_KPM_NEWPAGE; 2250 mutex_exit(smtx); 2251 } 2252 2253 kpme = GET_KPME(smp); 2254 if (!newpage && kpme->kpe_page == pp) 2255 base = hat_kpm_page2va(pp, 0); 2256 else 2257 base = hat_kpm_mapin(pp, kpme); 2258 2259 /* 2260 * FS code may decide not to call segmap_pagecreate and we 2261 * don't invoke segmap_fault via TLB miss, so we have to set 2262 * ref and mod bits in advance. 2263 */ 2264 if (rw == S_WRITE) { 2265 hat_setrefmod(pp); 2266 } else { 2267 ASSERT(rw == S_READ); 2268 hat_setref(pp); 2269 } 2270 2271 smd_cpu[CPU->cpu_seqid].scpu.scpu_pagecreate++; 2272 2273 return (base); 2274 } 2275 2276 /* 2277 * Find the smap structure corresponding to the 2278 * KPM addr and return it locked. 2279 */ 2280 struct smap * 2281 get_smap_kpm(caddr_t addr, page_t **ppp) 2282 { 2283 struct smap *smp; 2284 struct vnode *vp; 2285 u_offset_t offset; 2286 caddr_t baseaddr = (caddr_t)((uintptr_t)addr & MAXBMASK); 2287 int hashid; 2288 kmutex_t *hashmtx; 2289 page_t *pp; 2290 union segmap_cpu *scpu; 2291 2292 pp = hat_kpm_vaddr2page(baseaddr); 2293 2294 ASSERT(pp && !PP_ISFREE(pp)); 2295 ASSERT(PAGE_LOCKED(pp)); 2296 ASSERT(((uintptr_t)pp->p_offset & MAXBOFFSET) == 0); 2297 2298 vp = pp->p_vnode; 2299 offset = pp->p_offset; 2300 ASSERT(vp != NULL); 2301 2302 /* 2303 * Assume the last smap used on this cpu is the one needed. 2304 */ 2305 scpu = smd_cpu+CPU->cpu_seqid; 2306 smp = scpu->scpu.scpu_last_smap; 2307 mutex_enter(&smp->sm_mtx); 2308 if (smp->sm_vp == vp && smp->sm_off == offset) { 2309 ASSERT(smp->sm_refcnt > 0); 2310 } else { 2311 /* 2312 * Assumption wrong, find the smap on the hash chain. 2313 */ 2314 mutex_exit(&smp->sm_mtx); 2315 SMAP_HASHFUNC(vp, offset, hashid); /* macro assigns hashid */ 2316 hashmtx = SHASHMTX(hashid); 2317 2318 mutex_enter(hashmtx); 2319 smp = smd_hash[hashid].sh_hash_list; 2320 for (; smp != NULL; smp = smp->sm_hash) { 2321 if (smp->sm_vp == vp && smp->sm_off == offset) 2322 break; 2323 } 2324 mutex_exit(hashmtx); 2325 if (smp) { 2326 mutex_enter(&smp->sm_mtx); 2327 ASSERT(smp->sm_vp == vp && smp->sm_off == offset); 2328 } 2329 } 2330 2331 if (ppp) 2332 *ppp = smp ? pp : NULL; 2333 2334 return (smp); 2335 } 2336 2337 #else /* SEGKPM_SUPPORT */ 2338 2339 /* segkpm stubs */ 2340 2341 /*ARGSUSED*/ 2342 static caddr_t 2343 segmap_pagecreate_kpm(struct seg *seg, vnode_t *vp, u_offset_t off, 2344 struct smap *smp, enum seg_rw rw) 2345 { 2346 return (NULL); 2347 } 2348 2349 /*ARGSUSED*/ 2350 struct smap * 2351 get_smap_kpm(caddr_t addr, page_t **ppp) 2352 { 2353 return (NULL); 2354 } 2355 2356 #endif /* SEGKPM_SUPPORT */ 2357